Science.gov

Sample records for ascomycete podospora anserina

  1. Integrative transformation of the ascomycete Podospora anserina: identification of the mating-type locus on chromosome VII of electrophoretically separated chromosomes.

    PubMed

    Osiewacz, H D; Skaletz, A; Esser, K

    1991-04-01

    Protoplasts of wild-type strain s and a long-lived extrachromosomal mutant (AL2) of the ascomycete Podospora anserina were transformed using a plasmid (pAN7-1) which contains the hygromycin B phosphotransferase gene (hph) of Escherichia coli under the control of Aspergillus nidulans regulatory sequences. After optimizing the transformation procedure, transformation efficiencies of 15-21 transformants/micrograms plasmid DNA were obtained. Using a second selectable vector (pBT3), which contains the beta-tubuline gene of a benomyl-resistant Neurospora crassa mutant, the co-transformation rate was determined. Southern blot hybridization experiments revealed that the transforming plasmid became integrated into the genome of the recipient either as a single copy or as multiple copies. In addition, the data from molecular as well as from classical genetic analyses indicated that in independent transformants vector integration occurred at different positions. The mitotic and meiotic stability of transformants proved to be dependent on the number of integrated plasmid copies. Genetic analyses revealed a transformant in which the integrated vector is closely linked to the mating-type locus. Fractionation of whole chromosomes by pulsed field gel electrophoresis and subsequent hybridization of the immobilized DNAs against radiolabelled vector sequences indicated the largest of seven chromosomes as the chromosome containing the integrated vector and thus the mating-type locus. PMID:1367277

  2. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw.

    PubMed

    Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric; Estrada-Alvarado, Isabel; Levasseur, Anthony

    2013-06-01

    Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications. PMID:22940800

  3. Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body

    PubMed Central

    Coppin, Evelyne; Berteaux-Lecellier, Vronique; Bidard, Frdrique; Brun, Sylvain; Ruprich-Robert, Gwenal; Espagne, Eric; At-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe

    2012-01-01

    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures. PMID:22662159

  4. The transcriptional response to nonself in the fungus Podospora anserina.

    PubMed

    Bidard, Frdrique; Clav, Corinne; Saupe, Sven J

    2013-06-01

    In fungi, heterokaryon incompatibility is a nonself recognition process occurring when filaments of different isolates of the same species fuse. Compatibility is controlled by so-called het loci and fusion of strains of unlike het genotype triggers a complex incompatibility reaction that leads to the death of the fusion cell. Herein, we analyze the transcriptional changes during the incompatibility reaction in Podospora anserina. The incompatibility response was found to be associated with a massive transcriptional reprogramming: 2231 genes were up-regulated by a factor 2 or more during incompatibility. In turn, 2441 genes were down-regulated. HET, NACHT, and HeLo domains previously found to be involved in the control of heterokaryon incompatibility were enriched in the up-regulated gene set. In addition, incompatibility was characterized by an up-regulation of proteolytic and other hydrolytic activities, of secondary metabolism clusters and toxins and effector-like proteins. The up-regulated set was found to be enriched for proteins lacking orthologs in other species and chromosomal distribution of the up-regulated genes was uneven with up-regulated genes residing preferentially in genomic islands and on chromosomes IV and V. There was a significant overlap between regulated genes during incompatibility in P. anserina and Neurospora crassa, indicating similarities in the incompatibility responses in these two species. Globally, this study illustrates that the expression changes occurring during cell fusion incompatibility in P. anserina are in several aspects reminiscent of those described in host-pathogen or symbiotic interactions in other fungal species. PMID:23589521

  5. The Transcriptional Response to Nonself in the Fungus Podospora anserina

    PubMed Central

    Bidard, Frdrique; Clav, Corinne; Saupe, Sven J.

    2013-01-01

    In fungi, heterokaryon incompatibility is a nonself recognition process occurring when filaments of different isolates of the same species fuse. Compatibility is controlled by so-called het loci and fusion of strains of unlike het genotype triggers a complex incompatibility reaction that leads to the death of the fusion cell. Herein, we analyze the transcriptional changes during the incompatibility reaction in Podospora anserina. The incompatibility response was found to be associated with a massive transcriptional reprogramming: 2231 genes were up-regulated by a factor 2 or more during incompatibility. In turn, 2441 genes were down-regulated. HET, NACHT, and HeLo domains previously found to be involved in the control of heterokaryon incompatibility were enriched in the up-regulated gene set. In addition, incompatibility was characterized by an up-regulation of proteolytic and other hydrolytic activities, of secondary metabolism clusters and toxins and effector-like proteins. The up-regulated set was found to be enriched for proteins lacking orthologs in other species and chromosomal distribution of the up-regulated genes was uneven with up-regulated genes residing preferentially in genomic islands and on chromosomes IV and V. There was a significant overlap between regulated genes during incompatibility in P. anserina and Neurospora crassa, indicating similarities in the incompatibility responses in these two species. Globally, this study illustrates that the expression changes occurring during cell fusion incompatibility in P. anserina are in several aspects reminiscent of those described in host-pathogen or symbiotic interactions in other fungal species. PMID:23589521

  6. Modulation of the glyoxalase system in the aging model Podospora anserina: effects on growth and lifespan

    PubMed Central

    Scheckhuber, Christian Q.; Mack, Sandra J.; Strobel, Ingmar; Ricciardi, Filomena; Gispert, Suzana; Osiewacz, Heinz D.

    2010-01-01

    The eukaryotic glyoxalase system consists of two enzymatic components, glyoxalase I (lactoylglutathione lyase) and glyoxalase II (hydroxyacylglutathione hydrolase). These enzymes are dedicated to the removal of toxic α-oxoaldehydes like methylglyoxal (MG). MG is formed as a by-product of glycolysis and MG toxicity results from its damaging capability leading to modifications of proteins, lipids and nucleic acids. An efficient removal of MG appears to be essential to ensure cellular functionality and viability. Here we study the effects of the genetic modulation of genes encoding the components of the glyoxalase system in the filamentous ascomycete and aging model Podospora anserina. Overexpression of PaGlo1 leads to a lifespan reduction on glucose rich medium, probably due to depletion of reduced glutathione. Deletion of PaGlo1 leads to hypersensitivity against MG added to the growth medium. A beneficial effect on lifespan is observed when both PaGlo1 and PaGlo2 are overexpressed and the corresponding strains are grown on media containing increased glucose concentrations. Notably, the double mutant has a ‘healthy’ phenotype without physiological impairments. Moreover, PaGlo1/PaGlo2_OEx strains are not long-lived on media containing standard glucose concentrations suggesting a tight correlation between the efficiency and capacity to remove MG within the cell, the level of available glucose and lifespan. Overall, our results identify the up-regulation of both components of the glyoxalase system as an effective intervention to increase lifespan in P. anserina. PMID:21212464

  7. Insights into Exo- and Endoglucanase Activities of Family 6 Glycoside Hydrolases from Podospora anserina

    PubMed Central

    Poidevin, Laetitia; Feliu, Julia; Doan, Annick; Berrin, Jean-Guy; Bey, Mathieu; Coutinho, Pedro M.; Henrissat, Bernard; Record, Eric

    2013-01-01

    The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase. PMID:23645193

  8. Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection

    PubMed Central

    Bastiaans, Eric; Debets, Alfons J.M.; Aanen, Duur K.; van Diepeningen, Anne D.; Saupe, Sven J.; Paoletti, Mathieu

    2014-01-01

    In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition. PMID:24448643

  9. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511

  10. Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina

    PubMed Central

    Bey, Mathieu; Zhou, Simeng; Poidevin, Laetitia; Henrissat, Bernard; Coutinho, Pedro M.; Sigoillot, Jean-Claude

    2013-01-01

    The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis. PMID:23124232

  11. Altered Mating-Type Identity in the Fungus Podospora Anserina Leads to Selfish Nuclei, Uniparental Progeny, and Haploid Meiosis

    PubMed Central

    Zickler, D.; Arnaise, S.; Coppin, E.; Debuchy, R.; Picard, M.

    1995-01-01

    In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation. PMID:7498731

  12. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes.

    PubMed

    Poidevin, Laetitia; Berrin, Jean-Guy; Bennati-Granier, Chlo; Levasseur, Anthony; Herpol-Gimbert, Isabelle; Chevret, Didier; Coutinho, Pedro M; Henrissat, Bernard; Heiss-Blanquet, Senta; Record, Eric

    2014-09-01

    The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries. PMID:24695830

  13. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    PubMed

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. PMID:24947769

  14. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan.

    PubMed

    Puchart, Vladimr; Berrin, Jean-Guy; Haon, Mireille; Biely, Peter

    2015-12-01

    The genome of the coprophilous fungus Podospora anserina displays an impressive array of genes encoding hemicellulolytic enzymes. In this study, we focused on a putative carbohydrate esterase (CE) from family 16 (CE16) that bears a carbohydrate-binding module from family CBM1. The protein was heterologously expressed in Pichia pastoris and purified to electrophoretic homogeneity. The P. anserina CE16 enzyme (PaCE16A) exhibited different catalytic properties than so far known CE16 esterases represented by the Trichoderma reesei CE16 acetyl esterase (TrCE16). A common property of both CE16 esterases is their exodeacetylase activity, i.e., deesterification at positions 3 and 4 of monomeric xylosides and the nonreducing end xylopyranosyl (Xylp) residue of oligomeric homologues. However, the PaCE16A showed lower positional specificity than TrCE16 and efficiently deacetylated also position 2. The major difference observed between PaCE16A and TrCE16 was found on polymeric substrate, acetylglucuronoxylan. While TrCE16 does not attack internal acetyl groups, PaCE16A deacetylated singly and doubly acetylated Xylp residues in the polymer to such an extent that it resulted in the polymer precipitation. Similarly as typical acetylxylan esterases belonging to CE1, CE4, CE5, and CE6 families, PaCE16A did not attack 3-O-acetyl group of xylopyranosyl residues carrying 4-O-methyl-D-glucuronic acid at position 2. PaCE16A thus represents a CE16 member displaying unique catalytic properties, which are intermediate between the TrCE16 exodeacetylase and acetylxylan esterases designed to deacetylate polymeric substrate. The catalytic versatility of PaCE16A makes the enzyme an important candidate for biotechnological applications. PMID:26329850

  15. Identification of a Hypothetical Protein from Podospora anserina as a Nitroalkane Oxidase

    SciTech Connect

    Tormos, Jose R.; Taylor, Alexander B.; Daubner, S. Colette; Hart, P. John; Fitzpatrick, Paul F.

    2010-08-23

    The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of primary and secondary nitroalkanes to their respective aldehydes and ketones. Structurally, the enzyme is a member of the acyl-CoA dehydrogenase superfamily. To date no enzymes other than that from F. oxysporum have been annotated as NAOs. To identify additional potential NAOs, the available database was searched for enzymes in which the active site residues Asp402, Arg409, and Ser276 were conserved. Of the several fungal enzymes identified in this fashion, PODANSg2158 from Podospora anserina was selected for expression and characterization. The recombinant enzyme is a flavoprotein with activity on nitroalkanes comparable to the F. oxysporum NAO, although the substrate specificity is somewhat different. Asp399, Arg406, and Ser273 in PODANSg2158 correspond to the active site triad in F. oxysporum NAO. The k{sub cat}/K{sub M}-pH profile with nitroethane shows a pK{sub a} of 5.9 that is assigned to Asp399 as the active site base. Mutation of Asp399 to asparagine decreases the k{sub cat}/K{sub M} value for nitroethane over 2 orders of magnitude. The R406K and S373A mutations decrease this kinetic parameter by 64- and 3-fold, respectively. The structure of PODANSg2158 has been determined at a resolution of 2.0 {angstrom}, confirming its identification as an NAO.

  16. Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K(+) transporters in the euascomycete fungus Podospora anserina.

    PubMed Central

    Lalucque, Herv; Silar, Philippe

    2004-01-01

    We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties. PMID:15020412

  17. Maintaining Two Mating Types: Structure of the Mating Type Locus and Its Role in Heterokaryosis in Podospora anserina

    PubMed Central

    Grognet, Pierre; Bidard, Frdrique; Kuchly, Claire; Tong, Laetitia Chan Ho; Coppin, Evelyne; Benkhali, Jinane Ait; Couloux, Arnaud; Wincker, Patrick; Debuchy, Robert; Silar, Philippe

    2014-01-01

    Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat? isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat? mating types of P. anserina, which is mostly found in nature as a mat+/mat? heterokaryotic mycelium harboring sexually compatible nuclei. We identified a mat region ?0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat? strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat? chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat?, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat?/mat? heterokaryons are as stable as mat+/mat? ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat? strains. PMID:24558260

  18. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  19. Cytosolic Ribosomal Mutations That Abolish Accumulation of Circular Intron in the Mitochondria without Preventing Senescence of Podospora Anserina

    PubMed Central

    Silar, P.; Koll, F.; Rossignol, M.

    1997-01-01

    The filamentous fungus Podospora anserina presents a degeneration syndrome called Senescence associated with mitochondrial DNA modifications. We show that mutations affecting the two different and interacting cytosolic ribosomal proteins (S7 and S19) systematically and specifically prevent the accumulation of senDNA? (a circular double-stranded DNA plasmid derived from the first intron of the mitochondrial cox1 gene or intron ?) without abolishing Senescence nor affecting the accumulation of other usually observed mitochondrial DNA rearrangements. One of the mutant proteins is homologous to the Escherichia coli S4 and Saccharomyces cerevisiae S13 ribosomal proteins, known to be involved in accuracy control of cytosolic translation. The lack of accumulation of senDNA? seems to result from a nontrivial ribosomal alteration unrelated to accuracy control, indicating that S7 and S19 proteins have an additional function. The results strongly suggest that modified expression of nucleus-encoded proteins contributes to Senescence in P. anserina. These data do not fit well with some current models, which propose that intron ? plays the role of the cytoplasmic and infectious Determinant of Senescence that was defined in early studies. PMID:9055079

  20. Deletion of the mitochondrial NADH kinase increases mitochondrial DNA stability and life span in the filamentous fungus Podospora anserina.

    PubMed

    El-Khoury, Riyad; Sainsard-Chanet, Annie

    2010-08-01

    In the filamentous fungus Podospora anserina, aging is systematically associated with mitochondrial DNA (mtDNA) instability. A causal link between deficiency of the cytochrome respiratory pathway and lifespan extension has been demonstrated. Knock out of the cytochrome respiratory pathway induces the expression of an alternative oxidase and is associated with a reduction in free radical production. The question of the links between mtDNA stability, ROS generation and lifespan is therefore clearly raised in this organism. NADPH lies at the heart of many anti-oxidant defenses of the cell. In Saccharomyces cerevisiae, the mitochondrial NADPH is largely provided by the Pos5 NADH kinase. We show here that disruption of PaNdk1 encoding the potential mitochondrial NADH kinase of P. anserina leads to severe somatic and sexual defects and to hypersensitivity to hydrogen peroxide and paraquat. Surprisingly, it also leads to a spectacular increase of mtDNA stability and lifespan. We propose that an adaptative metabolic change including the induction of the alternative oxidase can account for these results. PMID:20096769

  1. A Non-Mendelian MAPK-Generated Hereditary Unit Controlled by a Second MAPK Pathway in Podospora anserina

    PubMed Central

    Lalucque, Herv; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sbastien; Silar, Philippe

    2012-01-01

    The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism. PMID:22426880

  2. Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina.

    PubMed Central

    Coppin, E; Debuchy, R

    2000-01-01

    In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes. PMID:10835389

  3. Genetic and Functional Investigation of Zn2Cys6 Transcription Factors RSE2 and RSE3 in Podospora anserina

    PubMed Central

    Bovier, Elodie; Sellem, Carole H.; Humbert, Adeline

    2014-01-01

    In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and ?-ketoglutarate pools. PMID:24186951

  4. Genome-Wide Gene Expression Profiling of Fertilization Competent Mycelium in Opposite Mating Types in the Heterothallic Fungus Podospora anserina

    PubMed Central

    Coppin, Evelyne; Imbeaud, Sandrine; Grognet, Pierre; Delacroix, Herv; Debuchy, Robert

    2011-01-01

    Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat? mating types are determined by dissimilar allelic sequences. The mat? sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat? strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1? and fpr1? mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat? strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating. PMID:21738678

  5. Deletion of the MED13 and CDK8 subunits of the Mediator improves the phenotype of a long-lived respiratory deficient mutant of Podospora anserina.

    PubMed

    Humbert, Adeline; Bovier, Elodie; Sellem, Carole H; Sainsard-Chanet, Annie

    2015-09-01

    In Podospora anserina, the loss of function of the cytochrome segment of the mitochondrial respiratory chain is viable. This is due to the presence in this organism, as in most filamentous fungi, of an alternative respiratory oxidase (AOX) that provides a bypass to the cytochrome pathway. However mutants lacking a functional cytochrome pathway present multiple phenotypes including poorly colored thin mycelium and slow growth. In a large genetic screen based on the improvement of these phenotypes, we isolated a large number of independent suppressor mutations. Most of them led to the constitutive overexpression of the aox gene. In this study, we characterize a new suppressor mutation that does not affect the production of AOX. It is a loss-of-function mutation in the gene encoding the MED13 subunit of the kinase module of the Mediator complex. Inactivation of the cdk8 gene encoding another subunit of the same module also results in partial suppression of a cytochrome-deficient mutant. Analysis of strains lacking the MED13 or CDK8 subunits points to the importance of these subunits as regulators involved in diverse physiological processes such as growth, longevity and sexual development. Interestingly, transcriptional analyses indicate that in P. anserina, loss of the respiratory cytochrome pathway results in the up-regulation of glycolysis-related genes revealing a new type of retrograde regulation. The loss of MED13 augments the up-regulation of some of these genes. PMID:26231682

  6. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina.

    PubMed Central

    Graïa, F; Berteaux-Lecellier, V; Zickler, D; Picard, M

    2000-01-01

    The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution. PMID:10835387

  7. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina.

    PubMed Central

    Berteaux-Lecellier, V; Zickler, D; Debuchy, R; Panvier-Adoutte, A; Thompson-Coffe, C; Picard, M

    1998-01-01

    The Podospora anserina cro1 gene was identified as a gene required for sexual sporulation. Crosses homozygous for the cro1-1 mutation yield fruiting bodies which produce few asci due to the formation of giant plurinucleate cells instead of dikaryotic cells after fertilization. This defect does not impair karyogamy, but meioses of the resultant polyploid nuclei are most often abortive. Cytological studies suggest that the primary defect of the mutant is its inability to form septa between the daughter nuclei after each mitosis, a step specific for normal dikaryotic cell divisions. The cro1-1 mutant would thus be unable to leave the syncytial vegetative state while abiding by the meiotic programme. cro1-1 also shows defects in ascospore germination and growth rate. GFP-tagging of the CRO1 protein reveals that it is a cytosolic protein mainly expressed at the beginning of the dikaryotic stage and at the time of ascospore maturation. The CRO1 protein exhibits significant similarity to the SHE4 protein, which is required for asymmetric mating-type switching in budding yeast cells. Thus, a gene involved in asymmetric cell divisions in a unicellular organism plays a key role at the transition between the syncytial (vegetative) state and the cellular (sexual) state in a filamentous fungus. PMID:9482722

  8. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.

    PubMed Central

    Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M

    2001-01-01

    Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440

  9. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.

    PubMed

    Chatterjee, Deep; Kudlinzki, Denis; Linhard, Verena; Saxena, Krishna; Schieborr, Ulrich; Gande, Santosh L; Wurm, Jan Philip; Whnert, Jens; Abele, Rupert; Rogov, Vladimir V; Dtsch, Volker; Osiewacz, Heinz D; Sreeramulu, Sridhar; Schwalbe, Harald

    2015-06-26

    Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 , respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner. PMID:25979334

  10. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog

    PubMed Central

    Coustou, Virginie; Deleu, Carol; Saupe, Sven; Begueret, Joel

    1997-01-01

    The het-s locus of Podospora anserina is a heterokaryon incompatibility locus. The coexpression of the antagonistic het-s and het-S alleles triggers a lethal reaction that prevents the formation of viable heterokaryons. Strains that contain the het-s allele can display two different phenotypes, [Het-s] or [Het-s*], according to their reactivity in incompatibility. The detection in these phenotypically distinct strains of a protein expressed from the het-s gene indicates that the difference in reactivity depends on a posttranslational difference between two forms of the polypeptide encoded by the het-s gene. This posttranslational modification does not affect the electrophoretic mobility of the protein in SDS/PAGE. Several results suggest a similarity of behavior between the protein encoded by the het-s gene and prions. The [Het-s] character can propagate in [Het-s*] strains as an infectious agent, producing a [Het-s*] → [Het-s] transition, independently of protein synthesis. Expression of the [Het-s] character requires a functional het-s gene. The protein present in [Het-s] strains is more resistant to proteinase K than that present in [Het-s*] mycelium. Furthermore, overexpression of the het-s gene increases the frequency of the transition from [Het-s*] to [Het-s]. We propose that this transition is the consequence of a self-propagating conformational modification of the protein mediated by the formation of complexes between the two different forms of the polypeptide. PMID:9275200

  11. Molecular Genetics of Heterokaryon Incompatibility in Filamentous Ascomycetes

    PubMed Central

    Saupe, Sven J.

    2000-01-01

    Filamentous fungi spontaneously undergo vegetative cell fusion events within but also between individuals. These cell fusions (anastomoses) lead to cytoplasmic mixing and to the formation of vegetative heterokaryons (i.e., cells containing different nuclear types). The viability of these heterokaryons is genetically controlled by specific loci termed het loci (for heterokaryon incompatibility). Heterokaryotic cells formed between individuals of unlike het genotypes undergo a characteristic cell death reaction or else are severely inhibited in their growth. The biological significance of this phenomenon remains a puzzle. Heterokaryon incompatibility genes have been proposed to represent a vegetative self/nonself recognition system preventing heterokaryon formation between unlike individuals to limit horizontal transfer of cytoplasmic infectious elements. Molecular characterization of het genes and of genes participating in the incompatibility reaction has been achieved for two ascomycetes, Neurospora crassa and Podospora anserina. These analyses have shown that het genes are diverse in sequence and do not belong to a gene family and that at least some of them perform cellular functions in addition to their role in incompatibility. Divergence between the different allelic forms of a het gene is generally extensive, but single-amino-acid differences can be sufficient to trigger incompatibility. In some instances het gene evolution appears to be driven by positive selection, which suggests that the het genes indeed represent recognition systems. However, work on nonallelic incompatibility systems in P. anserina suggests that incompatibility might represent an accidental activation of a cellular system controlling adaptation to starvation. PMID:10974123

  12. The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated.

    PubMed Central

    Contamine, Véronique; Zickler, Denise; Picard, Marguerite

    2004-01-01

    It has been previously reported that, at the time of death, the Podospora anserina AS1-4 mutant strains accumulate specific deleted forms of the mitochondrial genome and that their life spans depend on two natural alleles (variants) of the rmp1 gene: AS1-4 rmp1-2 strains exhibit life spans strikingly longer than those of AS1-4 rmp1-1. Here, we show that rmp1 is an essential gene. In silico analyses of eight rmp1 natural alleles present in Podospora isolates and of the putative homologs of this orphan gene in other filamentous fungi suggest that rmp1 evolves rapidly. The RMP1 protein is localized in the mitochondrial and/or the cytosolic compartment, depending on cell type and developmental stage. Strains producing RMP1 without its mitochondrial targeting peptide are viable but exhibit vegetative and sexual defects. PMID:15020413

  13. A Genome-Wide Longitudinal Transcriptome Analysis of the Aging Model Podospora anserine

    PubMed Central

    Philipp, Oliver; Hamann, Andrea; Servos, Jrg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D.

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations. PMID:24376646

  14. Podospora anserina mutant defective in protoperithecium formation, ascospore germination, and cell regeneration.

    PubMed Central

    Durrens, P; Laigret, F; Labarère, J; Bernet, J

    1979-01-01

    A mutant (modx) was selected on the basis of the suppression of self-lysis due to a recessive mutation (modB). modx, a dominant mutation, reduced hyphal branching from nonapical cells, abolished protoperithecium formation, and induced the death of stationary cells only when these were isolated to obtain further development. Mutant ascospores, formed in the fruiting bodies which occasionally occur under specific conditions (32 degrees C on starved medium), showed a delay in the germination process (up to 3 months instead of about 5 h for wild-type ascospores) when submitted to incubation under standard conditions (26 degrees C on germination medium) and failed to germinate at 18 degrees C. Revertants from modx strains, selected on the basis of the suppression of the nonrenewal of growth from stationary cells, were wild type for all the other three defects. Indirect arguments suggested that the modx mutant strain might be defective in the control of a specific class of stable messenger ribonucleic acids which would be essential for the physiology of ascospores and stationary cells. Images PMID:118158

  15. Rab-GDI Complex Dissociation Factor Expressed through Translational Frameshifting in Filamentous Ascomycetes

    PubMed Central

    Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe

    2013-01-01

    In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild. PMID:24069231

  16. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  17. Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in podospora.

    PubMed Central

    Ruprich-Robert, Gwenaël; Berteaux-Lecellier, Véronique; Zickler, Denise; Panvier-Adoutte, Arlette; Picard, Marguerite

    2002-01-01

    Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2(+) background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to beta-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation. PMID:12136013

  18. Ascomycetes on Polytrichadelphus aristatus (Musci).

    PubMed

    Dbbeler, Peter

    2007-12-01

    Fourteen herbarium specimens of Polytrichadelphus aristatus (Polytrichaceae, Musci) from the northern Andes were found to be colonized by ascomycetes. Thirty fungal specimens are indicated representing nine species and six genera. They belong to the first records of bryophilous fungi of northern South America. Five taxa are proposed as new: the genus Aphanotria, and the species A. paradoxa, Bryochiton macrosporus, Bryorella imitans, and Massarina polytrichadelphi. Most frequently found were Rogellia triseptata with six and Bryochiton macrosporus with five records. Four species develop their ascomata between the photosynthetic leaf lamellae, three are immersed within the abaxial side of the leaf nerve and two grow below the adaxial cuticle. The hypocrealean A. paradoxa, which has huge but almost invisible ascomata, merits special attention. Apart from a pronounced rostrum, these are completely immersed within the leaf nerve but longitudinally orientated occupying a type of microniche hitherto unknown. Hyphae of several species attack the thick-walled stereids of the leaf nerve and strongly contribute to leaf decomposition. Polytrichadelphus aristatus has an assemblage of parasitic ascomycetes quite different from that of P. magellanicus from southern South America. PMID:18023989

  19. PHYLOGENETICS OF SACCHAROMYCETALES, THE ASCOMYCETE YEASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts (Phylum Ascomycota: Subphylum Saccharomycotina: Class Saccharomycetes: Order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals, and their interfaces. A few s...

  20. Species Diversity of Hypogeous Ascomycetes in Israel

    PubMed Central

    Wasser, Solomon P.

    2010-01-01

    We conducted a species diversity study of the hypogeous Ascomycetes of Israel. The hypogeous Ascomycetes in Israel include members of the families Pyronemataceae, Pezizaceae, and Tuberaceae, which are represented by seven species: Hydnocystis piligera, Terfezia arenaria, T. claveryi, T. oligosperma, Tirmania africana, Tuber asa, and T. nitidum; only T. asa is new to Israeli mycobiota. Synonymy, locations, collection data, general distribution, distribution in Israel, descriptions, a key to identification, illustrations, and taxonomic remarks are provided. PMID:23956647

  1. PRP8 inteins in species of the genus Botrytis and other ascomycetes.

    PubMed

    Bokor, Annika A M; Kohn, Linda M; Poulter, Russell T M; van Kan, Jan A L

    2012-03-01

    The mobile elements termed inteins have a sporadic distribution in microorganisms. It is unclear how these elements are maintained. Inteins are intervening protein sequences that autocatalytically excise themselves from a precursor. Excision is a post-translational process referred to as 'protein splicing' in which the sequences flanking the intein are ligated, reforming the mature host protein. Some inteins contain a homing endonuclease domain (HEG) that is proposed to facilitate propagation of the intein element within a gene pool. We have previously demonstrated that the HEG of the PRP8 intein is highly active during meiosis in Botrytis cinerea. Here we analysed the Prp8 gene status in 21 additional Botrytis species to obtain insight into the mode of intein inheritance within the Botrytis lineage. Of the 21 species, 15 contained a PRP8 intein whereas six did not. The analysis was extended to closely related (Sclerotiniaceae) and distantly related (Ascomycota) taxa, focussing on evolutionary diversification of the PRP8 intein, including their possible acquisition by horizontal transfer and loss by deletion. Evidence was obtained for the occurrence of genetic footprints of previous intein occupation. There is no compelling evidence of horizontal transfer among species. Three distinct states of the Prp8 allele were identified, distributed over different orders within the Ascomycota: an occupied allele; an empty allele that was never occupied; an empty allele that was presumably previously occupied, from which the intein was precisely deleted. The presence of the genetic footprint identifies 20 species (including Neurospora crassa, Magnaporthe oryzae and Fusarium oxysporum) that previously contained the intein but have lost it entirely, while only 18 species (including Podospora anserina and Fusarium graminearum) appear never to have contained a PRP8 intein. The analysis indicates that inteins may be maintained in an equilibrium state. PMID:22285471

  2. Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production.

    PubMed Central

    Saupe, S; Descamps, C; Turcq, B; Bégueret, J

    1994-01-01

    The het-c locus contains different alleles that elicit nonallelic vegetative incompatibility through specific interactions with alleles of the unlinked loci het-e and het-d. The het-c2 allele has been cloned. It encodes a 208-amino acid polypeptide that is similar to a glycolipid transfer protein purified from pig brain. Disruption of this gene drastically impairs ascospore production in homozygous crosses, and some mutants exhibit abnormal branching of apical hyphae. The protein encoded by het-c2 is essential in the biology of the fungus and may be involved in cell-wall biosynthesis. Images PMID:8016091

  3. IDC1, a pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina.

    PubMed

    Jamet-Vierny, Corinne; Debuchy, Robert; Prigent, Magali; Silar, Philippe

    2007-12-01

    Components involved in the activation of the MAPK cascades in filamentous fungi are not well known. Here, we provide evidence that IDC1, a pezizomycotina-specific gene is involved along with the PaNox1 NADPH oxidase in the nuclear localization of the PaMpk1 MAP kinase, a prerequisite for MAPK activity. Mutants of IDC1 display the same phenotypes as mutants in PaNox1 and PaMpk1, i.e., lack of pigment and of aerial hyphae, female sterility, impairment in hyphal interference and inability to develop Crippled Growth cell degeneration. As observed for the PaNox1 mutant, IDC1 mutants are hypostatic to PaMpk1 mutants. IDC1 seems to play a key role in sexual reproduction. Indeed, fertility is diminished in strains with lower level of IDC1. In strains over-expressing IDC1, protoperithecia reach a later stage of development towards perithecia without fertilization; however, upon fertilization maturation of fertile perithecia is diminished and delayed. In addition, heterokaryon construction shows that IDC1 is necessary together with PaNox1 in the perithecial envelope but not in the dikaryon resulting from fertilization. PMID:17517525

  4. Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina.

    PubMed

    Morikawa, Toshio; Ninomiya, Kiyofumi; Imura, Katsuya; Yamaguchi, Takahiro; Akagi, Yoshinori; Yoshikawa, Masayuki; Hayakawa, Takao; Muraoka, Osamu

    2014-06-01

    A methanol extract from the tuberous roots of Potentilla anserina (Rosaceae) exhibited hepatoprotective effects against d-galactosamine (d-GalN)/lipopolysaccharide-induced liver injuries in mice. Six triterpene 28-O-monoglucopyranosyl esters, potentillanosides A-F, were isolated from the extract along with 32 known compounds, including 15 triterpenes. The structures of potentillanosides A-F were determined on the basis of spectroscopic properties and chemical evidence. Four ursane-type triterpene 28-O-monoglycosyl esters, potentillanoside A (IC50=46.7?M), 28-O-?-d-glucopyranosyl pomolic acid (IC50=9.5?M), rosamutin (IC50=35.5?M), and kaji-ichigoside F1 (IC50=14.1?M), inhibited d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes. Among these four triterpenes, potentillanoside A, rosamutin, and kaji-ichigoside F1 exhibited in vivo hepatoprotective effects at doses of 50-100mg/kg, p.o. The mode of action was ascribable to the reduction in cytotoxicity caused by d-GalN. PMID:24697904

  5. Prevalence of transcription factors in ascomycete and basidiomycete fungi

    PubMed Central

    2014-01-01

    Background Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla. PMID:24650355

  6. Genomic Evolution of the Ascomycete Yeasts

    SciTech Connect

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  7. Avian spirochetosis in chickens following experimental transmission of Borrelia anserina by Argas (Persicargas) miniatus.

    PubMed

    Lisba, Raquel S; Teixeira, Rafaella C; Rangel, Charles P; Santos, Huarrisson A; Massard, Carlos L; Fonseca, Adivaldo H

    2009-06-01

    This study reports the experimental transmission of Borrelia anserina to domestic chickens by infected Argas (Persicargas) miniatus. Clinical alterations as well as prepatent and patent periods were evaluated. Twenty-seven 67-day-old birds were divided into three groups in a randomized experimental design. The first group was exposed to ticks infected with B. anserina, the second group was exposed to noninfected ticks, and the third group was not exposed to ticks. Blood smears from each bird of groups 1 and 2 were prepared daily and examined for 25 days postexposure (PE). Examination of the blood smears from birds in group 1 revealed large numbers of spirochetes from days 5 to 12 PE. In this group the prepatent and patent periods were 5-7 and 4-7 days, respectively. Birds from group 1 presented ruffled feathers, pale combs, drowsiness, inappetence, loss of weight, and greenish diarrhea after day 6 PE. The current study confirms the viability of experimental transmission of B. anserina to domestic chickens by A. (P.) miniatus. PMID:19630219

  8. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  9. NOTES ON ASCOMYCETE SYSTEMATICS NOS 3303-3579

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The series "Notes on ascomycete systematics" has been published in Systema Ascomycetum (Eriksson & Hawksworth 1986-1998) and since 1999 in Myconet in an electronic version on the Internet (http://www.umu.se/myconet/notes.html) and as hard copies once or twice a year in a journal with the same name (...

  10. ASCOMYCETOUS MITOSIS IN BASIDIOMYCETOUS YEASTS: ITS EVOLUTIONARY IMPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In budding cells of ascomycetous yeasts, mitosis occurs in the parent, while in basidiomyceteous yeasts it occurs in the bud. However, in the basidiomycete Agaricostilbum pulcherrimum mitosis occurs in the parent and parent-bud junction. To test whether A. pulcherrimum has a novel mitotic pattern, i...

  11. Interactive effects of pollination and heavy metals on resource allocation in Potentilla anserina L.

    SciTech Connect

    Saikkonen, K. |; Koivunen, S.; Vuorisalo, T.; Mutikainen, P. |

    1998-07-01

    The authors studied resource allocation between sexual reproduction and clonal propagation in a perennial stoloniferous clonal plant, Potentilla anserina, an obligate outcrosser. They manipulated reproductive effort of Potentilla anserina either by hand-pollinating all flowers or by preventing pollination. To test the effect of resource-limiting conditions on resource allocation and reproductive output, the authors used a control and two levels of heavy metals (copper and nickel) to limit plant growth. The experiment was conducted as a 2 {times} 3 factorial design to reveal possible interactions between reproductive manipulation and resource limitation. Heavy metals decreased the total biomass of the plants and number of flowers and ramets produced. Only 50% of the plants grown with the higher level of heavy metals produced flowers. Pollination treatment interacted significantly with the heavy-metal treatment. In the metal control and lower heavy-metal treatment, there were no significant differences in total vegetative biomass between the two pollination treatments. Costs of reproduction in terms of subsequent flowering in the later season appeared to be clear, because the number of flowers per whole plant was lower if the plants were hand-pollinated and because the proportion of flowering ramets decreased due to hand-pollination. However, flowering may also be partly hormonally controlled. In contrast, hand-pollinated plants exposed to high concentrations of heavy metals tended to have greater biomass of vegetative plant structures and higher number of flowers compared to nonpollinated plants.

  12. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes?

    PubMed Central

    Harreither, Wolfgang; Sygmund, Christoph; Augustin, Manfred; Narciso, Melanie; Rabinovich, Mikhail L.; Gorton, Lo; Haltrich, Dietmar; Ludwig, Roland

    2011-01-01

    Putative cellobiose dehydrogenase (CDH) genes are frequently discovered in various fungi by genome sequencing projects. The expression of CDH, an extracellular flavocytochrome, is well studied in white rot basidiomycetes and is attributed to extracellular lignocellulose degradation. CDH has also been reported for plant-pathogenic or saprotrophic ascomycetes, but the molecular and catalytic properties of these enzymes are currently less investigated. This study links various ascomycetous cdh genes with the molecular and catalytic characteristics of the mature proteins and suggests a differentiation of ascomycete class II CDHs into two subclasses, namely, class IIA and class IIB, in addition to the recently introduced class III of hypothetical ascomycete CDHs. This new classification is based on sequence and biochemical data obtained from sequenced fungal genomes and a screening of 40 ascomycetes. Thirteen strains showed CDH activity when they were grown on cellulose-based media, and Chaetomium atrobrunneum, Corynascus thermophilus, Dichomera saubinetii, Hypoxylon haematostroma, Neurospora crassa, and Stachybotrys bisbyi were selected for detailed studies. In these strains, one or two cdh-encoding genes were found that stem either from class IIA and contain a C-terminal carbohydrate-binding module or from class IIB without such a module. In several strains, both genes were found. Regarding substrate specificity, class IIB CDHs show a less pronounced substrate specificity for cellobiose than class IIA enzymes. A pH-dependent pattern of the intramolecular electron transfer was also observed, and the CDHs were classified into three groups featuring acidic, intermediate, or alkaline pH optima. The pH optimum, however, does not correlate with the CDH subclasses and is most likely a species-dependent adaptation to different habitats. PMID:21216904

  13. Identification of Oxaphenalenone Ketals from the Ascomycete Fungus Neonectria sp.

    PubMed

    Ren, Jinwei; Niu, Shubing; Li, Li; Geng, Zhufeng; Liu, Xingzhong; Che, Yongsheng

    2015-06-26

    Neonectrolides B-E (4-7), four new oxaphenalenone ketals incorporating the new furo[2,3-b]isochromeno[3,4,5-def]chromen-11(6aH)-one skeleton, were isolated from the fermentation extract of the ascomycete fungus Neonectria sp. in an in-depth investigation guided by HPLC fingerprint and a cytotoxicity assay. The previously identified oxaphenalenone spiroketal neonectrolide A (1) and its putative biosynthetic precursors (2 and 3) were also reisolated in the current work. The structures of 4-7 were primarily elucidated by interpretation of NMR spectroscopic data, and the absolute configurations were deduced by electronic circular dichroism calculations. Compound 6 showed cytotoxic effects against four of the six human tumor cell lines tested. Biosynthetically, compounds 4-7 could be derived via the Diels-Alder reaction cascades starting from derivatives of the co-isolated metabolites 2 and 3. PMID:25978132

  14. The Chemical Diversity of the Ascomycete Fungus Paecilomyces variotii.

    PubMed

    Mioso, Roberto; Toledo Marante, Francisco Javier; Herrera Bravo de Laguna, Irma

    2015-10-01

    Paecilomyces variotii isolated from a broad range of habitats drives the diversification of new high-value-added secondary metabolites that could potentially play an important role in human and animal health. These metabolites include the anhydride metabolite of the nonadride family, as well as the following compounds: naphthopyranone metabolites, sphingofungins, eicosenoic acids, new branched fatty acids, ascofuranone, polyketides, an anacardic acid analogue, straight-chain peptides, and volatile compounds. These natural products show that P. variotii can provide leading compounds for new drug discoveries, which may include herbicide agents, some of which are important in the agrochemical market. Finally, this review outlines recent developments, trends, and prospects for the chemistry of this ascomycete. PMID:26288080

  15. Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes.

    PubMed

    Malpertuy, A; Tekaia, F; Casarégola, S; Aigle, M; Artiguenave, F; Blandin, G; Bolotin-Fukuhara, M; Bon, E; Brottier, P; de Montigny, J; Durrens, P; Gaillardin, C; Lépingle, A; Llorente, B; Neuvéglise, C; Ozier-Kalogeropoulos, O; Potier, S; Saurin, W; Toffano-Nioche, C; Wésolowski-Louvel, M; Wincker, P; Weissenbach, J; Souciet, J; Dujon, B

    2000-12-22

    Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them. PMID:11152894

  16. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described. PMID:23184219

  17. Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes

    PubMed Central

    Patron, Nicola J; Waller, Ross F; Cozijnsen, Anton J; Straney, David C; Gardiner, Donald M; Nierman, William C; Howlett, Barbara J

    2007-01-01

    Background Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters. Results Putative ETP gene clusters are present in 14 ascomycete taxa, but absent in numerous other ascomycetes examined. These clusters are discontinuously distributed in ascomycete lineages. Gene content is not absolutely fixed, however, common genes are identified and phylogenies of six of these are separately inferred. In each phylogeny almost all cluster genes form monophyletic clades with non-cluster fungal paralogues being the nearest outgroups. This relatedness of cluster genes suggests that a progenitor ETP gene cluster assembled within an ancestral taxon. Within each of the cluster clades, the cluster genes group together in consistent subclades, however, these relationships do not always reflect the phylogeny of ascomycetes. Micro-synteny of several of the genes within the clusters provides further support for these subclades. Conclusion ETP gene clusters appear to have a single origin and have been inherited relatively intact rather than assembling independently in the different ascomycete lineages. This progenitor cluster has given rise to a small number of distinct phylogenetic classes of clusters that are represented in a discontinuous pattern throughout ascomycetes. The disjunct heredity of these clusters is discussed with consideration to multiple instances of independent cluster loss and lateral transfer of gene clusters between lineages. PMID:17897469

  18. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia anomala was reclassified as Wickerhamomyces anomalus following multigene phylogenetic analysis. In this review, the phylogeny of the ascomycetous yeasts is discussed, with emphasis on the genus Pichia. The genus, as defined from phenotype, had nearly 100 assigned species, but the number of ...

  19. Soil Ecology of the Entomopathogenic Ascomycetes: A Critical Examination of What We (Think) We Know

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides an in-depth review of what is and is not known about the soil ecology of the entomopathogenic Ascomycetes, particularly the fungi Beauveria bassiana and Metarhizium anisopliae. The efficacy of entomopathogenic fungi in soil is subject to a matrix of interlocking abiotic and bi...

  20. Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system.

    PubMed

    Iotti, Mirco; Rubini, Andrea; Tisserant, Emilie; Kholer, Annegret; Paolocci, Francesco; Zambonelli, Alessandra

    2012-02-01

    Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion. PMID:22289772

  1. Evolution of Multicopper Oxidase Genes in Coprophilous and Non-Coprophilous Members of the Order Sordariales

    PubMed Central

    Pggeler, Stefanie

    2011-01-01

    Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events. PMID:21966247

  2. Evolution of multicopper oxidase genes in coprophilous and non-coprophilous members of the order sordariales.

    PubMed

    Pggeler, Stefanie

    2011-04-01

    Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events. PMID:21966247

  3. Morphological and molecular characteristics of a poorly known marine ascomycete, Manglicola guatemalensis (Jahnulales: Pezizomycotina; Dothideomycetes, Incertae sedis): new lineage of marine ascomycetes.

    PubMed

    Suetrong, Satinee; Sakayaroj, Jariya; Phongpaichit, Souwalak; Jones, E B Gareth

    2010-01-01

    The poorly known marine ascomycete Manglicola guatemalensis from Trang and Trat provinces, Thailand, were collected in 2005 and 2006 on the brackish water palm Nypa fruticans. This fungus is known only from two previous collections. This paper reports on the morphological characteristics and molecular phylogeny of this unique marine bitunicate ascomycete. Manglicola guatemalensis has large clavate to obtusely fusiform ascomata, wide ostioles, bitunicate asci, cylindrical, thick-walled, unequally one-septate ascospores, constricted at the septum, apical cell larger, chestnut-brown and a smaller light brown basal cell. Ascospores germinate readily, always from the basal cell. Four isolates from different locations were selected for the phylogenetic study. Regions of the rDNA gene, including SSU and LSU, were sequenced and combined. Molecular data places M. guatemalensis in the Jahnulales with high bootstrap support; all strains are monophyletic. In the combined SSU and LSU analyses the Jahnulales comprises four subclades, A, B, C and D. Subclade A comprises Jahnula species and two anamorphic fungi, Brachiosphaera tropicalis and Xylomyces chlamydosporus. In subclade B Manglicola strains form a sister group of the Aliquandostipite species Aliquandostipite crystallinus, A. khaoyaiensis, Jahnula siamensiae and Patescospora separans. Subclade C comprises Jahnula species, Jahnula aquatica, J. granulosa and J. rostrata, while Megalohypha aqua-dulces constitutes subclade D. Therefore Manglicola forms another lineage of marine fungi. PMID:20120232

  4. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase.

    PubMed

    Mueangtoom, Kitti; Kittl, Roman; Mann, Oliver; Haltrich, Dietmar; Ludwig, Roland

    2010-08-01

    In a screening of saprotrophic, ectomycorrhizal and plant pathogen ascomycetes a frequent occurrence of laccase was observed. Lamprospora wrightii, the best producing organism, was chosen to elucidate the properties of a laccase from a moss-associated, saprotrophic ascomycete. The expression of laccase by this bryophilic fungus could be increased by the addition of tomato juice or copper sulfate to the medium. The obtained volumetric activity after optimization was 420 U/mL in either shaking flask or bioreactor-based cultivations. The purified laccase has a molecular mass of 68 kDa and an isoelectric point of 3.4. Although of ascomycete origin, its catalytic properties are similar to typical basidiomycte laccases, and an excellent activity and stability was observed at low pH, which makes it suitable for bioremediation in acidic environments. As an example, the decolorization reactions of azo-, anthraquinone-, trimethylmethane- and indigoid dyes at pH 3.0 and 5.0 were investigated. All ten selected dyes were decolorized, five of them very efficiently. Depending on the dye, the decolorization was found to be a combination of two reactions, degradation of the chromophore and formation of polymerized products, which contributed to the overall process in a dye-specific pattern. PMID:20652905

  5. Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales.

    PubMed

    Tedersoo, Leho; Prtel, Kadri; Jairus, Teele; Gates, Genevieve; Pldmaa, Kadri; Tamm, Heidi

    2009-12-01

    Mycorrhizosphere microbes enhance functioning of the plant-soil interface, but little is known of their ecology. This study aims to characterize the ascomycete communities associated with ectomycorrhizas in two Tasmanian wet sclerophyll forests. We hypothesize that both the phyto- and mycobiont, mantle type, soil microbiotope and geographical distance affect the diversity and occurrence of the associated ascomycetes. Using the culture-independent rDNA sequence analysis, we demonstrate a high diversity of these fungi on different hosts and habitats. Plant host has the strongest effect on the occurrence of the dominant species and community composition of ectomycorrhiza-associated fungi. Root endophytes, soil saprobes, myco-, phyto- and entomopathogens contribute to the ectomycorrhiza-associated ascomycete community. Taxonomically these Ascomycota mostly belong to the orders Helotiales, Hypocreales, Chaetothyriales and Sordariales. Members of Helotiales from both Tasmania and the Northern Hemisphere are phylogenetically closely related to root endophytes and ericoid mycorrhizal fungi, suggesting their strong ecological and evolutionary links. Ectomycorrhizal mycobionts from Australia and the Northern Hemisphere are taxonomically unrelated to each other and phylogenetically distant to other helotialean root-associated fungi, indicating independent evolution. The ubiquity and diversity of the secondary root-associated fungi should be considered in studies of mycorrhizal communities to avoid overestimating the richness of true symbionts. PMID:19671076

  6. A search for the phylogenetic relationship of the ascomycete Rhizoctonia leguminicola using genetic analysis.

    PubMed

    Alhawatema, Mohammad S; Sanogo, Soum; Baucom, Deana L; Creamer, Rebecca

    2015-06-01

    Rhizoctonia leguminicola, which causes fungal blackpatch disease of legumes and other plants, produces slaframine and swainsonine that are largely responsible for causing salivation, lacrimation, frequent urination, and diarrhea in grazing animals including cattle, sheep, and horses. The original identification of R. leguminicola was based only on morphological characters of the fungal mycelia in cultures because of the lack of fungal genetic markers. Recent investigations suggested that R. leguminicola does not belong to genus Rhizoctonia and is instead a member of the ascomycetes, necessitating an accurate reclassification. The objective of this study was to use both genetic and morphological characters of R. leguminicola to find taxonomic placement of this pathogen within ascomycetes. Internal transcribed spacer region (ITS) and glyceraldehyde-3-phosphate dehydrogenase (gpd) encoding gene were amplified from R. leguminicola isolates by PCR using universal primers and sequencing. Rhizoctonia leguminicola ITS and gpd sequences were aligned with other fungal sequences of close relatives, and phylogenetic trees were constructed using neighbor-joining and parsimony analyses. Rhizoctonia leguminicola isolates were clustered within a clade that contains several genera of ascomycetes belonging to the class dothideomycetes. We suggest that the fungus is misidentified in the genus Rhizoctonia and propose its reclassification in a new genus within the phylum Ascomycota. PMID:25585493

  7. Role of Reactive Intermediates in Manganese Oxide Formation By Filamentous Ascomycete Fungi

    NASA Astrophysics Data System (ADS)

    Zeiner, C. A.; Anderton, C.; Wu, S.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Santelli, C. M.; Hansel, C. M.

    2014-12-01

    Biogenic manganese (Mn) oxide minerals are ubiquitous in the environment, and their high reactivity can profoundly impact the fate of contaminants and cycling of carbon and nutrients. In contrast to bacteria, the pathways utilized by fungi to oxidize Mn(II) to Mn(III,IV) oxides remain largely unknown. Here, we explore the mechanisms of Mn(II) oxidation by a phylogenetically diverse group of filamentous Ascomycete fungi using a combination of chemical assays and bulk and spatially-resolved mass spectrometry. We show that the mechanisms of Mn(II) oxidation vary with fungal species, over time during secretome compositional changes, and in the presence of other fungi. Specifically, our work implicates a dynamic transition in Mn(II) oxidation pathways that varies between species. In particular, while reactive oxygen species (ROS) produced via transmembrane NADPH oxidases are involved in initial oxidation, over time, secreted enzymes become important Mn(II) oxidation mediators for some species. In addition, the overall secretome oxidation capacity varies with time and fungal species. Secretome analysis reveals a surprising absence of enzymes currently considered to be Mn(II)-oxidizing enzymes in these organisms, and instead highlights a wide variety of redox-active enzymes. Furthermore, we implicate fungal cell defense mechanisms in the formation of distinct Mn oxide patterns when fungi are grown in head-to-head competition. The identification and regulation of these secreted enzymes are under current investigation within the bulk secretome and within the interaction zone of structured fungal communities. Overall, our findings illustrate that Ascomycete Mn(II) oxidation mechanisms are highly variable and are dictated by complex environmental and ecological interactions. Future work will explore the connection between Ascomycete Mn(II) oxidation and the ability to degrade cellulose, a key carbon reservoir for biofuel production.

  8. SHARED ITS DNA SUBSTITUTIONS IN ISOLATES OF OPPOSITE MATING TYPE REVEAL A RECOMBIING HISTORY FOR THREE PRESUMED ASEXUAL SPECIES IN THE FILAMENTOUS ASCOMYCETE GENUS ALTERNARIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 15,000 species of ascomycete fungi lack a known sexual state. For fungi with asexual states in the form genera Embellisia, Ulocladium and Alternaria, six species have known sexual states but more than 50 species do not. In sexual filamentous ascomycetes, opposite mating type information at t...

  9. Explosively launched spores of ascomycete fungi have drag-minimizing shapes

    PubMed Central

    Roper, Marcus; Pepper, Rachel E.; Brenner, Michael P.; Pringle, Anne

    2008-01-01

    The forcibly launched spores of ascomycete fungi must eject through several millimeters of nearly still air surrounding fruiting bodies to reach dispersive air flows. Because of their microscopic size, spores experience great fluid drag, and although this drag can aid transport by slowing sedimentation out of dispersive air flows, it also causes spores to decelerate rapidly after launch. We hypothesize that spores are shaped to maximize their range in the nearly still air surrounding fruiting bodies. To test this hypothesis we numerically calculate optimal spore shapesshapes of minimum drag for prescribed volumesand compare these shapes with real spore shapes taken from a phylogeny of >100 species. Our analysis shows that spores are constrained to remain within 1% of the minimum possible drag for their size. From the spore shapes we predict the speed of spore launch, and confirm this prediction through high-speed imaging of ejection in Neurospora tetrasperma. By reconstructing the evolutionary history of spore shapes within a single ascomycete family we measure the relative contributions of drag minimization and other shape determinants to spore shape evolution. Our study uses biomechanical optimization as an organizing principle for explaining shape in a mega-diverse group of species and provides a framework for future measurements of the forces of selection toward physical optima. PMID:19104035

  10. Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest.

    PubMed

    Roose-Amsaleg, Cline; Brygoo, Yves; Harry, Myriam

    2004-05-01

    Molecular microbial ecology has revealed remarkable biodiversity - prokaryotic and eukaryotic - in numerous soil environments. However, no culture-independent surveys of the termitosphere exists, although termites dominate tropical rainforests. Here, we focused on soil feeders, building nests with their soil-born faeces, enriched with clay-organic complexes, thus contributing to the improvement of soil fertility. In order to assess the fungal community composition of these termitaries compared with soils not foraged by termites, samples of the two types were collected in the Lop rainforest, Gabon, and processed for generation of fungal internal transcribed spacer (ITS) clone libraries. Although primers were universal, most of the recovered sequences represented Ascomycete that were previously uncharacterized and the proportions of which reached 72.5% in soils and 80% in termitaries. Their affiliation with identified fungi was analysed in performing a phylogenetic tree based on 5.8S rDNA. Furthermore, the ascomycete communities of soil-feeding termitaries and soils shared only 6.3% of sequences. This discrepancy of composition between soil and nest may result from the building behaviour of termites, as the organic matter in the nest is chemically modified, and some vacant ecological microniches are available for more specialized fungi. PMID:15049919

  11. Conservation and evolution of cis-regulatory systems in ascomycete fungi

    SciTech Connect

    Gasch, Audrey P.; Moses, Alan M.; Chiang, Derek Y.; Fraser, Hunter B.; Berardini, Mark; Eisen, Michael B.

    2004-03-15

    Relatively little is known about the mechanisms through which gene expression regulation evolves. To investigate this, we systematically explored the conservation of regulatory networks in fungi by examining the cis-regulatory elements that govern the expression of coregulated genes. We first identified groups of coregulated Saccharomyces cerevisiae genes enriched for genes with known upstream or downstream cis-regulatory sequences. Reasoning that many of these gene groups are coregulated in related species as well, we performed similar analyses on orthologs of coregulated S. cerevisiae genes in 13 other ascomycete species. We find that many species-specific gene groups are enriched for the same flanking regulatory sequences as those found in the orthologous gene groups from S. cerevisiae, indicating that those regulatory systems have been conserved in multiple ascomycete species. In addition to these clear cases of regulatory conservation, we find examples of cis-element evolution that suggest multiple modes of regulatory diversification, including alterations in transcription factor-binding specificity, incorporation of new gene targets into an existing regulatory system, and cooption of regulatory systems to control a different set of genes. We investigated one example in greater detail by measuring the in vitro activity of the S. cerevisiae transcription factor Rpn4p and its orthologs from Candida albicans and Neurospora crassa. Our results suggest that the DNA binding specificity of these proteins has coevolved with the sequences found upstream of the Rpn4p target genes and suggest that Rpn4p has a different function in N. crassa.

  12. The filamentous ascomycete Sordaria macrospora can survive in ambient air without carbonic anhydrases.

    PubMed

    Lehneck, Ronny; Elleuche, Skander; Pggeler, Stefanie

    2014-06-01

    The rapid interconversion of carbon dioxide and bicarbonate (hydrogen carbonate) is catalysed by metalloenzymes termed carbonic anhydrases (CAs). CAs have been identified in all three domains of life and can be divided into five evolutionarily unrelated classes (?, ?, ?, ? and??) that do not share significant sequence similarities. The function of the mammalian, prokaryotic and plant ?-CAs has been intensively studied but the function of CAs in filamentous ascomycetes is mostly unknown. The filamentous ascomycete Sordaria macrospora codes for four CAs, three of the ?-class and one of the ?-class. Here, we present a functional analysis of CAS4, the S. macrospora ?-class CA. The CAS4 protein was post-translationally glycosylated and secreted. The knockout strain ?cas4 had a significantly reduced rate of ascospore germination. To determine the cas genes required for S.?macrospora growth under ambient air conditions, we constructed double and triple mutations of the four cas genes in all possible combinations and a quadruple mutant. Vegetative growth rate of the quadruple mutant lacking all cas genes was drastically reduced compared to the wild type and invaded the agar under normal air conditions. Likewise the fruiting bodies were embedded in the agar and completely devoid of mature ascospores. PMID:24720701

  13. LIGNOCELLULOSE-DEGRADING ENZYMES PRODUCED BY THE ASCOMYCETE CONIOCHAETA LIGNIARIA AND RELATED SPECIES: APPLICATION FOR A LIGNOCELLULOSIC SUBSTRATE TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulose-degrading microorganisms are of interest for biomass upgrading. In previous work, we isolated the ascomycete Coniochaeta ligniaria NRRL 30616 that metabolized phenolics and furans in lignocellulosic acid hydrolysates. This fungal isolate was investigated in the present work for the ...

  14. Freshwater ascomycetes: Alascospora evergladensis, a new genus and species from the Florida Everglades.

    PubMed

    Raja, Huzefa A; Violi, Helen A; Shearer, Carol A

    2010-01-01

    Alascospora evergladensis, a freshwater ascomycete collected from submerged dead petioles of Nymphaea odorata during a survey of aquatic fungi along a phosphorus gradient in the Florida Everglades, is described and illustrated as a new genus and species in the Pleosporales (Pleosporomycetidae, Dothideomycetes). The new fungus is unique among genera in the Pleosporales based on a combination of morphological characters that include light brown, translucent, membranous, ostiolate ascomata with dark, amorphous material irregularly deposited on the peridium, especially around the ostiole; globose, fissitunicate, thick-walled asci; septate pseudoparaphyses; and 1-septate ascospores that are hyaline when young, and surrounded by a hyaline gelatinous sheath that is wing-shaped in outline on each side of the ascospore. The sheath is distinctive in that it first expands in water and is translucent, then condenses and darkens around older ascospores, giving them a dark brown, verruculose appearance. PMID:20120226

  15. Kazachstania hellenica sp. nov., a novel ascomycetous yeast from a Botrytis-affected grape must fermentation.

    PubMed

    Nisiotou, Aspasia A; Nychas, George-John E

    2008-05-01

    Four ascomycetous yeast strains (D4W13, D9W2, D9W4 and D9W17T) were isolated from Botrytis-affected fermenting grape juice originating from Attica Province, Greece. Phylogenetic analysis of rRNA gene sequences (18S, 26S and 5.8S-ITS) showed that the four strains represent a distinct species within the genus Kazachstania, closely related to Kazachstania zonata NBRC 100504T and Kazachstania gamospora NBRC 11056T. Electrophoretic karyotyping and physiological analysis support the affiliation of the four strains in a novel species for which the name Kazachstania hellenica sp. nov. is proposed, with D9W17T (=CBS 10706T=NBRC 103637T) as the type strain. PMID:18450725

  16. The evolutionary history of Cytochrome P450 genes in four filamentous Ascomycetes

    PubMed Central

    Deng, Jixin; Carbone, Ignazio; Dean, Ralph A

    2007-01-01

    Background The Cytochrome P450 system is important in fungal evolution for adapting to novel ecological niches. To elucidate the evolutionary process of cytochrome P450 genes in fungi with different life styles, we studied the patterns of gene gains and losses in the genomes of four filamentous Ascomycetes, including two saprotrophs (Aspergillus nidulans (AN) and Neurospora crassa (NC)) and two plant pathogens (Fusarium graminearum (FG) and Magnaporthe grisea (MG)). Results A total of 376 P450 genes were assigned to 168 families according to standard nomenclature. On average, only 1 to 2 genes per family were in each genome. To resolve conflicting results between different clustering analyses and standard family designation, a higher order relationship was formulated. 376 genes were clustered into 115 clans. Subsequently a novel approach based on parsimony was developed to build the evolutionary models. Based on these analyses, a core of 30 distinct clans of P450s was defined. The core clans experienced contraction in all four fungal lineages while new clans expanded in all with exception of NC. MG experienced more genes and clans gains compared to the other fungi. Parsimonious analyses unanimously supported one species topology for the four fungi. Conclusion The four studied fungi exhibit unprecedented diversity in their P450omes in terms of coding sequence, intron-exon structures and genome locations, suggesting a complicated evolutionary history of P450s in filamentous Ascomycetes. Clan classification and a novel strategy were developed to study evolutionary history. Contraction of core clans and expansion of novel clans were identified. The exception was the NC lineage, which exhibited pure P450 gene loss. PMID:17324274

  17. Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans▿†

    PubMed Central

    Vangelatos, Ioannis; Roumelioti, Katerina; Gournas, Christos; Suarez, Teresa; Scazzocchio, Claudio; Sophianopoulou, Vicky

    2010-01-01

    Eisosomes are subcortical organelles implicated in endocytosis and have hitherto been described only in Saccharomyces cerevisiae. They comprise two homologue proteins, Pil1 and Lsp1, which colocalize with the transmembrane protein Sur7. These proteins are universally conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all members of the subphylum Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication independent from that extant in the subphylum Saccharomycotina. In the aspergilli there are several Sur7-like proteins in each species, including one strict Sur7 orthologue (SurG in A. nidulans). In A. nidulans conidiospores, but not in hyphae, the three proteins colocalize at the cell cortex and form tightly packed punctate structures that appear different from the clearly distinct eisosome patches observed in S. cerevisiae. These structures are assembled late during the maturation of conidia. In mycelia, punctate structures are present, but they are composed only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, except for moderate resistance to itraconazole. We could not find any obvious association between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are necessary for conidial eisosome organization in ways that differ from those for their S. cerevisiae homologues. These data illustrate that conservation of eisosomal proteins within the ascomycetes is accompanied by a striking functional divergence. PMID:20693301

  18. Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum.

    PubMed

    Pggeler, Stefanie; O'Gorman, Cline M; Hoff, Birgit; Kck, Ulrich

    2011-07-01

    Eupenicillium species are the teleomorphic (sexual) forms of anamorphic (asexual) members of the genus Penicillium, which contains many species of industrial importance. Here we describe the first molecular analysis of the mating-type (MAT) locus from a homothallic (self-fertile) Eupenicillium species, E. crustaceum. This ascomycete is a sexual relative of the penicillin producer Penicillium chrysogenum, which while long considered asexual, was recently shown to possess the required genetic machinery for heterothallic breeding. The E. crustaceum genome contains two MAT loci, MAT1-1 and MAT1-2, in an arrangement characteristic of other known homothallic euascomycetes, such as Neosartorya fischeri. MAT1-1 is flanked by conserved APN2 (DNA lyase) and SLA2 (cytoskeleton assembly control) genes and encodes a homologue of the ?-box domain protein MAT1-1-1. Conversely, MAT1-2 carries a HMG-domain gene MAT1-2-1, and is flanked by a degenerate SLA2 gene and an intact homologue of the P. chrysogenum ORF Pc20g08960. Here we demonstrate the transcriptional expression of both mating-type genes during vegetative development. Furthermore, the MAT1-1-1 and MAT1-2-1 sequences were used to resolve the phylogenetic relationship of E. crustaceum with other ascomycetes. Phylogenetic trees confirmed a very close relationship between the homothallic E. crustaceum and the supposedly heterothallic P. chrysogenum. This close taxonomic association makes E. crustaceum an ideal candidate for future expression and evolutionary studies of sexual reproduction, with the ultimate aim of inducing sex in P. chrysogenum. PMID:21724167

  19. Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens

    PubMed Central

    Traeger, Stefanie; Nowrousian, Minou

    2015-01-01

    Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete. PMID:26254031

  20. Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens.

    PubMed

    Traeger, Stefanie; Nowrousian, Minou

    2015-10-01

    Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete. PMID:26254031

  1. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  2. Cloning and analysis of cDNA encoding an elongation factor 1 alpha from the dimorphic fungus Histoplasma capsulatum.

    PubMed

    Shearer, G

    1995-08-01

    The cDNA encoding translation elongation factor 1 alpha (EF-1 alpha) was isolated from the dimorphic fungus, Histoplasma capsulatum (Hc), an important pathogen of man. A cDNA library was probed with the tef1 gene from the fungus Mucor racemosus. Ten independent clones were isolated, all with similar restriction patterns. The longest clone (1.96 kb) was sequenced. Southern blot analysis revealed that the Hc tef1 gene was present as a single copy. A single transcript of approx. 2300 nucleotides was found in total RNA from both the yeast and mold forms of the organism. Comparison of the deduced 460-amino-acid Hc EF-1 alpha protein to EF-1 alpha proteins from other species of fungi revealed the greatest degree of similarity to proteins from the filamentous ascomycetes Podospora anserina and Trichoderma reesei. Phylogenetic tree analysis of fungal tef genes indicated that Hc is most closely related to filamentous ascomycetes and most distantly related to the budding yeast Saccharomyces cerevisiae. PMID:7642125

  3. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes

    PubMed Central

    Albuquerque, Priscila Costa; Nakayasu, Ernesto S.; Rodrigues, Marcio L.; Frases, Susana; Casadevall, Arturo; Zancope-Oliveira, Rosely M.; Almeida, Igor C.; Nosanchuk, Joshua D.

    2008-01-01

    Vesicular secretion of macromolecules has recently been described in the basidiomycete Cryptococcus neoformans raising the question as to whether ascomycetes similarly utilize vesicles for transport. In the present study, we examine whether the clinically important ascomycete Histoplasma capsulatum produce vesicles and utilized these structures to secrete macromolecules. Transmission electron microscopy (TEM) show transcellular secretion of vesicles by yeast cells. Proteomic and lipidomic analyses of vesicles isolated from culture supernatants reveals a rich collection of macromolecules involved in diverse processes including metabolism, cell recycling, signaling, and virulence. The results demonstrate that H. capsulatum can utilize a trans-cell wall vesicular transport secretory mechanism to promote virulence. Additionally, TEM of supernatants collected from Candida albicans, Candida parapsilosis, Sporothrix schenckii, and Saccharomyces cerevisiae document that vesicles are similarly produced by additional ascomycetes. The vesicles from H. capsulatum react with immune serum from patients with histoplasmosis providing an association of the vesicular products with pathogenesis. The findings support the proposal that vesicular secretion is a general mechanism in fungi for the transport of macromolecules related to virulence and that this process could be a target for novel therapeutics. PMID:18419773

  4. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs. PMID:25522194

  5. Asexual Cephalosporin C Producer Acremonium chrysogenum Carries a Functional Mating Type Locus▿

    PubMed Central

    Pöggeler, Stefanie; Hoff, Birgit; Kück, Ulrich

    2008-01-01

    Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the α-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The α-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaΔMAT strain). After fertilization with a P. anserina MAT1-2 (MAT+) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum. PMID:18689517

  6. Bradymyces gen. nov. (Chaetothyriales, Trichomeriaceae), a new ascomycete genus accommodating poorly differentiated melanized fungi.

    PubMed

    Hubka, Vit; Rblov, Martina; Rehulka, Ji?; Selbmann, Laura; Isola, Daniela; de Hoog, Sybren G; Kola?k, Miroslav

    2014-11-01

    Three slow growing, melanized and morphologically poorly differentiated fungal strains were isolated from a hyperaemic focus near the enlarged spleen of a farmed rainbow trout (Oncorhynchus mykiss) and from a rock collected at 3,200m a. s. l. (Alps, Italy). Two phylogenetic analyses of the combined nuc18S and nuc28S rDNA and ITS rDNA and ?-tubulin sequences showed that these isolates belong to the Trichomeriaceae, a family of the ascomycete order Chaetothyriales containing black yeasts that cause infections in humans and animals. The strains form a well-supported monophyletic clade. The new genus Bradymyces, with two new species, Bradymyces oncorhynchi and Bradymyces alpinus, is proposed based on phylogenetic, ecophysiological and morphological data. It is characterized by the presence of moniliform hyphae, blastic proliferation, endoconidia, multicellular and muriform bodies, and bodies with dark fragmented incrustations on the surface. Bradymyces most closely resembles members of Knufia. The ex-type isolate of B. oncorhynchi CCF 4369(T) (=CBS 133066(T)=CCFEE 6134(T)) represents the first case of a Trichomeriaceae member isolated from cold-blooded water vertebrates. B. alpinus [ex-type strain CCFEE 5493(T) (=CBS 138368(T)=CCF 4803(T))] is represented by two isolates from a single locality in the Alps and in contrast to B. oncorhynchi shows overall slower growth parameters and does not grow at 25C. PMID:25164483

  7. Starmerella orientalis f.a., sp. nov., an ascomycetous yeast species isolated from flowers.

    PubMed

    Alimadadi, Nayyereh; Soudi, Mohammad Reza; Wang, Shi-An; Wang, Qi-Ming; Talebpour, Zahra; Bai, Feng-Yan

    2016-03-01

    Four strains of a novel ascomycetous yeast species were isolated from flowers in Iran and China. Phylogenetic analysis of the sequences of the ITS region (including 5.8S rRNA gene) and the LSU rRNA gene D1/D2 domains indicated that these strains belong to the Starmerella clade and show divergence from previously described species in this clade. Growth reactions on carbon and nitrogen sources were similar to those observed in related species of the Starmerella clade. Sexual reproduction was not observed after mating tests on different sporulation media. Based on physiological characteristics and phylogeny of rRNA gene sequences, the novel species is most closely related to Candida (iter. nom. Starmerella) powellii and Candida (iter. nom. Starmerella) floricola. It is therefore assigned to the genus Starmerella and described as Starmerella orientalis f.a., sp. nov. The type strain is SAM09T ( = IBRC-M 30204T = CBS 14142T). The MycoBank accession number is MB 814379. PMID:26780917

  8. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes

    PubMed Central

    Kroken, Scott; Glass, N. Louise; Taylor, John W.; Yoder, O. C.; Turgeon, B. Gillian

    2003-01-01

    Fungal type I polyketides (PKs) are synthesized by PK synthases (PKSs) and include well known secondary metabolites such as the anticholesterol drug lovastatin and the potent natural carcinogen aflatoxin. Other type I PKs are known to be virulence factors for some plant pathogens and pigments such as melanin. In this study, a phylogenomic approach was used to investigate the origin and diversity of fungal genes encoding putative PKSs that are predicted to synthesize type I PKs. The resulting genealogy, constructed by using the highly conserved PKS ketosynthase (KS) domain, indicated that: (i) Species within subphylum Pezizomycotina (phylum Ascomycota) but not early diverging ascomycetes, like Saccharomyces cerevisiae (Saccharomycotina) or Schizosaccharomyces pombe (Taphrinomycotina), had large numbers (7–25) of PKS genes. (ii) Bacteria and fungi had separate groups of PKS genes; the few exceptions are the likely result of horizontal gene transfer from bacteria to various sublineages of fungi. (iii) The bulk of genes encoding fungal PKSs fell into eight groups. Four groups were predicted to synthesize variously reduced PKs, and four groups were predicted to make unreduced PKs. (iv) Species within different classes of Pezizomycotina shared the same groups of PKS genes. (v) Different fungal genomes shared few putative orthologous PKS genes, even between closely related genomes in the same class or genus. (vi) The discontinuous distributions of orthologous PKSs among fungal species can be explained by gene duplication, divergence, and gene loss; horizontal gene transfer among fungi does not need to be invoked. PMID:14676319

  9. A Putative Transcription Factor MYT2 Regulates Perithecium Size in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-01-01

    The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2 resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding sexual development in filamentous fungi. PMID:22649560

  10. PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus.

    PubMed

    Zelena, Katerina; Takenberg, Meike; Lunkenbein, Stefan; Woche, Susanne K; Nimtz, Manfred; Berger, Ralf G

    2013-01-01

    The pfah2 gene coding for a novel hydrophobin PfaH2 from the ascomycete Paecilomyces farinosus was identified during sequencing of random clones from a cDNA library. The corresponding protein sequence of PfaH2 deduced from the cDNA comprised 134 amino acids (aa). A 16 aa signal sequence preceded the N-terminus of the mature protein. PfaH2 belonged to the class Ia hydrophobins. The protein was isolated using trifluoroacetic acid extraction and purified via SDS-PAGE and high-performance liquid chromatography. The surface activity of the recently described PfaH1 and of PfaH2 was compared by the determination of contact angles (CAs) on glass slides and Teflon tape, and the CA of distilled water droplets was measured on glass slides coated with hydrophobin PfaH1 or PfaH2. Surprisingly, both hydrophobins adsorbed to hydrophilic surfaces and changed their physicochemical properties to a similar quantitative extent, although little aa sequence homology was found. PMID:23600571

  11. Freshwater ascomycetes: two new species of Lindgomyces (Lindgomycetaceae, Pleosporales, Dothideomycetes) from Japan and USA.

    PubMed

    Raja, Huzefa A; Tanaka, Kazuaki; Hirayama, Kazuyuki; Miller, Andrew N; Shearer, Carol A

    2011-01-01

    During independent surveys of freshwater ascomycetes in Japan and USA two new species of Lindgomyces were collected from submerged wood in freshwater. These species are described and illustrated based on morphological data and phylogenetic relationships based on analyses of nuclear ribosomal sequence data (partial SSU and LSU, and ITS). Lindgomyces apiculatus, collected in Japan, is characterized by immersed to erumpent, globose to subglobose ascomata; fissitunicate, cylindrical to clavate asci; and fusiform, one-septate ascospores with acute ends and short terminal appendages. Lindgomyces lemonweirensis, collected in Wisconsin, USA, differs from L. apiculatus in having clavate to cymbiform asci and oblong to fusiform ascospores that are distinctively multiguttulate and surrounded by an oval, ephemeral gelatinous sheath. The new species formed a strongly supported clade within the family Lindgomycetaceae (Pleosporales, Dothideomycetes) based on analyses of combined SSU and LSU sequence data. In addition phylogenetic analyses with ITS sequence data support the establishment of the new taxa as separate species within Lindgomyces because they were separated from each other and other Lindgomyces species based on maximum likelihood bootstrap and Bayesian analyses. PMID:21700632

  12. Mn(II) Oxidation by an Ascomycete Fungus is Linked to Superoxide Production During Asexual Reproduction

    SciTech Connect

    Hansel, Colleen M.; Zeiner, Carolyn A.; Santelli, Cara M.; Webb, Samuel M.

    2012-07-16

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  13. Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete

    PubMed Central

    Montanini, Barbara; Viscomi, ArturoR.; Bolchi, Angelo; Martin, Yus; Siverio, JosM.; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2005-01-01

    Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (Km=4.7?M nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils. PMID:16201972

  14. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis.

    PubMed

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-02-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species-Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  15. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  16. Freshwater ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan.

    PubMed

    Raja, Huzefa A; Oberlies, Nicholas H; Figueroa, Mario; Tanaka, Kazuaki; Hirayama, Kazuyuki; Hashimoto, Akira; Miller, Andrew N; Zelski, Steven E; Shearer, Carol A

    2013-01-01

    During investigations of freshwater ascomycetes we found one interesting taxon from Aomori (Japan), as well as three additional taxa from North Carolina (USA), which were morphologically similar to Minutisphaera, a recently described freshwater fungus in the Dothideomycetes. The ascomata of all the collections bore dark hair-like structures around the ostiolar region, obovoid to obclavate bitunicate asci, and one to three septate hyaline to brown ascospores with a sheath (in material from Japan), and with both sheath and appendages (in material from the USA). The apothecial ascomata of these taxa, however, differ from those of the type species of the genus, which are perithecial. Two collections of Minutisphaera-like fungi from the USA were morphologically quite similar but differed in ascospore size. To assess the phylogenetic affinities of Minutisphaera-like taxa with the type species, M. fimbriatispora, we sequenced 18S and 28S nrDNA of five newly collected strains of Minutisphaera. We also sequenced the nrDNA for the entire internal transcribed spacer region of 10 strains to assess interspecific and intraspecific variation with M. fimbriatispora. Additionally we examined the secondary metabolite profiles of two strains from USA. Based on maximum likelihood and Bayesian analyses of combined 18S and 28S, and separate ITS sequences, as well as examination of morphology, we describe and illustrate a new species, M. japonica. One collection from North Carolina is confirmed as M. fimbriatispora, while two other collections are Minutisphaera-like fungi that had a number of similar diagnostic morphological characters but differed only slightly in ascospore sizes. The phylogeny inferred from the internal transcribed spacer region suggested that two out of the three North Carolina collections may be novel and perhaps cryptic species within Minutisphaera. Organic extracts of Minutisphaera from USA, M. fimbriatispora (G155-1) and Minutisphaera-like taxon (G156-1), revealed the presence of palmitic acid and (E)-hexadec-9-en-1-ol as major chemical constituents. We discuss the placement of the Minutisphaera clade within the Dothideomycetes. The description of the genus Minutisphaera is emended to accommodate M. japonica within Minutisphaera. PMID:23709484

  17. Simulated aerial sprays for field cage evaluation of Beauveria bassiana and Metarhizium brunneum (Ascomycetes: Hypocreales) against Anabrus simplex (Orthoptera: Tettigoniidae) in Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field efficacy of the entomopathogenic Ascomycete Beauveria bassiana strain GHA and Metarhizium brunneum strain F52 was evaluated against nymphs of the Mormon cricket, Anabrus simplex. Fungi were applied with a new apparatus that allows simulated aerial sprays to 0.1m2 areas in the field. The Mormon...

  18. RAPID IDENTFICATION OF ASCOMYCETOUS YEASTS FROM CLINICAL SPECIMENS BY A MOLECULAR-BASED FLOW CYTOMETRY METHOD AND COMPARISION WITH IDENTIFICATIONS FROM PHENOTYPIC ASSAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. LSU rRNA D1/D2 gene sequence analysis was also performed and served as the reference for correct strain identif...

  19. Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray.

    PubMed

    Gorfer, Markus; Persak, Helene; Berger, Harald; Brynda, Sabine; Bandian, Dragana; Strauss, Joseph

    2009-12-01

    The ascomycete Cadophora finlandica, which can form mycorrhizas with ectomycorrhizal and ericoid hosts, is commonly found in heavy metal polluted soils. To understand the selective advantage of this organism at contaminated sites heavy metal regulated genes from C. finlandica were investigated. For gene identification a strategy based on a genomic microarray was chosen, which allows a rapid, genome-wide screening in genetically poorly characterized organisms. In a preliminary screen eleven plasmids covering eight distinct genomic regions and encoding a total of ten Cd-regulated genes were identified. Northern analyses with RNA from C. finlandica grown in the presence of either Cd, Pb or Zn revealed different transcription patterns in response to the heavy metals present in the growth medium. The Cd-regulated genes are predicted to encode several extracellular proteins with unknown functions, transporters, a centaurin-type regulator of intracellular membrane trafficking, a GNAT-family acetyltransferase and a B-type cyclin. PMID:19770041

  20. Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study

    PubMed Central

    2010-01-01

    Background The diversity and function of ligninolytic genes in soil-inhabiting ascomycetes has not yet been elucidated, despite their possible role in plant litter decay processes. Among ascomycetes, Trichoderma reesei is a model organism of cellulose and hemicellulose degradation, used for its unique secretion ability especially for cellulase production. T. reesei has only been reported as a cellulolytic and hemicellulolytic organism although genome annotation revealed 6 laccase-like multicopper oxidase (LMCO) genes. The purpose of this work was i) to validate the function of a candidate LMCO gene from T. reesei, and ii) to reconstruct LMCO phylogeny and perform evolutionary analysis testing for positive selection. Results After homologous overproduction of a candidate LMCO gene, extracellular laccase activity was detected when ABTS or SRG were used as substrates, and the recombinant protein was purified to homogeneity followed by biochemical characterization. The recombinant protein, called TrLAC1, has a molecular mass of 104 kDa. Optimal temperature and pH were respectively 40-45C and 4, by using ABTS as substrate. TrLAC1 showed broad pH stability range of 3 to 7. Temperature stability revealed that TrLAC1 is not a thermostable enzyme, which was also confirmed by unfolding studies monitored by circular dichroism. Evolutionary studies were performed to shed light on the LMCO family, and the phylogenetic tree was reconstructed using maximum-likelihood method. LMCO and classical laccases were clearly divided into two distinct groups. Finally, Darwinian selection was tested, and the results showed that positive selection drove the evolution of sequences leading to well-known laccases involved in ligninolysis. Positively-selected sites were observed that could be used as targets for mutagenesis and functional studies between classical laccases and LMCO from T. reesei. Conclusions Homologous production and evolutionary studies of the first LMCO from the biomass-degrading fungus T. reesei gives new insights into the physicochemical parameters and biodiversity in this family. PMID:20735824

  1. NMR analysis of the binding mode of two fungal endo-β-1,4-mannanases from GH5 and GH26 families.

    PubMed

    Marchetti, Roberta; Berrin, Jean-Guy; Couturier, Marie; Ul Qader, Shah Ali; Molinaro, Antonio; Silipo, Alba

    2015-12-15

    The enzymatic digestion of the main components of lignocellulosic biomass, including plant cell wall mannans, constitutes a fundamental step in the renewable biofuel production, with great potential benefit in the industrial field. Despite several reports of X-ray structures of glycoside hydrolases, how polysaccharides are specifically recognized and accommodated in the enzymes binding site still remains a pivotal matter of research. Within this frame, NMR spectroscopic techniques provide key binding information, complementing and/or enhancing the structural view by X-ray crystallography. Here we provide deep insights into the binding mode of two endo-β-1,4 mannanases from the coprophilous ascomycete Podospora anserina, PaMan26A and PaMan5A, involved in the hydrolysis of plant cell wall mannans and heteromannans. The investigation at a molecular level of the interaction between the wild-type enzymes and inactive mutants with manno-oligosaccharides, revealed a different mode of action among the two glycoside hydrolases most likely due to the presence of the additional and peculiar -4 subsite in the PaMan26A binding pocket. PMID:26567779

  2. Comparative Studies of Extracellular Fungal Laccases

    PubMed Central

    Bollag, Jean-Marc; Leonowicz, Andrzej

    1984-01-01

    Various basidiomycetes, ascomycetes, and deuteromycetes, grown in a sugar-rich liquid medium, were compared for laccase-producing ability and for the inducing effect of 2,5-xylidine on laccase production. Clear stimulation of the extracellular enzyme formation by xylidine was obtained in the cultures of Fomes annosus, Pholiota mutabilis, Pleurotus ostreatus, and Trametes versicolor, whereas Rhizoctonia praticola and Botrytis cinerea were not affected by the xylidine, and in the case of Podospora anserina a decrease in laccase activity was observed. The laccases were purified, and electrophoresis on polyacrylamide gels indicated a particular pattern for each laccase. The bands of the induced forms appeared only with basidiomycetes. The optimal pH of R. praticola laccase was in the neutral region, whereas the optima of all the other exolaccases were significantly lower (between pH 3.0 and 5.7). All laccases oxidized the methoxyphenolic acids under investigation, but there existed quantitative differences in oxidation efficiencies which depended on pH and on the nature (noninduced or induced) of the enzyme. The sensitivity of all enzymes to inhibitors did not differ considerably. PMID:16346649

  3. Genes that bias Mendelian segregation.

    PubMed

    Grognet, Pierre; Lalucque, Herv; Malagnac, Fabienne; Silar, Philippe

    2014-01-01

    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion. PMID:24830502

  4. Genes That Bias Mendelian Segregation

    PubMed Central

    Grognet, Pierre; Lalucque, Hervé; Malagnac, Fabienne; Silar, Philippe

    2014-01-01

    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion. PMID:24830502

  5. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties

    SciTech Connect

    Osipov, Evgeny; Kittl, Roman; Shleev, Sergey; Dorovatovsky, Pavel; Tikhonova, Tamara; Popov, Vladimir

    2014-11-01

    The structures of the ascomycetous B. aclada laccase and its L499M T1-site mutant have been solved at 1.7 Å resolution. The mutant enzyme shows a 140 mV lower redox potential of the type 1 copper and altered kinetic behaviour. The wild type and the mutant have very similar structures, which makes it possible to relate the changes in the redox potential to the L499M mutation Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 Å resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E{sub 0} = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.

  6. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi.

    PubMed

    Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B

    2016-04-01

    Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. PMID:26899925

  7. Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle.

    PubMed

    Fan, Hai-Wei; Noda, Hiroaki; Xie, Hong-Qing; Suetsugu, Yoshitaka; Zhu, Qian-Hua; Zhang, Chuan-Xi

    2015-09-01

    A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stl), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change. PMID:26338189

  8. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea

    PubMed Central

    Ding, Zhong-Tao; Zhang, Zhi; Luo, Di; Zhou, Jin-Yan; Zhong, Juan; Yang, Jie; Xiao, Liang; Shu, Dan; Tan, Hong

    2015-01-01

    The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers) and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain. PMID:25955649

  9. Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle

    PubMed Central

    Fan, Hai-Wei; Noda, Hiroaki; Xie, Hong-Qing; Suetsugu, Yoshitaka; Zhu, Qian-Hua; Zhang, Chuan-Xi

    2015-01-01

    A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stål), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change. PMID:26338189

  10. Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest

    PubMed Central

    Sato, Hirotoshi; Tanabe, Akifumi S.; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  11. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    PubMed

    Menkis, Audrius; Jacobson, David J; Gustafsson, Tim; Johannesson, Hanna

    2008-03-01

    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers. PMID:18369449

  12. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties

    PubMed Central

    Osipov, Evgeny; Polyakov, Konstantin; Kittl, Roman; Shleev, Sergey; Dorovatovsky, Pavel; Tikhonova, Tamara; Hann, Stephan; Ludwig, Roland; Popov, Vladimir

    2014-01-01

    Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 Å resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E 0 = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme. PMID:25372682

  13. Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea

    PubMed Central

    2008-01-01

    Background Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi. Their main function is to confer hydrophobicity to fungal surfaces in contact with air or during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or themselves resulting in morphogenetic signals. Based on their hydropathy patterns and solubility characteristics, hydrophobins are divided into two classes (I and II), the latter being found only in ascomycetes. Results We have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three draft sequenced genomes (H. jecorina = T. reesei, H. atroviridis = T. atroviride; H. virens = T. virens) an additional 14,000 ESTs from six other Trichoderma spp. (T. asperellum, H. lixii = T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, respectively. Ten is the highest number found in any ascomycete so far. All the hydrophobins we examined had the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these hydrophobins (HFBs)contained an extended N-terminus rich in either proline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades containing duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (24) from each species, and most were from Sordariomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other Sordariomycetes occurred in shared clades. Conclusion Our study shows that the genus Trichoderma/Hypocrea has a proliferated arsenal of class II hydrophobins which arose by birth-and-death evolution followed by purifying selection. PMID:18186925

  14. Purifying Selection and Birth-and-Death Evolution in the Class II Hydrophobin Gene Families of the Ascomycete Trichoderma/Hypocrea

    SciTech Connect

    kubicek, Christian P.; Baker, Scott E.; Gamauf, Christian; Kenerley, Chuck; Druzhinina, Irina S.

    2008-01-10

    Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi, where their main function is to confer hydrophobicity to fungal surfaces in contact with air and during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or of themselves resulting in morphogenetic signals. Based on their hydropathy patterns and their solubility characteristics, they are classified in class I and class II hydrophobins, the latter being found only in ascomycetes. Here we have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three fully sequenced genomes (H. jecorina=T. reesei, H. atroviridis=T. atroviride; H. virens=T. virens) and a total of 14.000 ESTs of six others (T. asperellum, H. lixii=T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, which is the highest number found in any other ascomycete so far. They all showed the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these HFBs contained an extended N-terminus rich in either praline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades contain duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2-4) from each species, and most of them were from Pyrenomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other pyrenomycetes occured in shared clades. Our study shows that the genus Trichoderma/Hypocrea has a proliferated arsenal of class II hydrophobins which arose by purifying selection and birth-and-death evolution.

  15. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora

    PubMed Central

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions. PMID:23064313

  16. A Fox2-Dependent Fatty Acid -Oxidation Pathway Coexists Both in Peroxisomes and Mitochondria of the Ascomycete Yeast Candida lusitaniae

    PubMed Central

    Bessoule, Jean-Jacques; Salin, Bndicte; Lucas-Gurin, Marine; Manon, Stephen; Dementhon, Karine; Nol, Thierry

    2014-01-01

    It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid -oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial -oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the -oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14C?-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2? null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial ?-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner. PMID:25486052

  17. A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora

    PubMed Central

    Nolting, Nicole; Pggeler, Stefanie

    2006-01-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora ?mcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449

  18. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ?Smmob3 in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Frey, Stefan; Lahmann, Yasmine; Hartmann, Thomas; Seiler, Stephan; Pggeler, Stefanie

    2015-08-01

    The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ?Smmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ?Smmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. PMID:25989468

  19. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Voigt, Oliver; Pggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions. PMID:23064313

  20. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria.

    PubMed

    Berbee, Mary L; Payne, Brendan P; Zhang, Guojuan; Roberts, Rodney G; Turgeon, B Gillian

    2003-02-01

    About 15,000 species of ascomycete fungi lack a known sexual state. For fungi with asexual states in the anamorph genera Embellisia, Ulocladium, and Alternaria, six species have known sexual states but more than 50 species do not. In sexual filamentous ascomycetes, opposite mating type information at the MAT1 locus regulates mating and the opposite mating type genes each have a clonal, non-recombining phylogenetic history. We used PCR to amplify and sequence fragments of the opposite mating type genes from three supposedly asexual species, A. brassicae, A. brassicicola and A. tenuissima. Each haploid fungal isolate had just one mating type, but both mating types were present in all the three species. We sequenced the ribosomal ITS regions for isolates of opposite mating type, for the three asexual species and four known related sexual species. In a phylogenetic analysis including other ITS sequences from GenBank, the three asexual species were not closely related to any of the known sexual species. Isolates of opposite mating type but the same species had identical ITS sequences. During any period of asexual evolutionary history, lineages of each mating type would have had a separate evolutionary history and any ITS substitutions shared between isolates of opposite mating type would have had to accumulate by convergence. Allowing for varying substitution rates and assuming a Poisson distribution of substitutions, the probability that isolates of opposite mating type shared an ITS substitution through convergence was low. This suggests that isolates of opposite mating type of A. brassicae, A. brassicicola and A. tenuissima were exchanging substitutions through sexual or parasexual reproduction while the ITS was evolving. If sexuality was lost, it was lost after the period of evolutionary history represented by the shared substitutions. PMID:12747328

  1. First Structural Insights into ?-l-Arabinofuranosidases from the Two GH62 Glycoside Hydrolase Subfamilies*

    PubMed Central

    Siguier, Batrice; Haon, Mireille; Nahoum, Virginie; Marcellin, Marlne; Burlet-Schiltz, Odile; Coutinho, Pedro M.; Henrissat, Bernard; Mourey, Lionel; O'Donohue, Michael J.; Berrin, Jean-Guy; Tranier, Samuel; Dumon, Claire

    2014-01-01

    ?-l-Arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of ?-l-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 ?-l-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the ?-l-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed ?-propeller fold that confirms their predicted classification into clan GH-F together with GH43 ?-l-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family. PMID:24394409

  2. Crystal structure of the GalNAc/Gal-specific agglutinin from the phytopathogenic ascomycete Sclerotinia sclerotiorum reveals novel adaptation of a ?-trefoil domain

    PubMed Central

    Sulzenbacher, Gerlind; Roig-Zamboni, Vronique; Peumans, Willy J.; Roug, Pierre; Van Damme, Els J.M.; Bourne, Yves

    2010-01-01

    A lectin from the phytopathogenic ascomycete Sclerotina sclerotiorum that shares only weak sequence similarity with characterized fungal lectins has recently been identified. Sclerotina sclerotiorum agglutinin (SSA) is a homodimeric protein consisting of two identical subunits of ?17 kDa and displays specificity primarily towards Gal/GalNAc. Glycan array screening indicates that SSA readily interacts with Gal/GalNAc-bearing glycan chains. The crystal structures of SSA in the ligand-free form and in complex with the Gal-?1,3-GalNAc (T-antigen) disaccharide have been determined at 1.6 and 1.97 resolution, respectively. SSA adopts a ?-trefoil domain as previously identified for other carbohydrate-binding proteins of the ricin B-like lectin superfamily and accommodates terminal non-reducing galactosyl and N-acetylgalactosaminyl glycans. Unlike other structurally related lectins, SSA contains a single carbohydrate-binding site at site ?. SSA reveals a novel dimeric assembly markedly dissimilar to those described earlier for ricin-type lectins. The present structure exemplifies the adaptability of the ?-trefoil domain in the evolution of fungal lectins. PMID:20566411

  3. Base composition and nucleosome density in exonic and intronic regions in genes of the filamentous ascomycetes Aspergillus nidulans and Aspergillus oryzae.

    PubMed

    Nishida, Hiromi; Katayama, Takuya; Suzuki, Yutaka; Kondo, Shinji; Horiuchi, Hiroyuki

    2013-08-01

    We sequenced nucleosomal DNA fragments of the filamentous ascomycetes Aspergillus nidulans and Aspergillus oryzae and then mapped those sequences on their genomes. We compared the GC content and nucleosome density in the exonic and intronic regions in the genes of A. nidulans and A. oryzae. Although the GC content and nucleosome density in the exonic regions tended to be higher than those in the intronic regions, the difference in the distribution of the GC content was more notable than that of the nucleosome density. Next, we compared the GC content and nucleosome density in the exonic regions of 9616 orthologous gene pairs. In both Aspergillus species, the GC content did not correlate with the nucleosome density. In addition, the Spearman's rank correlation coefficient (?=0.51) between the GC content of the exonic regions of the 9616 orthologous gene pairs was higher than that (?=0.31) of the nucleosome densities of A. nidulans and A. oryzae. These results strongly suggest that the GC content in the exons of the orthologous gene pairs has been conserved during evolution but the nucleosome density has varied throughout. PMID:23664982

  4. NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes[W

    PubMed Central

    Oide, Shinichi; Moeder, Wolfgang; Krasnoff, Stuart; Gibson, Donna; Haas, Hubertus; Yoshioka, Keiko; Turgeon, B. Gillian

    2006-01-01

    NPS6, encoding a nonribosomal peptide synthetase, is a virulence determinant in the maize (Zea mays) pathogen Cochliobolus heterostrophus and is involved in tolerance to H2O2. Deletion of NPS6 orthologs in the rice (Oryza sativa) pathogen, Cochliobolus miyabeanus, the wheat (Triticum aestivum) pathogen, Fusarium graminearum, and the Arabidopsis thaliana pathogen, Alternaria brassicicola, resulted in reduced virulence and hypersensitivity to H2O2. Introduction of the NPS6 ortholog from the saprobe Neurospora crassa to the Δnps6 strain of C. heterostrophus restored wild-type virulence to maize and tolerance to H2O2, demonstrating functional conservation in filamentous ascomycete phytopathogens and saprobes. Increased sensitivity to iron depletion was identified as a conserved phenotype of Δnps6 strains. Exogenous application of iron enhanced the virulence of Δnps6 strains of C. heterostrophus, C. miyabeanus, F. graminearum, and A. brassicicola to each host. NPS6 is responsible for the biosynthesis of extracellular siderophores by C. heterostrophus, F. graminearum, and A. brassicicola. Application of the extracellular siderophore of A. brassicicola restored wild-type virulence of the ΔAbnps6 strain to Arabidopsis. It is proposed that the role of extracellular siderophores in fungal virulence to plants is to supply an essential nutrient, iron, to their producers in planta and not to act as phytotoxins, depriving their hosts of iron. PMID:17056706

  5. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes).

    PubMed

    Nyati, Shyam; Bhattacharya, Debashish; Werth, Silke; Honegger, Rosmarie

    2013-12-01

    We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. PMID:24415800

  6. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes)

    PubMed Central

    Nyati, Shyam; Bhattacharya, Debashish; Werth, Silke; Honegger, Rosmarie

    2013-01-01

    We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. PMID:24415800

  7. Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03.

    PubMed

    Hofmann, Ulrike; Schlosser, Dietmar

    2016-03-01

    The environmentally widespread micropollutants bisphenol A (BPA), carbamazepine (CBZ), 17α-ethinylestradiol (EE2), diclofenac (DF), sulfamethoxazole (SMX), technical nonylphenol (t-NP) and triclosan (TCS) were used to assess the potential of the laccase-producing freshwater ascomycete Phoma sp. strain UHH 5-1-03 for micropollutant removal and to provide quantitative insights into the mechanisms involved. Biotransformation rates observed with whole fungal cells followed the rank order EE2 ≫ BPA > TCS > t-NP > DF > SMX > CBZ. Biosorption onto fungal mycelia was prominent for BPA, EE2, TCS and t-NP and insignificant for CBZ, DF and SMX. Enzymatic removal rates investigated with cell-free, laccase-containing culture supernatants of Phoma sp. followed the rank order EE2 > BPA > DF > t-NP > TCS and were insignificant for SMX and CBZ. Mass spectrometry-assisted investigations addressing metabolite formation from unlabelled and (13)C6-labelled DF and SMX yielded DF metabolites indicating hydroxylation, cyclisation and decarboxylation reactions, as well as oxidative coupling typical for laccase reactions. For SMX, several products characterised by lower molecular masses than the parent compound were found, and indications for deamination and formamide formation were obtained. Summarising, the obtained results suggest that the extracellular laccase of Phoma sp. largely contributes to fungal biotransformation of EE2, BPA, DF, TCS and t-NP, together with cell-associated enzymes such as, e.g. cytochrome P450 monooxygenases suggested by the appearance of hydroxylated metabolites from DF. Laccase does not seem to play any role in the metabolisation of SMX and CBZ, where yet to be identified cell-associated enzymes have to be considered instead. PMID:26536880

  8. Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA.

    PubMed

    Raja, Huzefa A; El-Elimat, Tamam; Oberlies, Nicholas H; Shearer, Carol A; Miller, Andrew N; Tanaka, Kazuaki; Hashimoto, Akira; Fournier, Jacques

    2015-01-01

    Minutisphaera is a recently established genus of freshwater Dothideomycetes characterized by small, globose to subglobose or apothecioid, erumpent to superficial, brown ascomata; fissitunicate, eight-spored, ovoid to obclavate asci; and 1-2-septate, clavate to broadly fusiform, hyaline to pale brown ascospores with or without a gelatinous sheath and filamentous appendages. The genus currently contains two species: M. fimbriatispora, the type species, and M. japonica. The higher-level phylogenetic relationship of Minutisphaera within the Dothideomycetes currently is unresolved. To establish the phylogenetic position of Minutisphaera within the Dothideomycetes and evaluate the phylogenetic affinities of newly collected Minutisphaera-like taxa, we sequenced three rDNA regions-18S, ITS1-5.8SITS2 (ITS) and 28S nuc rDNA, and a protein-coding gene, MCM7, for newly collected strains of Minutisphaera. Based on maximum likelihood and Bayesian analyses of a combined dataset (18S and 28S) composed of 167 taxa, a more refined dataset (28S and MCM7) comprising 52 taxa and a separate ITS dataset, and an examination of morphology, we describe and illustrate two new species of Minutisphaera. The Minutisphaera clade was strongly supported within the Dothideomycetes with likelihood and Bayesian statistics but did not share phylogenetic affinities with any existing taxonomic group within the Dothideomycetes. We therefore establish a new order, Minutisphaerales, and new family, Minutisphaeraceae, for this monophyletic clade of freshwater ascomycetes. Chemical analysis of the organic extract M. aspera (G427) resulted in isolation and characterization of five known secondary metabolites, of which four were dipeptides (1-4) and one an aromatic polyketide (5). Conversely, two aromatic polyketides (5, 6) were isolated and identified from the organic extract of M. parafimbriatispora (G156-4). The isolated compounds were tested for their antimicrobial activity against an array of bacteria and fungi. Compound 6 showed promising activity against Staphylococcus aureus and Mycobacterium smegmatis with minimal inhibitory concentration values of 30 and 60 μg/mL, respectively. PMID:26315030

  9. The in vivo use of alternate 3'-splice sites in group I introns.

    PubMed Central

    Sellem, C H; Belcour, L

    1994-01-01

    Alternative splicing of group I introns has been postulated as a possible mechanism that would ensure the translation of proteins encoded into intronic open reading frames, discontinuous with the upstream exon and lacking an initiation signal. Alternate splice sites were previously depicted according to secondary structures of several group I introns. We present here strong evidence that, in the case of Podospora anserina nad 1-i4 and cox1-i7 mitochondrial introns, alternative splicing events do occur in vivo. Indeed, by PCR experiments we have detected molecules whose sequence is precisely that expected if the predicted alternate 3'-splice sites were used. Images PMID:8165125

  10. Pulmonary Necrotizing Granulomas in a patient with familial mediterranean fever.

    PubMed

    Kushima, Hisako; Ishii, Hiroshi; Ishii, Koji; Kadota, Jun-ichi

    2015-09-01

    We herein report a case of familial Mediterranean fever (FMF) presenting with granulomatous lung lesions with neuronal apoptosis inhibitory protein (NAIP), MHC class II transcription activator (CIITA), incompatibility locus protein from Podospora anserina (HET-E), and telomerase-associated protein (TP1) (NACHT) leucine-rich-repeat 1-positive inflammatory cell infiltrates. FMF is an autoinflammatory disorder characterized by recurrent and self-limited attacks of pyrexia, arthritis and erysipelas-like skin lesions. Lung disorders associated with FMF are extremely rare. This is the first report of an immunologically-confirmed case of pulmonary manifestations of this disease. PMID:24252001

  11. Real-time PCR-based monitoring of DNA pools in the tri-trophic interaction between Norway spruce, the rust Thekopsora areolata, and an opportunistic ascomycetous Phomopsis sp.

    PubMed

    Hietala, Ari M; Solheim, Halvor; Fossdal, Carl Gunnar

    2008-01-01

    The difficulty in subculturing biotrophic fungi complicates etiological studies related to the associated plant diseases. By employing internal transcribed spacer rDNA-targeted quantitative real-time polymerase chain reaction, we now show that the heteroecious rust Thekopsora areolata, commonly associated in natural conditions to sapling shoots and cones of Norway spruce and leaves of wild bird cherry, frequently infects nursery-grown seedlings of the conifer. A spatial sampling scheme was used to investigate seedlings and saplings of Norway spruce showing phloem necrosis: the highest concentration of DNA of T. areolata was recorded in the area with necrotic phloem. The separate analysis of bark and wood tissues suggested that the initial spread of the rust to healthy tissues neighboring the infection site takes place in the bark. A Phomopsis species found to coexist with T. areolata in several seedlings showed very high DNA levels in the upper part of the lesion, and even in the visually healthy proximal tissues above the lesions, which indicates that the ascomycete, most probably a secondary invader following primary infection by T. areolata, has a latent stage during early host colonization. We hypothesize that this hemibiotrophic mode of infection contributes to the successful coexistence of Phomopsis with a biotrophic rust. PMID:18943238

  12. Description of Taphrina antarctica f.a. sp. nov., a new anamorphic ascomycetous yeast species associated with Antarctic endolithic microbial communities and transfer of four Lalaria species in the genus Taphrina.

    PubMed

    Selbmann, Laura; Turchetti, Benedetta; Yurkov, Andrey; Cecchini, Clarissa; Zucconi, Laura; Isola, Daniela; Buzzini, Pietro; Onofri, Silvano

    2014-07-01

    In the framework of a large-scale rock sampling in Continental Antarctica, a number of yeasts have been isolated. Two strains that are unable to grow above 20 °C and that have low ITS sequence similarities with available data in the public domain were found. The D1/D2 LSU molecular phylogeny placed them in an isolated position in the genus Taphrina, supporting their affiliation to a not yet described species. Because the new species is able to grow in its anamorphic state only, the species Taphrina antarctica f.a. (forma asexualis) sp. nov. has been proposed to accommodate both strains (type strain DBVPG 5268(T), DSM 27485(T) and CBS 13532(T)). Lalaria and Taphrina species are dimorphic ascomycetes, where the anamorphic yeast represents the saprotrophic state and the teleomorph is the parasitic counterpart on plants. This is the first record for this genus in Antarctica; since plants are absent on the continent, we hypothesize that the fungus may have focused on the saprotrophic part of its life cycle to overcome the absence of its natural host and adapt environmental constrains. Following the new International Code of Nomenclature for Algae, Fungi and Plants (Melbourne Code 2011) the reorganization of Taphrina-Lalaria species in the teleomorphic genus Taphrina is proposed. We emend the diagnosis of the genus Taphrina to accommodate asexual saprobic states of these fungi. Taphrina antarctica was registered in MycoBank under MB 808028. PMID:24893860

  13. Role of Hsp104 in the Propagation and Inheritance of the [Het-s] Prion

    PubMed Central

    Malato, Laurent; Dos Reis, Suzana; Benkemoun, Laura; Sabat, Raimon

    2007-01-01

    The chaperones of the ClpB/HSP100 family play a central role in thermotolerance in bacteria, plants, and fungi by ensuring solubilization of heat-induced protein aggregates. In addition in yeast, Hsp104 was found to be required for prion propagation. Herein, we analyze the role of Podospora anserina Hsp104 (PaHsp104) in the formation and propagation of the [Het-s] prion. We show that ?PaHsp104 strains propagate [Het-s], making [Het-s] the first native fungal prion to be propagated in the absence of Hsp104. Nevertheless, we found that [Het-s]-propagon numbers, propagation rate, and spontaneous emergence are reduced in a ?PaHsp104 background. In addition, inactivation of PaHsp104 leads to severe meiotic instability of [Het-s] and abolishes its meiotic drive activity. Finally, we show that ?PaHSP104 strains are less susceptible than wild type to infection by exogenous recombinant HET-s(218289) prion amyloids. Like [URE3] and [PIN+] in yeast but unlike [PSI+], [Het-s] is not cured by constitutive PaHsp104 overexpression. The observed effects of PaHsp104 inactivation are consistent with the described role of Hsp104 in prion aggregate shearing in yeast. However, Hsp104-dependency appears less stringent in P. anserina than in yeast; presumably because in Podospora prion propagation occurs in a syncitium. PMID:17881723

  14. Localization of HET-S to the Cell Periphery, Not to [Het-s] Aggregates, Is Associated with [Het-s]HET-S Toxicity

    PubMed Central

    Mathur, Vidhu; Seuring, Carolin; Riek, Roland; Saupe, Sven J.

    2012-01-01

    Prion diseases are associated with accumulation of the amyloid form of the prion protein, but the mechanisms of toxicity are unknown. Amyloid toxicity is also associated with fungal prions. In Podospora anserina, the simultaneous presence of [Het-s] prion and its allelic protein HET-S causes cell death in a self-/nonself-discrimination process. Here, using the prion form of a fragment of HET-s ([PrD157+]), we show that [Het-s]HET-S toxicity can be faithfully recapitulated in yeast. Overexpression of Hsp40 chaperone, Sis1, rescues this toxicity by curing cells of [PrD157+]. We find no evidence for toxic [PrD157+] conformers in the presence of HET-S. Instead, [PrD157+] appears to seed HET-S to accumulate at the cell periphery and to form aggregates distinct from visible [PrD157+] aggregates. Furthermore, HET-S mutants that cause HET-S to be sequestered into [PrD157+] prion aggregates are not toxic. The localization of HET-S at the cell periphery and its association with cell death was also observed in the native host Podospora anserina. Thus, upon interaction with [Het-s], HET-S localizes to the cell periphery, and this relocalization, rather than the formation of mixed HET-s/HET-S aggregates, is associated with toxicity. PMID:22037764

  15. Functional Amyloidogenesis and CytotoxicityInsights into Biology and Pathology

    PubMed Central

    Fowler, Douglas M.; Kelly, Jeffery W.

    2012-01-01

    Prions are self-templating protein structures that can be transferred from organism to organism. The [Het-s] prion propagates as a functional amyloid aggregate in the filamentous fungi Podospora anserina, and is involved in mediating heterokaryon incompatibility. Fusion of a P. anserina strain harboring the [Het-s] prion with another strain expressing the soluble Het-S protein results in cell death. The mechanism of Het-s/Het-S-mediated cell death has now been revealed in a paper just published in PLOS Biology. The study shows that Het-s and Het-S C-terminal domain co-amyloidogenesis induces a profound conformational rearrangement in the N-terminal Het-S HeLo domain, resulting in the exposure of a nascent transmembrane helix. Oligomerization of these helices leads to pore formation, leakage of the cytosolic contents, and subsequent cell death. Thus, Het-s amyloid plays a major role in the life cycle of P. anserina by orchestrating a complex conformational change in the Het-S protein, resulting in cytotoxicity by compromising membrane integrity. This ability of Het-s functional amyloid to initiate programmed cytotoxicity by mediating a conformational change in another protein significantly expands the functional repertoire of amyloid. Moreover, the mechanism of Het-S cell killing may be similar to the mechanism by which some pathological amyloid proteins lead to the demise of post-mitotic tissue. PMID:23300381

  16. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria

    PubMed Central

    Daum, Bertram; Walter, Andreas; Horst, Angelika; Osiewacz, Heinz D.; Khlbrandt, Werner

    2013-01-01

    Aging is one of the most fundamental, yet least understood biological processes that affect all forms of eukaryotic life. Mitochondria are intimately involved in aging, but the underlying molecular mechanisms are largely unknown. Electron cryotomography of whole mitochondria from the aging model organism Podospora anserina revealed profound age-dependent changes in membrane architecture. With increasing age, the typical cristae disappear and the inner membrane vesiculates. The ATP synthase dimers that form rows at the cristae tips dissociate into monomers in inner-membrane vesicles, and the membrane curvature at the ATP synthase inverts. Dissociation of the ATP synthase dimer may involve the peptidyl prolyl isomerase cyclophilin D. Finally, the outer membrane ruptures near large contact-site complexes, releasing apoptogens into the cytoplasm. Inner-membrane vesiculation and dissociation of ATP synthase dimers would impair the ability of mitochondria to supply the cell with sufficient ATP to maintain essential cellular functions. PMID:24006361

  17. Screen for soil fungi highly resistant to dichloroaniline uncovers mostly Fusarium species.

    PubMed

    Chan Ho Tong, Laetitia; Dairou, Julien; Bui, Linh-Chi; Bouillon, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2015-08-01

    Arylamines are frequent pollutants in soils. Fungi have proven to be efficient in detoxifying these chemicals by acetylating them using arylamine N-acetyl transferase enzymes. Here, we selected from natural soils fungi highly resistant to 3,4-dichloroaniline (DCA). Fusarium species were the most frequently isolated species, especially Fusarium solani. The sequenced strain of F. solani contains five NAT genes, as did all the DCA-resistant isolates. RT-PCR analysis showed that the five genes were expressed in F. solani. Expression of the F. solani genes in Podospora anserina and analysis of acetylation directly in F. solani showed that only the NhNAT2B gene conferred significant resistance to DCA and that F. solani likely uses pathways different from acetylation to resist high doses of DCA, as observed previously for Trichoderma. PMID:26068093

  18. Prions are affected by evolution at two levels.

    PubMed

    Wickner, Reed B; Kelly, Amy C

    2016-03-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals. PMID:26713322

  19. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans

    PubMed Central

    Leiter, Éva; Park, Hee-Soo; Kwon, Nak-Jung; Han, Kap-Hoon; Emri, Tamás; Oláh, Viktor; Mészáros, Ilona; Dienes, Beatrix; Vincze, János; Csernoch, László; Yu, Jae-Hyuk; Pócsi, István

    2016-01-01

    Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species. PMID:26846452

  20. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans.

    PubMed

    Leiter, Éva; Park, Hee-Soo; Kwon, Nak-Jung; Han, Kap-Hoon; Emri, Tamás; Oláh, Viktor; Mészáros, Ilona; Dienes, Beatrix; Vincze, János; Csernoch, László; Yu, Jae-Hyuk; Pócsi, István

    2016-01-01

    Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species. PMID:26846452

  1. An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies.

    PubMed

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-07-10

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  2. Cytotoxic Dimeric Epipolythiodiketopiperazines from the Ascomycetous Fungus Preussia typharum

    PubMed Central

    2015-01-01

    Two new dimeric epipolythiodiketopiperazines, preussiadins A (1) and B (2), together with two known diastereomers, leptosins C (6) and A (7), were obtained from the mycelia of a Preussia typharum isolate. The structures of the new compounds were established by spectroscopic methods, and the absolute configurations of 1 and 2 were assigned by chemical transformations and comparisons of quantum chemical ECD and VCD calculations to experimental data. Compound 1 exhibited potent cytotoxic activity in the NCI-60 cell line panel with an average LC50 value of 251 nM. Further studies demonstrated that 1 circumvents P-glycoprotein-mediated drug resistance, yet had no significant antitumor activity in a xenograft UACC-62 melanoma model. PMID:24893224

  3. Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi

    PubMed Central

    Roper, Marcus; Ellison, Chris; Taylor, John W.; Glass, N. Louise

    2011-01-01

    Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal of asexual or sexual spores propagates individual nuclei in many of these species, selection acting at the level of nuclei creates the potential for competitive and cooperative genome dynamics. Recent work in Neurospora crassa and Sclerotinia sclerotiorum has illuminated how nuclear populations are coordinated for fungal growth and other behaviors and has revealed both molecular and physical mechanisms for preventing and policing inter-genomic conflict. Recent results from population-level genomic studies in a variety of filamentous fungi suggest that nuclear exchange between mycelia and recombination between heterospecific nuclei may be of more importance to fungal evolution, diversity and the emergence of newly virulent strains than has previously been recognized. PMID:21959169

  4. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii.

    PubMed

    Herrera Bravo de Laguna, I; Toledo Marante, F J; Mioso, R

    2015-12-01

    Due its innate ability to produce extracellular enzymes which can provide eco-friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high-value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale. PMID:26274842

  5. The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1

    PubMed Central

    Siegmund, Ulrike; Heller, Jens; van Kann, Jan A. L.; Tudzynski, Paul

    2013-01-01

    NADPH oxidases (Nox) are major enzymatic systems that generate reactive-oxygen species (ROS) in multicellular eukaryotes. In several fungi they have been shown to be involved in sexual differentiation and pathogenicity. However, in contrast to the well characterized mammalian systems, basic information on the composition, recruitment, and localization of fungal Nox complexes and on the molecular mechanisms of their cellular effects are still lacking. Here we give a detailed analysis of components of the Nox complexes in the gray mold fungus Botrytis cinerea. It had previously been shown that the two catalytic transmembrane subunits BcNoxA and B are important for development of sclerotia and for full virulence, with BcNoxA being involved in spreading of lesions and BcNoxB in penetration; BcNoxR functions as a regulator of both subunits. Here we present evidence (using for the first time a functional GFP fusion able to complement the ΔbcnoxA mutant) that BcNoxA localizes mainly to the ER and at the plasma membrane; BcNoxB shows a similar localization pattern, while the regulator BcNoxR is found in vesicles throughout the hyphae and at the hyphal tip. To identify possible interaction partners, which could be involved in the localization or recruitment of the Nox complexes, we functionally characterized the tetraspanin Pls1, a transmembrane protein, which had been suggested to be a NoxB-interacting partner in the saprophyte Podospora anserina. Knock-out experiments and GFP fusions substantiate a link between BcNoxB and BcPls1 because both deletion mutants have overlapping phenotypes (especially a defect in penetration), and the proteins show a similar localization pattern (ER). However, in contrast to the corresponding protein in P. anserina BcPls1 is important for female fertility, but not for ascospore germination. PMID:23418468

  6. The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1.

    PubMed

    Siegmund, Ulrike; Heller, Jens; van Kan, Jan A L; van Kann, Jan A L; Tudzynski, Paul

    2013-01-01

    NADPH oxidases (Nox) are major enzymatic systems that generate reactive-oxygen species (ROS) in multicellular eukaryotes. In several fungi they have been shown to be involved in sexual differentiation and pathogenicity. However, in contrast to the well characterized mammalian systems, basic information on the composition, recruitment, and localization of fungal Nox complexes and on the molecular mechanisms of their cellular effects are still lacking. Here we give a detailed analysis of components of the Nox complexes in the gray mold fungus Botrytis cinerea. It had previously been shown that the two catalytic transmembrane subunits BcNoxA and B are important for development of sclerotia and for full virulence, with BcNoxA being involved in spreading of lesions and BcNoxB in penetration; BcNoxR functions as a regulator of both subunits. Here we present evidence (using for the first time a functional GFP fusion able to complement the ?bcnoxA mutant) that BcNoxA localizes mainly to the ER and at the plasma membrane; BcNoxB shows a similar localization pattern, while the regulator BcNoxR is found in vesicles throughout the hyphae and at the hyphal tip. To identify possible interaction partners, which could be involved in the localization or recruitment of the Nox complexes, we functionally characterized the tetraspanin Pls1, a transmembrane protein, which had been suggested to be a NoxB-interacting partner in the saprophyte Podospora anserina. Knock-out experiments and GFP fusions substantiate a link between BcNoxB and BcPls1 because both deletion mutants have overlapping phenotypes (especially a defect in penetration), and the proteins show a similar localization pattern (ER). However, in contrast to the corresponding protein in P. anserina BcPls1 is important for female fertility, but not for ascospore germination. PMID:23418468

  7. Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus.

    PubMed Central

    Murata, Y; Fujii, M; Zolan, M E; Kamada, T

    1998-01-01

    A homokaryotic strain (5337) in our culture stock of Coprinus cinereus produced fertile fruit bodies after prolonged culture. Microscopic examination revealed that hyphae dedifferentiated from the tissues of one of the fruit bodies, as well as all basidiospore derivatives from the fruit body, exhibited pseudoclamps, whereas vegetative hyphae of 5337, from which the fruit body developed, had no clamp connections. Genetic analysis showed that the formation of pseudoclamps results from a recessive mutation in a gene designated pcc1 (pseudoclamp connection formation), which is distinct from the A and B mating type genes. Cloning and sequencing of the pcc1 gene and cDNA identified an ORF of 1683 bp interrupted by one intron. Database searches revealed that pcc1 encodes an SRY-type HMG protein. The HMG box shared 44, 41, and 29% sequence identities (>80 amino acids) to those of FPR1 of Podospora anserina, MAT-Mc of Schizosaccharomyces pombe, and prf1 of Ustilago maydis, respectively. Northern analysis revealed that the level of pcc1 expression is higher in the dikaryon, in homokaryons in which the A and B mating type developmental sequences are individually activated, than in the homokaryon in which these sequences are not active. Sequencing of the pcc1-1 mutant allele revealed that the mutant carries a nonsense mutation at serine 211, a residue located between the HMG box and the C terminus. Based on these results, possible roles of the pcc1 gene in the sexual development of homobasidiomycetes are discussed. PMID:9691034

  8. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    PubMed

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. PMID:26915272

  9. RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model

    PubMed Central

    Fischer, Fabian; Filippis, Christodoulos; Osiewacz, Heinz D.

    2015-01-01

    Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharomyces cerevisiae respiratory supercomplex factors 1 and 2 (termed PaRCF1 and PaRCF2) on mtRSC formation, fitness and lifespan. Whereas PaRCF2s role seems negligible, ablation of PaRCF1 alters size of monomeric complex IV, reduces the abundance of complex IV-containing supercomplexes, negatively affects vital functions and shortens lifespan. PaRcf1 overexpression slightly prolongs lifespan, though without appreciably influencing ETC organization. Overall, our results identify PaRCF1 as necessary yet not sufficient for mtRSC formation and demonstrate that PaRCF1-dependent stability of complex IV and associated supercomplexes is highly relevant for maintenance of the healthy lifespan in a eukaryotic model organism. PMID:26220011

  10. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism.

    PubMed

    Fischer, Fabian; Langer, Julian D; Osiewacz, Heinz D

    2015-01-01

    Maintenance of mitochondria is achieved by several mechanisms, including the regulation of mitochondrial proteostasis. The matrix protease CLPXP, involved in protein quality control, has been implicated in ageing and disease. However, particularly due to the lack of knowledge of CLPXP's substrate spectrum, only little is known about the pathways and mechanisms controlled by this protease. Here we report the first comprehensive identification of potential mitochondrial CLPXP in vivo interaction partners and substrates using a combination of tandem affinity purification and differential proteomics. This analysis reveals that CLPXP in the fungal ageing model Podospora anserina is mainly associated with metabolic pathways in mitochondria, e.g. components of the pyruvate dehydrogenase complex and the tricarboxylic acid cycle as well as subunits of electron transport chain complex I. These data suggest a possible function of mitochondrial CLPXP in the control and/or maintenance of energy metabolism. Since bioenergetic alterations are a common feature of neurodegenerative diseases, cancer, and ageing, our data comprise an important resource for specific studies addressing the role of CLPXP in these adverse processes. PMID:26679294

  11. Peroxisomes and sexual development in fungi

    PubMed Central

    Peraza-Reyes, Leonardo; Berteaux-Lecellier, Véronique

    2013-01-01

    Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages. PMID:24046747

  12. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    PubMed

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813

  13. Amyloid diseases of yeast: prions are proteins acting as genes.

    PubMed

    Wickner, Reed B; Edskes, Herman K; Bateman, David A; Kelly, Amy C; Gorkovskiy, Anton; Dayani, Yaron; Zhou, Albert

    2014-01-01

    The unusual genetic properties of the non-chromosomal genetic elements [URE3] and [PSI+] led to them being identified as prions (infectious proteins) of Ure2p and Sup35p respectively. Ure2p and Sup35p, and now several other proteins, can form amyloid, a linear ordered polymer of protein monomers, with a part of each molecule, the prion domain, forming the core of this ?-sheet structure. Amyloid filaments passed to a new cell seed the conversion of the normal form of the protein into the same amyloid form. The cell's phenotype is affected, usually from the deficiency of the normal form of the protein. Solid-state NMR studies indicate that the yeast prion amyloids are in-register parallel ?-sheet structures, in which each residue (e.g. Asn35) forms a row along the filament long axis. The favourable interactions possible for aligned identical hydrophilic and hydrophobic residues are believed to be the mechanism for propagation of amyloid conformation. Thus, just as DNA mediates inheritance by templating its own sequence, these proteins act as genes by templating their conformation. Distinct isolates of a given prion have different biological properties, presumably determined by differences between the amyloid structures. Many lines of evidence indicate that the Saccharomyces cerevisiae prions are pathological disease agents, although the example of the [Het-s] prion of Podospora anserina shows that a prion can have beneficial aspects. PMID:25131596

  14. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif.

    PubMed

    Daskalov, Asen; Dyrka, Witold; Saupe, Sven J

    2015-01-01

    In mammals and fungi, Nod-like receptors (NLR) activate downstream cell death execution proteins by a prion-like mechanism. In Podospora anserina, the NWD2 NLR activates the HET-S Helo-domain pore-forming protein by converting its prion-forming domain into a characteristic ?-solenoid amyloid fold. The amyloid forming region of HET-S/s comprises two repetitions of a 21 amino acid motif. Herein, we systematically analyze the sequences of C-terminal regions of fungal HeLo and HeLo-like domain proteins to identify HET-s-related amyloid motifs (HRAM). We now identify four novel HRAM subfamilies in addition to the canonical HET-S/s subfamily. These novel motifs share the pseudo-repeat structure of HET-S/s and a specific pattern of distribution of hydrophobic and polar residues. Sequence co-variance analyses predict parallel in-register ?-stacking of the two repeats and residue-residue interactions compatible with the ?-solenoid fold. As described for HET-S, most genes encoding the HeLo proteins are adjacent to genes encoding NLRs also displaying HRAMs. The motifs of the NLRs are similar to those of their cognate HeLo-domain protein, indicating concerted evolution between repeats. This study shows that HET-s-related amyloid motifs are more common than anticipated and that they have diversified into discrete subfamilies that apparently share a common overall fold. PMID:26219477

  15. Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy

    PubMed Central

    Mizuno, Naoko; Baxa, Ulrich; Steven, Alasdair C.

    2011-01-01

    HET-s is a prion protein of the fungus Podospora anserina which, in the prion state, is active in a self/nonself recognition process called heterokaryon incompatibility. Its prionogenic properties reside in the C-terminal prion domain. The HET-s prion domain polymerizes in vitro into amyloid fibrils whose properties depend on the pH of assembly; above pH3, infectious singlet fibrils are produced, and below pH3, noninfectious triplet fibrils. To investigate the correlation between structure and infectivity, we performed cryo-EM analyses. Singlet fibrils have a helical pitch of approximately 410? and a left-handed twist. Triplet fibrils have three protofibrils whose lateral dimensions (36נ25?) and axial packing (one subunit per 9.4?) match those of singlets but differ in their supercoiling. At 8.5-? resolution, the cross-section of the singlet fibril reconstruction is largely consistent with that of a ?-solenoid model previously determined by solid-state NMR. Reconstructions of the triplet fibrils show three protofibrils coiling around a common axis and packed less tightly at pH3 than at pH2, eventually peeling off. Taken together with the earlier observation that fragmentation of triplet fibrils by sonication does not increase infectivity, these observations suggest a novel mechanism for self-propagation, whereby daughter fibrils nucleate on the lateral surface of singlet fibrils. In triplets, this surface is occluded, blocking nucleation and thereby explaining their lack of infectivity. PMID:21300906

  16. A mitotically inheritable unit containing a MAP kinase module

    PubMed Central

    Kicka, Sbastien; Bonnet, Crystel; Sobering, Andrew K.; Ganesan, Latha P.; Silar, Philippe

    2006-01-01

    Prions are novel kinds of hereditary units, relying solely on proteins, that are infectious and inherited in a non-Mendelian fashion. To date, they are either based on autocatalytic modification of a 3D conformation or on autocatalytic cleavage. Here, we provide further evidence that in the filamentous fungus Podospora anserina, a MAP kinase cascade is probably able to self-activate and generate C, a hereditary unit that bears many similarities to prions and triggers cell degeneration. We show that in addition to the MAPKKK gene, both the MAPKK and MAPK genes are necessary for the propagation of C, and that overexpression of MAPK as that of MAPKKK facilitates the appearance of C. We also show that a correlation exists between the presence of C and localization of the MAPK inside nuclei. These data emphasize the resemblance between prions and a self-positively regulated cascade in terms of their transmission. This thus further expands the concept of protein-base inheritance to regulatory networks that have the ability to self-activate. PMID:16938837

  17. MitoBreak: the mitochondrial DNA breakpoints database.

    PubMed

    Damas, Joana; Carneiro, Joo; Amorim, Antnio; Pereira, Filipe

    2014-01-01

    Mitochondrial DNA (mtDNA) rearrangements are key events in the development of many diseases. Investigations of mtDNA regions affected by rearrangements (i.e. breakpoints) can lead to important discoveries about rearrangement mechanisms and can offer important clues about the causes of mitochondrial diseases. Here, we present the mitochondrial DNA breakpoints database (MitoBreak; http://mitobreak.portugene.com), a free, web-accessible comprehensive list of breakpoints from three classes of somatic mtDNA rearrangements: circular deleted (deletions), circular partially duplicated (duplications) and linear mtDNAs. Currently, MitoBreak contains >1400 mtDNA rearrangements from seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Macaca mulatta, Drosophila melanogaster, Caenorhabditis elegans and Podospora anserina) and their associated phenotypic information collected from nearly 400 publications. The database allows researchers to perform multiple types of data analyses through user-friendly interfaces with full or partial datasets. It also permits the download of curated data and the submission of new mtDNA rearrangements. For each reported case, MitoBreak also documents the precise breakpoint positions, junction sequences, disease or associated symptoms and links to the related publications, providing a useful resource to study the causes and consequences of mtDNA structural alterations. PMID:24170808

  18. [Yeast prions as a model of neurodegenerative infectious amyloidoses in humans].

    PubMed

    Inge-Vechtomov, S G

    2011-01-01

    Several neurodegenerative diseases (so-called age-related diseases) in humans are associated with development of protein aggregates--amyloids. Prion diseases--kuru, Kreutzfeldt-Jakob and Gerstmann-Straussler-Sheinker diseases, fatal familial insomnia, etc.--are examples of infectious amyloidoses. A model system for investigation of mechanisms of amyloidogenesis and of its infectious nature had been developed as a result of yeast prion discovery. The existence of a prion network as an interaction of different prions identified in yeast is being confirmed recently as an interaction of different anyloids in humans. The potential danger of amyloidoses is conditioned by the very structure of almost all proteins containing fragments capable to be organized as beta-sheets, which lead to their aggregation being exposed. Meanwhile, there are several well-defined examples of the adaptive value of amyloid aggregates: cytoplasmic incompatibility factor in Podospora anserina, spider silk, cytoplasmic stress granules in mammals, prion form of CPEB protein responsible for the neuron activity in Aplisia, etc. These facts should be taken into consideration when seeking antiamyloid drugs. Discovery of protein inheritance in lower eukaryotes modifies our knowledge of the template principle significance in biology and adds a concept of conformational templates (II order templates) involved in reproduction of the three-dimensional structure of the supramolecular complexes in the cell. PMID:22145302

  19. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif

    PubMed Central

    Daskalov, Asen; Dyrka, Witold; Saupe, Sven J.

    2015-01-01

    In mammals and fungi, Nod-like receptors (NLR) activate downstream cell death execution proteins by a prion-like mechanism. In Podospora anserina, the NWD2 NLR activates the HET-S Helo-domain pore-forming protein by converting its prion-forming domain into a characteristic ?-solenoid amyloid fold. The amyloid forming region of HET-S/s comprises two repetitions of a 21 amino acid motif. Herein, we systematically analyze the sequences of C-terminal regions of fungal HeLo and HeLo-like domain proteins to identify HET-s-related amyloid motifs (HRAM). We now identify four novel HRAM subfamilies in addition to the canonical HET-S/s subfamily. These novel motifs share the pseudo-repeat structure of HET-S/s and a specific pattern of distribution of hydrophobic and polar residues. Sequence co-variance analyses predict parallel in-register ?-stacking of the two repeats and residue-residue interactions compatible with the ?-solenoid fold. As described for HET-S, most genes encoding the HeLo proteins are adjacent to genes encoding NLRs also displaying HRAMs. The motifs of the NLRs are similar to those of their cognate HeLo-domain protein, indicating concerted evolution between repeats. This study shows that HET-s-related amyloid motifs are more common than anticipated and that they have diversified into discrete subfamilies that apparently share a common overall fold. PMID:26219477

  20. Biotransformation of Trichoderma spp. and Their Tolerance to Aromatic Amines, a Major Class of Pollutants

    PubMed Central

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando

    2013-01-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813

  1. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism

    PubMed Central

    Fischer, Fabian; Langer, Julian D.; Osiewacz, Heinz D.

    2015-01-01

    Maintenance of mitochondria is achieved by several mechanisms, including the regulation of mitochondrial proteostasis. The matrix protease CLPXP, involved in protein quality control, has been implicated in ageing and disease. However, particularly due to the lack of knowledge of CLPXP’s substrate spectrum, only little is known about the pathways and mechanisms controlled by this protease. Here we report the first comprehensive identification of potential mitochondrial CLPXP in vivo interaction partners and substrates using a combination of tandem affinity purification and differential proteomics. This analysis reveals that CLPXP in the fungal ageing model Podospora anserina is mainly associated with metabolic pathways in mitochondria, e.g. components of the pyruvate dehydrogenase complex and the tricarboxylic acid cycle as well as subunits of electron transport chain complex I. These data suggest a possible function of mitochondrial CLPXP in the control and/or maintenance of energy metabolism. Since bioenergetic alterations are a common feature of neurodegenerative diseases, cancer, and ageing, our data comprise an important resource for specific studies addressing the role of CLPXP in these adverse processes. PMID:26679294

  2. The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii.

    PubMed

    Piercey-Normore, Michele D

    2006-01-01

    The epiphyte Evernia mesomorpha forms a lichen association with green algae in the genus Trebouxia. Little is known about the population structure of E. mesomorpha. Here, population structure of the algal and fungal symbionts was examined for 290 lichen thalli on 29 jack pine (Pinus banksiana) trees in Manitoba. Through phylogenetic analysis of internal transcribed spacer (ITS) nuclear ribosomal DNA (rDNA) sequences, five algal genotypes were detected that were nested within T. jamesii. Two fungal genotypes were detected that formed a clade with two other Evernia species. The genus Evernia was paraphyletic with E. prunastri, sister to Parmelia saxatilis. Restriction fragment length polymorphism (RFLP) of ITS rDNA showed multiple algal genotypes in 45% of the 290 lichen thalli collected, whereas all thalli only contained one fungal genotype. Low population subdivision of algal and fungal genotypes among trees suggested that the algal symbiont was being dispersed in the lichen soredium. Low fungal specificity for multiple algal genotypes and a hypothesized algal switch may be important life history strategies for E. mesomorpha to adapt to changing environmental conditions. PMID:16411936

  3. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Connections between fungal development and secondary metabolism have been reported previously, but as yet, no comprehensive analysis of a family of secondary metabolites and their possible role in fungal development has been reported. In the present study, mutant strains of the heterothallic ascomyc...

  4. Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens

    PubMed Central

    Rahnamaeian, Mohammad; Langen, Gregor; Imani, Jafargholi; Khalifa, Walaa; Altincicek, Boran; von Wettstein, Diter; Kogel, Karl-Heinz; Vilcinskas, Andreas

    2009-01-01

    The potential of metchnikowin, a 26-amino acid residue proline-rich antimicrobial peptide synthesized in the fat body of Drosophila melanogaster was explored to engineer disease resistance in barley against devastating fungal plant pathogens. The synthetic peptide caused strong in vitro growth inhibition (IC50 value ?1 ?M) of the pathogenic fungus Fusarium graminearum. Transgenic barley expressing the metchnikowin gene in its 52-amino acid pre-pro-peptide form under the control of the inducible mannopine synthase (mas) gene promoter from the Ti plasmid of Agrobacterium tumefaciens displayed enhanced resistance to powdery mildew as well as Fusarium head blight and root rot. In response to these pathogens, metchnikowin accumulated in plant apoplastic space, specifying that the insect signal peptide is functional in monocotyledons. In vitro and in vivo tests revealed that the peptide is markedly effective against fungal pathogens of the phylum Ascomycota but, clearly, less active against Basidiomycota fungi. Importantly, germination of the mutualistic basidiomycete mycorrhizal fungus Piriformospora indica was affected only at concentrations beyond 50 ?M. These results suggest that antifungal peptides from insects are a valuable source for crop plant improvements and their differential activities toward different phyla of fungi denote a capacity for insect peptides to be used as selective measures on specific plant diseases. PMID:19734262

  5. Three New Monotypic Genera of the Caloplacoid Lichens (Teloschistaceae, Lichen-Forming Ascomycetes).

    PubMed

    Kondratyuk, Sergii Y; L?ks, Lszlo; Kim, Jung A; Kondratiuk, Anna S; Jeong, Min Hye; Jang, Seol Hwa; Oh, Soon-Ok; Hur, Jae-Seoun

    2015-09-01

    Three monophyletic branches are strongly supported in a phylogenetic analysis of the Teloschistaceae based on combined data sets of internal transcribed spacer and large subunit nrDNA and 12S small subunit mtDNA sequences. These are described as new monotypic genera: Jasonhuria S. Y. Kondr., L. L?ks et S. -O. Oh, Loekoesia S. Y. Kondr., S. -O. Oh et J. -S. Hur and Olegblumia S. Y. Kondr., L. L?ks et J. -S. Hur. Three new combinations for the type species of these genera are proposed. PMID:26539034

  6. Evaluation of automated cell disruptor methods for oomycetous and ascomycetous model organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two automated cell disruptor-based methods for RNA extraction; disruption of thawed cells submerged in TRIzol Reagent (method QP), and direct disruption of frozen cells on dry ice (method CP), were optimized for a model oomycete, Phytophthora capsici, and compared with grinding in a mortar and pestl...

  7. The Ascomycete Verticillium longisporum Is a Hybrid and a Plant Pathogen with an Expanded Host Range

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2011-01-01

    Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages. PMID:21455321

  8. WetA Is Required for Conidiogenesis and Conidium Maturation in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee

    2014-01-01

    Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi. PMID:24186953

  9. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain.

    PubMed

    Romn, Pedro; Zhou, XuDong; Iturrondobeitia, Juan Carlos; Wingfield, Michael J; Goldarazena, Arturo

    2007-06-01

    Bark beetles (Coleoptera: Scolytinae) are known to be associated with fungi, especially species of Ophiostoma sensu lato and Ceratocystis. However, very little is known about these fungi in Spain. In this study, we examined the fungi associated with 13 bark beetle species and one weevil (Coleoptera: Entiminae) infesting Pinus radiata in the Basque Country of northern Spain. This study included an examination of 1323 bark beetles or their galleries in P. radiata. Isolations yielded a total of 920 cultures, which included 16 species of Ophiostoma sensu lato or their asexual states. These 16 species included 69 associations between fungi and bark beetles and weevils that have not previously been recorded. The most commonly encountered fungal associates of the bark beetles were Ophiostoma ips, Leptographium guttulatum, Ophiostoma stenoceras, and Ophiostoma piceae. In most cases, the niche of colonization had a significant effect on the abundance and composition of colonizing fungi. This confirms that resource overlap between species is reduced by partial spatial segregation. Interaction between niche and time seldom had a significant effect, which suggests that spatial colonization patterns are rarely flexible throughout timber degradation. The differences in common associates among the bark beetle species could be linked to the different niches that these beetles occupy. PMID:17668036

  10. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans.

    PubMed

    Eckert, Maria; Gout, Lilian; Rouxel, Thierry; Blaise, Franoise; Jedryczka, Malgorzata; Fitt, Bruce; Balesdent, Marie-Hlne

    2005-01-01

    Leptosphaeria maculans causes phoma stem canker, the most serious disease of oilseed rape world-wide. Sexual recombination is important in the pathogen life cycle and increases the risk of plant resistance genes being overcome rapidly. Thus, there is a need to develop easy-to-use molecular markers suitable for large-scale population genetic studies. The minisatellite MinLm1, showing six alleles in natural populations, has previously been used as a marker to survey populations. Here, we report the characterization of five new minisatellites (MinLm2-MinLm6), of which four were identified by a systematic search for tandemly repeated polymorphic regions in BAC-end sequencing data from L. maculans. Of 782 BAC-end sequences analysed, 43 possessed putative minisatellite-type repeats and four of these (MinLm3-MinLm6) displayed both consistent PCR amplification and size polymorphism in a collection of L. maculans isolates of diverse origins. Cloning and sequencing of each allele confirmed that polymorphism was due to variation in the repeat number of a core motif ranging from 11 bp (MinLm3) to 51 bp (MinLm4). The number of alleles found for each minisatellite ranged from three (MinLm4) to nine (MinLm2), with eight, five and six for MinLm3, MinLm5 and MinLm6, respectively. MinLm2-MinLm6 are all single locus markers specific to L. maculans and share some common features, such as conservation of core motifs and incomplete direct repeats in the flanking regions. To our knowledge, L. maculans is the first fungal species for which six polymorphic single locus minisatellite markers have been reported. PMID:15614492

  11. A new endophytic ascomycete from El Eden Ecological Reserve, Quintana Roo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past two years a project has been undertaken to study endophytic fungi associated with plants growing in El Eden Ecological Reserve, located in the State of Quintana Roo in the northeastern part of the Yucatan Peninsula of México. Asymptomatic, healthy leaves were collected, surface steri...

  12. Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium.

    PubMed

    Geng, Yun; Li, Zhuang; Xia, Li-Yun; Wang, Qun; Hu, Xian-Mei; Zhang, Xiu-Guo

    2014-01-01

    The genus Ulocladium is thought to be strictly asexual. Mating-type (MAT) loci regulate sexual reproduction in fungi and their study may help to explain the apparent lack of sexual reproduction in Ulocladium. We sequenced the full length of two MAT genes in 26 Ulocladium species and characterized the entire MAT idiomorphs plus flanking regions of Ulocladium botrytis. The MAT1-1 ORF encodes a protein with an alpha-box motif by the MAT1-1-1 gene and the MAT1-2 ORF encodes a protein with an HMG box motif by the MAT1-2-1 gene. Both MAT1-1-1 and MAT1-2-1 genes were detected in a single strain of every species. Moreover, the results of RT-PCR revealed that both MAT genes are expressed in all 26 Ulocladium species. This demonstrates that MAT genes of Ulocladium species might be functional and that they have the potential for sexual reproduction. Phylogenies based on MAT genes were compared with GAPDH and Alt a 1 phylograms in Ulocladium using maximum parsimony (MP) and Bayesian analysis. The MAT genealogies and the non-MAT trees displayed different topologies, indicating that MAT genes are unsuitable phylogenetic markers at the species level in Ulocladium. Furthermore, the conflicting topologies between MAT1-1-1 and MAT1-2-1 phylogeny indicate separate evolutionary events for the two MAT genes. However, the intergeneric phylogeny of four closely allied genera (Ulocladium, Alternaria, Cochliobolus, Stemphylium) based on MAT alignments demonstrated that MAT genes are suitable for phylogenetic analysis among allied genera. PMID:24891417

  13. Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on the fungal endophytic associations with some trees of the secondary forest of El Eden Ecological Reserve located in the northeastern Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or hukp (Bursera simaruba) by indigen...

  14. Evaluation of Mycelial Nutrients, Bioactive Compounds, and Antioxidants of Five Himalayan Entomopathogenic Ascomyceteous Fungi from India.

    PubMed

    Sharma, Sapan Kumar; Gautam, Nandini; Atri, Narender Singh

    2015-01-01

    In this study, using standard methods, mycelial nutrients, bioactive compounds, and antioxidants were analyzed for the first time for five fungal species: Isaria sinclairii (Berk.) Lloyd, I. tenuipes Peck, I. japonica Yasuda, I. farinosa (Holmsk) Fr. and Cordyceps tuberculata (Lebert) Maire. All of these species were low in fat content and rich in protein, fiber, ash, and carbohydrates. Mineral elements (Fe, Mg, Cu, Mn, and Ca) were detected in appreciable amounts. All three types of fatty acids (saturated, monounsaturated, and polyunsaturated) as well as bioactive compounds (ascorbic acid, ?-carotene, lycopene, phenolic compounds, and polysaccharides) were detected for each species. The investigated species showed high ferric-reducing antioxidant power as well as 2,2-diphenyl-1-picryl-hydrazyl radical scavenging activity. Although differences were observed in the values of each species, each species showed richness in one or more components. PMID:26559700

  15. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs.

    PubMed

    Samson, R A; Houbraken, J; Varga, J; Frisvad, J C

    2009-06-01

    Byssochlamys and related Paecilomyces strains are often heat resistant and may produce mycotoxins in contaminated pasteurised foodstuffs. A comparative study of all Byssochlamys species was carried out using a polyphasic approach to find characters that differentiate species and to establish accurate data on potential mycotoxin production by each species. Phylogenetic analysis of the ITS region, parts of the beta-tubulin and calmodulin genes, macro- and micromorphological examinations and analysis of extrolite profiles were applied. Phylogenetic analyses revealed that the genus Byssochlamys includes nine species, five of which form a teleomorph, i.e. B. fulva, B. lagunculariae, B. nivea, B. spectabilis and B. zollerniae, while four are asexual, namely P. brunneolus, P. divaricatus, P. formosus and P. saturatus. Among these, B. nivea produces the mycotoxins patulin and byssochlamic acid and the immunosuppressant mycophenolic acid. Byssochlamys lagunculariae produces byssochlamic acid and mycophenolic acid and thus chemically resembles B. nivea. Some strains of P. saturatus produce patulin and brefeldin A, while B. spectabilis (anamorph P. variotii s.s.) produces viriditoxin. Some micro- and macromorphological characters are valuable for identification purposes, including the shape and size of conidia and ascospores, presence and ornamentation of chlamydospores, growth rates on MEA and CYA and acid production on CREA. A dichotomous key is provided for species identification based on phenotypical characters. PMID:20198134

  16. Muscodor yucatenensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on the fungal endophytic associations with some trees of the dry tropical forest of El Eden Ecological Reserve located in the northeast of the Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or huk´up by indigenous mayas. ...

  17. A Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae. PMID:21984921

  18. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees.

    PubMed

    Teixeira, Ana C P; Marini, Marjorie M; Nicoli, Jacques R; Antonini, Yasmine; Martins, Rogerio P; Lachance, Marc-Andr; Rosa, Carlos A

    2003-01-01

    Thirty-two strains of the novel species Starmerella meliponinorum sp. nov. were isolated from various substrates associated with three stingless bee species (tribe Meliponini) in Brazil and one in Costa Rica. The strains were found in garbage pellets (faecal material, discarded pollen or food, etc.), pollen provisions, adult bees, honey and propolis of Tetragonisca angustula, in honey from Melipona quadritasciata and in adults of Melipona rufiventris and Trigona fulviventris. The sequence of the D1/D2 domains of the large-subunit rDNA showed that the novel species belongs to the Starmerella clade and is most closely related to Candida etchellsii, although the two differ in their sequences by 7% base substitutions. S. meliponinorum is homothallic and assimilates few carbon sources. Nitrate is utilized as a sole nitrogen source. The type strain of S. meliponinorum is strain UFMG-01-J26.1T (=CBS 9117T). PMID:12656193

  19. Candida ecuadorensis sp. nov., an ascomycetous yeast species found in two separate regions of Ecuador.

    PubMed

    James, Stephen A; Carvajal Barriga, Enrique Javier; Barahona, Patricia Portero; Cross, Kathryn; Bond, Christopher J; Roberts, Ian N

    2013-01-01

    In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004(T)) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolvar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004(T) (=CBS 12653(T) = NCYC 3782(T)) designated as the type strain. PMID:23104360

  20. Nutritional Composition and Bioactive Constituents of Artificial Culture of Ophiocordyceps longissima (Ascomycetes).

    PubMed

    Zhang, Ying Yu; Liu, Yang; Cheng, Wen Ming; Nam, Sung Hee; Li, Chun Ru

    2015-01-01

    In this study, the compositions of Ophiocordyceps longissima mycelia, synnemata, and fruiting bodies were first analyzed in order to clarify its chemical basis for development as a health food or medicine. We found that the contents of crude protein, polysaccharides, and macroelements were highest in mycelia, whereas effective components, including mannitol, ergosterol, adenosine, inosine, Zn, and Se, were lowest in mycelia. Polysaccharide, mannitol, and ergosterol levels in synnemata (2.33, 4.54, and 0.66 g/100 g, respectively) were similar to those in fruiting bodies, but was significantly different from those of mycelia (4.79, 1.77, and 0.43 g/100 g). Trehalose content in fruiting bodies (2.15 g/100 g) was >4 times higher than that in synnemata (0.5 g/100 g). Adenosine content in fruiting bodies (0.024 g/100 g) was 3-4 times higher than that of synnemata, whereas inosine, cytosine, guanosine, and uridine (0.093, 0.145, 0.053, and 0.073 g/100 g) were highest in synnemata. Cu and Se were lower in mycelia (3.30 10?? and 3.1 10?? g/100 g) than in synnemata (1.85 10? and 7.2 10?? g/100 g) and fruiting bodies (1.67 10? and 4.3 10?? g/100 g). As, Hg, Cd, and Pb in mycelia were under the limit of edible fungus health standard; Pb was not found, but Cd, Hg, and As were detected in fruiting bodies. These findings suggest that O. longissima could be utilized in different culture methods according to market demand and might be a possible health food or medicinal resource. PMID:25746404

  1. A meiotically reproducible chromosome length polymorphism in the ascomycete fungus Ophiostoma ulmi (sensu lato).

    PubMed

    Dewar, K; Bousquet, J; Dufour, J; Bernier, L

    1997-06-01

    We have followed the transmission of Ophiostoma ulmi s.l. chromosome length polymorphisms (CLPs) into the F2 generation to determine the reproducibility of a genome rearrangement culminating in the conversion of a 1.0 Mb chromosome into a 800 kb chromosome. The 1.0 Mb chromosome in strain CESS16K is thus far unique among O ulmi s.l. wild-type strains, as no other wild-type strains have been observed with chromosomes smaller than 2.3 Mb. It has been previously shown that the 1.0 Mb chromosome is mitotically stable, carries at least one normally expressed gene, and is transmitted through meiosis. In this study, a series of crosses were performed to further elucidate the pattern of inheritance of the 1.0 Mb chromosome and the process of conversion of the 1.0 Mb species to 800 kb. In crosses where the 1.0 Mb chromosome was allowed to pair with itself or with the 800 kb chromosome, all progeny inherited a copy of the 1.0 Mb or 800 kb form, further demonstrating the A-type nature of these small chromosomes. When a cross was repeated between the strains CESS16K (1.0 Mb chromosome) and FG245Br-O (no 1.0 Mb or 800 kb chromosome), the occurrence of a 800 kb chromosome was observed in 9% of the progeny. A reciprocal cross between an 800 kb strain and a strain with no 800 kb or 1.0 Mb chromosome was conducted, and a progeny strain containing a 1.0 Mb chromosome was recovered. The reproducibility and reciprocality of the 1.0 Mb to 800 kb chromosome conversion demonstrates that meiotic processes are responsible for this CLP, and that O. ulmi s.l. strains with various divergent genome architectures can remain sexually compatible. PMID:9230897

  2. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  3. Three New Monotypic Genera of the Caloplacoid Lichens (Teloschistaceae, Lichen-Forming Ascomycetes)

    PubMed Central

    L?ks, Lszlo; Kim, Jung A.; Kondratiuk, Anna S.; Jeong, Min Hye; Jang, Seol Hwa; Oh, Soon-Ok; Hur, Jae-Seoun

    2015-01-01

    Three monophyletic branches are strongly supported in a phylogenetic analysis of the Teloschistaceae based on combined data sets of internal transcribed spacer and large subunit nrDNA and 12S small subunit mtDNA sequences. These are described as new monotypic genera: Jasonhuria S. Y. Kondr., L. L?ks et S. -O. Oh, Loekoesia S. Y. Kondr., S. -O. Oh et J. -S. Hur and Olegblumia S. Y. Kondr., L. L?ks et J. -S. Hur. Three new combinations for the type species of these genera are proposed. PMID:26539034

  4. Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum.

    PubMed

    Rubini, Andrea; Belfiori, Beatrice; Riccioni, Claudia; Tisserant, Emilie; Arcioni, Sergio; Martin, Francis; Paolocci, Francesco

    2011-02-01

    The genome of Tuber melanosporum has recently been sequenced. Here, we used this information to identify genes involved in the reproductive processes of this edible fungus. The sequenced strain (Mel28) possesses only one of the two master genes required for mating, that is, the gene that codes for the high mobility group (HMG) transcription factor (MAT1-2-1), whereas it lacks the gene that codes for the protein containing the ?-box- domain (MAT1-1-1), suggesting that this fungus is heterothallic. A PCR-based approach was initially employed to screen truffles for the presence of the MAT1-2-1 gene and amplify the conserved regions flanking the mating type (MAT) locus. The MAT1-1-1 gene was finally identified using primers designed from the conserved regions of strains that lack the MAT1-2-1 gene. Mating type-specific primer pairs were developed to screen asci and gleba from truffles of different origins and to genotype single ascospores within the asci. These analyses provided definitive evidence that T. melanosporum is a heterothallic species with a MAT locus that is organized similarly to those of ancient fungal lineages. A greater understanding of the reproductive mechanisms that exist in Tuber spp. allows for optimization of truffle plantation management strategies. PMID:20961294

  5. Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae.

    PubMed

    Lee, Seunghoon; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-08-01

    Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi. PMID:21666077

  6. Mesosynteny; A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a novel form of evolution in which genes are conserved within homologous chromosomes, but with randomised orders and orientations. We propose to call this mode of evolution 'mesosynteny'. Mesosynteny is an alternative evolutionary pathway to macrosyntenic conservation. Mesosynteny would ...

  7. A new endophytic ascomycete from El Eden Ecological Reserve, Quintana Roo, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a preliminary survey to report the biodiversity of endophytic fungi associated with leaves of some woody plants from El Eden Ecological Reserve in Mexico, a new fungus was isolated from Callicarpa acuminata leaves. Cultures of this fungus on PDA form a white floccose colony with a reddish-bro...

  8. Characterization of a Broad-Specificity ?-Glucanase Acting on ?-(1,3)-, ?-(1,4)-, and ?-(1,6)-Glucans That Defines a New Glycoside Hydrolase Family

    PubMed Central

    Lafond, Mickael; Navarro, David; Haon, Mireille; Couturier, Marie

    2012-01-01

    Here we report the cloning of the Pa_3_10940 gene from the coprophilic fungus Podospora anserina, which encodes a C-terminal family 1 carbohydrate binding module (CBM1) linked to a domain of unknown function. The function of the gene was investigated by expression of the full-length protein and a truncated derivative without the CBM1 domain in the yeast Pichia pastoris. Using a library of polysaccharides of different origins, we demonstrated that the full-length enzyme displays activity toward a broad range of ?-glucan polysaccharides, including laminarin, curdlan, pachyman, lichenan, pustulan, and cellulosic derivatives. Analysis of the products released from polysaccharides revealed that this ?-glucanase is an exo-acting enzyme on ?-(1,3)- and ?-(1,6)-linked glucan substrates and an endo-acting enzyme on ?-(1,4)-linked glucan substrates. Hydrolysis of short ?-(1,3), ?-(1,4), and ?-(1,3)/?-(1,4) gluco-oligosaccharides confirmed this striking feature and revealed that the enzyme performs in an exo-type mode on the nonreducing end of gluco-oligosaccharides. Excision of the CBM1 domain resulted in an inactive enzyme on all substrates tested. To our knowledge, this is the first report of an enzyme that displays bifunctional exo-?-(1,3)/(1,6) and endo-?-(1,4) activities toward beta-glucans and therefore cannot readily be assigned to existing Enzyme Commission groups. The amino acid sequence has high sequence identity to hypothetical proteins within the fungal taxa and thus defines a new family of glycoside hydrolases, the GH131 family. PMID:23023747

  9. NLRP4 negatively regulates autophagic processes through an association with beclin1.

    PubMed

    Jounai, Nao; Kobiyama, Kouji; Shiina, Masaaki; Ogata, Kazuhiro; Ishii, Ken J; Takeshita, Fumihiko

    2011-02-01

    Although more than 20 putative members have been assigned to the nucleotide-binding and oligomerization domain-like receptor (NLR) family, their physiological and biological roles, with the exception of the inflammasome, are not fully understood. In this article, we show that NLR members, such as NLRC4, NLRP3, NLRP4, and NLRP10 interact with Beclin1, an important regulator of autophagy, through their neuronal apoptosis inhibitory protein, MHC class II transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein domain. Among such NLRs, NLRP4 had a strong affinity to the Beclin1 evolutionally conserved domain. Compromising NLRP4 via RNA interference resulted in upregulation of the autophagic process under physiological conditions and upon invasive bacterial infections, leading to enhancement of the autophagic bactericidal process of group A streptococcus. NLRP4 recruited to the subplasma membrane phagosomes containing group A streptococcus and transiently dissociated from Beclin1, suggesting that NLRP4 senses bacterial infection and permits the initiation of Beclin1-mediated autophagic responses. In addition to a role as a negative regulator of the autophagic process, NLRP4 physically associates with the class C vacuolar protein-sorting complex, thereby negatively regulating maturation of the autophagosome and endosome. Collectively, these results provide novel evidence that NLRP4, and possibly other members of the NLR family, plays a crucial role in biogenesis of the autophagosome and its maturation by the association with regulatory molecules, such as Beclin1 and the class C vacuolar protein-sorting complex. PMID:21209283

  10. Albumin impairs renal tubular tight junctions via targeting the NLRP3 inflammasome.

    PubMed

    Zhuang, Yibo; Hu, Caiyu; Ding, Guixia; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2015-05-01

    Proteinuria is, not only a hallmark of glomerular disease, but also a contributor to kidney injury. However, its pathogenic mechanism is still elusive. In the present study, the effects of albumin on renal tubular tight junctions and the potential molecular mechanisms of those effects were investigated. In mouse proximal tubular cells (mPTCs), albumin treatment resulted in a significant loss of the cellular tight junction proteins zonula occludens-1 (ZO-1) and claudin-1 in a time- and dose-dependent manner, indicating a severe impairment of the tight junctions. On the basis of our previous study showing that albumin stimulated NLRP3 [neuronal apoptosis inhibitor protein, major histocompatibility complex class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT); leucine-rich repeat (LRR); and pyrin domain (PYD) domains-containing protein 3] inflammasome activation in mPTCs, we pretreated mPTCs with NLRP3 siRNA (siNLRP3) and found that NLRP3 knockdown significantly blocked the downregulation of ZO-1 and claudin-1 induced by albumin. Similarly, in albumin-overloaded wild-type mice, both ZO-1 and claudin-1 were downregulated at the protein and mRNA levels in parallel with the impaired formation of the tight junctions on transmission electron microscopy and the abnormal renal tubular morphology on periodic acid-Schiff staining, which contrasted with the stimulation of NLRP3 in the renal tubules. In contrast, NLRP3 knockout (NLRP3(-/-)) mice preserved normal ZO-1 and claudin-1 expression as well as largely normal tight junctions and tubular morphology. More importantly, deletion of the NLRP3 pathway downstream component caspase-1 similarly blocked the albumin overload-induced downregulation of ZO-1 and claudin-1. Taken together, these findings demonstrated an important role of the albumin-NLRP3 inflammasome axis in mediating the impairment of renal tubular tight junctions and integrity. PMID:25715986

  11. Electrotransformation and Expression of Bacterial Genes Encoding Hygromycin Phosphotransferase and ?-Galactosidase in the Pathogenic Fungus Histoplasma capsulatum

    PubMed Central

    Woods, Jon P.; Heinecke, Elizabeth L.; Goldman, William E.

    1998-01-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional ?-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus. PMID:9529100

  12. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  13. High natural prevalence of a fungal prion.

    PubMed

    Debets, Alfons J M; Dalstra, Henk J P; Slakhorst, Marijke; Koopmanschap, Bertha; Hoekstra, Rolf F; Saupe, Sven J

    2012-06-26

    Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the fungus Podospora anserina. The het-s locus exists as two antagonistic alleles that constitute an allorecognition system: the het-s allele encoding the protein variant capable of prion formation and the het-S allele encoding a protein variant that cannot form a prion. We document here that het-s alleles, capable of prion formation, are nearly twice as frequent as het-S alleles in a natural population of 112 individuals. Then, we report a 92% prevalence of [Het-s] prion infection among the het-s isolates and find evidence of the role of the [Het-s]/het-S allorecognition system on the incidence of infection by a deleterious senescence plasmid. We explain the het-s/het-S allele ratios by the existence of two selective forces operating at different levels. We propose that during the somatic stage, the role of [Het-s]/HET-S in allorecognition leads to frequency-dependent selection for which an equilibrated frequency would be optimal. However, in the sexual cycle, the [Het-s] prion causes meiotic drive favoring the het-s allele. Our findings indicate that [Het-s] is a selected and, therefore, widespread prion whose activity as selfish genetic element is counteracted by balancing selection for allorecognition polymorphism. PMID:22691498

  14. Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

    PubMed Central

    Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabat, Raimon; Loquet, Antoine; Saupe, Sven J.

    2015-01-01

    In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s ?-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the ?-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the ?-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the ?-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the ?-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the ?-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the ?-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553

  15. Contribution of Specific Residues of the ?-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability

    PubMed Central

    Schmidlin, Thierry; Chi, Celestine N.; Wasmer, Christian; Schtz, Anne; Ceschin, Johanna; Clav, Corinne; Cescau, Sandra; Meier, Beat; Riek, Roland; Saupe, Sven J.

    2014-01-01

    The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific ?-solenoid fold with two rungs of ?-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-? core, an observation that might be relevant to other amyloid models. PMID:24945274

  16. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold.

    PubMed

    Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J M; Sabat, Raimon; Loquet, Antoine; Saupe, Sven J

    2015-02-01

    In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s ?-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the ?-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the ?-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the ?-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the ?-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the ?-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the ?-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553

  17. High natural prevalence of a fungal prion

    PubMed Central

    Debets, Alfons J. M.; Dalstra, Henk J. P.; Slakhorst, Marijke; Koopmanschap, Bertha; Hoekstra, Rolf F.; Saupe, Sven J.

    2012-01-01

    Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the fungus Podospora anserina. The het-s locus exists as two antagonistic alleles that constitute an allorecognition system: the het-s allele encoding the protein variant capable of prion formation and the het-S allele encoding a protein variant that cannot form a prion. We document here that het-s alleles, capable of prion formation, are nearly twice as frequent as het-S alleles in a natural population of 112 individuals. Then, we report a 92% prevalence of [Het-s] prion infection among the het-s isolates and find evidence of the role of the [Het-s]/het-S allorecognition system on the incidence of infection by a deleterious senescence plasmid. We explain the het-s/het-S allele ratios by the existence of two selective forces operating at different levels. We propose that during the somatic stage, the role of [Het-s]/HET-S in allorecognition leads to frequency-dependent selection for which an equilibrated frequency would be optimal. However, in the sexual cycle, the [Het-s] prion causes meiotic drive favoring the het-s allele. Our findings indicate that [Het-s] is a selected and, therefore, widespread prion whose activity as selfish genetic element is counteracted by balancing selection for allorecognition polymorphism. PMID:22691498

  18. Genomic Clustering and Homology between HET-S and the NWD2 STAND Protein in Various Fungal Genomes

    PubMed Central

    Daskalov, Asen; Paoletti, Mathieu; Ness, Frdrique; Saupe, Sven J.

    2012-01-01

    Background Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a ?-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity. Methodology/Principal Findings Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the ?-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the ? infectious element in Nectria haematococca, because the s locus controlling propagation of ? also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs. Conclusions/Significance We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein. PMID:22493719

  19. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. PMID:22095906

  20. Distribution and evolution of het gene homologs in the basidiomycota.

    PubMed

    Van der Nest, M A; Olson, A; Lind, M; Vlz, H; Dalman, K; Brandstrm Durling, M; Karlsson, M; Stenlid, J

    2014-03-01

    In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi. PMID:24380733

  1. Soudanones A-G: Antifungal Isochromanones from the Ascomycetous Fungus Cadophora sp. Isolated from an Iron Mine.

    PubMed

    Rusman, Yudi; Held, Benjamin W; Blanchette, Robert A; Wittlin, Sergio; Salomon, Christine E

    2015-06-26

    One new isochromane (pseudoanguillosporin C, 2), seven isochromanones (soudanones A-G, 3-9), and six known analogues including 10 and 11 were isolated from a culture of the fungus Cadophora sp. 10-5-2 M, collected from the subterranean 10th level of the Soudan Underground Iron Mine in Minnesota. All of the compounds were tested against a panel of microbial pathogens, and 2, 3, 10, and 11 were found to have activity against Cryptococcus neoformans (MIC = 35, 40, 20, and 30 μg/mL, respectively). Compound 11 was also active against Candida albicans, with an MIC of 40 μg/mL. PMID:26035018

  2. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multigene phylogenies have been instrumental in revising the classification of ascosporic (teleomorph) yeasts in a natural system based on lines of decent. Although many taxonomic changes have already been implemented for teleomorph taxa, this is not yet the case for the large genus Candida and smal...

  3. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata.

    PubMed

    Camps, Cline; Kappel, Christian; Lecomte, Pascal; Lon, Cline; Goms, Eric; Coutos-Thvenot, Pierre; Delrot, Serge

    2010-06-01

    Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14,500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S(+)R(+)), infected asymptomatic plants (S(-)R(+)), and healthy plants (S(-)R(-)). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S(+)R(+) plants compared with S(-)R(-) plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa. PMID:20190040

  4. PHYLOGENETIC ANALYSIS IDENTIFIES THE "MEGABACTERIUM" OF BIRDS AS A NOVEL ANAMORPHIC ASCOMYCETOUS YEAST, MACRORHABDUS ORNITHOGASTER GEN. NOV, SP. NOV.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organisms commonly referred to as megabacteria colonize the gastric isthmus of many species of birds. They are weakly Gram-positive, PAS-positive, and stain with silver stains. Previous studies show that they have a nucleus and a cell wall similar to that seen in fungi. Calcofluor white M2R stain...

  5. Kazachstania yasuniensis sp. nov., an ascomycetous yeast species found in mainland Ecuador and on the Galápagos.

    PubMed

    James, Stephen A; Carvajal Barriga, Enrique Javier; Portero Barahona, Patricia; Nueno-Palop, Carmen; Cross, Kathryn; Bond, Christopher J; Roberts, Ian N

    2015-04-01

    Seven strains representing a novel yeast species belonging to the genus Kazachstania were found at several collection sites on both mainland Ecuador (Yasuní National Park) and the Galápagos (Santa Cruz Island). Two strains (CLQCA 20-132(T) and CLQCA 24SC-045) were isolated from rotten wood samples, two further strains (CLQCA 20-280 and CLQCA 20-348) were isolated from soil samples, and three strains (CLQCA 20-198, CLQCA 20-374 and CLQCA 20-431) were isolated from decaying fruits. Sequence analyses of the D1/D2 domains of the LSU rRNA gene and ribosomal internal transcribed spacer (ITS) region indicated that the novel species is most closely related to Kazachstania servazzii and Kazachstania unispora. Although the strains could not be distinguished from one another based upon their differing geographical origins, they could be differentiated according to their isolation source (fruit, soil or wood) by ITS sequencing. The species name Kazachstania yasuniensis sp. nov. is proposed to accommodate these strains, with CLQCA 20-132(T) ( = CBS 13946(T) = NCYC 4008(T)) designated the type strain. PMID:25644482

  6. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date.

    PubMed

    Leong, Su-Lin L; Lantz, Henrik; Pettersson, Olga V; Frisvad, Jens C; Thrane, Ulf; Heipieper, Hermann J; Dijksterhuis, Jan; Grabherr, Manfred; Pettersson, Mats; Tellgren-Roth, Christian; Schnrer, Johan

    2015-02-01

    Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22?Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X.?bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X.?bisporus. However, transcriptomes at optimal (??0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X.?bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X.?bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'. PMID:25142400

  7. Efficacy of entomopathogenic fungi (Ascomycetes: Hypocreales) against adult Haematobia irritans (Diptera: Muscidae) under stable conditions in the Mexican dry tropics.

    PubMed

    Galindo-Velasco, E; Lezama-Gutirrez, R; Cruz-Vzquez, C; Pescador-Rubio, A; Angel-Sahagn, C A; Ojeda-Chi, M M; Rodrguez-Vivas, R I; Contreras-Lara, D

    2015-04-30

    The purpose of this paper is to evaluate the effect of five strains of Metarhizium anisopliae (Ma) and three strains of Isaria fumosorosea (Ifr) at a concentration of 110(8)colony-forming units/ml applied by spraying onto bovines with controlled infestation of Haematobia irritans under stable conditions in the Mexican dry tropics. Four experiments were performed, in each of which three treatments (two fungal strains and one control) were evaluated with eight repetitions for each one, by carrying out a single application of the aqueous suspension of each strain. The animals were isolated in individual cages and direct counts of the infestation were carried out for 13 days. It was observed that strains Ma2, Ma6, Ma10, Ma14, and Ma34 caused 94-100% reduction in infestation between days 12 and 13 post-treatment, while strains Ifr19, Ifr11, and Ifr12 reduced infestation from 90% to 98% up to day 13 post-application. There was an effect in the generation of horn flies from the excrement of bovines that were treated with different strains, reducing the reproduction of subsequent generations. It was concluded that the strains of M. anisopliae and I. fumosorosea evaluated in this study can be used as biocontrol agents in infestations of H. irritans in stabled bovines. PMID:25771932

  8. Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order Chaetothyriales in the host Ipomoea carnea.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some plant species within the Convolvulaceae (morning glory family) from South America, Africa, and Australia cause a neurologic disease in grazing livestock caused by swainsonine. These convolvulaceous species including Ipomoea carnea contain the indolizidine alkaloid swainsonine, an inhibitor of ...

  9. Wickerhamomyces arborarius f.a., sp. nov., an ascomycetous yeast species found in arboreal habitats on three different continents.

    PubMed

    James, Stephen A; Barriga, Enrique Javier Carvajal; Barahona, Patricia Portero; Harrington, Thomas C; Lee, Ching-Fu; Bond, Christopher J; Roberts, Ian N

    2014-03-01

    Five strains representing a novel yeast species belonging to the genus Wickerhamomyces were independently isolated from Ecuador, Taiwan and the USA. One strain (CLQCA 10-161(T)) was isolated from the white flower of an unidentified plant species collected in the Maquipucuna cloud forest reserve, near Quito, in Ecuador. A second strain (GY7L12) was isolated from the leaf of a Chinese sumac or nutgall tree (Rhus chinensis 'roxburghiana') collected in the Taoyuan mountain area, Kachsiung, in Taiwan. Three additional strains (A543, A546 and A563) were isolated from two species of wood-boring beetle (Xyleborus glabratus and Xyleborinus saxeseni) collected near Clyo, Georgia, USA. Analysis of the D1/D2 domains of the LSU rRNA gene indicated that the novel species belongs to the genus Wickerhamomyces, and is most closely related to Wickerhamomyces sydowiorum, an insect-associated species predominantly found in South Africa. The North American and Taiwanese strains have identical internal transcribed spacer (ITS) sequences and can be distinguished from the Ecuadorian strain based on a single nucleotide substitution in the ITS1 region. The species name of Wickerhamomyces arborarius f.a., sp. nov. is proposed to accommodate these strains, with CLQCA 10-161(T) (?=?CBS 12941(T)?=?NCYC 3743(T)) designated the type strain. PMID:24453230

  10. Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes).

    PubMed

    Liang, Zeng-Chin; Liang, Chih-Hung; Wu, Chiu-Yeh

    2014-01-01

    In this study, several grains such as brown rice (Br), plumule rice (Pr), wheat (W) and pearl barley (Pb) supplemented with 1% (w/w) peptone (P), yeast extract (Ye), ammonia sulfate (As), and monosodium glutamate (Mg) as a nitrogen source, respectively, were used to produce fruiting bodies and bioactive compounds of two strains of Cordyceps militaris. Among these grain substrates, the substrate most suitable to mycelial growth was Pb+Ye for C. militaris H and L. The mushroom strains colonized this substrate in 12.8 and 12.6 days, respectively. For C. militaris L, the fewest days were required for primordial initiation on Br+Ye and Pr+P substrates. The highest yield and biological efficiency was observed with Pb substrate (25.16 g/bottle and 87.36%) and Br+P substrate (21.84 g/bottle and 75.83%) for C. militaris H and L, respectively. In the fruiting bodies of C. militaris H, the highest cordycepin content was cultivated on W+Mg substrate (25.07 mg/g), the highest mannitol content was cultivated with Pr+Mg (153.21 mg/g) and Pr (151.65 mg/g) substrates, and the highest adenosine content was cultivated with Pr+Ye (0.94 mg/g) and Pb+Ye (0.90 mg/g) substrates. In the fruiting bodies of C. militaris L, the highest cordycepin content was cultivated with W+Mg substrate (22.14 mg/g); the highest mannitol content was cultivated with Pb substrate (189.33 mg/g); and the highest adenosine content was cultivated with Pb+Ye substrate (0.71 mg/g). PMID:25404221

  11. GzSNF1 Is Required for Normal Sexual and Asexual Development in the Ascomycete Gibberella zeae▿ †

    PubMed Central

    Lee, Seung-Ho; Lee, Jungkwan; Lee, Seunghoon; Park, Eun-Hee; Kim, Ki-Woo; Kim, Myoung-Dong; Yun, Sung-Hwan; Lee, Yin-Won

    2009-01-01

    The sucrose nonfermenting 1 (SNF1) protein kinase of yeast plays a central role in the transcription of glucose-repressible genes in response to glucose starvation. In this study, we deleted an ortholog of SNF1 from Gibberella zeae to characterize its functions by using a gene replacement strategy. The mycelial growth of deletion mutants (ΔGzSNF1) was reduced by 21 to 74% on diverse carbon sources. The virulence of ΔGzSNF1 mutants on barley decreased, and the expression of genes encoding cell-wall-degrading enzymes was reduced. The most distinct phenotypic changes were in sexual and asexual development. ΔGzSNF1 mutants produced 30% fewer perithecia, which matured more slowly, and asci that contained one to eight abnormally shaped ascospores. Mutants in which only the GzSNF1 catalytic domain was deleted had the same phenotype changes as the ΔGzSNF1 strains, but the phenotype was less extreme in the mutants with the regulatory domain deleted. In outcrosses between the ΔGzSNF1 mutants, each perithecium contained ∼70% of the abnormal ascospores, and ∼50% of the asci showed unexpected segregation patterns in a single locus tested. The asexual spores of the ΔGzSNF1 mutants were shorter and had fewer septa than those of the wild-type strain. The germination and nucleation of both ascospores and conidia were delayed in ΔGzSNF1 mutants in comparison with those of the wild-type strain. GzSNF1 expression and localization depended on the developmental stage of the fungus. These results suggest that GzSNF1 is critical for normal sexual and asexual development in addition to virulence and the utilization of alternative carbon sources. PMID:19028993

  12. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata

    PubMed Central

    Camps, Céline; Kappel, Christian; Lecomte, Pascal; Léon, Céline; Gomès, Eric; Coutos-Thévenot, Pierre; Delrot, Serge

    2010-01-01

    Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14 500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S–R+), and healthy plants (S–R–). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S+R+ plants compared with S–R– plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa. PMID:20190040

  13. An Aspergillus nidulans GH26 endo-?-mannanase with a novel degradation pattern on highly substituted galactomannans.

    PubMed

    von Freiesleben, Pernille; Spodsberg, Nikolaj; Blicher, Thomas Holberg; Anderson, Lars; Jrgensen, Henning; Stlbrand, Henrik; Meyer, Anne S; Krogh, Kristian B R M

    2016-02-01

    The activity and substrate degradation pattern of a novel Aspergillus nidulans GH26 endo-?-mannanase (AnMan26A) was investigated using two galactomannan substrates with varying amounts of galactopyranosyl residues. The AnMan26A was characterized in parallel with the GH26 endomannanase from Podospora anserina (PaMan26A) and three GH5 endomannanases from A. nidulans and Trichoderma reesei (AnMan5A, AnMan5C and TrMan5A). The initial rates and the maximal degree of enzymatically catalyzed conversion of locust bean gum and guar gum galactomannans were determined. The hydrolysis product profile at maximal degree of conversion was determined using DNA sequencer-Assisted Saccharide analysis in High throughput (DASH). This is the first reported use of this method for analyzing galactomannooligosaccharides. AnMan26A and PaMan26A were found to have a novel substrate degradation pattern on the two galactomannan substrates. On the highly substituted guar gum AnMan26A and PaMan26A reached 35-40% as their maximal degree of conversion whereas the three tested GH5 endomannanases only reached 8-10% as their maximal degree of conversion. ?-Galactosyl-mannose was identified as the dominant degradation product resulting from AnMan26A and PaMan26A action on guar gum, strongly indicating that these two enzymes can accommodate galactopyranosyl residues in the -1 and in the +1 subsite. The degradation of ?-6(4)-6(3)-di-galactosyl-mannopentaose by AnMan26A revealed accommodation of galactopyranosyl residues in the -2, -1 and +1 subsite of the enzyme. Accommodation of galactopyranosyl residues in subsites -2 and +1 has not been observed for other characterized endomannanases to date. Docking analysis of galactomannooligosaccharides in available crystal structures and homology models supported the conclusions drawn from the experimental results. This newly discovered diversity of substrate degradation patterns demonstrates an expanded functionality of fungal endomannanases, than hitherto reported. PMID:26777252

  14. The Mechanism of Toxicity in HET-S/HET-s Prion Incompatibility

    PubMed Central

    Seuring, Carolin; Greenwald, Jason; Wasmer, Christian; Wepf, Roger; Saupe, Sven J.; Meier, Beat H.; Riek, Roland

    2012-01-01

    The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the ?-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ?34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins. PMID:23300377

  15. The mechanism of toxicity in HET-S/HET-s prion incompatibility.

    PubMed

    Seuring, Carolin; Greenwald, Jason; Wasmer, Christian; Wepf, Roger; Saupe, Sven J; Meier, Beat H; Riek, Roland

    2012-01-01

    The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the ?-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ?34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins. PMID:23300377

  16. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarre, J

    1998-10-01

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division. PMID:9767103

  17. Toll-like receptor 4-interacting SPA4 peptide suppresses the NLRP3 inflammasome in response to LPS and ATP stimuli.

    PubMed

    Ramani, Vijay; Awasthi, Shanjana

    2015-12-01

    Inflammation is induced because of interplay among multiple signaling pathways and molecules during infectious and noninfectious tissue injuries. Crosstalk between Toll-like receptor-4 signaling and the neuronal apoptosis inhibitor protein, major histocompatibility class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome against pathogen- or damage-associated molecular patterns can cause exaggerated inflammation. We previously established that the Toll-like receptor-4-interacting SPA4 peptide suppresses gram-negative bacterial lipopolysaccharide (Toll-like receptor-4 ligand)-induced nuclear factor-κB and inflammatory response. In the present study, we hypothesized that the SPA4 peptide exerts its anti-inflammatory effects by suppressing the crosstalk between Toll-like receptor-4 signaling and the NLRP3 inflammasome. We evaluated binding of the lipopolysaccharide-ligand to cell-surface Toll-like receptor-4 in the presence or absence of adenosine triphosphate (an NLRP3 inflammasome inducer) by flow cytometry. The expression and activity of NLRP3 inflammasome-related parameters were studied in cells challenged with lipopolysaccharide and adenosine triphosphate using molecular and immunologic methods. The cells were challenged with lipopolysaccharide and treated with SPA4 peptide before (pre-adenosine triphosphate) or after (post-adenosine triphosphate) secondary challenge with adenosine triphosphate. Our data demonstrate that the Toll-like receptor-4-interacting SPA4 peptide does not affect the binding of lipopolysaccharide to Toll-like receptor-4 in the presence or absence of adenosine triphosphate. We also found that the SPA4 peptide inhibits mRNA and cellular protein levels of pro-interleukin-1β and NLRP3, formation of the NLRP3 inflammasome, caspase activity, and release of interleukin-1β. Furthermore, the SPA4 peptide treatment reduced the secreted levels of interleukin-1β from cells overexpressing Toll-like receptor-4 compared with cells expressing the dominant-negative form of Toll-like receptor-4. Together our results suggest that the SPA4 peptide exerts its anti-inflammatory activity by suppressing Toll-like receptor-4-priming of the NLRP3 inflammasome. PMID:26254306

  18. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the f ilamentous fungus Aspergillus oryzae.

    PubMed

    Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko

    2005-12-01

    Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites. PMID:16410762

  19. Evidence for a negative membrane potential and for movement of C1- against its electrochemical gradient in the ascomycete Neocosmospora vasinfecta.

    PubMed Central

    Miller, A G; Budd, K

    1976-01-01

    The iodides of three lipid-soluble cations (dibenzyldimethylammonium; tribenzylmethylammonium, TBMA+; ethyldimethylbenzylammonium) were synthesized by the reaction of 14C-labeled methyl or 14C-labeled ethyl iodide with the appropriate secondary of tertiary amine and used in an attempt to measure the transmembrane electrical potential difference in Neocosmospora. Only mycelium containing high levels of Na+ accumulated measureable amounts of these cations and only above pH 6. Uptake was reduced in the presence of exogenous K+, Na+, Mg2+, or tris(hydroxymethyl)aminomethane. The velocity of TBMA+ uptake was proportional to its concentration between 46 and 427 muM. Neither the rate nor the extent of TBMB+ uptake was greatly affected by the presence of a fivefold excess of either dibenzyldimethylammonium or ethyldimethylbenzylammonium, even though these cations were themselves accumulated. The uncoupler m-chlorophenylhydrazone induced loss of previously accumulated TBMA+ from the mycelium. Anaerobiosis and cold (5 degrees C) temperature both inhibited TBMA+ uptake but did not induce the loss of previously accumulated TBMA+. The uptake of lipophilic cations by Na+-rich mycelium indicated a minimum transmembrane electrical potential of -60 to -70 mV (inside negative). Net uptake of these cations appeared to be strongly influenced by the availability of endogenous exchangeable cations and by the presence of other exogenous cations, as well as by the membrane potential. Despite these limitations, transport of C1- by Na+-rich mycelium appeared to take place against the electrochemical gradient for C1-. PMID:11206

  20. Two new ascomycetous anamorphic yeast species related to Candida friedrichii--Candida jaroonii sp. nov., and Candida songkhlaensis sp. nov.--isolated in Thailand.

    PubMed

    Imanishi, Yumi; Jindamorakot, Sasitorn; Mikata, Kozaburo; Nakagiri, Akira; Limtong, Savitree; Potacharoen, Wanchern; Tanticharoen, Morakot; Nakase, Takashi

    2008-08-01

    In a study of yeast diversity in Thailand, eight strains of hitherto undescribed anamorphic yeasts were isolated: four from insect frass, two from Marasmius sp. fruiting bodies, one from a flower, and one from jackfruit exudates. Phylogenetic analysis of the D1/D2 domain of 26S ribosomal DNA nucleotide sequences indicated that the eight strains represented two new species related to Candida friedrichii. Genetic separation of the two new species was further supported by DNA-DNA hybridization analysis, which resulted in between-species similarity values of less than 48%, and by electrophoretic karyotyping. The two new species are C. jaroonii sp. nov. (type strain, ST-300(T) = NBRC 103209(T) = BCC 11783(T) = CBS 10790(T)) and C. songkhlaensis sp. nov. (type strain, ST-328(T) = NBRC 103214(T) = BCC 11804(T) = CBS 10791(T)). PMID:18425597

  1. Increased Prevalence of Ubiquitous Ascomycetes in an Acropoid Coral (Acropora formosa) Exhibiting Symptoms of Brown Band Syndrome and Skeletal Eroding Band Disease?

    PubMed Central

    Yarden, Oded; Ainsworth, Tracy D.; Roff, George; Leggat, William; Fine, Maoz; Hoegh-Guldberg, Ove

    2007-01-01

    The prevalence of coral-associated fungi was four times higher in diseased Acropora formosa colonies than in healthy colonies. Since taxonomically related fungal species were isolated from diseased and healthy colonies, we suggest that their association with coral may be constitutive but that their abundance is dependent on coral health. PMID:17308192

  2. Effect of UV-B Irradiation on Physiologically Active Substance Content and Antioxidant Properties of the Medicinal Caterpillar Fungus Cordyceps militaris (Ascomycetes).

    PubMed

    Huang, Shih-Jeng; Lin, Chun-Ping; Mau, Jeng-Leun; Li, Yu-Shan; Tsai, Shu-Yao

    2015-01-01

    Ultraviolet-B (UV-B) light irradiation is a well-known technique for converting vitamin D2 from ergosterol in mushroom fruit bodies. Mushrooms are a natural and nonanimal food source of vitamin D2. We studied the effect of UV-B light irradiation on the amount of vitamin D2 and physiologically active substances in Cordyceps militaris and their antioxidant properties. After UV-B irradiation for 2 hours, the vitamin D2 content of freshly harvested C. militaris fruiting bodies, mycelia, whole submerged culture (WSC), and homogenized submerged culture (HSC) increased from 0 to 0.03 to 0.22 to 1.11 mg/g, but the ergosterol content was reduced from 1.36 to 2.50 to 1.24 to 2.06 mg/g, respectively. After UV-B irradiation, the amount of adenosine, cordycepin, and ergothioneine of fruiting bodies dramatically increased 32-128%, but the polysaccharide content slightly decreased 36%. The reverse trends were observed in mycelia, WSC, and HSC. UV-B irradiation could reduce the effective concentrations at 50% of fruiting bodies for ethanolic and hot water extracts in reducing power, scavenging, and chelating abilities, whereas mycelia, WSC, and HSC of ethanolic extracts increased effective concentrations at 50% in reducing power, scavenging, and chelating abilities. UV-B irradiation slightly increased flavonoid content (10-56%) and slightly affected total phenol content. PMID:25954908

  3. Chemical Composition and Medicinal Value of Fruiting Bodies and Submerged Cultured Mycelia of Caterpillar Medicinal Fungus Cordyceps militaris CBS-132098 (Ascomycetes).

    PubMed

    Chan, Jannie Siew Lee; Barseghyan, Gayane S; Asatiani, Mikheil D; Wasser, Solomon P

    2015-01-01

    In this paper, we report the results of a proximate analysis (i.e., moisture, ash, protein, fat, carbohydrates, and energy); a bioactive compounds analysis (i.e., cordycepin and ergothioneine); fatty and amino acid analysis; and analyses of vitamin content, macro- and microelement composition of fruiting body (FB), and mycelial biomass (MB) of medicinal caterpillar fungus Cordyceps militaris strain CBS-132098. These results demonstrate that the FB and MB of C. militaris are good sources of proteins: 59.8% protein content in the FB and 39.5% in the MB. The MB was distinguished by its carbohydrate content (39.6%), which was higher than that of the FB (29.1% carbohydrate). In the FB of C. militaris, the total amino acid content was 57.39 mg/g and in the MB it was 24.98 mg/g. The quantification of the identified fatty acids indicated that palmitic acid, oleic acid, linoleic acid, and linolenic acid were the major fatty acids. The micro- and macroelement compositions were studied. The highest results were calcium (797 mg/kg FB; 11 mg/kg MB); potassium (15,938 mg/kg FB 12,183 mg/kg MB); magnesium (4,227 mg/kg FB; 3,414 mg/kg MB); sodium (171 mg/kg FB; 1,567 mg/kg MB); phosphorus (7,196 mg/kg FB; 14,293 mg/kg MB); and sulfur (5,088 mg/kg FB; 2,558 mg/kg MB). The vitamin composition was studied, and the most abundant vitamins were vitamin A, vitamin B3, and vitamin E. The bioactive components were cordycepin, cordycepic acid (D-mannitol), and ergothioneine. There were differences in cordycepin and ergothioneine contents between the FB and the MB. The cordycepin concentration was 0.11% in the FB and 0.182% in the MB, the cordycepic acid was 4.7 mg/100g in the FB and 5.2 mg/100 g in the MB, and the ergothioneine content was 782.37 mg/kg in the FB and 130.65 mg/kg in the MB. The nutritional values of the FB and the MB of C. militaris detected indicate its potential use in well-balanced diets and sources of bioactive compounds. PMID:26559699

  4. Molecular Markers to Detect the Formation of Heterokaryon and Homokaryon from Asexual Spores of the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes).

    PubMed

    Wang, Hong; Cai, Tao; Wei, Jing; Feng, Aiping; Lin, Nan; Bao, Dapeng

    2015-01-01

    Cordyceps militaris is widely cultivated on artificial media in China; however, the cultures often are afflicted with the degeneration of nonfruiting strains. To understand the mechanism of degeneration of C. militaris, from the heterokaryotic strain into the homokaryotic strain, we examined the mating-type genes present in individual asexual spores. Further, we determined the distribution ratio of the different mating-type genes among a sample of asexual spores and the growth rate of heterokaryotic and homokaryotic strains of C. militaris. The distribution ratio of 3 groups of asexual spores from C. militaris heterokaryotic strains was determined as 1:1:1 by statistical analysis, whereas that of the two types of nuclei among asexual spores was 1:1. Nearly two-thirds of the asexual spore isolates were homokaryon, which showed a growth speed similar to the heterokaryon. However, the homokaryon (bearing mating-type MAT-HMG) grew significantly faster at times compared with the heterokaryon. Therefore, the purity of the spawn was difficult to establish. C. militaris heterokaryotic strains can transform into a homokaryotic strain following continued subculture. PMID:26756296

  5. Novel Bioactive Wild Medicinal Mushroom-Xylaria sp. R006 (Ascomycetes) against Multidrug Resistant Human Bacterial Pathogens and Human Cancer Cell Lines.

    PubMed

    Ramesh, Veluchamy; Santosh, Karnewar; Anand, Thangarajan Durai; Shanmugaiah, Vellasamy; Kotamraju, Srigiridhar; Karunakaran, Chandran; Rajendran, Ayyappan

    2015-01-01

    In the present study, the fruiting body extracts of Xylaria sp. strain R006 were obtained from hexane, ethyl acetate and methanol. Among them, the ethyl acetate extract exhibited significant antimicrobial activities against bacterial and fungal pathogens. Based on the effective antimicrobial activity, the crude ethyl acetate extract was fractionized by two-step siliga gel column chromatography. All the fractions were tested for antibacterial activity against drug resistant Staphylococcus aureus strains (1-10) and Pseudomonas aeruginosa strains (1-8). The fraction E showed a maximum inhibition zone of 27.9 mm against drug resistant S. aureus strain 3 and 29.4 mm against drug resistant P. aeruginosa strain 4. Minimal inhibitory concentration of fraction E showed potential result against all the drug resistant strains however, the lowest concentration of 75 g/mL-1 was observed against S. aureus strains 1 and 6 and P. aeruginosa strain 3. Further, 60 g/mL of fraction E had significant cytotoxic activity of 54.9, 55.1 and 54.9% against MDA-MB-231 (breast carcinoma cells), A-549 (lung carcinoma cells) and MCF-7 (breast carcinoma cells) human cancer cell lines, respectively. The spectral data revealed that the fraction E has chromophoric groups in it and had the C = O stretching, C-C = C asymmetric stretch, N-H stretch and C-O stretch as functional groups. The results indicate that the metabolites of fruiting bodies of Xylaria sp. R006 are the potential natural source for the development of new anticancer agents. PMID:26756192

  6. SPORE-EXPULSION RATES AND EXTENTS OF BLADE OCCUPATION BY ASCOMYCETES OF THE SMOOTH-CORDGRASS STANDING-DECAY SYSTEM. (R825147)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. The phylogenetic analysis of fungi associated with lichenized ascomycete genus Bryoria reveals new lineages in the Tremellales including a new species Tremella huuskonenii hyperparasitic on Phacopsis huuskonenii.

    PubMed

    Lindgren, Hanna; Diederich, Paul; Goward, Trevor; Myllys, Leena

    2015-09-01

    The basidiomycete order Tremellales includes many species parasitic on or cohabiting with lichen-forming fungi. In this study, we examined the phylogenetic position of Tremellales obtained from Bryoria thalli using nSSU, 5.8S, and partial nLSU sequence data. Both Bayesian and maximum likelihood analyses revealed the presence of basidiomycetous fungi in three separate clades within Tremellales. Tremellales sp. A and Tremella sp. B exist asymptomatically in Bryoria thalli and should thus be regarded as endolichenic rather than lichenicolous fungi. The third lineage represents a new species and is described here as Tremella huuskonenii. It is hyperparasitic over galls induced by Phacopsis huuskonenii, a lichenicolous fungus growing in Bryoria thalli. We also examined the genetic diversity of Tremella sp. B and Tremella huuskonenii with an extended taxon sampling using ITS and partial nLSU sequence data. For comparison, ITS, GAPDH, and Mcm7 regions were used for phylogenetic analyses of the host lichen specimens. According to our results, phylogenetic structure within the two Tremella species does not appear to correlate with the geographic distribution nor with the phylogeny or the secondary chemistry of the host lichen. However, ITS haplotype analysis of T. huuskonenii revealed some genetic differences between European and North American populations as some haplotypes were more common in Europe than in North America and vice versa. PMID:26321732

  8. Molecular-genetic diversity of the ascomycetous yeast genus Arthroascus: Arthroascus babjevae sp. nov., Arthroascus fermentans var. arxii var. nov. and geographical populations of Arthroascus schoenii.

    PubMed

    Naumov, Gennadi I; Naumova, Elena S; Smith, Maudy Th; de Hoog, G Sybren

    2006-08-01

    Using molecular and genetic analyses, 28 Arthroascus strains were analysed, isolated from widely different geographical localities in Europe, North America, Far-East Asia and Hawaii. Most of the strains have been assigned to the species Arthroascus schoenii. PCR-RAPD revealed two Japanese Arthroascus strains (UCD 67-278 and IFO 10138) to have peculiar patterns. Comparative rDNA (D1/D2 26S, ITS1 and ITS2) sequence analysis showed that the two strains respectively represent a novel species and a novel variety. Based on the results of sequence analysis, genetic hybridization and DNA-DNA reassociation, two new members of the genus Arthroascus are formally described, Arthroascus babjevae sp. nov. (type strain UCD 67-278(T)=CBS 9167(T)) and Arthroascus fermentans var. arxii var. nov. (type strain IFO 10138(T)=CBS 9168(T)). These results show that A. schoenii has a worldwide distribution, while the species Arthroascus javanensis is represented only by the type culture CBS 2555(T), isolated in Indonesia. Cluster analysis revealed a correlation between PCR-RAPD fingerprints and geographical origin of the A. schoenii strains. Despite this molecular differentiation, A. schoenii strains collected in different regions of the world formed predominantly fertile hybrids, with normal recombination of control markers. PMID:16902043

  9. NPS6, Encoding a Non-Ribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NPS6, encoding a non-ribosomal peptide synthetase, is a virulence determinant in the corn pathogen Cochliobolus heterostrophus and is also involved in resistance to oxidative stress, generated by hydrogen peroxide. Deletion of NPS6 orthologs in the rice pathogen, Cochliobolus miyabeanus, the cereal...

  10. Mitochondrial Carnitine-Dependent Acetyl Coenzyme A Transport Is Required for Normal Sexual and Asexual Development of the Ascomycete Gibberella zeae

    PubMed Central

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol

    2012-01-01

    Fungi have evolved efficient metabolic mechanisms for the exact temporal (developmental stages) and spatial (organelles) production of acetyl coenzyme A (acetyl-CoA). We previously demonstrated mechanistic roles of several acetyl-CoA synthetic enzymes, namely, ATP citrate lyase and acetyl-CoA synthetases (ACSs), in the plant-pathogenic fungus Gibberella zeae. In this study, we characterized two carnitine acetyltransferases (CATs; CAT1 and CAT2) to obtain a better understanding of the metabolic processes occurring in G. zeae. We found that CAT1 functioned as an alternative source of acetyl-CoA required for lipid accumulation in an ACS1 deletion mutant. Moreover, deletion of CAT1 and/or CAT2 resulted in various defects, including changes to vegetative growth, asexual/sexual development, trichothecene production, and virulence. Although CAT1 is associated primarily with peroxisomal CAT function, mislocalization experiments showed that the role of CAT1 in acetyl-CoA transport between the mitochondria and cytosol is important for sexual and asexual development in G. zeae. Taking these data together, we concluded that G. zeae CATs are responsible for facilitating the exchange of acetyl-CoA across intracellular membranes, particularly between the mitochondria and the cytosol, during various developmental stages. PMID:22798392

  11. Isolation and purification of a polysaccharide from the caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes) fruit bodies and its immunomodulation of RAW 264.7 macrophages.

    PubMed

    Zhu, Lina; Tang, Qingjiu; Zhou, Shuai; Liu, Yanfang; Zhang, Zhong; Gao, Xinhua; Wang, Shiping; Wang, Zhaolong

    2014-01-01

    A novel polysaccharide (CP2-S) was purified from Cordyceps militaris fruit bodies by hot water extraction, ethanol precipitation, DEAE-Sepharose Fast Flow and Sephacryl S-400 high-resolution chromatography. The polysaccharide had a molecular weight of 5.938 × 10(6) g/mol and was mainly composed of glucose. CP2-S had carbohydrate content estimated to be 100% using the phenol-sulfuric acid method. Immunostimulating experiments in vitro indicated that CP2-S could stimulate nitric oxide production, phagocytosis, respiratory burst activity, and secretion of interleukin-1β and interleukin-2 of macrophages, suggesting that this water-soluble polysaccharide from the fruit body of C. militaris is a natural immunostimulating polysaccharide with potential for further application. PMID:24941166

  12. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces and Scheffersomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species assigned to the genera Debaryomyces, Lodderomyces, Spathaspora and Yamadazyma, as well as selected species of Pichia and Candida that also form coenzyme Q-9, were phylogenetically analyzed from the combined sequences of the D1/D2 domains of the large subunit and the small subunit rRNA genes....

  13. Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycete Botrytis cinerea.

    PubMed

    Harren, Karin; Tudzynski, Bettina

    2013-05-01

    In the filamentous phytopathogen Botrytis cinerea, the Ca(2+)/calcineurin signaling cascade has been shown to play an important role in fungal growth, differentiation, and virulence. This study deals with the functional characterization of two components of this pathway, the putative calcium channel proteins Cch1 and Mid1. The cch1 and mid1 genes were deleted, and single and double knockout mutants were analyzed during different stages of the fungal life cycle. Our data indicate that Cch1 and Mid1 are functionally required for vegetative growth under conditions of low extracellular calcium, since the growth of both deletion mutants is strongly impaired when they are exposed to the Ca(2+)-chelating agents EGTA and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The impact of external Ca(2+) was investigated by supplementing with CaCl(2) and the ionophore A23187, both of which resulted in elevated growth for all mutants. However, deletion of either gene had no impact on germination, sporulation, hyphal morphology, or virulence. By use of the aequorin reporter system to measure intracellular calcium levels, no differences between the mutant strains and the wild type were obtained. Localization studies revealed a subcellular distribution of the Mid1-green fluorescent protein (GFP) fusion protein in network-like filaments, probably the endoplasmic reticulum (ER) membranes, indicating that Mid1 is not a plasma membrane-located calcium channel in B. cinerea. PMID:23475703

  14. Cch1 and Mid1 Are Functionally Required for Vegetative Growth under Low-Calcium Conditions in the Phytopathogenic Ascomycete Botrytis cinerea

    PubMed Central

    Harren, Karin

    2013-01-01

    In the filamentous phytopathogen Botrytis cinerea, the Ca2+/calcineurin signaling cascade has been shown to play an important role in fungal growth, differentiation, and virulence. This study deals with the functional characterization of two components of this pathway, the putative calcium channel proteins Cch1 and Mid1. The cch1 and mid1 genes were deleted, and single and double knockout mutants were analyzed during different stages of the fungal life cycle. Our data indicate that Cch1 and Mid1 are functionally required for vegetative growth under conditions of low extracellular calcium, since the growth of both deletion mutants is strongly impaired when they are exposed to the Ca2+-chelating agents EGTA and 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The impact of external Ca2+ was investigated by supplementing with CaCl2 and the ionophore A23187, both of which resulted in elevated growth for all mutants. However, deletion of either gene had no impact on germination, sporulation, hyphal morphology, or virulence. By use of the aequorin reporter system to measure intracellular calcium levels, no differences between the mutant strains and the wild type were obtained. Localization studies revealed a subcellular distribution of the Mid1–green fluorescent protein (GFP) fusion protein in network-like filaments, probably the endoplasmic reticulum (ER) membranes, indicating that Mid1 is not a plasma membrane-located calcium channel in B. cinerea. PMID:23475703

  15. Aging as Evolution-Facilitating Program and a Biochemical Approach to Switch It Off

    NASA Astrophysics Data System (ADS)

    Skulachev, Vladimir P.

    A concept is presented considering aging of living organisms as a final step of their ontogenetic program. It is assumed that such an aging program was invented by biological evolution to facilitate the evolutionary process. Indications are summarized suggesting that controlled production of toxic forms of oxygen (so called reactive oxygen species) by respiring intracellular organelles (mitochondria) is an obligatory component of the aging program. First results of a research project devoted to an attempt to interrupt aging program by antioxidants specifically addressed to mitochondria have been described. Within the framework of the project, antioxidants of a new type (SkQ) were synthesized. SkQs are composed of (i) plastoquinone (an antioxidant moiety), (ii) a penetrating cation, and (iii) a decane or pentane linker. Using planar bilayer phospholipid membranes, we selected SkQ derivatives of the highest penetrability, namely plastoquinonyl decyl triphenylphosphonium (SkQ1), plastoquinonyl decyl rhodamine 19 (SkQR1), and methylplastoquinonyl decyl triphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in isolated mitochondria. Micromolar concentrations of cationic quinones are found to be very strong prooxidants, but in the lower (sub-micromolar) concentrations they display antioxidant activity which decreases in the series SkQ1 = SkQR1 > SkQ3 > MitoQ. Thus, the window between the anti- and prooxidant effects is the smallest for MitoQ and the largest for SkQ1 and SkQR1. SkQ1 is rapidly reduced by complex III of the mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Extremely low concentrations of SkQ1 and SkQR1 completely arrest the H2O2-induced apoptosis in human fibroblasts and HeLa cells (for SkQ1, C 1/2 = 8 10-9M). Higher concentrations of SkQ1 are required to block necrosis initiated by reactive oxygen species (ROS). In mice, SkQ1 decelerates the development of three types of accelerated aging (progeria) and also of normal aging, and this effect is especially demonstrative at early stages of aging. The same pattern is shown in invertebrates (Drosophila and Daphnia), and fungus (Podospora anserina). In mammals, the effect of SkQs on aging is accompanied by inhibition of development of such age-related diseases as osteoporosis, involution of thymus, cataract, retinopathy, etc. SkQ1 manifests a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision is recovered in 66 of 96 animals (dogs, cats and horses) who became blind because of retinopathy. SkQ1-containing drops instilled into eyes prevent the loss of sight in rabbits suffering from experimental uveitis and restore vision to animals that had already become blind due to this pathology. A favorable effect is also achieved in experimental glaucoma in rabbits. Moreover, the pretreatment of rats with 0.2 nM SkQ1 significantly decreases the H2O2-induced arrhythmia of the isolated heart. SkQ1 strongly reduces the damaged area in myocardial infarction or stroke and prevents the death of animals from kidney infarction. In p53-/- mice, SkQ1 decreases the ROS level in the spleen cells and inhibits appearance of lymphomas which are the main cause of death of such animals. As a result, the lifespan increases. SkQs look like promising drugs to treat aging and age-related diseases.

  16. Laccase production by the aquatic ascomycete Phoma sp. UHH 5-1-03 and the white rot basidiomycete Pleurotus ostreatus DSM 1833 during submerged cultivation on banana peels and enzyme applicability for the removal of endocrine-disrupting chemicals.

    PubMed

    Libardi, Nelson; Gern, Regina Maria Miranda; Furlan, Sandra Aparecida; Schlosser, Dietmar

    2012-07-01

    This work aimed to study the production of laccase from Pleurotus ostreatus DSM 1833 and Phoma sp. UHH 5-1-03 using banana peels as alternative carbon source, the subsequent partial purification and characterization of the enzyme, as well the applicability to degrade endocrine disruptors. The laccase stability with pH and temperature, the optimum pH, the K (m) and V(max) parameters, and the molar mass were determined. Tests were conducted for assessing the ability of degradation of the endocrine disruptors t-nonylphenol, bisphenol A, and 17?-ethinylestradiol. Laccase production of 752 and 1,117 U?L? was obtained for Phoma sp. and P. ostreatus, respectively. Phoma sp. laccase showed higher stability with temperature and pH. The laccase from both species showed higher affinity by syringaldazine. The culture broth with banana peels induced the production of two isoforms of P. ostreatus (58.7 and 21 kDa) and one of Phoma sp. laccase (72 kDa). In the first day of incubation, the concentrations of bisphenol A and 17?-ethinylestradiol were reduced to values close to zero and after 3 days the concentration of t-nonylphenol was reduced in 90% by the P. ostreatus laccase, but there was no reduction in its concentration by the Phoma sp. laccase. PMID:22371062

  17. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  18. Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.:Fr.) Link (Ascomycetes).

    PubMed

    Lim, LekTeng; Lee, ChiaYen; Chang, EngThuan

    2012-01-01

    In general, Cordyceps sinensis is much more popular than C. militaris, though both species contain quite similar bioactive ingredients and exhibit medicinal activities. Many bioactive ingredients have been isolated from C. militaris, such as adenosine, cordycepin, D-mannitol, and exopolysaccharides. C. militaris is claimed to have extensive pharmacological properties, such as: anti-inflammatory; anti-fatigue; anti-bacterial; anti-diabetic; improve lung, liver, and kidney functions; to be beneficial for treating cancer as well as male and female sexual dysfunctions. C. militaris is fast gaining momentum for its so-called health benefits, and it is often used as a substitute for C. sinensis. In view of the growing popularity of C. militaris, nowadays C. militaris cultivation for stroma is also done. There is a great diversity of compounds from different strains of Cordyceps and different artificially cultivated products. This study is to determine the optimum culture parameters integrated with substrate of choice to bring the indoor-cultivated C. militaris to a higher and more consistent level of quality. To achieve the above objective, the resultant products after growth were analyzed for adenosine, cordycepin, and D-mannitol using the high-performance liquid chromatography method. The optimum culture condition to produce a high level of adenosine is by using millet as solid substrate. It must be cultivated in the dark for the first 7 days and harvested on day 40. The optimum culture condition to produce a high level of cordycepin is by using soybean as solid substrate. It must be cultivated in the dark for the first 14 days and harvested on day 50. While a high level of D-mannitol is achieved with millet as the solid substrate. It must be kept in the dark for the first 7 days and harvested on day 50. The adenosine level decreased and cordycepin increased from day 40 of culture to day 50 generally. PMID:22506578

  19. Yippie Yi Yo Mycota Ki Yay! A mycologist’s fervently biased account of how the American western frontier was molded by spores and mycelium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discussed are white pine blister rust (Cronartium ribicola), cereal rusts (Puccinia spp.), smuts (Tilletia spp.), fungi as agents of recycling in grasslands (e.g., Sporormiella and Podospora spp.), fungal symbionts of bark beetles (e.g., Ophiostoma spp.), impacts of clinical fungi (e.g., Valley Feve...

  20. A new species of Jahnulales from Las Ilusiones Lagoon, Tabasco, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on biodiversity of freshwater ascomycetes from an urban tropical lagoon, an ascomycete with similar morphology to species of Jahnulales was obtained. Smooth surface test blocks of Pinus sp., Bucida sp., Cedrela sp. and Tabebuia sp. were submerged in pairs close to a private house whar...

  1. Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley.

    PubMed Central

    McLean, R G; Ubico, S R; Hughes, C A; Engstrom, S M; Johnson, R C

    1993-01-01

    Field investigations were conducted to further evaluate the role of birds in the maintenance and dissemination of Borrelia burgdorferi. Blood specimens were taken from 39 passerine birds of 17 species captured during June 1991 at the Saint Croix National Riverway in Wisconsin, and one isolate, WI91-23, was cultured from an adult song sparrow (Melospiza melodia). This isolate was shown to be infectious for Peromyscus leucopus and Mesocricetus auratus (golden hamster). Isolate WI91-23 was confirmed as B. burgdorferi by immunofluorescence assay by using species-specific anti-OspA monoclonal antibodies H3TS and H5332 and anti-OspB antibody H5TS. Isolate WI91-23 was compared with Borrelia anserina Es, Borrelia hermsii MAN-1, and other B. burgdorferi strains (ATCC 53210, CT-1, and Catharus fuscescens [veery] liver 10293). Pulsed-field gel electrophoresis of in situ-lysed spirochetes revealed that the DNA plasmid profile of WI91-23 was most similar to those of plasmids from B. burgdorferi and most different from those of plasmids from B. anserina and B. hermsii. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the protein profile of WI91-23 was like that of other B. burgdorferi strains studied, with dominant proteins corresponding to OspA and OspB, and that it differed from the protein profiles of B. anserina and B. hermsii. These findings indicate that passerine birds may serve as reservoirs for B. burgdorferi. Images PMID:8370728

  2. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  3. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...

  4. Complex patterns of speciation in cosmopolitan "rock posy" lichens - an integrative approach to discovering and delimiting fungal species in the lichen-forming rhizoplaca melanophthalma speciescomplex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing body of evidence indicates that morphology-based species circumspection of lichenized ascomycetes greatly misrepresents the number of existing species. Recently it has been demonstrated that population-level processes operating within diverging populations can facilitate the identification...

  5. Didymella rabiei primary inoculum release from chickpea debris in relation to weather variables in the Pacific Northwest of the United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didymella rabiei (anamorph: Ascochyta rabiei), the ascomycete fungus that causes Ascochyta blight of chickpea, produces pseudothecia on overwintered chickpea debris. Ascospores released from pseudothecia are thought to constitute an important primary inoculum source for Ascochyta blight epidemics i...

  6. Relationships among genera of the Saccharomycotina from multigene sequence analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most known species of the subphylum Saccharomycotina (budding ascomycetous yeasts) have now been placed in phylogenetically defined clades following multigene sequence analysis. Terminal clades, which are usually well supported from bootstrap analysis, are viewed as phylogenetically circumscribed ge...

  7. Microsatellite markers for Sclerotinia subarctica nom. prov., a new vegetable pathogen of the High North

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight polymorphic microsatellite loci were isolated from the ascomycete fungus Sclerotinia subarctica nom. prov. In Alaska, this pathogen causes white mold vegetable diseases sympatrically with the cosmopolitan and closely related Sclerotinia sclerotiorum. Eighteen alleles were observed across the 4...

  8. PHYLOGENETIC DIVERSITY OF MEDICALLY IMPORTANT FUSARIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the paucity of phenotypic traits, morphological species recognition greatly underestimates the number of clinically important species of the opportunistic filamentous ascomycete Fusarium. To address this problem, species limits are being investigated using multilocus DNA sequence data, using...

  9. Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target

    PubMed Central

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative structural (gene and protein structure-level) and evolutionary analysis of a fungal P450 family. PMID:25222113

  10. The Complete Mitochondrial Genome of Aix galericulata and Tadorna ferruginea: Bearings on Their Phylogenetic Position in the Anseriformes

    PubMed Central

    Liu, Gang; Zhou, Lizhi; Li, Bo; Zhang, Lili

    2014-01-01

    Aix galericulata and Tadorna ferruginea are two Anatidae species representing different taxonomic groups of Anseriformes. We used a PCR-based method to determine the complete mtDNAs of both species, and estimated phylogenetic trees based on the complete mtDNA alignment of these and 14 other Anseriforme species, to clarify Anseriform phylogenetics. Phylogenetic trees were also estimated using a multiple sequence alignment of three mitochondrial genes (Cyt b, ND2, and COI) from 68 typical species in GenBank, to further clarify the phylogenetic relationships of several groups among the Anseriformes. The new mtDNAs are circular molecules, 16,651 bp (Aix galericulata) and 16,639 bp (Tadorna ferruginea) in length, containing the 37 typical genes, with an identical gene order and arrangement as those of other Anseriformes. Comparing the protein-coding genes among the mtDNAs of 16 Anseriforme species, ATG is generally the start codon, TAA is the most frequent stop codon, one of three, TAA, TAG, and T-, commonly observed. All tRNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN), which are missing the "DHU" arm.Phylogenetic relationships demonstrate that Aix galericula and Tadorna ferruginea are in the same group, the Tadorninae lineage, based on our analyses of complete mtDNAs and combined gene data. Molecular phylogenetic analysis suggests the 68 species of Anseriform birds be divided into three families: Anhimidae, Anatidae, and Anseranatidae. The results suggest Anatidae birds be divided into five subfamilies: Anatinae, Tadorninae, Anserinae, Oxyurinae, and Dendrocygninae. Oxyurinae and Dendrocygninae should not belong to Anserinae, but rather represent independent subfamilies. The Anatinae includes species from the tribes Mergini, Somaterini, Anatini, and Aythyini. The Anserinae includes species from the tribes Anserini and Cygnini. PMID:25375111

  11. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  12. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    PubMed

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  13. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    PubMed Central

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

  14. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution.

    PubMed

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pggeler, Stefanie; Stajich, Jason E; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

  15. The phylogeny of yeastsA cladistic analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqin; Wu, Baoling

    1992-12-01

    Cladistic analysis was used to clarify the phylogeny of 16 genera of yeasts whose great morphological differences and inclusion in different classification systems resulted in controversies over the taxonomy of seven genera such as Crypeococcus. etc. Some scholars suggest that they belong to Ascomycetes, but others think they belong to fungi imperfecti. After comprehensive cladistic analysis of many genetic characters, the authors consider that the above-mentioned seven genera of yeasts developed in parallel with Ascomycetes so that they should belong to one and the same developmental system.

  16. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants

    PubMed Central

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes. PMID:26904051

  17. Maintaining heterokaryosis in pseudo-homothallic fungi.

    PubMed

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species. PMID:26479494

  18. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    PubMed

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes. PMID:26904051

  19. Maintaining heterokaryosis in pseudo-homothallic fungi

    PubMed Central

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species. PMID:26479494

  20. Kazachstania Zubkova (1971)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Kazachstania and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Kazachstania is newly described and was constructed from certain species previously assigned to the genera Saccharomyces, Kluyveromyces and Arxozyma follo...

  1. Intercontinental genetic structure of the fungal grapevine pathogen Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Eutypa lata, causal agent of Eutypa dieback of grapevine (Vitis vinifera), impacts all vineyard production systems worldwide. Our objectives were to characterize the population structure of E. lata at different geographical scales to identify migration patterns through ascospor...

  2. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the APSES family of fungal proteins regulate morphogenesis and virulence in ascomycetes. We deleted the FgStuA gene in Fusarium graminearum and demonstrate its involvement in several different processes. FgStuA is closely related to FoStuA in F. oxysporum and StuA in Aspergillus. Unlike F...

  3. Basis for inhibition of Pyrenophora teres by Laetisaria arvalis, a scanning and transmission electron microscopic study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The broadly occurring foliar disease of barley, net blotch is caused by Pyrenophora teres, an ascomycete and could result in significant yield loss under heavy disease pressure. The basidiomycete, Laetisaria arvalis has been reported to have biological control activity over some plant pathogens. In ...

  4. Understanding the coevolution of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae remains to be one of the most serious threats for food security globally. Using resistance (R) genes in integrated cultural practices has been the most powerful practice for rice crop protection. Genetic analysis s...

  5. Three new anascosporic genera of the Saccharomycotina: Danielozyma gen. nov., Deakozyma gen. nov. and Middelhovenomyces gen. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation...

  6. Blastobotrys von Klopotek (1967)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the anamorphic ascomycete genus Blastobotrys and is to be published in The Yeasts, a Taxonomic Study, 5th edition. The genus Blastobotrys, which represents the asexual state of the genus Trichomonascus, has been phylogenetically defined and has 21 assigned species. Blastobot...

  7. Zygotorulaspora Kurtzman (2003)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Zygotorulaspora and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The two species in this genus were at different times placed in the genera Torulaspora, Zygosaccharomyces and Saccharomyces. Multigene phylogenetic analysis sho...

  8. Debaryomyces Lodder & Kreger-van Rij (1952)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Debaryomyces and is to be published in The Yeasts, a Taxonomic Study, 5th edition. The genus Debaryomyces has nine described species, many of which are worldwide in distribution. Most notable species is D. hansenii, which is found in soil, plant de...

  9. Colletotrichum fungal pathogens and symbionts of ornamental nursery and landscape plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the ascomycete genus Colletotrichum are ranked by the plant pathology community as one of the ten most economically and scientifically important fungal phytopathogens. Major losses due to Colletotrichum are experienced in almost every crop worldwide, including nursery and landscape plants ...

  10. Protomyces Unger (1833)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycetous fungal genus Protomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." Species of the genus Protomyces are plant pathogens that attack asters, wild celery, coriander and certain other plants. Symptoms include disruption of stems, lea...

  11. Global genetic structure of the fungal grapevine pathogen Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...

  12. First report of powdery mildew caused by Podosphaera leucotricha on Callery pear in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Podosphaera leucotricha (Ellis & Everh.) E.S. Salmon (Ascomycetes, Erysiphales) is the etiological agent of a powdery mildew disease that occurs on rosaceous plants, primarily Malus and Pyrus. This fungus is nearly circumglobal. In May 2009, leaves of Bradford pear (Pyrus calleryana Decne.), some di...

  13. Hyphopichia von Arx & van der Walt (1976)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Hyphopichia and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus Hyphopichia was derived from the genus Pichia and accepted as valid following a multigene phylogenetic analysis. At present, there are two species assigne...

  14. Yamadazyma Billon-Grand (1989)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Yamadazyma and is to be published in "The Yeasts, a Taxonomic Study, 5th edition." The genus Yamadazyma was derived from the genus Pichia following a multigene phylogenetic analysis. At present, there are 6 known species assigned to the genus. Sev...

  15. Wickerhamiella van der Walt (1973)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycetous yeast genus Wickerhamiella, which has five described species and has been defined from multigene deoxyribonucleic acid (DNA) sequence analysis. The species reproduce by multilateral budding but do not form hyphae or pseudohyphae. Asci typically form a single a...

  16. A ROLE FOR ASCOSPORES IN WHEAT HEAD BLIGHT EPIDEMICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ascomycete Gibberella zeae (asexual state Fusarium graminearum) causes serious epidemics of wheat head blight worldwide and contaminates grain with trichothecene mycotoxins that are harmful to human and animal health. Anecdotal evidence dating back to the 19th century indicates that G. zeae asc...

  17. Nakazawaea Y. Yamada, Maeda & Mikata (1994)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Nakazawaea and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus Nakazawaea was derived from the genus Pichia and its validity was established from a multigene phylogenetic analysis. The genus contains a single species, ...

  18. Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic Ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many arthropods, including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium...

  19. Mycotoxin production and prevention of aflatoxin contamination in food and feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are the most prominent group of mycotoxins. They are known to be the most toxic and potent carcinogens naturally produced. They are mainly produced by the ascomycetous fungi Aspergillus flavus and A. parasiticus. Over 40 years of research and investigation has generated a wealth of pub...

  20. Hyphomycetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyphomycetes are anamorphic forms of ascomycetes or basidiomycetes. In many instances, teleomorphs appear to have been lost over evolutionary time. They are identified on the basis of conidial shape and color, number and position of conidial septa, degree of aggregation of conidiophores, and mode ...

  1. New Phomopsis species identified from wood cankers in eastern North American vineyards.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis cane and leaf spot, caused by the Ascomycete fungus Phomopsis viticola, is a destructive fruit and foliar disease in eastern North American vineyards. The pathogen typically attacks green tissues, but can also cause wood cankers, presumably due to infection of pruning wounds, as is the cas...

  2. Sex-linked phenotypic divergence in the hermaphrodite fungus Neurospora tetrasperma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we present a study of the molecular phenotype linked to a large region of suppressed recombination (extending over ~ 7 Mbp and >1,500 genes) surrounding the mating-type (mat) locus of the filamentous ascomycete Neurospora tetrasperma. While the remainder of the genome is largely homoallelic, th...

  3. Influence of host and geographic locale on the distribution of Colletotrichum cereale lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum cereale is an ascomycete inhabitant of cool-season grasses of the Pooideae subfamily. The fungus has increased in frequency over the past decade as a destructive pathogen of Poa annua and Agrostis stolonifera cultivated as turfgrass. DNA fingerprinting has revealed two distinct C. c...

  4. High-Quality Draft Genome Sequence of Candida apicola NRRL Y-50540.

    PubMed

    Vega-Alvarado, Leticia; Gmez-Angulo, Jorge; Escalante-Garca, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena; Sanchez-Flores, Alejandro; Arrizon, Javier

    2015-01-01

    Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera. PMID:26067948

  5. POPULATION STRUCTURE AND DIVERSITY OF EUTYPA LATA FROM MEDITERRANEAN GRAPE-GROWING REGIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutypa lata is an ascomycete fungus causing dieback of grape (Vitis vinifera). We examined the genetic structure of eight vineyard collections using nine polymorphic microsatellite loci. In California, isolates were collected from four vineyards (CS1, CS2, M1 and M2) separated by distances of 50 m t...

  6. A haemagglutinin from the medicinal fungus Cordyceps militaris.

    PubMed

    Wong, Jack H; Wang, Hexiang; Ng, Tzi B

    2009-10-01

    There are only a few reports on agglutinins from ascomycete and medicinal fungi. An HA (haemagglutinin), with an N-terminal amino acid sequence different from those of known lectins, was isolated in the present study from dried fruiting bodies of the medicinal ascomycete fungus Cordyceps militaris. The purification protocol consisted of affinity chromatography, ion-exchange chromatography and gel filtration. The haemagglutinating activity of the HA could not be inhibited by simple sugars or heparin, and was stable over the pH range 2-13 and up to 60 degrees C. Chemical modification of tryptophan and tyrosine residues had no effect. The HA exhibited some antiproliferative activity towards hepatoma (HepG2) cells and inhibited HIV-1 reverse transcriptase (IC50=10 microM). However, it did not exhibit antifungal activity, mitogenic activity towards splenocytes, nitric oxide-inducing activity towards macrophages or RNase activity. The results of the present study add to the meagre information pertaining to agglutinins from ascomycete and medicinal mushrooms. It is revealed in this study that C. militaris HA differs from other ascomycete mushroom HAs in a variety of biochemical characteristics. PMID:19093913

  7. Biological and Chemical Complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  8. What is Scirrhia?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete genus Scirrhia is presently treated as a member of the Dothideomycetidae, though uncertainty remains to which family it belongs in the Capnodiales within the Ascomycota. Recent collections on stems of a fern, Pteridium aquilinum (Dennstaedtiaceae) in Brazil, led to the discovery of a ...

  9. Genetic Diversity of Polyketide Synthase/Nonribosomal Peptide Synthetase Genes in Isolates of the Barley Net Blotch Fungus Pyrenophora teres f. teres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are multifunctional enzymes responsible for biosynthesis of diverse small molecules (e.g., mycotoxins and phytotoxins) in filamentous ascomycetes. Both PKS and NRPS genes are present in fungal genomes as large gene families but...

  10. Schwanniomyces Klocker emend. M. Suzuki & Kurtzman (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Schwanniomyces and is to be published in The Yeasts, A Taxonomic Study, 5th edn. The genus Schwanniomyces has seven assigned species, many worldwide in distribution. Schwanniomyces is one of the few yeast genera with species that seem to live in th...

  11. Back to basics and beyond: increasing the level of resistance to Septoria tritici blotch in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph: Septoria tritici), is one of the most ubiquitous and important diseases of wheat worldwide. Losses to STB can range from 30 to 50% in disease-conducive climates. Little progress was made in increasing the...

  12. Dermatolactone, a cytotoxic fungal sesquiterpene with a novel skeleton.

    PubMed

    Mayer, A; Kpke, B; Anke, H; Sterner, O

    1996-09-01

    The nematicidal 5-pentyl-2-furaldehyde and the cytotoxic sesquiterpene dermatolactone were isolated from the extracts of an Ascomycete belonging to the Dermateaceae. The furan has previously been reported from the Basidiomycete Irpex lacteus, while dermatolactone is a new compound the structure of which was determined by spectrosocpic methods. PMID:8862030

  13. Detection and Identification of Decay Fungi in Spruce Wood by Restriction Fragment Length Polymorphism Analysis of Amplified Genes Encoding rRNA

    PubMed Central

    Jasalavich, Claudia A.; Ostrofsky, Andrea; Jellison, Jody

    2000-01-01

    We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region. PMID:11055916

  14. AGONOMYCETES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agonomycetes are fungi which usually produce neither sexual (meiotic) nor asexual (mitotic) spores. Some members of this artificial (non-phylogenetic) group are related to ascomycetes, while others are related to basidiomycetes. Many members form spore-like propagules called chlamydospores, papulos...

  15. CONSERVED REQUIREMENT FOR A PLANT HOST CELL PROTEIN IN POWDERY MILDEW PATHOGENESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the fungal phylum Ascomycota, the ability to cause disease in plants and animals was gained and lost repeatedly during phylogenesis. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete, Blumeria graminis f. sp. hordei, the causal agent of t...

  16. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global...

  17. MVE1 Encoding the velvet gene product homolog in Mycosphaerella graminicola is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Mycosphaerella graminicola is an important pathogen of wheat that causes the disease septoria tritici blotch. Despite the serious impact of M. graminicola on wheat production worldwide, knowledge about its molecular biology is limited. The velvet gene, veA, is one of the key re...

  18. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylogenetic relatedness among ascomycetous yeast genera (subphylum Saccharomycotina, phylum Ascomycota) has been uncertain. In the present study, type species of 70 currently recognized genera are compared from divergence in the nearly entire nuclear gene sequences for large subunit rRNA, small sub...

  19. A spatial model for predicting effects of climate change on Swiss needle cast disease severity in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swiss needle cast disease of Douglas-fir is caused by the ascomycete fungus Phaeocryptopus gaeumannii. Symptoms of the disease are foliage chlorosis and premature needle abscission due to occlusion of stomata by the ascocarps of the pathogen, resulting in impaired needle gas exchange. Severe defol...

  20. Phylogeny and redescription of Dolabra nepheliae on rambutan and litchi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rambutan (Nephelium lappaceum L.) and lychee (Litchi chinensis Sonn.) are tropical trees in the Sapindaceae that produce delicious edible fruits and are increasingly cultivated in tropical areas. Recently these trees have been afflicted with a stem canker disease caused by the ascomycete Dolabra nep...

  1. MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Mycosphaerella graminicola is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed ...

  2. Species identification of the causal agent of Eutypa dieback of grapevine in northeastern American and southeastern Canadian vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutypa dieback of Vitis (grape) is caused by the Ascomycete fungus Eutypa lata. The pathogen infects grapevine through wounds, and cause wood canker and dieback symptoms. E. lata has been identified in all major grape production areas in the world. The first report of Eutypa dieback from northeaster...

  3. Cryptic Sexuality in Aspergillus parasiticus and A. flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycetous fungi of the genus Aspergillus comprise a wide variety of species of biotechnological importance (e.g. A. sojae, A. oryzae, A. niger) as well as pathogens and toxin producers (e.g. A. flavus, A. parasiticus, A. fumigatus, A. nidulans). With the exception of A. nidulans, which is a homot...

  4. Komagataella Y. Yamada, Matsuda, Maeda & Mikata (1995)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Komagataella and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Komagataella was derived from the genus Pichia following a multigene phylogenetic analysis. The three known species assigned to Komagataella are indistin...

  5. Peterozyma Kurtzman & Robnett (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chapter describes the ascomycete yeast genus Peterozyma and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Peterozyma is newly described and was derived from the genus Pichia following a multigene phylogenetic analysis. At present, there are two known species, bo...

  6. Wickerhamomyces Kurtzman, Robnett & Basehoar-Powers (2008)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Wickerhamomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Wickerhamomyces is newly described and was derived from the genus Pichia following a multigene phylogenetic analysis. At present, there are 17 species...

  7. Characterization and complementation of a fumonisin biosynthetic gene cluster deletion in banana isolates of Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maize pathogen Fusarium verticillioides produces the fumonisin mycotoxins, which are of significant concern for their animal toxicity. This ascomycete is also reported from banana, but such strains do not produce fumonisins and are not pathogenic on maize seedlings. Southern analysis of several ...

  8. Development of molecular markers for breeding for disease resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the filamentous ascomycetes fungus Magnaporthe oryzae and sheath blight disease caused by the soil borne fungus Rhizocotonia solani are the two major rice diseases that threaten stable rice production in the USA and worldwide. These two diseases have been managed with a ...

  9. Scheffersomyces Kurtzman & M. Suzuki (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Scheffersomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Scheffersomyces has three described species that were earlier assigned to the genus Pichia, but gene sequence analysis showed that the species, now rec...

  10. Meyerozyma Kurtzman & M. Suzuki (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Meyerozyma and is to be published in “The Yeasts, A Taxonomic Study,” 5th edition. The genus Meyerozyma is newly described and was derived from the genus Pichia following a multigene phylogenetic analysis. At present, there are two species assigned...

  11. Millerozyma Kurtzman & M. Suzuki (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Millerozyma and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Millerozyma has two described species that were earlier assigned to the genus Pichia, but gene sequence analysis showed that the species, now reclassified ...

  12. Priceomyuces M. Suzuki & Kurtzman (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Priceomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Priceomyces has five described species that were earlier assigned to the genus Pichia, but gene sequence analysis showed that the species, now reclassified...

  13. Babjeviella Kurtzman & M. Suzuki (2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Babjeviella and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus Babjeviella has one known species, B. inositovora, which is represented by three strains, one each from the U.S., Canada and Russia. The genus is phylogenet...

  14. High-Quality Draft Genome Sequence of Candida apicola NRRL Y-50540

    PubMed Central

    Vega-Alvarado, Leticia; Gmez-Angulo, Jorge; Escalante-Garca, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena

    2015-01-01

    Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera. PMID:26067948

  15. Molecular phylogeny of Sydowiellaceae, resolving the position of Cainiella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cainiella is an ascomycete genus associated with arctic alpine plants. The systematic position of Cainiella has been unclear for a long time with current classifications placing the genus in either Sordariales or Xylariales. Our molecular results, based on mtSSU, ITS and nLSU rDNA data, clearly show...

  16. Characterization and complementation of an apparent FUM gene cluster deletion in Fusarium verticillioides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous ascomycete Fusarium verticillioides is a worldwide pathogen of maize and produces the fumonisin mycotoxins. Contamination of maize kernels with fumonisin B1 (FB1) is of significant concern because of its causal role in equine leukoencephalomalacia, porcine pulmonary edema, liver and...

  17. Taiwanascus samuelsii sp. nov., an addition to Niessliaceae from the Western Ghats, Kerala, India

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of Taiwanascus, T. samuelsii, was collected from southern parts of Western Ghats on dead branches of Anacardium occidentale and is described. The new cleistothecial ascomycete is different from the type and only species in Taiwanascus, T. tetrasporus, in cleistothecial size, setae, and...

  18. Phaffomyces Y. Yamada, Higashi, S. Ando & Mikata (1997)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Phaffomyces and is to be published in "The Yeasts, A Taxonomic Study, 5th edition." The genus Phaffomyces was described for three species initially assigned to the genus Pichia, but these species proved quite distant from the type species of Pichia ...

  19. A Review of the Phylogeny and Biology of the Diaporthales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete order Diaporthales is reviewed based on recent phylogenetic data that outline the families and integrate related asexual fungi. The order is now considered to consist of nine families one of which is newly recognized as the Schizoparmeaceae fam. nov. and two families are recircumscri...

  20. FAMILIES IN THE DIAPORTHALES: A NEW LOOK BASED ON LSU NUCLEAR RDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete order Diaporthales includes a number of plant pathogenic fungi, the most notorious of which is Cryphonectria parasitica, the chestnut blight fungus. Relationships among genera in the Diaporthales were evaluated as a basis for the recognition of families and to provide a taxonomic fra...

  1. Occultocarpon, a new monotypic genus of Gnomoniaceae on Alnus nepalensis from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new monotypic genus Occultocarpon and its species, O. ailaoshanense, was discovered on the bark of branches of Alnus nepalensis (Betulaceae) in Yunnan, China. A phylogeny based on three genes (LSU, rpb2, tef1-a) reveals that O. ailaoshanense belongs to the Gnomoniaceae (Diaporthales, Ascomycetes) ...

  2. NRPS4 is responsible for the biosynthesis of destruxins in Metarhizium robertsii ARSEF 2575

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Destruxins (DTXs) are a family of cyclic depsipeptides that include > 35 members produced by Ascomycetous fungi belonging to several different taxa. These metabolites display a plethora of biological activities including toxicity against insects, depolarization of Ca2+ gradient across the plasma mem...

  3. Candida Berkhout (1923)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the 314 species assigned to the genus Candida and is to be published in the Yeasts, A Taxonomic Study, 5th edition. Ascomycete yeasts that do not form ascosporic state are assigned to the genus Candida, which is a highly polyphyletic taxonomic form genus. Assigned species in...

  4. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29

    PubMed Central

    Pomraning, Kyle R.

    2015-01-01

    Here, we present the draft genome sequence of the dimorphic ascomycete yeast Yarrowia lipolytica strain W29 (ATCC 20460). Y.lipolytica is a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids. PMID:26607882

  5. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29.

    PubMed

    Pomraning, Kyle R; Baker, Scott E

    2015-01-01

    Here, we present the draft genome sequence of the dimorphic ascomycete yeast Yarrowia lipolytica strain W29 (ATCC 20460). Y.lipolytica is a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids. PMID:26607882

  6. Biological and chemical complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  7. Cephaloascus Hanawa (1920)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Cephaloascus and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus Cephaloascus has two species. One, C. albidus, has been isolated from spoiled cranberry pumace, and the second, C. fragrans, is predominantly isolated fr...

  8. Saccharomycopsis Schionning (1903)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the ascomycete yeast genus Saccharomycopsis and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus Saccharomycopsis has 11 assigned species, many worldwide in distribution. Certain species, such as S. fibuligera, are commonly found in fermented, cere...

  9. CONIDIAL GERMINATION IN THE FILAMENTOUS FUNGUS FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These e...

  10. Diversity, Pathogenicity And Control of Verticillium Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Verticillium is a cosmopolitan group of ascomycetous fungi, encompassing phytopathogenic species that cause vascular wilts of plants. Two of these species, V. dahliae and V. albo-atrum, cause billions of dollars in annual crop losses worldwide. The soil habitat of these species, the exte...

  11. Cryptic Sexuality Influences Aflatoxigenicity in Aspergillus parasiticus and A. flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycetous fungi of the genus Aspergillus comprise a wide variety of species of biotechnological importance as well as pathogens and toxin producers. Recent studies report A. fumigatus to be heterothallic and possibly undergoing sexual reproduction. We therefore investigated whether compatible mat...

  12. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley Mla (Mildew resistance locus a) confers allele-specific interactions with natural variants of the ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of powdery mildew disease. Significant reprogramming of host gene expression occurs upon infection by this obligate biotrop...

  13. Application of a new approach for characterization and denomination of races of cucurbit powdery mildews – a case study on the Czech pathogen population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Golovinomyces cichoracearum (Gc) and Podosphaera xanthii (Px) (Ascomycetes, Erysiphaceae) are the most important fungal species causing cucurbit powdery mildew (CPM), a serious disease of field and greenhouse cucurbits. Both species are highly variable, as indicated by the existence of large number ...

  14. The potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophytes of the genus Neotyphodium are mutualistic fungi that colonize many cool season grasses. Neotyphodium endophytes are asexual but related to the ascomycete genus Epichloe. They do not produce obvious structures external to the host and for most of the life cycle are asymptomatic and system...

  15. Altering sexual reproductive mode by interspecific exchange of MAT loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual fungi can be self-sterile (heterothallic, requiring genetically distinct partners) or selffertile (homothallic, no partner required). In most ascomycetes, a single mating type locus (MAT) controls the ability to reproduce sexually. In the genus Cochliobolus, all heterothallic species have eit...

  16. Ascosphaera subglobosa, a new species from North America associated with the solitary bee Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascosphaera is a widespread ascomycetous genus of mostly obligate associates of bees. These fungi have diversified to exploit seemingly every possible substrate available in their bee-associated habitat, occurring as pathogens of the bees, or as saprotrophs on honey, cocoons, nesting materials, poll...

  17. Survival, germination, and growth of Epichloe typhina and significance of leaf wounds and insects in infection of orchardgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epichlo typhina, [choke] is an important stroma-producing endophytic ascomycete that is responsible for significant yield loss in orchardgrass seed production fields. Although infections are presumed to occur through leaves and stems, details of the infection process and conditions that favor leaf ...

  18. Recognition of Yeast Species from Gene Sequence Comparisons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...

  19. Real-time PCR detection of the boxwood blight pathogen Calonectria pseudonaviculata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boxwood blight is a newly emergent, destructive disease of boxwood (genus Buxus), caused by the ascomycete fungus Calonectria pseudonaviculata. Initially identified in Europe in the mid-1990s, the disease was first reported in the U.S. in CT, NC and VA during October 2011. In less than four months, ...

  20. Yarrowia van der Walt & von Arx (1980)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the ascomycete yeast genus Yarrowia and is to be published in The Yeasts, A Taxonomic Study, 5th edition. The genus has just one described species, Y. lipolytica, and is commonly known by its asexual name Candida lipolytica. The species is widely distributed in name and...

  1. The finished genomic sequence of the Septoria tritici blotch pathogen Mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola is the haploid ascomycete that causes Septoria tritici blotch, one of the most important diseases of wheat worldwide. This pathogen is phylogenetically distinct from other fungi that have been sequenced and is hemibiotrophic; early infection is biotrophic, followed by a s...

  2. Screening of ecologically diverse fungi for their potential to pretreat lignocellulosic bioenergy feedstock.

    PubMed

    Singh, S; Harms, H; Schlosser, D

    2014-04-01

    A widespread and hitherto by far underexploited potential among ecologically diverse fungi to pretreat wheat straw and digestate from maize silage in the future perspective of using such lignocellulosic feedstock for fermentative bioenergy production was inferred from a screening of nine freshwater ascomycetes, 76 isolates from constructed wetlands, nine peatland isolates and ten basidiomycetes. Wheat straw pretreatment was most efficient with three ascomycetes belonging to the genera Acephala (peatland isolate) and Stachybotrys (constructed wetland isolates) and two white-rot fungi (Hypholoma fasciculare and Stropharia rugosoannulata) as it increased the amounts of water-extractable total sugars by more than 50 % and sometimes up to 150 % above the untreated control. The ascomycetes delignified wheat straw at rates (lignin losses between about 31 and 40 % of the initial content) coming close to those observed with white-rot fungi (about 40 to 57 % lignin removal). Overall, fungal delignification was indicated as a major process facilitating the digestibility of wheat straw. Digestate was generally more resistant to fungal decomposition than wheat straw. Nevertheless, certain ascomycetes delignified this substrate to extents sometimes even exceeding delignification by basidiomycetes. Total sugar amounts of about 20 to 60 % above the control value were obtained with the most efficient fungi (one ascomycete of the genus Phoma, the unspecific wood-rot basidiomycete Agrocybe aegerita and one unidentified constructed wetland isolate). This was accompanied by lignin losses of about 47 to 56 % of the initial content. Overall, digestate delignification was implied to be less decisive for high yields of fermentable sugars than wheat straw delignification. PMID:24504460

  3. A year-round study on functional relationships of airborne fungi with meteorological factors

    NASA Astrophysics Data System (ADS)

    Li, De-Wei; Kendrick, Bryce

    1995-06-01

    Air sampling was conducted in Waterloo, Canada throughout 1992. Functional relationships between aeromycota and meteorological factors were analysed. The meteorological factors were, in descending order of importance: mean temperature, minimum temperature, maximum temperature, mean wind speed, relative humidity (RH), rain, maximum wind speed and snow. The most important airborne fungal propagules in descending order were: total fungal spores, unidentified Ascomycetes, Cladosporium, Coprinus, unidentified Basidiomycetes, Alternaria and unidentified fungi. Most airborne fungal taxa had highly significant relationship with temperature, but Aspergillus/Penicillium, hyphal fragments and Epicoccum did not. Epicoccum and hyphal fragments were positively associated with wind speed. In comparison with other airborne fungal taxa, Leptosphaeria and unidentified Ascomycetes were more closely correlated with rain and RH during the growing season.

  4. [Yeast biodiversity in hydromorphic soils with reference to grass-Sphagnum swamp in Western Siberia and the hammocky tundra region( Barrow, Alaska)].

    PubMed

    Poliakova, A V; Chernov, I Iu; Panikov, N S

    2001-01-01

    The microbiological analysis of 78 samples taken from a boreal bog in Western Siberia and from a tundra wetland soil in Alaska showed the presence of 23 yeast species belonging to the genera Bullera, Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Metschnikowia, Mrakia, Pichia, Rhodotorula, Saccharomyces, Sporobolomyces, Torulaspora, and Trichosporon. Peat samples from the boreal bog were dominated by eurytopic anamorphic basidiomycetous species, such as Rhodotorula mucilaginosa and Sporobolomyces roseus, and by the ascomycetous yeasts Candida spp. and Debaryomyces hansenii. These samples also contained two rare ascomycetous species (Candida paludigena and Schizoblastosporion starkeyi-henricii), which so far have been found only in taiga wetland soils. The wetland Alaskan soil was dominated by one yeast species (Cryptococcus gilvescens), which is a typical inhabitant of tundra soils. Therefore, geographic factors may serve for a more reliable prediction of yeast diversity in soils than the physicochemical or ecotopic parameters of these soils. PMID:11763794

  5. Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering.

    PubMed

    Aguiar, Tatiana Q; Dinis, Cludia; Domingues, Luclia

    2014-07-01

    The filamentous ascomycete Ashbya gossypii is amenable to genetic manipulation and is an excellent model system for studying eukaryotic cell biology. However, the number of selection markers in current use for both targeted gene integration and disruption in this fungus are very limited. Therefore, the Cre-loxP recombination system was adapted for use in A. gossypii and its effectiveness in recycling marker genes was demonstrated by constructing both single and double deleted Agura3 and Agade1 auxotrophic strains free of exogenous markers. In spite of its wide use in other organisms, including other Ascomycete fungi, this is the first report describing Cre-loxP-based methodology for A. gossypii, opening new perspectives for targeted engineering of this fungus with several promising biotechnological applications [corrected]. PMID:24792968

  6. Dolabra nepheliae on rambutan and lychee represents a novel lineage of phytopathogenic Eurotiomycetes

    PubMed Central

    Schoch, Conrad L.; Farr, David F.; Nishijima, Kate; Keith, Lisa; Goenaga, Ricardo

    2010-01-01

    Rambutan (Nephelium lappaceum) and lychee (Litchi chinensis) are tropical trees in the Sapindaceae that produce delicious edible fruits and are increasingly cultivated in tropical regions. These trees are afflicted with a stem canker disease associated with the ascomycete Dolabra nepheliae. Previously known from Asia and Australia, this fungus was recently reported from Hawaii and Puerto Rico. The sexual and asexual states of Dolabra nepheliae are redescribed and illustrated. In addition, the ITS and large subunit of the nuclear ribosomal DNA plus fragments from the genes RPB2, TEF1, and the mitochondrial small ribosomal subunit were sequenced for three isolates of D. nepheliae and compared with other sequences of ascomycetes. It was determined that D. nepheliae represents a new lineage within the Eurotiomycetes allied with Phaeomoniella chlamydospora, the causal agent of Petri grapevine decline. PMID:20802819

  7. The most recent results on orchid mycorrhizal fungi in Hungary.

    PubMed

    Illys, Z; Ouanphanivanh, Nomi; Rudny, Sz; Orczn, A K; Bratek, Z

    2010-01-01

    Symbionts and endophytes of Hungarian orchids were studied at diverse habitats. Mycobionts of roots and in situ germinated protocorms of 15 orchid species were identified by molecular methods. Four fungal groups could be distinguished from orchids living at diversely wet treeless habitats: Ceratobasidiaceae, Epulorhiza 1, Epulorhiza 2 and Sebacinaceae. While the groups Ceratobasidiaceae and Sebacinaceae were detected only at habitats with medium water supply, members of clade Epulorhiza occurred at all of the treeless study sites. These observations suggest that fungi belonging to the genus Epulorhiza are more tolerant of water-stress than the other investigated genera. An ascomycetous fungus from the family Pezizaceae could be identified from the roots of Orchis coriophora. Further Ascomycetes were identified at forest habitats. Tuber maculatum was detected from the roots of Epipactis helleborine and Cephalanthera damasonium, and Tuber excavatum from Epipactis microphylla. PMID:21565766

  8. Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador.

    PubMed

    Thomas, Sarah E; Crozier, Jayne; Catherine Aime, M; Evans, Harry C; Holmes, Keith A

    2008-07-01

    Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Non-sporulating isolates were grouped into 46 different morphological species according to their colony morphology. Many of these morphospecies were assumed to be basidiomycetes and, therefore, were of particular interest. Basidiomycetous endophytes have received far less attention than ascomycetes and also have potential as biological control agents of the basidiomycetous pathogens of T. cacao: Moniliophthora roreri (frosty pod rot pathogen) and M. perniciosa (witches' broom disease). The morphospecies were further characterised by molecular analyses. Amplification of the nuLSU was undertaken for phylogenetic placement of these non-sporulating cultures and revealed a total of 31 different taxa of which 15 were basidiomycetes belonging to the class Agaricomycetes, and 16 ascomycetes primarily belonging to the Sordariomycetes. PMID:18534836

  9. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  10. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana

    PubMed Central

    Xiao, Guohua; Ying, Sheng-Hua; Zheng, Peng; Wang, Zheng-Liang; Zhang, Siwei; Xie, Xue-Qin; Shang, Yanfang; St. Leger, Raymond J.; Zhao, Guo-Ping; Wang, Chengshu; Feng, Ming-Guang

    2012-01-01

    The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide. PMID:22761991

  11. Preliminary checklist of fungi of the Fernow Experimental Forest. Forest Service general technical report (Final)

    SciTech Connect

    Stephenson, S.L.; Kumar, A.; Bhatt, R.; Dubey, T.; Landolt, J.C.

    1994-01-01

    The report provides a checklist of fungi found on the Fernow Experimental Forest in West Virginia during 4 years of research and collecting by the authors. More than 500 fungi in seven major taxonomic groups (Acrasiomycetes, Myxomycetes, Chytridiomycetes, Oomycetes, Ascomycetes, Deuteromycetes, and Basidiomycetes) are listed alphabetically by genus and species. Also provided is a general description of the forest vegetation of the Fernow Experimental Forest.

  12. Isolation of Hanseniaspora uvarum (Kloeckera apiculata) in humans.

    PubMed

    García-Martos, P; Hernández-Molina, J M; Galán, F; Ruiz-Henestrosa, J R; García-Agudo, R; Palomo, M J; Mira, J

    Isolation of Hanseniaspora uvarum, a yeast of the ascomycetes group, whose anamorph corresponds to Kloeckera apiculata, obtained from stool and two ungual specimens from three patients, is reported. This yeast has been found in soil, water, various fruits, bivalve molluscs, crabs, prawns and fruit flies; in Spain, it has been described in the fermentation processes of some wines. In our region, it has also been found in the intestine of mackerel (Scomber scombrus). Its finding in humans constitutes a clinical rarity. PMID:10481287

  13. Release of Dimethylsulfide from Dimethylsulfoniopropionate by Plant-Associated Salt Marsh Fungi

    PubMed Central

    Bacic, M. K.; Newell, S. Y.; Yoch, D. C.

    1998-01-01

    The range of types of microbes with dimethylsulfoniopropionate (DMSP) lyase capability (enzymatic release of dimethylsulfide [DMS] from DMSP) has recently been expanded from bacteria and eukaryotic algae to include fungi (a species of the genus Fusarium [M. K. Bacic and D. C. Yoch, Appl. Environ. Microbiol. 64:106–111, 1998]). Fungi (especially ascomycetes) are the predominant decomposers of shoots of smooth cordgrass, the principal grass of Atlantic salt marshes of the United States. Since the high rates of release of DMS from smooth cordgrass marshes have a temporal peak that coincides with peak shoot death, we hypothesized that cordgrass fungi were involved in this DMS release. We tested seven species of the known smooth cordgrass ascomycetes and discovered that six of them exhibited DMSP lyase activity. We also tested two species of ascomycetes from other DMSP-containing plants, and both were DMSP lyase competent. For comparison, we tested 11 species of ascomycetes and mitosporic fungi from halophytes that do not contain DMSP; of these 11, only 3 were positive for DMSP lyase. A third group tested, marine oomycotes (four species of the genera Halophytophthora and Pythium, mostly from mangroves), showed no DMSP lyase activity. Two of the strains of fungi found to be positive for DMSP lyase also exhibited uptake of DMS, an apparently rare combination of capabilities. In conclusion, a strong correlation exists between a fungal decomposer’s ability to catabolize DMSP via the DMSP lyase pathway and the host plant’s production of DMSP as a secondary product. PMID:16349548

  14. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi.

    PubMed

    de Guillen, Karine; Ortiz-Vallejo, Diana; Gracy, Jrome; Fournier, Elisabeth; Kroj, Thomas; Padilla, Andr

    2015-10-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 ?-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. PMID:26506000

  15. Spider, bacterial and fungal phospholipase D toxins make cyclic phosphate products.

    PubMed

    Lajoie, Daniel M; Cordes, Matthew H J

    2015-12-15

    Phospholipase D (PLD) toxins from sicariid spiders, which cause disease in mammals, were recently found to convert their primary substrates, sphingomyelin and lysophosphatidylcholine, to cyclic phospholipids. Here we show that two PLD toxins from pathogenic actinobacteria and ascomycete fungi, which share distant homology with the spider toxins, also generate cyclic phospholipids. This shared function supports divergent evolution of the PLD toxins from a common ancestor and suggests the importance of cyclic phospholipids in pathogenicity. PMID:26482933

  16. Slippery Scar: A New Mushroom Disease in Auricularia polytricha

    PubMed Central

    Sun, Jie

    2012-01-01

    A new disease, the slippery scar, was investigated in cultivated bags of Auricularia polytricha. This fungus was isolated from the infected mycelia of cultivated bags. Based on morphological observation, rDNA-internal transcribed spacer and 18S sequence analysis, this pathogen was identified as the Ascomycete Scytalidium lignicola. According to Koch's Postulation, the pathogenicity of S. lignicola to the mycelia of A. polytricha was confirmed. The parasitism of this fungus on mushroom mycelia in China has not been reported before. PMID:22870056

  17. Camarosporium arezzoensis on Cytisus sp., an addition to sexual state of Camarosporium sensu stricto.

    PubMed

    Tibpromma, Saowaluck; Wijayawardene, Nalin N; Manamgoda, Dimuthu S; Boonmee, Saranyaphat; Wanasinghe, Dhanushka N; Camporesi, Erio; Yang, Jun-Bo; Hyde, Kevin D

    2016-01-01

    During a study of saprobic fungi from Bagno di Cetica Province, Italy, we collected a pleosporoid ascomycete on stems of Cytisus sp. In morphology, our collection is similar to Cucurbitaria species, but molecular analysis of SSU, LSU and ITS genes reveals it can be referred to Camarosporium. In this study we compare all other Cucurbitaria species from Cytisus sp. and based on both morphology and molecular data, we introduce our collection as a new species in Camarosporium viz. C. arezzoensis. PMID:26858532

  18. Draft genome sequence of the dimorphic yeast Yarrowia lipolytica, strain W29

    SciTech Connect

    Pomraning, Kyle R.; Baker, Scott E.

    2015-11-25

    Here we present the draft genome sequence of the dimorphic ascomycete yeast Yarrowia lipolytica strain W29 (ATCC20460TM). Y. lipolytica is a commonly employed model for industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids. It has also been used to study genome evolution in yeast and filamentous fungi due to its position as an early diverging branch of the subphylum Sacchromycotina.

  19. Tubulin modulating antifungal and antiproliferative pyrazinone derivatives.

    PubMed

    Taggi, Andrew E; Stevenson, Thomas M; Bereznak, James F; Sharpe, Paula L; Gutteridge, Steven; Forman, Robert; Bisaha, John J; Cordova, Daniel; Crompton, Martina; Geist, Lora; Kovacs, Patrick; Marshall, Eric; Sheth, Ritesh; Stavis, Courtney; Tseng, Chi-Ping

    2016-02-01

    A novel class of synthetic tubulin polymerization disruptors, based on a substituted pyrazin-2-one core, has been discovered. These molecules have proven to be potent broad spectrum fungicides, with activity on agriculturally important ascomycete and basidiomycete pathogens. They have also been found to be particularly potent against human rhabdomyosarcoma cells. Using an efficient synthetic route, the agricultural and medicinal activity was explored. PMID:26386818

  20. ?-Carbonic Anhydrases Play a Role in Fruiting Body Development and Ascospore Germination in the Filamentous Fungus Sordaria macrospora

    PubMed Central

    Elleuche, Skander; Pggeler, Stefanie

    2009-01-01

    Carbon dioxide (CO2) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO3?) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into ?-, ?-, ?-, ?- and ?-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of ?-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding ?-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (?cas1, ?cas2, and ?cas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant ?cas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain ?cas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO2 levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions. PMID:19365544

  1. Fungemia Caused by Zygoascus hellenicus in an Allogeneic Stem Cell Transplant Recipient

    PubMed Central

    Brandt, Mary E.; Kauffman, Carol A.; Pappas, Peter G.; Iqbal, Naureen; Arthington-Skaggs, Beth A.; Lee-Yang, Wendy; Smith, Maudy T.

    2004-01-01

    Zygoascus hellenicus (Candida hellenica) was isolated from a blood culture from a patient who had received an allogeneic stem cell transplant. The isolate displayed an antifungal susceptibility pattern of decreased susceptibility to fluconazole and itraconazole, high susceptibility to voriconazole, and low susceptibility to caspofungin. The organism was misidentified by a commercial yeast identification system. This is the first reported case of human infection with this rare ascomycetous yeast. PMID:15243118

  2. Camarosporium arezzoensis on Cytisus sp., an addition to sexual state of Camarosporium sensu stricto

    PubMed Central

    Tibpromma, Saowaluck; Wijayawardene, Nalin N.; Manamgoda, Dimuthu S.; Boonmee, Saranyaphat; Wanasinghe, Dhanushka N.; Camporesi, Erio; Yang, Jun-Bo; Hyde, Kevin D.

    2015-01-01

    During a study of saprobic fungi from Bagno di Cetica Province, Italy, we collected a pleosporoid ascomycete on stems of Cytisus sp. In morphology, our collection is similar to Cucurbitaria species, but molecular analysis of SSU, LSU and ITS genes reveals it can be referred to Camarosporium. In this study we compare all other Cucurbitaria species from Cytisus sp. and based on both morphology and molecular data, we introduce our collection as a new species in Camarosporium viz. C. arezzoensis. PMID:26858532

  3. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

    PubMed Central

    Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-01-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. PMID:26506000

  4. Genome Sequence of the Food Spoilage Yeast Zygosaccharomyces bailii CLIB 213T

    PubMed Central

    Bigey, Frdric; Devillers, Hugo; Neuvglise, Ccile; Dequin, Sylvie

    2013-01-01

    The ascomycetous yeast Zygosaccharomyces bailii is one of the most problematic spoilage yeasts in food and beverage industries, due to its exceptional resistance to various stresses. A better understanding of the molecular mechanisms underlying these stress resistance phenotypes might help develop strategies to improve food quality. Thus, we determined and annotated the genome sequence of the strain Z.bailii CLIB 213T (= CBS 680). PMID:23969048

  5. Genome Sequence of the Food Spoilage Yeast Zygosaccharomyces bailii CLIB 213T.

    PubMed

    Galeote, Virginie; Bigey, Frdric; Devillers, Hugo; Neuvglise, Ccile; Dequin, Sylvie

    2013-01-01

    The ascomycetous yeast Zygosaccharomyces bailii is one of the most problematic spoilage yeasts in food and beverage industries, due to its exceptional resistance to various stresses. A better understanding of the molecular mechanisms underlying these stress resistance phenotypes might help develop strategies to improve food quality. Thus, we determined and annotated the genome sequence of the strain Z.bailii CLIB 213(T) (= CBS 680). PMID:23969048

  6. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex

    PubMed Central

    Frey, Stefan; Reschka, Eva J.; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain. PMID:26418262

  7. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Min-Ji; Lee, Hwanhwi; Choi, Yong-Seok; Kim, Gyu-Hyeok; Huh, Na-Yoon; Lee, Sangjoon; Lim, Young Woon; Lee, Sung-Suk; Kim, Jae-Jin

    2010-05-01

    This study was conducted to generate information regarding the diversity of fungi inhabiting creosote-treated wood in a storage yard for crosstie wastes in Gwangmyeong, Korea. Additionally, the resistance to polycyclic aromatic hydrocarbons (PAHs) of indigenous fungi that mainly occupy creosote-treated wood was evaluated. We isolated fungi from the surface and inner area of crosstie wastes and identified them using a combination of traditional methods and molecular techniques. Overall, 179 isolates including 47 different species were isolated from 240 sampling sites. The identified fungal species included 23 ascomycetes, 19 basidiomycetes, and 5 zygomycetes. Three species, Alternaria alternata, Irpex lacteus, and Rhizomucor variabilis, were the most frequently isolated ascomycetes, basidiomycetes, and zygomycetes, respectively. The results of this study showed that there was a large difference in the fungal diversity between the surface and the inner area. Additionally, zygomycetes and ascomycetes were found to have a greater tolerance to PAHs than basidiomycetes. However, two basidiomycetes, Heterobasidion annosum and Schizophyllum commune, showed very high resistance to PAHs, even in response to the highest concentration (1,000 ppm), which indicates that these species may play a role in the degradation of PAHs. PMID:20127413

  8. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data.

    PubMed

    Beimforde, Christina; Feldberg, Kathrin; Nylinder, Stephan; Rikkinen, Jouko; Tuovila, Hanna; Drfelt, Heinrich; Gube, Matthias; Jackson, Daniel J; Reitner, Joachim; Seyfullah, Leyla J; Schmidt, Alexander R

    2014-09-01

    The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered. PMID:24792086

  9. Soil-inhabiting fungal community composition as qualitative indicator of C metabolism processes

    NASA Astrophysics Data System (ADS)

    Manici, L.; Ciavatta, C.; Caputo, F.

    2009-04-01

    Although fungi represent the greater part of soil microbial biomass, they play an important role in macro-aggregate formation and their carbon (C) assimilation efficiency is markedly higher than that of bacteria (Bailey et al., 2002), they have not yet been widely used as soil biological indicators. The reason is mainly due to the difficulties in application of molecular analysis tools due to limited availability of reference sequence of fungal strains in DNA database and to the low concentration of fungal DNA in soil and in isolating, enumerating and identifying groups of fungi differing for their functioning in soil and for biological characteristics. The presence of Ascomycetes and Basidiomycetes as the two main groups of soil-inhabiting fungi were investigated in four different cropping systems. The soil DNA of soil samples coming from twenty sites (five sites for each system), collected in two cropping systems in northern (soil organic matter - SOM content varying from 0.8 to 1.4 %) and two in southern Italy (SOM from 1.4 to 2.3%), was amplified using Ascomycete-specific primer ITS1F - ITS4A (Larena et al., 1999) and Basidiomycete-specific primer ITS1F -ITS4B (Gardes and Bruns, 1993). On the basis of soil DNA amplified with specific primers, Ascomycetes were much more represented than Basidiomycetes in the cultivated top soil. Basidiomycetes are usually reported to account for more than half of the fungal biomass in undisturbed soils. However the low ratio of Basidiomycete DNA to soil fungal DNA observed in this study could be a feature of soil fungal communities in arable soil affected by desertification problems as those of some Italian cropping systems mainly in Mediterranean area. This phenomenon could be due to soil tillage, which is well known to deeply reduce fungal biomass and to continuous incorporation into the soil of herbaceous crop residues. In fact, Ascomycetes decompose holocellulose in preference to lignin (Oslko & Takeda, 2002) and their growth may depend on readily available energy sources, such as soluble carbohydrates (Hudson, 1968). The high ratio of Ascomycetes in the top layer where crop residues of the recurrent had represented the main substrate for saprophytic fungi could explain these results. On the contrary, Basidiomycetes are the most important synthesizing biomass organisms in forest soils as well as the most effective organisms in lignin decomposition with an important role in humic substances processes (Hurst et al., 1963; Cook and Rayner, 1986). Preliminary results of this study suggest that the composition of soil-inhabiting fungal communities, which are the organisms most involved in C metabolism processes, could represents an useful indicator in programs aimed to increase the quality of organic matter in arable soils. Bailey V., Smith L., Bolton Jr K. 2002. Fungal-to-bacteria ratio investigated for enhanced C sequestration. Soil Biol. Biochem. 34, 997-1007. Cook R., Rayner A.D.M. 1984. Ecology of Saprotrophic Fungi. Longman, London, New York, 415 pp. Gardes M., Bruns T.D. 1993. ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Molec. Ecol. 2, 113-118. Hudson H.J. 1968. The ecology of fungi on plant remains above the soil. New Phytol. 67, 837-874. Hurst H.M., A. Burges, P. Latter. 1963. Some aspects of the biochemistry of humic acid decomposition by fungi. Phytochem. 1, 227-231. Larena I., Salazar O., Gonzlez V, Julin M.C., Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for Ascomycetes. J. Biotech. 75, 187-194. Osolko T., Fukasawa Y., Takeda H. 2003. Roles of diverse fungi in Larch neerle-litter decomposition. Mycologia 95, 820-826.

  10. Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest

    PubMed Central

    Edwards, Ivan P.; Zak, Donald R.; Kellner, Harald; Eisenlord, Sarah D.; Pregitzer, Kurt S.

    2011-01-01

    High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 24 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community. PMID:21701691

  11. Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis

    PubMed Central

    2008-01-01

    Background Most filamentous ascomycete fungi produce high affinity iron chelators called siderophores, biosynthesized nonribosomally by multimodular adenylating enzymes called nonribosomal peptide synthetases (NRPSs). While genes encoding the majority of NRPSs are intermittently distributed across the fungal kingdom, those encoding ferrichrome synthetase NRPSs, responsible for biosynthesis of ferrichrome siderophores, are conserved, which offers an opportunity to trace their evolution and the genesis of their multimodular domain architecture. Furthermore, since the chemistry of many ferrichromes is known, the biochemical and structural 'rules' guiding NRPS substrate choice can be addressed using protein structural modeling and evolutionary approaches. Results A search of forty-nine complete fungal genome sequences revealed that, with the exception of Schizosaccharomyces pombe, none of the yeast, chytrid, or zygomycete genomes contained a candidate ferrichrome synthetase. In contrast, all filamentous ascomycetes queried contained at least one, while presence and numbers in basidiomycetes varied. Genes encoding ferrichrome synthetases were monophyletic when analyzed with other NRPSs. Phylogenetic analyses provided support for an ancestral duplication event resulting in two main lineages. They also supported the proposed hypothesis that ferrichrome synthetases derive from an ancestral hexamodular gene, likely created by tandem duplication of complete NRPS modules. Recurrent losses of individual domains or complete modules from this ancestral gene best explain the diversity of extant domain architectures observed. Key residues and regions in the adenylation domain pocket involved in substrate choice and for binding the amino and carboxy termini of the substrate were identified. Conclusion Iron-chelating ferrichrome synthetases appear restricted to fission yeast, filamentous ascomycetes, and basidiomycetes and fall into two main lineages. Phylogenetic analyses suggest that loss of domains or modules led to evolution of iterative biosynthetic mechanisms that allow flexibility in biosynthesis of the ferrichrome product. The 10 amino acid NRPS code, proposed earlier, failed when we tried to infer substrate preference. Instead, our analyses point to several regions of the binding pocket important in substrate choice and suggest that two positions of the code are involved in substrate anchoring, not substrate choice. PMID:19055762

  12. Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala).

    PubMed

    Laitila, Arja; Sarlin, Tuija; Raulio, Mari; Wilhelmson, Annika; Kotaviita, Erja; Huttunen, Timo; Juvonen, Riikka

    2011-01-01

    Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process. PMID:20872177

  13. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus Ustilago maydis

    PubMed Central

    Valinluck, Michael; Woraratanadharm, Tad; Lu, Ching-yu; Quintanilla, Rene H.

    2014-01-01

    Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4?GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi. PMID:24613993

  14. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods.

    PubMed

    Lou, Qiao-Zhe; Lu, Min; Sun, Jiang-Hua

    2014-08-01

    Bark beetle-associated yeasts are much less studied than filamentous fungi, yet they are also considered to play important roles in beetle nutrition, detoxification, and chemical communication. The red turpentine beetle, Dendroctonus valens, an invasive bark beetle introduced from North America, became one of the most destructive pests in China, having killed more than 10 million Pinus tabuliformis as well as other pine species. No investigation of yeasts associated with this bark beetle in its invaded ranges has been conducted so far. The aim of this study was to assess the diversity of yeast communities in different microhabitats and during different developmental stages of Den. valens in China using culturing and denaturing gradient gel electrophoresis (DGGE) approaches and to compare the yeast flora between China and the USA. The yeast identity was confirmed by sequencing the D1/D2 domain of LSU ribosomal DNA (rDNA). In total, 21 species (13 ascomycetes and eight basidiomycetes) were detected by culturing method, and 12 species (11 ascomycetes and one basidiomycetes) were detected by molecular methods from China. The most frequent five species in China were Candida piceae (Ogataea clade), Cyberlindnera americana, Candida oregonensis (Metschnikowia clade), Candida nitratophila (Ogataea clade) and an undescribed Saccharomycopsis sp., detected by both methods. Seven species were exclusively detected by DGGE. Ca. oregonensis (Metschnikowia clade) was the most frequently detected species by DGGE method. Eight species (all were ascomycetes) from the USA were isolated; seven of those were also found in China. We found significant differences in yeast total abundance as well as community composition between different developmental stages and significant differences between the surface and the gut. The frass yeast community was more similar to that of Den. valens surface or larvae than to the community of the gut or adults. Possible functions of the yeast associates are discussed. PMID:24691849

  15. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest.

    PubMed

    Edwards, Ivan P; Zak, Donald R; Kellner, Harald; Eisenlord, Sarah D; Pregitzer, Kurt S

    2011-01-01

    High levels of atmospheric nitrogen (N) deposition may result in greater terrestrial carbon (C) storage. In a northern hardwood ecosystem, exposure to over a decade of simulated N deposition increased C storage in soil by slowing litter decay rates, rather than increasing detrital inputs. To understand the mechanisms underlying this response, we focused on the saprotrophic fungal community residing in the forest floor and employed molecular genetic approaches to determine if the slower decomposition rates resulted from down-regulation of the transcription of key lignocellulolytic genes, by a change in fungal community composition, or by a combination of the two mechanisms. Our results indicate that across four Acer-dominated forest stands spanning a 500-km transect, community-scale expression of the cellulolytic gene cbhI under elevated N deposition did not differ significantly from that under ambient levels of N deposition. In contrast, expression of the ligninolytic gene lcc was significantly down-regulated by a factor of 2-4 fold relative to its expression under ambient N deposition. Fungal community composition was examined at the most southerly of the four sites, in which consistently lower levels of cbhI and lcc gene expression were observed over a two-year period. We recovered 19 basidiomycete and 28 ascomycete rDNA 28S operational taxonomic units; Athelia, Sistotrema, Ceratobasidium and Ceratosebacina taxa dominated the basidiomycete assemblage, and Leotiomycetes dominated the ascomycetes. Simulated N deposition increased the proportion of basidiomycete sequences recovered from forest floor, whereas the proportion of ascomycetes in the community was significantly lower under elevated N deposition. Our results suggest that chronic atmospheric N deposition may lower decomposition rates through a combination of reduced expression of ligninolytic genes such as lcc, and compositional changes in the fungal community. PMID:21701691

  16. Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi

    PubMed Central

    Meerupati, Tejashwari; Andersson, Karl-Magnus; Friman, Eva; Kumar, Dharmendra; Tunlid, Anders; Ahrén, Dag

    2013-01-01

    Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes. PMID:24244185

  17. Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth

    NASA Astrophysics Data System (ADS)

    van Geel, Bas; Guthrie, R. Dale; Altmann, Jens G.; Broekens, Peter; Bull, Ian D.; Gill, Fiona L.; Jansen, Boris; Nieman, Aline M.; Gravendeel, Barbara

    2011-08-01

    Dung from a mammoth was preserved under frozen conditions in Alaska. The mammoth lived during the early part of the Late Glacial interstadial (ca 12,300 BP). Microfossils, macroremains and ancient DNA from the dung were studied and the chemical composition was determined to reconstruct both the paleoenvironment and paleobiology of this mammoth. Pollen spectra are dominated by Poaceae, Artemisia and other light-demanding taxa, indicating an open, treeless landscape ('mammoth steppe'). Fruits and seeds support this conclusion. The dung consists mainly of cyperaceous stems and leaves, with a minor component of vegetative remains of Poaceae. Analyses of fragments of the plastid rbcL gene and trnL intron and nrITS1 region, amplified from DNA extracted from the dung, supplemented the microscopic identifications. Many fruit bodies with ascospores of the coprophilous fungus Podospora conica were found inside the dung ball, indicating that the mammoth had eaten dung. The absence of bile acids points to mammoth dung. This is the second time that evidence for coprophagy of mammoths has been derived from the presence of fruit bodies of coprophilous fungi in frozen dung. Coprophagy might well have been a common habit of mammoths. Therefore, we strongly recommend that particular attention should be given to fungal remains in future fossil dung studies.

  18. Molecular characterization of beta-tubulin gene from Pleurotus sajor-caju.

    PubMed

    Kim, B G; Yoo, Y B; Kwon, S T; Magae, Y

    2001-10-01

    A beta-tubulin gene (TUB1) from the basidiomycete Pleurotus sajor-caju was sequenced. TUB1 encodes a 446-amino-acid protein. The coding region is interrupted by 9 introns, all of which had a 5'-GTRNGT... YAG-3' sequence at the boundaries. Locations of the introns in TUB1 were common between the beta-tubulin genes of other basidiomycetes, but not with animals, ascomycetes, or plants. This suggests that the introns were inserted independently into the beta-tubulin gene after these divisions had diverged. PMID:11758921

  19. Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews

    PubMed Central

    Bindschedler, Laurence V.; Panstruga, Ralph; Spanu, Pietro D.

    2016-01-01

    The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale (“-omics”) approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various –omics technologies. PMID:26913042

  20. Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro.

    PubMed

    Koskella, J; Stotzky, G

    2002-03-01

    The insecticidal toxins from Bacillus thuringiensis subspp. kurstaki (antilepidopteran), morrisoni strain tenebrionis (anticoleopteran), and israelensis (antidipteran) did not affect the growth of a variety of bacteria (8 gram-negative, 5 gram-positive, and a cyanobacterium), fungi (2 Zygomycetes, 1 Ascomycete, 2 Deuteromycetes, and 2 yeasts), and algae (primarily green and diatoms) in pure and mixed culture, as determined by dilution, disk-diffusion, and sporulation assays with purified free and clay-bound toxins. The insecticidal crystal proteins from B. thuringiensis subspp. kurstaki and israelensis had no antibiotic effect on various gram-positive bacteria. PMID:11989771

  1. Arxula adeninivorans (Blastobotrys adeninivorans) A Dimorphic Yeast of Great Biotechnological Potential

    NASA Astrophysics Data System (ADS)

    Ber, Erik; Steinborn, Gerhard; Florschtz, Kristina; Krner, Martina; Gellissen, Gerd; Kunze, Gotthard

    The dimorphic ascomycetous yeast Arxula adeninivorans exhibits some unusual properties. Being a thermo- and halotolerant species it is able to assimilate and ferment many compounds as sole carbon and/or nitrogen source. It utilises n-alkanes and is capable of degrading starch. Due to these unusual biochemical properties A. adeninivorans can be exploited as a gene donor for the production of enzymes with attractive biotechnological characteristics. Examples of A. adeninivorans-derived genes that are overexpressed include the ALIP1 gene encoding a secretory lipase, the AINV encoding invertase, the AXDH encoding xylitol dehydrogenase and the APHY encoding a secretory phosphatase with phytase activity.

  2. [Comparison of the fungal complexes of the Japanese scallop Mizuhopecten yessoensis (Jay, 1856) from different areas of the Peter the Great Bay, Sea of Japan].

    PubMed

    Borzykh, O G; Zvereva, L V

    2014-01-01

    Mycological investigation of the Japanese scallop Mizuhopecten yessoensis (Jay) (Bivalvia) collected in different areas of the Peter the Great Bay, Sea of Japan, was carried out. A total of 72 species of filamentous fungi belonging to 30 genera of ascomycetes, anamorphous fungi, and zygomycetes was isolated from the internal organs of the scallop. The species.diversity of mycelial fungi in the internal organs, especially of members of the generaAspergillus, Penicillium, Cladosporium, and Chaetomium, was found to increase in polluted coastal waters. PMID:25844471

  3. Endolithic biofilms: a model for extraterrestrial ecological niches?

    NASA Astrophysics Data System (ADS)

    Pohl, Wolfhart; Hoppert, Michael; Flies, Christine; Gunzl, Bettina; Ruppert, Hans; Schneider, Juergen

    1999-12-01

    In natural ecosystems, bacteria, unicellular algae, filamentous and yeast-like fungi are often organized in thin films attached to or entrenched in substrata such as surfaces of solid rocks, minerals or larger organisms. Frequently the formation of a biofilm is the most successful survival strategy. Especially within endolithic biofilms micro-organisms actively create a safe niche to avoid extreme and thus harmful environmental conditions such as electromagnetic radiation, mechanical abrasion, water and temperature stress and hazardous chemical agents. Exemplary survival strategies are presented for bacteria, ascomycetes and green algae. On substrata without organic carbon sources, biofilms are composed of chemolithotrophic or phototrophic primary producers and heterotrophic organisms (including destruents).

  4. Large Scale Sequencing of Dothideomycetes Provides Insights into Genome Evolution and Adaptation

    SciTech Connect

    Haridas, Sajeet; Crous, Pedro; Binder, Manfred; Spatafora, Joseph; Grigoriev, Igor

    2015-03-16

    Dothideomycetes is the largest and most diverse class of ascomycete fungi with 23 orders 110 families, 1300 genera and over 19,000 known species. We present comparative analysis of 70 Dothideomycete genomes including over 50 that we sequenced and are as yet unpublished. This extensive sampling has almost quadrupled the previous study of 18 species and uncovered a 10 fold range of genome sizes. We were able to clarify the phylogenetic positions of several species whose origins were unclear in previous morphological and sequence comparison studies. We analyzed selected gene families including proteases, transporters and small secreted proteins and show that major differences in gene content is influenced by speciation.

  5. Fungal diversity on fallen leaves of Ficus in northern Thailand*

    PubMed Central

    Wang, Hong-kai; Hyde, Kevin D.; Soytong, Kasem; Lin, Fu-cheng

    2008-01-01

    Fallen leaves of Ficus altissima, F. virens, F. benjamina, F. fistulosa and F. semicordata, were collected in Chiang Mai Province in northern Thailand and examined for fungi. Eighty taxa were identified, comprising 56 anamorphic taxa, 23 ascomycetes and 1 basidiomycete. Common fungal species occurring on five host species with high frequency of occurrence were Beltraniella nilgirica, Lasiodiplodia theobromae, Ophioceras leptosporum, Periconia byssoides and Septonema harknessi. Colletotrichum and Stachybotrys were also common genera. The leaves of different Ficus species supported diverse fungal taxa, and the fungal assemblages on the different hosts showed varying overlap. The fungal diversity of saprobes at the host species level is discussed. PMID:18837113

  6. Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma.

    PubMed

    Baker, Scott E; Perrone, Giancarlo; Richardson, Nathan M; Gallo, Antonia; Kubicek, Christian P

    2012-01-01

    Members of the economically important ascomycete genus Trichoderma are ubiquitously distributed around the world. The mycoparasitic lifestyle and plant defence-inducing interactions of Trichoderma spp. make them ideal biocontrol agents. Of the Trichoderma enzymes that produce secondary metabolites, some of which likely play important roles in biocontrol processes, polyketide synthase (PKSs) have garnered less attention than non-ribosomal peptide synthetases such as those that produce peptaibols. We have taken a phylogenomic approach to study the PKS repertoire encoded in the genomes of Trichoderma reesei, Trichoderma atroviride and Trichoderma virens. Our analysis lays a foundation for future research related to PKSs within the genus Trichoderma and in other filamentous fungi. PMID:22096146

  7. Distribution and strain-dependent formation of volatile metabolites in the genus Ceratocystis.

    PubMed

    Sprecher, E; Hanssen, H P

    1983-11-01

    The accumulation of volatile metabolites in cultures of 34 strains comprising ten species of the genus Ceratocystis (Ascomycetes) has been investigated under defined culture conditions. The identified compounds include short-chain alcohols and esters, lower terpenes, terpenoids, and 2-phenylethyl acetate. Certain species can be recognized by a number of common volatiles traced in all strains, although the quantities of these constituents may vary enormously (up to a factor 1:1000) within one species. The formation of some metabolites is restricted to a few strains. PMID:6651291

  8. Taming a wild beast: Developing molecular tools and new methods to understand the biology of Zymoseptoria tritici

    PubMed Central

    Talbot, Nicholas J.

    2015-01-01

    Septoria blotch of wheat is one of the world’s most serious plant diseases, which is difficult to control due to the absence of durable host resistance and the increasing frequency of fungicide-resistance. The ascomycete fungus that causes the disease, Zymoseptoria tritici, has been very challenging to study. This special issue of Fungal Genetics and Biology showcases an integrated approach to method development and the innovation of new molecular tools to study the biology of Z. tritici. When considered together, these new methods will have a rapid and dramatic effect on our ability to combat this significant disease. PMID:25975217

  9. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores

    NASA Astrophysics Data System (ADS)

    Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R.

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Hennh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  10. Parallels in amphibian and bat declines from pathogenic fungi.

    PubMed

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases. PMID:23622255

  11. Molecular data place Trypetheliaceae in Dothideomycetes.

    PubMed

    Del Prado, Ruth; Schmitt, Imke; Kautz, Stefanie; Palice, Zdenek; Lcking, Robert; Lumbsch, H Thorsten

    2006-05-01

    The phylogenetic position of Trypetheliaceae was studied using partial sequences of the mtSSU and nuLSU rDNA of 100 and 110 ascomycetes, respectively, including 48 newly obtained sequences. Our analysis confirms Trypetheliaceae as monophyletic and places the family in Dothideomycetes. Pyrenulaceae, which were previously classified with Trypetheliaceae in Pyrenulales or Melanommatales, are supported as belonging to Chaetothyriomycetes. Monophyly of Pyrenulales, including Trypetheliaceae is rejected using three independent test methods. Monophyly of Arthopyreniaceae plus Trypetheliaceae, the two families including lichen-forming fungi in Dothideomycetes, is also rejected, as well as a placement of Trypetheliaceae in Pleosporales (incl. Melanommatales). PMID:16621495

  12. DNA barcoding and phylogenetic relationships in Anatidae.

    PubMed

    Huang, Zuhao; Yang, Chengzhong; Ke, Dianhua

    2016-03-01

    Mitochondrial cytochrome c oxidase subunit I (COI) has been used as a powerful marker in a variety of phylogenetic studies. According to studies of bird species, the 694-bp sequence of the mitochondrial gene encoding COI is extremely useful for species identification and phylogeny. In the present study, we analyzed the COI barcodes of 79 species from 26 genera belonging to the Anatidae family. Sixty-six species (83.54%) of the species were identified correctly from their DNA barcodes. The remaining 13 species shared barcodes sequences with closely related species. Kimura two-parameter (K2P) distances were calculated between barcodes. The average genetic distance between species was 41 times higher compared to the average genetic distance within species. Neighbor-joining method was used to construct a phylogenetic tree, which grouped all of the genera into three divergent clades. Dendrocygna and Nomonyx + Oxyura were identified as early offshoots of the Anatidae. All the remaining taxa fell into two clades that correspond to the two subfamilies Anserinae and Anatiane. Based on our results, DNA barcoding is an effective molecular tool for Anatidae species identification and phylogenetic inference. PMID:24938090

  13. A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins.

    PubMed

    Marold, Jacob D; Kavran, Jennifer M; Bowman, Gregory D; Barrick, Doug

    2015-11-01

    Linear repeat proteins often have high structural similarity and low (?25%) pairwise sequence identities (PSI) among modules. We identified a unique P. anserina (Pa) sequence with tetratricopeptide repeat (TPR) homology, which contains longer (42 residue) repeats (42PRs) with an average PSI >91%. We determined the crystal structure of five tandem Pa 42PRs to 1.6 , and examined the stability and solution properties of constructs containing three to six Pa 42PRs. Compared with 34-residue TPRs (34PRs), Pa 42PRs have a one-turn extension of each helix, and bury more surface area. Unfolding transitions shift to higher denaturant concentration and become sharper as repeats are added. Fitted Ising models show Pa 42PRs to be more cooperative than consensus 34PRs, with increased magnitudes of intrinsic and interfacial free energies. These results demonstrate the tolerance of the TPR motif to length variation, and provide a basis to understand the effects of helix length on intrinsic/interfacial stability. PMID:26439765

  14. Microsatellites identify depredated waterfowl remains from glaucous gull stomachs

    USGS Publications Warehouse

    Scribner, K.T.; Bowman, T.D.

    1998-01-01

    Prey remains can provide valuable sources of information regarding causes of predation and the species composition of a predator's diet. Unfortunately, the highly degraded state of many prey samples from gastrointestinal tracts often precludes unambiguous identification. We describe a procedure by which PCR amplification of taxonomically informative microsatellite loci were used to identify species of waterfowl predated by glaucous gulls (Larus hyperboreus). We found that one microsatellite locus unambiguously distinguished between species of the subfamily Anserinae (whistling ducks, geese and swans) and those of the subfamily Anatidae (all other ducks). An additional locus distinguished the remains of all geese and swan species known to nest on the Yukon-Kuskokwim delta in western Alaska. The study focused on two waterfowl species which have experienced precipitous declines in population numbers: emperor geese (Chen canagica) and spectacled eiders (Somateria fischeri). No evidence of predation on spectacled eiders was observed. Twenty-six percent of all glaucous gull stomachs examined contained the remains of juvenile emperor geese.

  15. Communities of Endophytic Sebacinales Associated with Roots of Herbaceous Plants in Agricultural and Grassland Ecosystems Are Dominated by Serendipita herbamans sp. nov

    PubMed Central

    Riess, Kai; Oberwinkler, Franz; Bauer, Robert; Garnica, Sigisfredo

    2014-01-01

    Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity. PMID:24743185

  16. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    PubMed

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade. PMID:23233509

  17. Diverse ecological roles within fungal communities in decomposing logs of Picea abies.

    PubMed

    Ottosson, Elisabet; Kubartov, Ariana; Edman, Mattias; Jnsson, Mari; Lindhe, Anders; Stenlid, Jan; Dahlberg, Anders

    2015-03-01

    Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking. PMID:25764460

  18. Functional Analysis of the Degradation of Cellulosic Substrates by a Chaetomium globosum Endophytic Isolate

    PubMed Central

    Longoni, Paolo; Rodolfi, Marinella; Pantaleoni, Laura; Doria, Enrico; Concia, Lorenzo; Cella, Rino

    2012-01-01

    Most photosynthetically fixed carbon is contained in cell wall polymers present in plant biomasses, the largest organic carbon source in the biosphere. The degradation of these polymers for biotechnological purposes requires the combined action of several enzymes. To identify new activities, we examined which enzymes are activated by an endophytic strain of Chaetomium globosum to degrade cellulose-containing substrates. After biochemical analyses of the secretome of the fungus grown on cellulose or woody substrates, we took advantage of the available genomic data to identify potentially involved genes. After in silico identification of putative genes encoding either proteins able to bind to cellulose or glycohydrolases (GHs) of family 7, we investigated their transcript levels by reverse transcription-quantitative PCR (RT-qPCR). Our data suggest that eight genes compose the core of the cellulose-degrading system of C. globosum. Notably, the related enzymes belong structurally to the well-described GH families 5, 6, 7, 16, and 45, which are known to be the core of the cellulose degradation systems of several ascomycetes. The high expression levels of cellobiose dehydrogenase and two GH 61 enzymes suggest the involvement of this oxidoreductive synergic system in C. globosum. Transcript analysis along with relevant coding sequence (CDS) isolation and expression of recombinant proteins proved to be a key strategy for the determination of the features of two endoglucanases used by C. globosum for the first attack of crystalline cellulose. Finally, the possible involvement of transcriptional regulators described for other ascomycetes is discussed. PMID:22389369

  19. New, rare or remarkable microfungi in the Italian Alps (Carnic Alps)--part I--ascomycotina.

    PubMed

    Feige, G B; Ale-Agha, N; Jensen, M; Christiaans, B; Kricke, R

    2004-01-01

    During our observations in the SE part of the Carnic Alps in the year 2003 we were able to collect and identify 35 ascomycetes on trees and dead wood. Among these one can find numerous ascomycetes of different orders e.g. Pyrenomycetes, Loculoascomycetes and Discomycetes. Some species like Botryosphaeria ribis GROSENLUCHER & DUGGAR on Ribes alpinum L., Dothiora pyrenophora (FR.) FR. on Sorbus aucuparia L., Gemmamyces piceae (BORTH.) CASAGO. on Picea excelsa (LAM.) LINK, Glomerella montana (SACC.) v. ARX & E. MULLER on Sesleria caerulea (L.) ARD, Hymenoscyphus immutabilis (Fuck.) Dennis on Alnus incana (L.) Moench, Hysterographium fraxini (PERS. Ex. FR.) de Not. on Fraxinus ornus L., Lachnellula willkommii (Hartig) DENNIS [= Trichascyphella willkommii (Hartig) NANNF.] on Larix decidua MILL.,Leptosphaeria lycopodina (Mont.) SACC. on Lycopodium annotinum L., Mollisia adenostylidis REHM. on Adenostyles glabra (MILL.) DC., Pezicula cinnamomea (DC.)SACC. [ana: Cryptosporiopsis quercina PETRAK] on Quercus robur L., Pyrenopeziza petiolaris (A. & S. Ex FR.) NANNF. on Acer pseudoplatanus L., Tapesia rosae (PERS.) FUCKEL on Rosa canina L., are new for this area. All specimen are deposited in the Herbarium ESS Mycotheca Parva, Collection G.B. Feige/N. Ale-Agha. PMID:15756826

  20. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.

    PubMed

    Kachalkin, Aleksey V; Yurkov, Andrey M

    2012-06-01

    The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887(T) (=CBS 11774(T) = VKPM Y-3566(T) = MUCL 53590(T)) as the type strain. The new species was registered in MycoBank under MB 563443. PMID:22331450

  1. Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars.

    PubMed

    Weinert, Nicole; Meincke, Remo; Gottwald, Christine; Heuer, Holger; Gomes, Newton C M; Schloter, Michael; Berg, Gabriele; Smalla, Kornelia

    2009-06-01

    The effects of genetically modified (GM), zeaxanthin-accumulating potato plants on microbial communities in the rhizosphere were compared to the effects of different potato cultivars. Two GM lines and their parental cultivar, as well as four other potato cultivars, were grown in randomized field plots at two sites and in different years. Rhizosphere samples were taken at three developmental stages during plant growth and analyzed using denaturing gradient gel electrophoresis (DGGE) fingerprints of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria, Bacillus, Streptomycetaceae, Pseudomonas, gacA, Fungi, and Ascomycetes. In the bacterial DGGE gels analyzed, significant differences between the parental cultivar and the two GM lines were detected mainly for Actinobacteria but also for Betaproteobacteria and Streptomycetaceae, yet these differences occurred only at one site and in one year. Significant differences occurred more frequently for Fungi, especially Ascomycetes, than for bacteria. When all seven plant genotypes were compared, DGGE analysis revealed that different cultivars had a greater effect on both bacterial and fungal communities than genetic modification. The effects of genetic modification were detected mostly at the senescence developmental stage of the plants. The site was the overriding factor affecting microbial community structure compared to the plant genotype. In general, the fingerprints of the two GM lines were more similar to that of the parental cultivar, and the differences observed did not exceed natural cultivar-dependent variability. PMID:19376893

  2. Evidence for negative-strand RNA virus infection in fungi.

    PubMed

    Kondo, Hideki; Chiba, Sotaro; Toyoda, Kazuhiro; Suzuki, Nobuhiro

    2013-01-20

    Fungal viruses comprise two groups: a major group of five families with double-stranded RNA genomes and a minor group with positive-sense single-stranded (ss)RNA genomes. Although many fungal viruses have been identified, no negative-stranded (-)ssRNA mycoviruses have been reported. Here we present two lines of evidence suggesting the presence of (-)ssRNA viruses in filamentous fungi based on an exhaustive search using extant (-)ssRNA viruses as queries. This revealed (-)ssRNA virus L protein-like sequences in the genome of a phytopathogenic obligate ascomycete, Erysiphe pisi. A similar search for (-)ssRNA viruses in fungal transcriptome shotgun assembly libraries demonstrated that two independent libraries from Sclerotinia homoeocarpa, another phytopathogenic ascomycete, contained several sequences considered to correspond to the entire mononegavirus L gene and likely originating from an infecting (-)ssRNA virus. These results provide strong evidence for both ancient and extant (-)ssRNA virus infections in fungi. PMID:23099204

  3. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkrper.

    PubMed

    Grove, S N; Bracker, C E

    1970-11-01

    Hyphal tips of fungi representing Omycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes were examined by light and electron microscopy and compared with respect to their protoplasmic organization. In all fungi studied, there is a zone at the hyphal apex which is rich in cytoplasmic vesicles but nearly devoid of other cell components. Some vesicle profiles are continuous with the plasma membrane at the apices of these tip-growing cells. The subapical zones of hyphae contain an endomembrane system which includes smooth-surfaced cisternae associated with small clusters of vesicles. The findings are consistent with the hypothesis that vesicles produced by the endomembrane system in the subapical region become concentrated in the apex where they are incorporated at the expanding surface. Septate fungi (Ascomycetes, Basidiomycetes, and Deuteromycetes) have an apical body (Spitzenkrper) which is associated with growing hyphal tips. In electron micrographs of these fungi, an additional specialized region within the accumulation of apical vesicles is shown for the first time. This region corresponds on the bases of distribution among fungi, location in hyphae, size, shape and boundary characteristics to the Spitzenkrper seen by light microscopy. This structure is not universally associated with tip growth, whereas apical vesicles are widespread among tip-growing systems. PMID:4099103

  4. The conserved global regulator VeA is necessary for symptom production and mycotoxin synthesis in maize seedlings by Fusarium verticillioides

    PubMed Central

    Myung, K.; Zitomer, N. C.; Duvall, M.; Glenn, A. E.; Riley, R. T.; Calvo, A. M.

    2011-01-01

    The veA or velvet gene is necessary for biosynthesis of mycotoxins and other secondary metabolites in Aspergillus species. In addition, veA has also been demonstrated to be necessary for normal seed colonization in Aspergillus flavus and Aspergillus parasiticus. The present study shows that veA homologues are broadly distributed in fungi, particularly in Ascomycetes. The Fusarium verticillioides veA orthologue, FvVE1, is also required for the synthesis of several secondary metabolites, including fumonisin and fusarins. This study also shows that maize plants grown from seeds inoculated with FvVE1 deletion mutants did not show disease symptoms, while plants grown from seeds inoculated with the F. verticillioides wildtype and complementation strains clearly showed disease symptoms under the same experimental conditions. In this latter case, the presence of lesions coincided with accumulation of fumonisins in the plant tissues, and only these plant tissues had elevated levels of sphingoid bases and their 1-phosphate derivatives, indicating inhibition of ceramide synthase and disruption of sphingolipid metabolism. The results strongly suggest that FvVE1 is necessary for pathogenicity by F. verticillioides against maize seedlings. The conservation of veA homologues among ascomycetes suggests that veA could play a pivotal role in regulating secondary metabolism and associated pathogenicity in other fungi. PMID:22247572

  5. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases.

    PubMed

    Bhadra, Bhaskar; Rao, R Sreenivas; Singh, Pavan K; Sarkar, Partha K; Shivaji, Sisinthy

    2008-05-01

    A total of 239 yeast strains was isolated from 52 tree bark samples of the Medaram and Srisailam forest areas of Andhra Pradesh, India. Based on analysis of D1/D2 domain sequence of 26S rRNA gene, 114 strains were identified as ascomycetous; 107 strains were identified as basidiomycetous yeasts; and 18 strains were identified as yeast-like fungi. Among the ascomycetous yeasts, 51% were identified as members of the genus Pichia, and the remaining 49% included species belonging to the genera Clavispora, Debaryomyces, Kluyveromyces, Hanseniaspora, Issatchenkia, Lodderomyces, Kodamaea, Metschnikowia, and Torulaspora. The predominant genera in the basidiomycetous yeasts were Cryptococcus (48.6%), Rhodotorula (29%), and Rhodosporidium (12.1%). The yeast-like fungi were represented by Aureobasidium pullulans (6.7%) and Lecythophora hoffmanii (0.8%). Of the 239 yeast strains tested for Xylanase, only five strains of Aureobasidium sp. produced xylanase on xylan-agar medium. Matrix-assisted laser desorption ionization-time of flight analysis and N-terminal amino-acid sequence of the xylanase of isolate YS67 showed high similarity with endo-1-4-beta-xylanase (EC 3.2.1.8) of Aureobasidium pullulans var. melanigenum. PMID:18219522

  6. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin--A New Type of Cryptoendolithic Fungi.

    PubMed

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  7. Cloning and expression in Pichia pastoris of an Irpex lacteus rhamnogalacturonan hydrolase tolerant to acetylated rhamnogalacturonan.

    PubMed

    Normand, J; Bonnin, E; Delavault, P

    2012-06-01

    In order to produce a recombinant rhamnogalacturonase from the basidiomycete Irpex lacteus using a molecular approach, PCR primers were designed based on a sequence alignment of four known ascomycete rhamnogalacturonases. Using 5' and 3' rapid amplification of cDNA ends (RACE) experiments, a 1,437-bp full-length cDNA containing an open reading frame of 1,329 bp was isolated. The corresponding putative protein sequence is of 443 amino acids and contains a secretion signal sequence of 22 amino acids. The theoretical mass of this protein is 44.6 kDa with a theoretical isoelectric point of 6.2. The amino acid sequence shared not only significant identities with ascomycete and basidiomycete putative rhamnogalacturonases but also complete similarity with peptides obtained from a recently purified rhamnogalacturonase from I. lacteus. The recombinant protein was successfully expressed in active form in Pichia pastoris. SDS-PAGE assay demonstrated that the recombinant enzyme was secreted in the culture medium and had a molar mass of 56 kDa. This recombinant rhamnogalacturonan hydrolase exhibited a pH optimum between 4.5 and 5 and a temperature optimum between 40C and 50C, which correspond to that of the native rhamnogalacturonase from I. lacteus. The study of its specificity through reaction products analysis showed that it was highly tolerant to the presence of acetyl groups on its substrate, even more than the native enzyme. PMID:22101785

  8. Addressing Inter-Gene Heterogeneity in Maximum Likelihood Phylogenomic Analysis: Yeasts Revisited

    PubMed Central

    Hess, Jaqueline; Goldman, Nick

    2011-01-01

    Phylogenomic approaches to the resolution of inter-species relationships have become well established in recent years. Often these involve concatenation of many orthologous genes found in the respective genomes followed by analysis using standard phylogenetic models. Genome-scale data promise increased resolution by minimising sampling error, yet are associated with well-known but often inappropriately addressed caveats arising through data heterogeneity and model violation. These can lead to the reconstruction of highly-supported but incorrect topologies. With the aim of obtaining a species tree for 18 species within the ascomycetous yeasts, we have investigated the use of appropriate evolutionary models to address inter-gene heterogeneities and the scalability and validity of supermatrix analysis as the phylogenetic problem becomes more difficult and the number of genes analysed approaches truly phylogenomic dimensions. We have extended a widely-known early phylogenomic study of yeasts by adding additional species to increase diversity and augmenting the number of genes under analysis. We have investigated sophisticated maximum likelihood analyses, considering not only a concatenated version of the data but also partitioned models where each gene constitutes a partition and parameters are free to vary between the different partitions (thereby accounting for variation in the evolutionary processes at different loci). We find considerable increases in likelihood using these complex models, arguing for the need for appropriate models when analyzing phylogenomic data. Using these methods, we were able to reconstruct a well-supported tree for 18 ascomycetous yeasts spanning about 250 million years of evolution. PMID:21850235

  9. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species.

    PubMed

    Kurtzman, Cletus P; Robnett, Christie J

    2013-02-01

    Relationships among ascomycetous yeast genera (subphylum Saccharomycotina, phylum Ascomycota) have been uncertain. In the present study, type species of 70 currently recognized genera are compared from divergence in the nearly entire nuclear gene sequences for large subunit rRNA, small subunit (SSU) rRNA, translation elongation factor-1α, and RNA polymerase II, subunits 1 (RPB1) and 2 (RPB2). The analysis substantiates earlier proposals that all known ascomycetous yeast genera now assigned to the Saccharomycotina represent a single clade. Maximum likelihood analysis resolved the taxa into eight large multigenus clades and four-one- and two-genus clades. Maximum parsimony and neighbor-joining analyses gave similar results. Genera of the family Saccharomycetaceae remain as one large clade as previously demonstrated, to which the genus Cyniclomyces is now assigned. Pichia, Saturnispora, Kregervanrija, Dekkera, Ogataea and Ambrosiozyma are members of a single large clade, which is separate from the clade that includes Barnettozyma, Cyberlindnera, Phaffomyces, Starmera and Wickerhamomyces. Other clades include Kodamaea, Metschnikowia, Debaryomyces, Cephaloascus and related genera, which are separate from the clade that includes Zygoascus, Trichomonascus, Yarrowia and others. This study once again demonstrates that there is limited congruence between a system of classification based on phenotype and a system determined from DNA sequences. PMID:22978764

  10. Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments.

    PubMed

    Tigini, Valeria; Prigione, Valeria; Varese, Giovanna Cristina

    2014-07-15

    Pollution caused by landfill leachates is one of the main problems of urbanised areas, on account of their chemical composition, which turn in an ineffective treatment. A characterisation of leachates, which takes into account chemical, ecotoxicological and mycological aspects, is basilar for the evaluation of environmental impact of leachate and the development of suitable treatment techniques. In this study, the toxicity of a raw leachate and an effluent coming from traditional wastewater treatment plant was assessed by means of 4 ecotoxicological assays. Both the samples exceed the legal threshold value according to all the tested organisms, indicating the ineffectiveness of activated sludge treatment in the reduction of toxicity. The autochthonous mycoflora of the two samples was evaluated by filtration. The fungal load was 73 CFU for leachate and 102 CFU for the effluent. Ascomycetes were the dominant fraction (81% and 61%, for leachate and effluent respectively), followed by basidiomycetes (19% and 39%, respectively). Most of them were potential emerging pathogens. A decolourisation screening with autochthonous fungi was set up towards both samples in the presence or absence of glucose. Eleven fungi (basidiomycetes and ascomycetes) achieved up to 38% decolourisation yields, showing to be promising fungi for the bioremediation of leachates. Further experiment will be aimed to the study of decolourisation mechanism and toxicity reduction. PMID:24793330

  11. Phenotype of a Mechanosensitive Channel Mutant, mid-1, in a Filamentous Fungus, Neurospora crassa▿

    PubMed Central

    Lew, Roger R.; Abbas, Zohaib; Anderca, Marinela I.; Free, Stephen J.

    2008-01-01

    In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H+-ATPase (measured by cyanide [CN−]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca2+ levels or when cytoplasmic Ca2+ is elevated with the Ca2+ ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca2+ homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth. PMID:18296620

  12. Implications of Cellobiohydrolase Glycosylation for use in Biomass Conversion

    SciTech Connect

    Jeoh, T.; Michener W.; Himmel, M. E.; Decker, S. R.; Adney, W. S.

    2008-01-01

    The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina), is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline) and phosphoric acid swollen (amorphous) cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A) resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  13. Implications of cellobiohydrolase glycosylation for use in biomass conversion.

    PubMed

    Jeoh, Tina; Michener, William; Himmel, Michael E; Decker, Stephen R; Adney, William S

    2008-01-01

    The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina), is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline) and phosphoric acid swollen (amorphous) cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A) resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved. PMID:18471276

  14. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin – A New Type of Cryptoendolithic Fungi

    PubMed Central

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E.; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  15. The tempo and modes of evolution of reproductive isolation in fungi

    PubMed Central

    Giraud, T; Gourbière, S

    2012-01-01

    Reproductive isolation is an essential ingredient of speciation, and much has been learned in recent years about the evolution of reproductive isolation and the genetics of reproductive barriers in animals and plants. Fungi have been neglected on these aspects, despite being tractable model eukaryotes. Here, we used a model fitting approach to look at the importance of different barriers to gene flow to explain the decrease of reproductive compatibility with genetic distance in fungi. We found support for the occurrence of reinforcement in the presyngamy compatibility among basidiomycetes. In contrast, no evidence for reinforcement was detected in ascomycetes, concurring with the idea that host/habitat adaptation in this group can pleiotropically cause reproductive isolation. We found no evidence of a snowballing accumulation of postsyngamic reproductive incompatibilities in either ascomycetes or the complex of anther smut fungi. Together with previous studies, our results suggest that ecologically based barriers to gene flow and karyotypic differences may have an important role in hybrid inviability and sterility in fungi. Interestingly, hybrid sterility appeared to evolve faster than hybrid inviability in fungi. PMID:22669076

  16. [Lipid Composition in Cell Walls and in Mycelial and Spore Cells of Mycelial Fungi].

    PubMed

    Feofilova, E P; Sergeeva, Ya E; Mysyakina, I S; Bokareva, D A

    2015-01-01

    Qualitative and quantitative differences were found between the lipids of cell walls (CW) and of whole mycelial cells and dormant cells of mucoraceous and ascomycete fungi. Thus, whole mycelial cells (WC) contained more lipids than CW. Unlike sporangiospores and conidia (exogenous dormant spores), zygotes were found to have the highest content of triacylglycerol lipids (70%). Cell walls of mucoraceous fungi contained more triacylglycerols (TAG) and less polar lipids than ascomycete lipids. While all CW and WC studied were similar in fatty acid (FA) composition, their ratio was specific for each structure: linoleic acid predominated in mycelial CW and WC, while oleic acid was predominant in the spores; this difference was especially pronounced in conidial WC. Unlike WC, in CW massive lipids may be represented not by phosphatidylethanolamine (PEA) and phosphatidylcholine (PC), but by free fatty acids (FFA), free (FSt) and etherified sterols (ESt), phosphatidic acid (PA), fatty acid methyl esters (FAME), and glycolipids (GL), which is an indication of a special functional role of CW. PMID:26263626

  17. House dust mites possess a polymorphic, single domain putative peptidoglycan d,l endopeptidase belonging to the NlpC/P60 Superfamily

    PubMed Central

    Tang, Vivian H.; Stewart, Geoffrey A.; Chang, Barbara J.

    2015-01-01

    A 14kDa protein homologous to the ?-d-glutamyl-l-diamino acid endopeptidase members of the NlpC/P60 Superfamily has been described in Dermatophagoides pteronyssinus and Dermatophagoides farinae but it is not clear whether other species produce homologues. Bioinformatics revealed homologous genes in other Sarcopteformes mite species (Psoroptes ovis and Blomia tropicalis) but not in Tetranychus urticae and Metaseiulus occidentalis. The degrees of identity (similarity) between the D. pteronyssinus mature protein and those from D. farinae, P. ovis and B. tropicalis were 82% (96%), 77% (93%) and 61% (82%), respectively. Phylogenetic studies showed the mite proteins were monophyletic and shared a common ancestor with both actinomycetes and ascomycetes. The gene encoding the D. pteronyssinus protein was polymorphic and intronless in contrast to that reported for D. farinae. Homology studies suggest that the mite, ascomycete and actinomycete proteins are involved in the catalysis of stem peptide attached to peptidoglycan. The finding of a gene encoding a P60 family member in the D. pteronyssinus genome together with the presence of a bacterial promotor suggests an evolutionary link to one or more prokaryotic endosymbionts. PMID:26566476

  18. Community composition of root-associated fungi in a Quercus-dominated temperate forest: "codominance" of mycorrhizal and root-endophytic fungi.

    PubMed

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-05-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  19. The diversity of yeasts associated with grapes and musts of the Strekov winegrowing region, Slovakia.

    PubMed

    Nemcov, Kornlia; Breierov, Emlia; Vadkertiov, Renta; Molnrov, Jana

    2015-03-01

    Many different yeast species have been isolated from grapes and musts worldwide. The diversity and frequency of yeasts depend on a number of factors such as the grape variety, the physical damage of the grapes, the weather conditions and the chemical composition of must. A total of 366 isolates were associated with the three grape cultivars: Blue Frankish, Green Veltliner and Sauvignon blanc over four consecutive years. Yeast cultures were isolated from the grapes and from the fermenting musts after the first and seventh days. The ascomycetous yeasts of the genera Aureobasidium, Candida, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Saccharomycopsis together with basidiomycetous yeasts of the genera Cryptococcus, Dioszegia, Filobasidium, Rhodotorula and Sporidiobolus were associated with the three grape varieties. Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia kluyveri, Pichia kudriavzevii and Sporidiobolus pararoseus were found on the berries in significant amounts. P. kluyveri and P. kudriavzevii were more associated with the damaged grapes, whereas Sp. pararoseus with intact ones. H. uvarum and M. pulcherrima were present on both types of grapes almost equally. The yeast composition and quantitative representation of yeast species varied over the grape varieties and the years examined. Although the basidiomycetous species formed a significant proportion of the yeast population in some individual grape variety/year combinations, the ascomycetous species were dominant. PMID:25253264

  20. Starmerella syriaca f.a., sp. nov., an osmotolerant yeast species isolated from flowers in Syria.

    PubMed

    Sipiczki, Matthias

    2015-04-01

    Four strains of a novel asexual ascomycetous yeast species were isolated from Malva sp. flowers in Syria. Sequencing of the regions spanning the small subunit, 5.8S, and the D1/D2 domains of the large subunit ribosomal RNA genes showed that the isolates were conspecific. Comparative analysis of these sequences and the corresponding sequences of the type strains of ascomycetous yeasts revealed that the novel species is phylogenetically related to members of the Starmerella clade. Its closest relative is Candida vaccinii. For the new species the name Starmerella syriaca is proposed. Its strains are osmotolerant and produce pseudohypha-like structures capable of penetrating agar media. The type strain is 2-1362(T) (=CBS 13909(T)=NCAIM Y.02138(T)=CCY 090-003-001(T)). The GenBank accession numbers for its nucleotide sequences are: JX515986 (D1/D2 LSU), JX515987 (ITS1-5.8S-ITS2) and JX515988 (SSU). Mycobank: MB 810090. PMID:25583140

  1. Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi

    PubMed Central

    2014-01-01

    Background Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. Results In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. Conclusions The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit. PMID:24690293

  2. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  3. Complex evolution of the DAL5 transporter family

    PubMed Central

    Hellborg, Linda; Woolfit, Megan; Arthursson-Hellborg, Mattias; Piškur, Jure

    2008-01-01

    Background Genes continuously duplicate and the duplicated copies remain in the genome or get deleted. The DAL5 subfamily of transmembrane transporter genes has eight known members in S. cerevisiae. All are putative anion:cation symporters of vitamins (such as allantoate, nicotinate, panthotenate and biotin). The DAL5 subfamily is an old and important group since it is represented in both Basidiomycetes ("mushrooms") and Ascomycetes ("yeast"). We studied the complex evolution of this group in species from the kingdom of fungi particularly the Ascomycetes. Results We identified numerous gene duplications creating sets of orthologous and paralogous genes. In different lineages the DAL5 subfamily members expanded or contracted and in some lineages a specific member could not be found at all. We also observed a close relationship between the gene YIL166C and its homologs in the Saccharomyces sensu stricto species and two "wine spoiler" yeasts, Dekkera bruxellensis and Candida guilliermondi, which could possibly be the result of horizontal gene transfer between these distantly related species. In the analyses we detect several well defined groups without S. cerevisiae representation suggesting new gene members in this subfamily with perhaps altered specialization or function. Conclusion The transmembrane DAL5 subfamily was found to have a very complex evolution in yeast with intra- and interspecific duplications and unusual relationships indicating specialization, specific deletions and maybe even horizontal gene transfer. We believe that this group will be important in future investigations of evolution in fungi and especially the evolution of transmembrane proteins and their specialization. PMID:18405355

  4. Genome-wide inventory of metal homeostasis-related gene products including a functional phytochelatin synthase in the hypogeous mycorrhizal fungus Tuber melanosporum.

    PubMed

    Bolchi, Angelo; Ruotolo, Roberta; Marchini, Gessica; Vurro, Emanuela; di Toppi, Luigi Sanit; Kohler, Annegret; Tisserant, Emilie; Martin, Francis; Ottonello, Simone

    2011-06-01

    Ectomycorrhizal fungi are thought to enhance mineral nutrition of their host plants and to confer increased tolerance toward toxic metals. However, a global view of metal homeostasis-related genes and pathways in these organisms is still lacking. Building upon the genome sequence of Tuber melanosporum and on transcriptome analyses, we set out to systematically identify metal homeostasis-related genes in this plant-symbiotic ascomycete. Candidate gene products (101) were subdivided into three major functional classes: (i) metal transport (58); (ii) oxidative stress defence (32); (iii) metal detoxification (11). The latter class includes a small-size metallothionein (TmelMT) that was functionally validated in yeast, and phytochelatin synthase (TmelPCS), the first enzyme of this kind to be described in filamentous ascomycetes. Recombinant TmelPCS was shown to support GSH-dependent, metal-activated phytochelatin synthesis in vitro and to afford increased Cd/Cu tolerance to metal hypersensitive yeast strains. Metal transporters, especially those related to Cu and Zn trafficking, displayed the highest expression levels in mycorrhizae, suggesting extensive translocation of both metals to root cells as well as to fungal metalloenzymes (e.g., laccase) that are strongly upregulated in symbiotic hyphae. PMID:21094264

  5. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  6. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    PubMed Central

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, ?-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  7. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red.

    PubMed

    Ram, Arthur F J; Klis, Frans M

    2006-01-01

    The fungal cell wall is an essential organelle and represents a considerable metabolic investment. Its macromolecular composition, molecular organization and thickness can vary greatly depending on environmental conditions. Its construction is also tightly controlled in space and time. Many genes are therefore involved in building the fungal cell wall. Here we present a simple approach for detecting these genes. The method is based on the observation that cell wall mutants are generally more sensitive to two related anionic dyes, Calcofluor white (CFW) and Congo red (CR), both of which interfere with the construction and stress response of the cell wall. CFW-based and CR-based susceptibility assays identify cell wall mutants not only in ascomycetous yeasts (such as Saccharomyces cerevisiae and Candida albicans) but also in mycelial ascomycetes (such as Aspergillus fumigatus and Aspergillus niger), basidiomycetous species (Cryptococcus neoformans) and probably also zygomycetous fungi. The protocol can be completed in 4-6 h (excluding the incubation time required for fungal growth). PMID:17406464

  8. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta).

    PubMed

    Lumbsch, H Thorsten; Schmitt, Imke; Lindemuth, Ralf; Miller, Andrew; Mangold, Armin; Fernandez, Fernando; Huhndorf, Sabine

    2005-03-01

    The inoperculate euascomycetes are filamentous fungi that form saprobic, parasitic, and symbiotic associations with a wide variety of animals, plants, cyanobacteria, and other fungi. The higher-level relationships of this economically important group have been unsettled for over 100 years. A data set of 55 species was assembled including sequence data from nuclear and mitochondrial small and large subunit rDNAs for each taxon; 83 new sequences were obtained for this study. Parsimony and Bayesian analyses were performed using the four-region data set and all 14 possible subpartitions of the data. The mitochondrial LSU rDNA was used for the first time in a higher-level phylogenetic study of ascomycetes and its use in concatenated analyses is supported. The classes that were recognized in Leotiomyceta (=inoperculate euascomycetes) in a classification by Eriksson and Winka [Myconet 1 (1997) 1] are strongly supported as monophyletic. The following classes formed strongly supported sister-groups: Arthoniomycetes and Dothideomycetes, Chaetothyriomycetes and Eurotiomycetes, and Leotiomycetes and Sordariomycetes. Nevertheless, the backbone of the euascomycete phylogeny remains poorly resolved. Bayesian posterior probabilities were always higher than maximum parsimony bootstrap values, but converged with an increase in gene partitions analyzed in concatenated analyses. Comparison of five recent higher-level phylogenetic studies in ascomycetes demonstrates a high degree of uncertainty in the relationships between classes. PMID:15683926

  9. Whatever happened to the pyrenomycetes and loculoascomycetes?

    PubMed

    Lumbsch, H Thorsten; Huhndorf, Sabine M

    2007-09-01

    An overview of current phylogenetic studies employing molecular data to test previously formulated hypotheses of relationships of loculoascomycetes and pyrenomycetes is given, concentrating on three topics: (1) circumscription and classification of loculoascomycetes, (2) a new classification of Sordariales, and (3) the phylogenetic occurrence of lichenized pyrenomycetes. With regard to these three examples, our review indicates: (1) In traditional taxonomy ascomycetes were classified according to their ascoma-types, with the class Pyrenomycetes including all taxa having perithecia. Later, the development of ascomata and the type of ascus were employed for higher-level classification, and consequently, Loculoascomycetes was separated from Pyrenomycetes. However, molecular studies show that even these revised classifications were too coarse. The Loculoascomycetes fall into two distinct and not closely related groups, which are placed in two clades: Chaetothyriomycetidae and Dothideomycetes. (2) Ascospore morphology has been widely used in taxonomy of ascomycetes, and Sordariales is a prominent example of this. Molecular data suggest that ascomatal wall morphology is a better predictor of phylogenetic relationships in these fungi. Further, the molecular data helped to redefine the circumscription of Sordariales. (3) The majority of non-lichenized pyrenomycetes form a monophyletic group: Sordariomycetes. However, the lichenized pyrenomycetes are highly polyphyletic. Pyrenocarpous lichen-forming fungi occur in several lineages each in Dothideomycetes, Chaetothyriomycetidae, and Lecanoromycetes, whereas no lichenized forms are currently known in the classical pyrenomycetous Sordariomycetes. PMID:18029164

  10. The obligately lichenicolous genus Lichenoconium represents a novel lineage in the Dothideomycetes.

    PubMed

    Lawrey, James D; Diederich, Paul; Nelsen, Matthew P; Sikaroodi, Masoumeh; Gillevet, Patrick M; Brand, A Maarten; van den Boom, Pieter

    2011-02-01

    Lichenicolous fungi are obligately lichen-associated organisms that have evolved many times throughout the Ascomycota and Basidiomycota. Approximately 20% of lichenicolous ascomycetes are recognized only from asexual (anamorphic) characteristics, so the phylogenetic position of many groups has never been resolved. Here we present the first molecular phylogeny of Lichenoconium, a genus of strictly asexual, obligately lichenicolous species with broad geographic distributions and diverse host ecologies. We obtained nuclear and mitochondrial rDNA sequences from fungal cultures isolated from four species in the genus, including a new species, Lichenoconium aeruginosum sp. nov., collected in France, Luxembourg and Netherlands. Our multilocus phylogeny supports the monophyly of fungi in the genus Lichenoconium, and places the genus in the Dothideomycetes, an ascomycete class made up mainly of saprobes and plant-associated endophytes and pathogens. There are only a few recognized groups of lichen-formers in the Dothideomycetes, but Lichenoconium is not supported as being closely related to any of these, nor to any other recognized order within the Dothideomycetes. Given that Lichenoconium is but one of over 100 genera of anamorphic lichenicolous fungi, most of which have never been studied phylogenetically, we suggest that asexual lichenicolous fungi may represent novel and evolutionarily significant phylogenetic groups in the Kingdom Fungi. PMID:21315315

  11. Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic.

    PubMed

    Shenoy, Belle Damodara; Jeewon, Rajesh; Wu, Wenping P; Bhat, Darbhe Jayarama; Hyde, Kevin D

    2006-08-01

    Sporidesmium and morphologically similar dematiaceous, hyphomycetous genera are characterised by holoblastic phragmoconidia produced on proliferating or non-proliferating conidiophores. They include a number of asexual (anamorphic) genera taxonomically segregated from Sporidesmium sensu lato and are similar in having schizolytic conidial secession. The taxonomy of these ubiquitous asexual fungi and their affinities with known Ascomycetes are, however, still obscure. This study incorporates a phylogenetic investigation, based on the LSU nu-rDNA and RNA polymerase II second largest subunit (RPB2) gene sequence, to assess the possible familial placement of Ellisembia, Linkosia, Repetophragma, Sporidesmiella, Sporidesmium and Stanjehughesia, and justify whether anamorphic characters are proper phylogenetic indicators. Phylogenies provide conclusive evidence to suggest that Sporidesmium is not monophyletic and species are phylogenetically distributed in two major ascomycete classes, Dothideomycetes and Sordariomycetes. Morphologies currently used in their classification have undergone convergent evolution and are not phylogenetically reliable. The possible teleomorphic affinities of these anamorphic genera are discussed in light of morphology and molecular data. As these anamorphs, in most cases, are the sole known morph of the holomorph, it is proposed that in the absence of or failure to detect their teleomorphic phase, the anamorph names should be used for the holomorph. PMID:16908125

  12. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation.

    PubMed

    Huang, Xinqi; Liu, Liangliang; Wen, Teng; Zhu, Rui; Zhang, Jinbo; Cai, Zucong

    2015-12-01

    Although reductive soil disinfestation (RSD) is increasingly used for the control of soil-borne diseases, its impact on the soil microbial community during and after RSD remains poorly understood. MiSeq pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis were performed to investigate the changes of microbial community in the Fusarium oxysporum f. sp. cubense (FOC) infected soil during RSD and at the simulative banana cultivation after RSD. The results showed that RSD significantly increased soil microbial populations and a different microbial community with the pathogenic soil was established after RSD. Specifically, the number of Firmicutes mainly containing Ruminococcus and Coprococcus followed by a small part of Clostridium which were the dominant bacterial genera significantly increased during RSD. In contrast, Symbiobacterium and Flavisolibacter were the dominant genera in the flooding soil. When the soils were recovered under aerobic condition, the relative abundances of the bacteria belonging to the phylum Bacteroidetes, Acidobacteria, Planctomycetes increased as alternatives to the reducing Firmicutes. For fungi, the population of F. oxysporum significantly decreased during RSD accompanied with the pH decline, which resulted in the significant decrease of relative abundance in the phylum Ascomycota. Alternatively, the relative abundances of some other fungal species increased, such as Chaetomium spp. and Penicillium spp. belonging to Ascomycota and the family Clavulinaceae belonging to Basidiomycota. Then, the relative abundance of Ascomycota re-increased after RSD with Podospora and Zopfiella as dominant genera, whereas the relative abundance of Fusarium further decreased. Overall, the microbial populations and community re-established by RSD made the soil more disease-suppressive and beneficial to the soil nutrient cycling and plant growth compared with the previous pathogenic soil. PMID:26640050

  13. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ?

    PubMed Central

    Hansen, Esben H.; Mller, Birger Lindberg; Kock, Gertrud R.; Bnner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jrgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin ?-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  14. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines.

    PubMed

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities. PMID:26973603

  15. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines

    PubMed Central

    Sipiczki, Matthias

    2016-01-01

    The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities. PMID:26973603

  16. Essential Gene Discovery in the Basidiomycete Cryptococcus neoformans for Antifungal Drug Target Prioritization

    PubMed Central

    Ianiri, Giuseppe

    2015-01-01

    ABSTRACT Fungal diseases represent a major burden to health care globally. As with other pathogenic microbes, there is a limited number of agents suitable for use in treating fungal diseases, and resistance to these agents can develop rapidly. Cryptococcus neoformans is a basidiomycete fungus that causes cryptococcosis worldwide in both immunocompromised and healthy individuals. As a basidiomycete, it diverged from other common pathogenic or model ascomycete fungi more than 500 million years ago. Here, we report C. neoformans genes that are essential for viability as identified through forward and reverse genetic approaches, using an engineered diploid strain and genetic segregation after meiosis. The forward genetic approach generated random insertional mutants in the diploid strain, the induction of meiosis and sporulation, and selection for haploid cells with counterselection of the insertion event. More than 2,500 mutants were analyzed, and transfer DNA (T-DNA) insertions in several genes required for viability were identified. The genes include those encoding the thioredoxin reductase (Trr1), a ribosome assembly factor (Rsa4), an mRNA-capping component (Cet1), and others. For targeted gene replacement, the C. neoformans homologs of 35 genes required for viability in ascomycete fungi were disrupted, meiosis and sporulation were induced, and haploid progeny were evaluated for their ability to grow on selective media. Twenty-one (60%) were found to be required for viability in C. neoformans. These genes are involved in mitochondrial translation, ergosterol biosynthesis, and RNA-related functions. The heterozygous diploid mutants were evaluated for haploinsufficiency on a number of perturbing agents and drugs, revealing phenotypes due to the loss of one copy of an essential gene in C. neoformans. This study expands the knowledge of the essential genes in fungi using a basidiomycete as a model organism. Genes that have no mammalian homologs and are essential in both Cryptococcus and ascomycete human pathogens would be ideal for the development of antifungal drugs with broad-spectrum activity. PMID:25827419

  17. How past and present influence the foraging of clonal plants?

    PubMed

    Loupre, Philipe; Bittebire, Anne-Kristel; Clment, Bernard; Pierre, Jean-Sbastien; Mony, Cendrine

    2012-01-01

    Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment. PMID:22675539

  18. The Complete Mitochondrial Genome of Bean Goose (Anser fabalis) and Implications for Anseriformes Taxonomy

    PubMed Central

    Liu, Gang; Zhou, Lizhi; Zhang, Lili; Luo, Zijun; Xu, Wenbin

    2013-01-01

    Mitochondrial DNA plays an important role in living organisms, and has been used as a powerful molecular marker in a variety of evolutionary studies. In this study, we determined the complete mtDNA of Bean goose (Anser fabalis), which is 16,688 bp long and contains 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a control region. The arrangement is similar to that of typical Anseriform species. All protein-coding genes, except for Cyt b, ND5, COI, and COII, start with an ATG codon. The ATG start codon is also generally observed in the 12 other Anseriform species, including 2 Anser species, with sequenced mitochondrial genomes. TAA is the most frequent stop codon, one of three–TAA, TAG, and T- –commonly observed in Anseriformes. All tRNAs could be folded into canonical cloverleaf secondary structures except for tRNASer(AGY) and tRNALeu(CUN), which are missing the dihydrouridine (DHU) arm. The control region of Bean goose mtDNA, with some conserved sequence boxes, such as F, E, D, and C, identified in its central domain. Phylogenetic analysis of complete mtDNA data for 13 Anseriform species supports the classification of them into four major branches: Anatinae, Anserinae, Dendrocygninae and Anseranatidae. Phylogenetic analyses were also conducted on 36 Anseriform birds using combined Cyt b, ND2, and COI sequences. The results clearly support the genus Somateria as an independent lineage classified in its own tribe, the Somaterini. Recovered topologies from both complete mtDNA and combined DNA sequences strongly indicate that Dendrocygninae is an independent subfamily within the family Anatidae and Anseranatidae represents an independent family. Based on the results of this study, we conclude that combining ND2, Cyt b, and COI sequence data is a workable solution at present for resolving phylogenetic relationships among Anseriform species in the absence of sufficient complete mtDNA data. PMID:23717412

  19. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host.

    PubMed

    Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro

    2015-03-01

    The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. PMID:25454384

  20. Effect of rice--glycerol complex medium on the production of Lovastatin by Monascus ruber.

    PubMed

    Chang, Y N; Lin, Y C; Lee, C C; Liu, B L; Tzeng, Y M

    2002-01-01

    Response surface methodology (RSM) was employed to study the effect of the composition of the rice-glycerol complex medium on the production of lovastatin (Lvs) by the ascomycete Monascus ruber in mixed solid-liquid (or submerged) cultures at 25 degrees C. Four components (rice powder, peptone, glycerol, glucose) were studied to evaluate the approximate polynomial for all dependent variables, explaining their effects on the production of Lvs. The best composition derived from RSM regression was (in g/L) rice powder 34.4, peptone 10.8,, glucose 129, KNO3 8.0, MgSO4.7H2O 4.0 and glycerol 36.4 mL/L. With this composition, the Lvs production was 157 mg/L after 10 d of cultivation. In comparison with glycerol and glucose, the rice powder becomes a more suitable carbon source and represents a great potential for the production of Lvs. PMID:12630319

  1. MRSP1, encoding a novel Trichoderma secreted protein, is negatively regulated by MAPK.

    PubMed

    Mukherjee, Prasun K; Hadar, Ruthi; Pardovitz-Kedmi, Ella; Trushina, Naomi; Horwitz, Benjamin A

    2006-11-24

    A novel gene, MRSP1 (MAP kinase repressed secreted protein 1) is strongly overexpressed in the tmkA MAPK mutant of the biocontrol fungus Trichoderma virens. Transcriptional regulation of MRSP1 is determined by presence or absence of TmkA, rather than by light or sporulation, making it a molecular marker for the unusual, negative, regulation by TmkA. The predicted protein is 15.9 kDa, has a secretory signal, and the four-cysteine pattern, C-X29-CP(G)C-X31-C, may define a new cysteine-rich motif. This is a novel protein with functions not known from any other organism. Conservation in ascomycete, basidiomycete, and Dictyostelium homologs, as well as tight MAPK regulation, might indicate important cellular functions. PMID:17027919

  2. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis.

    PubMed

    Pomraning, Kyle R; Wei, Siwei; Karagiosis, Sue A; Kim, Young-Mo; Dohnalkova, Alice C; Arey, Bruce W; Bredeweg, Erin L; Orr, Galya; Metz, Thomas O; Baker, Scott E

    2015-01-01

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains. PMID:25905710

  3. Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece).

    PubMed

    Sterflinger, K; De Baere, R; de Hoog, G S; De Wachter, R; Krumbein, W E; Haase, G

    1997-11-01

    Coniosporium perforans and C. apollinis, originating from marble in the Mediterranean basin, are described as new species of rock inhabiting microcolonial fungi. The morphologically similar species Monodictys castaneae (Wallr.) S. Hughes, Phaeosclera dematioides Sigler et al., and a Coniosporium-like strain are compared using 18S rDNA phylogeny and Restriction Length Fragment Polymorphism analysis of Internal Transcribed Spacer regions. Sarcinomyces crustaceus Lindner is additionally compared on the basis of 18S rDNA sequencing data. Phylogenetic analysis suggests that Phaeosclera dematioides is related to the ascomycetous order Dothideales and Monodictys castaneae to the Pleosporales, whereas the three Coniosporium species studied are a sister group to the Herpotrichiellaceae (Chaetothyriales). A similar affinity was suggested previously for the recently described meristematic rock-fungus Sarcinomyces petricola Wollenzien & de Hoog. Sarcinomyces crustaceus appears unrelated to this group, and hence the present new taxa cannot be described in this genus. PMID:9442275

  4. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    PubMed

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate. PMID:26611372

  5. The benomyl test as a fundamental diagnostic method for medical mycology.

    PubMed Central

    Summerbell, R C

    1993-01-01

    The fungicide benomyl has long been known to differentially affect major taxonomic groups of fungi. In the present study 163 species or aggregates of closely similar species of medically important fungi and actinomycetes, as well as species commonly isolated as clinical contaminants, were tested to determine their reactions to three concentrations of benomyl. Fungi of basidiomycetous, endomycetous, and microascaceous affinities were highly resistant, including all common yeasts and Geotrichum, Pseudallescheria, Scedosporium, and Scopulariopsis species. Also resistant were fungi of pleosporalean affinities with poroconidial anamorphs, such as Alternaria, Bipolaris, Curvularia, and Exserohilum species. Most other fungi of ascomycetous affinity were moderately to strongly susceptible. Such fungi included dermatophytes; Coccidioides, Blastomyces, and Histoplasma species; Sporothrix schenckii; medically important aspergilli; and "black yeasts." Benomyl testing aided in the provisional identification of nonsporulating mycelia, including common basidiomycetous isolates obtained as contaminants as well as nonsporulating Aspergillus fumigatus from pulmonary sources. PMID:8458952

  6. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts

    PubMed Central

    2013-01-01

    Background Sterol esterases and lipases are enzymes able to efficiently catalyze synthesis and hydrolysis reactions of both sterol esters and triglycerides and due to their versatility could be widely used in different industrial applications. Lipases with this ability have been reported in the yeast Candida rugosa that secretes several extracellular enzymes with a high level of sequence identity, although different substrate specificity. This versatility has also been found in the sterol esterases from the ascomycetes Ophiostoma piceae and Melanocarpus albomyces. Results In this work we present an in silico search of new sterol esterase and lipase sequences from the genomes of environmental fungi. The strategy followed included identification and search of conserved domains from these versatile enzymes, phylogenetic studies, sequence analysis and 3D modeling of the selected candidates. Conclusions Six potential putative enzymes were selected and their kinetic properties and substrate selectivity are discussed on the basis of their similarity with previously characterized sterol esterases/lipases with known structures. PMID:24138290

  7. Potential of Ophiostoma piceae sterol esterase for biotechnologically relevant hydrolysis reactions

    PubMed Central

    Barba Cedillo, Vctor; Prieto, Alicia; Martnez, Mara Jess

    2013-01-01

    The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity toward p-nitrophenol, glycerol, and sterol esters. Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris under the AOX1 methanol-inducible promoter (PAOX1) using sorbitol as co-susbtrate, and the hydrolytic activity of the recombinant protein (OPE*) turned out to be improved from a kinetic point of view. In this study, we analyze the effects of sorbitol during the expression of OPE*, at first added as an additional carbon source, and methanol as inducer. The O. piceae enzyme was successfully used for PVAc hydrolysis, suggesting its potential applicability in recycled paper production to decrease stickies problems. PMID:23138020

  8. Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera.

    PubMed

    Rudeen, Melissa L; Jaronski, Stefan T; Petzold-Maxwell, Jennifer L; Gassmann, Aaron J

    2013-11-01

    Entomopathogenic ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many soil-borne arthropods including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium anisopliae sensu lato in ten cornfields in Iowa, USA by baiting with larval insects. B. bassiana and M. anisopliae s.l. were present in 60% 6.3% and 55% 6.4% of soil samples, respectively. Subsequent laboratory bioassays found that some M. anisopliae s.l. strains collected from cornfields killed a greater proportion of D.v. virgifera larvae than a standard commercial strain. PMID:24120889

  9. Ancient fungi in Antarctic permafrost environments.

    PubMed

    Kochkina, Galina; Ivanushkina, Natalya; Ozerskaya, Svetlana; Chigineva, Nadezhda; Vasilenko, Oleg; Firsov, Sergey; Spirina, Elena; Gilichinsky, David

    2012-11-01

    Filamentous fungi in 36 samples of Antarctic permafrost sediments were studied. The samples collected during the Russian Antarctic expedition of 2007-2009 within the framework of the Antarctic Permafrost Age Project (ANTPAGE) were recovered from different depths in ice-free oases located along the perimeter of the continent. Fungal diversity was determined by conventional microbiological techniques combined with a culture-independent method based on the analysis of internal transcribed spacer (ITS2) sequences in total DNA of the samples. The study revealed a rather low fungal population density in permafrost, although the diversity found was appreciable, representing more than 26 genera. Comparison of the data obtained by different techniques showed that the culture-independent method enabled the detection of ascomycetous and basidiomycetous fungi not found by culturing. The molecular method failed to detect members of the genera Penicillium and Cladosporium that possess small-sized spores known to have a high resistance to environmental changes. PMID:22757669

  10. Variation of Soil Mycoflora in Decomposition of Rice Stubble from Rice-wheat Cropping System

    PubMed Central

    Sinha, Asha

    2007-01-01

    The colonization pattern and extent of decay produced in paddy stubble by soil inhabiting mycoflora were done by using nylon net bag technique. Among the three methods used for isolation of fungi, dilution plate technique recorded the highest number of fungi followed by damp chamber and direct observation method. Nutrient availability and climatic conditions (temperature, humidity and rainfall) influenced the occurrence and colonization pattern of fungi. Maximum fungal population was recorded in October (48.99 104/g dry litter) and minimum in May (11.41 104/g dry litter). Distribution of Deuteromycetous fungi was more in comparison to Zygomycetes, oomycetes and ascomycetes. In the early stage of decomposition Mucor racemosus, Rhizopus nigricans, Chaetomium globosum and Gliocladium species were found primarly whereas at later stages of decomposition preponderance of Aspergillus candidus, Torula graminis, Cladosporiun cladosporioides and Aspergillus luchuensis was recorded. PMID:24015096

  11. Variation of Soil Mycoflora in Decomposition of Rice Stubble from Rice-wheat Cropping System.

    PubMed

    Vibha; Sinha, Asha

    2007-12-01

    The colonization pattern and extent of decay produced in paddy stubble by soil inhabiting mycoflora were done by using nylon net bag technique. Among the three methods used for isolation of fungi, dilution plate technique recorded the highest number of fungi followed by damp chamber and direct observation method. Nutrient availability and climatic conditions (temperature, humidity and rainfall) influenced the occurrence and colonization pattern of fungi. Maximum fungal population was recorded in October (48.99 10(4)/g dry litter) and minimum in May (11.41 10(4)/g dry litter). Distribution of Deuteromycetous fungi was more in comparison to Zygomycetes, oomycetes and ascomycetes. In the early stage of decomposition Mucor racemosus, Rhizopus nigricans, Chaetomium globosum and Gliocladium species were found primarly whereas at later stages of decomposition preponderance of Aspergillus candidus, Torula graminis, Cladosporiun cladosporioides and Aspergillus luchuensis was recorded. PMID:24015096

  12. Identification of an Abscisic Acid Gene Cluster in the Grey Mold Botrytis cinerea

    PubMed Central

    Siewers, Verena; Kokkelink, Leonie; Smedsgaard, Jrn; Tudzynski, Paul

    2006-01-01

    Like several other phytopathogenic fungi, the ascomycete Botrytis cinerea is known to produce the plant hormone abscisic acid (ABA) in axenic culture. Recently, bcaba1, the first fungal gene involved in ABA biosynthesis, was identified. Neighborhood analysis of bcaba1 revealed three further candidate genes of this pathway: a putative P450 monooxygenase-encoding gene (bcaba2), an open reading frame without significant similarities (bcaba3), and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). Targeted inactivation of the genes proved the involvement of BcABA2 and BcABA3 in ABA biosynthesis and suggested a contribution of BcABA4. The close linkage of at least three ABA biosynthetic genes is strong evidence for the presence of an abscisic acid gene cluster in B. cinerea. PMID:16820452

  13. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble.

    PubMed

    Fournier, E; Giraud, T

    2008-01-01

    Prime candidates for sympatric ecological divergence include parasites that differentiate via host shifts, because different host species exert strong disruptive selection and because both hosts and parasites are continually co-evolving. Sympatric divergence may be fostered even more strongly in phytopathogenic fungi, in particular those where sex must occur on the host, which allows adaptation alone to restrict gene flow between populations developing on different hosts. We sampled populations of Botrytis cinerea, a generalist ascomycete fungus, on sympatric grapes and brambles in six regions in France. Microsatellite data were analyzed using standard population genetics, a population graph analysis and a Bayesian approach. In addition to confirming that B. cinerea reproduces sexually, our results showed that the fungal populations on the two hosts were significantly differentiated, indicating restricted gene flow, even in sympatry. In contrast, only weak geographical differentiation could be detected. These results support the possibility of sympatric divergence associated with host use in generalist parasites. PMID:18028352

  14. Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat.

    PubMed

    Greiner, Katrin; Peroh, Derek; Weig, Alfons; Rambold, Gerhard

    2014-12-01

    Salt mines represent an extreme environment with hypersaline conditions, complete darkness, and low nutrient availability. The diversity of filamentous fungi in such habitats is largely unknown. Eight strains of an unknown fungus were isolated from water samples of the salt mine in Berchtesgaden (Bavaria, Germany). They could be assigned to the ascomycete genus Phialosimplex, based on their common characteristics of producing conidia in chains or in heads on single phialides. Species of this genus are hitherto known to cause mycoses in dogs and have been found in mummies. Using molecular and morphological methods, the isolates are established as a new species, Phialosimplex salinarum sp. nov. Basipetospora halophila is also transferred to Phialosimplex as P. halophila comb. nov. PMID:25734026

  15. Evolution of regulatory networks in Candida glabrata: learning to live with the human host.

    PubMed

    Roy, Sushmita; Thompson, Dawn

    2015-12-01

    The opportunistic human fungal pathogen Candida glabrata is second only to C. albicans as the cause of Candida infections and yet is more closely related to Saccharomyces cerevisiae. Recent advances in functional genomics technologies and computational approaches to decipher regulatory networks, and the comparison of these networks among these and other Ascomycete species, have revealed both unique and shared strategies in adaptation to a human commensal/opportunistic pathogen lifestyle and antifungal drug resistance in C. glabrata. Recently, several C. glabrata sister species in the Nakeseomyces clade representing both human associated (commensal) and environmental isolates have had their genomes sequenced and analyzed. This has paved the way for comparative functional genomics studies to characterize the regulatory networks in these species to identify informative patterns of conservation and divergence linked to phenotypic evolution in the Nakaseomyces lineage. PMID:26449820

  16. Mate and fuse: how yeast cells do it

    PubMed Central

    Merlini, Laura; Dudin, Omaya; Martin, Sophie G.

    2013-01-01

    Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem. PMID:23466674

  17. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    PubMed

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo Jos Pereira Lima; Reis, Osvaldo; Pereira, Gonalo Amarante Guimares; Mondego, Jorge Maurcio Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M.perniciosa pathogenicity. PMID:26367180

  18. [Diversity of facultatively anaerobic microscopic mycelial fungi in soils].

    PubMed

    Kurakov, A V; Lavrent'ev, R B; Nechita?lo, T Iu; Golyshin, P N; Zviagintsev, D G

    2008-01-01

    The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is composed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea. Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride. T. koningii, Lecanicillum lecanii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor circinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10-30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions. PMID:18365728

  19. Plant cell membranes as biochemical targets of the phytotoxin helminthosporol.

    PubMed

    Briquet, M; Vilret, D; Goblet, P; Mesa, M; Eloy, M C

    1998-06-01

    Helminthosporol is one of the natural sesquiterpenoid toxins isolated and identified in the culture medium of the phytopathogenic ascomycete fungus Cochliobolus sativus. The effect of this phytotoxin was investigated on enzymatic activities, electron and ion transport in mitochondria, chloroplasts, and microsomes of plant. The results indicate that helminthosporol drastically affects the membrane permeability of these organelles to protons and substrate anions, inhibiting the mitochondrial oxidative phosphorylation, the photophosphorylation in chloroplasts, and the proton pumping across the cell plasma membrane. The 1,3-beta-glucan synthase activity, involved in defense mechanisms of plant cells against stress and damage, e.g., during pathogen attack, was also strongly inhibited by the toxin. PMID:9733095

  20. The distribution of the NADPH regenerating mannitol cycle among fungal species.

    PubMed

    Hult, K; Veide, A; Gatenbeck, S

    1980-12-01

    The mannitol cycle is an important NADPH regenerating system in Alternaria alternata. The cycle is built up to the following enzymes: mannitol 1-phosphate dehydrogenase, mannitol 1-phosphatase, mannitol dehydrogenase and hexokinase. The net reaction of one cycle turn is: NADH + NADP+ + ATP leads to NAD+ + NADPH + ADP + Pi. The enzymes needed for an operating cycle were found in Aspergillus, Botrytis, Penicillium, Pyricularia, Trichothecium, Cladosporium and Thermomyces all genera belonging to Fungi Imperfecti. The only genus of this class lacking the cycle was Candida. No genera from the classes Basidiomycetes and Phycomycetes showed any mannitol 1-phosphate dehydrogenase or mannitol 1-phosphatase activities. The genera investigated, belonging to Ascomycetes, Gibberella, Ceratocystis and Neurospora all lacked mannitol 1-phosphate dehydrogenase. It was concluded that the mannitol cycle is an important and widespread pathway for NADH oxidation and NADP+ reduction in the organisms belonging to the class Fungi Imperfecti. PMID:6782999

  1. Marine Fungi: Their Ecology and Molecular Diversity

    NASA Astrophysics Data System (ADS)

    Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David

    2012-01-01

    Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.

  2. Polyphasic identification of yeasts isolated from bark of cork oak during the manufacturing process of cork stoppers.

    PubMed

    Villa-Carvajal, Mercedes; Coque, Juan José R; Alvarez-Rodríguez, María Luísa; Uruburu, Federico; Belloch, Carmela

    2004-05-01

    A two-step protocol was used for the identification of 52 yeasts isolated from bark of cork oak at initial stages of the manufacturing process of cork stoppers. The first step in the identification was the separation of the isolates into groups by their physiological properties and RFLPs of the ITS-5.8S rRNA gene. The second step was the sequencing of the D1/D2 domains of the 26S rRNA gene of selected isolates representing the different groups. The results revealed a predominance of basidiomycetous yeasts (11 species), while only two species represented the ascomycetous yeasts. Among the basidiomycetous yeasts, members representing the species Rhodosporidium kratochvilovae and Rhodotorula nothofagi, that have been previously isolated from plant material, were the most abundant. Yeasts pertaining to the species Debaryomyces hansenii var. fabryii, Rhodotorula mucilaginosa and Trichosporon mucoides were isolated in small numbers. PMID:15093778

  3. Aspergillus Niger Genomics: Past, Present and into the Future

    SciTech Connect

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently, there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.

  4. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties.

    PubMed

    Francis, Frdric; Jaber, Karimi; Colinet, Frdric; Portetelle, Daniel; Haubruge, Eric

    2011-11-01

    Several Ascomycetes fungi are commonly used in bio-industries and provide available industrial residues for lectin extraction to be valuable. A lectin from Penicillium chrysogenum, named PeCL, was purified from a fungal culture using gel-filtration chromatography column. PeCL was found to be a mannose-specific lectin by haemagglutination activity towards rabbit erythrocyte cells and was visualised on SDS-PAGE gel. Purified PeCL fraction was delivered via artificial diet to Myzus persicae aphid and was demonstrated to be aphicidal at 0.1% with higher toxic efficiency than a known mannose-binding lectin Concanavalin A (ConA). A fast and efficient way to purify PeCL and a potential use in pest control is described. PMID:22036288

  5. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov.

    PubMed

    Nguyen, Nhu H; Suh, Sung-Oui; Marshall, Christopher J; Blackwell, Meredith

    2006-10-01

    Ascomycete yeasts that both ferment and assimilate xylose were reported previously as associates of insects living in woody substrates. Most notable have been reports of Pichia stipitis-like yeasts that are widely associated with the wood-boring beetle, Odontotaenius disjunctus (Coleoptera: Passalidae), in the eastern United States. Our continuing investigation of insect gut yeasts has lead to the discovery of two new xylose-fermenting yeasts that phylogenetic analysis places as sister taxa. The beetle hosts, O. disjunctus and Phrenapates bennetti (Coleoptera: Tenebrionidae), are similar in habitat and appearance, and the presence of similar gut yeasts is an additional common feature between them. Here we describe the new yeast genus Spathaspora, the type species S. passalidarum, and its sister taxon Candida jeffriesii and discuss their natural history, including a comparison with Pichia stipitis, another member of a guild of xylose-fermenting yeasts with similar metabolic traits. In addition a morphologically distinct yeast ascospore type is described for Spathaspora. PMID:17011177

  6. A re-appraisal of Harknessia (Diaporthales), and the introduction of Harknessiaceae fam. nov.

    PubMed

    Crous, P W; Summerell, B A; Shivas, R G; Carnegie, A J; Groenewald, J Z

    2012-06-01

    Harknessiaceae is introduced as a new family in the ascomycete order Diaporthales to accommodate species of Harknessia with their Wuestneia-like teleomorphs. The family is distinguished by having pycnidial conidiomata with brown, furfuraceous margins, brown conidia with hyaline, tube-like basal appendages, longitudinal striations, and rhexolytic secession. Six species occurring on Eucalyptus are newly introduced, namely H. australiensis, H. ellipsoidea, H. pseudohawaiiensis, and H. ravenstreetina from Australia, H. kleinzeeina from South Africa, and H. viterboensis from Italy. Epitypes are designated for H. spermatoidea and H. weresubiae, both also occurring on Eucalyptus. Members of Harknessia are commonly associated with leaf spots, but also occur as saprobes and endophytes in leaves and twigs of various angiosperm hosts. PMID:23105153

  7. Draft Genome Sequence of Colletotrichum falcatum - A Prelude on Screening of Red Rot Pathogen in Sugarcane

    PubMed Central

    Viswanathan, Rasappa; Prasanth, Chandrasekaran Naveen; Malathi, Palaniyandi; Sundar, Amalraj Ramesh

    2016-01-01

    Colletotrichum falcatum, a concealed fungal ascomycete causes red rot, which is a serious disease in sugarcane. It infects economically important stalk tissues, considered as store house of sugar in sugarcane. The study is to find genetic complexities of C. falcatum in establishing this as a stalk infecting pathogen and to decipher the unique lifestyle of this pathogen using NGS technology. We report the draft genome of C. falcatum of about 48.16 Mb in size with 12,270 genes. The genome sequences were compared with other fungal species which revealed that C. falcatum is closely related to C. graminicola and C.sublineola the causal organisms of anthracnose in maize and sorghum. These results brought a new revelation to explore the lifestyle of this unique pathogen which is specialized to infect sugarcane stalk tissues in detail. PMID:26958090

  8. Enzyme-Linked Immunosorbent Assay of Fungal NADP+-Glutamate Dehydrogenase 1

    PubMed Central

    Martin, Francis; Botton, Bernard; Msatef, Yamina

    1983-01-01

    A sensitive and reliable method has been developed for the quantitation of NADP+-glutamate dehydrogenase from the phytopathogenic Ascomycete Sphaerostilbe repens using a two-step competitive enzyme-linked immunosorbent assay. Purified enzyme was adsorbed noncovalently to polystyrene wells and rabbit immunserum was allowed to bind to antigensensitized wells. Bound specific antibody was visualized by goat antirabbit immunoglobulin covalently linked to alkaline phosphatase using paranitrophenylphosphate as the substrate. Increasing amounts of purified enzyme or crude fungal extracts were quantitated by their ability to inhibit specific antibody adsorption to antigen-coated polystyrene wells. This system proves to be useful in the range of 10 to 80 nanograms of enzyme level. Using this assay, identical amounts of NADP+-glutamate dehydrogenase were found in mycelia grown on nitrate and ammonia sources. Images Fig. 1 PMID:16663014

  9. The yeast community of sap fluxes of Costa Rican Maclura (Chlorophora) tinctoria and description of two new yeast species, Candida galis and Candida ortonii.

    PubMed

    Lachance, M A; Klemens, J A; Bowles, J M; Janzen, D H

    2001-07-01

    We report on the yeast community associated with sap fluxes of Maclura tinctoria, family Moraceae, in the dry forest of the Area de Conservacin Guanacaste, Costa Rica. Eleven samples yielded seven hitherto undescribed ascomycetous yeasts in the genera Candida and Myxozyma. We describe the two most abundant as new species. Candida galis utilizes very few carbon compounds limited to some alcohols and acids. Analysis of rDNA sequences suggests that it occupies a basal position with respect to the Pichia anomala clade, with no obvious sister species. Candida ortonii is also restricted in nutritional breadth, and growth is generally very slow. It is a sister species to Candida nemodendra. The type cultures are: C. galis, strain UWO(PS)00-159.2=CBS 8842; and C. ortonii, strain UWO(PS)00-159.3=CBS 8843. PMID:12702353

  10. Plant biomass degradation by fungi.

    PubMed

    Mkel, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. PMID:25192611

  11. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance.

    PubMed

    Kazan, Kemal; Gardiner, Donald M; Manners, John M

    2012-05-01

    The ascomycete fungal pathogen Fusarium graminearum (sexual stage: Gibberella zeae) causes the devastating head blight or scab disease on wheat and barley, and cob or ear rot disease on maize. Fusarium graminearum infection causes significant crop and quality losses. In addition to roles as virulence factors during pathogenesis, trichothecene mycotoxins (e.g. deoxynivalenol) produced by this pathogen constitute a significant threat to human and animal health if consumed in respective food or feed products. In the last few years, significant progress has been made towards a better understanding of the processes involved in F. graminearum pathogenesis, toxin biosynthesis and host resistance mechanisms through the use of high-throughput genomic and phenomic technologies. In this article, we briefly review these new advances and also discuss how future research can contribute to the development of sustainable plant protection strategies against this important plant pathogen. PMID:22098555

  12. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance.

    TOXLINE Toxicology Bibliographic Information

    Kazan K; Gardiner DM; Manners JM

    2012-05-01

    The ascomycete fungal pathogen Fusarium graminearum (sexual stage: Gibberella zeae) causes the devastating head blight or scab disease on wheat and barley, and cob or ear rot disease on maize. Fusarium graminearum infection causes significant crop and quality losses. In addition to roles as virulence factors during pathogenesis, trichothecene mycotoxins (e.g. deoxynivalenol) produced by this pathogen constitute a significant threat to human and animal health if consumed in respective food or feed products. In the last few years, significant progress has been made towards a better understanding of the processes involved in F. graminearum pathogenesis, toxin biosynthesis and host resistance mechanisms through the use of high-throughput genomic and phenomic technologies. In this article, we briefly review these new advances and also discuss how future research can contribute to the development of sustainable plant protection strategies against this important plant pathogen.

  13. Fusarium graminearum and Its Interactions with Cereal Heads: Studies in the Proteomics Era

    PubMed Central

    Yang, Fen; Jacobsen, Susanne; Jørgensen, Hans J. L.; Collinge, David B.; Svensson, Birte; Finnie, Christine

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum (teleomorph stage: Gibberella zeae) is the causal agent of Fusarium head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications toward a better understanding of F. graminearum pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly. PMID:23450732

  14. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies.

    PubMed

    Saboti?, Jerica; Ohm, Robin A; Knzler, Markus

    2016-01-01

    Fruiting bodies or sporocarps of dikaryotic (ascomycetous and basidiomycetous) fungi, commonly referred to as mushrooms, are often rich in entomotoxic and nematotoxic proteins that include lectins and protease inhibitors. These protein toxins are thought to act as effectors of an innate defense system of mushrooms against animal predators including fungivorous insects and nematodes. In this review, we summarize current knowledge about the structures, target molecules, and regulation of the biosynthesis of the best characterized representatives of these fungal defense proteins, including galectins, beta-trefoil-type lectins, actinoporin-type lectins, beta-propeller-type lectins and beta-trefoil-type chimerolectins, as well as mycospin and mycocypin families of protease inhibitors. We also present an overview of the phylogenetic distribution of these proteins among a selection of fungal genomes and draw some conclusions about their evolution and physiological function. Finally, we present an outlook for future research directions in this field and their potential applications in medicine and crop protection. PMID:26521246

  15. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion.

    PubMed

    Brown, Neil Andrew; Ries, Laure Nicolas Annick; Goldman, Gustavo Henrique

    2014-11-01

    The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi. PMID:25011009

  16. Integration of the first and second generation bioethanol processes and the importance of by-products.

    PubMed

    Lennartsson, Patrik R; Erlandsson, Per; Taherzadeh, Mohammad J

    2014-08-01

    Lignocellulosic ethanol has obstacles in the investment costs and uncertainties in the process. One solution is to integrate it with the running dry mills of ethanol from grains. However, the economy of these mills, which dominate the world market, are dependent on their by-products DDGS (Distiller's Dried Grains and Solubles), sold as animal feed. The quality of DDGS therefore must not be negatively influenced by the integration. This puts restraints on the choice of pretreatment of lignocelluloses and utilizing the pentose sugars by food-grade microorganisms. The proposed solution is to use food related filamentous Zygomycetes and Ascomycetes fungi, and to produce fungal biomass as a high-grade animal feed from the residues after the distillation (stillage). This also has the potential to improve the first generation process by increasing the amount of the thin stillage directly sent back into the process, and by decreasing the evaporator based problems. PMID:24582951

  17. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects.

    PubMed

    Ruthes, Andrea C; Smiderle, Fhernanda R; Iacomini, Marcello

    2016-01-20

    Mushrooms have been largely studied not only by their d-glucans, but also because they present a class of more complex polymers: the heteropolysaccharides. Heteropolysaccharides show variability on their monosaccharide composition, anomeric configuration, linkage and branching type, besides some of these molecules can present natural methylated monosaccharides and also acid monosaccharides, which enhance the difficulty of the purification and characterization of their structure. As a result of such complexity, mushroom heteropolysaccharides can be considered an interesting source of molecules with medicinal and industrial applications. Consequently a plenty of new researches has been published in the past 12 years about the isolation, chemical characterization and biological activities of heteropolysaccharides from mushrooms, especially from Basidiomycetes. Therefore, this review intends to organize and classify the information described up to now about such polysaccharides obtained from different sources of mushroom-forming fungi, Basidiomycetes, Ascomycetes and Hybrid mushrooms, and provides a brief reflection on how the chemical studies have been carried out. PMID:26572366

  18. Pichia insulana sp. nov., a novel cactophilic yeast from the Caribbean

    PubMed Central

    Ganter, Philip F.; Cardinali, Gianluigi; Boundy-Mills, Kyria

    2010-01-01

    A novel species of ascomycetous yeast, Pichia insulana sp. nov., is described from necrotic tissue of columnar cacti on Caribbean islands. P. insulana is closely related to and phenotypically very similar to Pichia cactophila and Pichia pseudocactophila. There are few distinctions between these taxa besides spore type, host preference and locality. Sporogenous strains of P. insulana that produce asci with four hat-shaped spores have been found only on Curaao, whereas there was no evidence of sporogenous P. cactophila from that island. In addition, sequences of the D1/D2 fragment of the large-subunit rDNA from 12 Curaao strains showed consistent differences from the sequences of the type strains of P. cactophila and P. pseudocactophila. The type strain of P. insulana is TSU00-106.5T (=CBS 11169T =UCD-FST 09-160T). PMID:19661524

  19. Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic rain forest of Brazil.

    PubMed

    Pimentel, Mariana R C; Antonini, Yasmine; Martins, Rogrio P; Lachance, Marc-Andr; Rosa, Carlos A

    2005-06-01

    Two new ascomycetous yeast species belonging to the Starmerella clade were discovered in nests of two solitary bee species in the Atlantic rain forest of Brazil. Candida riodocensis was isolated from pollen-nectar provisions, larvae and fecal pellets of nests of Megachile sp., and Candida cellae was found in pollen-nectar provisions of Centris tarsata. Analysis of the sequences of the D1/D2 large-subunit ribosomal DNA showed that C. riodocensis is phylogenetically related to C. batistae, and the closest relative of C. cellae is C. etchellsii. The type strains are C. riodocensis UFMG-MG02 (=CBS 10087(T) = NRRL Y-27859(T)) and C. cellae UFMG-PC04 (=CBS 10086(T) = NRRL Y-27860(T)). PMID:15925316

  20. The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea

    PubMed Central

    Siewers, Verena; Smedsgaard, Jrn; Tudzynski, Paul

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this direct pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential for ABA biosynthesis: ?Bcaba1 mutants contained no residual ABA. Thus, bcaba1 represents the first identified fungal ABA biosynthetic gene. PMID:15240257

  1. Myco-fluidics: The fluid dynamics of fungal chimerism

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Hickey, Patrick; Dressaire, Emilie; Roch, Sebastien

    2012-11-01

    Chimeras-fantastical creatures formed as amalgams of many animals-have captured the human imagination since Ancient times. But they are also surprisingly common in Nature. The syncytial cells of filamentous fungi harbor large numbers of nuclei bathed in a single cytoplasm. As a fungus grows these nuclei become genetically diverse, either from mutation or from exchange of nuclei between different fungal individuals, a process that is known to increase the virulence of the fungus and its adaptability. By directly measuring nuclear movement in the model ascomycete fungus Neurospora crassa, we show that the fungus' tolerance for internal genetic diversity is enabled by hydrodynamic mixing of nuclei acting at all length scales within the fungal mycelium. Mathematical modeling and experiments in a mutant with altered mycelial morphology reveal some of the exquisite hydraulic engineering necessary to create these mixing flows from spatially coarse pressure gradients.

  2. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis.

    PubMed

    Smith, T L; Gaskell, J; Berka, R M; Yang, M; Henner, D J; Cullen, D

    1990-04-16

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (HyR) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. HyR transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcriptional start points are the same in U. maydis and A. niger. PMID:2112106

  3. Structures of Cvnh Family Lectins

    NASA Astrophysics Data System (ADS)

    Gronenborn, Angela M.

    Members of the CVNH family are found in a restricted range of eukaryotic organisms as diverse as filamentous ascomycetes and seedless plants. All CVNH proteins so far exhibit a fold that matches the unique fold of the cyanobacterial protein. The CVNH domain is a versatile protein module, and, with some exceptions, comprises 101-150 aa with two sequential repeats of 50 amino acids. We determined high resolution structures of CVNHs from Tuber borchii, Ceratopteris richardii, Neurospora crassa, and Gibberella zeae, representing different phylogenetic groups. All proteins exhibit the same fold and the overall structures resemble that of the founding member of the family, CVN, albeit with noteworthy differences in loop conformation and detailed local structure.

  4. Conservation of cysteine residues in fungal histidine acid phytases.

    PubMed

    Mullaney, Edward J; Ullah, Abul H J

    2005-03-11

    Amino acid sequence analysis of fungal histidine acid phosphatases displaying phytase activity has revealed a conserved eight-cysteine motif. These conserved amino acids are not directly associated with catalytic function; rather they appear to be essential in the formation of disulfide bridges. Their role is seen as being similar to another eight-cysteine motif recently reported in the amino acid sequence of nearly 500 plant polypeptides. An additional disulfide bridge formed by two cysteines at the N-terminus of all the filamentous ascomycete phytases was also observed. Disulfide bridges are known to increase both stability and heat tolerance in proteins. It is therefore plausible that this extra disulfide bridge contributes to the higher stability found in phytase from some Aspergillus species. To engineer an enhanced phytase for the feed industry, it is imperative that the role of disulfide bridges be taken into cognizance and possibly be increased in number to further elevate stability in this enzyme. PMID:15694362

  5. Biotransformation of the Antibiotic Danofloxacin by Xylaria longipes Leads to an Efficient Reduction of Its Antibacterial Activity.

    PubMed

    Rusch, Marina; Kauschat, Annika; Spielmeyer, Astrid; Römpp, Andreas; Hausmann, Heike; Zorn, Holger; Hamscher, Gerd

    2015-08-12

    Fluoroquinolones are considered as critically important antibiotics. However, they are used in appreciable quantities in veterinary medicine. Liquid manure and feces can contain substantial amounts of unmetabolized antibiotics and, thus, antibiotics can enter the environment if manure is used for soil fertilization. In this study, the microbial biotransformation of the synthetic veterinary fluoroquinolone danofloxacin by the ascomycete Xylaria longipes was investigated. Fungal submerged cultures led to a regioselective and almost quantitative formation of a single metabolite within 3 days. The metabolite was unequivocally identified as danofloxacin N-oxide by high-resolution mass spectrometry and one- and two-dimensional nuclear magnetic resonance spectroscopic techniques. An oxidation of the terminal nitrogen of the substituted piperazine moiety of the substance led to a remarkable reduction of 80% of the initial antibacterial activity. Thus, fungal enzymes involved in the biotransformation process might possess the potential to reduce the entrance of antibiotics via biotransformation of these compounds. PMID:26189577

  6. Total synthesis of (+)-chloriolide.

    PubMed

    Ostermeier, Michael; Schobert, Rainer

    2014-05-01

    (+)-Chloriolide, a metabolite of the ascomycete Chloridium virescens var. chlamydosporum, was synthesized in 16 linear steps from cellulose as a source of a levoglucosenone that contributed the (Z)-alkene and the R stereocenter. The attachment of a spacer derived from l-lactate gave an ω-hydroxyacetal which was added to the phosphorus ylide Ph3PCCO. The resulting ester ylide was treated with hydrochloric acid to liberate the hemiacetal shown. Addition of sodium hydroxide regenerated the corresponding ylide, which underwent a spontaneous intramolecular Wittig olefination to afford (+)-chloriolide in 65% yield without the necessity of high-dilution conditions. This is the third synthesis of (+)-chloriolide and the first one ever of a macrolide by a ring-closing Wittig olefination of a stabilized phosphorus ylide bearing an ω-hemiacetal. Our synthetic sample exhibited moderate cytotoxicity against cancer cells but no antimicrobial activity against Staphylococcus aureus. PMID:24708255

  7. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity.

    PubMed

    Roca, M Gabriela; Weichert, Martin; Siegmund, Ulrike; Tudzynski, Paul; Fleissner, Andr

    2012-03-01

    In many filamentous ascomycete species, the early steps of colony development include fusion between germinating vegetative spores (conidial germlings). Often these fusion events are mediated by specialized hyphal structures, so-called conidial anastomosis tubes (CATs). Here, we show that germling fusion in the grey mould Botrytis cinerea is mediated by hyphal structures possessing the typical features of CATs. Formation of these structures is delayed when spores are germinating on complex media compared to growth on poor substrates. Fusion frequency is also influenced by the growth conditions of the precultures from which spores were obtained. During germination on hydrophobic plant surfaces, which induce pathogenic development, CAT formation is significantly suppressed. Screening of existing B. cinerea gene knockout mutants identified strains lacking the NADPH oxidase BcNoxA or the potential Nox regulator BcNoxR as fusion deficient, suggesting a potential role of reactive oxygen species (ROS) signalling in CAT formation and fusion. PMID:22385620

  8. Trichosporon Species Isolated from Guano Samples Obtained from Bat-Inhabited Caves in Japan

    PubMed Central

    Sugita, Takashi; Kikuchi, Ken; Makimura, Koichi; Urata, Kensaku; Someya, Takashi; Kamei, Katsuhiko; Niimi, Masakazu; Uehara, Yoshimasa

    2005-01-01

    Yeasts from caves have rarely been examined. We examined yeasts collected from bat guano samples from 20 bat-inhabited limestone and volcanic caves located in 11 prefectures in Japan. Of ?700 yeast-like colonies, nine Trichosporon species were recovered from 15 caves. Two of these were known species, and the remaining seven are potentially novel species, based on molecular phylogenetic analyses. In addition to Trichosporon species, identifiable strains of eight ascomycetous yeasts and one basidiomycetous yeast were recovered at frequencies of 5 to 35%. Our findings suggest that Trichosporon spp. are the major yeast species in bat guano in Japan and that bat guano is a potentially rich source of previously undescribed yeast species. PMID:16269819

  9. Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia

    PubMed Central

    2011-01-01

    Background Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. Results In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. Conclusions These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea. PMID:22188865

  10. Phylogenetic placement of the anamorphic tribe Ustilaginoideae (Hypocreales, Ascomycota).

    PubMed

    Bischoff, J F; Sullivan, R F; Kjer, K M; White, J F

    2004-01-01

    Tribe Ustilaginoideae (Hypocreales, Ascomycetes) is made up of three anamorph genera, Munkia, Neomunkia and Ustilaginoidea. Species of Munkia and Neomunkia develop on the culms of bamboo (Chusquea spp.) and have a neotropical distribution while species of Ustilaginoidea infect the florets of various grasses and are pantropical in distribution. In this study we evaluated the phylogeny of the tribe and assessed hypotheses regarding its affinity to clavicipitalean teleomorphic groups. To support phylogenetic analyses, morphology of representatives of several key species of Ustilaginoideae was examined also. Phylogenetic analyses using sequences of the large subunit of the ribosomal RNA gene suggest that members of Ustilaginoideae are distinct from teleomorphic genera of Clavicipitaceae and that Ustilaginoideae should be recognized as a monophyletic group within Hypocreales. However, phylogenetic analyses did not resolve the placement of Ustilaginoideae in Clavicipitaceae or Hypocreaceae, suggesting that it might be a distinct lineage within Hypocreales. This evaluation supported the monophyly of tribes Balansieae and Clavicipeae in the family Clavicipitaceae. PMID:21148928

  11. Mycosphaerella is polyphyletic

    PubMed Central

    Crous, P.W.; Braun, U.; Groenewald, J.Z.

    2007-01-01

    Mycosphaerella, one of the largest genera of ascomycetes, encompasses several thousand species and has anamorphs residing in more than 30 form genera. Although previous phylogenetic studies based on the ITS rDNA locus supported the monophyly of the genus, DNA sequence data derived from the LSU gene distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. Several important leaf spotting and extremotolerant species need to be disposed to the genus Teratosphaeria, for which a new family, the Teratosphaeriaceae, is introduced. Other distinct clades represent the Schizothyriaceae, Davidiellaceae, Capnodiaceae, and the Mycosphaerellaceae. Within the two major clades, namely Teratosphaeriaceae and Mycosphaerellaceae, most anamorph genera are polyphyletic, and new anamorph concepts need to be derived to cope with dual nomenclature within the Mycosphaerella complex. PMID:18490994

  12. Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus.

    PubMed

    Martín-Sampedro, Raquel; Fillat, Úrsula; Ibarra, David; Eugenio, María E

    2015-11-01

    New endophytic fungi are assessed for the first time as pretreatment to enhance saccharification of Eucalyptus globulus wood. The fungi are all laccase-producing ascomycetes and were isolated from eucalyptus trees in Spain. After five endophytes had been assayed alone or in combination with white-rot fungus Trametes sp. I-62, three were pre-selected. To improve sugar production, an autohydrolysis pretreatment was performed before or after fungal treatment. Pretreatment increased sugar production 2.7 times compared to non-pretreated wood. When fungal and autohydrolysis pretreatments were combined, a synergistic increase in saccharification was observed in all cases. Endophytic fungi Ulocladium sp. and Hormonema sp. produced greater enhancements in saccharification than Trametes sp. I-62 (increase in sugar yields of 8.5, 8.0 and 6.0 times, respectively), demonstrating the high potential of these new endophytic fungi for saccharification enhancement. PMID:26255602

  13. Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere

    PubMed Central

    Karlsson, Ida; Friberg, Hanna; Steinberg, Christian; Persson, Paula

    2014-01-01

    The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although overall the difference in OTU richness was large between the two areas studied. PMID:25369054

  14. Social wasps are a Saccharomyces mating nest.

    PubMed

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-02-23

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes. PMID:26787874

  15. Social wasps are a Saccharomyces mating nest

    PubMed Central

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-01-01

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes. PMID:26787874

  16. Nutritional physiology and taxonomy of human-pathogenic Cladosporium-Xylohypha species.

    PubMed

    de Hoog, G S; Guho, E; Masclaux, F; Gerrits van den Ende, A H; Kwon-Chung, K J; McGinnis, M R

    1995-01-01

    Physiological profiles of type, authentic and some additional isolates of Cladosporium-Xylohypha species of purported herpotrichiellaceous relationship are established. This group comprises melanized catenate hyphomycetes which are prevalently found on the human host. The species are excluded from the genus Cladosporium and are classified in the genus Cladophialophora. Taeniolella boppii is also transferred to this genus. Cladosporium bantianum (= Xylohypha emmonsii) and C. trichoides are considered conspecific and are now referred to as Cladophialophora bantiana. Meso-erythritol, L-arabinitol, ethanol and growth at 40 degrees C are found to be the most useful criteria for species distinction. The species Cladosporium carrionii is found to be heterogeneous. The anamorph of the saprophytic ascomycete Capronia pilosella is morphologically similar to an authentic strain of Cladosporium carrionii, but physiologically distinct. A diagnostic key for the recognized Cladophialophora species and to morphologically similar taxa is provided. PMID:8544087

  17. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis

    PubMed Central

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice C.; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-01-01

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains. PMID:25905710

  18. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger

    PubMed Central

    Binder, Ulrike; Ben?ina, Mojca; Fizil, dm; Batta, Gyula; Chhillar, Anil K.; Marx, Florentine

    2015-01-01

    The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca2+ dynamics in response to PAF. This Ca2+ signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca2+ measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca2+ perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug. PMID:25882631

  19. Comparative Genomics of Taphrina Fungi Causing Varying Degrees of Tumorous Deformity in Plants

    PubMed Central

    Tsai, Isheng J.; Tanaka, Eiji; Masuya, Hayato; Tanaka, Ryusei; Hirooka, Yuuri; Endoh, Rikiya; Sahashi, Norio; Kikuchi, Taisei

    2014-01-01

    Taphrina fungi are biotrophic plant pathogens that cause plant deformity diseases. We sequenced the genomes of four Taphrina species—Taphrina wiesneri, T. deformans, T. flavorubra, and T. populina—which parasitize Prunus, Cerasus, and Populus hosts with varying severity of disease symptoms. High levels of gene synteny within Taphrina species were observed, and our comparative analysis further revealed that these fungi may utilize multiple strategies in coping with the host environment that are also found in some specialized dimorphic species. These include species-specific aneuploidy and clusters of highly diverged secreted proteins located at subtelomeres. We also identified species differences in plant hormone biosynthesis pathways, which may contribute to varying degree of disease symptoms. The genomes provide a rich resource for investigation into Taphrina biology and evolutionary studies across the basal ascomycetes clade. PMID:24682155

  20. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Libana, Raquel; Arregui, Luca; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 0.8??10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems. PMID:25588128