Science.gov

Sample records for asdex upgrade enhancements

  1. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios. PMID:24182110

  2. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  3. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Zohm, H.; Angioni, C.; Arslanbekov, R.; Atanasiu, C.; Becker, G.; Becker, W.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bobkov, V.; Bolshukhin, D.; Bolzonella, T.; Borrass, K.; Brambilla, M.; Braun, F.; Buhler, A.; Carlson, A.; Conway, G. D.; Coster, D. P.; Drube, R.; Dux, R.; Egorov, S.; Eich, T.; Engelhardt, K.; Fahrbach, H.-U.; Fantz, U.; Faugel, H.; Finken, K. H.; Foley, M.; Franzen, P.; Fuchs, J. C.; Gafert, J.; Fournier, K. B.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Goodman, T.; Gruber, O.; Gude, A.; Günter, S.; Haas, G.; Hartmann, D.; Heger, B.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hofmeister, F.; Hohenöcker, H.; Horton, L. D.; Igochine, V.; Jacchia, A.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kardaun, O.; Kaufmann, M.; Keller, A.; Kendl, A.; Kim, J.-W.; Kirov, K.; Kochergov, R.; Kollotzek, H.; Kraus, W.; Krieger, K.; Kurki-Suonio, T.; Kurzan, B.; Lang, P. T.; Lasnier, C.; Lauber, P.; Laux, M.; Leonard, A. W.; Leuterer, F.; Lohs, A.; Lorenz, A.; Lorenzini, R.; Maggi, C.; Maier, H.; Mank, K.; Manso, M.-E.; Mantica, P.; Maraschek, M.; Martines, E.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Meister, H.; Meo, F.; Merkel, P.; Merkel, R.; Merkl, D.; Mertens, V.; Monaco, F.; Mück, A.; Müller, H. W.; Münich, M.; Murmann, H.; Na, Y.-S.; Neu, G.; Neu, R.; Neuhauser, J.; Nguyen, F.; Nishijima, D.; Nishimura, Y.; Noterdaeme, J.-M.; Nunes, I.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S. D.; Poli, E.; Proschek, M.; Pugno, R.; Quigley, E.; Raupp, G.; Reich, M.; Ribeiro, T.; Riedl, R.; Rohde, V.; Roth, J.; Ryter, F.; Saarelma, S.; Sandmann, W.; Savtchkov, A.; Sauter, O.; Schade, S.; Schilling, H.-B.; Schneider, W.; Schramm, G.; Schwarz, E.; Schweinzer, J.; Schweizer, S.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Sips, A. C. C.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tabasso, A.; Tanga, A.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Urano, H.; Varela, P.; Vollmer, O.; Wagner, D.; Wenzel, U.; Wesner, F.; Westerhof, E.; Wolf, R.; Wolfrum, E.; Würsching, E.; Yoon, S.-W.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    2003-12-01

    Recent results from the ASDEX Upgrade experimental campaigns 2001 and 2002 are presented. An improved understanding of energy and particle transport emerges in terms of a 'critical gradient' model for the temperature gradients. Coupling this to particle diffusion explains most of the observed behaviour of the density profiles, in particular, the finding that strong central heating reduces the tendency for density profile peaking. Internal transport barriers (ITBs) with electron and ion temperatures in excess of 20 keV (but not simultaneously) have been achieved. By shaping the plasma, a regime with small type II edge localized modes (ELMs) has been established. Here, the maximum power deposited on the target plates was greatly reduced at constant average power. Also, an increase of the ELM frequency by injection of shallow pellets was demonstrated. ELM free operation is possible in the quiescent H-mode regime previously found in DIII-D which has also been established on ASDEX Upgrade. Regarding stability, a regime with benign neoclassical tearing modes (NTMs) was found. During electron cyclotron current drive (ECCD) stabilization of NTMs, bgrN could be increased well above the usual onset level without a reappearance of the NTM. Electron cyclotron resonance heating and ECCD have also been used to control the sawtooth repetition frequency at a moderate fraction of the total heating power. The inner wall of the ASDEX Upgrade vessel has increasingly been covered with tungsten without causing detrimental effects on the plasma performance. Regarding scenario integration, a scenario with a large fraction of noninductively driven current (geq50%), but without ITB has been established. It combines improved confinement (tgrE/tgrITER98 ap 1.2) and stability (bgrN les 3.5) at high Greenwald fraction (ne/nGW ap 0.85) in steady state and with type II ELMy edge and would offer the possibility for long pulses with high fusion power at reduced current in ITER.

  4. Enhancement of the FIDA diagnostic at ASDEX Upgrade for velocity space tomography

    NASA Astrophysics Data System (ADS)

    Weiland, M.; Geiger, B.; Jacobsen, A. S.; Reich, M.; Salewski, M.; Odstrčil, T.; the ASDEX Upgrade Team

    2016-02-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution f≤ft(E,{{v}\\parallel}/v\\right) from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius.

  5. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Bosch, H.-S.; Günter, S.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Krieger, K.; Lackner, K.; Mertens, V.; Neu, R.; Ryter, F.; Schweinzer, J.; Stäbler, A.; Suttrop, W.; Wolf, R.; Asmussen, K.; Bard, A.; Becker, G.; Behler, K.; Behringer, K.; Bergmann, A.; Bessenrodt-Weberpals, M.; Borrass, K.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Callaghan, H. P.; Carlson, A.; Coster, D. P.; Cupido, L.; de Peña Hempel, S.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Feist, H.-U.; Franzen, P.; Fuchs, J. C.; Fussmann, G.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Haas, G.; Hallatschek, K.; Hartmann, D.; Heinemann, B.; Herppich, G.; Herrmann, W.; Hofmeister, F.; Holzhauer, E.; Jacobi, D.; Kakoulidis, M.; Karakatsanis, N.; Kardaun, O.; Khutoretski, A.; Kollotzek, H.; Kötterl, S.; Kraus, W.; Kurzan, B.; Kyriakakis, G.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Lorenz, A.; Maier, H.; Manso, M.; Maraschek, M.; Markoulaki, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Merkel, R.; Meskat, J. P.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Raupp, G.; Reinmüller, K.; Riedl, R.; Rohde, V.; Röhr, H.; Roth, J.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweizer, S.; Schwörer, R. R.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Speth, E.; Steuer, K.-H.; Stober, J.; Streibl, B.; Thoma, A.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Verbeek, H.; Vollmer, O.; Wedler, H.; Weinlich, M.; Wenzel, U.; Wesner, F.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zohm, H.; Zouhar, M.

    1999-09-01

    The closed ASDEX Upgrade Divertor II, `LYRA', is capable of handling heating powers of up to 20 MW or P/R of 12 MW/m, owing to a reduction of the maximum heat flux to the target plates by more than a factor of 2 compared with the open Divertor I. This reduction is caused by high radiative losses from carbon and hydrogen inside the divertor region and is in agreement with B2-EIRENE modelling predictions. At medium densities in the H mode, the type I ELM behaviour shows no dependence on the heating method (NBI, ICRH). ASDEX Upgrade-JET dimensionless identity experiments showed compatibility of the L-H transition with core physics constraints, while in the H mode confinement, inconsistencies with the invariance principle were established. At high densities close to the Greenwald density, the MHD limited edge pressures, the influence of divertor detachment on separatrix parameters and increasing edge transport lead to limited edge densities and finally to temperatures below the critical edge temperatures for H mode. This results in a drastic increase of the H mode threshold power and an upper H mode density limit with gas puff refuelling. The H mode confinement degradation approaching this density limit is caused by the ballooning mode limited edge pressures and `stiff' temperature profiles relating core and edge temperatures. Repetitive high field side pellet injection allows for H mode operation well above the Greenwald density; moreover, higher confinement than with gas fuelling is found up to the highest densities. Neoclassical tearing modes limit the achievable β depending on the collisionality at the resonant surface. In agreement with the polarization current model, the onset β is found to be proportional to the ion gyroradius in the collisionless regime, while higher collisionalities are stabilizing. The fractional energy loss connected with saturated modes at high pressures is about 25%. A reduction of neoclassical mode amplitude and an increase of β have

  6. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Gruber, O.; Arslanbekov, R.; Atanasiu, C.; Bard, A.; Becker, G.; Becker, W.; Beckmann, M.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bolshukin, D.; Borrass, K.; Bosch, H.-S.; Braams, B.; Brambilla, M.; Brandenburg, R.; Braun, F.; Brinkschulte, H.; Brückner, R.; Brüsehaber, B.; Büchl, K.; Buhler, A.; Bürbaumer, H.; Carlson, A.; Ciric, M.; Conway, G.; Coster, D. P.; Dorn, C.; Drube, R.; Dux, R.; Egorov, S.; Engelhardt, W.; Fahrbach, H.-U.; Fantz, U.; Faugel, H.; Foley, M.; Franzen, P.; Fu, P.; Fuchs, J. C.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gubanka, E.; Gude, A.; Günter, S.; Haas, G.; Hartmann, D.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hofmeister, F.; Hohenöcker, H.; Horton, L.; Hu, L.; Jacobi, D.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kardaun, O.; Kaufmann, M.; Kendl, A.; Kim, J.-W.; Kirov, K.; Kochergov, R.; Kollotzek, H.; Kraus, W.; Krieger, K.; Kurzan, B.; Kyriakakis, G.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L.; Leuterer, F.; Lorenz, A.; Maier, H.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mast, K.-F.; McCarthy, P. J.; Meisel, D.; Meister, H.; Meo, F.; Merkel, R.; Mertens, V.; Meskat, J. P.; Monk, R.; Müller, H. W.; Münich, M.; Murmann, H.; Neu, G.; Neu, R.; Neuhauser, J.; Noterdaeme, J.-M.; Nunes, I.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Poli, E.; Pugno, R.; Raupp, G.; Ribeiro, T.; Riedl, R.; Riondato, S.; Rohde, V.; Röhr, H.; Roth, J.; Ryter, F.; Salzmann, H.; Sandmann, W.; Sarelma, S.; Schade, S.; Schilling, H.-B.; Schlögl, D.; Schmidtmann, K.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Schweizer, S.; Scott, B. D.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Sips, A.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tabasso, A.; Tanga, A.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ullrich, W.; Ulrich, M.; Varela, P.; Vollmer, O.; Wenzel, U.; Wesner, F.; Wolf, R.; Wolfrum, E.; Wunderlich, R.; Xantopoulos, N.; Yu, Q.; Zarrabian, M.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zeiler, A.; Zohm, H.

    2001-10-01

    Ion and electron temperature profiles in conventional L and H mode on ASDEX Upgrade are generally stiff and limited by a critical temperature gradient length ∇T/T as given by ion temperature gradient (ITG) driven turbulence. ECRH experiments indicate that electron temperature (Te) profiles are also stiff, as predicted by electron temperature gradient turbulence with streamers. Accordingly, the core and edge temperatures are proportional to each other and the plasma energy is proportional to the pedestal pressure for fixed density profiles. Density profiles are not stiff, and confinement improves with density peaking. Medium triangularity shapes (δ<0.45) show strongly improved confinement up to the Greenwald density nGW and therefore higher βvalues, owing to increasing pedestal pressure, and H mode density operation extends above nGW. Density profile peaking at nGW was achieved with controlled gas puffing rates, and first results from a new high field side pellet launcher allowing higher pellet velocities are promising. At these high densities, small type II ELMs provide good confinement with low divertor power loading. In advanced scenarios the highest performance was achieved in the improved H mode with HL-89PβN approx 7.2 at δ = 0.3 for five confinement times, limited by neoclassical tearing modes (NTMs) at low central magnetic shear (qmin approx 1). The T profiles are still governed by ITG and trapped electron mode (TEM) turbulence, and confinement is improved by density peaking connected with low magnetic shear. Ion internal transport barrier (ITB) discharges - mostly with reversed shear (qmin>1) and L mode edge - achieved HL-89P <= 2.1 and are limited to βN <= 1.7 by internal and external ideal MHD modes. Turbulence driven transport is suppressed, in agreement with the E × B shear flow paradigm, and core transport coefficients are at the neoclassical ion transport level, where the latter was established by Monte Carlo simulations. Reactor relevant ion

  7. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  8. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  9. Feedback-controlled NTM stabilization on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Stober, J.; Barrera, L.; Behler, K.; Bock, A.; Buhler, A.; Eixenberger, H.; Giannone, L.; Kasparek, W.; Maraschek, M.; Mlynek, A.; Monaco, F.; Poli, E.; Rapson, C. J.; Reich, M.; Schubert, M.; Treutterer, W.; Wagner, D.; Zohm, H.

    2015-03-01

    On ASDEX Upgrade a concept for real-time stabilization of NTMs has been realized and successfully applied to (3,2)- and (2,1)-NTMs. Since most of the work has meanwhile been published elsewhere, a short summary with the appropriate references is given. Limitations, deficits and future extensions of the system are discussed. In a second part the recent work on using modulated ECCD for NTM stabilisation is described in some detail. In these experiments ECCD power is modulated according to a magnetic footprint of the rotating NTM. In agreement with earlier results it could be shown that O-point heating reduces the necessary average power for stabilisation whereas X-point heating hampers stabilisation. Although this modulated scheme is not relevant for routine NTM stabilisation on ASDEX Upgrade it may be mandatory for ITER or DEMO. On ASDEX Upgrade it has been re-developed to demonstrate the usage of a FAst DIrectional Switch to continously heat the O-point of the rotating island with only one gyrotron switching between two launchers which target the mode at locations separated in phase by 180 degrees as described in [1].

  10. Enhancement of the Stabilization Efficiency of a Neoclassical Magnetic Island by Modulated Electron Cyclotron Current Drive in the ASDEX Upgrade Tokamak

    SciTech Connect

    Maraschek, M.; Yu, Q.; Zohm, H.; Guenter, S.; Leuterer, F.; Manini, A.; Gantenbein, G.

    2007-01-12

    The efficiency of generating a helical current in magnetic islands for the purpose of suppression of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) is studied experimentally in the ASDEX Upgrade tokamak. It is found that the efficiency of generating helical current by continuous current drive in a rotating island drops drastically as the width 2d of the co-ECCD driven current becomes larger than the island width W. However, by modulating the co-ECCD in phase with the rotating islands O point, the efficiency can be recovered. The results are in good agreement with theoretical calculations taking into account the equilibration of the externally driven current on the island flux surfaces. The result is especially important for large next-step fusion devices, such as ITER, where 2d>W is expected to be unavoidable during NTM suppression, suggesting that modulation capability should be foreseen.

  11. First results with 3-strap ICRF antennas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Kallenbach, A.; Neu, R.; Noterdaeme, J.-M.; Ochoukov, R.; Pütterich, Th.; Tuccilo, A.; Tudisco, O.; Wang, Y.; Yang, Q.; ASDEX Upgrade team

    2016-08-01

    The 3-strap antennas in ASDEX Upgrade allow ICRF operation with low tungsten (W) content in the confined plasma with W-coated antenna limiters. With the 3-strap antenna configuration, the local W impurity source at the antenna is drastically reduced and the core W concentration is similar to that of the boron coated 2-strap antenna at a given ICRF power. Operation of the 3-strap antennas with the power ratio between the central and the outer straps of 1.5:1 and 2:1 is adopted to minimize the ICRF-specific W release.

  12. Frequency hopping millimeter-wave reflectometry in ASDEX upgrade

    SciTech Connect

    Cupido, L.; Graca, S.; Conway, G. D.; Manso, M.; Serra, F.

    2006-10-15

    Millimeter-wave reflectometers for performing density fluctuations have traditionally used either tunable fixed frequency (heterodyne and homodyne) systems or multichannel fixed frequency arrangements. Only recently novel systems were brought into operation with the ability to hop from one frequency to another over a large bandwidth, during each plasma discharge, while retaining the quality of fixed frequency phase locked sources. The new broadband fast hopping millimeter-wave reflectometer incorporates frequency synthesizers for both plasma signal and local oscillators, and the receivers are heterodyne producing full phase/amplitude outputs. Two identical systems were recently installed in (ASDEX upgrade tokamak - IPP-MPG Germany) covering the Q band (33-50 GHz) and the V band (50-75 GHz). In the present article the system is described and the particular implementation on ASDEX, using monostatic antenna system, is presented showing the possibility of correlation studies in fully optimized antenna scenarios. With both Q and V channels in operation it was possible to devise several operation schemes that are described here and a result showing the radial localization of magnetohydrodynamic activity is also presented.

  13. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  14. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  15. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  16. Increasing NTM Stabilization Efficiency Using Modulated ECCD In ASDEX Upgrade

    SciTech Connect

    Manini, A.; Maraschek, M.; Yu, Q.; Guenter, S.; Leuterer, F.; Zohm, H.; Gantenbein, G.

    2007-09-28

    This paper reports on the experimental studies, performed in the tokamak ASDEX Upgrade, for increasing the efficiency in generating a helical current within magnetic islands with the purpose of suppressing neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD). It is shown that the efficiency of generating this current by continuous CD in a rotating island drops drastically as the width 2d of the co-ECCD driven current becomes larger than the islands size W. However, by modulating the co-ECCD in phase with the island's O-point, the efficiency is recovered. The results are in good agreement with theoretical calculations taking into account the equilibration of the externally driven current on the island flux surfaces. The result is especially important for large next-step fusion devices, such as ITER, where 2d>W is expected to be unavoidable during NTM suppression, indicating that modulation capability should be foreseen.

  17. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    SciTech Connect

    Igochine, V.; Guenter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; Boom, J.; Classen, I.; Dumbrajs, O.

    2010-12-15

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q=1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q=1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  18. Structure and dynamics of sawteeth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Boom, J.; Classen, I.; Dumbrajs, O.; Günter, S.; Lackner, K.; Pereverzev, G.; Zohm, H.; ASDEX Upgrade Team

    2010-12-01

    The crash phase of the sawteeth in ASDEX Upgrade tokamak [Herrmann et al., Fusion Sci. Technol. 44(3), 569 (2003)] is investigated in detail in this paper by means of soft x-ray (SXR) and electron cyclotron emission (ECE) diagnostics. Analysis of precursor and postcursor (1,1) modes shows that the crash does not affect the position of the resonant surface q =1. Our experimental results suggest that sawtooth crash models should contain two ingredients to be consistent with experimental observations: (1) the (1,1) mode structure should survive the crash and (2) the flux changes should be small to preserve the position of the q =1 surface close to its original location. Detailed structure of the reconnection point was investigated with ECE imaging diagnostic. It is shown that reconnection starts locally. The expelled core is hot which is consistent with SXR tomography results. The observed results can be explained in the framework of a stochastic model.

  19. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW. PMID:26628130

  20. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  1. Low frequency sawtooth precursor activity in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Papp, G.; Pokol, G. I.; Por, G.; Magyarkuti, A.; Lazányi, N.; Horváth, L.; Igochine, V.; Maraschek, M.; ASDEX Upgrade Team

    2011-06-01

    This paper describes the precursor activity observed in the ASDEX Upgrade tokamak before sawtooth crashes in various neutral beam heated plasmas, utilizing the soft x-ray diagnostic. In addition to the well-known (m, n) = (1,1) internal kink mode and its harmonics, a lower frequency mode is studied in detail. Power modulation of this mode is found to correlate with the power modulation of the (1, 1) kink mode in the quasistationary intervals indicating possible nonlinear interaction. Throughout the studied sawtooth crashes, the power of the lower frequency mode rose by several orders of magnitude just before the crash. In addition to its temporal behaviour, its spatial structure was estimated and the most likely value was found to be (1, 1). A possible role of this mode in the mechanism of the sawtooth crash is discussed.

  2. The Thomson scattering systems of the ASDEX upgrade tokamak

    SciTech Connect

    Murmann, H.; Goetsch, S.; Roehr, H.; Salzmann, H.; Steuer, K.H. )

    1992-10-01

    The Thomson scattering system of the ASDEX upgrade (AUG) tokamak is described. One of the main objectives of AUG is to investigate plasma wall interaction in reactor relevant discharges with a magnetic divertor. The very successful Nd:YAG scattering system developed for its predecessor ASDEX, has been upgraded to give higher spatial and temporal resolution, reliability, and flexibility to different discharge conditions. The system consists of two independently operating devices, each using a cluster of six lasers: One measures the electron temperature and density along three possible vertical chords alternatively through the magnetic axis, or the inner or outer boundary layer; a second chord in the equatorial plane will always cover the magnetic center even in the case of considerable Shafranov shifts. An additional compact spectrometer has been designed for measurements with high radial resolution in the equatorial plane across the separatrix. A third system, using the laser beams for the vertical arrangement once again, has been designed for profile measurements in the energy deposition zone 2 cm above the outer divertor plate. Each laser is run at a repetition rate of 20 Hz and 1 J per pulse. A variety of synchronization modes are available, e.g., 20 Hz/6 J, 120 Hz/1 J etc., or repetitive bursts at 20 Hz. In this case the minimum delay between two pulses is presently limited to {approx}30 {mu}s by the existing data acquisition. This mode will be used for investigating fast phenomena such as sawteeth or disruptive instabilities. During the time intervals between the laser pulses the bremsstrahlung radiation (line integral) will be measured by the Thomson scattering detection system to calculate {ital Z}{sub eff}.

  3. First results of ion cyclotron resonance heating on ASDEX upgrade

    SciTech Connect

    Noterdaeme, J.; Hoffmann, C.; Brambilla, M.; Buechl, K.; Eberhagen, A.; Field, A.; Fuchs, C.; Gehre, O.; Gernhardt, J.; Gruber, O.; Haas, G.; Hermann, A.; Hofmeister, F.; Kallenbach, A.; Lieder, G.; Mertens, V.; Murmann, H.; de Pena Hempel, S.; Poschenrieder, W.; Richter, T.; Ryter, F.; Salmon, N.; Salzmann, H.; Schneider, W.; Wesner, F.; Zehrfeld, H.; Zohm, H. ); ASDEX Upgrade Team

    1994-10-15

    ASDEX Upgrade is equipped with an ICRH system consisting of 4 generators of 2 MW power each and 4 double loop antennas. The generators, tuneable in frequency from 30 to 120 MHz, cover several heating scenarios over a wide range of magnetic fields (1 T[lt]B[sub t][lt]3.9 T): minority heating of H and He[sub 3] and second harmonic heating of H and D. ICRH-heated discharges in ASDEX Upgrade were so far carried out mainly at 30 MHz and a magnetic field of 2 T (H minority in D and He). Peak powers of 2.4 MW and pulse length up to 2.5 s were achieved (total energy 3.75 MJ). In L-mode, the density on turn-on of the ICRH stays constant, or even decreases. The ratio of radiated power to total input power is unchanged (60% in an unboronized machine, 30% in a freshly boronized machine) between Ohmic and ICRH phases. The electron temperature increases with 0.9 MW from 1 to 1.25 keV, the loop voltage drops. Transitions to the H-mode were easily and reliably achieved with ICRH alone (necessary ICRH power as low as 0.9 MW) and the length of the ELMy H-mode phases was limited only by the applied ICRH pulse length (ELMy H-mode phases of up to 2 s were achieved). The paper presents further results on heating and confinement in L and H-mode, antenna and edge studies and on divertor measurements. Preliminary experiments, performed with a combination of H minority heating (30 MHz) and H second harmonic (60 MHz) in 600 kA He and D discharges (H minority in the 5 to 20% range) at 2 T, and with non-resonant heating (30 MHz and 60 MHz at 1.35 T) are briefly discussed.

  4. Recent ASDEX Upgrade research in support of ITER and DEMO

    NASA Astrophysics Data System (ADS)

    H. Zohmthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2015-10-01

    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality (νped\\ast <0.4) . In contrast to the previous high ν* regime, suppression only occurs in a narrow RMP spectral window, indicating a resonant process, and a concomitant confinement drop is observed due to a reduction of pedestal top density and electron temperature. Strong evidence is found for the ion heat flux to be the decisive element for the L-H power threshold. A physics based scaling of the density at which the minimum PLH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/LTe introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected

  5. First neutron spectrometry measurements in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Tardini, G.; Zimbal, A.; Esposito, B.; Gagnon-Moisan, F.; Marocco, D.; Neu, R.; Schuhmacher, H.; the ASDEX Upgrade Team

    2012-03-01

    A compact neutron spectrometer based on the liquid scintillator BC501A has been installed on the ASDEX Upgrade tokamak. The aim is to measure neutron energy distribution functions as footprints of fast ions distribution functions, generated mainly via Neutral Beam Injection (NBI) in present day tokamaks. A flexible and fast software has been developed to perform digital pulse shape separation and to evaluate pulse height spectra. First measurements of count rates and pulse height spectra show a good signal to noise ratio for integration times comparable to the NBI slowing down time and to the energy confinement time. Due to the perpendicular line of sight, D-d fusion with perpendicular NBI is detected more efficiently and the line broadening of the 2.45 MeV neutrons is higher. Ion Cyclotron Resonance Heating (ICRH) combined to NBI exhibits a synergy effect, with count rates higher than the sum of the counts due to NBI and ICRH separately. Although the collimator is designed to screen gammas as much as possible, some qualitative gamma analysis is also possible, providing information in case of runaway electrons during disruptions. The experimental campaign for the characterisation of the system (detector + acquisition system) is complete and the determination of the response function is in progress.

  6. Progress in controlling ICRF-edge interactions in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Jacquet, Ph.; Ochoukov, R.; Zhang, W.; Bilato, R.; Braun, F.; Carralero, D.; Colas, L.; Czarnecka, A.; Dux, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Křivská, A.; Lunt, T.; Milanesio, D.; Maggiora, R.; Meyer, O.; Monakhov, I.; Noterdaeme, J.-M.; Potzel, S.; Pütterich, Th.; Stepanov, I.

    2015-12-01

    RF measurements during variation of the strap voltage balance of the original 2-strap ICRF antenna in ASDEX Upgrade at constant power are consistent with electromagnetic calculations by HFSS and TOPICA, more so for the latter. RF image current compensation is observed at the antenna limiters in the experiment at a local strap voltage of about half of the value of the remote strap, albeit with a non-negligible uncertainty in phasing. The RF-specific tungsten (W) source at the broad-limiter 2-strap antenna correlates strongly with the RF voltage at the local strap at the locations not connected to opposite side of the antenna along magnetic field lines. The trends of the observed increase of the RF loading with injection of local gas are well described by a combined EMC3-Eirene - FELICE calculations, with the most efficient improvement confirmed for the outer-midplane valves, but underestimated by about 1/3. The corresponding deuterium density tailoring is also likely responsible for the decrease of local W sources observed in the experiment.

  7. Application of AXUV diode detectors at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bernert, M.; Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-01

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  8. Application of AXUV diode detectors at ASDEX Upgrade.

    PubMed

    Bernert, M; Eich, T; Burckhart, A; Fuchs, J C; Giannone, L; Kallenbach, A; McDermott, R M; Sieglin, B

    2014-03-01

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5 μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales. PMID:24689581

  9. Application of AXUV diode detectors at ASDEX Upgrade

    SciTech Connect

    Bernert, M. Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-15

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  10. Progress in controlling ICRF-edge interactions in ASDEX upgrade

    SciTech Connect

    Bobkov, Vl. Ochoukov, R.; Bilato, R.; Braun, F.; Carralero, D.; Dux, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Lunt, T.; Potzel, S.; Pütterich, Th.; Jacquet, Ph.; Monakhov, I.; Zhang, W.; Noterdaeme, J.-M.; Stepanov, I.; Colas, L.; Meyer, O.; Czarnecka, A.; and others

    2015-12-10

    RF measurements during variation of the strap voltage balance of the original 2-strap ICRF antenna in ASDEX Upgrade at constant power are consistent with electromagnetic calculations by HFSS and TOPICA, more so for the latter. RF image current compensation is observed at the antenna limiters in the experiment at a local strap voltage of about half of the value of the remote strap, albeit with a non-negligible uncertainty in phasing. The RF-specific tungsten (W) source at the broad-limiter 2-strap antenna correlates strongly with the RF voltage at the local strap at the locations not connected to opposite side of the antenna along magnetic field lines. The trends of the observed increase of the RF loading with injection of local gas are well described by a combined EMC3-Eirene – FELICE calculations, with the most efficient improvement confirmed for the outer-midplane valves, but underestimated by about 1/3. The corresponding deuterium density tailoring is also likely responsible for the decrease of local W sources observed in the experiment.

  11. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating. PMID:27250425

  12. Simulations of global electrostatic microinstabilities in ASDEX Upgrade discharges

    NASA Astrophysics Data System (ADS)

    Bottino, A.; Peeters, A. G.; Sauter, O.; Vaclavik, J.; Villard, L.

    2004-01-01

    Electrostatic microinstabilities in ion internal barrier (ITB) and H-mode discharges of the ASDEX Upgrade tokamak [O. Gruber, R. Arslanbekov, C. Atanasiu et al., Nucl. Fusion 41, 1369 (2001)] have been investigated with a full radius gyrokinetic code. The code models linear stability and includes the effect of an equilibrium radial electric field and trapped electrons. In order to simulate plasmas in experimental conditions [k⊥ρL˜O(1)], the long wavelength approximation in the quasineutrality equation has been replaced by a Padé expansion of the modified Bessel function. Results show that the E×B flow, induced by the radial electric field, changes the linear stability of the dominant ion temperature gradient modes. The electrostatic potential eddies are tilted by the sheared flow thus reducing the radial extent and the growth rate of modes. However, the finite value of the flow has a stabilizing effect too; the most unstable modes are shifted away from the unfavorable curvature region leading to lower linear growth rates. In addition to this at least two other mechanisms give an important contribution to the stabilization in the ITB region; the reverse shear profile itself and, to a lesser degree, the local value of the temperature ratio, τ=Te/Ti.

  13. Carbon influx studies in the main chamber of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pütterich, T.; Dux, R.; Gafert, J.; Kallenbach, A.; Neu, R.; Pugno, R.; Yoon, S. W.; ASDEX Upgrade Team

    2003-10-01

    Carbon sources in the main chamber of ASDEX Upgrade, especially the 12 guard limiters at the low field side (LFS), were determined spectroscopically using recently installed lines of sight. Absolute photon fluxes were measured for spectral lines in the visible wavelength range referring to all spin systems of C+1 and C+2. A simple transport model for carbon enabled the simulation of the radial distribution of carbon radiation and the determination of the effective inverse photon efficiency, which was used for the evaluation of ion fluxes. The model also predicts the fraction of eroded particles that are transported out of the plasma before further ionization occurs. Comparison of the calculated losses with measurements showed good agreement in L-mode cases, whereas in H-mode cases the CIII/CII radiation ratio was too high by a factor 1.5. The contribution of each spin system to the ion flux was independently measured. For C+1 and C+2 the spin system distribution was found to be close to equilibrium. The line-of-sight-integrated photon fluxes were spatially separated for many lines of sight by Zeeman-analysis and differential measurements. This allowed us to determine the total influx from the high field side and LFS. Surprisingly, the carbon source at the inner heatshield was larger than the carbon influx from the limiter source at the LFS. This is very pronounced for the H-mode case investigated, where 60-80% of the carbon atoms emerge from the heatshield. This source is due to recycling or re-erosion of carbon, which probably originates from the limiters, because ap85% of the heatshield area consisted of tungsten coated tiles.

  14. H-mode filament studies with reflectometry in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Vicente, J.; Conway, G. D.; Manso, M. E.; Müller, H. W.; Silva, C.; da Silva, F.; Guimarãis, L.; Silva, A.

    2014-12-01

    Broadband swept (i.e. frequency modulation of the continuous wave; FM-CW) and fixed frequency reflectometry (FFR) were used for the first time to study plasma filamentary activity; experiments were performed in ELMy H-mode plasmas at the ASDEX Upgrade tokamak. Electron density profiles were studied with FM-CW providing a first insight into filamentary activity and enabling us to localize the density layers probed with FFR. A novel filament detection technique was developed using a threshold criterion on the phase derivative signals from FFR. This technique was applied together with conditional averaging in measurements performed in the vicinity of the separatrix. Results showed good agreement with data from Langmuir probes and it was found that the majority of filaments propagate with dominant poloidal velocity in both periods of in-between edge localized modes (ELMs) (Vθ ≈ 575 m s-1) and at the ELM onset (Vθ ≈ 1180 m s-1). A time delay between the maximum filament activity at the outer mid-plane and the ELM peak at the inner divertor currents (≈ -461  ±  50 μs) agrees with expected time scales for the ELM lifetime. In inter-ELM periods we were able to estimate typical poloidal and toroidal sizes of filaments (Sθ ≈ [5.75-11.50] cm and Sϕ ≈ [33-66] cm) and a magnetohydrodynamic mode structure emerged from the measurements with poloidal and toroidal mode numbers (m ≈ [8-12] and n ≈ [2, 3]) in the range of possible peeling-ballooning modes.

  15. Chapter 9: Performance-Limiting MHD Activity and Possibilities for Its Stabilization in ASDEX Upgrade

    SciTech Connect

    Guenter, Sibylle; Zohm, Hartmut

    2003-11-15

    Performance-limiting magnetohydrodynamic (MHD) instabilities on ASDEX Upgrade are discussed. In the conventional H-mode scenario, the main MHD performance limitation is found to be the neoclassical tearing mode (NTM). The onset {beta} of NTMs in ASDEX Upgrade scales with the poloidal ion gyroradius, in agreement with theoretical expectations. At higher {beta} values, NTMs occur in a more benign form, the frequently-interrupted-regime NTMs, which lead to a smaller confinement degradation than normal NTMs. Active control of NTMs by electron cyclotron current drive in the island has been demonstrated on ASDEX Upgrade. In advanced tokamak regimes with reversed shear, a variety of performance-limiting instabilities has been observed. The shear reversal zone can be unstable to double tearing modes or to infernal modes; both have been identified in ASDEX Upgrade. Due to the broad current profile in advanced tokamak discharges, the ideal external kink mode can be unstable at relatively low {beta}{sub N} {<=} 2; this is a main limitation to strongly reversed shear discharges with peaked pressure profiles. Finally, it is shown that fast-particle-driven modes such as fishbones can also have beneficial effects, such as providing stationary current profiles or triggering internal transport barriers.

  16. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Arredondo Parra, R.; Moreno Quicios, R.; Ploeckl, B.; Birkenmeier, G.; Herrmann, A.; Kocsis, G.; Laggner, F. M.; Lang, P. T.; Lunt, T.; Macian-Juan, R.; Rohde, V.; Sellmair, G.; Szepesi, T.; Wolfrum, E.; Zeidner, W.; Neu, R.

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 1019 atoms (0.21 mg) to 1.64 × 1020 atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  17. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

    PubMed

    Arredondo Parra, R; Moreno Quicios, R; Ploeckl, B; Birkenmeier, G; Herrmann, A; Kocsis, G; Laggner, F M; Lang, P T; Lunt, T; Macian-Juan, R; Rohde, V; Sellmair, G; Szepesi, T; Wolfrum, E; Zeidner, W; Neu, R

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet. PMID:26931850

  18. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  19. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  20. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  1. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    SciTech Connect

    Classen, I. G. J. Bogomolov, A. V.; Domier, C. W.; Luhmann, N. C.; Suttrop, W.; Boom, J. E.; Tobias, B. J.; Donné, A. J. H.

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  2. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade.

    PubMed

    Classen, I G J; Domier, C W; Luhmann, N C; Bogomolov, A V; Suttrop, W; Boom, J E; Tobias, B J; Donné, A J H

    2014-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments. PMID:25430246

  3. 3D simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Bobkov, V.; Lunt, T.; Noterdaeme, J.-M.; Coster, D.; Bilato, R.; Jacquet, P.; Brida, D.; Feng, Y.; Wolfrum, E.; Guimarais, L.; the ASDEX Upgrade Team

    2016-03-01

    In recent experiments, a local gas puff was found to be an effective way to tailor the scrape-off layer (SOL) density and improve the ion cyclotron range of frequency (ICRF) power coupling in tokamaks. In order to quantitatively reproduce these experiments, to understand the corresponding physics and to optimize the gas valve positions and rates, simulations were carried out with the 3D edge plasma transport code EMC3-EIRENE in ASDEX Upgrade. An inter-ELM phase of an H-mode discharge with a moderate gas puff rate (1.2  ×  1022 electrons s-1) is used in our simulations. We simulated cases with gas puff in the lower divertor, the outer mid-plane and the top of the machine while keeping other conditions the same. Compared with the lower divertor gas puff, the outer mid-plane gas puff can increase the local density in front of the antennas most effectively, while a toroidally uniform but significantly smaller enhancement is found for the top gas puff. Good agreement between our simulations and experiments is obtained. With further simulations, the mechanisms of SOL density tailoring via local gas puffing and the strategies of gas puff optimization are discussed in the paper.

  4. Simulations of gas puff effects on edge density and ICRF coupling in ASDEX upgrade using EMC3-Eirene

    SciTech Connect

    Zhang, W.; Lunt, T.; Bobkov, V.; Coster, D.; Brida, D.; Noterdaeme, J.-M.; Jacquet, P.; Feng, Y.

    2015-12-10

    Simulations were carried out with the 3D plasma transport code EMC3-EIRENE, to study the deuterium gas (D{sub 2}) puff effects on edge density and the coupling of Ion Cyclotron Range of Frequency (ICRF) power in ASDEX Upgrade. Firstly we simulated an inter-ELM phase of an H-mode discharge with a moderate (1.2 × 10{sup 22} electrons/s) lower divertor gas puff. Then we changed the gas source positions to the mid-plane or top of machine while keeping other conditions the same. Cases with different mid-plane or top gas valves are investigated. Our simulations indicate that compared to lower divertor gas puffing, the mid-plane gas puff can enhance the local density in front of the antennas most effectively, while a rather global (toroidally uniform) but significantly smaller enhancement is found for top gas puffing. Our results show quantitative agreement with the experiments.

  5. Status, Operation, and Extension of the ECRH System at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Stober, J.; Leuterer, F.; Monaco, F.; Müller, S.; Münich, M.; Rapson, C. J.; Reich, M.; Schubert, M.; Schütz, H.; Treutterer, W.; Zohm, H.; Thumm, M.; Scherer, T.; Meier, A.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Lechte, C.; Plaum, B.; Goodman, T.; Litvak, A. G.; Denisov, G. G.; Chirkov, A.; Zapevalov, V.; Malygin, V.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2016-01-01

    The upgraded electron cyclotron resonance heating (ECRH) system at ASDEX Upgrade (AUG) has been routinely used with eight gyrotrons during the last experimental campaign. A further upgrade will replace the existing system of four short-pulse (140 GHz, 2 s, 500 kW) gyrotrons. The final goal is to have around 6.5-7 MW at 140 GHz (or 5.5 MW at 105 GHz) from eight units available in the plasma during the whole AUG discharge (10 s). The system operates at 140 and 105 GHz with X2, O2 and X3 schemes. For B > 3 T also an ITER-like O1-scenario can be run using the 105 GHz option. Four of the eight launching antennas are capable of fast poloidal movements necessary for real-time control of the location of power deposition.

  6. ELM behaviour and linear MHD stability of edge ECRH heated ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Burckhart, A.; Dunne, M.; Wolfrum, E.; Fischer, R.; McDermott, R.; Viezzer, E.; Willensdorfer, M.; the ASDEX Upgrade Team

    2016-05-01

    In order to test the peeling–ballooning ELM model, ECRH heating was applied to the edge of ASDEX Upgrade type-I ELMy H-mode plasmas to alter the pedestal pressure and current density profiles. The discharges were analysed with respect to ideal MHD stability. While the ELM frequency increased and the pedestal gradients relaxed with edge ECRH, the MHD stability boundary did not change. The results indicate that the peeling–ballooning model is insufficient to fully explain the triggering of ELM instabilities in the presence of edge ECRH heating.

  7. Fringe jump analysis and implementation of polarimetry on the ASDEX Upgrade DCN interferometer

    SciTech Connect

    Mlynek, A. Casali, L.; Eixenberger, H.; Ford, O.

    2014-11-15

    The ASDEX Upgrade tokamak is equipped with a 5-channel DCN interferometer with a probing wavelength of 195 μm. Up to now, phase measurement and density calculation have been accomplished by hard-wired phase counting electronics. Meanwhile, a fast digitizer has been installed which acquires the raw signals. That way, the various causes of counting errors by integer multiples of 2π, so-called fringe jumps, can be analyzed, and phase reconstruction schemes based on digital signal processing can be developed. In addition, a prototype polarimeter setup has been installed on one channel and allows for measurement of the Faraday rotation experienced by the probing beam.

  8. Velocimetry analysis of type-I edge localized mode precursors in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manz, P.; Boom, J. E.; Wolfrum, E.; Birkenmeier, G.; Classen, I. G. J.; Luhmann, N. C., Jr.; Stroth, U.; the ASDEX Upgrade Team

    2014-03-01

    When the electron transport barrier remains in its final shape before a type-I edge localized mode (ELM) crash in ASDEX Upgrade, ELM precursors appear as electron temperature fluctuations. In order to relate these precursors to an instability, spatial scales, parity and the cross-phase between electron temperature and radial velocity fluctuations are evaluated by means of velocimetry of measured 2D electron temperature fluctuations. A comprehensive comparison with properties of different instabilities points to microtearing modes. Bispectral analysis indicates a nonlinear coupling of these precursors to a ballooning-type mode prior to the ELM onset.

  9. Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Martitsch, A. F.; Kasilov, S. V.; Kernbichler, W.; Kapper, G.; Albert, C. G.; Heyn, M. F.; Smith, H. M.; Strumberger, E.; Fietz, S.; Suttrop, W.; Landreman, M.; The ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-07-01

    The toroidal torque due to the non-resonant interaction with external magnetic perturbations (TF ripple and perturbations from ELM mitigation coils) in ASDEX Upgrade is modelled with help of the NEO-2 and SFINCS codes and compared to semi-analytical models. It is shown that almost all non-axisymmetric transport regimes contributing to neoclassical toroidal viscosity (NTV) are realized within a single discharge at different radial positions. The NTV torque is obtained to be roughly a quarter of the NBI torque. This indicates the presence of other important momentum sources. The role of these momentum sources and possible integral torque balance measurements are briefly discussed.

  10. Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade

    SciTech Connect

    Bobkov, V.; Bilato, R.; Dux, R.; Faugel, H.; Kallenbach, A.; Müller, H. W.; Potzel, S.; Pütterich, Th.; Suttrop, W.; Stepanov, I.; Noterdaeme, J.-M.; Jacquet, P.; Monakhov, I.; Czarnecka, A.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    In ASDEX Upgrade H-modes with H{sub 98}≈0.95, similar effect of the ICRF antenna loading improvement by local gas injection was observed as previously in L-modes. The antenna loading resistance R{sub a} between and during ELMs can increase by more than 25% after a switch-over from a deuterium rate of 7.5⋅10{sup 21} D/s injected from a toroidally remote location to the same amount of deuterium injected close to an antenna. However, in contrast to L-mode, this effect is small in H-mode when the valve downstream w.r.t. parallel plasma flows is used. In L-mode, a non-linearity of R{sub a} at P{sub ICRP}<30 kW is observed when using the gas valve integrated in antenna. Application of magnetic perturbations (MPs) in H-mode discharges leads to an increase of R{sub a}>30% with no effect of spectrum and phase of MPs on R{sub a} found so far. In the case ELMs are fully mitigated, the antenna loading is higher and steadier. In the case ELMs are not fully mitigated, the value of R{sub a} between ELMs is increased. Looking at the W source modification for the improved loading, the local gas injection is accompanied by decreased values of tungsten (W) influx Γ{sub W} from the limiters and its effective sputtering yield Y{sub w}, with the exception of the locations directly at the antenna gas valve. Application of MPs leads to increase of Γ{sub W} and Y{sub w} for some of the MP phases. With nitrogen seeding in the divertor, ICRF is routinely used to avoid impurity accumulation and that despite enhanced Γ{sub W} and Y{sub W} at the antenna limiters.

  11. Tungsten erosion in the baffle and outboard regions of the ITER-like ASDEX Upgrade divertor

    NASA Astrophysics Data System (ADS)

    Maier, H.; ASDEX Upgrade Team

    2004-12-01

    Similar to the design of the next-step device ITER, ASDEX Upgrade is equipped with vertical divertor targets with adjacent baffles extending towards the main chamber. In ITER, it is intended to employ tungsten as a plasma-facing material in this baffle area. Tungsten-coated graphite tiles were installed in the divertor baffle and the outboard side regions of ASDEX Upgrade for a full experimental campaign. The erosion behavior of tungsten was investigated by scanning electron microscopy and by measuring the thickness of the tungsten coatings before and after exposure. The coatings had an initial thickness of approximately 450 nm. Two distinct erosion mechanisms were observed: in the outer baffle region a reduction of the coatings' thickness up to 100 nm was determined after about 6300 s of plasma discharge. On the roof baffle and on the inner baffle modules, no clear reduction of the film thickness was found. In the tracks of arcs, however, the tungsten coatings were completely removed. This represents an erosion of 5-10% of the tungsten-coated surface area in this region.

  12. Perturbative Thermal Transport Studies on Alcator C-Mod and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; White, A. E.; Edlund, E. M.; Howard, N. T.; Hubbard, A. E.; Ryter, F.

    2015-11-01

    Perturbative thermal diffusivity has been measured on Alcator C-Mod and ASDEX Upgrade via the extended-time-to-peak method with heat pulses generated by partial sawtooth crashes. Heat pulses generated by sawtooth crashes have been used extensively in the past to study perturbative diffusivity, but the details of the sawtooth event lead to non-diffusive ``ballistic'' transport, invalidating their use for measuring perturbative diffusivity. Partial sawteeth generate a heat pulse without the ballistic transport of full sawteeth [Fredrickson 2000]. Partial sawtooth analysis was applied to over 50 C-Mod shots containing both L- and I-Mode, as well as ASDEX Upgrade plasmas, though partial sawteeth were less common on AUG. Results indicate correlations between perturbative diffusivity and confinement regime (L- vs. I-mode), as well as correlations with local temperature, density, the associated gradients, and gradient scale lengths (a/LTe and a/Ln). Finally, diffusivities calculated from partial sawteeth were compared to perturbative diffusivities calculated with the GYRO gyrokinetic code, leading to quantitative agreement with multi-scale GYRO simulations. This work is supported by the US DOE under grants DE-SC0006419 and DE-FC02-99ER54512-CMOD.

  13. Consistency between real and synthetic fast-ion measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Geiger, B.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; The ASDEX Upgrade Team

    2015-07-01

    Internally consistent characterization of the properties of the fast-ion distribution from multiple diagnostics is a prerequisite for obtaining a full understanding of fast-ion behavior in tokamak plasmas. Here we benchmark several absolutely-calibrated core fast-ion diagnostics at ASDEX Upgrade by comparing fast-ion measurements from collective Thomson scattering, fast-ion {{\\text{D}}α} spectroscopy, and neutron rate detectors with numerical predictions from the TRANSP/NUBEAM transport code. We also study the sensitivity of the theoretical predictions to uncertainties in the plasma kinetic profiles. We find that theory and measurements generally agree within these uncertainties for all three diagnostics during heating phases with either one or two neutral beam injection sources. This suggests that the measurements can be described by the same model assuming classical slowing down of fast ions. Since the three diagnostics in the adopted configurations probe partially overlapping regions in fast-ion velocity space, this is also consistent with good internal agreement among the measurements themselves. Hence, our results support the feasibility of combining multiple diagnostics at ASDEX Upgrade to reconstruct the fast-ion distribution function in 2D velocity space.

  14. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited)

    SciTech Connect

    Meo, F.; Bindslev, H.; Korsholm, S. B.; Furtula, V.; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Leuterer, F.; Woskov, P.; Stober, J.; Wagner, D.

    2008-10-15

    The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110 GHz) to resolve the one-dimensional velocity distribution of the confined fast ions. The steerable antennas will allow different scattering geometries to fully explore the anisotropic fast ion distributions at different spatial locations. This paper covers the capabilities and operational limits of the diagnostic. It then describes the commissioning activities carried out to date. These activities include gyrotron studies, transmission line alignment, and beam pattern measurements in the vacuum vessel. Overlap experiments in near perpendicular and near parallel have confirmed the successful alignment of the system. First results in near perpendicular of scattered spectra in a neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) plasma (minority hydrogen) on ASDEX Upgrade have shown evidence of ICRH heating phase of hydrogen.

  15. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited).

    PubMed

    Meo, F; Bindslev, H; Korsholm, S B; Furtula, V; Leuterer, F; Leipold, F; Michelsen, P K; Nielsen, S K; Salewski, M; Stober, J; Wagner, D; Woskov, P

    2008-10-01

    The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110 GHz) to resolve the one-dimensional velocity distribution of the confined fast ions. The steerable antennas will allow different scattering geometries to fully explore the anisotropic fast ion distributions at different spatial locations. This paper covers the capabilities and operational limits of the diagnostic. It then describes the commissioning activities carried out to date. These activities include gyrotron studies, transmission line alignment, and beam pattern measurements in the vacuum vessel. Overlap experiments in near perpendicular and near parallel have confirmed the successful alignment of the system. First results in near perpendicular of scattered spectra in a neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) plasma (minority hydrogen) on ASDEX Upgrade have shown evidence of ICRH heating phase of hydrogen. PMID:19044487

  16. Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade

    SciTech Connect

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; Collaboration: ASDEX Upgrade Team

    2014-08-21

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.

  17. Recent improvements of the broadband FMCW reflectometry system for density profile measurements on ASDEX Upgrade

    SciTech Connect

    Silva, A.; Manso, M.; Varela, P.; Cupido, L.; Meneses, L.

    2006-10-15

    The broadband FMCW reflectometry system on ASDEX Upgrade has had significant improvements extending its measuring capabilities both on high and low density plasmas: (i) the upgrade of the W band to probe electron densities up to 12.4x10{sup 19} m{sup -3} with O mode (ii) Q and V frequency bands operating in X mode to probe the edge plasma and to provide information for O-mode profile initialization, and (iii) a new dynamic frequency calibration method to take into account all existing delays in the hyperabrupt varactor-tuned oscillator (HTO) tuning port and driver electronics. These improvements are particularly important to measure accurately the edge pedestal region of high density ITER relevant discharges. Density profiles obtained in high density discharges are presented and compared with results from both Li-beam and Thomson scattering diagnostics.

  18. Overview of recent pedestal studies at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wolfrum, E.; Viezzer, E.; Burckhart, A.; Dunne, M. G.; Schneider, P. A.; Willensdorfer, M.; Fable, E.; Fischer, R.; Hatch, D.; Jenko, F.; Kurzan, B.; Manz, P.; Rathgeber, S. K.; the ASDEX Upgrade Team

    2015-05-01

    New or upgraded diagnostics of the edge transport barrier allow investigations of the dominant transport mechanisms in the pedestal. The density build-up after the L-H transition can be explained with a mainly diffusive edge transport barrier. A small inward convection term improves the agreement between modelling and experiment, but its existence cannot be confirmed due to the uncertainty in the neutral sources. Measurements of the impurity ion flow asymmetry as well as the edge current density are in agreement with neoclassical modelling. The inter-ELM pedestal recovery was traced with ideal peeling-ballooning modelling, which shows that the stability boundary moves closer to the operational point as the pedestal becomes wider. Gyrokinetic modelling of the different phases reveal that density gradient driven trapped electron modes are dominant during the early recovery, while electron temperature gradient modes or kinetic ballooning modes determine the temperature gradient in the final phase. Microtearing modes are modelled and also experimentally determined at the top of the pedestal. Non-linear coupling between modes could explain the failure of ideal linear MHD modelling.

  19. Investigations on Sawtooth Reconnection in ASDEX Upgrade Tokamak Discharges Using the 3D Non-linear Two-fluid MHD Code M3D-C1

    NASA Astrophysics Data System (ADS)

    Krebs, Isabel; Jardin, Stephen C.; Igochine, Valentin; Guenter, Sibylle; Hoelzl, Matthias; ASDEX Upgrade Team

    2014-10-01

    We study sawtooth reconnection in ASDEX Upgrade tokamak plasmas by means of 3D non-linear two-fluid MHD simulations in toroidal geometry using the high-order finite element code M3D-C1. Parameters and equilibrium of the simulations are based on typical sawtoothing ASDEX Upgrade discharges. The simulation results are compared to features of the experimental observations such as the sawtooth crash time and frequency, the evolution of the safety factor profile and the 3D evolution of the temperature. 2D ECE imaging measurements during sawtooth crashes in ASDEX Upgrade indicate that the heat is transported out of the core through a narrow poloidally localized region. We investigate if incomplete sawtooth reconnection can be seen in the simulations which is suggested by soft X-ray tomography measurements in ASDEX Upgrade showing that an (m = 1, n = 1) perturbation is typically observed to survive the sawtooth crash and approximately maintain its radial position.

  20. Studies of ICRF Discharge Conditioning (ICRF-DC) on ASDEX Upgrade, JET and TEXTOR

    SciTech Connect

    Lyssoivan, A.; Koch, R.; Eester, D. van; Wassenhove, G. van; Vervier, M.; Weynants, R.; Gauthier, E.; Bobkov, V.; Fahrbach, H.-U.; Hartmann, D.A.; Rohde, V.; Suttrop, W.; Noterdaeme, J.-M.; Monakhov, I.; Walden, A.

    2005-09-26

    The present paper reviews the recent results achieved in the ICRF-DC experiments performed in helium/hydrogen mixtures in the non-circular tokamaks ASDEX Upgrade and JET and first tests of the ICRF discharges in helium/oxygen mixtures in the circular tokamak TEXTOR. Special emphasis was given to study the physics of ICRF discharges. A new recipe for safe and reliable RF plasma production [{approx}(3-5)x1017 m-3, Te{approx}(3-5) eV] with improved antenna coupling efficiency (by 1.5-3 times) and improved radial/poloidal homogeneity was proposed and successfully tested: coupling the RF power in the FW-IBW mode conversion scenario in plasmas with two ion species. The first results on ICRF wall conditioning in helium/hydrogen and in helium/oxygen mixtures are analyzed.

  1. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade.

    PubMed

    Stejner, M; Nielsen, S; Jacobsen, A S; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Moseev, D; Rasmussen, J; Salewski, M; Schubert, M; Stober, J; Wagner, D H

    2014-09-01

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition. PMID:25273723

  2. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    SciTech Connect

    Stejner, M. Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M.; Moseev, D.; Schubert, M.; Stober, J.; Wagner, D. H.

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  3. Electromagnetic simulations of the ASDEX Upgrade ICRF Antenna with the TOPICA code

    NASA Astrophysics Data System (ADS)

    Krivska, A.; Milanesio, D.; Bobkov, V.; Braun, F.; Noterdaeme, J.-M.

    2009-11-01

    Accurate and efficient simulation tools are necessary to optimize the ICRF antenna design for a set of operational conditions. The TOPICA code was developed for performance prediction and for the analysis of ICRF antenna systems in the presence of plasma, given realistic antenna geometries. Fully 3D antenna geometries can be adopted in TOPICA, just as in available commercial codes. But while those commercial codes cannot operate with a plasma loading, the TOPICA code correctly accounts for realistic plasma loading conditions, by means of the coupling with 1D FELICE code. This paper presents the evaluation of the electric current distribution on the structure, of the parallel electric field in the region between the straps and the plasma and the computation of sheaths driving RF potentials. Results of TOPICA simulations will help to optimize and re-design the ICRF ASDEX Upgrade antenna in order to reduce tungsten (W) sputtering attributed to the rectified sheath effect during ICRF operation.

  4. Density profile sensitivity study of ASDEX Upgrade ICRF Antennas with the TOPICA code

    NASA Astrophysics Data System (ADS)

    Krivska, A.; Ceccuzzi, S.; Milanesio, D.; Bobkov, V.; Braun, F.; Maggiora, R.; Noterdaeme, J.-M.; Tuccillo, A. A.

    2011-12-01

    During operation of the ASDEX Upgrade (AUG) ion cyclotron radio frequency (ICRF) system, Tungsten (W)-coated poloidal limiters and structures connected along magnetic field lines to the antenna can be sources of W, which is attributed to sputtering by ions accelerated in radio frequency (RF) sheaths. In order to analyze and optimize the ICRF antenna performance, accurate and efficient simulation tools are necessary. TOPICA code was developed for analysis of ICRF antenna systems with plasma loading conditions modeled with ID FELICE code. This paper presents an initial comparative analysis of two AUG ICRF antennas for a set of model plasma density profiles (with varying density gradient and antenna cut-off distance). The antennas are presently installed in AUG and differ in that one was partially optimized using HFSS code to reduce E∥ near fields. Power transferred to plasma and sheath driving RF potentials are computed.

  5. Poloidal asymmetric flow and current relaxation of ballooned transport during I-phase in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manz, P.; Birkenmeier, G.; Fuchert, G.; Cavedon, M.; Conway, G. D.; Maraschek, M.; Medvedeva, A.; Mink, F.; Scott, B. D.; Shao, L. M.; Stroth, U.

    2016-05-01

    Turbulence driven poloidal asymmetric parallel flow and current perturbations are studied for tokamak plasmas of circular geometry. Whereas zonal flows can lead to in-out asymmetry of parallel flows and currents via the Pfirsch-Schlüter mechanism, ballooned transport can result in an up-down asymmetry due to the Stringer spin-up mechanism. Measurements of up-down asymmetric parallel current fluctuations occurring during the I-phase in ASDEX Upgrade are not responses to the equilibrium by the Pfirsch-Schlüter current, but can be interpreted as a response to strongly ballooned plasma transport coupled with the Stringer spin-up mechanism. A good agreement of the experimental measured limit-cycle frequencies during I-phase with the Stringer spin-up relaxation frequency is found.

  6. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    SciTech Connect

    Navarro, A. Bañón Told, D.; Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H.; Jenko, F.

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  7. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    SciTech Connect

    Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.

    2015-04-15

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  8. Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments

    NASA Astrophysics Data System (ADS)

    Fable, E.; Pautasso, G.; Lehnen, M.; Dux, R.; Bernert, M.; Mlynek, A.; the ASDEX Upgrade Team

    2016-02-01

    The pre-thermal-quench (PTQ) phase of the massive gas injection (MGI) scenario to terminate the tokamak plasma discharge is studied by means of one-dimensional (1D) transport simulations. This phase is characterized by the cold-front penetration in the hot plasma after the gas has been released from the valves, and before the actual thermal quench takes place, with consequent plasma disruption at lower stored energy. The comparison between the simulations and the ASDEX Upgrade (AUG) experiments allows to gain insight in the observed dependencies and time scales. Despite the genuine three-dimensional structure of the problem, it is shown that the 1D simulations are already giving experimentally relevant answers, the reason for which will be discussed in detail. Influence of unknown parameters and simplifying assumptions are also discussed.

  9. Turbulence intermittency linked to the weakly coherent mode in ASDEX Upgrade I-mode plasmas

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Hennequin, P.; Hetzenecker, A.; Conway, G. D.; Guimarais, L.; Honoré, C.; Stroth, U.; Viezzer, E.; The ASDEX Upgrade Team

    2016-06-01

    This letter shows for the first time a pronounced increase of extremely intermittent edge density turbulence behavior inside the confinement region related to the I-mode confinement regime in the ASDEX Upgrade tokamak. With improving confinement, the perpendicular propagation velocity of density fluctuations in the plasma edge increases together with the intermittency of the observed density bursts. Furthermore, it is shown that the weakly coherent mode, a fluctuation feature generally observed in I-mode plasmas, is connected to the observed bursts. It is suggested that the large amplitude density bursts could be generated by a non-linearity similar to that in the Korteweg–de-Vries equation which includes the radial temperature gradient.

  10. Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges

    NASA Astrophysics Data System (ADS)

    Doerk, H.; Dunne, M.; Jenko, F.; Ryter, F.; Schneider, P. A.; Wolfrum, E.

    2015-04-01

    Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.

  11. Influence of rotation on the (m, n) = (3, 2) neoclassical tearing mode threshold in the ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Fietz, S.; Maraschek, M.; Zohm, H.; Reich, M.; Barrera, L.; McDermott, R. M.; the ASDEX Upgrade Team

    2013-08-01

    The influence of rotation on the (m, n) = (3, 2) neoclassical tearing mode onset and the marginal point at the ASDEX Upgrade is investigated. In this context, the different trigger mechanisms are identified and the influence of not only the rotation but also the rotation gradient and the differential rotation between the resonant and the triggering surface on the neoclassical tearing mode (NTM) stability is analysed. The existence of an upper NTM onset threshold can be observed in correlation with the rotation normalized to the Alfvén velocity. It can also clearly be verified that at the ASDEX Upgrade the NTM onset threshold increases with co- and counter-current directed rotation and also with positive and negative rotation gradient.

  12. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Casson, F. J.; McDermott, R. M.; Angioni, C.; Camenen, Y.; Dux, R.; Fable, E.; Fischer, R.; Geiger, B.; Manas, P.; Menchero, L.; Tardini, G.; the ASDEX Upgrade Team

    2013-06-01

    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.

  13. A detailed comparison of antenna impedance measurements on ASDEX Upgrade with the ion cyclotron range of frequencies antenna code TOPICA

    NASA Astrophysics Data System (ADS)

    Stepanov, I.; Noterdaeme, J.-M.; Bobkov, V.; Faugel, H.; Coster, D.; Milanesio, D.; Maggiora, R.; Siegl, G.; Bilato, R.; Brambilla, M.; Verdoolaege, G.; Braun, F.; Fünfgelder, H.; D'Inca, R.; Suttrop, W.; Kallenbach, A.; Schweinzer, J.; Wolfrum, E.; Fischer, R.; Mlynek, A.; Nikolaeva, V.; Guimarais, L.; the ASDEX Upgrade Team

    2015-09-01

    New antenna diagnostics on the ASDEX Upgrade, in the form of voltage and current probe pairs on the feeding lines of each ion cyclotron range of frequencies antenna, close to the input ports, have made it possible to study in detail the behavior of the ASDEX Upgrade two-strap antenna under changing loading conditions, and compare these measurements with the results of simulations using the TOPICA code. The present work extends previous studies by using the input impedance (more precisely, the complex voltage reflection coefficient Γ ) on each antenna port for comparison, instead of the more commonly used loading resistance or coupled power. The electron density profiles used for the simulation were reconstructed from the deuterium-carbon-nitrogen interferometer and lithium beam emission spectroscopy measurements, edge-localized mode-synchronized and averaged over time intervals from 10 to 200 ms depending on the case; 112 cases were compared from seven ASDEX Upgrade discharges with widely different plasma parameters and two operating frequencies (30 and 36.5 MHz). Very good agreement in \\vert Γ\\vert was found with the measurements on antenna 3 (<3% averaged over a shot), and good agreement was found with antennas 1 and 2 (<10%) the code reproduced the correct trend in loading resistance {{R}\\text{L}} in a significant majority of cases, although the discrepancies in the absolute values were rather high (up to  ˜50%) due to high reflection. Sources of discrepancy are discussed.

  14. Current fast ion collective Thomson scattering diagnostics at TEXTOR and ASDEX Upgrade, and ITER plans (invited)

    SciTech Connect

    Korsholm, S. B.; Bindslev, H.; Meo, F.; Leipold, F.; Michelsen, P. K.; Michelsen, S.; Nielsen, S. K.; Tsakadze, E. L.; Woskov, P.; Westerhof, E.; Oosterbeek, J. W.; Hoekzema, J.; Leuterer, F.; Wagner, D

    2006-10-15

    Fast ion physics will play an important role on ITER where confined alpha particles will affect plasma dynamics and overall confinement. Fast ion collective Thomson scattering (CTS) using gyrotrons has the potential to meet the need for measuring the spatially localized velocity distributions of confined fast ions in ITER. Currently, CTS experiments are performed at TEXTOR using a 150 kW, 0.2 s, 110 GHz gyrotron and a receiver upgraded at the Risoe National Laboratory. The gyrotron and receiver optics have also been upgraded for rapid scanning during a plasma shot. The receiver consists of a nine-mirror quasioptical transmission line including a universal polarizer and a 42-channel data acquisition system, which allows complete coverage of the double sideband scattered spectrum for localized ({approx}10 cm) time resolved (4 ms) measurements of the ion velocity distribution. At ASDEX Upgrade (AUG) a similar 50-channel CTS receiver has been installed. This CTS system will use the 105 GHz frequency of a dual frequency gyrotron. The gyrotron is presently being commissioned. CTS campaigns are scheduled for the summer of 2006 with a probe power of up to 1 MW for 10 s. This report presents the alignment of the quasioptical transmission line, calibration, and gyrotron tuning of the TEXTOR and AUG CTS systems. We will also review the progress on the design of the proposed fast ion CTS diagnostic for ITER. It is envisaged that scattered radiation from two 60 GHz probe beams launched from the low field side midplane port will be received by two arrays of receivers located on the low and high field sides of the plasma. This geometry will allow the ion velocity distribution near perpendicular and near parallel to the magnetic field to be measured in ten or more spatial locations covering the full plasma cross section. The temporal resolution can be significantly better than the required 100 ms.

  15. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Likonen, J.; Aho-Mantila, L.; Groth, M.; Koivuranta, S.; Krieger, K.; Kurki-Suonio, T.; Makkonen, T.; Mayer, M.; Müller, H. W.; Neu, R.; Rohde, V.; ASDEX Upgrade Team

    2010-06-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13C measurements were complemented by determining the total amount of deposited carbon (12C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13C on W at the divertor areas was less than 1.5% of the injected amount of 13C atoms. The 13C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  16. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    NASA Astrophysics Data System (ADS)

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A.

    2015-07-01

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  17. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  18. Multi-view fast-ion D-alpha spectroscopy diagnostic at ASDEX Upgrade

    SciTech Connect

    Geiger, B.; Dux, R.; McDermott, R. M.; Potzel, S.; Reich, M.; Ryter, F.; Weiland, M.; Wünderlich, D.; Garcia-Munoz, M.; Collaboration: ASDEX Upgrade Team

    2013-11-15

    A novel fast-ion D-alpha (FIDA) diagnostic that is based on charge exchange spectroscopy has been installed at ASDEX Upgrade. The diagnostic uses a newly developed high-photon-throughput spectrometer together with a low-noise EM-CCD camera that allow measurements with 2 ms exposure time. Absolute intensities are obtained by calibrating the system with an integrating sphere and the wavelength dependence is determined to high accuracy using a neon lamp. Additional perturbative contributions to the spectra, such as D{sub 2}-molecular lines, the Stark broadened edge D-alpha emission, and passive FIDA radiation have been identified and can be subtracted or avoided experimentally. The FIDA radiation from fast deuterium ions after charge exchange reactions can therefore be analyzed continuously without superimposed line emissions at large Doppler shifts. Radial information on the fast ions is obtained from radially distributed lines of sight. The investigation of the fast-ion velocity distribution is possible due to three different viewing geometries. The independent viewing geometries access distinct parts of the fast-ion velocity space and make tomographic reconstructions possible.

  19. Overview of ASDEX Upgrade results—development of integrated operating scenarios for ITER

    NASA Astrophysics Data System (ADS)

    Günter, S.; Angioni, C.; Apostoliceanu, M.; Atanasiu, C.; Balden, M.; Becker, G.; Becker, W.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bizyukov, I.; Bobkov, V.; Bolzonella, T.; Borba, D.; Borrass, K.; Brambilla, M.; Braun, F.; Buhler, A.; Carlson, A.; Chankin, A.; Chen, J.; Chen, Y.; Cirant, S.; Conway, G.; Coster, D.; Dannert, T.; Dimova, K.; Drube, R.; Dux, R.; Eich, T.; Engelhardt, K.; Fahrbach, H.-U.; Fantz, U.; Fattorini, L.; Foley, M.; Franzen, P.; Fuchs, J. C.; Gafert, J.; Gal, K.; Gantenbein, G.; García Muñoz, M.; Gehre, O.; Geier, A.; Giannone, L.; Gruber, O.; Haas, G.; Hartmann, D.; Heger, B.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hohenöcker, H.; Horton, L.; Huart, M.; Igochine, V.; Jacchia, A.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kálvin, S.; Kardaun, O.; Kaufmann, M.; Keller, A.; Kendl, A.; Kick, M.; Kim, J.-W.; Kirov, K.; Klose, S.; Kochergov, R.; Kocsis, G.; Kollotzek, H.; Konz, C.; Kraus, W.; Krieger, K.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Leuterer, F.; Likonen, J.; Lohs, A.; Lorenz, A.; Lorenzini, R.; Lyssoivan, A.; Maggi, C.; Maier, H.; Mank, K.; Manini, A.; Manso, M.-E.; Mantica, P.; Maraschek, M.; Martin, P.; Mast, K. F.; Mayer, M.; McCarthy, P.; Meyer, H.; Meisel, D.; Meister, H.; Menmuir, S.; Meo, F.; Merkel, P.; Merkel, R.; Merkl, D.; Mertens, V.; Monaco, F.; Mück, A.; Müller, H. W.; Münich, M.; Murmann, H.; Na, Y.-S.; Narayanan, R.; Neu, G.; Neu, R.; Neuhauser, J.; Nishijima, D.; Nishimura, Y.; Noterdaeme, J.-M.; Nunes, I.; Pacco-Düchs, M.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Poli, E.; Posthumus-Wolfrum, E.; Pütterich, T.; Pugno, R.; Quigley, E.; Radivojevic, I.; Raupp, G.; Reich, M.; Riedl, R.; Ribeiro, T.; Rohde, V.; Roth, J.; Ryter, F.; Saarelma, S.; Sandmann, W.; Santos, J.; Schall, G.; Schilling, H.-B.; Schirmer, J.; Schneider, W.; Schramm, G.; Schweinzer, J.; Schweizer, S.; Scott, B.; Seidel, U.; Serra, F.; Sihler, C.; Silva, A.; Sips, A.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strintzi, D.; Strumberger, E.; Suttrop, W.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Tsalas, M.; Urano, H.; Varela, P.; Wagner, D.; Wesner, F.; Würsching, E.; Ye, M. Y.; Yoon, S.-W.; Yu, Q.; Zaniol, B.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.; Zilker, M.; Zohm, H.

    2005-10-01

    Significant progress has been made on ASDEX Upgrade during the last two years in the basic understanding of transport, in the extension of the improved H-mode in parameter space and towards an integrated operating scenario and in the development of control methods for major performance limiting instabilities. The important features were the understanding of particle transport and the control of impurity accumulation based on it, the satisfactory operation with predominantly tungsten-clad walls, the improved H-mode operation over density ranges and for temperature ratios covering (non-simultaneously) the ITER requirements on ν*, n/nGW and Te/Ti, the ELM frequency control by pellet injection and the optimization of NTM suppression by DC-ECCD through variation of the launching angle. From these experiments an integrated scenario has emerged which extrapolates to a 50% improvement in n T τ or a 30% reduction of the required current when compared with the ITER base-line assumptions, with moderately peaked electron and controllable high-Z density profiles.

  20. Deuterium depth profile quantification in a ASDEX Upgrade divertor tile using secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Caniello, R.; Giubertoni, D.; Bersani, M.; Hakola, A.; Mayer, M.; Rohde, V.; Anderle, M.

    2014-10-01

    We present the results of a study where secondary ion mass spectrometry (SIMS) has been used to obtain depth profiles of deuterium concentration on plasma facing components of the first wall of the ASDEX Upgrade tokamak. The method uses primary and secondary standards to quantify the amount of deuterium retained. Samples of bulk graphite coated with tungsten or tantalum-doped tungsten are independently profiled with three different SIMS instruments. Their deuterium concentration profiles are compared showing good agreement. In order to assess the validity of the method, the integrated deuterium concentrations in the coatings given by one of the SIMS devices is compared with nuclear reaction analysis (NRA) data. Although in the case of tungsten the agreement between NRA and SIMS is satisfactory, for tantalum-doped tungsten samples the discrepancy is significant because of matrix effect induced by tantalum and differently eroded surface (W + Ta always exposed to plasma, W largely shadowed). A further comparison where the SIMS deuterium concentration is obtained by calibrating the measurements against NRA values is also presented. For the tungsten samples, where no Ta induced matrix effects are present, the two methods are almost equivalent.The results presented show the potential of the method provided that the standards used for the calibration reproduce faithfully the matrix nature of the samples.

  1. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    NASA Astrophysics Data System (ADS)

    Křivská, A.; Bobkov, V.; Colas, L.; Jacquot, J.; Milanesio, D.; Ochoukov, R.

    2015-12-01

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  2. Simulation and real-time estimation of sawtooth crash effects on ASDEX-Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Felici, Federico; Kim, Doohyun; Piovesan, Paolo; Rapson, Chris; Reich, Matthias; Sauter, Olivier; Treutterer, Wolfgang; van den Brand, Hugo; ASDEX Upgrade Team

    2014-10-01

    This work presents the integration of Porcelli's sawtooth model, including partial and full reconnection triggered by a shear threshold, in the RAPid Transport simulatOR code (RAPTOR) and its application to ASDEX-Upgrade(AUG) experiments. RAPTOR is a 1D profile evolution code designed for real-time reconstruction and control applications. RAPTOR is used in predictive simulations to model the plasma profile in sawtoothing AUG discharges, but it also simulates the profile evolution in real-time, yielding a plasma state estimate that includes the effect of sawteeth. This work aims to model AUG scenarios with sawteeth and to understand sawtooth control and locking experiments. It also discusses the improvements in the plasma state reconstruction, in particular in the evolution of the q-profile, obtained by the inclusion of Porcelli's model in the code. Possible applications to real-time sawtooth control, like suitable power actuator schemes and locking techniques, are investigated as well. This project has received funding from the EURATOM research and training programme 2014--2018.

  3. Gyrokinetic studies of core turbulence features in ASDEX Upgrade: Can gyrokinetic simulations match the fluctuation measurements?

    NASA Astrophysics Data System (ADS)

    Banon Navarro, Alejandro

    2015-11-01

    Worldwide, gyrokinetic codes are used to predict the dominant micro-instabilities as well as the resulting anomalous transport in fusion experiments. A careful verification and validation of these codes is crucial to develop confidence in the model and improving the predictive capabilities of the numerical simulations. To date, the validation of gyrokinetic simulations versus experiments is mainly done at a macroscopic level, namely, by comparing turbulent heat fluxes. This is usually achieved by varying the profile gradients within the experimental error bars until a match with the experimental heat fluxes is obtained. However, since the turbulent fluxes are caused by plasma fluctuations on microscopic scales, it is also necessary to validate gyrokinetic codes on a microscopic level. We will describe a recent step in this direction by presenting simulation results with the gyrokinetic code GENE for an ASDEX Upgrade discharge. In particular, after flux-matched simulations are achieved, density fluctuations measured by means of Doppler reflectometry are compared with results of gyrokinetic simulations. We will also show that density and temperature fluctuation amplitudes and even the fluctuation spectra can be very sensitive to small changes in the profile gradients. This implies that a match of gyrokinetic simulations with experiment measurements for these quantities can be very difficult to achieve. However, it is observed that cross-phases between different quantities are robust to changes in this parameter, indicating that cross-phases could be a better observable for comparisons with experimental measurements.

  4. Non-monotonic growth rates of sawtooth precursors evidenced with a new method on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Vezinet, D.; Igochine, V.; Weiland, M.; Yu, Q.; Gude, A.; Meshcheriakov, D.; Sertoli, M.; the Asdex Upgrade Team; the EUROfusion MST1 Team

    2016-08-01

    This paper describes a new method to derive, from soft x-ray (SXR) tomography, robust estimates of the core displacement, growth rate and frequency of a 1/1 sawtooth crash precursor. The method is valid for very peaked SXR profiles and is robust against both the inversion algorithm and the presence of tungsten in a rotating plasma. Three typical ASDEX Upgrade crashes are then analysed. In all cases a postcursor is observed, suggesting incomplete reconnection. Despite different dynamics, in all three cases the growth rate of the core displacement shows similar features. First, it is not constant, supporting the idea of non-linear growth. Second, it can be divided into clearly identified phases with quasi-constant growth rates, suggesting sudden change of growth regime rather than smooth transitions. Third, its evolution is non-monotonic, with phases of accelerated growth followed by damped phases. This damping is interpreted for two cases respectively as an effect of fast ions and of mode coupling, based on the result of a MHD simulation. The mode frequency is observed in all cases to be closely related to the plasma bulk rotation profile, with little or no visible effect of the electron diamagnetic drift frequency. The onset criterion could not be clearly identified and it is shown that the role of the pressure gradient is not as expected from a naive extrapolation of the linear stability theory.

  5. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique.

    PubMed

    Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D

    2010-10-01

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder. PMID:21061480

  6. Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Told, D.; Jenko, F.; Doerk, H.; Dunne, M. G.; Wolfrum, E.; Viezzer, E.; The ASDEX Upgrade Team; Pueschel, M. J.

    2015-06-01

    The gyrokinetic GENE code is used to study the inter-ELM H-mode pedestal profile evolution for an ASDEX Upgrade discharge. Density gradient driven trapped electron modes are the dominant pedestal instability during the early density-buildup phase. Nonlinear simulations produce particle transport levels consistent with experimental expectations. Later inter-ELM phases appear to be simultaneously constrained by electron temperature gradient (ETG) and kinetic ballooning mode (KBM) turbulence. The electron temperature gradient achieves a critical value early in the ELM cycle, concurrent with the appearance of both microtearing modes and ETG modes. Nonlinear ETG simulations demonstrate that the profiles lie at a nonlinear critical gradient. The nominal profiles are stable to KBM, but moderate increases in β are sufficient to surpass the KBM threshold. Certain aspects of the dynamics support the premise of KBM-constrained pedestal evolution; the density and temperature profiles separately undergo large changes, but in a manner that keeps the pressure profile constant and near the KBM limit.

  7. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    SciTech Connect

    Křivská, A.; Colas, L.; Milanesio, D.

    2015-12-10

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performed during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.

  8. Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade

    SciTech Connect

    Tsujii, N.; D'Inca, R.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; Schneider, P.; Noterdaeme, J.-M.; Van Eester, D.; Lerche, E. A.; Jaeger, E. F.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.

  9. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Bernert, M.; Dux, R.; Fischer, R.; Kallenbach, A.; Kurzan, B.; Lang, P.; Mlynek, A.; McDermott, R. M.; Ryter, F.; Sertoli, M.; Tardini, G.; Zohm, H.

    2014-12-01

    Future fusion reactors, foreseen in the "European road map" such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  10. Global electromagnetic simulations of the outer core of an ASDEX Upgrade L-mode plasma

    NASA Astrophysics Data System (ADS)

    Abiteboul, J.; Görler, T.; Jenko, F.; Told, D.

    2015-09-01

    The outer core of a low confinement discharge performed at the ASDEX Upgrade tokamak is investigated using both global and local nonlinear gyrokinetic simulations. Previous work [Told et al., Phys. Plasmas 20, 122312 (2013)] had shown that local gyrokinetic simulations agree reasonably well with experimental results in terms of transport levels, with minor discrepancies that can be resolved within the uncertainties of the experimental profile. In the present work, the analysis of the same discharge is extended to include global gradient-driven simulations with the GENE code, taking into account the plasma profiles from mid-radius up to close to the separatrix. It is shown that the mean fluxes obtained assuming the local approximation are in general agreement with results from global simulations. Moreover, both types of simulations exhibit large-scale avalanche-like events, both in the ion and electron heat fluxes, with similar basic properties. However, analyzing the statistics of the fluxes reveals that intermittency is more important in the global case. Furthermore, even when averaging over turbulent time scales, radial corrugations in the ion temperature profile are identified in the global simulation. These corrugations are at most of the order of 1%, but correspond to up to 10% variations in the gradient. Thus, while the results on the mean fluxes support the validity of the local approximation, the presence of corrugated structures may pose a challenge for the direct validation of local gyrokinetic simulations against experiments.

  11. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.

    PubMed

    Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements. PMID:22299951

  12. Frequency measurements of the gyrotrons used for collective Thomson scattering diagnostics at TEXTOR and ASDEX Upgrade

    SciTech Connect

    Woskov, P.; Bindslev, H.; Leipold, F.; Meo, F.; Nielsen, S. K.; Tsakadze, E. L.; Korsholm, S. B.; Scholten, J.; Tito, C.; Westerhof, E.; Oosterbeek, J. W.; Leuterer, F.; Monaco, F.; Muenich, M.; Wagner, D.

    2006-10-15

    High resolution frequency measurements of the 110 GHz gyrotron at TEXTOR and the 105 GHz mode of the two-frequency gyrotron (Odissey-1) at ASDEX Upgrade (AUG) have been made in support of fast ion collective Thomson scattering diagnostics. Measurements were done by harmonic heterodyne methods using both fast Fourier transform spectroscopy with digital oscilloscopes and fast scanning spectrum analyzers. Accurate frequencies were obtained with a frequency counter. At TEXTOR, at 180 kW forward power the starting frequency was 109.970{+-}0.005 GHz and chirped down as much as 27 MHz depending on the duty factor. At AUG, at 500 kW forward power the frequency started at 104.786 GHz and chirped down 104 MHz, with 90% of the chirp occurring in the first 100 ms. Plasma perturbation of the TEXTOR gyrotron was observed when both ion cyclotron resonance heating antennas and neutral beam injection were operating, producing modulation at 29 and 58 MHz in the gyrotron output. Each gyrotron was observed to have an instrumental measurement limited linewidth of 120 kHz full width at half maximum.

  13. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade

    SciTech Connect

    Furtula, V.; Salewski, M.; Leipold, F.; Michelsen, P. K.; Korsholm, S. B.; Meo, F.; Moseev, D.; Nielsen, S. K.; Stejner, M.; Johansen, T.

    2012-01-15

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.

  14. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim

    2016-04-01

    We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.

  15. Adjoint Monte Carlo simulation of fusion product activation probe experiment in ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team

    2015-10-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  16. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    SciTech Connect

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A.

    2015-07-15

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  17. Pellet refuelling of particle loss due to ELM mitigation with RMPs in the ASDEX Upgrade tokamak at low collisionality

    NASA Astrophysics Data System (ADS)

    Valovič, M.; Lang, P. T.; Kirk, A.; Suttrop, W.; Cavedon, M.; Cseh, G.; Dunne, M.; Fischer, L. R.; Garzotti, L.; Guimarais, L.; Kocsis, G.; Mlynek, A.; Plőckl, B.; Scannell, R.; Szepesi, T.; Tardini, G.; Thornton, A.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-06-01

    The complete refuelling of the plasma density loss (pump-out) caused by mitigation of edge localised modes (ELMs) is demonstrated on the ASDEX Upgrade tokamak. The plasma is refuelled by injection of frozen deuterium pellets and ELMs are mitigated by external resonant magnetic perturbations (RMPs). In this experiment relevant dimensionless parameters, such as relative pellet size, relative RMP amplitude and pedestal collisionality are kept at the ITER like values. Refuelling of density pump out of the size of Δ n/n∼ 30% requires a factor of two increase of nominal fuelling rate. Energy confinement and pedestal temperatures are not restored to pre-RMP values by pellet refuelling.

  18. H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

    SciTech Connect

    Beurskens, M. N. A.; Lomas, P.; Saarelma, S.; Scannell, R.; Balboa, I.; Brix, M.; Flanagan, J.; Giroud, C.; Kempenaars, M.; Maddison, G.; McDonald, D.; Schneider, P. A.; Wolfrum, E.; Maggi, C. F.; Frassinetti, L.; Nunes, I.

    2011-05-15

    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width {Delta}/a {proportional_to} {rho}*{sup 1/2} to {rho}* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the ExB velocity. In the multidevice experiment where {rho}* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with {rho}* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}. All three devices show a scaling of the pedestal width in normalised poloidal flux as {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}, as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.

  19. Influence of externally applied magnetic perturbations on neoclassical tearing modes at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Fietz, S.; Bergmann, A.; Classen, I.; Maraschek, M.; Garcia-Muñoz, M.; Suttrop, W.; Zohm, H.; the ASDEX Upgrade Team

    2015-01-01

    The influence of externally applied magnetic perturbations (MPs) on neoclassical tearing modes (NTM) and the plasma rotation in general is investigated at the ASDEX Upgrade tokamak (AUG). The low n resonant components of the applied field exert local torques and influence the stability of NTMs. The non-resonant components of the error field do not influence MHD modes directly but slow down the plasma rotation globally due to a neoclassical toroidal viscous torque (NTV). Both components slow down the plasma rotation, which in consequence increases the probability for the appearance of locked modes. To investigate the impact of externally applied MPs on already existing modes and the influence on the rotation profile, experimental observations are compared to modelling results. The model used here solves a coupled equation system that includes the Rutherford equation and the equation of motion, taking into account the resonant effects and the resistive wall. It is shown that the NTV torque can be neglected in this modelling. To match the experimental frequency evolution of the mode the MP field strength at the resonant surface has to be increased compared to the vacuum approximation. This leads to an overestimation of the stabilizing effect on the NTMs. The reconstruction of the entire rotation profile via the equation of motion including radial dependencies, confirms that the NTV is negligibly small and that small resonant torques at different resonant surfaces have the same effect as one large one. This modelling suggests that in the experiment resonant torques at different surfaces are acting and slowing down the plasma rotation requiring a smaller torque at the specific resonant surface of the NTM. This additionally removes the overestimated influence on the island stability, whereas the braking of the island's rotation is caused by the sum of all torques. Consequently, to describe the effect of MPs on the evolution of one island, all other islands and the

  20. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    SciTech Connect

    M. Balden; N. Endstrasser; P. W. Humrickhouse; V. Rohde; M. Rasinski; U. von Toussaint; S. Elgeti; R. Neu

    2014-04-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ~50?000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  1. The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak

    SciTech Connect

    Chapman, I. T.; de Bock, M. F.; Pinches, S. D.; Turnyanskiy, M. R.

    2009-07-15

    Sawtooth behavior has been investigated in plasmas heated with off-axis neutral beam injection in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)] and the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Nucl. Fusion 41, 1423 (2001)]. Provided that the fast ions are well confined, the sawtooth period is found to decrease as the neutral beam is injected further off-axis. Drift kinetic modeling of such discharges qualitatively shows that the passing fast ions born outside the q=1 rational surface can destabilize the n=1 internal kink mode, thought to be related to the sawtooth instability. This effect can be enhanced by optimizing the deposition of the off-axis beam energetic particle population with respect to the mode location.

  2. The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Dunne, M. G.; Frassinetti, L.; Bernert, M.; Cavedon, M.; Fischer, R.; Järvinen, A.; Kallenbach, A.; Laggner, F. M.; McDermott, R. M.; Potzel, S.; Schweinzer, J.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 team

    2016-05-01

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20–30% confinement improvement. The reference plasma is a standard target plasma with I p /B T  =  1 MA/2.5 T, total input power P tot ~ 12 MW and normalized pressure of β N ~ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ~1.3 to ~1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ~ 0.25) and high (δ ~ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  3. Optimization of the FM-CW reflectometry W-band antenna for core density profile measurements on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Hacquin, S.; Wagner, D.; Manso, M.; Borreicho, J.; Farinha, L.

    2003-03-01

    A numerical study of the focused hog-horn antenna used for the W-band channel of the ASDEX Upgrade frequency modulated continuous wave reflectometry system is performed here. A mode matching code is used to accuretely model wave propagation in waveguide and antenna structures. Then the field distribution (amplitude and phase) in the horn aperture given by this code is used as an input for other codes computing wave propagation in the plasma. Evaluating the received energy in the antenna, we first analyze plasma effects as the nonalignment between the antenna and the plasma equatorial plane. We show in the case of an unfocused antenna that ray-tracing results are in qualitative agreement with full wave calculations. Simulations also confirm that hog-horn antennas allow improving the measurement performances in comparison with unfocused antennas. The role of location of the focusing point of a hog-horn antenna (depending on the antenna design) is then studied. It appears that the focusing point position should be optimized to maximize the energy received in the antenna. Finally, we show that a new design for the W-band antenna on the ASDEX Upgrade broadband reflectometry system could improve the performances of this diagnostic.

  4. Nonaxisymmetric energy deposition pattern on ASDEX upgrade divertor target plates during type-I edge-localized modes.

    PubMed

    Eich, T; Herrmann, A; Neuhauser, J

    2003-11-01

    In the ASDEX Upgrade tokamak, complex power deposition structures on the divertor target plates during type-I edge-localized modes (ELMs) have been discovered by fast (few microseconds), two-dimensional (40 x 40 cm(2)) infrared thermography. In addition to the usual axisymmetric power deposition line near the separatrix, there appear, statistically distributed, several laterally displaced and inclined stripes, mostly well separated from each other and from the main strike zone. These structures are interpreted as footprints of approximately field aligned, helical perturbations at the low field side of the main plasma edge related to the nonlinear ELM evolution. Based on this picture, the ELM related mode structure can be derived from the target load pattern, yielding on average toroidal mode numbers in a range of 8-24. PMID:14611587

  5. Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model.

    PubMed

    Eich, T; Sieglin, B; Scarabosio, A; Fundamenski, W; Goldston, R J; Herrmann, A

    2011-11-18

    Experimental measurements of the SOL power decay length (λ(q)) estimated from analysis of fully attached divertor heat load profiles from two tokamaks, JET and ASDEX Upgrade, are presented. Data was measured by means of infrared thermography. An empirical scaling reveals parametric dependency λ(q) in mm = 0.73B(T)(-0.78)q(cyl)(1.2)P(SOL)(0.1)R(geo)(0), where B(T)(T) describes the toroidal magnetic field, q(cyl) the cylindrical safety factor, P(SOL)(MW) the power crossing the separatrix and R(geo)(m) the major radius of the device. A comparison of these measurements to a heuristic particle drift-based model shows satisfactory agreement in both absolute magnitude and scaling. Extrapolation to ITER gives λ(q) ≃ 1 mm. PMID:22181888

  6. New developments and test of high power transmission components for ECRH on ASDEX-Upgrade and W7-AS

    SciTech Connect

    Empacher, L.; Foerster, W.; Gantenbein, G.; Kasparek, W.; Kumric, H.

    1995-12-31

    The installation of new 140 GHz systems for electron cyclotron heating on the tokamak ASDEX-Upgrade and the stellarator W7-AS with a power of 2 MW each and 3 s pulse length is underway. These systems use gyrotrons, developed by the Institute of Applied Physics, Nizhny Novgorod, and built by Toriy in Russia, as high power mm-wave sources. The gyrotrons can be operated for 3 s with 0.5 MW and for 1 s with 0.7 MW EHF output. The transmission of the millimetre wave power is realized by a combination of beam waveguides and corrugated HE{sub 11} waveguides. Components for transmission and high power diagnostics as well as first results are described together with the system.

  7. Development progress of Correlation ECE and n-T cross-phase angle diagnostics for ASDEX-Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, Simon; Conway, Garrard; Classen, Ivo; Creely, Alex; White, Anne; Happel, Tim; Vanovac, Branka; ASDEX Upgrade Team

    2015-11-01

    Relative turbulent temperature fluctuation amplitudes can be measured using Correlation ECE (CECE). This technique uses two narrow frequency-band radiometer channels, with an equivalent physical spacing within a turbulent radial correlation length. Correlation techniques select the common turbulent fluctuation while suppressing uncorrelated thermal noise. If such a diagnostic views the same part of the plasma as a reflectometer, then the coherence and cross-phase angle between temperature and density fluctuations can be measured. Two 2nd harmonic, X-mode, CECE radiometers have recently been installed on ASDEX Upgrade, one of which shares the quasi-optical steerable antenna of an existing Doppler reflectometer, i.e with a common line of sight of the plasma. We report on the progress of the installation and preliminary data from both systems.

  8. On the role of the edge density profile for the L-H transition power threshold in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Shao, L. M.; Wolfrum, E.; Ryter, F.; Birkenmeier, G.; Laggner, F. M.; Viezzer, E.; Fischer, R.; Willensdorfer, M.; Kurzan, B.; Lunt, T.; the ASDEX Upgrade Team

    2016-02-01

    The L-H transition power threshold ({{P}\\text{L-\\text{H}}} ) in full tungsten (W) wall discharges is lower by 25% compared to those with graphite (C) mix tungsten walls in ASDEX Upgrade (Ryter et al 2013 Nucl. Fusion 53 113003). The lower power threshold in the full tungsten wall discharges has been found to correlate with higher edge density as well as steeper edge density gradient. An estimate of the minimum in the neoclassical radial electric field well inside the separatrix yields a constant value for all analyzed L-H transitions at fixed toroidal magnetic field ({{B}\\text{T}} ). The decrease of the threshold power is explained by the steeper edge density gradient in the discharges with full tungsten wall.

  9. Fast-ion losses induced by ELMs and externally applied magnetic perturbations in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Garcia-Munoz, M.; Äkäslompolo, S.; de Marne, P.; Dunne, M. G.; Dux, R.; Evans, T. E.; Ferraro, N. M.; Fietz, S.; Fuchs, C.; Geiger, B.; Herrmann, A.; Hoelzl, M.; Kurzan, B.; Lazanyi, N.; McDermott, R. M.; Nocente, M.; Pace, D. C.; Rodriguez-Ramos, M.; Shinohara, K.; Strumberger, E.; Suttrop, W.; Van Zeeland, M. A.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.

    2013-12-01

    Phase-space time-resolved measurements of fast-ion losses induced by edge localized modes (ELMs) and ELM mitigation coils have been obtained in the ASDEX Upgrade tokamak by means of multiple fast-ion loss detectors (FILDs). Filament-like bursts of fast-ion losses are measured during ELMs by several FILDs at different toroidal and poloidal positions. Externally applied magnetic perturbations (MPs) have little effect on plasma profiles, including fast-ions, in high collisionality plasmas with mitigated ELMs. A strong impact on plasma density, rotation and fast-ions is observed, however, in low density/collisionality and q95 plasmas with externally applied MPs. During the mitigation/suppression of type-I ELMs by externally applied MPs, the large fast-ion bursts observed during ELMs are replaced by a steady loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection (NBI) prompt loss signal without MPs. Multiple FILD measurements at different positions, indicate that the fast-ion losses due to static 3D fields are localized on certain parts of the first wall rather than being toroidally/poloidally homogeneously distributed. Measured fast-ion losses show a broad energy and pitch-angle range and are typically on banana orbits that explore the entire pedestal/scrape-off-layer (SOL). Infra-red measurements are used to estimate the heat load associated with the MP-induced fast-ion losses. The heat load on the FILD detector head and surrounding wall can be up to six times higher with MPs than without 3D fields. When 3D fields are applied and density pump-out is observed, an enhancement of the fast-ion content in the plasma is typically measured by fast-ion D-alpha (FIDA) spectroscopy. The lower density during the MP phase also leads to a deeper beam deposition with an inward radial displacement of ≈2 cm in the maximum of the beam emission. Orbit simulations are used to test different models for 3D

  10. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  11. Laboratory Astrophysics on ASDEX Upgrade: Measurements and Analysis of K-Shell O, F, and Ne Spectra in the 9-20 A region

    SciTech Connect

    Hansen, S B; Fournier, K B; Finkenthal, M; Smith, R; Puetterich, T; Neu, R

    2006-05-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  12. 3D ELM fluctuation measurements with the new dual array ECE-Imaging diagnostic on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, Ivo; Vanovac, Branka; Domier, Calvin; Luhmann, Neville; Bogomolov, Anton; Suttrop, Wolfgang; Tobias, Benjamin; ASDEX Upgrade Team

    2015-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECE-Imaging) at ASDEX Upgrade (AUG) has been equipped with a second detector array, and has been successfully commissioned. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle, to enable quasi-3D measurements of the electron temperature. The system measures a total of 288 channels, in two toroidally separated 2D arrays of approximately 50 cm vertically by 10 cm radially. The toroidal separation between the two poloidal observation planes is about 40 cm, such that the majority of the field lines is observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like ELM filaments. The toroidal separation of 40 cm is sufficient for the accurate measurement of both phase differences and transit times of (rotating) plasma structures, enabling a distinction between time varying 2D structures and true 3D structures (not possible with 2D diagnostics). The research will mainly focus on the investigation of the 3D structure of the temperature fluctuations related to edge localized modes (ELMs), in particular precursors and filaments. The first results on ELMs will be reported.

  13. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak.

    PubMed

    García-Muñoz, M; Fahrbach, H-U; Zohm, H

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)]. PMID:19499603

  14. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  15. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Zohm, H.; Collaboration: ASDEX Upgrade Team

    2009-05-15

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  16. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Lazzaro, E.; Esposito, B.; Granucci, G.; Maraschek, M.; Sauter, O.; Zohm, H.; Brunetti, D.; ASDEX Upgrade Team

    2012-09-01

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  17. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    SciTech Connect

    Nowak, S.; Lazzaro, E.; Granucci, G.; Esposito, B.; Maraschek, M.; Zohm, H.; Sauter, O.; Brunetti, D.; Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  18. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak

    NASA Astrophysics Data System (ADS)

    García-Muñoz, M.; Fahrbach, H.-U.; Zohm, H.; ASDEX Upgrade Team

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  19. Comparison of experiment and models of geodesic acoustic mode frequency and amplitude geometric scaling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Simon, P.; Conway, G. D.; Stroth, U.; Biancalani, A.; Palermo, F.; the ASDEX Upgrade Team

    2016-04-01

    In a set of dedicated ASDEX Upgrade shape-scan experiments, the influence of plasma geometry on the frequency and amplitude behaviour of the geodesic acoustic mode (GAM), measured by Doppler reflectometry, is studied. In both limiter and divertor configurations, the plasma elongation was varied between circular and highly elongated states (1.1<κ <1.8 ). Also, the edge safety factor was scanned between 3  <  q  <  5. The GAM frequency {ω\\text{GAM}} and amplitude are used to test several models (heuristic, fluid and gyrokinetic based), which incorporate various plasma geometry effects. The experimentally observed effect of decreasing {ω\\text{GAM}} with increasing κ is predicted by most models. Other geometric factors, such as inverse aspect ratio ε and Shafranov shift gradient {Δ\\prime} are also seen to be influential in determining a reliable lower {ω\\text{GAM}} boundary. The GAM amplitude is found to vary with boundary elongation {κ\\text{b}} and safety factor q. The collisional damping is compared to multiple models for the collisionless damping. Collisional damping appears to play a stronger role in the divertor configuration, while collisional and collisionless damping both may contribute to the GAM amplitude in the limiter configuration.

  20. Pedestal and edge localized mode characteristics with different first wall materials and nitrogen seeding in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schneider, P. A.; Barrera Orte, L.; Burckhart, A.; Dunne, M. G.; Fuchs, C.; Gude, A.; Kurzan, B.; Suttrop, W.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    A comparison of ASDEX Upgrade (AUG) discharges performed with carbon and the full tungsten wall shows that the pedestal performance at low triangularity is not altered without gas puffing. The pedestal electron pressure is the same for both wall materials as is the confinement. With the tungsten wall the natural density is higher even without an additional gas puff. In typical operation with gas puffing the density is again higher in tungsten. This results in a higher collisionality with the tungsten wall. Pedestal pressure and plasma confinement, however, are not degraded until very large amounts of deuterium are puffed. The edge localized mode (ELM) crash in typical AUG discharges is observed to be composed of two independent phases. This is observed for both the carbon and the tungsten wall. The 1st phase of the crash is unaffected by scans of the plasma parameters as long as the pedestal pressure remains constant. The duration of the 2nd phase is strongly anti-correlated with the separatrix density and can be suppressed by the application of nitrogen seeding for divertor cooling. A consistent explanation for the two phases of the ELM crash does not seem possible when considering only the pre-ELM pedestal profiles. The scrape off layer (SOL) plasma provides the necessary free parameter for a consistent explanation, indicating the importance of the SOL in understanding the ELM crash evolution.

  1. Toroidal modelling of resonant magnetic perturbations response in ASDEX-Upgrade: coupling between field pitch aligned response and kink amplification

    NASA Astrophysics Data System (ADS)

    Ryan, D. A.; Liu, Y. Q.; Kirk, A.; Suttrop, W.; Dudson, B.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Garcia-Munoz, M.; Kurzan, B.; Piovesan, P.; Reinke, M.; Willensdorfer, M.; the ASDEX-Upgrade Team; the EUROfusion MST1 Team

    2015-09-01

    Using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), the single fluid resistive MHD plasma response to applied n   =   2 resonant magnetic perturbations is computed, for a plasma discharge in the ASDEX-Upgrade tokamak. The computation predicts strong kink amplification, as previously predicted in DIII-D (Haskey et al 2014 Plasma Phys. Control. Fusion 56 035005), which is strongly dependent on the toroidal phase shift between the upper and lower coils, Δ {φ\\text{ul}} . In particular, edge localised low n peeling modes with poloidal mode numbers just above pitch resonance—a subset of the kink response—are amplified. The robustness of the amplified peeling response with respect to truncation of the X point is investigated, by recomputing the plasma response for a range of edge geometries. It is found that the computed peeling response, when plotted against the safety factor, is not sensitive to the numerical truncation near the X point. It is also predicted that near the plasma edge where resistivity is large, the pitch aligned components are finite and also strongly dependent on Δ {φ\\text{ul}} . A previous proposal that the amplified peeling response may indirectly drive the pitch aligned components by spectral proximity (Lanctot et al 2013 Nucl. Fusion 53 083019), is investigated by numerically applying magnetic perturbations of a single poloidal harmonic, as a boundary condition at the plasma edge. It is found that poloidal harmonic coupling causes harmonics to couple to and drive harmonics directly beneath them spectrally, and also that the pitch aligned components can be driven by this mechanism. This suggests that it is quite possible that the amplified low n peeling response can drive the pitch aligned components when it is strongly amplified, which would alter the coil configuration for optimum plasma stochastization, with implications for ELM control by RMPs.

  2. Experimental analysis and WallDYN simulations of the global nitrogen migration in ASDEX Upgrade L-mode discharges

    NASA Astrophysics Data System (ADS)

    Meisl, G.; Schmid, K.; Oberkofler, M.; Krieger, K.; Lisgo, S. W.; Aho-Mantila, L.; Reimold, F.; Lunt, T.; ASDEX Upgrade Team

    2016-03-01

    This work presents ASDEX Upgrade experiments, where the nitrogen deposition and re-erosion on divertor manipulator samples and the effect of its transport through the plasma were studied. These results are compared to WallDYN-DIVIMP simulations based on SOLPS plasma backgrounds and employing an improved WallDYN model, which includes the effusion of nitrogen from saturated surfaces. On one hand, this allows the WallDYN code and the new saturation model with a comprehensive data set to be benchmarked, on the other hand the simulations help in the interpretation of the experimental results. Both, experimental results and simulations, show that the N content in the region of the outer strike line reaches its steady-state value within one discharge. The simulations also reproduce the experimentally observed nitrogen content in samples exposed to N2-seeded discharges. With respect to the boron deposition, the nitrogen deposition in a non-seeded discharge and the re-erosion of nitrogen discrepancies to the WallDYN-DIVIMP simulations are observed. Based on SDTrimSP simulations, these are attributed to the missing depth resolution of the WallDYN surface model. A detailed comparison of spectroscopic measurements to WallDYN simulations, based on a novel synthetic spectroscopy diagnostic for WallDYN, shows that the nitrogen fluxes in the plasma are well described by the simulations. From a comparison of several WallDYN-DIVIMP simulations employing customized onion-skin model plasma backgrounds the physical processes controlling the nitrogen concentration in the core plasma and the applicability of onion-skin model plasma backgrounds are discussed. From these simulations the private flux zone with the gas valve, the outer baffle and the high field side main wall are identified as the main sources for the nitrogen content of the core plasma.

  3. High power ECRH and ECCD in moderately collisional ASDEX Upgrade Hmodes and status of EC system upgrade

    NASA Astrophysics Data System (ADS)

    Stober, J.; Sommer, F.; Angioni, C.; Bock, A.; Fable, E.; Leuterer, F.; Monaco, F.; Müller, F.; Münich, S.; Petzold, B.; Poli, E.; Schubert, M.; Schütz, H.; Wagner, D.; Zohm, H.; Kasparek, W.; Plaum, B.; Meier, A.; Scherer, Th.; Strauß, D.; Jelonnek, J.; Thumm, M.; Litvak, A.; Denisov, G. G.; Chirkov, A. V.; Tai, E. M.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Soluyanova, E. A.; Malygin, V.

    2015-03-01

    This contribution deals with H-modes with significant heat exchange between electrons and ions, but which can still show large differences between electron and ion-temperatures especially inside half minor radius. These conditions are referred to as moderately collisional. A systematic study shows that an increasing fraction of electron heating increases the transport in the ion channel mainly due to the dependence of the ITG dominated ion transport on the ratio Te/Ti in agreement with modeling. The rotational shear in the plasmas under study was so small that it hardly influences ITG stability, such that variations of the rotation profile due to a change of the heating method were of minor importance. These findings connect to studies of advanced tokamak scenarios using ECCD as a tool to modify the q-profile. The electron heating connected to the ECCD tends to increase the transport in the ion channel quite in contrast to the goal to operate at reduced current but with increased confinement. The confinement only increases as the fraction of ion heating is increased by adding more NBI. An ITER case was modeled as well. Due to the larger value of νei ・ τE the ratio Te/Ti is only moderately reduced even with strong electron heating and the confinement reduction is small even for the hypothetic case of using only ECRH as additional heating. Finally the paper discusses the ongoing upgrade of the AUG ECRH-system.

  4. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  5. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes.

    PubMed

    Adamek, J; Müller, H W; Silva, C; Schrittwieser, R; Ionita, C; Mehlmann, F; Costea, S; Horacek, J; Kurzan, B; Bilkova, P; Böhm, P; Aftanas, M; Vondracek, P; Stöckel, J; Panek, R; Fernandes, H; Figueiredo, H

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8. PMID:27131677

  6. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}∼ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}∼ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (‑100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  7. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests. PMID:23130802

  8. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue. PMID

  9. Novel free-boundary equilibrium and transport solver with theory-based models and its validation against ASDEX Upgrade current ramp scenarios

    NASA Astrophysics Data System (ADS)

    Fable, E.; Angioni, C.; Casson, F. J.; Told, D.; Ivanov, A. A.; Jenko, F.; McDermott, R. M.; Medvedev, S. Yu; Pereverzev, G. V.; Ryter, F.; Treutterer, W.; Viezzer, E.; the ASDEX Upgrade Team

    2013-12-01

    Tokamak scenario development requires an understanding of the properties that determine the kinetic profiles in non-steady plasma phases and of the self-consistent evolution of the magnetic equilibrium. Current ramps are of particular interest since many transport-relevant parameters explore a large range of values and their impact on transport mechanisms has to be assessed. To this purpose, a novel full-discharge modelling tool has been developed, which couples the transport code ASTRA (Pereverzev et al 1991 IPP Report 5/42) and the free boundary equilibrium code SPIDER (Ivanov et al 2005 32nd EPS Conf. on Plasma Physics vol 29C (ECA) P-5.063 and http://epsppd.epfl.ch/Tarragona/pdf/P5_063.pdf), utilizing a specifically designed coupling scheme. The current ramp-up phase can be accurately and reliably simulated using this scheme, where a plasma shape, position and current controller is applied, which mimics the one of ASDEX Upgrade. Transport of energy is provided by theory-based models (e.g. TGLF (Staebler et al 2007 Phys. Plasmas 14 055909)). A recipe based on edge-relevant parameters (Scott 2000 Phys. Plasmas 7 1845) is proposed to resolve the low current phase of the current ramps, where the impact of the safety factor on micro-instabilities could make quasi-linear approaches questionable in the plasma outer region. Current ramp scenarios, selected from ASDEX Upgrade discharges, are then simulated to validate both the coupling with the free-boundary evolution and the prediction of profiles. Analysis of the underlying transport mechanisms is presented, to clarify the possible physics origin of the observed L-mode empirical energy confinement scaling. The role of toroidal micro-instabilities (ITG, TEM) and of non-linear effects is discussed.

  10. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  11. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    SciTech Connect

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to

  12. Wavenumber-resolved core turbulence studies in the ASDEX Upgrade tokamak and comparison with non-linear gyrokinetic simulations with the GENE code

    NASA Astrophysics Data System (ADS)

    Happel, Tim; Bañón Navarro, Alejandro; Conway, Garrard; Görler, Tobias; Jenko, Frank; Ryter, Francois; Stroth, Ulrich; ASDEX Upgrade Team

    2014-10-01

    Core plasma turbulence determines transport properties and impacts on the efficiency of a fusion reactor. Gyrokinetic codes are developed to predict dominant instabilities and the turbulence level, which causes the observed particle and heat losses. A careful validation of these codes is mandatory to improve the reliability of predictions. To this end, core turbulence is investigated in ASDEX Upgrade by means of Doppler reflectometry, which provides the perpendicular velocity of turbulent structures and their fluctuation level. H-mode discharges have been performed in which ECRH is used to drive the turbulence from the ITG turbulence regime towards the TEM regime. In general, the turbulence level increases from core towards the edge. With increasing R /LTe , core large scale structures show larger fluctuation amplitudes while their phase velocity is altered with respect to that of small structures. Results are compared with gyrokinetic simulations with the GENE code. Linear results show a transition from ITG towards TEM turbulence close to the radial ECRH deposition location. After matching of heat fluxes to results from power balance analysis, the radial trend in the turbulence level is reproduced. The response to additional heating is opposite to the experimental findings.

  13. Improvement of the phase regulation between two amplifiers feeding the inputs of the 3dB combiner in the ASDEX-Upgrade ICRH system

    NASA Astrophysics Data System (ADS)

    Grine, D.; Pompon, F.; Faugel, H.; Funfgelder, H.; Noterdaeme, J. M.; Koch, R.

    2011-12-01

    The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line [1]. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and in phase quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system.

  14. M3D-C1 simulations of plasma response in ELM-mitigated ASDEX Upgrade and DIII-D discharges

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Haskey, S. R.; Logan, N. C.

    2015-11-01

    The extended magnetohydrodynamics (MHD) code M3D-C1 is used to study the time-independent, linear response of tokamak equilibria to applied, 3D magnetic perturbations. In doing so, we seek to develop a more complete understanding of what MHD phenomena are responsible for the mitigation and suppression of edge-localized modes (ELMs) and to explain why the success of ELM suppression experiments differs both within a single tokamak and across different tokamaks. We consider such experiments on ASDEX Upgrade and DIII-D. We examine how resonant and non-resonant plasma responses are affected by varying the relative magnitude and phase of sets of magnetic coils. The importance of two-fluid effects, rotation profiles, plasma β, collisionality, bootstrap current profiles, and various numerical parameters are explored. The results are verified against other MHD codes (e.g., IPEC, MARS), correlated to observations of ELM mitigation or suppression, and validated against observed magnetic responses. Work supported in part by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, and the FES Postdoctoral Research Program.

  15. Direct observations of L-I-H and H-I-L transitions with the X-point reciprocating probe in ASDEX Upgrade

    SciTech Connect

    Müller, S. H.; Manz, P.; Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching ; Stroth, U.; Physics Department E28, Technical University of Munich, 85747 Garching ; Tsalas, M.; Tynan, G. R.

    2014-04-15

    A reciprocating Langmuir probe was used to directly measure the behavior of turbulence and flows in the X-point region during transitions between low-(L) and high-confinement (H) mode in ASDEX Upgrade. The probe traverses the divertor horizontally in 140 ms, typically 2–5 cm below the X-point. Toroidal Mach number, density, floating potential (ϕ{sub f}), and electron temperature (T{sub e}) are measured. In the regime accessible to the probe (P{sub inj}<1.5 MW, line-integrated core density <4×10{sup 19} m{sup −2}), the L-H transition features an intermediate phase (I-phase), characterized by limit-cycle oscillations at 0.5–3 kHz [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)]. The probe measurements reveal that this pulsing affects both the density and the toroidal Mach number. It is present in both the low-(LFS) and high-field sides (HFS) of the scrape-off layer, while high-amplitude broadband turbulence usually dominates the private-flux region. Profile comparisons between L-mode and I-phase show lower density in pulsing regions and small shifts in T{sub e}, directed oppositely on LFS and HFS, which are compensated by shifts in ϕ{sub f} to yield a surprisingly unchanged plasma potential profile. Directly observed L-I-phase transitions reveal that the onset of the pulsing is preceded by a fast 50% density drop in the HFS X-point region. Back transitions to L-mode occur essentially symmetrically, with the pulsing stopping first, followed by a fast recovery to L-mode density levels in the divertor.

  16. Economic enhancement of Western shale oil upgrading

    SciTech Connect

    Bunger, J. W.; Ryu, H.; Jeong, S. Y.

    1989-07-01

    A proof-of-concept study for a novel shale oil refining process was undertaken. This project promises reduced upgrading costs, thereby making shale oil development more feasible for commercialization. The process consists of distillation of raw shale oil into a distillate and residue portion, cracking of the residue by hydropyrolysis, and selective hydrotreating of narrow boiling cuts from the total distillate. Based on models and experimental data, the end product slate is projected to be 34% naphtha, 57% middle distillate, and 10.3% atm residue + coke. Hydrogen addition is 1.3% or 800 scf/bbl. These results are considerably improved over conventional processing, which gives 14% naphtha, 41% middle distillate, and 48.2% residue + coke and hydrogen addition of 3.2% or 2000 scf/bbl. More quantitative data and preliminary economics will be obtained in the next phase of study. 13 refs., 3 figs., 6 tabs.

  17. Upgrades and enhancements for competitive coal-fired boiler systems

    SciTech Connect

    Kitto, J.B. Jr.; Bryk, S.A.; Piepho, J.M.

    1996-12-31

    Deregulation of the electric utility industry is resulting in significant opportunities and challenges for US power generators. Existing coal-fired capacity potentially offers the lowest variable cost power production option if these units are upgraded to optimize capacity, operating cost (including fuel), efficiency, and availability while also meeting today`s stringent emissions control requirements. This paper highlights a variety of boiler system upgrades and enhancements which are being utilized to make aging coal-fired boilers low cost competitors in the 1990s.

  18. EMC3-Eirene simulations of particle- and energy fluxes to main chamber- and divertor plasma facing components in ASDEX Upgrade compared to experiments

    NASA Astrophysics Data System (ADS)

    Lunt, T.; Carralero, D.; Feng, Y.; Birkenmeier, G.; Müller, H. W.; Müller, S.; Wischmeier, M.

    2015-08-01

    We report on first EMC3-Eirene simulations with an extended computational grid including both divertor- and main chamber (MC) 3D wall plasma-facing components (PFCs). In a first step we compare the simulations to low-power L-mode discharges systematically analyzed by Carralero et al., who observed a transition from a low- to a high density regime (Carralero et al., 2014). Case A is a configuration at low density and high clearance, while B is a high density regime configuration at medium clearance. In order to explain the upstream far-SOL ne profiles of B the MC PFCs and an enhanced transport region at ρ = 1.01, …, 1.03 need to be included in the simulations. In a second step we compute the particle-, and power fluxes to the limiter for the realistic geometry, for limiters displaced radially inward and for a toroidally symmetric limiter. Almost the same fraction of power as that to the divertor is absorbed by the MC PFCs in the simulation of case B.

  19. B2-Eirene modelling of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Coster, D. P.; Schneider, R.; Neuhauser, J.; Bosch, H.-S.; Wunderlich, R.; Fuchs, C.; Mast, F.; Kallenbach, A.; Dux, R.; Becker, G.; Braams, B. J.; Reiter, D.; ASDEX Upgrade Team

    1997-02-01

    The extension of the computational region of the coupled fluid plasma, Monte-Carlo neutrals code, B2-Eirene, to the plasma center is discussed. The simulation of completely detached H-mode plasma is presented, as is the modelling of He and Ne compression.

  20. Divertor efficiency in ASDEX

    NASA Astrophysics Data System (ADS)

    Engelhardt, W.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gierke, G. V.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; KlÜber, O.; Kornherr, M.; Lisitano, G.; Mayer, H.-M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.; Vernickel, H.; Wagner, F.

    1982-12-01

    The divertor efficiency in ASDEX is discussed for ohmically heated plasmas. The parameters of the boundary layer both in the torus midplane and the divertor chamber have been measured. The results are reasonably well understood in terms of parallel and perpendicular transport. A high pressure of neutral hydrogen builds up in the divertor chamber and Franck-Condon particles recycle back through the divertor throat. Due to dissociation processes the boundary plasma is effectively cooled before it reaches the neutralizer plates. The shielding property of the boundary layer against impurity influx is comparable to that of a limiter plasma. The transport of iron is numerically simulated for an iron influx produced by sputtering of charge exchange neutrals at the wall. The results are consistent with the measured iron concentration. First results from a comparison of the poloidal divertor with toroidally closed limiters (stainless steel, carbon) are given. Diverted discharges are considerably cleaner and easier to create.

  1. Upgrading and enhancing the generator protection system by making use of current digital systems

    SciTech Connect

    Chau, N.H.; Gardell, J.D.; Patel, S.C.

    1996-06-01

    Upgrading of power plant systems and equipment is becoming a major theme for many utilities. Due to operational cost pressures, competitiveness, life extension, and the desire for better productivity, condition assessment programs are being implemented. One aspect of this is the enhancement/upgrade of existing generator protection schemes with digital systems. Traditionally this protection has been provided by a complement of discrete component relays. These relays have included both electromechanical and static types. Considering a digital enhancement/upgrade offers the owner of installed generation equipment several unique advantages. These include more complete machine protection, diagnostics capabilities for greater productivity and maintenance optimization, life extension with minimal implementation, and the operational advantages of sequence of events, present values and communications capabilities.

  2. Developing Multimedia Enhanced Content to Upgrade Subject Content Knowledge of Secondary School Teachers in Tanzania

    ERIC Educational Resources Information Center

    Mtebe, Joel S.; Kibga, Elia Y.; Mwambela, Alfred A.; Kissaka, Mussa M.

    2015-01-01

    The failure rates and lack of interest amongst students in science and mathematics in secondary schools in Tanzania is a serious problem. The Ministry of Education and Vocational Training (MoEVT) implemented a project to enhance and upgrade the pedagogical knowledge and subject content knowledge of teachers in selected difficult topics in science…

  3. Recent upgrades and enhancements of the FEM3A model

    SciTech Connect

    Chan, S.T.

    1994-12-01

    In 1984, the US Army Edgewood Research, Development and Engineering Center began to fund Lawrence Livermore National Laboratory to further develop FEM3, a fully three-dimensional heavy-gas dispersion model, as a research tool for studying the atmospheric transport and diffusion of certain chemical systems. As a result, a significantly improved version of the model, called FEM3A, was delivered to ERDEC in 1988. During the past few years, two more major improvements have been developed and tested. They are: improved mass conservation for treating dispersion scenarios with large density variations, and the addition of an advanced turbulence submodel based on the k-{var_epsilon} transport equations. These enhancements have resulted in substantial improvements in the dispersion simulations of heavy-gases and can greatly extend the range of applicability of the model, including the ability to treat problems with large density variations and dispersion scenarios of much greater complexities. Documented in this report are the new features and some of the improvements obtained with the new model.

  4. Pellet imaging techniques on ASDEX

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  5. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  6. Coronagraphic Upgrades at the VLT/NaCo: 4-Micron APP Enhanced Spectroscopy?

    NASA Astrophysics Data System (ADS)

    Girard, Julien H. V.; Janson, Markus; Quanz, Sascha P.; Kenworthy, Matthew A.; Meyer, Michael R.; Kasper, Markus; Lenzen, Rainer; Wehmeier, Udo

    2010-10-01

    We present coronagraphic upgrades that took place in the past months on NaCo, the versatile high contrast imager/spectrograph currently operated at the Very Large Telescope (VLT). A review of the current high contrast techniques available on NACO is presented as well as potential upgrades. As strong emphasis is made on the advantage of using the 3-5 μm domain for achieving outstanding detectability and characterization of hot jupiters. The new Apodizing Phase Plate (APP) coronagraph successfully commissioned earlier in 2010 is introduced. Preliminary tests on APP enhanced spectroscopy are shown. This unique capability could allow to reach unprecedented science goals: directly detect molecular features (CH4, CO, etc.) of the atmosphere of gaseous exoplanets at relatively low inner working angles (0.2 to 0.8").

  7. Viewgraphs presented at the ASDEX/DOE workshop on disruptions in divertor tokamaks

    SciTech Connect

    Granetz, R.; Gruber, O.; Zohm, H.

    1994-09-01

    The emphasis of this year`s ASDEX/DOE workshop was on disruptions in diverted tokamaks. The meeting was held here at MIT on 14--15 March. It is particularly appropriate that MIT hosted the workshop this year, since Alcator C-Mod had just recently completed its very first run campaign, and disruptions are one of the key areas of research in our program. There were a total of 14 speakers, with participants from IPP (Garching), CRPP (Lausanne), Culham, General Atomics, PPPL, Sandia, ORNL, the ITER JCT, and MIT. The subjects addressed included statistical analysis of disruption probabilities in ASDEX, modelling of the vertical axisymmetric plasma motion in DIII-D, impact of disruptions on the design of the ITER divertors, modelling of runaway electrons, and TSC calculations of disruption-induced currents and forces in TPX, etc. One item of particular interest to us was the experimental correlation of halo current magnitude with plasma current on ASDEX-Upgrade. The data indicates at least a linear, and possibly even a quadractic dependence. This has important implications for Alcator C-Mod, since it would predict halo currents of order 1 MA or more at full performance. At the conclusion of the talks, an informal discussion of disruption databases was held, primarily for the purpose of helping us develop a useful one for C-Mod.

  8. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  9. Pellet imaging techniques in the ASDEX tokamak

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-11-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.

  10. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  11. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  12. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  13. Fueling efficiency of gas puffing in ASDEX

    NASA Astrophysics Data System (ADS)

    Mayer, H.-M.; Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussman, G.; Gehre, O.; Gierke, G. v.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.

    1982-12-01

    The fueling efficiency for gas puffing, i.e. the fraction of the external gas flux that is ionized inside the separatrix, is reduced in divertor discharges since part of it is ionized in the scrape-off layer and pumped off by the divertor. The fueling efficiency is determined by switching-off the gas feed during the stationary phase of a discharge and dividing the time derivative of the total number of particles inside the separatrix by the external gas flux. The determination of this time derivative must take into account profile changes. In ASDEX the fueling efficiency ranges from close to 1.0 for discharges with a stainless steel poloidal limiter and decreases to about 0.2 at high densities ( 6 × 10 13 cm -3 line average) for diverted discharges. These results are compared with estimates of the fueling efficiency which include molecular disintegration, plasma albedo for neutral atoms and imperfect wall reflection.

  14. Long-pulse suprathermal discharges in the ASDEX tokamak

    SciTech Connect

    Fussmann, G.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Karger, F.; Keilhacker, M.; Klueber, O.; Lackner, K.; Sesnic, S.; Wagner, F.; Behringer, K.; Gehre, O.; Gernhardt, J.; Glock, E.; Haas, G.; Kornherr, M.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Mueller, R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Ruhs, N.; Schneider, F.; Siller, G.; Steuer, K.

    1981-10-05

    Use of the ASDEX divertor permits the production of stable low-density discharges (n/sub e/> or approx. =10/sup 12/ cm/sup -3/) with extremely low resistivity lasting for more than 10 s. While the distribution functions of electrons and ions show suprathermal tails, runaway electrons in the megaelectronvolt range are found to disappear with decreasing density. There are indications that in these discharges the energy confinement is improved compared with ALCATOR scaling.

  15. Improved confinement with counter neutral injection into ASDEX

    SciTech Connect

    Gehre, O.; Gruber, O.; Murmann, H.D.; Roberts, D.E.; Wagner, F.; Bomba, B.; Eberhagen, A.; Fahrbach, H.U.; Fussmann, G.; Gernhardt, J.; and others

    1988-04-11

    Counter injection into ASDEX leads to good particle, momentum, and also energy confinement with tau/sub E/ = 80 ms at 1 MW (43 ms for co-injection). The improved confinement develops gradually during the heating phase and correlates with a simultaneous peaking of the density profile. The ion heat transport has to be reduced for a consistent transport analysis, in agreement with theoretical expectations. The sawtooth instability flattens the density profile and transiently reduces the energy content.

  16. Pellet imaging techniques in the ASDEX tokamak (abstract)

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-10-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.

  17. Ion cyclotron resonance heating in the divertor tokamak ASDEX

    SciTech Connect

    Steinmetz, K.; Wesner, F.; Niedermeyer, H.; Becker, G.; Braun, F.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.

    1986-05-01

    The main topics of ICRF investigations in ASDEX are the influence of the divertor on impurity production and transport in ICRH heated discharges, and the heating efficiency and plasma confinement in various scenarios (minority and harmonics regimes). The first experiments were conducted in November 1984 at 67 MHz, corresponding to second harmonic heating of a hydrogen plasma at B/sub 0/ = 2.2 T. A transmitted power of 2.5 MW has been reached so far, the total capability being 3 MW. A linear increase of the central electron and ion temperature with the rf power is observed in Ohmically preheated plasmas (..delta..T/sub e/approx.280 eV, ..delta..T/sub i/approx.500 eV, ..delta..W/sub p/approx.17 kJ at a power of 1.2 MW coupled to the plasma and n-bar/sub e/ = 3.5 x 10/sup 13/ cm/sup -3/). The total radiation increases linearly with the power, too, and the ratio P/sub rad//P/sub tot/approx.0.35 stays approximately constant. However, first investigations indicate that with a divertor, ICRF operation is also accompanied by a significant increase in impurity production. The presence of neutral beam injection in addition to ICRH clearly enhances the absorption of the wave energy from about 50% to up to 90% with respect to the coupled power. With neutral beam injection (P/sub NI/< or =3.5 MW) the increment of the plasma energy content due to ICRH (P/sub rf/< or =2 MW) is found to be almost twice as large as in case OH+ICRH. Global heating efficiencies of up to 3 x 10/sup 13/ eV/kW cm/sup 3/ compare quite well with other ICRH experiments. First observations indicate a degradation of plasma confinement with ICRH to values in between L-type and OH confinement.

  18. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    SciTech Connect

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  19. ISS Update: Computer Upgrade on Station

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Gary Cox, EPIC Project Manager, about EPIC (Enhanced Processor and Integrated Communications), the computer upgrade program for the International ...

  20. Predictive modelling of the impact of a radiative divertor on pedestal confinement on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Mike; Potzel, Steffen; Wischmeier, Marco; Wolfrum, Elisabeth; Frassinetti, Lorenzo; Reimold, Felix; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2015-11-01

    In future devices, tailoring of the edge density profile and radiation profile for power exhaust control via a deuterium gas puff and extrinsic impurity seeding will be necessary. It has been observed on present day machines that high D fuelling can reduce the plasma stored energy while adding impurity seeding can act to improve confinement by up to 40%. This study presents a combination of observations and modelling completed on AUG with the aim of determining the mechanisms behind the confinement degradation with a gas puff and improvement with impurity seeding. In particular, predictive modelling, based on the EPED pedestal model, has been extensively used. Alterations of the temperature and density at the separatrix are found to have large impacts on pedestal stability. Measured changes in divertor properties are used to inform the direction and magnitude of these alterations, with experimentally relevant confinement changes being recovered via pressure profile shifts. http://www.euro-fusionscipub.org/mst1

  1. High frequency magnetic fluctuations correlated with the inter-ELM pedestal evolution in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Mink, F.; Viezzer, E.; Dunne, M. G.; Manz, P.; Doerk, H.; Birkenmeier, G.; Fischer, R.; Fietz, S.; Maraschek, M.; Willensdorfer, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2016-06-01

    In order to understand the mechanisms that determine the structure of the high confinement mode (H-mode) pedestal, the evolution of the plasma edge electron density and temperature profiles between edge localised modes (ELMs) is investigated. The onset of radial magnetic fluctuations with frequencies above 200 kHz is found to correlate with the stagnation of the electron temperature pedestal gradient. During the presence of these magnetic fluctuations the gradients of the edge electron density and temperature are clamped and stable against the ELM onset. The detected magnetic fluctuation frequency is analysed for a variety of plasma discharges with different electron pressure pedestals. It is shown that the magnetic fluctuation frequency scales with the neoclassically estimated \\text{E} × \\text{B} velocity at the plasma edge. This points to a location of the underlying instability in the gradient region. Furthermore, the magnetic signature of these fluctuations indicates a global mode structure with toroidal mode numbers of approximately 10. The fluctuations are also observed on the high field side with significant amplitude, indicating a mode structure that is symmetric on the low field side and high field side. The associated fluctuations in the current on the high field side might be attributed to either a strong peeling part or the presence of non-adiabatic electron response.

  2. Convective and Diffusive Energetic Particle Losses Induced by Shear Alfven Waves in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Hicks, N.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H.-U.; Igochine, V.; Maraschek, M.; Sassenberg, K.; Voornveld, R. van; Classen, I. G. J.; Jaemsae, S.

    2010-05-07

    We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.

  3. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  4. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes.

    PubMed

    Lindorfer, J; Schwarz, M M

    2013-01-01

    The present study analyses the cost structure and ecological performance of biomethane production and feed-in from organic wastes and manure in a site-specific approach for Upper Austria. The theoretically available quantities of biowaste and manure can feed representative biogas plant capacities resulting in relatively high biomethane full costs in the natural gas grid of at least 9.0 €-cents/kWh, which shows strong economies of scale when feed-in flows of methane from 30 to 120 Nm(3)/h are considered. From the ecological point of view small plant capacities are to be preferred since the environmental effect, i.e. the global warming potential (up to -22% of CO(2eq)), is lower in comparison to higher capacities as a consequence of reduced transport in the evaluated scenarios. To enforce the combined energetic use of the biowaste fraction, co-operation between compost facility, gas grid and biogas plant operators is necessary to use existing infrastructure, logistics and knowledge to promote the production, upgrade and feed-in of biomethane from biowastes at attractive locations in Upper Austria and in the whole of Europe. PMID:23202576

  5. HVCM Topology Enhancements to Support a Power Upgrade Required by a Second Target Station (STS) at SNS

    SciTech Connect

    Solley, Dennis J; Anderson, David E; Patel, Gunjan P; Peplov, Vladimir V; Saethre, Robert B; Wezensky, Mark W

    2012-01-01

    This paper discusses the topology used in the HVCMs at SNS to process power for both the cold and warm linac sections of the klystron gallery in support of extended operations at the megawatt level. In anticipation of a second target station and higher anticipated power levels, an enhancement to the present topology is being investigated. SPICE circuit simulations and preliminary experimental data will be presented.

  6. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp. PMID:26092357

  7. Improved comfinement in high-density ohmic discharges in ASDEX

    SciTech Connect

    Soeldner, F.X.; Mueller, E.R.; Wagner, F.; Bosch, H.S.; Eberhagen, A.; Fahrbach, H.U.; Fussmann, G.; Gehre, O.; Gentle, K.; Gernhardt, J.; and others

    1988-08-29

    The unsaturated linear rise of the energy confinement time with density, tau/sub E/approx.n-bar/sub e/, up to the density limit is recovered in Ohmically heated, discharges in ASDEX. Improvement of a factor of 2 is reached with tau/sub E/approx. =150 ms at n-bar/sub e/ = 5 x 10/sup 13/ cm/sup -3/. The improved state is characterized by peaked density profiles. The ion heat diffusivity decreases to the neoclassical value. The parameter eta/sub i/ = L/sub =//L/sub =/, governing the onset of ion-temperature-gradient modes, falls to the stability threshold. The improvement in confinement might therefore be attributed to the stabilization of eta/sub i/ modes.

  8. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  9. Final Upgrading Report: The Vermont Experience.

    ERIC Educational Resources Information Center

    Mattson, Robert E.

    This report describes Vermont's experience with a program to upgrade the working poor and thus increase their total family income. Upgrading refers to enhancing one's job skills which ultimately will lead to increased earnings within one's given occupation. Employer cooperation was encouraged through use of on-site job facilities where supervised…

  10. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Garcia, Gustavo A.; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ˜ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i2PEPICO performances, experimental results of the dissociation of state-selected O2+ (B 2 ∑ g - , v+ = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  11. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS.

    PubMed

    Tang, Xiaofeng; Garcia, Gustavo A; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i(2)PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ∼ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i(2)PEPICO performances, experimental results of the dissociation of state-selected O2(+)(B(2)∑(g)(-), v(+) = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented. PMID:26724007

  12. Impurity production and plasma performance in ASDEX discharges with ohmic and auxiliary heating

    NASA Astrophysics Data System (ADS)

    Fussmann, G.; ASDEX Team; NI Team; Icrh Team; Hofmann, J.; Janeschitz, G.; Lenoci, M.; Mast, F.; McCormick, K.; Murmann, H.; Poschenrieder, W.; Roth, J.; Setzensack, C.; Staudenmaier, G.; Steuer, K.-H.; Taglauer, E.; Verbeek, H.; Wagner, F.; Becker, G.; Bosch, H. S.; Brocken, H.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Clock, E.; Gruber, O.; Haas, G.; Izvozchikov, A.; Karger, F.; Kaufmann, M.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Mertens, V.; Müller, E. R.; Neuhauser, J.; Niedermeyer, H.; Noterdaeme, J.-M.; Pietrzyk, Z. A.; Rapp, H.; Riedler, H.; Röhr, H.; Ryter, F.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F. X.; Speth, E.; Steinmetz, K.; Tsois, N.; Ugniewski, S.; Vollmer, O.; Wesner, F.; Zasche, D.

    1987-02-01

    A review is given on investigations in the ASDEX Tokamak on impurities in ohmically, NI and ICRH heated plasmas. For ohmic discharges in H 2 and D 2 it is found that iron release from the wall can be explained by sputtering due to neutral charge exchange (CX) atoms. In the case of He, however, significant contributions caused by ion sputtering are inferred. Comparing discharges with C limiters in He and D 2 suggests that in the case of hydrogen chemical processes are involved in C sputtering. By means of wall carbonization the concentrations of metal ions in the plasma could be substantially reduced. This achievement is of particular importance for NI counter-injection and ICRH, where under non-carbonized conditions severe impurity problems occur. We studied impurity confinement in the case of various heating scenarios by means of the laser injection technique. The poorest confinement is found for the L-phase of NI. Metal injection into the high confinement H-phase generally causes temporary suppression of the edge localized modes (ELM's). With respect to ICRH we conclude that enhanced wall erosion — probably due to the production of high energy ions in the boundary — together with a slightly increased impurity confinement is the dominant reason for the increase of the metallic concentrations. Impurity sputtering as an alternative strong erosion process was experimentally ruled out.

  13. The upgrade of the Inner Tracking System of ALICE

    NASA Astrophysics Data System (ADS)

    Siddhanta, Sabyasachi

    2014-11-01

    ALICE has devised a comprehensive upgrade strategy to enhance its physics capabilities and to exploit the LHC running conditions after the second long shutdown of the LHC scheduled in 2018-2019. Within this upgrade programme, the upgrade of the Inner Tracking System (ITS) forms an important part. The upgraded ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which would fulfil the material budget, readout and radiation hardness requirements for the upgrade. In this contribution, an overview of the upgraded ITS, its technology and performance studies are presented.

  14. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    SciTech Connect

    Scarabosio, A.; Haas, G.

    2008-03-12

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T.

  15. Creation of second order magnetic barrier inside chaos created by NTMs in the ASDEX UG

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh

    2012-10-01

    Understanding and stabilization of neoclassical tearing modes (NTM) in tokamaks is an important problem. For low temperature plasmas, tearing modes are believed to be mainly driven by current density gradient. For collisionless plasmas, even when plasma is stable to classical tearing modes, helical reduction in bootstrap current in O-point of an island can destabilize NTMs when an initial island is seeded by other global MHD instabilities or when microturbulence triggers the transition from a linear to nonlinear instability. The onset of NTMs leads to the most serious beta limit in ASDEX UG tokamak [O. Gubner et al 2005 NF 39 1321]. The important NTMs in the ASDDEX UG are (m,n)=(3,2)+(4,3)+(1,1). Realistic parameterization of these NTMs and the safety factor in ASDEX UG are given in [O. Dumbrajs et al 2005 POP 12 1107004]. We use a symplectic map in magnetic coordinates for the ASDEX UG to integrate field lines in presence of the NTMs. We add a second order control term [H. Ali and A. Punjabi 2007 PPCF 49 1565] to this ASDEX UG field line Hamiltonian to create an invariant magnetic surface inside the chaos generated by the NTMs. The relative strength, robustness, and resilience of this barrier are studied to ascertain the most desirable noble barrier in the ASDEX UG with NTMs. We present preliminary results of this work, and discuss its implications with regard to magnetic transport barriers for increasing strength of magnetic perturbations. This work is supported by the grants DE-FG02-01ER54624 and DE-FG02-04ER54793.

  16. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  17. Hydrocarbonaceous material upgrading method

    SciTech Connect

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  18. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  19. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  20. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  1. Manufacturing and high heat flux loading of tungsten coatings on fine grain graphite for the ASDEX-upgrade divertor

    NASA Astrophysics Data System (ADS)

    Deschka, S.; García-Rosales, C.; Hohenauer, W.; Duwe, R.; Gauthier, E.; Linke, J.; Lochter, M.; Malléner, W.; Plöchl, L.; Rödhammer, P.; Salito, A.

    1996-10-01

    Fine grain graphite tiles coated with tungsten layers by plasma spray (PS, thickness 100-550 μm) and physical vapour deposition (PVD, 30-200 μm), respectively, were subjected to thermal loads up to 17 MW/m 2 and 2 s pulse duration. The damage limit was evaluated by increasing the heat flux and the pulse length stepwise. The results proved that PS coatings are capable of withstanding heat loads up to 15 MW/m 2 at 2 s pulse length without any structural changes, and cyclic loading with 1000 cycles at 10 MW/m 2. The highly dense PVD coatings suffered damage by crack formation at slightly lower heat loads, and thin PVD layers failed under cyclic loading with 1000 cycles at 10 MW/m 2 due to thermal fatigue and melting. The good performance of PS coatings is related to their porosity, which provides a crack arresting mechanism, and to their mechanical strength, depending on the density of the PS layer.

  2. Convective and diffusive energetic particle losses induced by shear Alfvén waves in the ASDEX upgrade tokamak.

    PubMed

    García-Muñoz, M; Hicks, N; van Voornveld, R; Classen, I G J; Bilato, R; Bobkov, V; Bruedgam, M; Fahrbach, H-U; Igochine, V; Jaemsae, S; Maraschek, M; Sassenberg, K

    2010-05-01

    We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfvén waves in a magnetically confined fusion plasma. While single toroidal Alfvén eigenmodes (TAE) and Alfvén cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude. PMID:20482185

  3. Convective Transport Suppression in the Scrape-Off Layer Using Ion Cyclotron Resonance Heating on the ASDEX Upgrade Tokamak

    SciTech Connect

    Antar, G.; Assas, S.; Bobkov, V.; Noterdaeme, J.-M.; Wolfrum, E.; Herrmann, A.; Rohde, V.

    2010-10-15

    Turbulence properties in the scrape-off layer (SOL) in the presence of ion cyclotron frequency heating (ICRH) are compared to instances where it is absent. The discharges are all in a high-confinement mode (H-mode) regime. During ICRH, the SOL plasma density increases whereas turbulence large-scale and convective structures are shown to be suppressed. The probability distribution function is thus recorded to be closer to a Gaussian, and a net decrease in the low-frequency density fluctuations is reflected in the power spectra. Consequently, the level of turbulent fluctuations decreases significantly. Turbulence suppression is also reported during edge localized modes (ELMs) where both the ELMs-induced transport and duration are strongly affected. The increase of neutrals by gas puffing did not alter this behavior. We deduce that ICRH can be used as to suppress convective transport and reduce the ELM's amplitude.

  4. The D0 upgrade

    SciTech Connect

    Gruenendahl, S.; The D0 Collaboration

    1994-01-01

    In order to maximize the physics potential of the Fermilab Tevatron proton antiproton collider complex, both the accelerator system and the two large collider detectors are undergoing major upgrades during the remainder of this decade. For the D0 detector, the upgrade focuses on implementation of an integrated magnetic tracker in the central region of the detector, accompanied by those modifications to other parts of the apparatus necessary to cope with the increase in interaction rate provided by the collider.

  5. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  6. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  7. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  8. Antenna feedhorn software upgrade

    NASA Technical Reports Server (NTRS)

    Potter, P. D.

    1979-01-01

    The HYBRIDHORN computer program was developed to serve as an item of general purpose antenna feedhorn design and analysis software. The formulation contains a small flare angle approximation which is subject to question for designs such as the S- and X-band feedhorn. Additionally, the original formulation did not allow azimuthal variation indexes other than unity. The HYBRIDHORN program was upgraded to correct both of these deficiencies. A large flare angle formulation was found. In the upgrade, all of the major program elements were converted to Univac 1108 compatible structured FORTRAN (SFTRAN) for ease of software maintenance. The small and large angle formulations are described and sample numerical results are presented.

  9. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  10. Analysis Efforts Supporting NSTX Upgrades

    SciTech Connect

    H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

    2010-11-29

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  11. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans-Ulrich; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Heikamp, Stephanie; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Sandrock, Stefan; Siebenmorgen, Ralf; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars; Weilenmann, Ueli

    2014-07-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO's IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can't be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014

  12. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  13. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  14. Upgrading Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  15. Electrostatic precipitator upgrading -- Twelve years of progress

    SciTech Connect

    Grieco, G.J.

    1997-09-01

    In 1984 the author presented a paper entitled ``Electrostatic Precipitator Upgrading: A Technology Overview`` which reviewed various technologies for electrostatic precipitator performance enhancement in the utility industry. This evaluation was based on a set of criteria which included: commercial status; space requirements; required outage time for installation; installed cost; operating cost; range of applicability; and performance enhancement factor. The upgrade technologies discussed and evaluated included: gas/particulate flow upgrade; microprocessor controller retrofit; transformer-rectifier (T/R) set upgrade; pulse energization; electrode rapping modification; flue gas conditioning agents such as sulfur trioxide, ammonia and sodium; pulse energization; precipitator rebuild; and precipitator retrofit. The findings of this 1984 survey are summarized on Table 1. The installed costs listed on this table range from a low end cost associated with large precipitators with 250,000 ft{sup 2} of collecting electrode plate area and above, to a high end cost for small precipitators with only 25,000 ft{sup 2} of plate area. Twelve years later this subject is revisited and, surprisingly, significant progress has been made--this in spite of what some experts would characterize as a mature and somewhat stagnant technology field. Commercially proven techniques such as advanced flue gas conditioning, sonic horns, selective fuel blending using powder river basin coals, prudent selection of electrode geometry, and pulse energization are discussed and evaluated. Updated costs are presented for these technologies.

  16. Temporal behavior of the plasma current distribution in the ASDEX tokamak during lower-hybrid current drive

    SciTech Connect

    McCormick, K.; Soeldner, F.X.; Eckhartt, D.; Leuterer, F.; Murmann, H.; Derfler, H.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G.v.; and others

    1987-02-02

    Measurements of the time evolution of the current-density distribution in ASDEX show that lower-hybrid current drive leads to broader profiles, whereby q increases from qapprox. <1 to q>1 in the plasma central region. Simultaneously, the electron temperature is observed to peak, thus demonstrating that the lower-hybrid--driven current distribution is decoupled from the classical conductivity profile.

  17. BNL upgrade plans

    SciTech Connect

    Foelsche, H.W.J.

    1987-01-01

    Brookhaven National Laboratory is proposing two major upgrade projects for a future experimental program with protons and heavy ions. The first is the construction of a Relativistic Heavy Ion Collider (RHIC) which will use the AGS complex as an injector. The second initiative is an upgrade of the AGS proton intensity and duty cycle. Both objectives require a Booster for the AGS which has recently been approved as a construction project. With the completion of the booster, and with certain modifications of the AGS, the facility will ultimately become capable of supporting average proton currents on the order of 25 to 50 microamperes. The RHIC will provide center-of-mass collision energies of 2 x 100 to 125 GeV/amu for ions up to the heaviest masses, and 2 x 250 GeV for protons.

  18. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  19. Design analysis of the upgraded TREAT reactor

    SciTech Connect

    Bhattacharyya, S.K.

    1982-01-01

    The TREAT reactor, fueled by a dilute dispersion of fully enriched UO/sub 2/ in graphite, has been a premier transient testing facility since 1959. A major Upgrade of the reactor is in progress to enhance its transient testing capability in support of the LMFBR safety program. The TREAT Upgrade (TU) reactor features a modified central zone of the core with higher fissile loadings of the same fuel, clad in Inconel to allow operation at higher temperatures. The demanding functional requirements on the reactor necessitated the use of unique features in the core design which, in turn, presented major calculational complexities in the analysis. Special design methods had to be used in many cases to treat these complexities. The addition of an improved Reactor Control System, a safety grade Plant Protection System and an enhanced Coolant/Filtration System produces a reactor that can meet the functional requirements on the reactor in a safe manner.

  20. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  1. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  2. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Rodríguez Pérez, Pablo

    2013-12-01

    LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the microstrip silicon detector surrounding the interaction point, providing tracking and vertexing measurements. The upgrade of the LHCb experiment, planned for 2018, will increase the luminosity up to 2×1033 cm-2 s-1 and will perform the readout as a trigger-less system with an event rate of 40 MHz. Extremely non-uniform radiation doses will reach up to 5×1015 1 MeV neq/cm2 in the innermost regions of the VELO sensors, and the output data bandwidth will be increased by a factor of 40. An upgraded detector is under development based in a pixel sensor of the Timepix/Medipix family, with 55 × 55 μm2 pixels. In addition a microstrip solution with finer pitch, higher granularity and thinner than the current detector is being developed in parallel. The current status of the VELO upgrade program will be described together with recent testbeam results.

  3. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  4. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  5. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  6. LHC detector upgrades

    SciTech Connect

    Dan Green

    2003-09-15

    The LHC detectors are well into their construction phase. The LHC schedule shows first beam to ATLAS and CMS in 2007. Because the LHC accelerator has begun to plan for a ten fold increase in LHC design luminosity (the SLHC or super LHC) it is none too soon to begin to think about the upgrades which will be required of the present LHC detectors. In particular, the tracking systems of ATLAS and CMS will need to be completely rebuilt. Given the time needed to do the R & D, make prototypes, and construct the new detectors and given the accelerator schedule for the SLHC, work needs to begin rather soon.

  7. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  8. Research ships upgraded

    NASA Astrophysics Data System (ADS)

    Two research vessels, operated by the Scripps Institution of Oceanography, University of California, San Diego, and Woods Hole Oceanographic Institution, Woods Hole, Mass., are undergoing scientific upgrading and engineering modifications costing $15 million each. The improvements will prepare them to take lead roles in major future ocean research efforts.Research vessel Knorr (operated by WHOI) entered the McDermott Shipyard in Amelia, LA., on February 15. It will receive new engines and a propulsion system, and its length will be increased from 245 to 279 feet. The R/V Melville (operated by SIO) is scheduled for the same 10-month remodeling to begin in mid-November.

  9. 'Upgrading' psoriasis responsibly.

    PubMed

    Boehncke, Sandra; Boehncke, Wolf-Henning

    2014-10-01

    Psoriasis is a 'pacemaker' in dermatology. Substantial progress has been made regarding our understanding of its pathophysiology and genetic background, fuelling developments in cutaneous biology in general. Besides, the clinical perspective on psoriasis is currently changing, taking into consideration comorbidity and the systemic dimensions of this seemingly organ-specific inflammation. The availability of drugs exhibiting fewer contraindications and improved long-term safety opened a discussion around replacing a relatively limited (regarding both objectives and duration) 'therapeutic' by a much broader 'management' approach when it comes to treating psoriasis as a systemic disease. The question arises whether this 'upgrade' is warranted. PMID:25040560

  10. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  11. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  12. Parametric investigation of the density profile in the scrape-off layer of ASDEX

    NASA Astrophysics Data System (ADS)

    McCormick, K.; Pietrzyk, Z. A.; Murmann, H.; Lenoci, M.; ASDEX Team; Becker, G.; Bosch, H. S.; Brocken, H.; Bühl, K.; Eberhagen, A.; Eckhartt, D.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Kaufmann, M.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lang, R. S.; Leuterer, F.; Lisitano, G.; Mast, F.; Mayer, H. M.; Meisel, D.; Mertens, V.; Müller, E. R.; Neuhauser, J.; Noterdaeme, J.-M.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Riedler, H.; Röhr, H.; Roth, J.; Ryter, F.; Sandmann, W.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F. X.; Speth, E.; Steinmetz, K.; Steuer, K.-H.; Tsois, N.; Ugniewski, S.; Vlases, G.; Vollmer, O.; Wagner, F.; Wesner, F.; Zasche, D.

    1987-02-01

    Systematic investigations of the scrape-off layer (SOL) in the midplane of ASDEX have been carried out in He, D 2 and H 2 for diverted ohmic discharges over a wide range of plasma conditions: overlinene ˜ 0.5-4.7 × 10 13 cm -3, Ip = 200-450 kA, BT = 16-23 kG, qa˜ 2.4-4.4 and POH = 200-480 kW. For the first two cm outside the separatix, ne is found to decay exponentially with an e-folding length λn given by λn = kqα (He, k = 1.32 cm, α = 0.52; D 2, k =1.29 cm, α = 0.35; H 2, k = 1.18 cm, α = 0.4) when from which follows for qa = 3: λn( D2) ˜ λn( H2) ˜ 0.8 λn( He). The qα scaling is roughly predicted by the simple formula λ n = {D ⊥ L }/{υ ∥} under the assumption D⊥ ∝ mi-0.5 (as has been observed on ASDEX for H 2 and D 2). There appears to be no explicit λn dependence on heating power. λn varies strongly with overlinene in the range overlinene ≤ 1 × 10 13 cm -3, decreasing for example (D 2,H 2; qa = 3.0), from λn ≥ 3 cm at overlinene ˜ 0.5 × 10 13 cm -3 to λn ˜ 1.9 cm for overlinene ≥ 1.5 × 10 13 cm -3, ne at the separatrix is primarily a function of overlinene.

  13. HP upgrade operational streamlining

    NASA Technical Reports Server (NTRS)

    Edge, David R.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mccollums, D.; Seery, Paul J.; Ricklefs, Randall L.

    1993-01-01

    New computer technology and resources must be successfully integrated into CDSLR station operations to manage new complex operational tracking requirements, support the on site production of new data products, support ongoing station performance improvements, and to support new station communication requirements. The NASA CDSLR Network is in the process of upgrading station computer resources with HP UNIX workstations, designed to automate a wide range of operational station requirements. The primary HP upgrade objective was to relocate computer intensive data system tasks from the controller computer to a new advanced computer environment designed to meet the new data system requirements. The HP UNIX environment supports fully automated real time data communications, data management, data processing, and data quality control. Automated data compression procedures are used to improve the efficiency of station data communications. In addition, the UNIX environment supports a number of semi-automated technical and administrative operational station tasks. The x window user interface generates multiple simultaneous color graphics displays, providing direct operator visibility and control over a wide range of operational station functions.

  14. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  15. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  16. Recharging of the ohmic-heating transformer by means of lower-hybrid current drive in the ASDEX tokamak

    NASA Astrophysics Data System (ADS)

    Leuterer, F.; Eckhartt, D.; Söldner, F.; Becker, G.; Bernhardi, K.; Brambilla, M.; Brinkschulte, H.; Derfler, H.; Ditte, U.; Eberhagen, A.; Fussman, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Magne, R.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Münich, M.; Murmann, H.; Poschenrieder, W.; Rapp, H.; Ryter, F.; Schmitter, K. H.; Schneider, F.; Siller, G.; Smeulders, P.; Steuer, K. H.; Vien, T.; Wagner, F.; Woyna, F. V.; Zouhar, M.

    1985-07-01

    Recharging of the Ohmic-heating transformer of a tokamak by means of lower-hybrid waves is demonstrated experimentally in ASDEX. The results are analyzed on the basis of a simple transformer circuit. A recharging efficiency is defined and found to depend on rf power, plasma density, and plasma resistivity modified by the applied rf power. Up to now, we achieved in our recharging experiments in ASDEX a flux swing of FİOHMdt=0.24 V sec, at an rf power of PRF=690 kW, with a pulse duration of 1 sec, while maintaining a plasma with n¯e=4×1012 cm-3 and Ip=290 kA.

  17. RHIC OPERATIONAL STATUS AND UPGRADE PLANS.

    SciTech Connect

    FISCHER, W.

    2006-06-23

    Since 2000 RHIC has collided, at 8 energies, 4 combinations of ion species, ranging from gold ions to polarized protons, and including the collisions of deuterons with gold ions. During that time the heavy ion and polarized proton peak luminosities increased by two orders and one order of magnitude respectively. The average proton polarization in store reached 65%. Planned upgrades include the evolution to the Enhanced Design parameters by about 2008, the construction of an Electron Beam Ion Source (EBIS) by 2009, the installation of electron cooling for RHIC II, and the implementation of the electron-ion collider eRHIC. We review the current performance, and the expected performance with these upgrades.

  18. Rate enhancement for catalytic upgrading coal naphthas

    SciTech Connect

    Davis, B.H.

    1992-01-01

    The removal of heteroatoms from naphtha using first row unsupported metal sulfide catalysts were completed. The maxima HDS activity, normalizing to the same weight of metal, is obtained for manganese sulfide while the minimum HDS activity is obtained for nickel sulfide. Chianelli et al. (1) reported that, for the first row transition metal sulfides, chromium sulfide has the highest activity for HDS of dibenzothiophene and manganese sulfide is the least active. The catalyst activity pattern of the first row transition metal sulfide for hydrodesulfurization of naphtha and dibenzothiophene is different. The maxima HDN activity, normalizing to the same weight of metal, is obtained for chromium sulfide and the minimum HDN activity is obtained for cobalt sulfide. The effect of substituents on the conversion of nitrogen compounds from the naphtha was also determined. The HDN conversion of alkyl-substituted pyridines and anilines are dominated by electronic effects rather than substituent effects. The effect of alkyl-substitution on the conversion of quinolines is relatively insignificant.

  19. Rate enhancement for catalytic upgrading coal naphthas

    SciTech Connect

    Liaw, Shuh Jeng; Keogh, R.A.; Davis, B.H.

    1992-01-01

    The amount of individual nitrogen and sulfur presented in the feed and hydrotreated Illinois [number sign]6 naphtha were determined. The major nitrogen class in the naphtha are anilines. The major sulfur components identified are thiophenes and benzothiophenes. The aniline and quinoline is harder to remove than pyridine. The aniline and pyridine, without any carbon substituted, is the easiest one to remove in their class. The quinoline, without any carbon substituted, is approximately as hard as one carbon substituted quinoline to remove. Both Co-Mo and Ni-W catalysts follow the similar pattern of the nitrogen removal at different temperatures. The sulfur compounds of the Ill. [number sign]6 naphtha was separated to three classes, i.e. sulfides and thiols, thiophenes and benzothiophenes, for comparisons. The thiophenes was the major component of the hydrotreated naphtha at most temperatures; however, the sulfides and thiols class becomes the major component at temperatures greater than 300[degree]C.

  20. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  1. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  2. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  3. Skill Upgrading, Incorporated. Final Report.

    ERIC Educational Resources Information Center

    Skill Upgrading, Inc., Baltimore, MD.

    As in two other projects in Cleveland and Newark, New Jersey, this project was set up in Baltimore to provide technical assistance in designing ways to meet in-plant skills needs by upgrading job skills on entry workers through High Intensity Training (HIT). Skill Upgrading, Inc. was established in Maryland to provide training and manpower…

  4. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  5. ETA-II accelerator upgrades

    SciTech Connect

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator's cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new zero-gap'' arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX).

  6. ETA-II accelerator upgrades

    SciTech Connect

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator`s cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new ``zero-gap`` arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX).

  7. NSTX-U Control System Upgrades

    SciTech Connect

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; Lawson, J. E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G. J.

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  8. Upgrades to Monteburns, version 3.0

    SciTech Connect

    Galloway, J. D.; Trellue, H. R.

    2012-07-01

    Monteburns, a Monte Carlo burnup code which has the flexibility to model time-dependent isotopic changes for a variety of nuclear systems by linking the neutron transport code MCNP/X to a production/depletion code, has undergone several performance upgrades recently that have increased the code's capabilities. Once limited to a specific number of regions, enhancements have been implemented that afford a much greater number of burn materials, such that users will be more limited by the physical constraints of their computing environment as opposed to inherent limits built into the coding of Monteburns. In conjunction with the increase in the number of burn materials, parallel execution of a production/depletion code of choice has been implemented, such that users have the option of using CINDER90, 0RIGEN2, or the newly released version of ORIGEN. Finally, the recoverable energy per fission calculation was upgraded to include capture gamma energy deposited in all specified materials as a function of irradiation time. The sum of the prompt and delayed recoverable energies from fission was obtained as before. These upgrades were first tested on a rigorous 1/8 core model of a Pressurized Water Reactor with fresh, once- and twice-burned fuel. We can now model several orders of magnitude more materials using Monte Carlo techniques, which is a significant advance in the reactor modeling world. (authors)

  9. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  10. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  11. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  12. Upgrading Diagnostic Diagrams

    NASA Astrophysics Data System (ADS)

    Proxauf, B.; Kimeswenger, S.; Öttl, S.

    2014-04-01

    Diagnostic diagrams of forbidden lines have been a useful tool for observers in astrophysics for many decades now. They are used to obtain information on the basic physical properties of thin gaseous nebulae. Moreover they are also the initial tool to derive thermodynamic properties of the plasma from observations to get ionization correction factors and thus to obtain proper abundances of the nebulae. Some diagnostic diagrams are in wavelengths domains which were difficult to take either due to missing wavelength coverage or low resolution of older spectrographs. Thus they were hardly used in the past. An upgrade of this useful tool is necessary because most of the diagrams were calculated using only the species involved as a single atom gas, although several are affected by well-known fluorescence mechanisms as well. Additionally the atomic data have improved up to the present time. The new diagnostic diagrams are calculated by using large grids of parameter space in the photoionization code CLOUDY. For a given basic parameter the input radiation field is varied to find the solutions with cooling-heating-equilibrium. Empirical numerical functions are fitted to provide formulas usable in e.g. data reduction pipelines. The resulting diagrams differ significantly from those used up to now and will improve the thermodynamic calculations.

  13. Naphtha upgrading process

    SciTech Connect

    Mc Guiness, M.P.; Mitchell, K.M.; Ware, R.A.

    1987-03-03

    A method is described for upgrading a paraffinic naphtha including major amounts of C/sub 5/ and C/sub 6/ components to produce gasoline boiling range products of improved octane number, which comprises (i) hydrocracking the naphtha over a hydrocracking catalyst comprising zeolite beta and a hydrogenation-dehydrogenation component under conditions of elevated temperature and pressure and in the presence of hydrogen and at a conversion of not more than 25 volume percent to C/sub 5-/ products. This is done to effect a partial, preferential hydrocracking of the paraffins of relatively longer chain length in the naphtha and a concurrent isomerization of n-paraffins, to form a hydrocracking effluent comprising isobutane and higher boiling materials; (ii) fractionating the hydrocracked effluent to form (i) an isobutane stream, (ii) a relatively low boiling stream having a boiling range of approximately C/sub 5/ to 200/sup 0/F. and comprising C/sub 5/ to C/sub 7/ iso-paraffins, and (iii) a relatively higher boiling stream having an initial boiling point of approximately 200/sup 0/F., and (iii) reforming the relatively high boiling point stream to form a gasoline boiling range product of improved octane rating.

  14. The D0 upgrade trigger

    SciTech Connect

    Eno, S.

    1994-09-01

    The current trigger system for the D0 detector at Fermilab`s Tevatron will need to be upgraded when the Min Injector is installed and the Tevatron can operate at luminosities exceeding 10{sup 32} cm{sup {minus}2}s{sup {minus}1} and with a crossing time of 132 ns. We report on preliminary designs for upgrades to the trigger system for the Main Injector era.

  15. Upgrading in an Industrial Setting. Final Report.

    ERIC Educational Resources Information Center

    Russell, Wendell

    The project objectives were: (1) to assess existing industrial upgrading practices in an Atomic Energy Commission contractor organization, (2) to design new alternative upgrading methods, (3) to experiment with new upgrading methods, (4) to plan for utilization of proven upgrading programs, and (5) to document and disseminate activities. A twelve…

  16. Setting priorities for safeguards upgrades

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-07-10

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority requires judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner.

  17. Setting priorities for safeguards upgrades

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-07-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner.

  18. First results on lower hybrid current drive at 2. 45 GHz in ASDEX

    SciTech Connect

    Leuterer, F.; Soldner, F.X.; Buechse, R.; Carlson, A.; Eberhagen, A.; Fahrbach, H.; Gehre, O.; Hassenpflug, F.; Herrmann, W.; Janeschitz, G.; Kornherr, M.; Luce, T.; McKormick, K.; Monaco, F.; Muenich, M.; Murmann, H.; Pelicano, M.; Steuer, K.; Zouhar, M. ); Bartiromo, R.; DeAngelis, R.; Pericoli, V.; Santini, F.; Tuccillo, A. ); Bernabei, S.; Forrest, C. ); ASDEX-team

    1989-07-01

    A new lower hybrid system with 2.45 GHz/3 MW/1 sec has started operation on ASDEX. Current drive effects have been identified up to a density of {bar n}{sub e}=4.7 {center dot} 10{sup 13} cm{sup {minus}3}. Full current drive at I{sub p}=420 kV was achieved up to a density of {bar n}{sub e}=2.1 {center dot} 10{sup 13} cm{sup {minus}3}. The effeciency was maximum at {bar n}{sub e}=1.35 {center dot} 10{sup 13} cm{sup {minus}3} and reached {eta}=1.46 (10{sup 13} cm{sup {minus}3} {center dot} A {center dot} m/W). The electron temperature is peaking and reached peak values up to 6 keV, while the electron density profile flattens. Sawteeth have been stabilized up to a density of {bar n}{sub e}=3.4 {center dot} 10{sup 13} cm{sup {minus}3}. The global confinement times decreases with increasing rf-power. The scaling can be described by an offset linear relation. At low density global confinement is better during the LH-phase than in the OH-phase at the same total power input.

  19. User and Performance Impacts from Franklin Upgrades

    SciTech Connect

    He, Yun

    2009-05-10

    The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

  20. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  1. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Lister, G. G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Röhr, H.; Schneider, F.; Siller, G.; Speth, E.; Stäbler, A.; Steuer, K. H.; Venus, G.; Vollmer, O.; Yü, Z.

    1982-11-01

    A new operational regime has been observed in neutral-injection-heated ASDEX divertor discharges. This regime is characterized by high βp values comparable to the aspect ratio A (βp<=0.65A) and by confinement times close to those of Ohmic discharges. The high-βp regime develops at an injection power >=1.9 MW, a mean density n¯e>=3×1013 cm-3, and a q(a) value >=2.6. Beyond these limits or in discharges with material limiter, low βp values and reduced particle and energy confinement times are obtained compared to the Ohmic heating phase.

  2. A Cooling System for the EAPU Shuttle Upgrade

    NASA Technical Reports Server (NTRS)

    Tongue, Stephen; Guyette, Greg; Irbeck, Bradley

    2001-01-01

    The Shuttle orbiter currently uses hydrazine-powered APU's for powering its hydraulic system pumps. To enhance vehicle safety and reliability, NASA is pursuing an APU upgrade where the hydrazine powered turbine is replaced by an electric motor pump and battery power supply. This EAPU (Electric APU) upgrade presents several thermal control challenges most notably the new requirement for moderate temperature control of high-power electron ics at 132 of (55.6 C). This paper describes how the existing Water Spray Boiler (WSB), which currently cools the hydraulic fluid and APU lubrication oil, is being modified to provide EAPU thermal management.

  3. First operations with the new Collective Thomson Scattering diagnostic on the Frascati Tokamak Upgrade device

    NASA Astrophysics Data System (ADS)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.; Castaldo, C.; De Angeli, M.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Grosso, G.; Korsholm, S. B.; Lontano, M.; Mellera, V.; Minelli, D.; Moro, A.; Nardone, A.; Nielsen, S. K.; Rasmussen, J.; Simonetto, A.; Stejner, M.; Tartari, U.

    2015-10-01

    Anomalous emissions were found over the last few years in spectra of Collective Thomson Scattering (CTS) diagnostics in tokamak devices such as TEXTOR, ASDEX and FTU, in addition to real CTS signals. The signal frequency, down-shifted with respect to the probing one, suggested a possible origin in Parametric Decay Instability (PDI) processes correlated with the presence of magnetic islands and occurring for pumping wave power levels well below the threshold predicted by conventional models. A threshold below or close to the Electron Cyclotron Resonance Heating (ECRH) power levels could limit, under certain circumstances, the use of the ECRH in fusion devices. An accurate characterization of the conditions for the occurrence of this phenomenon and of its consequences is thus of primary importance. Exploiting the front-steering configuration available with the real-time launcher, the implementation of a new CTS setup now allows studying these anomalous emission phenomena in FTU under conditions of density and wave injection geometry that are more similar to those envisaged for CTS in ITER. The upgrades of the diagnostic are presented as well as a few preliminary spectra detected with the new system during the very first operations in 2014. The present work has been carried out under an EUROfusion Enabling Research project. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  4. Physical protection upgrades in Ukraine.

    SciTech Connect

    Djakov, A.

    1998-08-06

    The U.S. DOE is providing nuclear material safeguards assistance in both material control and accountability and in physical protection to several facilities in Ukraine. This paper summarizes the types of physical protection upgrades that have been or are presently being implemented at these facilities. These facilities include the Kiev Institute for Nuclear Research, Kharkov Institute of Physics and Technology, Sevastopol Institute of Nuclear Energy and Industry, and the South Ukraine Nuclear Power Plant. Typical upgrades include: hardening of storage areas; improvements in access control, intrusion detection, and CCTV assessment; central alarm station improvements; and implementation of new voice communication systems. Methods used to implement these upgrades and problems encountered are discussed. Training issues are also discussed.

  5. Status of TMX upgrade diagnostics construction

    SciTech Connect

    Hornady, R.S.; Davis, J.C.; Simonen, T.C.

    1981-07-20

    This report describes the status of the initial TMX Upgrade diagnostics and the state of development of additional diagnostics being prepared for later TMX Upgrade experiments. The initial diagnostic instrument set has been described in the TMX Upgrade Proposal. This set is required to get TMX Upgrade operational and to evaluate its initial performance. Additional diagnostic instruments are needed to then carry out the more detailed experiments outlined by the TMX Upgrade program milestones. The relation of these new measurements to the physics program is described in The TMX Upgrade Program Plan.

  6. NSTX-U Control System Upgrades

    DOE PAGESBeta

    Erickson, K. G.; Gates, D. A.; Gerhardt, S. P.; Lawson, J. E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G. J.

    2014-06-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forwardmore » port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.« less

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect

    Tsotsis, T.T.

    1992-01-01

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. Upgrade of the BATMAN test facility for H{sup −} source development

    SciTech Connect

    Heinemann, B. Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-08

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called “Large Area Grid” (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  9. 4 MW upgrade to the DIII-D fast wave current drive system

    SciTech Connect

    deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

    1993-10-01

    The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

  10. The CEBAF RF Separator System Upgrade

    SciTech Connect

    J. Hovater; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-08-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.

  11. Preparing the ALICE DAQ upgrade

    NASA Astrophysics Data System (ADS)

    Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Kiss, T.; Rauch, W.; Rubin, G.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; Von Haller, B.

    2012-12-01

    In November 2009, after 15 years of design and installation, the ALICE experiment started to detect and record the first collisions produced by the LHC. It has been collecting hundreds of millions of events ever since with both proton and heavy ion collisions. The future scientific programme of ALICE has been refined following the first year of data taking. The physics targeted beyond 2018 will be the study of rare signals. Several detectors will be upgraded, modified, or replaced to prepare ALICE for future physics challenges. An upgrade of the triggering and readout systems is also required to accommodate the needs of the upgraded ALICE and to better select the data of the rare physics channels. The ALICE upgrade will have major implications in the detector electronics and controls, data acquisition, event triggering and offline computing and storage systems. Moreover, the experience accumulated during more than two years of operation has also lead to new requirements for the control software. We will review all these new needs and the current R&D activities to address them. Several papers of the same conference present in more details some elements of the ALICE online system.

  12. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  13. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  14. Physics design of the upgraded TREAT reactor

    SciTech Connect

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence.

  15. MAST YAG Thomson scattering upgrade alignment system

    SciTech Connect

    Figueiredo, J.; Serra, F.; Naylor, G.; Walsh, M.; Dunstan, M.; Scannell, R.

    2010-10-15

    The recent upgrade to the MAST YAG Thomson scattering while enhancing the diagnostic capabilities increased the complexity of the system. There are eight YAG lasers now operational, doubling the number from the previous setup. This means alignment between each laser individually and reference points is essential to guarantee data quality and diagnostic reliability. To address this issue an alignment system was recently installed. It mimics the beams alignment in MAST by sampling 1% of the laser beam that is sent into a telescope which demagnifies by a factor of 8. The demagnified beam is viewed with a CCD camera. By scanning the camera the profile and position of the beams in the scattering zone and in a range of several meters inside MAST can be determined. Therefore alignment is checked along the beam path without having to sample it inside the vessel. The experimental apparatus and test procedures are described.

  16. Nose-cone calorimeter: PHENIX forward upgrade

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2009-07-01

    PHENIX is a high rate experiment efficient at measuring rare processes, but has limited acceptance in azimuth and pseudorapidity ( η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9< η<3, is one of the upgrades which will significantly increase coverage in both azimuth and pseudorapidity. The NCC will expand PHENIX’s precision measurements of electromagnetic probes in η, reconstruct jets, perform a wide scope of correlation measurements, and enhance triggering capabilities. The detector will significantly contribute to measurements of γ-jet correlations, quarkonia production, and low- x nuclear structure functions. This report discusses details of the detector design and its performance concerning a sample of the physics topics which will benefit from the NCC. In view of recent funding difficulties, outlook of the activities is discussed.

  17. Upgrade of the Plostina infrasound array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Ionescu, Constantin; Tataru, Stefan

    2014-05-01

    Plostina infrasound station (IPLOR) is a large aperture array deployed in the central part of Romania since 2009, by National Institute for Earth Physics (NIEP). The initial set-up consisted of 3 elements (IPH4, IPH5, IPH6); in 2010, a fourth element (IPH7) was added; during 2012, two more sensors were installed in IPH2 and IPH3 sites. All 6 elements are equipped with Chaparral Physics Model 25 sensors. Upgrading works are currently ongoing at IPLOR, aiming to enhance the station performance in terms of automatic signal detection and characterization in the routine processing using PMCC algorithm. The infrasound data quality is improved through station design optimization and installation of more efficient wind-noise reduction systems. Solutions adopted took in account the recommendations provided by the 2011 Expert Group Meeting for the design of IMS infrasound stations, as well as the knowledge acquired during the NIEP participation, as associated member, to the ARISE design study project. After upgrading the IPLOR station to a 6-element array, the analysis of the data shows a visibly enhancement of the detection capability by increasing the lower frequency resolution (below 0.5 Hz). The improved array response indicates reducing spatial aliasing of higher frequency signals and increasing the degree of signal correlation between array elements, which are observed in a better characterization of the signal in terms of back-azimuth and horizontal trace velocity. In September 2013, NIEP started the works to improve the wind-noise reduction conditions at IPLOR station. The pipes and air-inlets installed at IPH4 element were replaced, in order to eliminate the potential points of air leak. The porous hoses at IPH5, IPH6 and IPH7 sites were replaced with new rosette pipe array systems: 20-port rosette design at IPH5 and IPH6, and 19-port rosette design at IPH7. The two circular porous hoses located at the IPH2 and IPH3 sites are scheduled for replacing in 2014. The new

  18. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  19. Tevatron beam position monitor upgrade

    SciTech Connect

    Wolbers, Stephen; Banerjee, B.; Barker, B.; Bledsoe, S.; Boes, T.; Bowden, M.; Cancelo, G.; Forster, B.; Duerling, G.; Haynes, B.; Hendricks, B.; Kasza, T.; Kutschke, R.; Mahlum, R.; Martens, M.; Mengel, M.; Olson, M.; Pavlicek, V.; Pham, T.; Piccoli, L.; Steimel, J.; /Fermilab

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

  20. Space Shuttle Propulsion Safety Upgrades

    NASA Technical Reports Server (NTRS)

    Humphries, William Randy, Jr.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is a viewgraph presentation which reviews the proposed upgrades to the Space Shuttle Propulsion system, to improve safety, and reduce significant hazards. The goals of the program are to reduce the risk of a catastrophe in ascent, to achieve significant reduction in orbital and entry systems, and to improve the crew cockpit situational awareness for managing the critical operational situations. The document reviews the upgrades to the propulsion system which are planned to improve the safety. These include modifications to the Advanced Thrust Vector Control, modifications to the Space Shuttle Main Engine Block III, improvement in the Advanced Health Management System, the use of Friction Stir welding on the external tank, which is expected to improve mechanical properties, and reduce defect rate, and the modification of the propellant grains geometry.

  1. The FNAL Injector Upgrade Status

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A; Scarpine, V.E.; Tomlin, R.E.; /Fermilab

    2012-05-14

    The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

  2. Foreign surveillance radar upgrade analysis

    NASA Astrophysics Data System (ADS)

    Farr, Steven D.

    1992-02-01

    This report details an example of the work required to predict the functionality of future systems based on improvements in computer technology. Areas of analysis include CPU load, bus load, memory load, I/O load, target report delay, and probability of target loss associated with the upgraded radar. The analysis scenario provides an example of how queuing theory and probability can be applied for the purpose of assessing future threats.

  3. The Pegasus-Upgrade Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Barr, J. L.; Frerichs, H. G.; Lewicki, B. T.; Reusch, J. A.; Schmitz, O.; Winz, G. R.

    2015-11-01

    Tokamak operation at near-unity aspect ratio provides access to advanced tokamak physics at modest parameters. High plasma current is accessible at very low toroidal field. This offers H-mode performance at Te levels that allow use of electrostatic and magnetic probe arrays through the edge pedestal region into the plasma core. An upgrade to the Pegasus ST is planned to exploit these features and pursue unique studies in three areas: local measurements of pedestal and ELM dynamics at Alfvenic timescales; direct measurement of the local plasma response to application of 3D magnetic perturbations with high spectral flexibility; and extension of Local Helicity Injection for nonsolenoidal startup to NSTX-U-relevant confinement and stability regimes. Significant but relatively low-cost upgrades to the facility are proposed: a new centerstack with larger solenoid and 2x the number of toroidal field conductors; a new TF power supply and conversion of the 200 MVA OH power supply to a cascaded multilevel inverter configuration; and installation of an extensive 3D-magnetic perturbation coil system for ELM mitigation and suppression studies. The upgraded facility will provide 0.3 MA plasmas with pulse lengths of 50-100 msec flattop, aspect ratio <1.25, and toroidal field up to 0.4 T. These research activities will be integrated into related efforts on DIII-D and NSTX-U. Work supported by US DOE grant DE-FG02-96ER54375.

  4. Upgrade of the CMS tracker

    NASA Astrophysics Data System (ADS)

    Tricomi, A.

    2014-03-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity up to or above 5 × 1034 cm-2s-1 sometimes after 2020, to possibly reach an integrated luminosity of 3000 fb-1 at the end of that decade. The foreseen increases of both the instantaneous and the integrated luminosity by the LHC during the next ten years will necessitate a stepwise upgrade of the CMS tracking detector. During the extended end-of-year shutdown 2016-2017 the pixel detector will be exchanged with a new one. The so-called Phase1 Pixel foresees one additional barrel layer and one additional end-cap disk, a new readout chip, reduction of material, and the installation of more efficient cooling and powering systems. In the so-called Phase2, when LHC will reach the High Luminosity (HL-LHC) phase, CMS will need a completely new Tracker detector, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Tracker should have also trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS pixel and outer tracker upgrades are discussed along with some highlights of the R&D activities.

  5. Upgraded Fuel Assemblies for BWRs

    SciTech Connect

    Garner, N.L.; Rentmeister, T.; Lippert, H.J.; Mollard, P.

    2007-07-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to light water reactors worldwide, representing today more than 170,000 fuel assemblies on the world market and more than 56,000 fuel assemblies for BWR plants. Since first delivered in 1992, ATRIUM{sup TM}(1)10 fuel assemblies have now been supplied to a total of 28 BWR plants in the US, Europe, and Asia resulting in an operating experience over 16 000 fuel assemblies. In the spring of 2001, a BWR record burnup of 71 MWd/kgU was reached by four lead fuel assemblies after eight operating cycles. More recently, ATRIUM 10XP and ATRIUM 10XM fuel assemblies featuring changes in their characteristics and exhibiting upgraded behavior have been delivered to several utilities worldwide. This success story has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. An overview is given on current AREVA advanced BWR fuel supply regarding: - advanced designs to tailor product selection to specific operating strategies; - performance capabilities of each advanced design option; - testing and operational experience for these advanced designs; - upgraded features available for inclusion with advanced designs. (authors)

  6. Design Criteria for OSE-User Computer Facility-Upgrade

    SciTech Connect

    Beaver, C E

    1989-05-01

    This project provides for the upgrading of the 4th floor OSE User Computer Facility to house new computers for the Paperlesss Manufacturing initiative, to support a classified processing environment. This is intended to enhance Mound's manufacturing environment, while addressing several DOE strategic initiatives such as (CIM) Computer Integrated Manufacturing. By consolidating the Paperless Manufacturing Approach to the existing OSE User Computer Facility and to meet UCI needs to house classified processing a considerable reduction in Operating Cost should be achieved.

  7. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  8. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  9. The iTPC upgrade for BES-II

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming; STAR Collaboration

    2015-10-01

    STAR has proposed to upgrade the inner sectors of the STAR TPC to increase the segmentation on the inner padplane and to renew the inner sector wires. The upgrade will provide better momentum resolution, better dE/dx resolution and, most importantly, it will provide improved acceptance at high rapidity to | η| <= 1.5 compared to the current TPC configuration of | η| <= 1 and to extend the pt coverage towards lower pt. The enhanced measurement capabilities of STAR after the iTPC upgrade are a vital part of the BES-II effort for 2019-2020. The expanded rapidity coverage provides a major benefit for many analyses, especially those sensitive to changes in correlation lengths near a critical point, like the net-proton Kurtosis which exhibits interesting energy trends that only appear near the edge of the current STAR acceptance. In the area of dielectron measurements it reduces hadron contamination from a dominant source of uncertainty to an expected statistical uncertainty of only 10%, and will enable significantly improved understanding of in-medium modifications. In this talk I will discuss the physics impact and give a technical overview of the detector upgrade. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science.

  10. Plans for an Upgrade of the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Mills, Dennis; APS-U Project Team

    2011-03-01

    We are presently developing plans for an upgrade of the Advanced Photon Source facility. Science has formally issued Critical Decision 0 and approved the Mission Need Statement in April of 2010, authorizing the APS to develop a conceptual design for the APS Upgrade (APS-U) project. The proposed upgrade will include enhancements to the accelerator, beamlines, and facility infrastructure. The high brilliance x-ray beams at high photon energy (e.g. > 25 keV) provided by the APS Upgrade will have strong impact on research in energy, the environment, new or improved materials, and biological studies. High-energy x-rays can penetrate into a wide range of realistic and/or extreme environments and allow imaging of structures and processes in unprecedented detail on picosecond time scales and nanometer length scales. The presentation will include some of the essential goals of the APS-U and proposed strategies to attain those goals. The Advanced Photon Source at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  11. D0 Silicon Upgrade: Upgrade on Cryogenic Lines at Refrigerator

    SciTech Connect

    Kuwazaki, Andrew; /Fermilab

    1995-09-26

    This is an upgrade to the thermal contraction analysis sound in D0 Engineering Note: 3823.115-EN-426. In this new design, a portion of the transfer lines are consolidated into one 6-inch vacuum jacket. Since all four transfer lines follow the same path and are of equal lengths, the stress analysis is performed on only one transfer line using the design system ALGOR{reg_sign}. The GHe Cooldown Supply line is analyzed for combined pressure, thermal movement, and dead weight and all the stresses were below the allowable stress limit of 25,050 psi.

  12. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Keil, M.

    2015-03-01

    ALICE (A Large Ion Collider Experiment) is studying heavy-ion collisions at the CERN LHC, with the aim of forming, under extreme conditions of temperature and energy density, a Quark-Gluon Plasma (QGP) and studying its properties. The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) . The primary focus of the new ITS is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP . With respect to the current detector, the new ITS will significantly enhance the determination of the distance of closest approach of a track to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be achieved by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30× 30 μm2. A key feature of the new ITS, which is optimized for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material thickness of 0.3% X0 per layer. This contribution describes the design goals and layout of the new ALICE ITS, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector performance.

  13. SOFIA Gets Avionics and Mission Systems Upgrades

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, has received major upgrades to its telescope control and avionics systems that will significantly improve their efficiency and ope...

  14. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  15. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  16. Formaldehyde OMI operational retrieval upgrades

    NASA Astrophysics Data System (ADS)

    Gonzalez Abad, G.; Chance, K.; Liu, X.

    2013-05-01

    Total column of formaldehyde (HCHO), a proxy for biogenic emissions, can be observed from satellites using the ultraviolet region of the spectrum. The operational HCHO retrievals from the Ozone Monitoring Instrument (OMI) on board the AURA satellite, part of NASA's A-train constellation of Earth Observing satellites, are described. The operational retrieval, based on a basic optical absorption spectroscopy (BOAS) algorithm, has been affected by the degradation of the instrument especially from 2008 onwards. The most significant problems are the unrealistic increasing high background concentrations of HCHO retrieved from OMI and the row anomaly. An upgrade for the original operational algorithm is therefore needed to ensure its trend quality and to account for these difficulties. The strategies implemented to deal with the instrumental degradation are presented here. Air mass factors (AMFs) in the current fitting window show significant wavelength dependence. Fitting uncertainties can potentially be improved by including shorter wavelengths as long as the AMFs wavelength dependence is taken into account. As part of these improvements a look-up table of wavelength-dependent AMFs have been calculated. Using this new table it is possible to retrieve the HCHO total column directly, weighting the HCHO cross sections with the wavelength-dependent AMFs. Additionally, the pixels affected by the row anomaly are now flagged in the level 2 data generated with the upgraded algorithm.

  17. Functional performance requirements for seismic network upgrade

    SciTech Connect

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  18. System Upgrades: The Ever Moving Target.

    ERIC Educational Resources Information Center

    Kaplan, Denise

    1989-01-01

    Discusses the need for system upgrades of automated library systems in order to support ongoing software releases; obtain new functional modules; satisfy new library requirements; conform to new industry standards; and utilize new technology. Guidelines are presented for deciding when to upgrade and implement changes in these areas. (11…

  19. Project W-420 stack monitoring system upgrades

    SciTech Connect

    CARPENTER, K.E.

    1999-02-25

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  20. Upgrading Programs for Construction Journeymen. Final Report.

    ERIC Educational Resources Information Center

    Franklin, William S.

    The report describes a study of industry-sponsored upgrading programs for journeymen in construction unions. Interviews with union and training officials, as well as 405 journeymen and 99 contractors, revealed that upgrading activities were concentrated in electrical work, carpentry, and the pipe trades, and that both the number of programs and…

  1. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  2. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  3. CDF level 2 trigger upgrade

    SciTech Connect

    Anikeev, K.; Bogdan, M.; DeMaat, R.; Fedorko, W.; Frisch, H.; Hahn, K.; Hakala, M.; Keener, P.; Kim, Y.; Kroll, J.; Kwang, S.; Lewis, J.; Lin, C.; Liu, T.; Marjamaa, F.; Mansikkala, T.; Neu, C.; Pitkanen, S.; Reisert, B.; Rusu, V.; Sanders, H.; /Fermilab /Chicago U. /Pennsylvania U.

    2006-01-01

    We describe the new CDF Level 2 Trigger, which was commissioned during Spring 2005. The upgrade was necessitated by several factors that included increased bandwidth requirements, in view of the growing instantaneous luminosity of the Tevatron, and the need for a more robust system, since the older system was reaching the limits of maintainability. The challenges in designing the new system were interfacing with many different upstream detector subsystems, processing larger volumes of data at higher speed, and minimizing the impact on running the CDF experiment during the system commissioning phase. To meet these challenges, the new system was designed around a general purpose motherboard, the PULSAR, which is instrumented with powerful FPGAs and modern SRAMs, and which uses mezzanine cards to interface with upstream detector components and an industry standard data link (S-LINK) within the system.

  4. Fish and shellfish upgrading, traceability.

    PubMed

    Guérard, Fabienne; Sellos, Daniel; Le Gal, Yves

    2005-01-01

    Recognition of the limited biological resources and the increasing environmental pollution has emphasised the need for better utilisation of by-products from the fisheries. Currently, the seafood industry is dependent on the processing of the few selected fish and shellfish species that are highly popular with consumers but, from economic and nutritional points of view, it is essential to utilise the entire catch. In this review, we will focus on recent developments and innovations in the field of underutilised marine species and marine by-product upgrading and, more precisely, on two aspects of the bioconversion of wastes from marine organisms, i.e. extraction of enzymes and preparation of protein hydrolysates. We will deal with the question of accurate determination of fish species at the various steps of processing. Methods of genetic identification applicable to fresh fish samples and to derived products will be described. PMID:16566090

  5. Upgrade of Apatity Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Balabin, Yu; Vashenyuk, E.; Gvozdevsky, B.; Germanenko, A.

    2015-08-01

    The neutron monitor (NM) in Apatity has been deeply upgraded in the end of 2013. We developed and installed new amplifier-discriminators. The detecting tubes of NM were tested and calibrated with additionally using of a pulse-amplitude analyzer. Due to this operation electric noise and interfering pulses are reduced. The NM was equipped with a new rapid data acquisition system. The system registers each NM pulse with time accuracy of 1 microsecond. This gives a possibility to investigate such fast phenomena as, for example, multiplicities in NM. Moreover, using these detailed data, it is possible to produce not only a standard NM count rate (number of pulses per minute) but (if necessary) a count rate with any high time resolution. Based on the detailed data we implemented the software calculation of so called "large dead time" data, which previously was done by hardware.

  6. Biological upgrading of coal liquids

    SciTech Connect

    Not Available

    1992-01-01

    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH[sub 3], SO[sub 4][sup 2[minus

  7. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  8. Manastash Ridge Observatory Autoguider Upgrade

    NASA Astrophysics Data System (ADS)

    Lozo, Jason; Huehnerhoff, Joseph; Armstrong, John; Davila, Adrian; Johnson, Courtney; McMaster, Alex; Olinger, Kyle

    2016-06-01

    The Astronomy Undergraduate Engineering Group (AUEG) at the University of Washington has designed and manufactured a novel autoguider system for the 0.8-meter telescope at the Manastash Ridge Observatory in Ellensburg, Washington. The system uses a pickoff mirror placed in the unused optical path, directing the outer field to the guide camera via a system of axi-symmetrically rotating relay mirrors (periscope). This allows the guider to sample nearly 7 times the area that would be possible with the same fixed detector. This system adds closed loop optical feedback to the tracking capabilities of the telescope. When tuned the telescope will be capable of acheiving 0.5 arcsecond tracking or better. Dynamic focusing of the primary optical path will also be an included feature of this system. This unique guider will be a much needed upgrade to the telescope allowing for increased scientific capability.

  9. Beam intensity upgrade at Fermilab

    SciTech Connect

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  10. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  11. Superbend upgrade of the Advanced Light Source

    SciTech Connect

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  12. Screening of processing and upgrading schemes

    SciTech Connect

    Not Available

    1991-10-01

    The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  13. KARMEN upgrade and prospects at ESS

    NASA Astrophysics Data System (ADS)

    Drexlin, G.; Armbruster, B.; Eberhard, V.; Eitel, K.; Gemmeke, H.; Jannakos, T.; Kleifges, M.; Kleinfeller, J.; Oehler, C.; Plischke, P.; Rapp, J.; Reichenbacher, J.; Steidl, M.; Wolf, J.; Zeitnits, B.; Bodmann, B. A.; Finckh, E.; Hößl, J.; Jünger, P.; Kretschmer, W.; Eichner, C.; Maschuw, R.; Ruf, C.; Blair, I. M.; Edgington, J. A.; Seligmann, B.; Booth, N. E.; Karmen Collaboration

    The KARMEN experiment at the ISIS spallation source has enhanced its sensitivity for overlineν μ → overlineν e oscillations in 1996 by the installation of an additional large area veto counter system. Consisting of 136 highly transparent plastic scintillator modules, the new veto is completely embedded inside the experiment's 7000 tonne steel blockhouse. It allows to eliminate the main background component in the search for overlineν μ → overlineν e appearance originating from high energy neutrons induced by deep inelastic scattering of cosmic ray muons in the massive shielding. First measurements after the detector upgrade show a substantial reduction of this background meeting the expected factor of 40. If no oscillation signal is seen after 3 years of measuring (1997-1999) KARMEN will be able to exclude mixing amplitudes of sin 22 Θ≃1 x10 -3. The ongoing KARMEN2 measurements will thus allow a decisive and reliable test of the entire parameter space favoured by the positive result of LSND. An even higher oscillation sensitivity can be achieved by experiments at future high intensity short spill proton accelerators such as the planned European Spallation Source ESS.

  14. Habitat Demonstration Unit Medical Operations Workstation Upgrades

    NASA Technical Reports Server (NTRS)

    Trageser, Katherine H.

    2011-01-01

    This paper provides an overview of the design and fabrication associated with upgrades for the Medical Operations Workstation in the Habitat Demonstration Unit. The work spanned a ten week period. The upgrades will be used during the 2011 Desert Research and Technology Studies (Desert RATS) field campaign. Upgrades include a deployable privacy curtain system, a deployable tray table, an easily accessible biological waste container, reorganization and labeling of the medical supplies, and installation of a retractable camera. All of the items were completed within the ten week period.

  15. Safety analysis report for packaging upgrade plan

    SciTech Connect

    KELLY, D.L.

    1998-11-18

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a revised SARP upgrade schedule based on the most current program needs. A Project Hanford Management Contract (PHMC) Performance Expectation exists to update, revise, and/or cancel seven onsite SARPS during FY 1999. It is the U.S. Department of Energy's desire that 100% of the SARPs (which existed at the beginning of the PHMC Contract) be upgraded, revised, and/or canceled by the end of the five year contract. This plan is a ''living'' document and is used as a management tool.

  16. Nose-Cone Calorimeter: upgrade of PHENIX detector

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2008-10-01

    PHENIX experiment at RHIC is efficient at measuring processes involving rare probes, but has limited acceptance in azimuth and pseudorapidity (η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9,<η<,, is one of the upgrades which will dramatically increase coverage in azimuth and pseudorapidity. The NCC will expand PHENIX's precision measurements of electromagnetic probes in η, reconstruct jets, and enhance triggering capabilities. It will significantly contribute to measurements of γ-jets, quarkonia, and low-x nuclear structure functions. Details of the detector design, performance, and a sample of the physics topics which will benefit from the NCC, will be discussed.

  17. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  18. uc(Pegasus) Facility Upgrades

    NASA Astrophysics Data System (ADS)

    Quinn, J. C.; Lewicki, B. T.; Burke, S. P.; Eidietis, N. W.; Fonck, R. J.; Ford, B. A.; Garstka, G. D.; Unterberg, E. A.; Winz, G. R.

    2003-10-01

    Extensive new capabilities have been installed on the uc(Pegasus) ST facility. A new laboratory configuration allows separation of all power systems from the experimental hall. Data acquisition, control, and support facilities have been improved. New magnetic field power supplies utilize unique high-power 2700V IGCT switch modules to provide bipolar waveform control for the high-stress solenoid magnet, while 900V IGBTs provide uni/bipolar control of the PF and TF systems. The coil sets are independently controlled by pulse-width-modulated circuits developed by the HIT group. Capacitor charging, dumping, and monitoring are controlled by a PCI-based multichannel data acquisition and control system. These upgrades will provide: 1) increased V-s and loop voltage control for higher plasma current and suppression of MHD modes; 2) increased toroidal field with fast-ramp capability for improved access to the low-q, high βt regime; and 3) flexible equilibrium field control for radial position and modest shape control.

  19. D0 Silicon Upgrade: Upgrade Piping Loads on Cleanroom Roof

    SciTech Connect

    Sakla, Steve; /Fermilab

    1995-08-28

    The proposed piping layout for the DO upgrade will run along the south wall of DAB. The cryogenic service pipe runs above the upper and lower cleanroom roofs and will need to be supported by the roofs beams. Calculations were done to determine the stresses in the I-beams created by the existing and additional loads due to the upgrade. Refer to drawing no. 3823.115-ME-317283 for drawings of the piping layout. Figure 1 shows the 'plan view' portion of this drawing. The weight of the individual lines were calculated in figure 2 assuming a pipe density of O.28 lbm/in{sup 3} for stainless steel (0.12% C) and a fluid density (assuming LN2 at 1 atm) of 0.03 lbm/in{sup 3}. The weights of the corrugated steel flooring, assembly hall feed cans, support beams, and roof hatch were also included in the analysis. These loads are calculated on pgs. 5-6. A floor load of 50 lbf/ft{sup 2} was also added in order to maintain the existing floor load limit in addition to the added piping loads. Measurements of the dimensions of the I-beams determined that the nominal sizes of the beams were W8 x 21 for the lower roof and W14 x 26 for the upper roof. Pipe lengths were determined from the drawing for each of the lines on pgs. 1-2 of the calculations (refer to all piping by line numbers according to figure 2). A total weight was calculated for lines 3-9 along the south wall and lines 1-2 running along the north wall of the lower cleanroom roof. To simplify the calculations these weights were assumed to be evenly distributed on the 5 I-beam supports of the lower cleanroom roof 2.5 feet in from the south wall. The stress analysis was done using FrameMac, a 2-D finite element program for the Macintosh. Beam 3 was not included in the analysis because it is structurally equivalent to beam 1. The program outputted maximum values for shear stress, bending stress, shear force, and moments in each of the beams analyzed. These values were then compared to the allowable stresses as per the

  20. PERFORMANCE AND UPGRADING OF WASTEWATER STABILIZATION PONDS

    EPA Science Inventory

    The proceedings contain 18 papers discussing and describing the design, operation, performance, and upgrading of lagoon systems. Performance data for facultative and aerated lagoons collected at numerous sites throughout the USA are presented. Design criteria and the applicabilit...

  1. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray;

    2013-04-19

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  2. System and process for upgrading hydrocarbons

    SciTech Connect

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  3. STAR upgrade program and future physics

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Star Collaboration

    2014-09-01

    In this paper, we will present STAR's future plan in terms of both the detector upgrade and physics measurement to study matter with colour degrees of freedom. We will first discuss the status of the newly installed Heavy Flavor Tracker and Muon Telescope Detector, and their physics prospect in 2014-2016. We will then describe the proposed detector upgrades for the second phase of Beam Energy Scan program in 2018-2019 to study the QCD phase diagram. Finally we will present STAR's plan with detector upgrades in the forward directions for the anticipated pp/pA physics program in 2021-2022 and ep/eA in 2025+. The upgraded STAR experiment will be in an excellent position to perform precision measurements of the partonic structures of the nucleon and nuclei.

  4. Completion of the ATLAS control system upgrade.

    SciTech Connect

    Munson, F. H.

    1998-11-30

    In the fall of 1992 at the SNEAP(Symposium of North Eastern Accelerator Personnel) a project to up grade the ATLAS (Argonne Tandem Linear Accelerator System) control system was first reported. Not unlike the accelerator it services the control system will continue to evolve. However, the first of this year has marked the completion of this most recent upgrade project. Since the control system upgrade took place during a period when ATLAS was operating at a record number of hours, special techniques were necessary to enable the development of the new control system ''on line'' while still saving the needs of normal operations. This paper reviews the techniques used for upgrading the ATLAS control system while the system was in use. In addition a summary of the upgrade project and final configuration, as well as some of the features of the new control system is provided.

  5. TMX Upgrade magnet-set geometry design

    SciTech Connect

    Wong, R.L.

    1981-09-24

    A magnet set, consisting of 24 coils, has been designed for the TMX Upgrade. Like the coil set designed for the TMX experiment, the coils for TMX Upgrade consist of a central-cell set with a minimum-B plug set on each end. Between the central cell and each end plug, there is a flux bundle recircularizing transition set. Physics considerations require that the TMX Upgrade magnet set be almost twice as long as the TMX magnet set (14 m between the outer mirrors). The central circular coils are the only coils used from TMX. The TMX transition set of two C-coils and an octupole is replaced by a C-coil and an Ioffe coil. The TMX plug composed of a baseball coil and two C-coils is replaced by an Ioffe coil, two C-coils and two circular coils. A comparison between the TMX and TMX Upgrade magnet sets is shown.

  6. Advanced Photon Source Upgrade Project - Materials

    SciTech Connect

    Gibbson, Murray

    2011-01-01

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  7. Upgrading of light Fischer-Tropsch products

    SciTech Connect

    Shah, P.P.

    1990-11-30

    The upgrading of Fischer-Tropsch (F-T) light ends was studied at UOP in a program sponsored by the Pittsburgh Energy Technology Center of the US Department of Energy. The goal of the program was to increase the overall yield of marketable transportation fuels from the F-T upgrading complex by focusing on liquefied petroleum gas (LPG) and naphtha. An overview of the entire light-ends program is presented in this paper. Although this contract is specifically concerned with light products (C{sub 3}-C{sub 11}), a separate DOE-sponsored program at UOP investigated the characterization and upgrading of the heavy end of the F-T product spectrum: F-T wax. An economic analysis of the light and heavy ends upgrading was performed to evaluate the conversion of F-T products to marketable transportation fuels. 9 refs., 7 figs., 9 tabs.

  8. Space Station Live: Station Communications Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  9. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  10. Backbone upgrades and DEC equipment replacement

    NASA Technical Reports Server (NTRS)

    Vancamp, Warren

    1991-01-01

    The NASA Science Internet (NSI) dual protocol backbone is outlined. It includes DECnet link upgrades to match TCP/IP link performance. It also includes the integration of backbone resources and central management. The phase 1 transition process is outlined.

  11. Control upgrade study for Huntley Unit 65

    SciTech Connect

    Barber, S.H.; Colasanti, R.; Marko, R. ); Lassahn, P.L.; Brown, B.B.; House, W.E.; Rumble, E.T. III; Koren, J.M.; Grote, T.A.; Fray, R.R. )

    1990-08-01

    This report describes a reliability, availability, and maintainability (RAM) analysis conducted to support the Control Upgrade Project. The study's principal objective was to determine the potential benefits of upgrading the Huntley Unit 65 control system. Other study objectives included technology transfer and the identification of the main contributors to plant unavailability. The project used CAFTA software to model the plant. The RAM analysis was supplemented with a human factors evaluation. 15 refs., 20 figs., 7 tabs.

  12. CDF central preshower and crack detector upgrade

    SciTech Connect

    Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Michigan State U. /INFN, Rome /Rome U. /CHEP, Taegu /Seoul Natl. U.

    2007-02-01

    The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

  13. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  14. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  15. IPNS upgrade: A feasibility study

    SciTech Connect

    1995-04-01

    Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europe aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.

  16. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  17. Upgrades for GERDA Phase II

    NASA Astrophysics Data System (ADS)

    Heisel, Mark

    2014-09-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20ν <= 2 . 1 .1025 yr (90% C.L.), after an exposure of 21 . 6 kg .yr. The result refutes an earlier claim of discovery with high probability. The background index of 1 .10-2 cts/(keV .kg .yr) is lower by about one order of magnitude compared to previous experiments. At present the experiment is being upgraded to Phase II. The aim is to collect an exposure of 100kg .yr and further reduce the background by another order of magnitude to a level of <=10-3 cts/(keV .kg .yr). The detector mass will be increased by ~20 kg of new Broad Energy Germanium (BEGe) detectors from enriched 76Ge, which exhibit superior pulse shape discrimination and hence background rejection power. Low mass detector holders, cold front-end electronics, contacting and cabling schemes are redesigned for ultra low mass and radiopurity. In addition, a retractable liquid argon veto will be installed to efficiently suppress background events that induce scintillation in the liquid argon. A hybrid solution of photomultiplier tubes and silicon photomultipliers coupled to scintillating fibres was chosen. This talk gives an account of the results and these challenging modifications to meet our design goals. The Germanium Detector Array (GERDA

  18. Improving spanning trees by upgrading nodes

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Wirth, H.C.

    1997-01-16

    We study budget constrained optimal network upgrading problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. A general problem in this setting is the following. We are given an edge weighted graph G = (V, E) where nodes represent processors and edges represent bidirectional communication links. The processor at a node v {element_of} V can be upgraded at a cost of c(v). Such an upgrade reduces the delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has the best performance with respect to some measure. We consider the problem under two measures, namely, the weight of a minimum spanning tree and the bottleneck weight of a minimum bottleneck spanning tree. We present approximation and hardness results for the problem. Our results are tight to within constant factors. We also show that these approximation algorithms can be used to construct good approximation algorithms for the dual versions of the problems where there is a budget constraint on the upgrading cost and the objectives are minimum weight spanning tree and minimum bottleneck weight spanning tree respectively.

  19. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  20. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  1. AN APPLICATION OF GAME THEORY: FUNDING INTERDEPENDENT MC and A UPGRADE DECISIONS

    SciTech Connect

    B. G. SCOTT

    2001-06-01

    Funding Material, Control and Accountability (MC&A) system upgrades has been identified as a partial solution for mitigating the diversion threat of weapons-grade nuclear material. Effective MC&A system upgrades are dependent on appropriate decisions based on based on funding, implementation, operation and oversight. Traditional MC&A upgrade decisions inherently assumed that all decision-makers possessed similar payoff vectors allowing for a fairly consistent and unified approach to MC&A system enhancements; however, MC&A upgrade projects in non-traditional environments may be required to take into account situations where the potential payoff vectors among decision-makers may be significantly different. Once a decision-maker is required to take into account the decisions of others, the process can be modeled as a game. Game theory has been previously be used to shed light on many aspects of social and economic behavior where a payoff from a set of strategies is dependent on the strategy of others. In this paper, the application of game theory in the context of MC&A upgrades is discussed. Various MC&A upgrades decision payoff matrices for relevant circumstances are evaluated for static (simultaneous) and dynamic (sequential decisions) games. Optimal strategies and equilibrium conditions for these payoff matrices are analyzed. Additional game factors (bargaining, uncertain outcomes, moral hazards) that may affect the outcome of the game are briefly discussed. By demonstrating the application of game theory to a nontraditional environment that may require MC&A upgrades, this work increases the understanding out how outcomes are logically connected to the respective value decision-makers assign to choices.

  2. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  3. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts. PMID:16678400

  4. MAVIS III -- A Windows 95/NT Upgrade

    SciTech Connect

    Hardwick, M.F.

    1997-12-01

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lost during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.

  5. Hardware and Software Upgrades to DIII-D Main Computer Control System

    SciTech Connect

    Piglowski, D. A.; Penaflor, B.G.; McHarg, JR., B.B.; Greene, K.L.; Coon, R.M.; Phillips, J.C.

    2002-09-01

    The complexities of monitoring and controlling the various DIII-D tokamak systems have always required the aid of high-speed computer resources. Because of recent improvements in computing technology, DIII-D has upgraded both hardware and software for the central DIII-D control system. This system is responsible for coordination of all main DIII-D subsystems during a plasma discharge. The replacement of antiquated older hardware has increased reliability and reduced costs both in the initial procurement and eventual maintenance of the system. As expected, upgrading the corresponding computer software has become the more time consuming and expensive part of this upgrade. During this redesign, the main issues focused on making the most of existing in-house codes, speed with which the new system could be brought on-line, the ability to add new features/enhancements, ease of integration with all DIII-D systems and future portability/upgrades. The resulting system has become a template by which other DIII-D systems can follow during similar upgrade paths; in particular DIII-D's main data acquisition system and neutral beam injection (NBI).

  6. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  7. Physics capabilities of the DO upgrade detector

    SciTech Connect

    Ellison, J.

    1994-11-01

    The D0 detector at Fermilab is being upgraded to meet the demands imposed by high luminosity Tevatron running planned to begin in 1998. The central tracking detectors will be replaced with silicon and scintillating fiber tracking systems inside a solenoidal magnetic field and a preshower detector will be added to aid in electron identification. The design and performance of these systems are described and detailed simulations of the physics capabilities of the upgraded detector are presented. In particular the authors focus on the study of electroweak boson properties and top quark physics and briefly describe the b-physics capabilities.

  8. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  9. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  10. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  11. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  12. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  13. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  14. The sPHENIX Barrel Upgrade: Jet Physics and Beyond

    NASA Astrophysics Data System (ADS)

    Haggerty, John S.

    2013-05-01

    The past decade of heavy ion physics at RHIC has produced many surprising discoveries and puzzles. Currently the experiments at the LHC are providing a first look at things to come: a burgeoning program for studying the quark-gluon plasma with reconstructed jets. The PHENIX collaboration has developed a long term plan involving a series of upgrades designed to expand the physics capabilities and make use of the full enhanced luminosity at RHIC. With increased coverage and the addition of hadronic calorimetry, we demonstrate that the sPHENIX upgrade will be well positioned to provide a broad and exciting program of jet probe measurements. Sampling 50 billion Au + Au events annually, we will collect 10 million jets with transverse energy above 20 GeV and 100 thousand jets above 40 GeV. With the addition of new tracking layers and an EM preshower, a crucial program of upsilon measurements, as well as neutral pion measurements with a 40 GeV/c reach, can be made in a flexible accelerator facility capable of providing a diverse range of collision systems across many beam energies. And, ultimately, the sPHENIX detector will provide the base for staging a future electron-ion collider detector at eRHIC.

  15. Upgrade of a kicker control system for the HIRFL

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Yu; Zhou, Wen-Xiong; Luo, Jin-Fu; Zhou, De-Tai; Zhang, Jian-Chuan; Ma, Xiao-Li; Gao, Da-Qing; Shang-Guan, Jing-Bin

    2014-02-01

    A kicker system plays an important role in beam extraction and injection for a ring-like accelerator. The kicker system in the Heavy Ion Research Facility in Lanzhou (HIRFL) is used for beam extraction and injection between two cooling storage rings (CSRs). The system consists of two parts: one part is used for beam extraction from the CSR/main (CSRm), and the other is used for beam injection into the CSR/experimental (CSRe). To meet the requirements of special physics experiments, we upgraded the kicker control system. In this upgraded system, the position of the beam bunches can be determined by measuring the phase of the radio frequency (RF) signal in real time because each beam bunch is synchronized with the RF signal. The digital timing control and delay regulatory function, which are based on a new design using ARM+DSP+FPGA technology, achieved a precision of 2.5 ns, which is a significant improvement over old system's precision of 5 ns. In addition, this system exhibits a better anti-interference capability. Moreover, the efficiency of beam extraction can be enhanced, and the accuracy of the reference voltage setting can reach as low as 0.1%, compared to 2% for the old system.

  16. Fischer-Tropsch wax characterization and upgrading: Final report

    SciTech Connect

    Shah, P.P.; Sturtevant, G.C.; Gregor, J.H.; Humbach, M.J.; Padrta, F.G.; Steigleder, K.Z.

    1988-06-06

    The characterization and upgrading of Fischer-Tropsch wax was studied. The focus of the program was to maximize the yield of marketable transportation fuels from the Fischer-Tropsch process. The wax was characterized using gel permeation chromatography (GPC), high resolution mass spectrometry (HRMS), infrared spectroscopy (IR), gas chromatography (GC), nuclear magnetic resonance (NMR) and various other physical analyses. Hydrocracking studies conducted in a pilot plant indicate that Fischer-Tropsch wax is an excellent feedstock. A high yield of excellent quality diesel fuel was produced with satisfactory catalyst performance at relatively mild operating conditions. Correlations for predicting key diesel fuel properties were developed and checked against actual laboratory blend data. The blending study was incorporated into an economic evaluation. Finally, it is possible to take advantage of the high quality of the Fischer-Tropsch derived distillate by blending a lower value light cycle oil (produced from a refinery FCC unit) representing a high aromatic and low cetane number. The blended stream meets diesel pool specifications (up to 60 wt % LCO addition). The value added to this blending stream further enhances the upgrading complex return. 22 refs., 39 figs., 48 tabs.

  17. Upgrading the Ward Beecher Planetarium for the 21st Century

    NASA Astrophysics Data System (ADS)

    Durrell, P. R.; Young, W.; Pirko, R.; Shanks, S. L.; Neiheisel, J.; Dean, M. E.; Kotel, R.; Schaefer, S.; Morlan, R.; Wilson, A.; Feldmeier, J. J.

    2005-12-01

    We report on recent progress and future public outreach plans in light of a significant upgrade of the Ward Beecher Planetarium at Youngstown State University. Over a period of 40 years, the facility has been a first-rate 150 seat planetarium and introductory astronomy classroom, and in its history has seen over 50 000 undergraduate students and over 750 000 visits from people in the surrounding area and beyond. Through a recent generous donation from the Ward Beecher Foundation, we have added the SciDome full-dome visualization system, and soon will be replacing our Spitz A3P planetarium star projector. These upgrades, in addition to new digital video projectors and a complete overhaul of our roof-top observatory, are being done in order to further enhance both the education of YSU students and our ability to continue numerous public outreach programs, including full-dome digital planetarium shows, public observing, shows for both elementary and high school students, and home-schooling programs.

  18. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  19. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia

    PubMed Central

    Feldhaar, Heike; Straka, Josef; Krischke, Markus; Berthold, Kristina; Stoll, Sascha; Mueller, Martin J; Gross, Roy

    2007-01-01

    . Blochmannia may confer a significant fitness advantage via nutritional upgrading by enhancing competitive ability of Camponotus with other ant species lacking such an endosymbiont. Domestication of the endosymbiont may have facilitated the evolutionary success of the genus Camponotus. PMID:17971224

  20. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  1. The CDF SVX II detector upgrade

    SciTech Connect

    Skarha, J.E.

    1993-10-01

    The proposed CDF SVX II detector upgrade for secondary vertex detection during the Fermilab Tevatron Run II collider run is described. The general design and important features of this silicon vertex detector are presented. The CDF physics goals which are addressed by this detector are also given.

  2. T-Farm complex alarm upgrades

    SciTech Connect

    Roberts, J.B.

    1995-01-01

    The alarm and controls associated with the T, TX, and TY farms are located in the 242-T control room. The design data for replacement and upgrades of the alarm panels is in this document. This task was canceled previous to the 90% design review point.

  3. Operation status and upgrading of HIRFL

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Wang, Y. F.; Wei, B. W.

    2001-12-01

    The operation status and the undergoing upgrading at HIRFL machine are presented. The accelerated ion species with the machine have been expanding, including metallic ions and higher energy with the new ECR ion source. The upgrading of HIRFL as the pre-accelerator of CSR storage ring has been processing steadily. The new 14.5 GHz ECR ion source has been put in operation in early 1999. A full-superconducting ECR ion source of 18 GHz is under design. The manufacture of the new vacuum chamber for SFC is just finished and the installation is to be started. The construction of the new B1 buncher is nearly to be finished, and the off-line test and the installation will be started soon. Another two identical bunchers will be ordered after the test. The beam distribution system is under upgrading to make all experiment stations separate from the others and the time-sharing mode possible, and a new cancer-therapy station is also under construction. The other upgrading items include the yoke enlarging of SFC, beam diagnostics, computer control and beam distribution system.

  4. The BABAR detector: Upgrades, operation and performance

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  5. The Newly Upgraded Large COMPASS Polarized Target

    SciTech Connect

    Gautheron, F.

    2007-06-13

    During the CERN SPS 2005 shutdown the COMPASS target system received a major hardware upgrade for the new period of data taking starting in 2006. A new superconducting magnet with a larger acceptance combined with a new microwave cavity and a three cell target setup have been installed and already showed excellent performances that we present for the first time.

  6. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  7. ALPHA: A Case Study in Upgrading.

    ERIC Educational Resources Information Center

    Granick, Leonard P. R.; And Others

    An industry-focused upgrading model, based upon job redesigns of entry-level and higher skill positions and a multi-step diagonal/vertical progression ladder was installed in a company having a 150-employee blue collar work force. The model provided for rapid promotion and wage increases of both present employees and new hires, supported by skills…

  8. UPGRADES TO Monteburns, VERSION 3.0

    SciTech Connect

    Galloway, Jack D; Trellue, Holly R

    2012-06-22

    Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

  9. Testing of FMI's Coal Upgrading Process

    SciTech Connect

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  10. Chicago Initiative Aims to Upgrade Principal Pipeline

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Even with nearly 50 schools shutting down at the end of this month, Chicago education officials have been barreling ahead with plans to groom a large crop of high-performing principals that they say represents the most ambitious effort the city has undertaken to upgrade its school leadership ranks. The goal, said Chicago schools CEO Barbara…

  11. Upgrade Your Facilities Without a Bond Issue.

    ERIC Educational Resources Information Center

    Mahoney, John; Thompson, Laura

    1998-01-01

    Discusses eliminating bond issues for facility energy management upgrades by using performance contracting. Explains that performance contracts create savings that help support financing new equipment over a specific number of years. Financing options, performance contracting tips, and an example of its use in St. Louis (Missouri) are highlighted.…

  12. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  13. Structural analysis of fuel assembly clads for the Upgraded Transient Reactor Test Facility (TREAT Upgrade)

    SciTech Connect

    Ewing, T.F.; Wu, T.S.

    1986-01-01

    The Upgraded Transient Reactor Test Facility (TREAT Upgrade) is designed to test full-length, pre-irradiated fuel pins of the type used in large LMFBRs under accident conditions, such as severe transient overpower and loss-of-coolant accidents. In TREAT Upgrade, the central core region is to contain new fuel assemblies of higher fissile loadings to maximize the energy deposition to the test fuel. These fuel assemblies must withstand normal peak clad temperatures of 850/sup 0/C for hundreds of test transients. Due to high temperatures and gradients predicted in the clad, creep and plastic strain effects are significant, and the clad structural behavior cannot be analyzed by conventional linear techniques. Instead, the detailed elastic-plastic-creep behavior must be followed along the time-dependent load history. This paper presents details of the structural evaluations of the conceptual TREAT Upgrade fuel assembly clads.

  14. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  15. First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.

    2001-12-01

    The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real

  16. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  17. RHIC UPGRADES FOR HEAVY IONS AND POLARIZED PROTONS.

    SciTech Connect

    FISCHER, W.; ALESSI, J.; BEN-ZVI, I.; LITVINENKO, V.; ROSER, T.

    2005-10-24

    The Relativistic Heavy Ion Collider (RHIC), in operation since 2000, has exceeded its design parameters. The Enhanced Design parameters, expected to be reached in 2009, call for a 4-fold increase over the heavy ion design luminosity, and a 15-fold increase over the proton design luminosity, the latter with an average polarization of 70%. Also in 2009, it is planned to commission a new Electron Beam Ion Source, offering increased reliability and ion species that cannot be supplied currently. The upgrade to RHIC 11, based on electron cooling of the beams, aims to increase the average heavy ion luminosity by an order of magnitude, and the polarized proton luminosity by a factor 2-5. Plans for an electron-ion collider eRHIC is covered in another article in these proceedings.

  18. Design, performance, and upgrade of the D0 calorimeter

    SciTech Connect

    Kotcher, J.

    1995-01-01

    The D0 detector, located at the Fermi National Accelerator Laboratory in Batavia, Illinois, USA, is a large hermetic detector designed for the study of proton-antiproton collisions at a center-of-mass energy of 2 TeV. The calorimeter is a sampling device that employs uranium absorber and liquid argon as the active material. It has been designed for the high-precision energy measurement of electrons and jets over the full solid angle, and excellent missing transverse energy resolution for enhanced neutrino {open_quotes}detection{close_quotes}. The authors report on some fundamental aspects of the D0 calorimeter`s design and performance (the latter having been measured in both test beams and during recent data taking at the Fermilab collider), and their plan for the upgrade, which has been designed to accomodate the higher luminosities anticipated after completion of the Fermilab Main Injector.

  19. Charge breeder for the SPIRAL1 upgrade: Preliminary results

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Dubois, M.; Angot, J.; Sole, P.; Bajeat, O.; Barton, C.; Frigot, R.; Jeanne, A.; Jardin, P.; Kamalou, O.; Lecomte, P.; Osmond, B.; Peschard, G.; Lamy, T.; Savalle, A.

    2016-02-01

    In the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF—buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab. This contribution shall present preliminary results of experiments conducted at LPSC concerning the 1 + to n+ conversion efficiencies for noble gases as well as for alkali elements and the corresponding transformation times.

  20. Upgrade of the inverted source of polarized electrons at ELSA

    NASA Astrophysics Data System (ADS)

    Heiliger, D.; Hillert, W.; Neff, B.

    2011-05-01

    Since 2000 an inverted source of polarized electrons at the electron stretcher accelerator ELSA routinely provides a pulsed beam with a polarization degree of about 80%. One micro-second long pulses with 100 nC charge are produced by irradiating a strained-layer superlattice photocathode with laser light from a flashlamp-pumped Ti:Sa laser. A rectangular pulse shape is achieved by operating the source in space charge limitation. The proposed hadron physics program requires an intensity upgrade to 200 mA which can be achieved by enlarging the emission area or by improving the quantum efficiency (QE). The resulting changes of the beam parameters (like emittance and space charge) and of the optics of the transfer line were investigated in numerical simulations. In order to enhance the source performance a new load lock system with crystal storage and atomic hydrogen cleaning will be installed in the near future.

  1. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    SciTech Connect

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  2. Upgrade of CEBAF from 6 Gev To 12 Gev: Status

    SciTech Connect

    Harwood, Leigh

    2013-04-19

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plant's capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  3. Instrumentation and control upgrade plan for Browns Ferry nuclear plant

    SciTech Connect

    Belew, M.R.; Langley, D.T. ); Torok, R.C.; Wilkinson, C.D. ); Stanley, L. )

    1992-01-01

    A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which system upgrades will be selected and implemented.

  4. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    SciTech Connect

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  5. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    SciTech Connect

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    R.D. McKeown

    2010-09-01

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program. The 12 GeV upgrade project at Jefferson Lab will enable a powerful new experimental program that will advance our understanding of the quark/gluon structure of hadronic matter, the nature of Quantum Chromodynamics, and the properties of a new extended standard model of particle interactions. Commissioning of the upgraded beam will be begin in 2013, and the full complement of upgraded experimental equipment will be completed in 2015. This unique facility will provide many opportunities for exploration and discovery for a large international community of nuclear scientists.

  7. A poloidal section neutron camera for MAST upgrade

    SciTech Connect

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.; Conroy, S.; Ericsson, G.; Wodniak, I.; Keeling, D.; Turnyanskiy, M. [EURATOM Collaboration: MAST Team

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part of the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.

  8. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  9. JEFFERSON LAB 12 GEV CEBAF UPGRADE

    SciTech Connect

    Rode, C. H.

    2010-04-09

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  10. Upgrading Reference Set — EDRN Public Portal

    Cancer.gov

    We are proposing a multi-institutional study to identify molecular biomarkers and clinical measures that will predict presence of Gleason 7 or higher cancer (as evidence in the radical prostatectomy specimen) among patients with a biopsy diagnosis of Gleason score ≤ 6 prostate cancer. This proposal will be conducted in two phases. The first phase will assemble an “Upgrading Reference Set” that will include clinical information as well as biologics on a cohort of 600 men. The first phase will also assess the clinical parameters associated with upgrading, as well as, perform a central pathology review of both biopsies and prostatectomy specimens to confirm tumor grade. The second phase will use the biologics collected in phase 1 to evaluate a series of biomarkers to further refine the prediction of Gleason 7-10 cancer at radical prostatectomy.

  11. Upgrades for TwinSol facility

    NASA Astrophysics Data System (ADS)

    O'Malley, P. D.; Bardayan, D. W.; Kolata, J. J.; Hall, M. R.; Hall, O.; Allen, J.; Becchetti, F. D.

    2016-06-01

    TwinSol, a pair of coupled, superconducting solenoids, was one of the first devices capable of producing beams of radioactive nuclei at energies near the Coulomb barrier. A primary beam from University of Notre Dame (UND) tandem accelerator is used to bombard a primary target producing a secondary beam in flight. TwinSol is used to gather, separate, and focus the recoils. Since it was commissioned at the UND in 1997, at least 58 publications have reported data from its use and there have been hundreds of collaborators from many different countries that use this device. Currently, plans are in place at the UND to provide several upgrades to TwinSol, including a multi-cell gas production target and the possible addition of a third solenoid. Upgrades currently in progress will be discussed along with future plans.

  12. Control upgrade study for Huntley Unit 65

    SciTech Connect

    Willsey, P.T. ); Lassahn, P.L.; Brown, B.B.; House, W.E.; Fray, R.R. ); Knobel, P.; Labbe, D.E. )

    1990-08-01

    This report summarizes a reliability, availability, and maintainability (RAM) analysis and an advanced control study conducted to support the Control Upgrade Project. The RAM analysis and advanced control study were conducted to determine the potential benefits of upgrading the Huntley Unit 65 control system, to transfer technology, and to identify the main contributors to plant unavailability. The RAM analysis used CAFTA software and was supplemented with a human factors evaluation. The advanced control study explored several traditional and advanced control strategies using the code Modular Modeling System (MMS) and incorporated a set of cost functions'' to provide comparison of the alternative strategies. The RAM analysis identified the main mechanical contributions to unavailability and showed that RAM analyses could be a tool for both plant operators and corporate managers to improve availability, prioritize expenditures, and improve maintenance. The model has been updated, and the database for the RAM analysis now contains eight years of data. 1 ref., 1 fig., 3 tabs.

  13. CHALLENGES FOR THE SNS RING ENERGY UPGRADE

    SciTech Connect

    Plum, Michael A; Gorlov, Timofey V; Holmes, Jeffrey A; Hunter, W Ted; Roseberry, Jr., R Tom; Wang, Jian-Guang

    2012-01-01

    The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

  14. ATA upgrade to 150 MeV

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-04-09

    The increased interests in upgrading the ATA accelerator has warranted a preliminary look at applying the magnetic drivers to achieve both higher energy and higher average power. The goal of this upgrade is to satisfy the FEL requirements and to keep the capability of producing a higher current beam for CPB experiments at reduced energy. ATA Note 247 showed that a possible solution to obtain higher energy was simply to add additional cells, run them at higher voltage and accept a 30 ns pulse width with about 5% energy variation. Considering the recent history of the cells and the doubling of the voltage stress that would be required at the insulator, it seemed prudent to review the overall system reliability and try a different approach.

  15. The CDF L2 XFT Trigger Upgrade

    SciTech Connect

    Lister, Alison; /UC, Davis

    2008-10-01

    We briefly present the eXtremely Fast Tracker stereo track upgrade for the CDF Level 2 trigger system. This upgrade enabled full 3D track reconstruction at Level 2 of the 3-Level CDF online triggering system. Using information provided by the stereo layers of the Central Outer Tracker, we can decrease the trigger rate due to fake tracks by requiring the tracks to be consistent with a single vertex in all three dimensions but also by using the track information to 'point' to the various detector components. We will also discuss the effectiveness of the Level 2 stereo track algorithm at achieving reduced trigger rates with high efficiencies during high luminosity running.

  16. The ALICE Central Trigger Processor (CTP) upgrade

    NASA Astrophysics Data System (ADS)

    Krivda, M.; Alexandre, D.; Barnby, L. S.; Evans, D.; Jones, P. G.; Jusko, A.; Lietava, R.; Pospíšil, J.; Villalobos Baillie, O.

    2016-03-01

    The ALICE Central Trigger Processor (CTP) at the CERN LHC has been upgraded for LHC Run 2, to improve the Transition Radiation Detector (TRD) data-taking efficiency and to improve the physics performance of ALICE. There is a new additional CTP interaction record sent using a new second Detector Data Link (DDL), a 2 GB DDR3 memory and an extension of functionality for classes. The CTP switch has been incorporated directly onto the new LM0 board. A design proposal for an ALICE CTP upgrade for LHC Run 3 is also presented. Part of the development is a low latency high bandwidth interface whose purpose is to minimize an overall trigger latency.

  17. NSLS Control Monitor and its upgrade

    SciTech Connect

    Ramamoorthy, S.; Smith, J.D.

    1993-07-01

    The NSLS Control Monitor is a real-time operating system designed for the microprocessor subsystems that control the machine hardware in the NSLS facility. Its major functions are to control the hardware in response to the commands from the host computers, monitor hardware status and report errors to the alarm handler. The software originally developed for the Multibus micros has been upgraded to run on the VME-based systems. The upgraded monitor provides ethernet communication with the new system and serial link with the old system. The dual link is the key feature for a smooth and nondisruptive transition at all levels of the control system. This paper describes the functions of the various modules of the monitor and future plans.

  18. A FOrward CALorimeter Upgrade For PHENIX

    SciTech Connect

    Hollis, Richard S.

    2011-06-01

    Over the past few years, the PHENIX detector has undergone several upgrades in the forward region (1<|{eta}|<4), initially covered only by the muon arms. The focus of these upgrades is toward a better understanding of the Color-Glass Condensate and the interplay between the different components of the proton's spin valence/sea quark and gluon contributions. This paper highlights the newly proposed forward calorimeter detector, FOCAL. FOCAL is a tungsten-silicon sampling calorimeter with high position and energy resolution, covering a pseudorapidity of 1.6<{eta}<2.5. This future detector aims to constrain the current view of gluon saturation at small x in the Color-Glass Condensate framework, through isolation of direct photons at high-p{sub T} over a broad range of pseudorapidity.

  19. Upgrade of the Upstream Tracker at LHCb

    NASA Astrophysics Data System (ADS)

    Andrews, Jason; LHCb Collaboration

    2015-04-01

    The LHCb detector will be upgraded to allow it operate at higher collider luminosity without the need for a hardware trigger stage. Flavor enriched events will be selected in a software based, high level trigger, using fully reconstructed events. This presentation will describe the design, optimization and the expected performance of the Upstream Tracker (UT), which has a critical role in high level trigger scheme.

  20. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  1. Upgrade of Fermilab/NICADD photoinjector laboratory

    SciTech Connect

    Piot, P.; Edwards, H.; Huning, M.; Li, J.; Tikhoplav, R.; Koeth, T.; /Rutgers U., Piscataway

    2005-05-01

    The Fermilab/NICADD photoinjector laboratory is a 16 MeV electron accelerator dedicated to beam dynamics and advanced accelerator physics studies. FNPL will soon be capable of operating at {approx} 40 MeV, after the installation of a high gradient TESLA cavity. In this paper we present the foreseen design for the upgraded facility along with its performance. We discuss the possibilities of using of FNPL as an injector for the superconducting module and test facility (SM&TF).

  2. SLC Energy Upgrade Program at SLAC

    SciTech Connect

    Loew, G.A.; Allen, M.A.; Cassel, R.L.; Dean, N.R.; Konrad, G.T.; Koontz, R.F.; Lebacqz, J.V.

    1985-03-01

    The SLAC Linear Collider (SLC) must reach a nominal center-of-mass energy of 100 GeV to fulfill its high energy physics goals. This paper describes the energy upgrade program that is being implemented on the SLAC linear accelerator to meet these goals. It includes a discussion of the design requirements and available technical options, the rationale for the adopted solution, and the technical problems involved in the engineering and production of klystrons and modulators.

  3. The Sandia Lightning Simulator Recommissioning and upgrades.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2005-08-01

    The Sandia lightning simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

  4. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  5. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  6. The APS control system network upgrade.

    SciTech Connect

    Sidorowicz, K. v.; Leibfritz, D.; McDowell, W. P.

    1999-10-22

    When it was installed,the Advanced Photon Source (APS) control system network was at the state-of-the-art. Different aspects of the system have been reported at previous meetings [1,2]. As loads on the controls network have increased due to newer and faster workstations and front-end computers, we have found performance of the system declining and have implemented an upgraded network. There have been dramatic advances in networking hardware in the last several years. The upgraded APS controls network replaces the original FDDI backbone and shared Ethernet hubs with redundant gigabit uplinks and fully switched 10/100 Ethernet switches with backplane fabrics in excess of 20 Gbits/s (Gbps). The central collapsed backbone FDDI concentrator has been replaced with a Gigabit Ethernet switch with greater than 30 Gbps backplane fabric. Full redundancy of the system has been maintained. This paper will discuss this upgrade and include performance data and performance comparisons with the original network.

  7. DAQ Architecture for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Liu, Guoming; Neufeld, Niko

    2014-06-01

    LHCb will have an upgrade of its detector in 2018. After the upgrade, the LHCb experiment will run at a high luminosity of 2 × 1033 cm-2s-1. The upgraded detector will be read out at 40 MHz with a highly flexible software-based triggering strategy. The Data Acquisition (DAQ) system of LHCb reads out the data fragments from the Front-End Electronics and transports them to the High-Lever Trigger farm at an aggregate throughput of ~ 32 Tbit/s. The DAQ system will be based on high speed network technologies such as InfiniBand and/or 10/40/100 Gigabit Ethernet. Independent of the network technology, there are different possible architectures for the DAQ system. In this paper, we present our studies on the DAQ architecture, where we analyze size, complexity and relative cost. We evaluate and compare several data-flow schemes for a network-based DAQ: push, pull and push with barrel-shifter traffic shaping. We also discuss the requirements and overall implications of the data-flow schemes on the DAQ system.

  8. Criteria development for upgrading computer networks

    NASA Technical Reports Server (NTRS)

    Efe, Kemal

    1995-01-01

    Being an infrastructure system, the computer network has a fundamental role in the day to day activities of personnel working at KSC. It is easily appreciated that the lack of 'satisfactory' network performance can have a high 'cost' for KSC. Yet, this seemingly obvious concept is quite difficult to demonstrate. At what point do we say that performance is below the lowest tolerable level? How do we know when the 'cost' of using the system at the current level of degraded performance exceeds the cost of upgrading it? In this research, we consider the cost and performance factors that may have an effect in decision making in regards to upgrading computer networks. Cost factors are detailed in terms of 'direct costs' and 'subjective costs'. Performance factors are examined in terms of 'required performance' and 'offered performance.' Required performance is further examined by presenting a methodology for trend analysis based on applying interpolation methods to observed traffic levels. Offered performance levels are analyzed by deriving simple equations to evaluate network performance. The results are evaluated in the light of recommended upgrade policies currently in use for telephone exchange systems, similarities and differences between the two types of services are discussed.

  9. Status of PLS-II Upgrade Program

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ryul; Wiedemann, Helmut; Park, Sung-Ju; Kim, Dong-Eon; Park, Chong-Do; Park, Sung-Soo; Kim, Seong-Hwan; Kim, Bongsoo; Namkung, Won; Nam, Sanghoon; Ree, Moonhor

    2010-06-01

    The Pohang Light Source (PLS) at the Pohang Accelerator Laboratory has been operated first at 2.0 GeV since 1995, and later was upgraded to 2.5 GeV. During this time, 6 insertion devices like undulators and multipole wigglers have been put into operation to produce special photon beams, with a total of 27 beamlines installed and 3 beamlines under construction. Recently, Korea synchrotron user's community is demanding high beam stability, higher photon energies as well as more straight sections for insertion devices in the PLS. To meet the user requirements, the PLS-II upgrade program has been launched in January, 2009, incorporating a modified chromatic version of Double Bend Achromat (DBA) to achieve almost twice as many straight sections as the current PLS with a design goal of the relatively low emittance, ɛ, of 5.9 nmṡrad. In the PLS-II, the top-up injection using full energy linac is planned for much higher stable beam as well and thus the production of hard x-ray undulator radiation of 8 to 13 keV is anticipated to allow for the successful research program namely Protein Crystallography. The PLS-II machine components of storage ring, linear accelerator and photon beamlines will be partly dismantled and reinstalled in a 6-months shutdown beginning January, 2011 and then the PLS-II upgrade be started the initial commissioning with a 100 mA beam current from July in 2011.

  10. Progress in the AGS upgrade projects

    SciTech Connect

    Sluyters, T.J.

    1989-01-01

    The objectives of the AGS Upgrade Project are to prepare the AGS for Booster injection with an increase in the proton intensity to 6 {times} 10{sup 13} particles per pulse for a new generation of experiments on rare K decay, neutrino physics, the (g-2) value of the muon, and many other areas; to increase polarized proton intensity to 10{sup 12} particles per pulse for multi-target spin physics; to accelerate heavy ions up to Au for heavy ion physics; and, of course, to improve the flexibility and reliability of the AGS. High priority has been given to those projects which will reduce, at an early stage, beam losses during injection and acceleration, such as a fast electrostatic beam chopper and a high frequency dilution cavity. Other upgrade programs in progress are: a vacuum overhaul to reduce the AGS operating pressure by a factor of 100; an upgrade of the low and high field magnet correction system; automation of the Siemens main magnet power supply, etc. 3 refs., 2 figs.

  11. Progress on the NSTX Center Stack Upgrade

    SciTech Connect

    L. Dudek, J. Chrzanowski, P. Heitzenroeder, D. Mangra, C. Neumeyer, M. Smith, R. Strykowsky, P. Titus, T. Willard

    2010-09-22

    The National Spherical Torus Experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the Toroidal Field (TF) coil, the Ohmic Heating (OH) coil, and the inner Poloidal Field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a Digital Coil Protection System (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  12. On optimal strategies for upgrading networks

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Marathe, M.V.; Ravi, S.S.; Ravi, R.; Sundaram, R.

    1996-07-02

    We study {ital budget constrained optimal network upgrading problems}. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. Given an edge weighted graph {ital G(V,E)}, in the {ital edge based upgrading model}, it is assumed that each edge {ital e} of the given network has an associated function {ital c(e)} that specifies for each edge {ital e} the amount by which the length {ital l(e)} is to be reduced. In the {ital node based upgrading model} a node {ital v} can be upgraded at an expense of cost {ital (v)}. Such an upgrade reduces the cost of each edge incident on {ital v} by a fixed factor {rho}, where 0 < {rho} < 1. For a given budget, {ital B}, the goal is to find an improvement strategy such that the total cost of reduction is a most the given budget {ital B} and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths is the best over all possible strategies which obey the budget constraint. Define an ({alpha},{beta})-approximation algorithm as a polynomial-time algorithm that produces a solution within {alpha} times the optimal function value, violating the budget constraint by a factor of at most {Beta}. The results obtained in this paper include the following 1. We show that in general the problem of computing optimal reduction strategy for modifying the network as above is {bold NP}-hard. 2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck spanning tree. The algorithms have a performance guarantee of (2 ln {ital n}, 1). 3. for the edge based improvement problems we present improved (in terms of performance and time) approximation algorithms. 4. We also present pseudo-polynomial time algorithms (extendible to polynomial time approximation schemes) for a number of edge/node based improvement problems when restricted to the class of treewidth-bounded graphs.

  13. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  14. Trans-Northern Pipelines upgrades ten-year-old SCADA system

    SciTech Connect

    Clarke, D.; West, T.

    1996-02-01

    Trans-Northern Pipelines Inc. (TNPI) recently completed a major upgrade program to modernize its supervisory control and data acquisition (SCADA) system. When compared to the in-place, ten year-old SCADA system, the upgraded system provides enhanced connectivity, safety and efficiency. TNPI`s rationale for installing a new SCADA system was based on a number of economic and other factors. On the cost side, the high upgrade expenses associated with the dated hardware and software of the existing system created a strong justification for replacing the system. Apart from leak detection and batch tracking, a major focus of the upgrade was to consolidate points of measurement on the pipelines for ticketing, billing and EDI transfer to other organizations. TNPI decided at the specification stage that full functionality for each operator at product delivery points and centralized offices was needed. This fully automated an operator`s daily duties, increased accuracy of transportation and communicated valuable SCADA data to the people and processes that would need it. This paper describes the design, performance, and the design making process that went into this system.

  15. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality. PMID:24293277

  16. Exploration of the Equilibrium Operating Space For NSTX-Upgrade

    SciTech Connect

    S.P. Gerhardt, R. Andre and J.E. Menard

    2012-04-25

    This paper explores a range of high-performance equilibrium scenarios available in the NSTX-Upgrade device [J.E. Menard, submitted for publication to Nuclear Fusion]. NSTX-Upgrade is a substantial upgrade to the existing NSTX device [M. Ono, et al., Nuclear Fusion 40, 557 (2000)], with significantly higher toroidal field and solenoid capabilities, and three additional neutral beam sources with significantly larger current drive efficiency. Equilibria are computed with freeboundary TRANSP, allowing a self consistent calculation of the non-inductive current drive sources, the plasma equilibrium, and poloidal field coil current, using the realistic device geometry. The thermal profiles are taken from a variety of existing NSTX discharges, and different assumptions for the thermal confinement scalings are utilized. The no-wall and idealwall n=1 stability limits are computed with the DCON code. The central and minimum safety factors are quite sensitive to many parameters: they generally increases with large outer plasmawall gaps and higher density, but can have either trend with the confinement enhancement factor. In scenarios with strong central beam current drive, the inclusion of non-classical fast ion diffusion raises qmin, decreases the pressure peaking, and generally improves the global stability, at the expense of a reduction in the non-inductive current drive fraction; cases with less beam current drive are largely insensitive to additional fast ion diffusion. The non-inductive current level is quite sensitive to the underlying confinement and profile assumptions. For instance, for BT=1.0 T and Pinj=12.6 MW, the non-inductive current level varies from 875 kA with ITER-98y,2 thermal confinement scaling and narrow thermal profiles to 1325 kA for an ST specific scaling expression and broad profiles. This sensitivity should facilitate the determination of the correct scaling of transport with current and field to use for future fully non-inductive ST devices

  17. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  18. Upgrading the Northern Finland Seismological Network

    NASA Astrophysics Data System (ADS)

    Narkilahti, Janne; Kozlovskaya, Elena; Silvennoinen, Hanna; Hurskainen, Riitta; Nevalainen, Jouni

    2016-04-01

    The Finnish National Seismic Network (FNSN) comprises national Helsinki University Seismological network (HE) ISUH and the Northern Finland Seismological Network (FN) hosted by the Sodankylä Geophysical Observatory (SGO) of the University of Oulu. The FN network currently consists of four real-time permanent stations equipped with Streckeisen STS-2 broad band seismometers that are recording continuous digital seismic data. At present, the network is a part of GEOFON Extended Virtual Network and of the ORFEUS Virtual European Broadband Seismograph Network. In the future, the network will be the part of EPOS-European Plate Observing System research infrastructure. As a part of EPOS project activities, the SGO started to upgrade their own network in 2014. The main target of the network upgrade is to increase the permanent station coverage in the European Arctic region, particularly behind the Polar Circle. Another target is to transform the network into a broadband seismic array capable to detect long-period seismic signals originating from seismic events in the Arctic. The first upgrade phase started in 2014, when two new stations were installed and now are working in the test regime. These stations are used as prototypes for testing seismic equipment and technical solutions for real-time data transmission and vault construction under cold climate conditions. The first prototype station is installed in a surface vault and equipped with Nanometrics Trillium 120P sensor, while the other one is installed in a borehole and equipped with Trillium Posthole seismometer. These prototype stations have provided to us valuable experience on the downhole and surface deployment of broadband seismic instruments. We also have been able to compare the capabilities and performance of high sensitivity broadband sensor deployed in borehole with that deployed in surface vault. The results of operation of prototype stations will be used in site selection and installation of four new

  19. REVIVING AND UPGRADING OF THE EP DEVICE

    SciTech Connect

    Rodriquez, I.; Higinbotham, D.W.

    2008-01-01

    At Thomas Jefferson National Accelerator Facility, an electron beam is used to probe the fundamental properties of the nucleus. In these experiments, it is essential to know the precise energy of the beam. An important instrument along the beamline to measure the beam energy is the eP device. The device measures the scattered electron angle and the recoil proton angle of an elastic collision. From these angle measurements, the beam energy can be calculated. Many eP device components such as computer software, controls, and mechanical parts needed to be upgraded and/or replaced in order for the eP device to be operational again. A research study was conducted of the current hydrogen target and its properties as well as alternate targets for better performance. As the maximum electron beam energy incident on the eP device will soon be upgraded from 6 GeV to 12 GeV, an analysis was also done on potential changes to the position of the electron and proton detectors in order to accommodate this change. Calculations show that for the new energy upgrade, electron detectors need to be positioned at 5° above and below the beamline to measure the energy of 12 GeV. New proton detectors need to be placed at an angle of 49.2° above and below the beamline to measure energies of 6.6 GeV and 8.8 GeV. With these changes the eP device will measure the range of new energies from 2.2 GeV to 12 GeV. From the target research studies it was found that a carbon nanotube mixture with polypropylene could be the ideal target for the eP device because of its high thermal conductivity and its high hydrogen content. The changes made to the eP device demonstrate the importance of continued research and new technologies.

  20. Tap upgrade wins praise all round.

    PubMed

    Berry, Hannah

    2011-06-01

    An ongoing upgrading of clinical handwashing facilities at its hospitals by NHS Lanarkshire is seeing the Scottish Health Board replace, in many cases, ageing basins and taps subject to Healthcare Environment Inspectorate (HEI) criticism, with standardised modules comprising a clinical basin, Horne Engineering's Optitherm thermostatic tap, and soap and towel dispensers, all mounted on a single integrated panel structure. As Home's marketing manager, Hannah Berry, explains, one of the many benefits is that the Board's Estates Department no longer needs a large "arsenal" of spare parts in stock for different fittings. PMID:21776925

  1. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  2. MCNPX graphics and arithmetic tally upgrades

    SciTech Connect

    Durkee, Joe W; James, Michael R; Waters, Laurie S

    2008-01-01

    The MCNPX MCPLOT package is the tool used to plot tallies and cross-sections. We report on an assortment of upgrades to MCPLOT that are intended to improve the appearance of two-dimensional tally and cross-section plots. We have also expanded the content and versatility of the MCPLOT 'help' command. Finally, we describe the initial phase of capability implementation to post-process tally data using arithmetic operations. These improvements will enable users to better display and manipulate simulation results.

  3. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  4. Upgrading of the Borowiec laser station

    NASA Technical Reports Server (NTRS)

    Schillak, Stanislaw; Butkiewicz, E.; Wiktorowski, J.

    1993-01-01

    The major upgrade at the Borowiec satellite laser ranging (SLR) station since the last workshop is the new third generation laser, which has been installed in September 1991. Short description of the new CONTINUUM laser and first results of satellites observations are presented. The results confirm expected increase in accuracy (3-5 cm) and in the number of measurements per satellite pass (several hundred). In addition, information about second Borowiec SLR system is presented. Borowiec No 2 is designated for Tunisia in the next year. The system is not yet operational.

  5. Upgrade of the area II spectrograph

    SciTech Connect

    Rehm, K.E.; Bolduc, C.

    1995-08-01

    Because of the low beam energies required for experiments of astrophysical interest, the first test experiments with radioactive {sup 18}F beams can be performed in Area II. Because of the shorter distances between ion source and detector this also results in higher transmission efficiencies. The Enge split-pole spectrograph, which was not used during the last 8 years, was equipped with a new cryopump system, upgrades to the magnet power supply and the NMR system were performed. A rotating target system was built which should alleviate target deterioration effects that were observed in first test experiments.

  6. The value of steam turbine upgrades

    SciTech Connect

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  7. Alaska Seismic Network Upgrade and Expansion

    NASA Astrophysics Data System (ADS)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    AEIC (Alaska Earthquake Information Center) has begun the task of upgrading the older regional seismic monitoring sites that have been in place for a number of years. Many of the original sites (some dating to the 1960's) are still single component analog technology. This was a very reasonable and ultra low power reliable system for its day. However with the advanced needs of today's research community, AEIC has begun upgrading to Broadband and Strong Motion Seismometers, 24 bit digitizers and high-speed two-way communications, while still trying to maintain the utmost reliability and maintaining low power consumption. Many sites have been upgraded or will be upgraded from single component to triaxial broad bands and triaxial accerometers. This provided much greater dynamic range over the older antiquated technology. The challenge is compounded by rapidly changing digital technology. Digitizersand data communications based on analog phone lines utilizing 9600 baud modems and RS232 are becoming increasingly difficult to maintain and increasingly expensive compared to current methods that use Ethernet, TCP/IP and UDP connections. Gaining a reliable Internet connection can be as easy as calling up an ISP and having a DSL connection installed or may require installing our own satellite uplink, where other options don't exist. LANs are accomplished with a variety of communications devices such as spread spectrum 900 MHz radios or VHF radios for long troublesome shots. WANs are accomplished with a much wider variety of equipment. Traditional analog phone lines are being used in some instances, however 56K lines are much more desirable. Cellular data links have become a convenient option in semiurban environments where digital cellular coverage is available. Alaska is slightly behind the curve on cellular technology due to its low population density and vast unpopulated areas but has emerged into this new technology in the last few years. Partnerships with organizations

  8. Operation and Upgrades of the LCLS*

    SciTech Connect

    Frisch, J.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; /SLAC /Argonne /SLAC

    2010-10-27

    The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.

  9. An upgraded version of the Eta model

    NASA Astrophysics Data System (ADS)

    Mesinger, Fedor; Chou, Sin Chan; Gomes, Jorge L.; Jovic, Dusan; Bastos, Paulo; Bustamante, Josiane F.; Lazic, Lazar; Lyra, André A.; Morelli, Sandra; Ristic, Ivan; Veljovic, Katarina

    2012-05-01

    Upgrades implemented over a number of years in an open source version of the Eta model, posted at the CPTEC web site http://etamodel.cptec.inpe.br/ , are summarized and examples of benefits are shown. The version originates from the NCEP's Workstation Eta code posted on the NCEP web site http://www.emc.ncep.noaa.gov/mmb/wrkstn_eta , which differs from the NCEP's latest operational Eta by having the WRF-NMM nonhydrostatic option included. Most of the upgrades made resulted from attention paid to less than satisfactory performance noted in several Eta results, and identification of the reasons for the problem. Others came from simple expectation that including a feature that is physically justified but is missing in the code should help. The most notable of the upgrades are the introduction of the so-called sloping steps, or discretized shaved cells topography; piecewise-linear finite-volume vertical advection of dynamic variables; vapor and hydrometeor loading in the hydrostatic equation, and changes aimed at refining the convection schemes available in the Eta. Several other modifications have to do with the calculation of exchange coefficients, conservation in the vertical diffusion, and diagnostic calculation of 10-m winds. Several examples showing improved performance resulting from the dynamics changes are given. One includes a case of unrealistically low temperatures in several mountain basins generated by a centered vertical advection difference scheme's unphysical advection from below ground, removed by its replacement with a finite-volume scheme. Another is that of increased katabatic winds in the Terra Nova Bay Antarctica region. Successful forecast of the severe downslope zonda wind case in the lee of

  10. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  11. UIUC control console installation and upgrade

    SciTech Connect

    Holm, Richard L.

    1994-07-01

    The University of Illinois Nuclear Reactor Laboratory shutdown in March of 1993 to install the General Atomics digital control console. Two weeks of this period were devoted to refurbishment of the rod drives and two weeks were the actual installation of the console. Much of the wiring necessary to install the console was done during the period when the rod drives were being refurbished. A few mistakes were made along the way. 1) A 'repaired' extension cord was temporarily used to supply power to the DAC... the ground and neutral were reversed... this was not appreciated by the DAC{exclamation_point} We had to replace a couple of the boards in the DAC after that little fiasco. 2) The instrumentation cables for the rod drives were received with the plugs all connected and ready to install... except you can't put a two inch plug through a half inch conduit. We had to cut the plugs off, run the cable through the conduit, and then resolder the plugs on where the rod drive assembly connects (my privilege). 3) We had to replace the memory board in the NM1000 in order to prevent it from losing its mind every time it got turned off. 4) There were problems with the pulse data acquisition that were eventually traced to a problem in the ribbon cable between the mother and daughter boards. All in all the installation and operation of the console went fairly well. There are still occasional glitches, but none serious or excessively annoying. The console installation is part of an upgrade program to replace all of the instrumentation in the facility with the modern equivalent. The pressure and flow sensors, currently air operated, are being replaced with 4-20 ma transmitters for input into the control console and into a mimic board for the primary and secondary systems. Through the funding of the now defunct, temporarily we hope, Reactor Instrumentation Program we have upgraded our area radiation monitors as well. These upgrades provide us with more reliable equipment as well as

  12. Methods and apparatuses for preparing upgraded pyrolysis oil

    SciTech Connect

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  13. Upgrade and Operation of the DZero Central Track Trigger

    SciTech Connect

    Pangilinan, M.P.; Buehler, M.D.; /Virginia U.

    2007-04-01

    The D{O} experiment at the Fermilab p{bar p} Tevatron collider (Batavia, IL, USA) has undergone significant upgrades in anticipation of high luminosity running conditions. As part of the upgrade, the capabilities of the Central Track Trigger (CTT) to make trigger decisions based on hit patterns in the Central Fiber Tracker (CFT) have been much improved. We report on the implementation, commissioning and operation of the upgraded CTT system.

  14. Successful Strategies for Rapidly Upgrading PTC Windchill 9.1 to Windchill 10.1 on a Light Budget

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    2013-01-01

    Topics covered include: The Frugal Times Historical Upgrade Process; Planning for Possible Constraints; PTC Compatibility Matrix; In-Place Upgrade Process; Pre-Upgrade Activities; Upgrade Activities; Post Upgrade Activities; Results of the Upgrade; Tips for an Upgrade On a Shoestring Budget.

  15. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  16. Compression station upgrades include advanced noise reduction

    SciTech Connect

    Dunning, V.R.; Sherikar, S.

    1998-10-01

    Since its inception in the mid-`80s, AlintaGas` Dampier to Bunbury natural gas pipeline has been constantly undergoing a series of upgrades to boost capacity and meet other needs. Extending northward about 850 miles from near Perth to the northwest shelf, the 26-inch line was originally served by five compressor stations. In the 1989-91 period, three new compressor stations were added to increase capacity and a ninth station was added in 1997. Instead of using noise-path-treatment mufflers to reduce existing noise, it was decided to use noise-source-treatment technology to prevent noise creation in the first place. In the field, operation of these new noise-source treatment attenuators has been very quiet. If there was any thought earlier of guaranteed noise-level verification, it is not considered a priority now. It`s also anticipated that as AlintaGas proceeds with its pipeline and compressor station upgrade program, similar noise-source treatment equipment will be employed and retrofitted into older stations where the need to reduce noise and potential radiant-heat exposure is indicated.

  17. APS deposition facility upgrades and future plans

    NASA Astrophysics Data System (ADS)

    Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth

    2014-09-01

    The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.

  18. On-line upgrade of program modules

    NASA Technical Reports Server (NTRS)

    Waldrop, Raymond S.; Volz, Richard A.; Smith, Gary W.; Holzbacher-Valero, A. A.; Goldsack, S. J.

    1993-01-01

    This paper presents a taxonomy of problems that must be solved in order to achieve on-line upgradability of long-lived programs, and presents a solution to the fundamental problems in the taxonomy. The solutions are based upon AdaPT, a set of language extensions designed to aid in the distribution of a single Ada program. AdaPT introduces three major units, the public, the partition, and the node. Publics are primarily used to share type information. Partitions are the basic units of distribution while nodes are used to control the configuration of the program. Nodes and partitions can be created dynamically via the allocator. A node-level routine controls the replacement process. The controlling node creates a new instance of the routine being replaced; the run-time system must ensure that the new instance is the updated one. Once access to the new version has been established, all further calls to the module are redirected to the new version and the caller is informed of the change so that it may make subsequent calls directly. When a module is being upgraded, there is a transition period during which both the old and new versions are present. We require that clients of a potentially replaceable module 'check in' with the controlling node. The controlling node keeps track of the number of clients that have been redirected to the replacement. When all have been redirected, the old version can be deallocated.

  19. MAPS development for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  20. Simulation study supporting wastewater treatment plant upgrading.

    PubMed

    Hvala, N; Vrecko, D; Burica, O; Strazar, M; Levstek, M

    2002-01-01

    The paper presents a study where upgrading of an existing wastewater treatment plant was supported by simulation. The aim of the work was to decide between two technologies to improve nitrogen removal: a conventional activated sludge process (ASP) and a moving bed biofilm reactor (MBBR). To perform simulations, the mathematical models of both processes were designed. The models were calibrated based on data from ASP and MBBR pilot plants operating in parallel on the existing plant. Only two kinetic parameters needed to be adjusted to represent the real plant behaviour. Steady-state analyses have shown a similar efficiency of both processes in relation to carbon removal, but improved performance of MBBR in relation to nitrogen removal. Better performance of MBBR can be expected especially at low temperatures. Simulations have not confirmed the expected less volume required for the MBBR process. Finally, the MBBR was chosen for plant upgrading. The developed process model will be further used to evaluate the final plant configuration and to optimise the plant operating parameters. PMID:12361028

  1. Upgrade of the Belle Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Belle SVD Collaboration

    2010-11-01

    The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.

  2. Simulating Avionics Upgrades to the Space Shuttles

    NASA Technical Reports Server (NTRS)

    Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

    2008-01-01

    Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

  3. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  4. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  5. A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem

    2015-11-01

    Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  6. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  7. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    SciTech Connect

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. CHESS upgrade 1995: Improved radiation shielding (abstract)

    NASA Astrophysics Data System (ADS)

    Finkelstein, K. D.

    1996-09-01

    The Cornell Electron Storage Ring (CESR) stores electrons and positrons at 5.3 GeV for the production and study of B mesons, and, in addition, it supplies synchrotron radiation for CHESS. The machine has been upgraded for 300 mA operation. It is planned that each beam will be injected in about 5 minutes and that particle beam lifetimes will be several hours. In a cooperative effort, staff members at CHESS and LNS have studied sources in CESR that produce radiation in the user areas. The group has been responsible for the development and realization of new tunnel shielding walls that provide a level of radiation protection from 20 to ≳100 times what was previously available. Our experience has indicated that a major contribution to the environmental radiation is not from photons, but results from neutrons that are generated by particle beam loss in the ring. Neutrons are stopped by inelastic scattering and absorption in thick materials such as heavy concrete. The design for the upgraded walls, the development of a mix for our heavy concrete, and all the concrete casting was done by CHESS and LNS personnel. The concrete incorporates a new material for this application, one that has yielded a significant cost saving in the production of over 200 tons of new wall sections. The material is an artificially enriched iron oxide pellet manufactured in vast quantities from hematite ore for the steel-making industry. Its material and chemical properties (iron and impurity content, strength, size and uniformity) make it an excellent substitute for high grade Brazilian ore, which is commonly used as heavy aggregate in radiation shielding. Its cost is about a third that of the natural ore. The concrete has excellent workability, a 28 day compressive strength exceeding 6000 psi and a density of 220 lbs/cu.ft (3.5 gr/cc). The density is limited by an interesting property of the pellets that is motivated by efficiency in the steel-making application. The pellets are made to be

  9. Operational test report integrated system test (ventilation upgrade)

    SciTech Connect

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  10. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  11. Motivational Potential for Upgrading Among Minority and Female Managers

    ERIC Educational Resources Information Center

    Miner, John B.

    1977-01-01

    The data suggest that minority males might provide a major source of potential talent for upgrading into middle-management levels and above and also yield no support for the hypothesis that white female managerial potential for upgrading is less than that of white male managers. (Author)

  12. Syracuse Upgrading Project-December 1967--June 1970.

    ERIC Educational Resources Information Center

    Syracuse Univ. Research Corp., NY.

    The document reports on a training program designed to accelerate in-plant upgrading of skills, first in metal-working, then in health-service occupations, through training provided in off-work time. The project was to evaluate the use of allowances as incentives, and to provide guidelines for future upgrading programs. (Author)

  13. Performance and Upgrades of the Fermilab Accumulator Stacktail Stochastic Cooling

    SciTech Connect

    Derwent, P. F.; Cullerton, Ed; McGinnis, David; Pasquinelli, Ralph; Sun Ding; Tinsley, David

    2006-03-20

    We report on the performance and planned upgrades to the Fermilab Accumulator Stacktail Stochastic Cooling System. The current system has achieved a maximum flux of 16.5e10/hour, limited by the input flux of antiprotons. The upgrades are designed to handle flux in excess of 40e10/hour.

  14. Performance and upgrades of the Fermilab Accumulator stacktail stochastic cooling

    SciTech Connect

    Derwent, P.F.; Cullerton, Ed; McGinnis, David; Pasquinelli, Ralph; Sun, Ding; Tinsley, David; /Fermilab

    2005-11-01

    We report on the performance and planned upgrades to the Fermilab Accumulator Stacktail Stochastic Cooling System. The current system has achieved a maximum flux of 16.5e10/hour, limited by the input flux of antiprotons. The upgrades are designed to handle flux in excess of 40e10/hour.

  15. The CDF II eXtremely fast tracker upgrade

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana /INFN, Pisa /Pisa U. /Ohio State U. /Baylor U. /UC, Davis /Athens Natl. Capodistrian U. /Purdue U. /Fermilab

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  16. NASA Glenn PSL-3 and 4 Control System Upgrade

    NASA Technical Reports Server (NTRS)

    Lizanich, Paul J.

    2010-01-01

    An overview of the PSL-3&4 Jet Engine Test Facility control system; including its history, a description of the present effort to upgrade from Emerson Ovation v2.2 to V3.3.1, and future upgrade plans is shown.

  17. TMX-Upgrade neutral-beam injection system

    SciTech Connect

    Felker, B.; Kane, R.J.; Wong, R.L.; Calderon, M.O.; Moore, T.L.

    1981-10-05

    The TMX experiment proved that axial confinement of central-cell ions is improved ninefold by the electrostatic potential of end-cell plasmas. The TMX Upgrade task is to improve this confinement further. This paper discusses the injector system aspects of the TMX Upgrade.

  18. 28 CFR 115.118 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies. 115.118 Section 115.118 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.118 Upgrades to...

  19. 28 CFR 115.318 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies. 115.318 Section 115.318 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Juvenile Facilities Prevention Planning § 115.318 Upgrades...

  20. 28 CFR 115.318 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies. 115.318 Section 115.318 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Juvenile Facilities Prevention Planning § 115.318 Upgrades...

  1. 28 CFR 115.118 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies. 115.118 Section 115.118 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.118 Upgrades to...

  2. 28 CFR 115.318 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies. 115.318 Section 115.318 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Juvenile Facilities Prevention Planning § 115.318 Upgrades...

  3. 28 CFR 115.118 - Upgrades to facilities and technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies. 115.118 Section 115.118 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PRISON RAPE ELIMINATION ACT NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.118 Upgrades to...

  4. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  5. Performance modeling of an upgraded NIRSPEC on Keck

    NASA Astrophysics Data System (ADS)

    Martin, Emily C.; Fitzgerald, Michael P.; McLean, Ian S.; Adkins, Sean M.; Aliado, Ted; Brims, George; Johnson, Chris; Magnone, Ken; Wang, Eric; Weiss, Jason

    2014-08-01

    NIRSPEC is a high-resolution near-infrared (1-5 micron) echelle spectrometer in use on the Keck II telescope. We are designing an upgrade to the spectrometer, and here we present modeling for the expected performance of the upgraded system. The planned upgrade will (1) replace the Aladdin III science detector with a Teledyne H2RG, (2) update the slitviewing camera (SCAM) detector to an H1RG and replace the optics, and (3) upgrade the instrument control electronics. The new spectrometer detector has smaller pixels but a larger format, and its improved noise characteristics will provide a dramatic increase in sensitivity, especially between OH lines in H-band and shorter wavelengths. Optical modeling shows that the upgraded system is expected to achieve higher spectral resolution and a larger spectral grasp. Also, preliminary modeling of the SCAM optical design aims to permit operation from 1-5 μm, overcoming a limitation with the existing system.

  6. Modern hydrocracking is the key to upgrading processes

    SciTech Connect

    Corbett, R.A.

    1989-06-26

    Hydrocracking technology is the key to Canada's heavy oil and bitumen upgrading facilities that have recently started or are due to start up during the next few years. The upgrader at Consumers' Cooperative Refineries Ltd. in Regina Sask.; the capacity addition program (CAP) at Syncrude Canada Ltd.'s Fort McMurray, Alta., plant; Husky Oil Operations Ltd.'s Bi-Provincial upgrader to be built near Lloydminster, Sask.; and the OSLO project to be built near Fort McMurray, all rely on this modern technology for primary upgrading. All of the projects are designed to upgrade heavy oil and bitumen extracted from oil sands to a high-quality synthetic crude oil (SCO) that is a blend of high-quality naphtha and gas oil.

  7. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  8. Silicon strip detectors for the ATLAS upgrade

    SciTech Connect

    Gonzalez-Sevilla, S.

    2011-07-01

    The Large Hadron Collider at CERN will extend its current physics program by increasing the peak luminosity by one order of magnitude. For ATLAS, one of the two general-purpose experiments of the LHC, an upgrade scenario will imply the complete replacement of its internal tracker due to the harsh conditions in terms of particle rates and radiation doses. New radiation-hard prototype n-in-p silicon sensors have been produced for the short-strip region of the future ATLAS tracker. The sensors have been irradiated up to the fluences expected in the high-luminous LHC collider. This paper summarizes recent results on the performance of the irradiated n-in-p detectors. (authors)

  9. New Positron Spectrometer for MEG Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Nishimura, M.

    2014-08-01

    An upgrade of the MEG experiment, which searches for the lepton flavor violating decay, μ → eγ, at the highest sensitivity ever, is planned in order to improve the sensitivity down to ∼ 5 ×10-14. We plan to employ a stereo wire drift chamber with a unique volume for the tracking and a pixelated scintillation detector with silicon photomultiplier (SiPM) readout for the timing measurement with improved efficiency and resolutions. We will describe the expected performance and the R&D status of the new spectrometer especially focusing on the new timing counter, which is expected to contribute better resolution of the relative timing between positron and gamma-ray.

  10. INSERTION DEVICE UPGRADE PLANS AT THE NSLS.

    SciTech Connect

    TANABE, T.; BLEDNYKH, A.; HARDER, D.; LEHECKA, M.; RAKOWSKY, G.; SKARITKA, J.

    2005-05-16

    This paper describes plans to upgrade insertion devices (IDs) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, U.S.A. The aging wiggler (W120) at X25 is being replaced by a 1 m long in-vacuum mini-gap undulator (MGU-X25) optimized for a dedicated macromolecular crystallography program. A new, 1/3 m long, undulator (MGU or SCU-X9), will be installed between a pair of RF cavities at X9, and will serve a new beamline dedicated for small angle x-ray scattering (SAXS). Both IDs will have provision for cryocooling the NdFeB hybrid arrays to 150K to raise the field and K-value and to obtain better spectral coverage. Design issues of the devices and other considerations, especially magnetic measurement at low temperature, will be discussed.

  11. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; Byrd, J.; /LBL, Berkeley

    2007-10-04

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  12. PEP-II Transverse Feedback Electronics Upgrade

    SciTech Connect

    Weber, J.; Chin, M.; Doolittle, L.; Akre, R.

    2005-05-09

    The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx(R) ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.

  13. LLRF System for the CEBAF Separator Upgrade

    SciTech Connect

    Plawski, Tomasz E.; Bachimanchi, Ramakrishna; Hovater, J. Curt; Seidman, David J.; Wissmann, Mark J.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. This system will work together with the existing 499 MHz RF Separator in order to allow simultaneous delivery of the beam to four CEBAF experimental halls. The RF system employs two digital LLRF systems controlling four cavities in a vector sum. Cavity tune information of the individual cavities is also obtained using a multiplexing scheme of the forward and reflected RF signals. In this paper we will present detailed LLRF design and the current status of the CEBAF 748.5/499 MHz beam extraction system.

  14. PEP-II Transverse Feedback Electronics Upgrade

    SciTech Connect

    Weber, J.M.; Chin, M.J.; Doolittle, L.R.; Akre, R.; /SLAC

    2006-03-13

    The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx{reg_sign} ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.

  15. Steam turbine upgrading: low-hanging fruit

    SciTech Connect

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  16. D{O} upgrade muon electronics design

    SciTech Connect

    Baldin, B.; Green, D.; Haggerty, H.; Hansen, S.

    1994-11-01

    The planned luminosity for the upgrade is ten times higher than at present (L {approximately} 10{sup 32}cm{sup {minus}2}s{sup {minus}1}) and involves a time between collisions as small as 132 ns. To operate in this environment, completely new electronics is required for the 17,500 proportional drift tubes of the system. These electronics include a deadtimeless readout, a digital TDC with about 1 ns binning for the wire signals, fast charge integrators and pipelined ADCs for digitizing the pad electrode signals, a new wire signal triggering scheme and its associated trigger logic, and high level DSP processing. Some test results of measurements performed on prototype channels and a comparison with the existing electronics are presented.

  17. Irvine FRC Plasma Characterization and Upgrades

    NASA Astrophysics Data System (ADS)

    Trask, E. H.

    2005-10-01

    Reversed fields of ˜100 Gauss have been observed. New three dimensional magnetic probe arrays aid us in analyzing the structure of our fields throughout the formation and evolution of our field reversed configuration. Plasma densities of 2x10^13 cm-3 and temperatures of ˜2 eV have been observed with a triple probe diagnostic. Confirmation of the plasma density is being tested with a 30 GHz interferometer. Extensive work has been done to increase both the number of channels in our data acquisition system as well as the sensitivity and reliability of our measurements. We will provide an overview of our current acquisition system as well as planned upgrades.

  18. Naphthene upgrading with pillared synthetic clay catalysts

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1995-12-31

    Catalytic hydrotreatment of methylcyclohexane was investigated to model upgrading of coal-derived naphthenes. Nickel-substituted synthetic mica montmorillonite (NiSMM), alumina-pillared NiSMM, and zirconia-pillared NiSMM were prepared and tested for hydrocracking and hydroisomerization of mediylcyclohexane. Infrared and thermal desorption studies of the pyridine-adsorbed catalysts indicated the presence of Lewis as well as Bronsted acid sites. Total acidity and surface area increased with pillaring of NiSMM with polyoxy aluminum and polyoxy zirconium cations. Most of the products were branched alkanes (isoparaffins). These compositions are highly desirable for environmentally acceptable transportation fuels. Furthermore, dehydrogenation was not a major pathway, as indicated by the minimal formation of aromatic hydrocarbons, coke, or other oligomeric materials. This paper describes the effect of various operating conditions, which included reaction temperature, contact time, hydrogen pressure, and catalyst on the product distribution.

  19. Online track processor for the CDF upgrade

    SciTech Connect

    E. J. Thomson et al.

    2002-07-17

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented.

  20. The upgraded LTP-V at SLS

    NASA Astrophysics Data System (ADS)

    Flechsig, U.; Jaggi, A.; Krempaský, J.; Spielmann, S.; Thominet, V.

    2013-05-01

    Since 2005 the Swiss Light Source (SLS) has been operating a Long Trace Profiler (LTP)-V from Ocean Optics in its metrology laboratory to measure the synchrotron optics for SLS. In 2012 we finished a significant upgrade to improve the accuracy, reliability and measurement efficiency in particular for the calibration of adaptive optics. Folding mirrors with figure errors <λ/100 and an additional linear encoder have been installed, the 1d CCD detector with 2048 pixels has been replaced by a 16 mega-pixel CCD camera with gigabit ethernet interface GigE, the monolithic software has been replaced by a modular, full- EPICS compatible system based on a new LTP plugin for the areaDetector software for image processing. The plugin allows slope determination in real time i.e. per frame.

  1. Tracking system of the upgraded LHCb

    NASA Astrophysics Data System (ADS)

    Obłąkowska-Mucha, A.; Szumlak, T.

    2016-07-01

    The upgrade of the LHCb experiment will run at an instantaneous luminosity up to 2 ×1033cm-2s-1 with a fully software based trigger, allowing us to read out the detector at a rate of 40 MHz. For this purpose, the full tracking system will be newly developed: the vertex locator (VELO) will be replaced by a pixel-based detector providing an excellent track reconstruction with an efficiency of above 99%. Upstream of the magnet, a silicon micro-strip detector with a high granularity and an improved acceptance, called the Upstream Tracker (UT) will be placed. The tracking system downstream of the magnet will be replaced by the Scintillating Fibre tracker (SciFi), which will consist of 12 layers using 2.5 m long scintillating fibres read out by silicon photo-multipliers.

  2. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  3. Upgrading the TFTR Transrex Power Supplies

    SciTech Connect

    J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta

    2009-05-29

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).

  4. Trigger System Upgrades for the SNO+ Experiment

    NASA Astrophysics Data System (ADS)

    Marzec, Eric; Sno+ Collaboration

    2015-04-01

    The SNO+ experiment will explore many topics in neutrino physics including neutrino-less double beta decay, low-energy solar neutrinos, antineutrinos from reactors and natural sources, nucleon decay, and potentially supernova neutrinos. The SNO+ trigger and readout system consists of electronics both inherited from the SNO detector and newly created specifically to address the challenges presented by the addition of scintillation light. Addition of new utilities to the SNO+ trigger system will allow for a flexible calibration interface, more sophisticated use of the existing trigger system, and new, more targeted, background cuts that will improve physics sensitivity. These utilities will largely be orchestrated by a MicroZed System on Chip (SoC), micro-controller. Their range of application includes automatic fault detection, upgrades of SNO utilities, noise reduction, and interfacing between components of the trigger system.

  5. Novel Upgrades to the Ral Ground Station

    NASA Astrophysics Data System (ADS)

    Allan, P. M.; Wright, J. S.

    The Rutherford Appleton Laboratory is in the process of upgrading its ground station from a single band operation with standard receivers, to a dual band operation with state of the art reception systems. Both the conversion to a dual band system and the introduction of a new receiver system makes use of novel technology that provides a major improvement in capabilities at a moderate cost. The paper will discuss the two main aspects of the upgrade and the corresponding improvement in capability, in particular the ability to work deep space missions with relatively small antennas. The antenna in the RAL ground station was constructed 40 years ago, to high standards of accuracy. It has been used for many years as an S-band system, but the surface accuracy is good enough for us to attempt to use it at X-band as well. The paper will describe the tests that were performed using a geostationary satellite to measure the surface accuracy and the installation of the new feed system. The new low noise amplifier and receivers use a novel DSP system that allow a very versatile operational system to be built and result in a very sensitive system. The data that are normally received with our 12.5 m antenna can be picked up with a 60cm horn by using the new low-noise amplifier, encouraging us to attempt to use the 12.5 m dish in situations that would normally require a much larger antenna. The presentation will give the latest status on these experiments.

  6. The DIII-D cryogenic system upgrade

    SciTech Connect

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  7. Life cycle assessment of biogas upgrading technologies.

    PubMed

    Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia

    2012-05-01

    This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. PMID:22230660

  8. A major upgrade of the VALD database

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Kurucz, R. L.; Stempels, H. C.; Heiter, U.; Pakhomov, Yu; Barklem, P. S.

    2015-05-01

    Vienna atomic line database (VALD) is a collection of critically evaluated laboratory parameters for individual atomic transitions, complemented by theoretical calculations. VALD is actively used by astronomers for stellar spectroscopic studies—model atmosphere calculations, atmospheric parameter determinations, abundance analysis etc. The two first VALD releases contained parameters for atomic transitions only. In a major upgrade of VALD—VALD3, publically available from spring 2014, atomic data was complemented with parameters of molecular lines. The diatomic molecules C2, CH, CN, CO, OH, MgH, SiH, TiO are now included. For each transition VALD provides species name, wavelength, energy, quantum number J and Landé-factor of the lower and upper levels, radiative, Stark and van der Waals damping factors and a full description of electronic configurarion and term information of both levels. Compared to the previous versions we have revised and verify all of the existing data and added new measurements and calculations for transitions in the range between 20 Å and 200 microns. All transitions were complemented with term designations in a consistent way and electron configurations when available. All data were checked for consistency: listed wavelength versus Ritz, selection rules etc. A new bibliographic system keeps track of literature references for each parameter in a given transition throughout the merging process so that every selected data entry can be traced to the original source. The query language and the extraction tools can now handle various units, vacuum and air wavelengths. In the upgrade process we had an intensive interaction with data producers, which was very helpful for improving the quality of the VALD content.

  9. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  10. The IPNS RCS RF-system third cavity upgrade.

    SciTech Connect

    Middendorf, M.E.; Brumwell, F. R.; Dooling, J.C.; Lein, M. K.; McMichael, G. E.; Intense Pulsed Neutron Source

    2001-12-01

    The IPNS RCS is a rapid cycling synchrotron used to accelerate protons from 50 MeV to 450 MeV, 30 times per second. Currently, two single-gap, ferrite-loaded coaxial cavities, located 180 degrees apart, provide a total peak accelerating voltage of approximately 21 kV over the 2.2 MHz to 5.1 MHz revolution frequency band. An amplifier chain, which includes a 2 kW predriver, a 20 kW driver and a 100 kW final, drives each cavity. A third RF system, consisting of a cavity, cavity bias supply, and amplifier chain, is currently under construction. When complete, this upgrade will provide flexibility in operation that is expected to enhance reliability (i.e., three cavity operation at higher total accelerating voltage, three cavity operation at lower voltage per cavity, or two cavity operation with an on-line spare). In addition, the third cavity will provide an experimental station for second harmonic RF cavity studies. We report progress to date.

  11. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    SciTech Connect

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-09-15

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80/sup 0/K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  12. Screening of processing and upgrading schemes. Task 3

    SciTech Connect

    Not Available

    1991-10-01

    The RFP was predicated on DOE`s desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  13. Maintenance and Upgrading of the Richmond Physics Supercomputing Cluster

    NASA Astrophysics Data System (ADS)

    Davda, Vikash

    2003-10-01

    The supercomputing cluster in Physics has been upgraded. It supports nuclear physics research at Jefferson Lab, which focuses on probing the quark-gluon structure of atomic nuclei. We added new slave nodes, increased storage, raised a firewall, and documented the e-mail archive relating to the cluster. The three new slave nodes were physically mounted and configured to join the cluster. A RAID for extra storage was moved from a prototype cluster and configured for this cluster. A firewall was implemented to enhance security using a separate node from the prototype cluster. The software Firewall Builder was used to set communication rules. Documentation consists primarily of e-mails exchanged with the vendor. We wanted web-based, searchable documentation. We used SWISH-E, non-proprietary indexing software designed to search through file collections such as e-mails. SWISH-E works by first creating an index. A built-in module then sets up a Perl interface for the user to define the search; the files in the index are then sorted.

  14. LLNL tandem mirror experiment (TMX) upgrade vacuum system

    SciTech Connect

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.; Hunt, A.L.; Lang, D.D.; Murphy, J.J.; Poulsen, P.; Simonen, T.C.; Batzer, T.H.; Stack, T.P.; Wong, R.L.

    1982-04-01

    The tandem mirror experiment (TMX) upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ Torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ Torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80 K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  15. Technical design report for the upgrade of the ICD for D-Zero Run II

    SciTech Connect

    Sawyer, L.; De, K. , Draper, P. , Gallas, E. , Li, J. , Sosebee, M. , Stephens, R.W. , White, A.

    1998-01-01

    The Inter Cryostat Detector (ICD) used in Run I of the D0 Experiment will be inoperable in the central, high magnetic field planned for Run II. In Run I, the ICD enhanced the hermeticity and uniformity of the D0 calorimeter system, improving both missing transverse energy and jet energy resolution. The goals for the Run II ICD are the same. In this document, the physics arguments for maintaining the ICD are presented, followed by a detailed description of the planned design changes, prototype tests, construction, installation, and commissioning of the device for the Run II D0 detector. Estimates of costs and schedule can be found on //DOSERVER2/Operations/Upgrade Project/ subareas available via DZERO`s WinFrame Program Manager. This detector is not intended to provide any ``L0`` capabilities (for luminosity monitoring), or to provide any EM coverage in the intermediate region, or to provide additional coverage in the intermediate regions, unlike previous upgrades proposed in this detector region. The ICD upgrade described here maintains most of the Run I capabilities in a high magnetic field environment.

  16. The upgrade of the Brookhaven Linac Isotope Producer (BLIP) and the BNL Linac

    SciTech Connect

    Mausner, L.F.; Alessi, J.G.

    1996-12-31

    An upgrade project was recently completed on the 200 MeV H{sup -} linac and the Brookhaven Linac Isotope Producer (BLIP) in order to improve radioisotope production capacity and reliability. The average beam current has increased from 60 {mu}A to 150 {mu}A. The increased average current is the result of increases in peak current, from 25 mA to 37 mA, pulse repetition rate, from 5 to 7.5 Hz, and pulse width, from 500 to 530 ps. To achieve this performance the 35 keV, 750 keV and 200 MeV beam transport were improved, the RF transmission lines and RF power supplies replaced. Improvements to the linac control system, and the optics and vacuum system of the 200 MeV transport were implemented. A BLIP the target cooling system was upgraded to 35 kW and automated, the targets, and target mechanical systems replaced with a more robust design, and the control system upgraded. With these enhancements BLIP is ready to address the lack of availability of accelerator produced medical and research isotopes.

  17. The upgrade project for the RF system for the Brookhaven AGS

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Hayes, T.; Meth, M.; McNerney, A.J.; Otis, A.; Pirkl, W.; Sanders, R.; Spitz, R.; Toldo, F.; Zaltsman, A.

    1993-06-01

    The AGS operates a varied program of proton, heavy ion, and polarized proton acceleration for fixed-target experiments and will soon serve as the injector of these beams into the Relativistic Heavy Ion Collider, RHIC. The new Booster synchrotron extends the range of intensities and masses that can be accelerated. The 1.5 GeV injection energy increases the space charge limit by a factor of four to more than 6 {times} 10{sup 13} protons per pulse. To accommodate the increased beam current the rf system will be upgraded to provide more power and lower impedance to the beam. The flexibility of the rf system will also be enhanced by virtue of a new rf beam control system and installation of individual tuning servos for the ten rf cavities. The fundamental necessity for upgrading the rf system is to deliver more power to the accelerating beam. Three key ingredients of the upgrade project addressing this problem is (1) new power amplifiers provide the necessary power, and are closely coupled to the cavities, (2) wideband rf feedback reduces the effective impedance by a factor of 10, and (3) the capacitors loading the acceleration gaps (four per cavity) are increased from 275 pF to 600 pF.

  18. The upgrade project for the RF system for the Brookhaven AGS

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Hayes, T.; Meth, M.; McNerney, A.J.; Otis, A.; Pirkl, W.; Sanders, R.; Spitz, R.; Toldo, F.; Zaltsman, A.

    1993-01-01

    The AGS operates a varied program of proton, heavy ion, and polarized proton acceleration for fixed-target experiments and will soon serve as the injector of these beams into the Relativistic Heavy Ion Collider, RHIC. The new Booster synchrotron extends the range of intensities and masses that can be accelerated. The 1.5 GeV injection energy increases the space charge limit by a factor of four to more than 6 [times] 10[sup 13] protons per pulse. To accommodate the increased beam current the rf system will be upgraded to provide more power and lower impedance to the beam. The flexibility of the rf system will also be enhanced by virtue of a new rf beam control system and installation of individual tuning servos for the ten rf cavities. The fundamental necessity for upgrading the rf system is to deliver more power to the accelerating beam. Three key ingredients of the upgrade project addressing this problem is (1) new power amplifiers provide the necessary power, and are closely coupled to the cavities, (2) wideband rf feedback reduces the effective impedance by a factor of 10, and (3) the capacitors loading the acceleration gaps (four per cavity) are increased from 275 pF to 600 pF.

  19. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  20. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.

    PubMed

    Rittmann, Simon K-M R

    2015-01-01

    Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production. PMID:26337846

  1. Seismic upgrade design for an exhaust stack building

    SciTech Connect

    Maryak, M.E. ); Malik, L.E. )

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost- effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades.

  2. Seismic upgrade design for an exhaust stack building

    SciTech Connect

    Maryak, M.E.; Malik, L.E.

    1991-12-31

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950`s and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost- effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades.

  3. Improving minimum cost spanning trees by upgrading nodes

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Wirth, H.C.; Marathe, M.V.; Ravi, R.; Ravi, S.S.; Sundaram, R.

    1998-11-01

    The authors study budget constrained network upgrading problems. The authors are given an undirected edge weighted graph (G = V, E) where node v {element_of} V can be upgraded at a cost of c(v). This upgrade reduces the weight of each edge incident on v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has a minimum spanning tree of weight no more than a given budget D. The results obtained in the paper include the following: (1) on the positive side, they provide a polynomial time approximation algorithm for the above upgrading problem when the difference between the maximum and minimum edge weights is bounded by a polynomial in n, the number of nodes in the graph, the solution produced by the algorithm satisfies the budget constrain, and the cost of the upgrading set produced by the algorithm is O (log n) times the minimum upgrading cost needed to obtain a spanning tree of weight at most D; (2) in contrast , they show that, unless NP {improper_subset} DTIME (n{sup O(log log n)}), there can be no polynomial time approximation algorithm for the problem that produces a solution with upgrading cost at most {alpha} < ln n times the optimal upgrading cost even if the budget can be violated by a factor f(n), for any polynomial time computable function f(n), this result continues to hold, with f(n) = n{sup k} being any polynomial, even when the difference between the maximum and minimum edge weights is bounded by a polynomial in n; and (3) finally, they show that using a simple binary search over the set of admissible values, the dual problem can be solved with an appropriate performance guarantee.

  4. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    R.D. McKeown

    2011-10-01

    A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

  5. The upgraded LHCb RICH detector: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Cardinale, R.

    2016-07-01

    The LHCb upgrade will take place during the second long shutdown of the LHC (LS2). The upgrade will enable the experiment to run at an instantaneous luminosity of 2 ×1033cm-2s-1 and will read out data at a rate of 40 MHz into a flexible software-based trigger. The two Ring Imaging Cherenkov detectors (RICH), installed in the LHCb experiment, will be re-designed to comply with these new operating conditions. The status and perspective of the RICH upgrade project will be presented.

  6. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  7. Taming the Viper: Software Upgrade for VFAUser and Viper

    SciTech Connect

    DORIN,RANDALL T.; MOSER III,JOHN C.

    2000-08-08

    This report describes the procedure and properties of the software upgrade for the Vibration Performance Recorder. The upgrade will check the 20 memory cards for proper read/write operation. The upgrade was successfully installed and uploaded into the Viper and the field laptop. The memory checking routine must run overnight to complete the test, although the laptop need only be connected to the Viper unit until the downloading routine is finished. The routine has limited ability to recognize incomplete or corrupt header and footer files. The routine requires 400 Megabytes of free hard disk space. There is one minor technical flaw detailed in the conclusion.

  8. Upgrades to the Fermilab NuMI beamline

    SciTech Connect

    Martens, Michael A.; Childress, Sam; Grossman, Nancy; Hurh, Patrick; Hylen, James; Marchionni, Alberto; McCluskey, Elaine; Moore, Craig Damon; Reilly, Robert; Tariq, Salman; Wehmann, Alan; /Fermilab

    2007-06-01

    The NuMI beamline at Fermilab has been delivering high-intensity muon neutrino beams to the MINOS experiment since the spring of 2005. A total of 3.4 x 10{sup 20} protons has been delivered to the NuMI target and a maximum beam power of 320 kW has been achieved. An upgrade of the NuMI facility increasing the beam power capability to 700 kW is planned as part of the NOvA experiment. The plans for this upgrade are presented and the possibility of upgrading the NuMI beamline to handle 1.2 MW is considered.

  9. CHESS upgrade 1995: Improved radiation shielding

    SciTech Connect

    Finkelstein, K.

    1996-09-01

    The Cornell Electron Storage Ring (CESR) stores electrons and positrons at 5.3 GeV for the production and study of B mesons, and, in addition, it supplies synchrotron radiation for CHESS. The machine has been upgraded for 300 mA operation. It is planned that each beam will be injected in about 5 minutes and that particle beam lifetimes will be several hours. In a cooperative effort, staff members at CHESS and LNS have studied sources in CESR that produce radiation in the user areas. The group has been responsible for the development and realization of new tunnel shielding walls that provide a level of radiation protection from 20 to {approx_gt}100 times what was previously available. Our experience has indicated that a major contribution to the environmental radiation is not from photons, but results from neutrons that are generated by particle beam loss in the ring. Neutrons are stopped by inelastic scattering and absorption in thick materials such as heavy concrete. The design for the upgraded walls, the development of a mix for our heavy concrete, and all the concrete casting was done by CHESS and LNS personnel. The concrete incorporates a new material for this application, one that has yielded a significant cost saving in the production of over 200 tons of new wall sections. The material is an artificially enriched iron oxide pellet manufactured in vast quantities from hematite ore for the steel-making industry. Its material and chemical properties (iron and impurity content, strength, size and uniformity) make it an excellent substitute for high grade Brazilian ore, which is commonly used as heavy aggregate in radiation shielding. Its cost is about a third that of the natural ore. The concrete has excellent workability, a 28 day compressive strength exceeding 6000 psi and a density of 220 lbs/cu.ft (3.5 gr/cc). The density is limited by an interesting property of the pellets that is motivated by efficiency in the steel-making application. (Abstract Truncated)

  10. JouFLU: an upgraded FLUOR beam combiner at the CHARA Array

    NASA Astrophysics Data System (ADS)

    Lhomé, E.; Scott, N.; ten Brummelaar, T.; Mollier, B.; Reess, J. M.; Chapron, F.; Buey, T.; Sevin, A.; Sturmann, J.; Sturmann, L.; Coudé du Foresto, V.

    2012-07-01

    FLUOR, which has been operational on CHARA since 2002, is an infrared fiber beam combiner. The telescope array will soon be fitted with an adaptive optics system, which will enhance the interferometer performance. In this framework, FLUOR has been entirely redeveloped and will be able to measure visibilities with higher accuracy and better sensitivity. The technical upgrades consist of improving some existing systems and developing new features. The bench, which is now remotely operable, primarily offers spectral dispersion (long fringes scanning), a more sensitive camera and a Fourier Transform Spectrometer mode. This paper presents the detailed opto-mechanical design of JouFLU (FLUOR rejuvenation), and the current instrument status.

  11. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  12. Design considerations: Upgrading Boston Gas odorant stations

    SciTech Connect

    Flynn, E.

    1995-05-01

    Boston Gas Company (BGC) has progressed beyond the half-way point on a four-year program to upgrade its odorant injection systems. An experienced odorization team from BGC`s Gas Supply and Production Department set out to redesign odorant storage, piping and injection system operation and to research the availability of improved odorization equipment. Research included investigating odorization practices of other gas companies and new technologies offered by odorization equipment manufacturers. The NJEX system and other innovations used in BGC`s odorization operation have proven effective since their inception. The system has provided reliable metering, consistent injection rates and accurate data storage. The controller has greatly simplified programming, troubleshooting and system monitoring. Innovations such as back welded fittings, Viton O-ring seal fittings, diaphragm valves, and complete combustion flares have provided reliable odor-free operation, filling and maintenance. The system`s simple mechanical layout, the user`s manual, and closed loop purging and priming have lowered the learning curve for operating personnel, and reduce man hours for maintenance and troubleshooting.

  13. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  14. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  15. Upgrade for the NSTX Control Computer

    SciTech Connect

    D. Mueller; D.A. Gates; J.R. Ferron

    1999-06-01

    The National Spherical Torus Experiment (NSTX) is a proof of scientific principle experiment as a magnetic fusion containment device. A primary goal of NSTX operations is control of the plasma current, position and shape in real time for a wide range of plasma pressure and current density profiles. In order to employ the best calculation of the plasma current, position and shape, it is planned to implement the equilibrium analysis code, EFIT, in real-time, RTEFIT. EFIT inverts the Grad-Shafranov equation and performs a least squares fit to the magnetics data. RTEFIT is also capable of providing the plasma current profile and the plasma pressure profile from analysis of diagnostic data. The calculation time for RTEFTI using the present NSTX control computer system is comparable to the expected energy confinement time on NSTX and is thus slower than desired. A computer upgrade based upon 604e processors will permit the RTEFIT calculation loop to complete in about 3 ms. The presence of the passive plates further complicates the control algorithm to be used in conjunction with RTEFIT. The planned approach is to measure the eddy currents in the passive plates and to use the transient response of the coils to minimize the total shell current effect.

  16. Naphthene upgrading with pillared synthetic clay catalysts

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1995-12-31

    Catalytic hydrotreatment of methylcyclohexane was investigated to model upgrading of coal-derived naphthenes. Nickel-substituted synthetic mica montmorillonite (NiSMM), alumina-pillared NiSMM and Zirconia-pillared NiSMM were prepared and tested for hydrocracking and hydroisomerization of methylcyclohexane. Infrared and thermal desorption studies of the pyridine-adsorbed catalysts indicated the presence of Lewis and Bronsted acid sites. Total acidity and surface area increased with pillaring of NiSMM with polyoxy aluminum and polyoxy zirconium cations. Methylcyclohexane was reacted with these catalysts under a variety of conditions. Pillared clays gave higher gas yields and higher hydrocracking but lower hydroisomerization activity than nonpillared clay. The majority of the products were branched alkanes (isoparaffinic). These catalysts effectively use hydrogen as indicated by the minimal formation of aromatic hydrocarbons, coke, or other oligomeric materials. The effect of various operating conditions, i.e., reaction temperature, contact time, H{sub 2} pressure, and catalyst, on the product distribution will be described.

  17. Upgrade of the NSTX Plasma Control System*

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Gates, D.; Isaacs, M.; Lawson, J.; Ludescher-Furth, C.; Marsala, R.; Matrovito, D.; Sichta, P.

    2007-11-01

    The plasma control system for the National Spherical Torus Experiment (NSTX) has been upgraded to replace the obsolete SKY computer system. The three main improvements with the new system are 1) higher computer speed, 2) lower latency and 3) a recordable absolute time during the discharge. The eight 333 MHz G4 processors in the Sky system were replaced with four dual core AMD Opteron 880 2.4 GHz processors. This provides approximately 7 times the speed for computationally intensive parts of the control system. The data acquisition and control were previously shared between VME and front panel dataport (FPDP) hardware. Two PCI FPDP cards, one each for data input and output made elimination of the VME hardware possible. Presently, the input data is read directly from the FIFO, this results in a loss of speed compared to the full potential of the vmetro FPDP DPIO2 boards using DMA, nevertheless, the present latency is about 2/3 that of the old system. In the old system, time was computed relative to a start trigger and was calculated based on input data frequency and the real-time cpu clock frequency. A digital input and time stamp module (DITS) was developed to provide a 48 bit absolute timestamp for each input data sample. *This work supported by U.S. DOE Contract # DE-AC02-76CH03073.

  18. Upgrade of the trigger system of CMS

    NASA Astrophysics Data System (ADS)

    Jeitler, Manfred; CMS Collaboration

    2013-08-01

    Various parts of the CMS trigger and in particular the Level-1 hardware trigger will be upgraded to cope with increasing luminosity, using more selective trigger conditions at Level 1 and improving the reliability of the system. Many trigger subsystems use FPGAs (Field Programmable Gate Arrays) in the electronics and will benefit from developments in this technology, allowing us to place much more logic into a single FPGA chip, thus reducing the number of chips, electronic boards and interconnections and in this way improving reliability. A number of subsystems plan to switch from the old VME bus to the new microTCA crate standard. Using similar approaches, identical modules and common software wherever possible will reduce costs and manpower requirements and improve the serviceability of the whole trigger system. The computer-farm based High-Level Trigger will not only be extended by using increasing numbers of more powerful PCs but there are also concepts for making it more robust and the software easier to maintain, which will result in better efficiency of the whole system.

  19. An Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce M.

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software, known as MINIVER, is a powerful yet lightweight tool that is used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the preprocessor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.

  20. A Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software package, known as MINIVER, is a powerful yet lightweight tool used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with the Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the pre-processor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.