Science.gov

Sample records for ash sekitanbai wo

  1. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  2. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  3. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  4. Magnetism of cigarette ashes

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana; Henry, Bernard; Le Goff, Maxime; Dimov, Dimo; Tsacheva, Tsenka

    2006-06-01

    Mineral composition of cigarette ashes is well studied in the literature, but no reports are available about the magnetic fraction. Our study presents an investigation of the basic magnetic characteristics of ashes from several commercially available cigarette brands and a wood ash. Magnetic susceptibility, which is a concentration-dependent parameter in case of uniform mineralogy, shows that cigarette ashes contain relatively high amount of magnetic iron minerals, similar to that in wood ash from our study and other literature data. Magnetization data suggest that cigarette ashes contain some 0.1 wt% or lower quantity of magnetite, depending on the brand. Analyses of magnetic mineralogy imply that the main magnetic minerals in ashes from higher quality cigarette brands are magnetite and iron carbide cementite, while in ashes from lower quality brands without additives magnetic minerals are pure and substituted with foreign ions magnetite. Magnetic grain-size analysis shows that cigarette ashes contain significant amount of very fine, nano-meter sized magnetic particles, as well as coarser (up to several microns), magnetically stable grains. Thus, the magnetic study of cigarette ashes proved that these plant ashes possess non-negligible magnetic properties. The results could serve for better elucidation of mineralogy of cigarette ashes as a whole, as well as for future investigation on the presence of magnetic ultra fine particles in cigarette smoke, which may be inhaled in lungs during smoking.

  5. Advanced ash management technologies for CFBC ash.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2003-01-01

    The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view. PMID:12909091

  6. The properties of single WO stars

    NASA Astrophysics Data System (ADS)

    Tramper, F.; Straal, S. M.; Gräfener, G.; Kaper, L.; de Koter, A.; Langer, N.; Sana, H.; Vink, J. S.

    2015-01-01

    The enigmatic oxygen sequence Wolf-Rayet (WO) stars represent a very late stage in massive star evolution, although their exact nature is still under debate. The spectra of most of the WO stars have never been analysed through detailed modelling with a non-local thermodynamic equilibrium expanding atmosphere code. Here we present preliminary results of the first homogeneous analysis of the (apparently) single WOs.

  7. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  8. Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst.

    PubMed

    Nam, Ki Min; Cheon, Eun Ah; Shin, Won Jung; Bard, Allen J

    2015-10-01

    We describe a composite of the n-type semiconductors for the photoelectrochemical oxygen evolution reaction (OER). A simple drop-casting technique of mixed precursors and a one-step annealing process were used in the synthesis of the WO3/CuWO4 composite. The composite showed improved photocurrent for water oxidation compared to either of the two compounds individually. We discuss possible electron-hole separation mechanisms in two semiconductors comprising a primary photon-absorbing semiconductor of CuWO4 with a secondary semiconductor of WO3. When the WO3/CuWO4 composite is simultaneously irradiated, the photogenerated hole from the WO3 valence band transfers to CuWO4, which results in an enhanced charge separation of CuWO4. Furthermore, the OER catalytic activity of manganese phosphate (MnPO) was compared to manganese oxide nanoparticles (Mn2O3) by electrochemical measurements, showing that the manganese phosphate was more efficient for the OER reaction. To investigate the effect of catalysts on semiconductors, manganese phosphate was deposited on the WO3/CuWO4 composite. The result demonstrates the promise of manganese phosphate for improving the photocurrent as well as the stability of the WO3/CuWO4 composite. PMID:26371544

  9. Nd2(WO4)3

    PubMed Central

    Weil, Matthias; Stöger, Berthold; Aleksandrov, Lyubomir

    2009-01-01

    The title compound, dineodymium(III) tris­[tungstate(VI)], is a member of the Eu2(WO4)3 structure family and crystallizes isotypically with other rare earth tungstates and molybdates of this formula type. The structure is a derivative of the scheelite (CaWO4) structure and can be considered as an ordered defect variant with a threefold scheelite supercell and one rare earth (RE) site unoccupied. The Nd3+ cations are coordinated by eight O atoms in form of a distorted bicapped trigonal prism. The two unique W cations are tetra­hedrally surrounded by O atoms. One WO4 tetra­hedron has 2 symmetry and is relatively undistorted whereas the other tetra­hedron differs considerably from an ideal geometry. This is caused by an additional remote O atom at a distance of 2.149 (4) Å. The resulting WO4 + 1 polyhedra form W2O8 dimers through edge-sharing. Together with the WO4 and NdO8 units, the three-dimensional set-up is accomplished. PMID:21582980

  10. Bacteriophage WO in Wolbachia infecting terrestrial isopods.

    PubMed

    Braquart-Varnier, Christine; Grève, Pierre; Félix, Christine; Martin, Gilbert

    2005-11-18

    Wolbachia are maternally inherited intracellular alpha-proteobacteria that infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in arthropods and nematodes. In isopod crustacean, Wolbachia are responsible for feminization of genetic males in many species, and for cytoplasmic incompatibility in two species. In this paper, we report the first detection of phage WO from Wolbachia infecting terrestrial isopods. All Wolbachia strains tested in this study were infected with phage WO. Based on the orf7 phage sequence, we identified three different phage sequences in four Wolbachia strains. The phage of Wolbachia infecting Armadillidium vulgare seems to be not active, unlike other phages WO previously described in arthropods. PMID:16198306

  11. Fly-ash utilization

    SciTech Connect

    Lockerby, R.W.

    1984-01-01

    The over 200 references in this bibliography cover some of the uses found for fly-ash, which range from the manufacture of bricks and as a new type of concrete to the recovery of aluminum and other valuable ores from the ash. The entries are grouped under seven headings: General, Agriculture, Brickmaking, Cement/Concrete, Land Reclamation, Resource Recovery, and Other.

  12. Coal ash monitors

    SciTech Connect

    Clayton, C.G.; Wormald, M.R.

    1981-07-14

    A monitor for determining the ash content of coal in rail cars consisting of a structure including means for irradiating each car as it passes the structure with a known dose of neutrons, means for detecting and measuring the intensities of gamma -rays emitted by ash-forming elements in the coal, and means for providing an indication of the concentration of the ash-forming elements. There also are included interlocks for ensuring that the neutron source is only operated when a loaded car is in the appropriate position.

  13. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    PubMed

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster. PMID:25903547

  14. Synthesis and electrochemical properties of SnWO4.

    PubMed

    Dan, Meiyu; Cheng, Mengqi; Gao, Hong; Zheng, Hao; Feng, Chuanqi

    2014-03-01

    In this paper, a pure SnWO4 was synthesized by solvothermal method. The glucose as a carbon sources was mixed with SnWO4 to prepared SnWO4/C composite. The structure and morphology were characterized by XRD and SEM techniques. The electrochemical properties of SnWO4 and SnWO4/C composite were studied by battery comprehensive testing system and AC impedance spectroscopy. The results showed that the alpha-SnWO4 phase was formed and its particles were ranged from 50 to 250 nm. The alpha-SnWO4/C composites behaved higher reversible discharge capacity and better cycle performance than that of alpha-SnWO4. The reversible discharge capacity of SnWO4/C composites was 780 mA h/g at the current density (50 mA/g) and it could keep at 600 mA h/g after 30 cycles. The reason for SnWO4/C composite to behave outstanding electrochemical properties was discussed also. PMID:24745237

  15. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  16. Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3

    SciTech Connect

    Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.

    2011-05-16

    Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sites forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  17. Effects of WO3 Particle Size in WO3/Epoxy Resin Radiation Shielding Material

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Chang, Shu-Quan; Zhang, Hong-Xu; Ren, Chao; Kang, Bin; Dai, Ming-Zhu; Dai, Yao-Dong

    2012-10-01

    To verify the influence of the functional elements particular size for the radiation attenuation coefficients and mechanical properties radiation shielding material based on epoxy resin, we prepare two WO3/E44 samples with different particular sizes of WO3 by a solidified forming approach. The linear attenuation coefficients of these samples are measured for γ-ray photo energies of 59.6, 121.8, and 344.1 keV, etc. using narrow beam transmission geometry. It is found that the linear attenuation coefficients would increase with the decreasing particle size of the WO3 in the epoxy resin based radiation shielding material. The theoretical values of the linear attenuation coefficients and mass attenuation are calculated using WinXcom, and good agreements between the experimental data and the theoretical values are observed. From the studies of the obtained results, it is reported that from the shielding point of view the nano-WO3 is more effective than micro-WO3 in the epoxy resin based radiation shielding material.

  18. AZD-4818, a chemokine CCR1 antagonist: WO2008103126 and WO2009011653.

    PubMed

    Norman, Peter

    2009-11-01

    The applications WO2008103126 and WO2009011653, respectively, claim: i) Combinations of a spirocyclic piperidine chemokine CCR1 antagonist with a corticosteroid, and their use for the treatment of asthma and chronic obstructive pulmonary disease. ii) Processes for the preparation of a spirocyclic piperidine derivative, a chemokine CCR1 antagonist. These applications point to the preferred compound being a development compound. The evidence for this compound being AZD-4818, a chemokine CCR1 antagonist that was in Phase II development for the treatment of chronic obstructive pulmonary disease, is reviewed in the light of these and earlier patents relating to it. PMID:19586423

  19. In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhan, Faqi; Li, Jie; Li, Wenzhang; Yang, Yahui; Liu, Wenhua; Li, Yaomin

    2016-09-01

    CdS/CdWO4/WO3 heterojunction films on fluorine-doped tin oxide (FTO) substrates are for the first time prepared as an efficient photoanode for photoelectrochemical (PEC) hydrogen generation by an in situ conversion process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis) and X-ray photoelectron spectroscopy (XPS). The CdS hollow spheres (∼80 nm) sensitized WO3 plate film with a CdWO4 buffer-layer exhibits increased visible light absorption and a significantly improved photoelectrochemical performance. The photocurrent density at 0 V (vs. Ag/AgCl) of the CdS/CdWO4/WO3 anode is ∼3 times higher than that of the CdWO4/WO3 anode, and ∼9 times higher than that of pure WO3 under illumination. The highest incident-photon-to-current-efficiency (IPCE) value increased from 16% to 63% when the ternary heterojunction was formed. This study demonstrates that the synthesis of ternary composite photocatalysts by the in situ conversion process may be a promising approach to achieve high photoelectric conversion efficiency.

  20. Engineering Model for Ash Formation

    Energy Science and Technology Software Center (ESTSC)

    1994-12-02

    Ash deposition is controlled by the impaction and sticking of individual ash particles to heat transfer surfaces. Prediction of deposition therefore requires that the important factors in this process be predictable from coal and operational parameters. Coal combustion, boiler heat transfer, ash formation, ash particle aerodynamic, and ash particle sticking models are all essential steps in this process. The model described herein addresses the prediction of ash particle size and composition distributions based upon combustionmore » conditions and coal parameters. Key features of the model include a mineral redistribution routine to invert CCSEM mineralogical data, and a mineral interaction routine that simulates the conversion of mineral matter into ash during coal burning and yields ash particle size and composition distributions.« less

  1. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  2. Nd:SrWO 4 and Nd:BaWO 4 Raman lasers

    NASA Astrophysics Data System (ADS)

    Šulc, J.; Jelínková, H.; Basiev, T. T.; Doroschenko, M. E.; Ivleva, L. I.; Osiko, V. V.; Zverev, P. G.

    2007-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the SRS-active neodymium doped SrWO4 and BaWO4 crystals coherently end-pumped at wavelength 752 nm by pulsed free-running alexandrite laser radiation were investigated. The Nd3+ ion emission at wavelength λNd ˜ 1.06 μm was corresponding to 4F3/2 → 4I11/2 transition. To reach the SRS-self-conversion threshold inside Raman crystal the Nd3+ lasers were operating in a Q-switching regime. For Q-switching LiF:F2- crystal as a saturable absorber was used. Raman self-conversion at wavelength ˜1.17 μm was successfully reached with both tungstate crystals. The shortest generated pulse (1.3 ns FWHM) and highest peak power (615 kW) was obtained with Nd:BaWO4 Raman laser Q-switched by LiF:F2- crystal with initial transmission T0 = 60%. Up to 0.8 mJ was registered at the first Stokes wavelength 1169 nm. Using Q-switched Nd:SrWO4 laser higher energy in Raman emission was obtained (1.23 mJ) but generated pulse was longer (2.9 ns FWHM) resulting in lower peak power (430 kW).

  3. ASH and NASH.

    PubMed

    Scaglioni, F; Ciccia, S; Marino, M; Bedogni, G; Bellentani, S

    2011-01-01

    Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) have a similar pathogenesis and histopathology but a different etiology and epidemiology. NASH and ASH are advanced stages of non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD). NAFLD is characterized by excessive fat accumulation in the liver (steatosis), without any other evident causes of chronic liver diseases (viral, autoimmune, genetic, etc.), and with an alcohol consumption ≤20-30 g/day. On the contrary, AFLD is defined as the presence of steatosis and alcohol consumption >20-30 g/day. The most common phenotypic manifestations of primary NAFLD/NASH are overweight/obesity, visceral adiposity, type 2 diabetes, hypertriglyceridemia and hypertension. The prevalence of NAFLD in the general population in Western countries is estimated to be 25-30%. The prevalence and incidence of NASH and ASH are not known because of the impossibility of performing liver biopsy in the general population. Up to 90% of alcoholics have fatty liver, and 5-15% of these subjects will develop cirrhosis over 20 years. The risk of cirrhosis increases to 30-40% in those who continue to drink alcohol. About 10-35% of alcoholics exhibit changes on liver biopsy consistent with alcoholic hepatitis. Natural histories of NASH and ASH are not completely defined, even if patients with NASH have a reduced life expectancy due to liver-related death and cardiovascular diseases. The best treatment of AFLD/ASH is to stop drinking, and the most effective first-line therapeutic option for NAFLD/NASH is non-pharmacologic lifestyle interventions through a multidisciplinary approach including weight loss, dietary changes, physical exercise, and cognitive-behavior therapy. PMID:21734385

  4. Nd:SrWO4 Raman laser

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Sulc, Jan; Doroschenko, Maxim E.; Skornyakov, Vadim V.; Kravtsov, Sergey B.; Basiev, Tasoltan T.; Zverev, Peter G.

    2004-09-01

    Properties of the laser operation and simultaneously stimulated Raman scattering in the new SRS-active neodymium doped SrWO4 crystal coherently end-pumped by alexandrite 752 nm laser radiation were investigated. The maximum generated energy 90 mJ from the free-running Nd3+:SrWO4 laser at 1057 nm wavelength was obtained with the output coupler reflectivity 52%. The slope efficiency reached s = 0.52, the beam characteristic parameters M2 and divergence q were 2.5 +/- 0.1, and 1.5 +/- 0.1 mrad, respectively. Maximal output energy of 1.46 mJ for the fundamental wavelength was obtained for Q-switched Nd3+:SrWO4 oscillator with a double Fabry-Perrot as the output coupler (R = 48%), and with the 5% initial transmission of LiF:F2- saturable absorber. Up to 0.74 mJ energy was registered at the first Stokes frequency. The pulse duration was 5 ns and 2.4 ns for the fundamental and Stokes radiation, respectively. The energy of 1.25 mJ at 1170 nm was obtained for closed Raman resonator with special mirrors. For the case of mode-locking, two dye saturable absorbers (ML51 dye in dichlorethan and 3955 dye in ethanol) were used and SRS radiation in the form of pulse train was observed. The influence of the various Raman laser output couplers reflectivity as well as the initial transmissions of passive absorbers were investigated with the goal of the output energy maximization at the Stokes wavelength. In the output, the total measured energy was 1.8 mJ (for ML51 dye) and 2.4 mJ (for 3955 dye). The SRS output at 1170 nm was approximately 20% of total energy.

  5. Orthorhombic WO 3Formed via a Ti-Stabilized WO 3· {1}/{3}H 2O Phase

    NASA Astrophysics Data System (ADS)

    Pecquenard, B.; Lecacheux, H.; Livage, J.; Julien, C.

    1998-01-01

    Stable solutions of WO3precursors have been prepared via the dissolution of tungstic acid, H2WO4, in hydrogen peroxide. A crystalline peroxopolytungstic acid WO3·H2O2·nH2O (n≈0.1) is obtained upon drying. Peroxo groups decompose at 200°C, giving an amorphous tungsten oxide that crystallizes into the stable monoclinic WO3around 400°C. Completely different results are obtained when Ti(OPri)4is added to the precursor solution. The orthorhombic phase WO3·{1}/{3}H2O is first obtained. As is well known, this hydrated oxide leads to h-WO3and m-WO3upon heating. However, in the presence of TiIV, a new metastable orthorhombic tungsten oxide is formed around 400°C. It then transforms irreversibly upon further heating into the stable monoclinic WO3. The presence of TiIVseems to stabilize this new orthorhombic phase.

  6. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  7. Hygroscopic properties of volcanic ash

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Kumar, P.; Nenes, A.; Dufek, J.; Sokolik, I. N.; Trail, M.; Russell, A.

    2011-06-01

    Limited observational data exists on the physical interactions between volcanic ash particles and water vapor; yet it is thought that these interactions can strongly impact the microphysical evolution of ash, with implications for its atmospheric lifetime and transport, as well as formation of water and ice clouds. In this study, we investigate for the first time, the hygroscopic properties of ultra-fine volcanic ash (<125 μm diameter) from the eruptions of Mt. St. Helens in 1980, El Chichón in 1982, Tungurahua in 2006, Chaitén in 2008, Mt. Redoubt in 2009, and Eyjafjallajökull in 2010. The hygroscopicity of the ash particles is quantified by their ability to uptake water and nucleate into cloud drops under controlled levels of water vapor supersaturation. Evidence presented strongly suggests that ash uptakes water efficiently via adsorption and a simple parameterization of ash hygroscopicity is developed for use in ash plume and atmospheric models.

  8. Microwave-assisted synthesis of Zn-WO3 and ZnWO4 for pseudocapacitor applications

    NASA Astrophysics Data System (ADS)

    Kumar, R. Dhilip; Andou, Y.; Karuppuchamy, S.

    2016-05-01

    Nanosized Zn-WO3 and ZnWO4 materials have been prepared by microwave irradiation method. The physico-chemical characterization of the prepared nanomaterials was carried out by X-ray diffraction (XRD) and high resolution-scanning electron microscopy (HR-SEM) techniques. The size and shape of the ZnWO4 material can be controlled by changing the temperature. The XRD analysis revealed the formation of monoclinic phase of the calcined nanopowder. The HR-SEM images showed the sphere and plate shape particles. The electrochemical behavior of the ZnWO4 modified electrodes was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The synthesized material shows the pseudocapacitance. The specific capacitance of 35.70 F/g was achieved for the Zn-WO3 nanopowder.

  9. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation

    NASA Astrophysics Data System (ADS)

    Han, Fugui; Li, Heping; Fu, Li; Yang, Jun; Liu, Zhong

    2016-05-01

    In this letter, S-doped WO3 nanowires (S-WO3) were prepared using a hydrothermal method followed by a low-temperature solid-state annealing treatment. The synthesized S-WO3 was characterized by SEM, EDX, XRD, XPS, Raman spectroscopy, UV-vis DRS and photocurrent responses. The results indicated that S could enhance the light harvesting capacity of WO3 nanowires. The photocatalytic performance of the S-WO3 was investigated by photodegradation of methyl orange (MO) under visible light irradiation. Results demonstrated that the photocatalytic activity of the S-WO3 nanowires is much higher than that of pure WO3 nanowires.

  10. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  11. Dry bottom ash removal -- Ash cooling vs. boiler efficiency effects

    SciTech Connect

    Carrea, E.; Scavizzi, G.C.; Barsin, J.

    1998-07-01

    The current wet method of removing boiler bottom ash from coal fired utility boilers quenches the ash which in turn heats the water, evaporates a portion of it adding to the gas weights moved through the steam generator. The newer dry ash removal systems use a portion of the combustion air to cool ash and thus return some of the otherwise lost latent heat back to the furnace. There has been some debate concerning the overall effect upon boiler efficiency. For example when a large quantity of ash cooling air is required and the resulting decrease in air side air heater mass flow could result in an elevate stack gas temperature thus negating the efficiency enhancing dry bottom ash effect expected. The presentation will present actual data form operating units and provide various heat balances to demonstrate the actual performance conditions that have been achieved.

  12. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  13. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  14. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  15. Examination of the Reduction of the WO3/Zn System

    NASA Astrophysics Data System (ADS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Stergioudis, G.

    2010-01-01

    Tungsten is used in several electrical, optical, electronic and chemical applications. The crystal structure and the morphology of tungsten crystallites influence its behavior used in most applications. A method for producing pure tungsten with the desired characteristics is by a reduction reaction using the Self-propagating High temperature Synthesis technique. The reduction of WO3 is accompanied by morphological changes of its structure crystallites, while the addition of Zn to WO3 powder enhances considerably the reduction rate. Moreover zinc reacts with oxygen forming zinc oxide. In the first steps of the reduction process the well defined crystals of WO3 transform to plates-like whispers to WO2,92. With 0,1% wt. Zn concentration, needle shaped crystal growth is favored while mixtures containing 0,3 %wt. zinc favored the formation of WO2,72. The rapid formation of whiskers, with average size 50 μm, seems to result from a vapor to solid transformation. The formation of whiskers of WO2,72 is the controlling step, in determining the final particle size of the tungsten powder. The final reduction step of WO2 to tungsten is achieved without any further morphological change.

  16. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    NASA Astrophysics Data System (ADS)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  17. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  18. Circle of Ashes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Circle of Ashes

    This plot tells astronomers that a pulsar, the remnant of a stellar explosion, is surrounded by a disk of its own ashes. The disk, revealed by the two data points at the far right from NASA's Spitzer Space Telescope, is the first ever found around a pulsar. Astronomers believe planets might rise up out of these stellar ashes.

    The data in this plot, or spectrum, were taken by ground-based telescopes and Spitzer. They show that light from around the pulsar can be divided into two categories: direct light from the pulsar, and light from the dusty disk swirling around the pulsar. This excess light was detected by Spitzer's infrared array camera. Dust gives off more infrared light than the pulsar because it's cooler.

    The pulsar, called 4U 0142+61, was once a massive star, until about 100,000 years ago, when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the leftover stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    The data have been corrected to remove the effects of light scattering from dust that lies between Earth and the pulsar.

    The ground-based data is from the Keck I telescope atop Mauna Kea, Hawaii.

  19. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  20. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  1. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments. PMID:10936538

  2. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  3. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  4. Preparation and Characteristics of Al Matrix Composites Reinforced with ZnWO4 Coated (WO3p + ABOw) Hybrid Reinforcements

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; Cao, G. J.; Fan, G. H.; Wang, L. P.; Geng, L.

    2013-02-01

    In this article, a ZnWO4 coating was prepared successfully on the surfaces of WO3 particulates and Al18B4O33 whiskers by a chemical precipitation method. Then the Al matrix composite with coated reinforcements was fabricated by a squeeze casting technique. Scanning electronic microscope analysis shows that a thin coating is coated on the surfaces of reinforcements. Differential thermal analysis and x-ray diffraction (XRD) results show that the Zn(OH)2 decomposes at 248°C and that the ZnWO4 is produced by reaction WO3 with ZnO at 716°C. Transmission electronic microscope and XRD analysis show that the coating of ZnWO4 is effective to prevent interfacial reaction between the WO3 particle and the Al matrix. The mechanical property testing shows that the ultimate tensile strength, elastic modulus, and elongation of the hybrid composites with coated reinforcements are improved greatly by introduction of ZnWO4 coating.

  5. WO3 nanopaticles and PEDOT:PSS/WO3 composite thin films studied for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Ivanov Boyadjiev, Stefan; Manduca, Bruno; Szűcs, Júlia; Miklós Szilágyi, Imre

    2016-03-01

    WO3 is a widely studied material for electrochromic and photocatalytic applications. In the present study, WO3 nanoparticles with a controlled structure (monoclinic or hexagonal) were obtained by controlled thermal decomposition of hexagonal ammonium tungsten bronze in air at 500 °C and 600 °C, respectively. The formation, morphology, structure and composition of the as-prepared nanoparticles were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the monoclinic and hexagonal WO3 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. In order to study the electrochromic properties of the WO3 nanoparticles, as well to introduce them for self-cleaning photocatalytic surface applications, thin films were prepared from the WO3 particles together with a conductive polymer. For this, PEDOT:PSS was used, which gives excellent opportunities for obtaining transparent and conductive thin films, suitable for both electrochromic and photocatalytic applications. By spin-coating, transparent PEDOT:PSS/WO3 composite thin films were prepared, on which cyclic voltammetry measurements were performed, and the coloring and bleaching states were studied. Our initial results for the PEDOT:PSS/WO3 composite thin films are promising, suggesting that such composites, after further development, might be successfully used in electrochromic devices and photocatalysis.

  6. Ameliorative effect of fly ashes

    SciTech Connect

    Bhumbla, D.K.

    1991-01-01

    Agronomic effectiveness and environmental impact of fly ashes used to reclaim pyritic acid mine spoils were investigated in the laboratory and field. Mine spoils at two abandoned sites were amended with three rates of fly ash, three rates of rock phosphate, and seeded with alfalfa and wheat. Application of fly ash decreased bulk density and increased moisture retention capacity of spoils. Fly ash application reduced cation exchange capacity, acidity, toxic levels of Al, Fe, and Mn in soils by buffering soil pH at 6.5, and retarded pyrite oxidation. The reduction in cation exchange capacity was compensated by release of plant nutrients through diffusion and dissolution of plerospheres in fly ash. Improvement of spoil physical, chemical and microbial properties resulted in higher yield, more nitrogen fixation, and utilization of P from rock phosphate by alfalfa. Laboratory investigations demonstrated that neutralization potential and the amounts of amorphous oxides of iron were more important for classifying fly ashes than the total elemental analysis presently used in a taxonomic classification system. Contamination of the food chain through plant removal of Mo and As in fly ash treated mine spoils was observed only for Mo and only for the first year of cropping. Plant available As and Mo decreased with time. Laboratory leaching and adsorption studies and a field experiment showed that trace metals do not leach from fly ashes at near neutral pH and more oxyanions will leach from fly ashes with low neutralization potential and low amounts of amorphous oxides of iron.

  7. Chromic Mechanism in Amorphous WO3 Films

    SciTech Connect

    Zhang, J. G.; Benson, D. K.; Tracy, C. E.; Deb, S. K.; Czanderna, A. W.

    1997-06-01

    We propose a new model for the chromic mechanism in amorphous tungsten oxide films (WO3-y .cntdot. nH2O). This model not only explains a variety of seemingly conflicting experimental results reported in the literature that cannot be explained by existing models, it also has practical implications with respect to improving the coloring efficiency and durability of electrochromic devices. According to this model, a typical as-deposited tungsten oxide film has tungsten mainly in W6+ and W4+ states and can be represented as W6+(1-y) W4+(y)O(3-y) .cntdot. nH2O. The proposed chromic mechanism is based on the small polaron transition between the charge-induced W5+ state and the orignial W4+ state insteasd of the W5+ and W6+ states as suggested in previous models. The correlation between the electrochromic and photochromic behavior in amorphous tungsten oxide films is also discussed.

  8. NH3 sensing characteristics of nano-WO3 thin films deposited on porous silicon.

    PubMed

    Sun, Fengyun; Hu, Ming; Sun, Peng; Zhang, Jie; Liu, Bo

    2010-11-01

    The NH3 sensing characteristics of nano-tungsten trioxide (WO3) thin films deposited on porous silicon (PS) were investigated in the present study. Porous silicon layer was first prepared by electrochemical etching in an HF-based solution on a p(+)-type silicon substrate. Then, WO3 nano-films were deposited on the porous silicon layer by DC magnetron sputtering. Pt electrodes were deposited on the top surface of the WO3 films to obtain the WO3/PS gas sensor. The WO3 films deposited on PS were characterized by SEM, XRD and XPS. The NH3 sensing characteristics for WO3/PS gas sensor were tested at room temperature and 50 degrees C. The results showed that the NH3 sensing characteristics of WO3/PS were superior to WO3/Al2O3 at room temperature. The sensing mechanism of the nano-WO3 thin films based on PS was also discussed. PMID:21138022

  9. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  10. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  11. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  12. Emerald Ash Borer (Coleoptera: Buprestidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  13. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  14. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  15. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  16. Synthesis and photoelectrochemical properties of CdWO4 and CdS/CdWO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Weina; Zheng, Chunhua; Hua, Hao; Yang, Qi; Chen, Lin; Xi, Yi; Hu, Chenguo

    2015-02-01

    A facile composite-salt-mediated strategy is employed for the first time to synthesize CdWO4 nanowire and nanoflower arrays on cadmium foil substrates. The photoelectrochemical (PEC) properties are measured on the electrodes made of the CdWO4 nanowire and nanoflower arrays under the simulated sunlight illumination. Both electrodes display high sensitive response and photocurrent stability. The photocurrent density of the nanowire arrays electrode reach 0.35 mA/cm2, which is about 3 times as much as that of the nanoflower array electrode. To improve the visible light photocurrent response, CdS nanoparticles are deposited on the CdWO4 nanowire arrays to form a CdS/CdWO4 heterojunction. Remarkably enhanced photoresponse is observed on the CdS/CdWO4 heterostructure and the photocurrent intensity is about twice as much as that of the electrode made of the pure CdWO4 nanowire arrays. The photoelectric mechanism is also discussed by the crystal structure and morphology characterization, optical band gap and carrier mobility analysis. This work presents a new design of a photoelectrochemical device for possible applications in photoelectrolysis of water and solar cells or highly sensitive light detection.

  17. In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires

    NASA Astrophysics Data System (ADS)

    Qi, Kuo; Li, Xiaomin; Sun, Muhua; Huang, Qianming; Wei, Jiake; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Wang, Enge

    2016-06-01

    The phase transition from monoclinic WO3 to cubic LixWO3 during lithiation of WO3 is one of the key features for tungsten oxide as the most used electrochromic material. Conventionally, the lithium intercalation of WO3 has been studied by building generic layered electrochromic device combining with structural characterization and electrochemistry measurement at macro scale. In-situ transmission electron microscopy (in-situ TEM) has been proposed as a method for revealing the detailed mechanism of structural, physical, and chemical properties. Here, we use in-situ TEM method to investigate the formation and evolution of LixWO3 in real-time during the electrochemical lithiation of WO3 nanowires. The dynamic lithiation process is recorded by TEM imaging, diffraction, and electron energy loss spectroscopy. The WO3-LixWO3 phase boundary of reaction front has been observed at high resolution. The timeliness of crystallinity of LixWO3 and the intercalation channels for Li ions are also identified. Moreover, the co-existence of both polycrystalline Li-poor area and amorphous Li-rich phases of LixWO3 was found. Our results provide an insight into the basic lithiation process of WO3, which is significantly important for understanding the electrochromic mechanism of tungsten oxide.

  18. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  19. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  20. Volcanic ash in deep marine sediment: A comparison of dispersed ash and adjacent ash layers

    NASA Astrophysics Data System (ADS)

    Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    The presence of dispersed volcanic ash in pelagic marine sediment (as differentiated from ash found in discrete layers) has been known since the 1970's. Most previous studies have assessed the dispersed component through sedimentological and petrographic methods. As part of an effort to quantitatively determine the amount, and chemical composition, of dispersed ash in pelagic sediments, we are undertaking a systematic study of the western Pacific marine sediments. ODP Site 1149 (Leg 185), located immediately east of the Izu-Bonin Arc, consists of aluminosilicate clay and large amounts of volcanic ash (>75 ash layers described in units I and II). In addition to the ash layers, there is abundant dispersed ash (20 - 50% of the bulk). Using a multi-elemental geochemical and statistical approach we can characterize and quantify this dispersed ash component, and thus complement the original ash layer record by a novel dataset. At Site 1149, our previous work based on refractory trace element end members of potential sources (from the literature) indicate that Chinese Loess, Ryukyu Dacite (Japan), and an average of Izu-Bonin Front Arc material yield the best mixing to explain the bulk sedimentary composition (Scudder et al., 2009, EPSL, 284, 639-648). Contribution of a significant distal Ryukyu Arc component to the sediment eastward of Izu-Bonin (i.e., Site 1149) is surprising, yet is required by our chemical results, and is consistent with the previous work of Egeberg et al. (1992). While Scudder et al. (2009) was based on a small number of samples (~15 samples for complete major, trace, and REE analysis) and a modest element menu, we here present the results from an expansive suite of analyses (>80 samples) allowing us to test the effect of sample number on the statistical results and achieve additional quantitative resolution of volcanic and upper crustal sources (e.g., loess). This further improves our statistical ability to resolve temporal changes that may be

  1. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  2. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  3. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  4. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  5. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  6. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  7. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  8. Alkali ash material: a novel fly ash-based cement.

    PubMed

    Rostami, Hossein; Brendley, William

    2003-08-01

    The United States generates 110 million t of coal ash annually. Approximately 70 million t of this coal ash is fly ash, of which 27% is recycled and the remaining 73% is landfilled. Disposal of such a huge quantity of ash poses a significant environmental problem. A new cementitious material has been developed, called alkali ash material (AAM), which is used to produce concrete for construction. AAM can be used to create a variety of concrete strengths and could revolutionize the concrete product manufacturing industry due to its economic advantage. AAM contains 40-95% Class F fly ash and is used as cement to bind sand, stone, and fibers creating concrete. AAM concrete has been tested for strength, durability, mechanical properties, and, most importantly, economic viability. AAM concrete is economically and technically viable for many construction applications. Some properties include rapid strength gain (90% of ultimate in 1 d), high ultimate strengths (110 MPa or 16,000 psi in 1 d), excellent acid resistance, and freeze-thaw durability. AAM's resistance to chemical attack, such as sulfuric (H2SO4), nitric (HNO3), hydrochloric (HCl), and organic acids, is far better than portland cement concrete. AAM is resistant to freeze-thaw attack based on ASTM C-666 specifications. Potential immediate applications of AAM are blocks, pipe, median barriers, sound barriers, and overlaying materials. Eventual markets are high strength construction products, bridge beams, prestressed members, concrete tanks, highway appurtenances, and other concrete products. PMID:12966995

  9. Lifetime of electrochromism of amorphous WO sub 3 -TiO sub 2 thin films

    SciTech Connect

    Hashimoto, S.; Matsuoka, H. )

    1991-08-01

    In this paper, the degradation of the electrochromism of amorphous WO{sub 3} and WO{sub 3}-TiO{sub 2} films prepared by electron-beam deposition are studied. The lifetime of the WO{sub 3}-TiO{sub 2} films is five times longer than that of the WO{sub 3} films. SIMS and XPS analyses have revealed that lithium accumulates as OLi in the WO{sub 3} films, but that it cannot accumulate in the WO{sub 3}-TiO{sub 2} film. Ols electron energy loss spectroscopy (EELS) spectra have indicated that the change of the electronic structure for the WO{sub 3}-TiO{sub 2} film by coloration is smaller than that for the WO{sub 3} film. The increase of plasmon energy has been obtained in low loss EELS spectrum and the increase of the bond length in the WO{sub 3}-TiO{sub 2} film has been measured by Raman spectrum. From these results, the number of the defect bonds as a trapping site of lithium is reduced and the bond length of W-O decreases in the WO{sub 3}-TiO{sub 2} films. The authors conclude that lithium cannot accumulate in the structure of the WO{sub 3}-TiO{sub 2} film and that the structure gives a prolonged lifetime to the electrochromism.

  10. Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies.

    PubMed

    DePuccio, Daniel P; Botella, Pablo; O'Rourke, Bruce; Landry, Christopher C

    2015-01-28

    A facile sonochemical approach was used to deposit 3-5 nm monodisperse gold nanoparticles on porous SiO2-WO3 composite spheres, as confirmed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). High-resolution TEM (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) further characterized the supported Au nanoparticles within the Au-SiO2-WO3 composite. These analyses showed isolated Au nanoparticles within both SiO2- and WO3-containing regions. Selective etching of the SiO2 matrix from Au-SiO2-WO3 yielded a pure Au-WO3 material with well-dispersed 10 nm Au nanoparticles and moderate porosity. This combined sonochemical-nanocasting technique has not been previously used to synthesize Au-WO3 photocatalysts. Methylene blue (MB) served as a probe for the adsorption capacity and visible light photocatalytic activity of these WO3-containing catalysts. Extensive MB demethylation (azures A, B, C, and thionine) and polymerization of these products occurred over WO3 under dark conditions, as confirmed by electrospray ionization mass spectrometry (ESI-MS). Photoirradiation of these suspensions led to further degradation primarily through demethylation and polymerization pathways, regardless of the presence of Au nanoparticles. Ring-opening sulfur oxidation to the sulfone was a secondary photocatalytic pathway. According to UV-vis spectroscopy, pure WO3 materials showed superior MB adsorption compared to SiO2-WO3 composites. Compared to their respective nonloaded catalysts, Au-SiO2-WO3 and Au-WO3 catalysts exhibited enhanced visible light photocatalytic activity toward the degradation of MB. Specifically, the rates of MB degradation over Au-WO3 and Au-SiO2-WO3 during 300 min of irradiation were faster than those over their nonloaded counterparts (WO3 and SiO2-WO3). These studies highlight the ability of Au-WO3 to serve as an excellent adsorbant and photodegradation catalyst toward MB. PMID:25549007

  11. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  12. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  13. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  14. Facile Hydrogen Evolution Reaction on WO3Nanorods

    PubMed Central

    2007-01-01

    Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  15. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting.

    PubMed

    Liu, Xien; Wang, Fengying; Wang, Qing

    2012-06-14

    Nanostructured WO(3) has been developed as a promising water-splitting material due to its ability of capturing parts of the visible light and high stability in aqueous solutions under acidic conditions. In this review, the fabrication, photocatalytic performance and operating principles of photoelectrochemical cells (PECs) for water splitting based on WO(3) photoanodes, with an emphasis on the last decade, are discussed. The morphology, dimension, crystallinity, grain boundaries, defect and separation, transport of photogenerated charges will also be mentioned as the impact factors on photocatalytic performance. PMID:22534756

  16. Development of WO3 Thin Films Using Nanoscale Silicon Particles

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.; Park, Chul

    2000-06-01

    The WO3-x-0.1TiO2-y thin films prepared by the sol-gel route exhibit increased lifetime and stability. A sol-gel solution mixed with nanoscopic silicon oxide particles (40 nm, 200 nm) was spin-coated onto an indium tin oxide (ITO)-covered glass substrate followed by further surface development by chemical etching. A significantly faster response time of the electrochromic cell due to the increase of the surface area of the WO3/electrolyte interface and enhancement of the lithium ion diffusion rate have been obtained. The coloration efficiency was found to be much higher in the areas surrounding incorporated nanoscale particles.

  17. Photo-Induced Unpinning of Fermi Level in WO3

    PubMed Central

    Malagù, Cesare; Carotta, Maria C.; Comini, Elisabetta; Faglia, Guido; Giberti, Alessio; Guidi, Vincenzo; Maffeis, Thierry G.G.; Martinelli, Giuliano; Sberveglieri, Giorgio; Wilks, Steve P.

    2005-01-01

    Atomic force and high resolution scanning tunneling analyses were carried out on nanostructured WO3 films. It turned out that the band gap measured by scanning tunneling spectroscopy at surface is lower than the band gap reported in the literature. This effect is attributed to the high density of surface states in this material, which allows tunneling into these states. Such a high density of surface states pins the Fermi level resulting in modest surface activity at room temperature. Photo activation of WO3 results in unpinning of the Fermi level and thereby in higher chemical activity at surface.

  18. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    NASA Astrophysics Data System (ADS)

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  19. Photocatalytic water treatment over WO 3 under visible light irradiation combined with ozonation

    NASA Astrophysics Data System (ADS)

    Nishimoto, Shunsuke; Mano, Takayuki; Kameshima, Yoshikazu; Miyake, Michihiro

    2010-11-01

    Photocatalytic water treatment over bare WO 3 under visible light irradiation combined with ozonation (O 3/vis/WO 3) was investigated using an aqueous phenol solution as model wastewater. The O 3/vis/WO 3 treatment exhibited a much higher total organic carbon removal than ozonation alone. Bare WO 3 was found to function as an active visible-light-responsive photocatalyst for decomposition of organic compounds in the presence of ozone, which readily reacts with photoexcited electrons in the conduction band of WO 3.

  20. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    PubMed

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering. PMID:26726834

  1. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community

    PubMed Central

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  2. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community.

    PubMed

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  3. Tungsten Trioxide (WO3) Nanoparticles as a New Anode Material for Sodium-Ion Batteries.

    PubMed

    Santhosha, A L; Das, Shyamal K; Bhattacharyya, Aninda J

    2016-04-01

    Tungsten trioxide (WO3) is investigated for the first time as an anode material for sodium-ion batteries. Pristine WO3 displays a discharge potential plateau at 1 V and exhibits a 1st discharge cycle sodium storage capacity of 640 mAh g-1. Electronic wiring of WO3 with graphene oxide (GO, 1% by weight) led to a significant increase in the storage capacity and cyclability of WO3. As a result, the discharge capacity of 1% GO-WO3 is enhanced to 927 mAh g-1 in the 1st discharge cycle. The electrochemical intercalation of Na in to WO3 and (1%) GO-WO3 as obtained from galvanostatic charge/discharge cycling is also supported by cyclic voltammetry. PMID:27451776

  4. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  5. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  6. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde. PMID:16053116

  7. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  8. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  9. Electrochromic properties of electrodeposited tungsten oxide (WO3) thin film

    NASA Astrophysics Data System (ADS)

    Dalavi, D. S.; Kalagi, S. S.; Mali, S. S.; More, A. J.; Patil, R. S.; Patil, P. S.

    2012-06-01

    In this work, we report on a potentiostatic electrochemical procedure employing an ethanolic solution of peroxotungstic acid yielded tungsten oxide (WO3) films specifically for transmissive electrochromic devices (ECDs) such as "smart windows". WO3 film was confirmed from the binding energy determination by X-ray photoelectron spectroscopic studies. The diffusion coefficient during intercalation and deintercalation was found to be 2.59×10-10 and 2.40×10-10 cm2/C. Electrodeposited WO3 produce high color/bleach transmittance difference up to 74% at 630 nm. On reduction of WO3, the CIELAB 1931 2% color space coordinates show the transition from colorless to the deep blue state (L=95.18, a=2.12, b=0.3138, and L=57.78, a=-21.79, b=0.244) with steady decrease in relative luminance. The highest coloration efficiency (CE) of 92 cm2/C and good response time of 10.28 for coloration (reduction) and 3.2 s for bleaching (oxidation) was observed with an excellent reversibility of 89%.

  10. Ultrafine MnWO4 nanoparticles and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Ungelenk, Jan; Roming, Sabine; Adler, Peter; Schnelle, Walter; Winterlik, Jürgen; Felser, Claudia; Feldmann, Claus

    2015-08-01

    Ultrafine nanoparticles of MnWO4, a compound showing low-temperature multiferroicity in the bulk, were synthesized by the polyol method. Studies using powder X-ray diffraction, scanning and transmission electron microscopy, dynamic light scattering, differential sedimentation and sorption techniques show the formation of a single-phase material, which is composed of MnWO4 nanoparticles with a prolate ellipsoidal shape (short axis of 4-5 nm, long axis of 11-12 nm) and an unprecedented high specific surface area of 166 m2 g-1. The as-prepared MnWO4 nanoparticles are readily crystalline after the liquid-phase synthesis. Temperature and field dependent magnetization measurements indicate antiferromagnetic behavior with a single magnetic phase transition near TN ≈ 6 K. In contrast, three successive transitions below 14 K were reported for multiferroic bulk-MnWO4. Above TN, the nanoparticles show Curie-Weiss-type paramagnetic behavior. Due to the large paramagnetic moment of Mn2+ (μeff ≈ 6.2 μB), the nanoparticles can be easily manipulated by a bar magnet at ambient temperature.

  11. Characterisation and application of WO3 films for electrochromic devices

    NASA Astrophysics Data System (ADS)

    Stapinski, Thomas; Marszalek, Konstanty; Swatowska, Barbara; Stanco, Agnieszka

    2013-07-01

    Electrochromic system is the one of the most popular devices using color memory effect under the influence of an applied voltage. The electrochromic system was produced based on the thin WO3 electrochromic films. Films were prepared by RF magnetron sputtering from tungsten targets in a reactive Ar+O2 gas atmosphere of various Ar/O2 ratios. The technological gas mixture pressure was 3 Pa and process temperature 30°C. Structural and optical properties of WO3 films were investigated for as-deposited and heat treated samples at temperature range from 350°C to 450°C in air. The material revealed the dependence of properties on preparation conditions and on post-deposition heat treatment. Main parameters of thin WO3 films: thickness d, refractive index n, extinction coefficient k and energy gap Eg were determined and optimized for application in electrochromic system. The main components of the system were glass plate with transparent conducting oxides, electrolyte, and glass plate with transparent conducting oxides and WO3 layer. The optical properties of the system were investigated when a voltage was applied across it. The electrochromic cell revealed the controllable transmittance depended on the operation voltage.

  12. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Girish Kumar, S.; Koteswara Rao, K. S. R.

    2015-11-01

    Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  13. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  14. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  15. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  16. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  17. COMPARISON OF LEACHABLE TRACE ELEMENT LEVELS IN COAL GASIFIER ASH WITH LEVELS IN POWER PLANT ASH

    EPA Science Inventory

    The paper gives results of a comparison of the levels of 14 trace elements in leachates from three types of ash of a common origin coal. The 1-year study was conducted at the Kosovo plant in Obilic, Yugoslavia, comparing coal gasifier ash with fly ash and bottom ash from a coal-f...

  18. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  19. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  20. Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    PubMed Central

    Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash

    2011-01-01

    Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future

  1. Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties

    NASA Astrophysics Data System (ADS)

    Tu, Yue; Li, Qiang; Jiang, Danyu; Wang, Qi; Feng, Tao

    2015-01-01

    Tungsten(VI) oxide (WO3) nanoplates were successfully synthesized by microwave intercalation. Through microwave processing, an intermediate product H2W2O7· xH2O was prepared quickly to greatly decrease the time used to prepare WO3 nanoplates. The crystal structure and morphology of WO3 were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected-area electron diffraction. The morphology of WO3 changed with an increase in calcining temperature. A mixed-potential NO x sensor using planar yttria-stabilized zirconia and WO3 as the sensing electrode (SE) was fabricated, and its performance in NO x detection at high temperature was examined. It was determined that at 500 °C, the sensor with the WO3-nanoplate SE had higher sensitivity to NO than the sensor with a SE consisting of WO3 microparticles. The response of the NO sensor with a WO3-nanoplate SE was linear with the logarithm of NO concentration in the range of 100-1000 ppm. The electrochemical impedance measurements indicate that the electrode reaction that occurred at the triple-phase boundary (TPB) of the sensor with WO3-nanoplate SE was stronger than the reaction that occurred at the TPB of the sensor with WO3-microparticle sensing electrode.

  2. WO{sub 3} nanoplates, hierarchical flower-like assemblies and their photocatalytic properties

    SciTech Connect

    Huang, Jianhua Xiao, Liang; Yang, Xiaolong

    2013-08-01

    Graphical abstract: WO{sub 3} nanoplates, hierarchical flower-like assemblies and their visible light-driven photocatalytic properties for degradation of rhodamine B. - Highlights: • Preparation of monoclinic WO{sub 3} by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. • Single-crystalline WO{sub 3} nanoplates were formed when 4 M HNO{sub 3} solution was used. • WO{sub 3} flowers were assembled by nanoplates when 15 M HNO{sub 3} solution was used. • The products showed excellent visible light-driven photodegradation of rhodamine B. - Abstract: Monoclinic WO{sub 3} was prepared by a hydrothermal reaction of PbWO{sub 4} in the presence of HNO{sub 3}. WO{sub 3} rectangular nanoplates with a side length of 50–150 nm and a thickness of about 25 nm were obtained at 4 M HNO{sub 3} solution. And the single crystal nature was confirmed by the selected area electron diffraction. Whereas WO{sub 3} hierarchical flower-like assemblies with 3–5 μm in diameter were self-organized by nanoplates in the presence of 15 M HNO{sub 3} solution. Compared with commercial WO{sub 3} particles, our products showed an enhancement of photocatalytic properties for the degradation of rhodamine B under visible light irradiation.

  3. Utilization of fly ash in metallic composites

    SciTech Connect

    Rohatgi, P.K.; Guo, R.Q.; Golden, D.M.

    1996-10-01

    Fly ash particles have been successfully dispersed into aluminum alloy to make aluminum alloy-fly ash composites (Ashalloy) at University of Wisconsin-Milwaukee. Additions of solid and hollow particles of fly ash reduce the cost and density of aluminum castings while increasing their performance. Ashalloy represents a candidate material for high value added use of fly ash, while reducing the disposal volumes of fly ash for the electric utility industry and making the US foundries more competitive. The fly ash particle distribution in the matrix aluminum alloy and the microstructure of aluminum-fly ash composite was determined. Selected properties of cast aluminum-fly ash composites are also presented in this paper. Mechanical properties of aluminum-fly ash composites show that the composite possesses higher hardness and higher elastic modulus compared to the matrix alloy. The flow behavior of molten aluminum-fly ash slurries along with the components cast in aluminum-fly ash composites will be presented. Fly ash containing metal components have potential applications in covers, shrouds, casings, manifolds, valve covers, garden furniture, engine blocks in automotive, small engine and electromechanical industry sector.

  4. A comparison between sludge ash and fly ash on the improvement in soft soil

    SciTech Connect

    Deng-Fong Lin; Kae-Long Lin; Huan-Lin Luo

    2007-01-15

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4 2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20 30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. 9 refs., 5 figs., 2 tabs.

  5. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  6. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  7. Room temperature NO2-sensing properties of WO3 nanoparticles/porous silicon

    NASA Astrophysics Data System (ADS)

    Yan, Wenjun; Hu, Ming; Zeng, Peng; Ma, Shuangyun; Li, Mingda

    2014-02-01

    WO3 nanoparticles were synthesized by sol-gel method with tungsten hexachloride (WCl6) as precursor and deposited onto porous silicon and alumina substrates by dip-coating. The morphology and crystal structure of samples were investigated by means of field emission scanning electron microscope and X-ray diffractometer. It is the experimental results demonstrated by gas sensing tests that WO3 nanoparticles combining with the substrate of porous silicon presented an improved NO2-sensing property at room temperature. Compared to WO3 deposited on alumina working above 100 °C, the WO3 nanoparticles/porous silicon exhibited higher properties upon exposure to sub-ppm concentrations of NO2 gas at room temperature. Additionally, the NO2-sensing performance of WO3 nanoparticles/porous silicon was enhanced markedly, in comparison to pure porous silicon. The mechanism of WO3/porous silicon composite structure on the NO2 sensing was explained in detail.

  8. Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Nie, Yu; Yang, Hongxun; Sun, Shengnan; Chen, Yingying; Yang, Tongyi; Lin, Shengling

    2016-05-01

    SrWO4 is a promising candidate as not only photocatalyst for the removal of organic pollutants from water, but also electrode material for energy storage devices. However, the drawbacks of its poor adsorptive performance, low electrical conductivity, and high recombination rate of photogenerated electron-hole pair impede its practical applications. In this work, we have developed a new graphene/SrWO4 nanocomposite synthesized via a facile chemical precipitation method. Characterizations show that SrWO4 nanoparticles with 80 nm or so deposited on the surface of graphene nanosheets. Graphene nanosheets in the graphene-SrWO4 hybrid could increase adsorptive property, improve the electrical conductivity of hybrid, and reduce the recombination of electron-hole pairs. As a kind of photocatalyst or electrode material for supercapacitor, the binary graphene-SrWO4 hybrid presents enhanced photocatalytic activity and electrochemical property compared to pure SrWO4.

  9. Photocatalytic removal of microcystin-LR by advanced WO3-based nanoparticles under simulated solar light.

    PubMed

    Zhao, Chao; Li, Dawei; Liu, Yonggang; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl-) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  10. Does mesoporosity enhance thin film properties? A question of electrode material for electrochromism of WO3

    NASA Astrophysics Data System (ADS)

    Ostermann, Rainer; Smarsly, Bernd

    2009-11-01

    Replacing the commonly used indium tin oxide (ITO) with a thin metal layer as a quasi-transparent electrode leads to enhancement and acceleration of the electrochromic response of WO3, as otherwise there is an electronic activation barrier at the interface between WO3 and the ITO electrode, impeding fast electron transfer.Replacing the commonly used indium tin oxide (ITO) with a thin metal layer as a quasi-transparent electrode leads to enhancement and acceleration of the electrochromic response of WO3, as otherwise there is an electronic activation barrier at the interface between WO3 and the ITO electrode, impeding fast electron transfer. Electronic supplementary information (ESI) available: Comparison of the variation of absorbance and charge inserted/extracted for WO3 films on gold and ITO. Electrochromic response of WO3 films of different thickness. See DOI: 10.1039/b9nr00091g

  11. Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Singh, Trilok; Müller, Ralf; Singh, Jai; Mathur, Sanjay

    2015-08-01

    The dynamics of photo-induced charge carriers are significantly influenced by the surface states of WO3 thin films, which were synthesized by reactive sputtering of tungsten substrates in oxygen plasma. Tailoring the surface properties by (i) hydrogen plasma treatment and (ii) anchoring plasmonic nanoparticles (Au and Ag) altered the light harvesting and charge separation/transport processes of WO3 photoanodes. Upon hydrogen plasma-treatment and coating of noble metal clusters, WO3 films showed enhanced visible light absorption and consequently higher photocurrent density (1.4 mA cm-2) compared to pristine WO3 (0.2 mA cm-2). Enhancement in hydrogen treated WO3 sample was found to be due to the reduction of W(VI) into W(V) centers, which produced substoichiometric WO3-x phases, whereas noble metal particles contributed towards both resonant and non-resonant scattering of incident light thereby increasing photon-to-current conversion efficiency.

  12. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film.

    PubMed

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I; Qamaruddin, Muhammad; Yamani, Zain H

    2015-01-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested. Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity. PMID:25852351

  13. Photocatalytic Removal of Microcystin-LR by Advanced WO3-Based Nanoparticles under Simulated Solar Light

    PubMed Central

    Zhao, Chao; Li, Dawei; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl−) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  14. Ash fusion study of West Virginia coals

    SciTech Connect

    Ashton, K.C., Smith, C.J.; Hohn, M.E.

    1984-12-01

    As more industries and utilities convert to coal, ash fusion information becomes more important for boiler design (waste disposal systems). For example, burning a low fusion temperature coal can cause slagging - the buildup of molten ash on boiler waterwall tubes. Not only is boiler efficiency lowered, but downtime is also increased. Recently, potential buyers of West Virginia coal have inquired frequently about ash fusion. However, the amount of information in the West Virginia Geological and Economic Survey's data base is limited to data from about 800 samples, 50% of which were collected in five counties. Thus, the survey is conducting a study of ash fusion temperatures for the state's coals, to increase available data and its geographic coverage. A Leco AF-500 automated ash fusion analyzer was used in this study, which addresses: 1) reliability of results from an automated analyzer, 2) comparison of automated data with conventional data, 3) techniques of sample preparation, high-temperature ashing, and cone preparation, 4) ash-fusion trends in the state, and 5) research developments. The research sought to develop for West Virginia coal a statistical correlation model relating ash-elemental data with fusion data, and to investigate the relationship between ash color and fusion temperature. (Light-colored ashes generally have higher fusion temperatures than darker ashes.)

  15. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  16. Boiler wood ash as a soil amendment

    SciTech Connect

    Mitchell, C.C.

    1996-12-31

    Each of the 88 pulp and paper mills in the southeastern United States produces an average of 43 t of boiler ash daily (47 US tons). Forty percent is wood ash, 5% is coal ash, and the remaining is a combination ash. An analysis of boiler ash from 14 Alabama pulp and paper mills averaged 38% CaCO3 equivalent with a dry density of 500 kg m{sup -3}. Most agricultural soils in the southeastern US require periodic application of ground limestone in order to maintain productivity. Using boiler wood ash and combination ash as an alternative to ground limestone is agronomically productive, environmentally safe, and fiscally sound for both the ash producer and the landowner/ farmer. While plant, nutrient content of ash is variable, it should be considered as an incidental source of plant nutrients for field crops. Metals and phytotoxic components are very low. Extensive research has been reported on the value and safety of wood-fired boiler ashes. Nevertheless, research and development projects continue in efforts to assure safe use of boiler wood ash as an alternative soil liming material.

  17. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  18. Gasification of ash-containing solid fuels

    SciTech Connect

    Moss, G.

    1983-03-01

    Ash-contaminated solid or semi-solid fuel is passed into the bottom zone of a fluidized bed gasifier, preferably containing cao to fix labile sulfur moieties, and gasified at a temperature below the ash-softening point. The resulting char and ash of relatively low size and/or weight pass to a top zone of the bed wherein the char is gasified at a temperature above the ash-softening point whereby a substantial proportion of the ash sticks to and agglomerates with solids in the top zone until the particle size and/or weight of the resulting agglomerates causes them to sink to the bottom of the gasifier from where they can be recovered. The hot gases leaving the top of the gasifying bed have a reduced burden of entrained ash, and may be cooled to prevent any entrained ash adhering to downstream equipment through which the gases pass.

  19. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  20. Facile preparation of aqueous suspensions of WO3/sulfonated PEDOT hybrid nanoparticles for electrochromic applications.

    PubMed

    Ling, Han; Ding, Guoqiang; Mandler, Daniel; Lee, Pooi See; Xu, Jianwei; Lu, Xuehong

    2016-08-01

    An aqueous suspension of WO3/poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid) (PEDTS) hybrid nanoparticles (NPs) is prepared by air-assisted oxidative polymerization and simultaneous attachment of PEDTS on WO3-NPs, and used for electrochromic (EC) film fabrication via air-brush spraying. The hybrid EC device exhibits enhanced EC properties compared to the ones based on WO3-NP or PEDTS alone. PMID:27375222

  1. Efficient electrochemical reaction in hexagonal WO 3 forests with a hierarchical nanostructure

    NASA Astrophysics Data System (ADS)

    Shibuya, Masachika; Miyauchi, Masahiro

    2009-04-01

    Nanotree-like hexagonal tungsten oxide (WO 3) arrays were grown on metal tungsten substrates by a facile hydrothermal method. The WO 3 nanotrees, composed of 'trunks' and 'branches', were single crystals oriented in the <0 0 1> direction. Nanotree thin films exhibited efficient electrochromism due to their large tunnels in the crystal and nano-channels between the nanotrees. Moreover, their coloration efficiency and reversibility were superior to polycrystalline WO 3 films.

  2. Phage WO of Wolbachia: lambda of the endosymbiont world

    PubMed Central

    Kent, Bethany N.; Bordenstein, Seth R.

    2010-01-01

    The discovery of an extraordinarily high level of mobile elements in the genome of Wolbachia, a widespread arthropod and nematode endosymbiont, suggests that this bacterium could be an excellent model for assessing the evolution and function of mobile DNA in specialized bacteria. Here, we discuss how studies on the temperate bacteriophage WO of Wolbachia have revealed unexpected levels of genomic flux and are challenging previously held views about the clonality of obligate intracellular bacteria. We also discuss the roles that this phage might play in the Wolbachia-arthropod symbiosis, and infer how this research can be translated to combating human diseases vectored by arthropods. We expect that this temperate phage will be a preeminent model system to understand phage genetics, evolution, and ecology in obligate intracellular bacteria. In this sense, phage WO might be likened to phage λ of the endosymbiont world. PMID:20083406

  3. Mechanism of electrochromism for amorphous WO sub 3 thin films

    SciTech Connect

    Hashimoto, S.; Matsuoka, H. )

    1991-01-15

    The mechanism of electrochromism for an amorphous WO{sub 3} film has been studied. The film was prepared by using vacuum evaporation. X-ray phototelectron spectroscopy analysis has revealed that a state appears below the Fermi level after coloration in a LiClO{sub 4}-propylene carbonate electrolyte and that the Fermi level increases in proportion to the amount of injected lithium. In addition, a decrease in the density of state of the conduction band has been observed in a colored film by using electron energy loss spectroscopy analysis in transmission electron microscopy. It has been concluded that the electrons injected occupy the conduction band after coloration and that electrochromism of amorphous WO{sub 3} film is due to an intraband transition between an electron injected in the conduction band and an empty state.

  4. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  5. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect. PMID:27348055

  6. Enhanced NO2 Gas Sensing Properties of WO3-Coated Multiwall Carbon Nanotube Sensors.

    PubMed

    Ko, Hyunsung; Park, Sunghoon; Park, Suyoung; Lee, Chongmu

    2015-07-01

    WO3-coated multiwall carbon nanotubes (MWCNTs) were fabricated by sputter-deposition of WO3 on MWCNT paste. The outer diameters of WO3-coated MWCNTs ranged from 20 to 40 nm and the lengths ranged up to a few tens of micrometers. The low-magnification TEM image of a typical WO3-coated CNT showed a CNT with an inner diameter of ~20 nm and a tube wall thickness of ~7 nm and WO3 shells with a thickness up to 10 nm at both edges of the tube. The WO3 shells were very nonuniform in thickness not only along the axis of the nanotube but also from one nanotube to the other. The sensing properties of multiple networked WO3-coated CNT sensors toward NO2 gas were examined. The WO3-coated MWCNT sensors showed responses of 120-221% over an NO2 concentration range of 1 to 5 ppm at room temperature. The responses were 1-2 fold higher than those of the pristine MWCNT sensor over the same NO2 concentration range. The origin of the enhancement of the MWCNTs in the response to NO2 by coating them with WO3 is discussed. PMID:26373127

  7. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  8. Spontaneous and stimulated Raman scattering in ZnWO{sub 4} crystals

    SciTech Connect

    Basiev, Tasoltan T; Karasik, Aleksandr Ya; Sobol, A A; Chunaev, D S; Shukshin, V E

    2011-04-30

    Spontaneous and stimulated Raman scattering (SRS) are studied in ZnWO{sub 4} crystals with a wolframite structure. The polarised Raman scattering spectra corresponding to all the six independent Raman tensor components are measured. The frequencies of the complete set of vibrational modes are identified. The threshold pump energies for SRS in ZnWO{sub 4} and KGd(WO{sub 4}){sub 2} crystals are measured upon excitation by picosecond 1047-nm pulses of a Nd:YLF laser. The SRS gains for ZnWO{sub 4} crystals are determined based on the measured thresholds and spectroscopic parameters of the crystals. (nonlinear optics phenomena)

  9. Light-controlled resistive switching of ZnWO{sub 4} nanowires array

    SciTech Connect

    Zhao, W. X.; Sun, B.; Liu, Y. H.; Wei, L. J.; Li, H. W.; Chen, P.

    2014-07-15

    ZnWO{sub 4} nanowires array was prepared on the titanium substrate by a facile hydrothermal synthesis, in which the average length of ZnWO{sub 4} nanowires is about 2um and the diameter of individual ZnWO{sub 4} nanowire ranges from 50 to 70 nm. The bipolar resistive switching effect of ZnWO{sub 4} nanowires array was observed. Moreover, the performance of the resistive switching device is greatly improved under white light irradiation compared with that in the dark.

  10. Metastable Tetragonal CdWO4 Nanoparticles Synthesized with a Solvothermal Method

    SciTech Connect

    Rondinone, Adam Justin; Travaglini, Dustin H; Pawel, Michelle D; Mahurin, Shannon Mark; Dai, Sheng

    2007-01-01

    CdWO{sub 4} has only previously been reported in the monoclinic, or wolframite, phase. Here we report the first metastable, tetragonal or scheelite, CdWO4 nanopowder. The tetragonal CdWO{sub 4} was synthesized by a propylene glycol solvothermal method. The scheelite phase is stabilized by a combination of high surface area and surface complexation by the propylene glycol. The CdWO{sub 4} is stable at 1 bar to 300 C, and converts back to the monoclinic wolframite phase between 300 and 500 C. The nanopowder exhibits cubic morphology and the average particle size of the nanopowder is around 50 nm.

  11. Size analysis of nanoparticles extracted from W/O emulsions.

    PubMed

    Nagelreiter, C; Kotisch, H; Heuser, T; Valenta, C

    2015-07-01

    Nanosized particles are frequently used in many different applications, especially TiO2 nanoparticles as physical filters in sunscreens to protect the skin from UV radiation. However, concerns have arisen about possible health issues caused by nanoparticles and therefore, the assessment of the occurrence of nanoparticles is important in pharmaceutical and cosmetic formulations. In a previous work of our group, a method was presented to extract nanoparticles from O/W emulsions. But to respond to the needs of dry and sensitive skin, sunscreens of the water-in-oil emulsion type are available. In these, assessment of present nanoparticles is also an important issue, so the present study offers a method for extracting nanoparticles from W/O emulsions. Both methods emanate from the same starting point, which minimizes both effort and cost before the beginning of the assessment. By addition of NaOH pellets and centrifugation, particles were extracted from W/O emulsions and measured for their size and surface area by laser diffraction. With the simple equation Q=A/S a distinction between nanoparticles and microparticles was achieved in W/O emulsions, even in commercially available samples. The present method is quick and easy to implement, which makes it cost-effective. PMID:25907509

  12. WO3 nanotubes prepared by a coaxial electrospinning method.

    PubMed

    Cao, Xingxing; Zhang, Xuebin; Hu, Jixiang; Wang, Yang; Liu, Jia; Wu, Haijun; Feng, Yi

    2014-08-01

    In this paper, WO3 nanotubes were prepared by a coaxial electrospinning method. Firstly, core-shell structured composite fibers were fabricated via coaxial electrospinning under the optimal electro-spinning parameters to get the best composite fibers with uniform diameters and smooth surface, which pure PVA being the core solution and PVA/AMT/alcohol being the shell one, respectively. Secondly, the composite fibers were calcined in air at 600 °C for 4 h to wipe out the pure PVA, leading to the formation of nanotubes. After sintering, the obtained WO3 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The XRD show that the resultant materials consist of pure tungsten trioxide (WO3) with good crystallinity, while FESEM and HRTEM images indicate that the materials are nanotubes with rough surface and consist of nanoparticles. The inner diameter and the wall thickness of nanotubes were calculated to be around 100 and 50 nm, respectively. PMID:25936119

  13. Electrochromism in sputtered WO{sub 3} thin films

    SciTech Connect

    Batchelor, R.A.; Burdis, M.S.; Siddle, J.R.

    1996-03-01

    There are large variations in the properties of WO{sub 3} sputtered under different conditions and two samples sputtered from an oxide target and reactively sputtered from a metal target were compared in detail. The thin film sputtered from an oxide target was found to color and bleach rapidly in 1 M LiClO{sub 4} in propylene carbonate, while the thin film reactively sputtered from a metal target could be colored deeply, but bleached only slowly. By calculating the rate of change of optical density during cyclic voltammetry, it was possible to directly compare the coloration response with the current/voltage behavior of the electrodes. In both cases at least two lithium insertion reactions appear to occur. The distinction between the two reactions was especially clear in the sample sputtered from a metal target, in which an insertion of high electrochromic efficiency occurred up to Li{sub 0.2}WO{sub 3} and then an insertion of considerably lower electrochromic efficiency up to Li{sub 0.5}WO{sub 3}. Although a small amount of coloration and bleaching continued to occur after switching the reactively sputtered sample to open circuit during the coloration and bleaching cycles; transmission change was largely halted by disconnecting the external current supply. The slow end to the bleach of the reactively sputtered sample corresponded to a reaction of high electrochromic efficiency.

  14. Evaluation of WO2013125543, WO2013146963 and EP2634185: the first Tyk2 inhibitors from Takeda and Sareum.

    PubMed

    Norman, Peter

    2014-03-01

    Three patent applications, from two different companies, claim structurally novel Tyk2 inhibitors and their uses for the treatment of autoimmune diseases. In EP-2634185 Sareum claims 5-anilino-2-(2-halophenyl)-oxazole-4-carboxamide derivatives which are shown to be nanomolar potency Tyk2 inhibitors with 10 - 100-fold selectivity over JAK1, JAK2 and JAK3. Takeda's WO-2013125543 and WO-2013146963 claim two distinct structural classes of Tyk2 inhibitors. The first application claims inhibitors based on an unusual 1,5-dihydro-4H-pyrazolo[4,3-c]pyridine-4-one scaffold and the second claims 1-(2-arylaminopyrimidin-4-yl)-pyrrolidin-2-one derivatives. One example of the latter was shown to be orally active in an IL-23-induced inflammation model. PMID:24386992

  15. Ultrasonic ash/pyrite liberation

    SciTech Connect

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  16. Magnetic and structural properties of NaLnMnWO{sub 6} and NaLnMgWO{sub 6} perovskites

    SciTech Connect

    King, Graham; Wayman, Lora M.; Woodward, Patrick M.

    2009-06-15

    We have prepared 14 new AA'BB'O{sub 6} perovskites which possess a rock salt ordering of the B-site cations and a layered ordering of the A-site cations. The compositions obtained are NaLnMnWO{sub 6} (Ln=Ce, Pr, Sm, Gd, Dy, and Ho) and NaLnMgWO{sub 6} (Ln=Ce, Pr, Sm, Eu, Gd, Tb, Dy, and Ho). The samples were structurally characterized by powder X-ray diffraction which has revealed metrically tetragonal lattice parameters for compositions with Ln=Ce, Pr and monoclinic symmetry for compositions with smaller lanthanides. Magnetic susceptibility vs. temperature measurements have found that all six NaLnMnWO{sub 6} compounds undergo antiferromagnetic ordering at temperatures between 10 and 13 K. Several compounds show signs of a second magnetic phase transition. One sample, NaPrMnWO{sub 6}, appears to pass through at least three magnetic phase transitions within a narrow temperature range. All eight NaLnMgWO{sub 6} compounds remain paramagnetic down to 2 K revealing that the ordering of the Ln{sup 3+} cations in the NaLnMnWO{sub 6} compounds is induced by the ordering of the Mn{sup 2+} sub-lattice. - Graphical abstract: Evidence for multiple magnetic phase transitions in the A and B-site ordered perovskite NaPrMnWO{sub 6}.

  17. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting.

    PubMed

    Zhang, Jing; Liu, Zhihua; Liu, Zhifeng

    2016-04-20

    We report the fabrication of tungsten trioxide (WO3) with different morphologies applied in photoelectrochemical (PEC) water splitting. The antimony sulfide (Sb2S3) was incorporated onto WO3 for the first time with the aim of improving its photoelectrocatalytic activity under visible-light illumination. In the present work, WO3 of different morphologies were fabricated on FTO glass via adjusting the pH value via a facile hydrothermal method and the morphological effect on the photoelectrocatalytic activity of the obtained samples has been discussed. WO3/Sb2S3 heterojunction photoelectrocatalysts were subsequently synthesized successfully to further improve the photoelectrocatalytic activity. Among them, WO3/Sb2S3 heterojunction photoelectrocatalyst based on WO3 micro crystals achieved an enhanced photocurrent of 1.79 mA/cm(2) at 0.8 V versus RHE under simulated sunlight, compared to 0.45 mA/cm(2) of pristine WO3 micro crystals. This excellent PEC performance benefits from the enhanced light absorbance, construction of suitable energy band gap, the improved photogenerated electron-hole pairs separation and transfer efficiency, which potentially provides new insights into PEC water splitting systems. PMID:27032422

  18. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  19. Heavy metals leaching in Indian fly ash.

    PubMed

    Prasad, Bably; Mondal, Kajal Kumar

    2008-04-01

    Fly ash is an industrial waste generated from thermal power plants. Fly ash constitutes 80-85% of the total ash produced. A small part of fly ash is utilised in some sectors such as construction materials, building engineering, road, back fill, agriculture, selective engineering and processing useful materials. A large part of fly ash produced is disposed of with very high environmental risk. In the present paper, laboratory leaching test has been used to determine the potential mobility of Pb, Cd, Cr, Cu, Zn, Fe, Mn and Ni in fly ash samples, collected from Chandrapura Thermal Power Plant, Jharkhand and Ramagundam Super Thermal Power Plant, Andhra Pradesh, in order to assess their leachability when these wastes are disposed of. A cascade-leaching test was used at liquid-to-solid ratio (L/S) ranging between 20 and 100. Both fly ash samples exhibited neutral reactions, as indicated by pH values <11.75 and >7.0 at L/S=10 and contact time of 10 minutes. The percentage of leached amounts found to follow the trend Zn>Fe>Mn>Cr>Pb>Cu>Ni>Cd for fly ash from Chandrapura and Fe>Zn>Cu>Mn>Cr>Ni>Pb>Cd for fly ash from Ramagundam. Effect of pH on metals released from ash surface in aqueous solution followed a predictable pattern of decreasing release with increasing pH. PMID:19295096

  20. Rapid toxicity screening of gasification ashes.

    PubMed

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa

    2016-04-01

    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05ashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category. PMID:26923299

  1. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  2. Temperature and acidity effects on WO{sub 3} nanostructures and gas-sensing properties of WO{sub 3} nanoplates

    SciTech Connect

    Zhang, Huili; Liu, Zhifang; Yang, Jiaqin; Guo, Wei; Zhu, Lianjie; Zheng, Wenjun

    2014-09-15

    Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{sub 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.

  3. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant. PMID:25220259

  4. Annealing dynamics of WO{sub 3} by in situ XRD

    SciTech Connect

    Righettoni, Marco; Pratsinis, Sotiris E.

    2014-11-15

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensor applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.

  5. CdWO{sub 4} polymorphs: Selective preparation, electronic structures, and photocatalytic activities

    SciTech Connect

    Yan, Tingjiang; Li, Liping; Tong, Wenming; Zheng, Jing; Wang, Yunjian; Li, Guangshe

    2011-02-15

    This work explored the selective synthesis of polymorphs of CdWO{sub 4} in either tetragonal or monoclinic phase by optimizing the experimental parameters. Systematic characterization indicated that both polymorphs possessed similar spherical morphologies but different structural building blocks. Electronic structures calculations for both polymorphs demonstrated the same constructions of conduction band or valence band, while the conduction band widths of both polymorphs were quite different. Both CdWO{sub 4} polymorphs exhibited good photocatalytic activity for degradation of methyl orange under UV light irradiation. When comparing to some other well-known tungstate oxide materials, the photocatalytic activity was found to follow such a consequence, monoclinic CdWO{sub 4{approx}}monoclinic ZnWO{sub 4}>tetragonal CdWO{sub 4}>tetragonal CaWO{sub 4}. The specific photocatalytic activity of monoclinic CdWO{sub 4} was even higher than that of commercial TiO{sub 2} photocatalyst (Degussa P25). The increased activity from the tetragonal CdWO{sub 4} to the monoclinic was consistent with the trend of the decreased symmetry, and this could be explained in terms of the geometric structures and electronic structures for both polymorphs. -- Graphical abstract: Monoclinic CdWO{sub 4} exhibited a much higher photocatalytic activity than the tetragonal form owing to the lower symmetry, more distorted geometric structure, and the dispersive band configuration. Display Omitted Research highlights: > Polymorphs of CdWO{sub 4} in either tetragonal or monoclinic phase were selectively synthesized. > Both polymorphs possessed similar spherical morphologies, while the relevant structural building blocks were different. > Photocatalytic activities of CdWO{sub 4} polymorphs depended strongly on the symmetry, geometric structure, as well as band configuration.

  6. Can vegetative ash be water repellent?

    NASA Astrophysics Data System (ADS)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  7. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  8. Volcanic ash: toxicity to isolated lung cells.

    PubMed

    Castranova, V; Bowman, L; Shreve, J M; Jones, G S; Miles, P R

    1982-02-01

    Samples of volcanic ash from Mount St. Helens were collected from Spokane, Washington, after the major eruption of May 18, 1980. The toxicity of ash to the lung was estimated by monitoring the effects of in vitro and in vivo exposure on various physiological parameters of isolated lung cells. Volcanic ash had little effect on O2 consumption of rabbit type II pneumocytes, O2 consumption or superoxide release of resting rat alveolar macrophages, or membrane integrity of rat alveolar macrophages. Ash also caused no significant lipid peroxidation in rat lung microsomes. However, volcanic ash did inhibit superoxide anion release from zymosan-stimulated rat alveolar macrophages. Since superoxide is an antibacterial substance, this result suggests that exposure to volcanic ash may adversely affect the ability of alveolar macrophages to protect the lung from infection. PMID:6281450

  9. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  10. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  11. COAL ASH RESOURCES RESEARCH CONSORTIUM

    SciTech Connect

    1998-12-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced �cars�) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993�1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High

  12. Effects of fly ash particle size on strength of Portland cement fly ash mortars

    SciTech Connect

    Erdogdu, K.; Tuerker, P.

    1998-09-01

    Fly ashes do not have the same properties for different size fractions. It can be accepted that the effect of a fly ash on mortar strength is a combined effect of its size fractions. Therefore, it was concluded that by separating the size fractions and replacing cement with them, the combined bulk effect of a fly ash on strength can be better analyzed. In this study, different size fractions of fly ash were used to replace cement partially in standard compressive strength mortars. The authors attempted to interpret the strength of Portland cement-fly ash mortars in terms of the chemical, mineralogical, morphological, and physical properties of different fly ash size fractions used. Strengths of the mortars were compared at 2, 7, 28, and 90 days. Also strength of mortars with all-in ash (original ash containing all the fractions) were estimated by using strength of mortars with size fractions and the suitability of this estimation was discussed.

  13. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  14. Proceedings: Tenth international ash use symposium

    SciTech Connect

    Not Available

    1993-01-01

    The objective of the 1993 International Coal Ash Use Symposium, the tenth in a series since 1967, is to publicize innovations in coal ash technology. these symposia support the mission of the American Coal Ash Association (ACAA) to promote coal ash use in a variety of markets through technology transfer and commercialization. the 82 papers were submitted to ACAA by authors from sixteen countries. this volume 1 contains reports on the following: waste stabilization, aggregate, agriculture, structural fill, mine reclamation, aquatic uses, and environmental concerns. individual projects are processed separately for the data bases.

  15. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    SciTech Connect

    Wang, Li; Yan, Jiejuan; Liu, Cailong; Liu, Xizhe; Han, Yonghao E-mail: cc060109@qq.com; Gao, Chunxiao E-mail: cc060109@qq.com; Ke, Feng; Wang, Qinglin; Li, Yanchun; Ma, Yanzhang

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportation is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.

  16. Influence of peculiarities of electronic excitation relaxation on luminescent properties of MgWO4

    NASA Astrophysics Data System (ADS)

    Krutyak, N. R.; Spassky, D. A.; Tupitsyna, I. A.; Dubovik, A. M.

    2016-07-01

    Luminescent properties of magnesium tungstate monocrystals grown by two different methods are studied. Only the exciton luminescence of these crystals themselves is observed. Temperature dependence of the low-energy range in the luminescence excitation spectra is described by the Urbach rule. Slope coefficient σ0 = 0.74 obtained from this dependence implies autolocalization of the excitons in MgWO4. The processes of electronic excitations relaxation are considered depending on the structure of valence band in MgWO4 and in other wolframites, ZnWO4 and CdWO4. In contrast to ZnWO4 and CdWO4, the d-states of the cation do not participate in formation of the MgWO4 valence band. Using the excitation spectra measured in the range of the fundamental absorption (4-20 eV), it is shown that this difference manifests itself in relaxation of electronic excitations and may be the cause of the relatively low light yield of MgWO4.

  17. Effect of Bisphenol A on invasion ability of human trophoblastic cell line BeWo

    PubMed Central

    Wang, Zi-Yi; Lu, Jing; Zhang, Yuan-Zhen; Zhang, Ming; Liu, Teng; Qu, Xin-Lan

    2015-01-01

    Bisphenol A (BPA) is a kind of environmental endocrine disruptors (EEDs) that interfere embryo implantation. Trophoblast invasion plays a crucial role during embryo implantation. In this study, the effects of BPA on invasion ability of human trophoblastic cell line BeWo and its possible mechanism were investigated. BeWo cells were exposed to BPA and co-cultured with human endometrial cells to mimic embryo implantation in transwell model. The proliferation and invasion capability of BeWo cells were detected. The expression of E-cadherin, DNMT1, MMP-2, MMP-9, TIMP-1 and TIMP-2 were also analyzed. The results showed that the invasion capability of BeWo was reduced after daily exposure to BPA. BPA had biphasic effect on E-cadherin expression level in BeWo cells and expression level of DNMT1 was decreased when treated with BPA. Moreover, BPA treatment also changed the balance of MMPs/TIMPs in BeWo cells by down-regulating MMP-2, MMP-9 and up-regulating TIMP-1, TIMP-2 with increasing BPA concentration. Taken together, these results showed that BPA treatment could reduce the invasion ability of BeWo cells and alter the expression level of E-cadherin, DNMT1, TIMP-1, TIMP-2, MMP-2, and MMP-9. Our study would help us to understand the possible mechanism of BPA effect on invasion ability of human trophoblastic cell line BeWo. PMID:26823751

  18. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics.

    PubMed

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-11

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10(-10) cm(2) s(-1), which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD. PMID:26866352

  19. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    SciTech Connect

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay E-mail: vgupta@physics.du.ac.in; Tomar, Monika

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  20. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films.

    PubMed

    Vemuri, R S; Engelhard, M H; Ramana, C V

    2012-03-01

    Nanocrystalline WO(3) thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO(3) films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO(3) films. The XPS analyses indicate the formation of stoichiometric WO(3) with tungsten existing in fully oxidized valence state (W(6+)). However, WO(3) films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO(3) film-SiO(2) interface-Si substrate modeling indicate that the density of WO(3) films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO(3) films is established on the basis of the observed results. PMID:22332637

  1. Correlation between surface chemistry, density and band gap in nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Ses; Engelhard, Mark H.; Ramana, C.V.

    2012-03-01

    Nanocrystalline WO3 thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO3 films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultra-microstructure was significant on the optical properties of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations, which are based on isotropic WO3 film - SiO2 interface - Si substrate model, indicate that the density of WO3 films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with the increasing oxygen. The band gap of these films increases from 2.78 eV to 3.25 eV with increasing oxygen. A direct correlation between the film-density and band gap in nanocrystalline WO3 films is established based on the observed results.

  2. Lithium-titanate-nanotube-supported WO3 for enhancing transmittance contrast in electrochromics

    NASA Astrophysics Data System (ADS)

    Dong, Yunbing; Xiong, Chunrong; Zhang, Yilu; Xing, Shuai; Jiang, Hong

    2016-03-01

    Lithium titanate nanotubes (Li-TNTs) have been successfully synthesized. The inner and outer diameters of the nanotubes are 5 nm and 8 nm with an interlayer spacing of 0.83 nm. The nanotubes were in accordance with the Li1.81H0.19Ti2O5 · xH2O phase. The chemical component was Li0.9H1.1Ti2O5 · H2O as determined by ICP-AES. The Li-TNT-supported WO3 nanoparticle (WO3/Li-TNTs) thin film was prepared onto ITO glass via spin-coating and then fabricated with an electrochromic device. The Li ion diffusion coefficient in the WO3/Li-TNT film was 6.1 × 10-10 cm2 s-1, which is eight times higher than that for the pure WO3 film. The transmittance contrast of the pure WO3-based ECD was 53.3% at 600 nm. However, this increased to 74.1% for the WO3/Li-TNT-based ECD. Meanwhile, the color-switching times of the WO3/Li-TNT-based ECD were apparently shorter than the ones for the WO3-based ECD.

  3. Congruence of Behavioral Symptomatology in Children with ADD/H, ADD/WO, and Learning Disabilities.

    ERIC Educational Resources Information Center

    Stanford, Lisa D.; Hynd, George W.

    1994-01-01

    This study compared parent and teacher behavioral ratings for 77 children (ages 5-16) diagnosed as having attention deficit disorder with hyperactivity (ADD/H), attention deficit disorder without hyperactivity (ADD/WO), or learning disabilities (LD). ADD/WO and LD children were rated similarly on symptoms of withdrawal and impulsivity but differed…

  4. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  5. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    SciTech Connect

    Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.

  6. Gamma-ray irradiation induced bulk photochromism in WO3-P2O5 glass

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Baccaro, Stefania; Cemmi, Alessia; Xu, Xiaoqing; Chen, Guorong

    2015-11-01

    In the present work, photochromism of WO3-P2O5 glass under gamma-ray irradiation was reported. As-prepared glass samples with different WO3 content are all optically transparent in the visible wavelength range thanks to the addition of a small amount of oxidizing couple Sb2O3-NaNO3. The photochromic properties are identified by transmission spectra of the glasses before and after irradiation. The results show that the irradiation induced darkening results from the reduction of W6+ to W5+ or W4+. The existence of WO6 clusters in glasses of high WO3 content is proved by XPS, which is the main reason for the obvious photochromic effects. The WO3-P2O5 glass is a promising candidate in gamma-ray sensitive detector.

  7. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  8. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes

    NASA Astrophysics Data System (ADS)

    Deng, Jiajia; Gu, Ming; Di, Junwei

    2011-04-01

    Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.

  9. Ethanol sensing of SnO2-WO3 core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Park, Sunghoon; Kim, Soohyun; Sun, Gun-Joo; Choi, Seung-Bok; Lee, Sangmin; Lee, Chongmu

    2015-09-01

    SnO2-WO3 core/shell nanowires were synthesized by the thermal evaporation of Sn powders in an oxidizing ambient followed by the thermal evaporation of WO3 powders. Their C2H5OH gas sensing properties were then examined. The C2H5OH gas sensing properties were improved remarkably by formation of the SnO2-WO3 heterostructures. The SnO2-WO3 core/shell nanowire sensors showed a much stronger and faster response to C2H5OH gas than the pristine SnO2-nanowire sensors. The enhanced sensing performance of the SnO2-WO3 core/shell nanowires towards C2H5OH gas can be accounted for by the potential barrier-controlled carrier-transport mechanism combined with the surface-depletion mechanism. [Figure not available: see fulltext.

  10. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  11. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  12. Changes of the ash structure

    NASA Astrophysics Data System (ADS)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  13. Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption.

    PubMed

    Ren, Xiaoyan; Zhang, Shuai; Li, Chong; Li, Shunfang; Jia, Yu; Cho, Jun-Hyung

    2015-01-01

    Using first-principles density functional theory calculations within the generalized gradient approximation, we investigate the adsorption of NO molecule on a clean WO3(001) surface as well as on the noble metal atom (Cu, Ag, and Au)-deposited WO3(001) surfaces. We find that on a clean WO3 (001) surface, the NO molecule binds to the W atom with an adsorption energy (E ads) of -0.48 eV. On the Cu- and Ag-deposited WO3(001) surface where such noble metal atoms prefer to adsorb on the hollow site, the NO molecule also binds to the W atom with E ads = -1.69 and -1.41 eV, respectively. This relatively stronger bonding of NO to the W atom is found to be associated with the larger charge transfer of 0.43 e (Cu) and 0.33 e (Ag) from the surface to adsorbed NO. However, unlike the cases of Cu-WO3(001) and Ag-WO3(001), Au atoms prefer to adsorb on the top of W atom. On such an Au-WO3(001) complex, the NO molecule is found to form a bond to the Au atom with E ads = -1.32 eV. Because of a large electronegativity of Au atom, the adsorbed NO molecule captures the less electrons (0.04 e) from the surface compared to the Cu and Ag catalysts. Our findings not only provide useful information about the NO adsorption on a clean WO3(001) surface as well as on the noble metal atoms deposited WO3(001) surfaces but also shed light on a higher sensitive WO3 sensor for NO detection employing noble metal catalysts. PMID:25852357

  14. MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting

    SciTech Connect

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-15

    The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ∼4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup −2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

  15. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Hou, Xianxiang; Wen, Hejing; Wang, Yu; Wang, Hailong; Li, Xinjian; Zhang, Rui; Lu, Hongxia; Xu, Hongliang; Guan, Shaokang; Sun, Jing; Gao, Lian

    2010-01-01

    Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO3 nanoplates as active elements have been investigated in this paper. Single-crystalline WO3 nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO3 nanoplate pastes were coated on the surface of an Al2O3 ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO3 nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 °C). For butanol, the WO3 nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 °C. For other alcohols, WO3 nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO3 nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO3 nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO3 nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO3 nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.

  16. Revival of "dead" memristive devices: case of WO3-x.

    PubMed

    Tan, Zheng-Hua; Yang, Rui; Terabe, Kazuya; Yin, Xue-Bing; Guo, Xin

    2016-01-21

    Inappropriate operation could make a memristive device "dead" and cause the loss of resistive switching performance. In this study, the revival of "dead" devices was investigated in the case of WO3-x-based memristive devices. It is believed that inappropriate operation with a high-voltage pulse creates an ordered structure of oxygen vacancies and such an ordered structure makes the normal reset process fail. By precisely controlled voltage sweeping at certain compliance currents, a "dead" device can be revived. The revival operation disrupts the ordered structure by Joule heating and recovers Schottky-like barrier modulation-based switching. PMID:26685986

  17. Epitaxial growth of high quality WO3 thin films

    NASA Astrophysics Data System (ADS)

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Božović, I.

    2015-09-01

    We have grown epitaxial WO3 films on various single-crystal substrates using radio frequency magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on Y AlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. The dependence of the growth modes and the surface morphology on the lattice mismatch are discussed.

  18. Epitaxial growth of high quality WO3 thin films

    DOE PAGESBeta

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Bozovic, I.

    2015-09-09

    We have grown epitaxial WO3 films on various single-crystal substrates using radio-frequency (RF) magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on YAlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. Furthermore, the dependence of the growth modes and the surface morphology on the lattice mismatch is discussed.

  19. Electrochromism with colloidal WO3 and IrO2

    NASA Astrophysics Data System (ADS)

    Michalak, Franck; Rault, L.; Aldebert, Pierre

    1992-11-01

    Colloidal particles of WO3 and IrO2 are synthesized and dispersed within a gelatinous perfluorinated ionomer matrix. Experimental procedures are established in order to obtain percolation between the electrochromic particles. Colloidal particle sizes are measured by quasi elastic light scattering. Electrochemical properties of the mixed colloid electrodes are determined by cyclic voltammetry and impedance spectroscopy. Preliminary optical tests are performed in order to measure transmission and contrast of electrochromic half cells with a mixed colloid electrode, and also a sputtered oxide electrode.

  20. Synthesis of chemically bonded BiOCl@Bi2WO6 microspheres with exposed (0 2 0) Bi2WO6 facets and their enhanced photocatalytic activities under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Yongchao; Chen, Zhiwei; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Bi2WO6 photocatalysts has been extensively studied for its photocatalytic activity. However, few works have been conducted on hierarchical Bi2WO6 composite photocatalysts with specifically exposed facets. In this work, we report a facile method to synthesize BiOCl@Bi2WO6 hierarchical composite microspheres. Bi2WO6 nanosheets with specifically exposed (0 2 0) facet were directly formed on the surface of BiOCl precursor microspheres via a controlled anion exchange route between BiOCl and Na2WO4. The visible-light photocatalytic activity of the BiOCl@Bi2WO6 heterojunction with exposed (0 2 0) facets (denoted as BiOCl@Bi2WO6) was investigated by degradation of Rhodamine B (RhB) and ciprofloxacin (CIP) aqueous solution under visible light irradiation. The experimental results indicated that the BiOCl@Bi2WO6 composite microsphere with intimate interfacial contacts exhibited improved efficiency for RhB photodegradation in comparison with pure BiOCl and Bi2WO6. The BiOCl@Bi2WO6 composite microsphere also shows high photocatalytic activity for degradation of CIP under visible light irradiation. The enhanced photocatalytic performance of BiOCl@Bi2WO6-020 hierarchical microspheres can be ascribed to the improved visible light harvesting ability, high charge separation and transfer. This work will make significant contributions toward the exploration of novel heterostructures with high potential in photocatalytic applications.

  1. Resource recovery ash - hazard or resource

    SciTech Connect

    Waffenschmidt, J.G.

    1995-05-01

    Resource Recovery ash quality is dependent, in part, on the quality of the refuse from which it is derived. Based on current recycling, waste diversion practices, projected waste quality, and procedures in place at resource recovery facilities it appears that they will not lead to substantial changes in ash quality in the foreseeable future. A number of reviews regarding the environmental fate of resource recovery ash residues have demonstrated that the leachability is significantly below that predicted by the Toxicity Characteristic Leaching Procedure. Numerous demonstration projects have shown that ash can be used in a number of products, including reefs, road bed material, and block formation. Two applications appear to be particularly attractive from an environmental perspective -- ash as MSW landfill cover material and as a mitigatory measure for acid mine drainage caused by strip mining. The use of the scientific method provides us with the ability to assess the environmental effects of ash management, utilization, and disposal. The data base on ash is extensive and demonstrates that ash can be handled and used as a non-hazardous material; all that is required is for public policy to catch up.

  2. Building a Comprehensive Collection of Ash Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. National Plant Germplasm System (NPGS) has conserved seed collections of ash germplasm at the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA since the 1970s. When Emerald Ash Borer (EAB) was introduced into southeastern MI, the NCRPIS maintained a relatively...

  3. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  4. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  5. FATE OF INHALED FLY ASH IN HAMSTERS

    EPA Science Inventory

    To determine pulmonary deposition, translocation, and clearance of inhaled fly ash, hamsters received a single 95-min nose-only exposure to neutron-activated fly ash. Over a period of 99 days postexposure, the hamsters were sacrificed in groups of six animals. Lungs, liver, kidne...

  6. A MECHANISM FOR ASH ASSISTED SLUDGE DEWATERING

    EPA Science Inventory

    The ability of various additives to improve the dewaterability of activated sludge was determined and the surface properties of additives characterized in order to arrive at a mechanism for ash conditioning of activated sludge. The primary additives investigated were fly ash and ...

  7. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  8. Adsorption of phenolic compounds on fly ash

    SciTech Connect

    Akgerman, A.; Zardkoohi, M.

    1996-03-01

    Adsorption isotherms for adsorption of phenol, 3-chlorophenol, and 2,4-dichlorophenol from water onto fly ash were determined. These isotherms were modeled by the Freundlich isotherm. The fly ash adsorbed 67, 20, and 22 mg/g for phenol, chlorophenol, and 2,4-dichlorophenol, respectively, for the highest water phase concentrations used. The affinity of phenolic compounds for fly ash is above the expected amount corresponding to a monolayer coverage considering that the surface area of fly ash is only 1.87 m{sup 2}/g. The isotherms for contaminants studied were unfavorable, indicating that adsorption becomes progressively easier as more solutes are taken up. Phenol displayed a much higher affinity for fly ash than 3-chlorophenol and 2,4-dichlorophenol.

  9. Worldwide high-volume coal ash utilization

    SciTech Connect

    Manz, O.E.

    1996-10-01

    The utilization of coal ash in concrete is the most extensive and widespread throughout the world, as compared to other uses of ash. However, in addition to the use in 1992 of over 39 million tons of coal ash in concrete, there were over 40 billion tons used in structural, land, or embankment fill; almost 7 million tons for pavement base course or subgrade; over 40 million tons for filler for mines, quarries or pits; almost 3 million tons for soil amendment; over 1.8 million tons for lightweight aggregate; and over 7 million tons for aerated blocks. In 1992, China had the largest production of coal ash as well as the largest utilization. Russian and the US had the second and third largest production. Russia, Germany, US, and Poland were next to China in utilization. This paper summarizes recent coal ash production and utilization in the world and presents a country-by-country survey of the high-volume users.

  10. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  11. Fly Ash Amendments Catalyze Soil Carbon Sequestration

    SciTech Connect

    Amonette, James E.; Kim, Jungbae; Russell, Colleen K.; Palumbo, A. V.; Daniels, William L.

    2003-09-15

    We tested the effects of four alkaline fly ashes {Class C (sub-bituminous), Class F (bituminous), Class F [bituminous with flue-gas desulfurization (FGD) products], and Class F (lignitic)} on a reaction that simulates the enzyme-mediated formation of humic materials in soils. The presence of FGD products completely halted the reaction, and the bituminous ash showed no benefit over an ash-free control. The sub-bituminous and lignitic fly ashes, however, increased the amount of polymer formed by several-fold. The strong synergetic effect of these ashes when enzyme is present apparently arises from the combined effects of metal oxide co-oxidation (Fe and Mn oxides), alkaline pH, and physical stabilization of the enzyme (porous silica cenospheres).

  12. Proceedings: Ninth international ash use symposium

    SciTech Connect

    Not Available

    1991-01-01

    The objective of the 1991 International Coal Ash Use Symposium, the ninth in a series since 1967, is to publicize innovations in coal ash technology. These symposia support the mission of the American Ash Association (established originally as the National Ash Association after the first symposium) to promote coal ash technology transfer and commercial utilization. The three-volume publication contains 80 papers, presented at seventeen sessions during the January 1991 event. Volume 1 contains papers related to concrete and related products like cellular concrete, and aggregates. Volume 2 covers the growing market in waste stabilization/solidification and aquatic uses. This volume (Volume 2) brings together papers on a variety of high-volume uses, and R D projects. Individual projects are processed separately for the data bases.

  13. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  14. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  15. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation.

    PubMed

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-11-15

    Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO3 nanoplates using a photo-reduction method to generate WO3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO3 and WO3/Ag composites was conducted under visible light irradiation. The results show that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% in 5h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2h under visible light irradiation for all three WO3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process. PMID:27450332

  16. Pickering w/o emulsions: drug release and topical delivery.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Valour, Jean-Pierre; Mouaziz, Hanna; Pelletier, Jocelyne; Chevalier, Yves

    2009-02-23

    The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum. PMID:18992799

  17. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  18. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  19. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  20. High-Tc superconductivity in nanostructured NaxWO3-y: Sol-gel route

    NASA Astrophysics Data System (ADS)

    Aliev, Ali

    2009-03-01

    Tungsten trioxide, WO3-y infiltrated into various nanoporous matrix structures such as carbon inverse opal, carbon nanotubes paper, or platinum sponge and then intercalated with alkaline ions (Li^+, Na^+) exhibits a pronounced diamagnetic onset in ZFC magnetization in a wide range of temperatures, 125-132 K. Resistivity measurements show non zero jump and intensive fluctuations of electrical resistance below observed transition points. The observed magnetic and electrical anomalies in nanostructured tungsten bronzes (LixWO3-y, NaxWO3-y) suggest the possibility of localized non-percolated superconductivity. The direct evidence of polaron formation from temperature dependence of EPR and photoemission spectra and formation of bipolarons in weakly reduced to WO3-y, with 3-y typically in the order of 2.95 suggest bipolarons mechanism of a Bose-Einstein condensation of trapped electron pairs in doped WO3-y. On the other hand the strong lattice instabilities in 2D systems like layered cuprates and tungsten bronzes place the upper limit on Tc. Than, the percolative self-organized mechanism on the metal/insulator interface like Na/WO3 and NaWO3/nanostructured matrix can facilitate the high Tc obtained in sodium bronzes infiltrated into inverted carbon opal or carbon nanotube matricies.

  1. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  2. A poly(3,4-ethylenedioxypyrrole)-Au@WO3 -based electrochromic pseudocapacitor.

    PubMed

    Reddy, B Narsimha; Kumar, P Naresh; Deepa, Melepurath

    2015-02-01

    A poly(3,4-ethylenedioxypyrrole)-gold nanoparticle (Au)-tungsten oxide (PEDOP-Au@WO3 ) electrochromic supercapacitor electrode capable of optically modulating solar energy while simultaneously storing/releasing energy (in the form of charge) was fabricated for the first time. WO3 fibers, 50 to 200 nm long and 20 to 60 nm wide, were synthesized by a hydrothermal route and were electrophoretically deposited on a conducting substrate. Au nanoparticles and PEDOP were coated over WO3 to yield the PEDOP-Au@WO3 hybrid electrode. The inclusion of Au in the hybrid was confirmed by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analyses. The nanoscale electronic conductivity, coloration efficiency, and transmission contrast of the hybrid were found to be significantly greater than those of pristine WO3 and PEDOP. The hybrid showed a high specific discharge capacitance of 130 F g(-1) during coloration, which was four and ten times greater than the capacitance achieved in WO3 or PEDOP, respectively. We also demonstrate the ability of the PEDOP-Au@WO3 hybrid, relative to pristine PEDOP, to perform as a superior counter electrode in a solar cell, which is attributed to a higher work function. The capacitance and redox switching capability of the hybrid decreases insignificantly with cycling, thus establishing the viability of this multifunction hybrid for next-generation sustainable devices such as electrochromic psuedocapacitors because it can concurrently conserve and store energy. PMID:25371375

  3. Tungsten oxide (WO{sub 3}) thin films for application in advanced energy systems

    SciTech Connect

    Gullapalli, S. K.; Vemuri, R. S.; Manciu, F. S.; Enriquez, J. L.; Ramana, C. V.

    2010-07-15

    Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H{sub 2}S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO{sub 3}) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO{sub 3} films for H{sub 2}S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30-500 deg. C, on the growth and microstructure of WO{sub 3} thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO{sub 3} films. XRD and SEM results indicate that the WO{sub 3} films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO{sub 3} films exhibit smooth morphology at growth temperatures {<=}300 deg. C while relatively rough at >300 deg. C. The analyses indicate that the nanocrystalline WO{sub 3} films grown at 100-300 deg. C could be the potential candidates for H{sub 2}S sensor development for application in coal gasification systems.

  4. Investigation of the optical property and structure of WO3 thin films with different sputtering depositions

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui

    2011-09-01

    The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.

  5. Highly active WO3-Ag-ZnO photocatalyst driven by day light illumination

    NASA Astrophysics Data System (ADS)

    Subash, B.; Krishnakumar, B.; Sreedhar, B.; Swaminathan, M.; Shanthi, M.

    2013-02-01

    The WO3 loaded Ag-ZnO (WO3-Ag-ZnO) was successfully synthesized by precipitation-decomposition method. The catalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) images, energy dispersive spectrum (EDS), transmission electron microscope (TEM), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), cyclic voltammetry (CV) and BET surface area measurements. The photocatalytic activity of WO3-Ag-ZnO was investigated for the degradation of Naphthol Blue Black (NBB) in aqueous solution using solar light. WO3-Ag-ZnO is found to be more efficient than Ag-ZnO, WO3-ZnO, Ag-WO3, WO3, commercial ZnO, bare ZnO, TiO2-P25 and TiO2 (Merck) at pH 9 for the mineralization of NBB dye. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization of NBB dye have been analyzed. The mineralization of NBB has been confirmed by Chemical Oxygen Demand (COD) measurements. A degradation mechanism is proposed for the degradation of NBB under solar light. This catalyst is found to be reusable.

  6. Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance.

    PubMed

    Sun, Qi; Jia, Xiangrui; Wang, Xuefei; Yu, Huogen; Yu, Jiaguo

    2015-08-28

    Compared with the well-known three-dimensional Bi2WO6 nanosheet-assembled nanostructures, the free-standing two-dimensional porous Bi2WO6 nanosheets have seldom been reported. The possible reason is that Bi2WO6 nanosheets with a high surface-to-volume ratio usually tend to self-assemble or aggregate to form microspheres to reduce their surface energy. To prevent their aggregation, in this study, a new and facile self-assembled route, which includes the in situ ion-exchange reaction of Na2WO4 solution with the Bi(NO3)3 solid powder and the following high-temperature calcination, has been successfully developed to prepare the free-standing porous Bi2WO6 nanosheets. The ion-exchange reaction between the Bi(NO3)3 solid and Na2WO4 solution can in situ produce amorphous Bi2WO6 nanosheets, while the high-temperature calcination (500 °C) causes the formation of homogeneously porous structures in individual nanosheets during their phase transformation from amorphous to crystalline. The resultant porous nanosheets are composed of one-layer Bi2WO6 nanoparticles with a size of 30-50 nm, and there is a strong coupling interface among these nanoparticles. Photocatalytic experimental results suggest that the resultant porous Pt/Bi2WO6 nanosheets show a high photocatalytic performance for the decomposition of phenol solution. Considering their facile preparation, the present synthetic route may provide new insights for the design and fabrication of other nanostructured materials with various potential applications. PMID:26212384

  7. WO3 nanorolls self-assembled as thin films by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Vankova, S.; Zanarini, S.; Amici, J.; Cámara, F.; Arletti, R.; Bodoardo, S.; Penazzi, N.

    2015-04-01

    We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation.We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate. The mild conditions of preparation, avoiding the use of HCl, result in an eco-friendly hydrothermal method with reduced crystallization time. FESEM and HR-TEM show that WO3 nanocrystals are made of rolled nanoflakes with a telescope-like appearance at their tip. For their nano-porosity, electrochemical accessibility, good adhesion to substrates and the envisaged presence of nanocavities between the WO3 layers, these materials hold tremendous promise in nano-electronics, electrochromic devices, water photo-splitting cells, Li-ion batteries and nano-templated filters for UV radiation. Electronic supplementary information (ESI) available: Characterization techniques; additional FESEM micrographs; typical XRD pattern of WO3 nanoroll thin film; typical Nyquist plots at ambient temperature; indicative diameter and length of WO3 NR by varying the PVA chain length; effect of 2000 cycles of electrochemical switching on the STB, STC and ΔT% coloration efficiency of the WO3 NR. See DOI: 10.1039/c4nr07290a

  8. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2012-11-15

    This study investigated the effect of the chemical composition of incineration fly ash on the leaching characteristics of Pb from melting furnace fly ash generated by melting incineration fly ash. Melting furnace fly ash from both a real-scale melting process and lab-scale melting experiments was analyzed. In addition, the theoretical behavior of Cl that affects the leaching characteristics of Pb was simulated by a thermodynamic equilibrium calculation. Proportions of water-soluble Pb in the melting furnace fly ash were correlated with equivalent ratios of total Pb in the ash and Cl transferred to gas. The amount of Cl in the gas increased with an increase in the molar ratio of Cl to Na and K in the incineration fly ash. The thermodynamic calculation predicted that HCl generation is promoted by the increase in the molar ratio, and X-ray photoelectron spectroscopy indicated a possible presence of PbCl(2) in the melting furnace fly ash. These results implied that the formation of water-soluble PbCl(2) with HCl was affected by the relationships among the amounts of Na, K, and Cl in the incineration fly ash. This is highly significant in determining the leaching characteristics of Pb from the melting furnace fly ash. PMID:22789656

  9. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    PubMed

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. PMID:23706374

  10. CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}

    SciTech Connect

    Sánchez-Martínez, D. Gomez-Solis, C.; Torres-Martinez, Leticia M.

    2015-01-15

    Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystal structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.

  11. Fabrication and photocatalysis of mesoporous ZnWO{sub 4} with PAMAM as a template

    SciTech Connect

    Lin Shen Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-05-06

    Mesoporous ZnWO{sub 4} was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO{sub 4} is composed of aggregated ZnWO{sub 4} nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed.

  12. Volcanic ash layer depth: Processes and mechanisms

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Grant, A. L. M.; Harvey, N. J.; Thomson, D. J.; Webster, H. N.; Marenco, F.

    2015-01-01

    The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

  13. Kohonen's feature maps for fly ash categorization.

    PubMed

    Nataraja, M C; Jayaram, M A; Ravikumar, C N

    2006-12-01

    Fly ash is a common admixture used in concrete and may constitute up to 50% by weight of the total binder material. Incorporation of fly ash in Portland-cement concrete is highly desirable due to technological, economic, and environmental benefits. This article demonstrates the use of artificial intelligence neural networks for the classification of fly ashes in to different groups. Kohonen's Self Organizing Feature Maps is used for the purpose. As chemical composition of fly ash is crucial in the performance of concrete, eight chemical attributes of fly ashes have been considered. The application of simple Kohonen's one-dimensional feature maps permitted to differentiate three main groups of fly ashes. Three one-dimensional feature maps of topology 8-16, 8-24 and 8-32 were explored. The overall classification result of 8-16 topology was found to be significant and encouraging. The data pertaining to 80 fly ash samples were collected from standard published works. The categorization was found to be excellent and compares well with Canadian Standard Association's [CSA A 3000] classification scheme. PMID:17285691

  14. A review of volcanic ash aggregation

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Bonadonna, C.; Durant, A. J.

    2012-01-01

    Most volcanic ash particles with diameters <63 μm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10-100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

  15. Erodibility of fly ash-treated minesoils

    SciTech Connect

    Gorman, J.M.; Sencindiver, J.C.; Singh, R.N.

    1997-12-31

    Fly ash, a by-product of coal-fired power plants, has been used successfully in reclaiming adverse mine sites such as abandoned mine lands by improving minesoil chemical and physical properties. But, the fine sand-silt particle size of fly ash may make it more susceptible to detachment and transport by erosive processes. Furthermore, the high content of silt-size particles in fly ash may make it more susceptable to surface crust formation resulting in reduced infiltration and increased surface runoff and erosion. In the summer of 1989, fly ash/wood waste mixtures were surface applied on two separate mine sites, one with 10% slope and the other 20% slope, in central Preston County, West Virginia. Erosion rates were measured directly using the Linear Erosion/Elevation Measuring Instrument (LEMI). Erosion measurements were taken during the first two growing seasons on both sites. Erosion values were up to five times greater on the fly ash-treated minesoil than on the minesoil without fly ash cover. Mulching with wood chips reduced fly ash erosion to about one-half the loss of the unmulched plots. Erosion was related to both the amount and type of ground cover. Increased vegetative ground cover resulted in reduced erosion. Mosses and fungi appeared to provide better erosion protection than grass-legume cover.

  16. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  17. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  18. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  19. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  20. Electrodialytic removal of Cd from biomass combustion fly ash suspensions.

    PubMed

    Kirkelund, Gunvor M; Damoe, Anne J; Ottosen, Lisbeth M

    2013-04-15

    Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg (co-firing ash) and 64 mg Cd/kg (pre-washed straw ash), and pH varied from 3.7 (co-firing ash) to 13.3 (wood ash). In spite of such large variations between the ashes, the electrodialytic method showed to be sufficiently robust to treat the ashes so the final Cd concentration was below 2.0mg Cd/kg DM in at least one experiment done with each ash. This was obtained within 2 weeks of remediation and at liquid to solid (L/S) ratios of L/S 16 for the pre-washed straw ash and L/S 8 for the straw, co-firing and wood ash. PMID:23454460

  1. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-07-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  2. System for the pulsed pneumatic transport of ash from ash-collector bins

    SciTech Connect

    E.V. Chernyshev; S.N. Kochurov; V.A. Il'in; V.V. Ermakov

    2007-07-15

    Results of investigations of the dependence of the percentage of voids on the shear force of a layer of ash, on the basis of which the design principle of the subassembly for the feed of ash to a transport pipeline is developed, are examined for optimization of ash flows in a pulsed regime. The schematic of a system of pulsed pneumatic transport of ash from the bins of ash collectors, and results of measurements during experimental operation of the system, as well as relationships for the calculation of its dynamic parameters are presented. Conclusions concerning the high reliability of the removal and pneumatic transport of ash over a distance of more than 80 m with minimal air consumption are drawn on the basis of results of the experimental operation.

  3. Growth and crystallographic characterization of molecular beam epitaxial WO3 and MoO3/WO3 thin films on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yano, Mitsuaki; Koike, Kazuto; Matsuo, Masayuki; Murayama, Takayuki; Harada, Yoshiyuki; Inaba, Katsuhiko

    2016-09-01

    Molecular beam epitaxy of tungsten trioxide (WO3) on (01 1 bar 2)-oriented (r-plane) sapphire substrates and molybdenum trioxide (MoO3) on the WO3 was studied by focusing on their crystallogrhaphic properties. Although polycrystalline monoclinic (γ-phase) WO3 films were grown at 500 °C and they became single-crystalline (0 0 1)-oriented γ-phase at 700 °C, the latter films were oxygen-deficient from stoichiometry and contained dense and deep thermal etchpits. By using a two-step growth method where only the initial 15 nm was grown at 700 °C and the rest part was grown at 500 °C, (0 0 1)-oriented γ-phase single-crystalline WO3 films with stoichiometric composition and smooth surface were obtained. On top of the 15-nm-thick WO3 initiation layer, (1 1 0)-oriented orthorhombic (α-phase) MoO3 films with smooth surface were obtained.

  4. Electrochemical lithium insertion in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} with Aurivillius framework

    SciTech Connect

    Martinez-de la Cruz, A. Longoria Rodriguez, F.E.

    2007-10-02

    Following the structural evolution of the Aurivillius crystalline framework in the solid solution Bi{sub 2}WO{sub 6}-Sb{sub 2}WO{sub 6} we have carried out an electrochemical lithium insertion study in this system. A slight loss of the specific capacity of the electrochemical cell was observed as amount of Sb was increased. In general, the different compositions within solid solution Bi{sub 2-x}Sb{sub x}WO{sub 6} (0.25 {<=} x {<=} 0.75) exhibited a similar behaviour featured mainly by two semiconstant potential regions located at 1.7 and 0.8 V versus Li{sup +}/Li{sup o}. The oxide Sb{sub 2}WO{sub 6} with Autivillius structure but without Bi was tested as cathode too. The maximum amount of lithium inserted, 13.5 lithium atoms per formula, is the same amount inserted in its homologous bismuth oxide Bi{sub 2}WO{sub 6}.

  5. Magnetic structure of Sr2CuWO6.

    PubMed

    Vasala, S; Avdeev, M; Danilkin, S; Chmaissem, O; Karppinen, M

    2014-12-10

    Magnetic structure of the double perovskite Sr2CuWO6 was determined from neutron powder diffraction data. At 3 K the material is magnetically long-range ordered into a collinear antiferromagnetic structure described by a propagation vector k = (0, 1/2, 1/2) with the Cu(II) moments of 0.57(1) μB parallel to the a-axis. The result is in agreement with our previous prediction (Vasala et al 2014 Phys. Rev. B 89 134419) based on electronic structure calculations, showing that the three-dimensional magnetic long-range order is caused by relatively strong antiferromagnetic next-nearest-neighbor interactions. PMID:25390820

  6. Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition

    SciTech Connect

    Smid, Bretislav; Li, Zhenjun; Dohnalkova, Alice; Arey, Bruce W.; Smith, R. Scott; Matolin, Vladimir; Kay, Bruce D.; Dohnalek, Zdenek

    2012-05-17

    We report on the preparation and characterization of high surface area, supported nanoporous tungsten oxide films prepared under different conditions on polished polycrystalline Ta and Pt(111) substrates via direct sublimation of monodispersed gas phase of cyclic (WO3)3 clusters. Scanning Electron Microscopy and Transmission Electron Microscopy were used to investigate the film morphology on a nanometer scale. The films consist of arrays of separated filaments that are amorphous. The chemical composition and the thermal stability of the films were investigated by means of X-ray Photoelectron Spectroscopy. The surface area and the distribution of binding sites on the films are measured as functions of growth temperature, deposition angle, and annealing conditions using temperature programmed desorption of Kr. Films deposited at 20 K and at an incident angle of 65{sup o} from substrate normal display the greatest specific surface area of {approx}560 m2/g.

  7. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. PMID:24121545

  8. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.

    PubMed

    Chou, Jing-Dong; Wey, Ming-Yen; Liang, Hsiu-Hao; Chang, Shih-Hsien

    2009-08-30

    Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate. PMID:19264394

  9. Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Luo, Jian Yi; Cao, Zhi; Chen, Feng; Li, Li; Lin, Yu Rong; Liang, Bao Wen; Zeng, Qing Guang; Zhang, Mei; He, Xin; Li, Chen

    2013-12-01

    In this paper, authors demonstrate the high performance of the amorphous WO3 nanosheets in the removal of methylene blue (MB) from water. The saturated MB adsorbed amount by using WO3 nanosheets as an adsorbent can reach to 600 mg/g, exceeding the ones of the normal activated carbon powders. Results indicate that the aggregation of adsorbed MB molecules occurs in the porous micro-structures of the amorphous WO3 nanosheets, and a precipitation phenomenon begins to happen when the initial MB concentration reach to 20 mg/L or greater, attributed to the density increase of WO3 nanosheets after their porous micro-structures are adsorbed with enough MB molecules.

  10. Investigations On Stoichiometry And Melting Behavior Of NaY(WO{sub 4}){sub 2}

    SciTech Connect

    Salunke, R. G.; Gosavi, S. W.; Singh, S. G.; Singh, A. K.; Desai, D. G.; Chauhan, A. K.; Gadkari, S. C.

    2010-12-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies were carried out to understand the melting behavior of the NaY(WO{sub 4}){sub 2}, an important functional material used for the laser production. It has been observed that the stoichiometric NaY(WO{sub 4}){sub 2} composition forms a solution with another phase of the Na{sub 2}WO{sub 4}-Y{sub 2}(WO{sub 4}){sub 3} pseudo-binary system. This is found to be detrimental for the growth of single crystals of the material. Therefore, molar fraction in the starting charge was suitably altered to successfully restrict the formation of the undesired phase in the melt. A composition is suggested for the favorable crystal growth of this material.

  11. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage.

    PubMed

    Zhou, D; Shi, F; Xie, D; Wang, D H; Xia, X H; Wang, X L; Gu, C D; Tu, J P

    2016-03-01

    Metal-doping is considered to be an effective way for construction of advanced semiconducting metal oxides with tailored physicochemical properties. Herein, Mo-doped WO3 nanowire arrays are rationally fabricated by a sulfate-assisted hydrothermal method. Compared to the pure WO3, the optimized Mo-doped WO3 nanowire arrays exhibit improved electrochromic properties with fast switching speed (3.2s and 2.6s for coloration and bleaching, respectively), significant optical modulation (56.7% at 750nm, 83.0% at 1600nm and 48.5% at 10μm), high coloration efficiency (123.5cm(2)C(-1)) and excellent cycling stability. In addition, as a proof of concept, the Mo-doped WO3 nanowire arrays are demonstrated with electrochemical energy storage monitored by the electrochromism. This electrode design protocol can provide an alternative way for developing high-performance active materials for bi-functional electrochromic batteries. PMID:26669497

  12. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    PubMed

    Reyes-Gil, Karla R; Stephens, Zachary D; Stavila, Vitalie; Robinson, David B

    2015-02-01

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials. PMID:25562778

  13. Electrochemical properties of magnetron sputtered WO{sub 3} thin films

    SciTech Connect

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S.

    2013-02-05

    Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

  14. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-10-01

    There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+ ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

  15. Synchrotron and laser excitation of luminescence in PbWO4:Tb crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Novosad, S. S.; Kostyk, L. V.; Novosad, I. S.

    2011-09-01

    The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60-320 nm is analyzed and the nature of the emission bands is discussed.

  16. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    PubMed Central

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-01-01

    Amorphous WO3 thin films are of keen interest as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility upon extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping, i.e., WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion-trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion trapping sites (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+-ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices. PMID:26259104

  17. SUPERCRITICAL SOLVOTHERMAL SYNTHESIS AND NEAR-INFRARED ABSORBING PROPERTIES OF CsxWO3

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Huang, Yunfang; Dong, Qiang; Li, Huihui; Sato, Tsugio

    2012-06-01

    CsxWO3 nanoparticles in the range of 20-50 nm have been successfully synthesized by the supercritical solvothermal approach, where after dissolving WCl6 and CsOH in a mixed solution of water, ethanol and oleic acid, the solution was heated at 300°C. The products were characterized by X-ray diffraction, TEM, HR-TEM, EDS, laser particle size analysis and thermographic measurements. CsxWO3 nanoparticles showed the high transparency in the visible region, excellent shielding performance of the near-infrared light and limited reflectance of light in the range of 200-2700 nm, indicating the strong absorption of NIR light on the nanosized CsxWO3. CsxWO3 nanoparticles also exhibited quick conversion of photo-energy to local heat.

  18. Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method

    SciTech Connect

    Chen Lianping Gao Yuanhong

    2007-10-02

    Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peak (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.

  19. Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Rahimnejad, Sara; He, Jing Hui; Pan, Feng; Lee, Xue'er; Chen, Wei; Wu, Kai; Xu, Guo Qin

    2014-12-01

    Surface defect engineering is able to effectively enhance the photocatalytic performance of WO3 nanoparticles. In this paper, radio frequency hydrogen plasma was employed to create surface defects on WO3 nanoparticles. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analysis confirmed that hydrogen plasma modification increases the density of oxygen vacancies on the surface of WO3. The broadening of characteristic WO3 peaks in Raman spectra indicates the increase of oxygen vacancies by increasing voltage in hydrogen plasma treatment. The sample treated with hydrogen plasma at 20 volts shows enhancement in photocurrent density by an order of magnitude, attributable to the band-gap narrowing and subsequent increase of quantum yield in the visible range. Consistent results were also obtained from photocatalytic O2 evolution from water oxidation.

  20. Composition control of InN/WO3 nanocomposite by in-situ reactive plasma annealing

    NASA Astrophysics Data System (ADS)

    Saroni, Azianty; Goh, Boon Tong; Alizadeh, Mahdi; Rahman, Saadah Abdul

    2016-05-01

    A composition control and formation of InN/WO3 nanocomposite on the as-grown In2O3 by in-situ reactive plasma annealing was investigated. The reactive plasma annealing changes the facets crystalline In2O3 structure to nanograin structure of InN/WO3 nanocomposite with the grain size of 100-200 nm. X-ray photoelectron spectroscopy (XPS) reveals the formation of In2O3, InN and WO3 nanostructures in the nanocomposite. In-situ reactive plasma annealing enhances the removing of In2O3 and facilitates the formation of InN/WO3 nanocomposite. Furthermore, the reduction of oxygen in In2O3 leads to a decreasing in optical energy gap from 2.91 to 2.63 eV.

  1. Combustion synthesis and characterization of nanocrystalline WO3.

    PubMed

    Morales, Walter; Cason, Michael; Aina, Olawunmi; de Tacconi, Norma R; Rajeshwar, Krishnan

    2008-05-21

    The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles. PMID:18439012

  2. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  3. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  4. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  5. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  6. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  7. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  8. The novel phase transition of NaBi(WO{sub 4}){sub 2} under high pressure

    SciTech Connect

    Ma, Chunli; Cui, Hang; Li, Fangfei; Wang, Jingshu; Wu, Xiaoxin; Zhang, Jian; Zhou, Qiang; Liu, Jinghe; Cui, Qiliang

    2013-04-15

    The Raman and synchrotron angle-dispersive X-ray diffraction studies have been performed on NaBi(WO{sub 4}){sub 2} under high pressure up to 30.7 and 36.2 GPa, respectively, at room temperature. With pressure increases to ∼7.0 GPa, the structure of NaBi(WO{sub 4}){sub 2} begins to transform from tetragonal (I4{sub 1}/a) into monoclinic (P2/m), and the phase transition completes around 13 GPa. With pressure higher than 29.0 GPa, the NaBi(WO{sub 4}){sub 2} turns into amorphous state. The random arrangement of Na{sup +} and Bi{sup 3+} in short-range ordered scheelite NaBi(WO{sub 4}){sub 2} results in the tetragonal to monoclinic phase transition, which is different from that observed in AWO{sub 4} tungstates and AMoO{sub 4} molybdates (A=Ca, Sr, Ba, Pb, Eu, Cd). - Graphical abstract: The NaBi(WO{sub 4}){sub 2} transforms from tetragonal into monoclinic, which starts around 7 GPa and completes at about 13 GPa. With pressure higher than 29 GPa, the NaBi(WO{sub 4}){sub 2} turns into amorphous state. Highlights: ► Raman and X-ray diffraction studies performed on NaBi(WO{sub 4}){sub 2} up to 30.7 and 36.2 GPa, respectively. ► The tetragonal (I4{sub 1}/a) into monoclinic (P2/m) phase transition is determined. ► With pressure higher than 29 GPa, the NaBi(WO{sub 4}){sub 2} ultimately turns into amorphous state. ► The ambient pressure bulk modulus and volume of tetragonal and monoclinic phases are obtained.

  9. Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Feng, Xu; Feng, Wenlin; Shi, Shasha; Li, Yao; Zhang, Chao

    2016-01-01

    Fe3+ undoped and doped CaWO4: Pr3+ phosphors have been successfully synthesised by using the solid-state reaction method. The products were characterised by powder X-ray diffraction (XRD), photoluminescence (PL) and fluorescence lifetime testing techniques, respectively. The mean crystallite size (50.7 nm) of CaWO4: Pr3+ is obtained from powder XRD data. PL spectra of both Fe3+ undoped and doped CaWO4: Pr3+ phosphors exhibit excitation peaks at 214, 449, 474, and 487 nm under monitor wavelength at 651 nm, and emission peaks at 532, 558, 605, 621, 651, 691, 712, and 736 nm under blue light (λem=487 nm) excitation. The effect of trace Fe3+ on luminescence properties of CaWO4: Pr3+ phosphor is studied by controlling the doping concentration of Fe3+. The results show that radioactive energy transfers from luminescence centre Pr3+ to quenching centre Fe3+ occurred in Fe3+ doped CaWO4: Pr3+ phosphors. With the increasing concentration of Fe3+, the energy transfer from Pr3+ to Fe3+ is enhanced, and the emission intensity of CaWO4: Pr3+ will be lower. The decay times (5.22 and 4.99 μs) are obtained for typical samples Ca0.995WO4: Pr3+0.005 and Ca0.99275WO4: Pr3+0.005, Fe3+0.00225, respectively. This work shows that nonferrous phosphors can improve the luminescent intensity of the phosphors.

  10. UV-VUV synchrotron radiation spectroscopy of NiWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Pankratov, V.; Kalinko, A.; Kotlov, A.; Shirmane, L.; Popov, A. I.

    2016-07-01

    Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO4) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni2+ intra-ion d-d transitions on the photoluminescence band intensity are discussed.