Science.gov

Sample records for asia transboundary water

  1. South Asia transboundary water quality monitoring workshop summary report.

    SciTech Connect

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of

  2. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  3. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    NASA Astrophysics Data System (ADS)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  4. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers

    SciTech Connect

    PASSELL, HOWARD D.; BARBER, DAVID S.; BETSILL, J. DAVID; LITTLEFIELD, ADRIANE C.; MOHAGHEGHI, AMIR H.; SHANKS, SONOYA T.; YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV,BAJGABYL; VALENTINA,ALEKHINA; SOLODUKHIN,VLADIMIR; POZNIAK,VICTOR

    2002-04-02

    The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

  5. Transboundary air pollution in Asia: Model development and policy implications

    NASA Astrophysics Data System (ADS)

    Holloway, Tracey

    2001-12-01

    This work investigates transboundary air pollution in Asia through atmospheric modeling and public policy analysis. As an example of models actively shaping environmental policy, the Convention on Long-Range Transboundary Air Pollution in Europe (LRTAP) is selected as a case study. The LRTAP Convention is the only mulit- lateral air pollution agreement to date, and results from the RAINS integrated assessment model were heavily used to calculate nationally differentiated emission ceilings. Atmospheric chemistry and transport are included in RAINS through the use of transfer coefficients (or ``source-receptor relationships'') relating pollutant transfer among European nations. Following past work with ATMOS to simulate sulfur species in Asia, here ATMOS is developed to include odd-nitrogen. Fitting with the linear structure of ATMOS and the emphasis on computational efficiency, a simplified chemical scheme developed for use in the NOAA Geophysical Fluid Dynamics Laboratory Global Chemical Transport Model (GFDL GCTM) is adopted. The method solves for the interconversions between NOx, HNO3, and PAN based on five reaction rates stored in look-up tables. ATMOS is used to calculate source-receptor relationships for Asia. Significant exchange of NOy occurs among China, North and South Korea, and Japan. On an annual average basis, China contributes 18% to Japan's total nitrate deposition, 46% to North Korea, and 26% to South Korea. Nitrate deposition is an important component of acidification (along with sulfate deposition), contributing 30-50% to the acid burden over most of Japan, and more than 50% to acid deposition in southeast Asia, where biomass burning emits high levels of NOx. In evaluating the policy-relevance of results from the ATMOS model, four factors are taken into account: the uncertainty and limitations of ATMOS, the environmental concerns facing Asia, the current status of the scientific community in relation to regional air pollution in the region, and

  6. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    NASA Technical Reports Server (NTRS)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; Lee, S. S.; Song, C. K.; Hong, Y. D.

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  7. China's transboundary waters: new paradigms for water and ecological security through applied ecology

    PubMed Central

    He, Daming; Wu, Ruidong; Feng, Yan; Li, Yungang; Ding, Chengzhi; Wang, Wenling; Yu, Douglas W

    2014-01-01

    China is Asia's most important upstream riparian country, sharing 110 rivers and lakes with 18 downstream countries. Consequently, China's management of transboundary water resources must consider both environmental and geopolitical risks. The major threats to and conflicts over international rivers in China revolve around biotic homogenisation due to the installation of transport links, water allocation, water pollution, alteration of natural flow patterns and disruption of fisheries due to the installation of hydropower dams, and droughts and floods exacerbated by climate change. Because these problems have an international component, they fall under China's Peaceful Rise strategy, mandating that transboundary conflicts be resolved amicably as part of the overarching goal of increasing regional economic growth with as little conflict as possible. Science-backed policy is more likely to result in long term, mutually agreeable solutions; the results of applied ecological research have already resulted in a number of mitigation measures, including setting operational thresholds to reduce the downstream impact of dams, designating protected areas along key river stretches where dams cannot be installed (one dam in a critical location has been cancelled), and the installation of terrestrial protected-area networks. Synthesis and applications. Applied ecology will continue to play an important role in the diagnosis and resolution of environmental threats to China's transboundary waters. More importantly, applied ecology can inform the development of a transboundary environmental compensation mechanism and regional consultative mechanisms that support informed, cooperative decision-making for China and its riparian neighbours. PMID:25558084

  8. The Nuvruz Project: Monitoring for Radionuclides and Metals in Central Asia Transboundary Rivers End of Year One Reports

    SciTech Connect

    YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV, BAJGABYL; VALENTINA, ALEKHINA; SOLODUKHIN, VLADIMIR; POZNIAK, VICTOR; LITTLEFIELD, ADRIANE C.

    2002-09-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors. The Navruz project has a duration of three years. This document contains the reports from each of the participating institutions following the first year of data collection. While a majority of samples from the Navruz project are within normal limits, a preliminary analysis does indicate a high concentration of selenium in the Kazakhstan samples. Uzbekistan samples contain high uranium and thorium concentrations, as well as elevated levels of chromium, antimony and cesium. Additionally, elevated concentrations of radioactive isotopes have been detected at one Tajikistan sampling location. Further analysis will be published in a subsequent report.

  9. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings. PMID:25773532

  10. Large transboundary watersheds: Climate, water and streams of thought

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2001-05-01

    Water is a "fugitive" resource in the sense that it flows naturally from one place to another, from one reserve to another (e.g., groundwater to surface), and from one physical state (solid, liquid and gas) to another. Thus "trans-boundary" can mean many things including: transitions from wet to arid zones, from upstream to downstream, from one country or province to the next etc. The Convention on the Protection and Use of Transboundary Watercourses and International Lakes (1992) defines "transboundary waters" to mean "any surface or ground waters which mark, cross or are located on the boundaries between two or more states". Emerging issues in water resources emanate from three categories of problems; (1) transboundary water availability; (2) transboundary groundwater allocation, management, and conservation; and (3) transboundary water quality. Transboundary fluctuations and changes in river flow can be attributed to (1) climate variations and change on several timescales, and, (2) physical and biological transformations of basin hydrology including increased storage, diversions, and landscape changes. Researchers and practitioners have identified numerous factors underlying international disputes involving river flows, including: the variability and uncertainty of supply, interdependencies among users, increasing over-allocation and rising costs, the increasing vulnerability of water quality and aquatic ecosystems to human activities, ways and means of supplying safe water facilities, and the mobilization of financial resources for water development and management. Many of these issues derive from general concerns in water resources management. How these concerns are met is strongly shaped by the choice of the spatial unit within which studies and management actions are conducted, by the way problems have been defined and changed over time, and by who benefits from defining problems in a particular way. In the following discussion the scales of human activities

  11. Model intra-comparison of transboundary sulfate loadings over springtime east Asia

    NASA Astrophysics Data System (ADS)

    Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.

    2013-12-01

    Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.

  12. Transboundary water conflict resolution mechanisms: toward convergence between theory and practice

    NASA Astrophysics Data System (ADS)

    Tayia, Ahmed; Madani, Kaveh

    2016-04-01

    Transboundary waters are expected be one of the biggest challenges for human development over the next decades. The growing global water scarcity and interdependence among water-sharing countries have created tensions over shared water resources around the world. Therefore, interest in studying transboundary water conflict resolution has grown over the last decades. This research focuses on transboundary water resources conflict resolution mechanisms. A more a specific concern is to explore the mechanisms of allocating of transboundary water resources among riparian states. The literature of transboundary water resources conflict has brought various approaches for allocating of transboundary water resources among riparian countries. Some of these approaches have focused on the negotiation process, such the Alternative Dispute Resolution (ADR). Other approaches have analysed the economic dimension of transboundary water disputes, in an attempt to identify optimal economic criteria for water allocation, such as the "social planner" approach and the "water market" approach. A more comprehensive approach has been provided by game theory that has brought together the economic and political dimensions of the water dispute management. The study attempts to provide a map for the relation between theory and practice in the field of transboundary water conflict resolution. Therefore, it explores the approaches that have been used to analyse real transboundary water disputes management. Moreover, it examines the approaches that have been suggested in literature as mechanisms of transboundary water conflict resolution. Finally, it identifies the techniques that have been used in practice to solve transboundary water conflicts and attempts to evaluate the sustainability of the resulting regulatory institutional arrangements.

  13. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  14. A framework for resolving the transboundary water allocation conflict conundrum.

    PubMed

    Rowland, Marty

    2005-01-01

    This paper describes a methodology for resolving transboundary water disputes that arise when people/states/nations sharing a resource that crosses legal/political jurisdictions disagree about the use of the resource. Laws and treaties written in an attempt to settle disputes are frequently neither enforced nor effective, and disagreements continue. Crises, arising through resource overuse or shortages, worsen the conflict and typically result in further discord, lawsuits, depletion of the resource, and even open-armed hostility. Many water management experts call for either private/market-based or state/command-and-control resource management systems, but these eventually break down during crisis. The crises therefore necessitate the adoption of a more effective institutional arrangement to address and resolve present and future problems. A better alternative to management by private or state entities and the resolution of conflicts by the mere application of law is a cooperative approach. The Rowland-Ostrom Framework, introduced in this paper, incorporates Ostrom's eight design principles for sustainable common pool resource management within the context of crisis that involves an urgent threat to the quantity or quality of a resource such as water, as described by the author. This paper demonstrates that although established 15 years ago, Ostrom's design principles remain applicable today for effective, sustainable transboundary water management, and the Rowland-Ostrom Framework is a model for the equitable use of shared water resources throughout the world. PMID:16149965

  15. Hotspot identification of trans-boundary water conflict due to anthropogenic water use and climate change in the future

    NASA Astrophysics Data System (ADS)

    Ueki, A.; Yoshikawa, S.; Kanae, S.

    2014-12-01

    A significant fraction of world population is projected to experience increased water stress in response to the combined effects of population growth and climate change. Some previous studies have suggested that high water stress had significant causality for civil war, and militarized conflict and trans-boundary water conflict in international river basin. On the other hand, some previous empirical analyses have found that institutionalization (e.g., specific provisions in trans-boundary freshwater treaties) in international river basin was associated with a lower risk of water conflicts during water scarcity. The purpose of this study is to identify these water conflict "hotspots", integrating institutional and governance mechanisms of adaptations to impact of water stress. These adaptations is classified to 4 abilities and skills and then used to calculate the adaptive capacity. The adaptive capacity includes the way to manage water conflict effectively, plan to deal with uncertainty in the future, alter current situation and create institutionalization with common perspective throughout the whole activities. This study identifies water conflict "hotspots" by combining high water stress areas projected by a global water resource model and a lower degree of the adaptive capacity. This study finds that 9 water conflict "hotspots" in Africa, Asia and South America.

  16. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  17. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  18. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    NASA Astrophysics Data System (ADS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  19. Evolutionary and Ecological Dynamics of Transboundary Disease Caused by H5N1 Virus in Southeast Asia.

    PubMed

    Wei, K; Lin, Y; Xie, D

    2015-06-01

    Southeast Asia has been the breeding ground for many emerging diseases in the past decade, and it is in this region that new genetic variants of HPAI H5N1 viruses have been emerging. Cross-border movement of animals accelerates the spread of H5N1, and the changing environmental conditions also exert strong selective pressure on the viruses. The transboundary zoonotic diseases caused by H5N1 pose a serious and continual threat to global economy and public health. Here, we divided the H5N1 viruses isolated in Southeast Asia during 2003-2009 into four groups according to their phylogenetic relationships among HA gene sequences. Molecular evolution analysis suggests populations in expansion rather than a positive selection for group 2 and group 3, yet group 4 is under strong positive selection. Site 193 was found to be a potential glycosylation site and located in receptor-binding domain. Note that site 193 tends to appear in avian isolates instead of human strains. Population dynamics analysis reveals that the effective population size of infections in Southeast Asia has undergone three obvious increases, and the results are consistent with the epidemiological analysis. Ecological and phylogeographical analyses show that agro-ecological environments, migratory birds, domestic waterfowl, especially free-ranging ducks, are crucial in the occurrence, maintenance and spread of H5N1 virus. The epidemiological links between Indonesia and Suphanburi observed suggest that viruses in Indonesia were originated from multiple introductions. PMID:23952973

  20. Assessment of transboundary aquifers of the world--vulnerability arising from human water use (Invited)

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Heinrich, L.

    2013-12-01

    Internationally shared, or transboundary, aquifers (TBAs) have long played an important role in sustaining drinking water supply and food production, supporting livelihoods of millions of people worldwide. Rapidly growing populations and their food demands cast significant doubt on the sustainability of TBAs. Here, this study provides a first quantitative assessment of TBAs worldwide with an aquifer stress indicator over the period 1960-2010 using groundwater abstraction, groundwater recharge, and groundwater contribution to environment flow. The results reveal that 8% of TBAs worldwide are currently stressed due to human overexploitation. Over these TBAs the rate of groundwater pumping increased substantially during the past fifty years, which worsened the aquifer stress condition. In addition, many TBAs over Europe, Asia and Africa are not currently stressed, but their aquifer stress has been increasing at an alarming rate (>100%) for the past fifty years, due to the increasing reliance on groundwater abstraction for food production. Groundwater depletion is substantial over several TBAs including the India River Plain (India, Pakistan), the Paleogene and Cretaceous aquifers (the Arabian Peninsula), and a few TBAs over the USA-Mexico border. Improving irrigation efficiency can reduce the amount of groundwater depletion over some TBAs, but it likely aggravates groundwater depletion over TBAs where conjunctive use of surface water and groundwater is prevalent.

  1. Assessment of transboundary aquifers of the world—vulnerability arising from human water use

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihide; Heinrich, Lena

    2013-06-01

    Internationally shared, or transboundary, aquifers (TBAs) have long played an important role in sustaining drinking water supply and food production, supporting livelihoods of millions of people worldwide. Rapidly growing populations and their food demands cast significant doubt on the sustainability of TBAs. Here, this study provides a first quantitative assessment of TBAs worldwide with an aquifer stress indicator over the period 1960-2010 using groundwater abstraction, groundwater recharge, and groundwater contribution to environment flow. The results reveal that 8% of TBAs worldwide are currently stressed due to human overexploitation. Over these TBAs the rate of groundwater pumping increased substantially during the past fifty years, which worsened the aquifer stress condition. In addition, many TBAs over Europe, Asia and Africa are not currently stressed, but their aquifer stress has been increasing at an alarming rate (>100%) for the past fifty years, due to the increasing reliance on groundwater abstraction for food production. Groundwater depletion is substantial over several TBAs including the India River Plain (India, Pakistan), the Paleogene and Cretaceous aquifers (the Arabian Peninsula), and a few TBAs over the USA-Mexico border. Improving irrigation efficiency can reduce the amount of groundwater depletion over some TBAs, but it likely aggravates groundwater depletion over TBAs where conjunctive use of surface water and groundwater is prevalent.

  2. The physical and chemical characteristics of long-lasting trans-boundary mixed pollutants over East Asia

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Uno, I.; Kobayashi, H.; Itahashi, S.; PAN, X.; Nishizawa, T.; Shimizu, A.; Matsui, I.; Sugimoto, N.

    2014-12-01

    Trans-boundary air pollution lasted about 1 week over East Asia from late May to early June 2014. Daily averaged PM2.5 and PM10 exceeded respectively 35μg/m3 and 100μg/m3 during this episode at Fukuoka, southeastern city of Japan. The continuous aerosol plumes were constructed by Asian dust and anthropogenic pollutants, and observed by many aerosol measurements, such as ground-based lidar, space-born lidar, Aerosol Chemical Speciation Analyzer (ACSA) and Polarization Optical Particle Counter (POPC). Regional chemical transport model was used to clarify the meteorological condition forming long-lasting aerosol plumes and the 3D structure. The continuous aerosol plume was made by 2 sequential low pressure systems passing over desert area, and subsequently generated blocking high pressure system over Japan. The averaged aerosol depolarization ratio derived by ground-based lidar and POPC at around 0.5μm during this episode were 0.11 and 0.146, these values were very low for dust case. ACSA data at Fukuoka also showed that coarse model nitrate and fine mode sulfate concentration was very high (3~6μg/m3 for coarse mode nitrate, 5-15 μg/m3 for fine mode sulfate) during this episode. These results suggested that transport of anthropogenic aerosols were occurred during this event together with dust plume. Coarse mode nitrate might be made by internal mixing between dust particles and nitrate. Numerical chemical transport model could not reproduced high concentration of coarse mode nitrate because model did not consider the process of internal mixing between dust particles and nitrate. Further vertical structure and mixing state during long-lasting trans-boundary pollution are clarified.

  3. Solutions for North American Water Security Challenge: Colorado and Bravo transboundary basins cases

    NASA Astrophysics Data System (ADS)

    López Pérez, M.

    2013-12-01

    The transboundary basins of Colorado (Baja California) and Rio Bravo (Grande) have low water availability figures and water will be appreciated as a highly valued good. In the Rio Grande basin, the strategies and actions have been developed with the River Basin Council: a new surface water management, new water allocation rules for different rainfall and runoff scenarios (climate change included), new sources of water and establishment of water reserves for human consumption and for environmental purposes. In the Colorado River, with an integrated watershed management vision, Mexican and US federal, state and non-governmental organizations representatives signed Minute 319 for 5 years without changing the 1944 Water Treaty. Concepts and rules for surplus, shortage, Intentionally Created Mexican Water (ICMA), salinity, water for the environment and international projects were included and are been implemented. Parallel drinking water and sanitation services in both sides of the border through the Joint Investment Program, EPA-CONAGUA invested 979.2 million dollars from grants to improve the quality of the environment and the inhabitants. Accomplishments are high and the reduction in river health is a good indicator. The implementation of this binational cooperation actions under the framework of the 1944 Water Treaty are considered global solutions in the field of integrated water management in transboundary basins and for creating water security in highly pressured basins. Keywords: Colorado River, Rio Grande or Bravo River, water security, Transboundary basins, environmental water reserves

  4. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  5. Countries at Risk: Heightened Human Security Risk to States With Transboundary Water Resources and Instability

    NASA Astrophysics Data System (ADS)

    Veilleux, J. C.; Sullivan, G. S.; Paola, C.; Starget, A.; Watson, J. E.; Hwang, Y. J.; Picucci, J. A.; Choi, C. S.

    2014-12-01

    The Countries at Risk project is a global assessment of countries with transboundary water resources that are at risk for conflict because of high human security instability. Building upon Basins at Risk (BAR) research, our team used updated Transboundary Freshwater Dispute Database georeferenced social and environmental data, quantitative data from global indices, and qualitative data from news media sources. Our assessment considered a combination of analyzing 15 global indices related to water or human security to identify which countries scored as highest risk in each index. From this information, we were able to assess the highest risk countries' human security risk by using a new human security measurement tool, as well as comparing this analysis to the World Bank's Fragile States Index and the experimental Human Security Index. In addition, we identified which countries have the highest number of shared basins, the highest percentage of territory covered by a transboundary basin, and the highest dependency of withdrawal from transboundary waters from outside their country boundaries. By synthesizing these social and environmental data assessments, we identified five countries to analyze as case studies. These five countries are Afghanistan, China, Iraq, Moldova, and Sudan. We created a series of 30 maps to spatial analyze the relationship between the transboundary basins and social and environmental parameters to include population, institutional capacity, and physical geography by country. Finally, we synthesized our spatial analysis, Human Security Key scores, and current events scored by using the BAR scale to determine what aspects and which basins are most at risk with each country in our case studies and how this concerns future global water resources.

  6. The Characteristics of Long-range Transboundary Inorganic Secondary Aerosols in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Carmichael, G. R.; Woo, J. H.; Qiang, Z.

    2014-12-01

    Recurrent particle matter episodes greatly influence air quality in Northeast Asia. According to many studies, a major reason is long-range transport of air pollutant. Large amount of emission of chemical compounds aggravate air pollution in the region. Emitted air pollutants mainly come from industrialized regions along the East China coast. It can be transported over downwind region by the prevailing westerlies. The long-rang transported fine particle certainly attributes to air quality in downwind region, but there are many unknowns on the quantity, transport pattern, and secondary aerosol production mechanism despite the fact with many studies have been performed. Major contributors of PM2.5 are inorganic secondary aerosols, sulfate, nitrate and ammonium, in Korea. Especially high relative contributions of inorganic secondary aerosols appear for westerly wind cases. The main pathway of production of inorganic secondary aerosols is produced by converting from SO2 and NOx during the long-range transport but the contribution varies dramatically depending on season and wind pattern. Sulfate is consistently the primary contributor of PM2.5 still now but we should more concern nitrate because that NOx emissions of China is increasing steeply since 2000 by leading powerplant, industry, and transport, despite downward trend of SO2. In order to better understand regional air quality modeling of the long-range transport, international study, MICS-Asia phase III, has been initiated with many researchers. We will present chemical characteristics of PM2.5 long-range transport during westerly wind cases focused on secondary aerosol, tracking their transport pattern, and production pathway. Results using CMAQ with the modeling domain covering Northeast and Southeast China, Korea, and Japan with 15km resolution will be discussed.

  7. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  8. A market-based approach to share water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-04-01

    The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  9. Natural-derived contaminants and their resolution in transboundary water resources in the Middle East

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Weinthal, E.

    2005-12-01

    The rapidly growing population in the Middle East and the ensuing increase in exploitation have led to the degradation its renewable aquifers. In turn, countries in the Middle East have been forced to search for alternative resources like non- renewable (fossil) groundwater and to develop new technologies such as desalination. Here, we show that most of the contamination of the transboundary water resources in the Middle East is due to natural processes. We integrate hydrogeological, geochemical, and isotopic investigations to show that salinization of groundwater in the Gaza Strip, the Jordan River, and the groundwater along the Jordan and Arava valleys are natural phenomena triggered by over-exploitation and distraction of the fragile balance of the hydrological systems in the region. Recent investigations also show that fresh and brackish groundwater from the Nubian Sandstone aquifer in Israel and Jordan contains high level of natural radioactivity. Groundwater from similar basins in Egypt and Libya may also suffer from similar problems of high natural radioactivity in the groundwater. The scientific evidences that most of the contamination is natural raises new challenges for political and legal solutions for such transboundary water resources. Unlike the traditional upstream/downstream conflicts associated with transboundary water resources, the natural contamination demands a reevaluation of water resource management approaches in the Middle East. We argue that regional cooperation must be based upon political bargaining and side-payments rather than just international water law in order to not only foster cooperation, but, more important, to address the poor water quality situation in the Middle East.

  10. Water-related problems of central Asia: some results of the (GIWA) International Water Assessment Program.

    PubMed

    Severskiy, Igor Vasilievich

    2004-02-01

    This paper presents results of the research under the program Global International Waters Assessment (GIWA) for the Aral Sea basin (Subregion 24 of the GIWA program). These results show that the detemining factor for the region is freshwater shortage and the main issue is modification of stream flow. According to GIWA assessment estimations, freshwater shortage is responsible for about 70% of the developmental problems in the region. The current economy is developing under conditions of increasing water deficiency. In spite of increasing efforts by the governments of the countries in the region, and by the international community, the situation in regard to water supply and economic objectives in the countries of central Asia remains tense and shows clear tendencies towards aggravation and conflict. The main causes for this sharpening of ecological and socioeconomic conditions in the region are analyzed, and measures to mitigate stress in transboundary water-resources use are presented. PMID:15083650

  11. Paradigm for Distributive & Procedural Justice in Equitable Apportionment of Transboundary Ganges Waters Under Changing Climate & Landuse

    NASA Astrophysics Data System (ADS)

    Tyagi, H.; Gosain, A. K.; Khosa, R.; Anand, J.

    2015-12-01

    Rivers have no regard for human demarcated boundaries. Besides, ever increasing demand-supply gap & vested riparian interests, fuel transboundary water conflicts. For resolving such disputes, appropriation doctrines advocating equity & fairness have received endorsement in the Helsinki Rules-1966 & UN Convention-1997. Thus, current study proposes the principle of equitable apportionment for sharing Ganges waters as it balances the interests & deservedness of all stakeholders, namely, India & its 11 states, Bangladesh, Nepal, & China. The study endeavors to derive a reasonable share of each co-basin state by operationalizing the vague concepts of fairness & equity through an objective & quantitative framework encompassing proportionality & egalitarianism for distributive & procedural justice. Equal weightage factors reflecting hydrology, geography & water use potential are chosen for fair share computation, wherein each contender ranks these factors to maximize his entitlement. If cumulative claims exceed the water availability, each claimant puts forth next ranked factor & this process continues till the claims match availability. Due to inter-annual variability in few factors, scenarios for Rabi & Kharif seasons are considered apart from cases for maximum, upper quartile, median, lower quartile & minimum. Possibility of spatial homogeneity & heterogeneity in factors is also recognized. Sometimes lack of technical information hinders transboundary dispute resolution via legal mechanisms. Hence, the study also attempts to bridge this gap between law & technology through GIS-based SWAT hydrologic model by estimating the Ganges water yield, & consequent share of each riparian for range of flows incorporating e-flows as well, under present & future climate & landuse scenarios. 82% of India's territory lies within interstate rivers, & therefore this research is very pertinent as it can facilitate the decision makers in effective interstate water conflict resolution.

  12. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with

  13. Water Management for Competing Uses: Environmental Flows in the Transboundary Rio Grande/Rio Bravo

    NASA Astrophysics Data System (ADS)

    Sandoval Solis, S.; McKinney, D. C.

    2011-12-01

    Introduction Due to high water demand, the scarcity of water, and the complexity of water allocation, environmental flows have not been considered as an integral part of the water management in the Rio Grande/Rio Bravo transboundary basin. The Big Bend reach is located between the cities of Presidio/Ojinaga to Amistad international reservoir, along the main stream (Fig. 1). Important environmental habitats such as the Big Bend National and State Park in the U.S., the Maderas del Carmen, Cañon de Santa Elena and Ocampo natural reserved areas in Mexico are ecologically threatened because of the lack of environmental water management policies. Several efforts have been undertaken by scientists, government agencies and NGOs to determine the environmental flows for this reach and water management policies that can provide these flows. Objective The objective of this research is to describe a water management policy that can conciliate environmental and human water uses in the Big Bend region. In other words, define a policy that can provide environmental flows without harming water supply for stakeholders or increasing flood risk, within legal and physical constraints of the system. Methodology First, the system was characterized identifying water users, hydraulic infrastructure, and water allocation according to state, federal and international regulations. Second, a hydrograph for environmental flows was proposed that mimics the hydrologic characteristics of the prior dam alteration. Third, a water planning model was constructed to evaluate alternative policies. Fourth, the water management is proposed to provide environmental restoration flows from Luis L. Leon reservoir. This policy considers mechanisms that reduce flooding and drought risks, while meting national and international water regulations. Results Three types of natural flow regimes are considered: (1) median flows aimed to provide the base flow in the region, (2) high flows to provide transversal

  14. Open Ocean Assessments for Management in the GEF Transboundary Waters Assessment Project (TWAP)

    NASA Astrophysics Data System (ADS)

    Fischer, A. S.; Alverson, K. D.

    2010-12-01

    A methodology for a thematic and scientifically-credible assessment of Open Ocean waters as a part of the Global Environment Facility (GEF) Transboundary Waters Assessment Project (TWAP) has been developed in the last 18 months by the Intergovernmental Oceanographic Commission of UNESCO, and is presented for feedback and comment. While developed to help the GEF International Waters focal area target investment to manage looming environmental threats in interlinked freshwater and marine systems (a very focused decision support system), the assessment methodology could contribute to other assessment and management efforts in the UN system and elsewhere. Building on a conceptual framework that describes the relationships between human systems and open ocean natural systems, and on mapping of the human impact on the marine environment, the assessment will evaluate and make projections on a thematic basis, identifying key metrics, indices, and indicators. These themes will include the threats on key ecosystem services of climate change through sea level rise, changed stratification, warming, and ocean acidification; vulnerabilities of ecosystems, habitats, and living marine resources; the impact and sustainability of fisheries; and pollution. Global-level governance arrangements will also be evaluated, with an eye to identifying scope for improved global-level management. The assessment will build on sustained ocean observing systems, model projections, and an assessment of scientific literature, as well as tools for combining knowledge to support identification of priority concerns and in developing scenarios for management. It will include an assessment of key research and observing needs as one way to deal with the scientific uncertainty inherent in such an exercise, and to better link policy and science agendas.

  15. Simulation of Intra- or transboundary surface-water-rights hierarchies using the farm process for MODFLOW-2000

    USGS Publications Warehouse

    Schmid, W.; Hanson, R.T.

    2007-01-01

    Water-rights driven surface-water allocations for irrigated agriculture can be simulated using the farm process for MODFLOW-2000. This paper describes and develops a model, which simulates routed surface-water deliveries to farms limited by streamflow, equal-appropriation allotments, or a ranked prior-appropriation system. Simulated diversions account for deliveries to all farms along a canal according to their water-rights ranking and for conveyance losses and gains. Simulated minimum streamflow requirements on diversions help guarantee supplies to senior farms located on downstream diverting canals. Prior appropriation can be applied to individual farms or to groups of farms modeled as "virtual farms" representing irrigation districts, irrigated regions in transboundary settings, or natural vegetation habitats. The integrated approach of jointly simulating canal diversions, surface-water deliveries subject to water-rights constraints, and groundwater allocations is verified on numerical experiments based on a realistic, but hypothetical, system of ranked virtual farms. Results are discussed in light of transboundary water appropriation and demonstrate the approach's suitability for simulating effects of water-rights hierarchies represented by international treaties, interstate stream compacts, intrastate water rights, or ecological requirements. ?? 2007 ASCE.

  16. Institutional design and regime effectiveness in transboundary river management - the Elbe water quality regime

    NASA Astrophysics Data System (ADS)

    Dombrowsky, I.

    2007-06-01

    The literature on transboundary river management suggests that institutions play an important role in bringing cooperation about. However, the knowledge on how they should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships leading to the respective outcomes. In order to gain further insights into the relationship of institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE). The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expedience of the institutional arrangements. The study shows that overall due to external as well as internal institutional factors the ICPE proved relatively successful, and as such it also provides insights into how institutions matter: The commission served as platform for joint problem solving by identifying priorities for action. These international obligations increased the power of national administrations and their access to funds. At the same time, the Commission's reporting to the public served as an enforcement mechanism. However, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity. It was high where the main responsibility for action was with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model. It was practically non existent in the reduction of non-point pollution from agriculture, where the success depended on the behavior of individual private actors (farmers). From a methodological point

  17. Integrating Monitoring and Decision Modeling within a Cooperative Framework: Promoting Transboundary Water Management and Avoiding Regional Conflict

    SciTech Connect

    TIDWELL, VINCENT C.; SALERNO, REYNOLDS M.; PASSELL, HOWARD D.; LARSON, KELLI L.; KALININA, ELENA ARKADIEVNA; WOLF, AARON T.; COOPER, J. ARLIN; CURTIS, JAN M.; CONRAD, STEPHEN H.; THOMAS, RICHARD P.; PAANANEN, ORMAN H.

    2001-03-01

    Surface and groundwater resources do not recognize political boundaries. Where nature and boundary cross, tension over shared water resources can erupt. Such tension is exacerbated in regions where demand approaches or exceeds sustainable supplies of water. Establishing equitable management strategies can help prevent and resolve conflict over shared water resources. This paper describes a methodology for addressing transboundary water issues predicated on the integration of monitoring and modeling within a framework of cooperation. Cooperative monitoring begins with agreement by international scientists and/or policy makers on transboundary monitoring goals and strategies; it leads to the process of obtaining and sharing agreed-upon information among parties with the purpose of providing verifiable and secure data. Cooperative modeling is the process by which the parties jointly interpret the data, forecast future events and trends, and quantify cause and effect relationships. Together, cooperative monitoring and modeling allow for the development and assessment of alternative management and remediation strategies that could form the basis of regional watershed agreements or treaties. An example of how this multifaceted approach might be used to manage a shared water resource is presented for the Kura River basin in the Caucasus.

  18. Institutional design and regime effectiveness in transboundary river management - the Elbe water quality regime

    NASA Astrophysics Data System (ADS)

    Dombrowsky, I.

    2008-02-01

    The literature on transboundary river management suggests that institutions play an important role in bringing about cooperation. However, knowledge about how such institutions should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships that lead to the respective outcomes. In order to gain further insights into the relationship between institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE). The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expediency of the institutional arrangements. The study shows overall that the countries were relatively successful in improving water quality in the Elbe basin. However, this outcome can only partly be attributed to the ICPE itself. Furthermore, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity: it was relatively significant where the main responsibility for action lay with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model, but was practically non-existent in the reduction of non-point pollution from agriculture, where success depended on the behavior of individual private actors (farmers). The commission contributed towards problem solving by serving as a forum for the joint identification of priorities for action from a basin-wide perspective. The resulting international obligations increased the power of national water administrations and their access to funds. At the same time

  19. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet.

    PubMed

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika; Sun, Shiwei; Tripathee, Lekhendra

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH4(+) in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7ngL(-1), with an average of 12.5ngL(-1). The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH4(+). The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. PMID:27265735

  20. Monitoring water level in large trans-boundary ungauged basins with altimetry: the example of ENVISAT over the Amazon basin

    NASA Astrophysics Data System (ADS)

    Seyler, Frederique; Calmant, Stephane; da Silva, Joecila; Filizola, Naziano; Roux, Emmanuel; Cochonneau, Gerard; Vauchel, Philippe; Bonnet, Marie-Paule

    2009-01-01

    Brasil and Bolivia have water plans projects on the Beni-Madeira river, a major tributary of the Amazon. There are four main tributaries to the Rio Madeira: the Guapore, the Mamore and the Beni rivers into the Bolivian territory, and the Madre de Dios River crossing the North of Bolivia, coming from Peru. Most parts of these rivers are very far from the Andean capital cities of Bolivia and Peru, unreachable for long periods of time. Very few gauging stations are in operation, either for the Bolivian or the Peruvian part, most of them being located at the Andes piedmont or near the confluence at the Brazilian border as they form the Madeira river. This situation is exemplary of large transboundary basins in the tropical part of the world. We have computed 39 water level time series using ENVISAT altimetry data over the four tributaries of the Madeira and the Madeira itself. We present a preliminary study mostly conducted onto the Guapore river, in order to assess the quality of these time series for a variety of situations, but mostly narrow and meandering riverbeds. Comparison between water levels variation in the mainstream and within the inundations plains and lakes are drawn. We conclude by the perspectives offered by the combined use of radar altimetry and SAR imagery for the global monitoring of water resources, in large tropical transboundary basins.

  1. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  2. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    NASA Astrophysics Data System (ADS)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  3. An integrative case study approach between game theory and Pareto frontier concepts for the transboundary water resources allocations

    NASA Astrophysics Data System (ADS)

    Kucukmehmetoglu, Mehmet

    2012-07-01

    SummaryIn the context of transboundary issues, this paper introduces a composite water resources allocation approach that integrates both game theory and Pareto frontier concepts over the case of the Euphrates and Tigris Rivers. The proposed approach searches for an acceptable and viable solution set over the Pareto Frontier Surface via game theory based rationality constraints. For this purpose, the used base model is the Euphrates and Tigris River Basin Model, which is a linear programming model maximizing net economic benefits while optimally allocating scarce water resources in the basin. Results indicate that game theory based strategies and associated constraints provide a determinative backbone for an efficient and effective use of generated Pareto Frontier Surfaces. Additionally, estimated marginal values imply that the upstream countries have upper hand positions regarding their geographic and climatic contexts. After all the generation schemes, it appears that Turkey is the critical partner for inclusion into any form of coalition in the Euphrates and Tigris River Basin.

  4. Problematising and conceptualising local participation in transboundary water resources management: The case of Limpopo river basin in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Fatch, Joanna J.; Manzungu, Emmanuel; Mabiza, Collin

    IWRM-led water reforms in southern Africa have emphasised the creation of new stakeholder institutions with little explanation of how they will operate at different levels, especially at the local level. A case in point is the subsidiarity principle, which advocates for water management to be undertaken at the lowest appropriate level. The main objective of the study was to investigate the conceptualisation and application of the subsidiarity principle in the Limpopo river basin in Zimbabwe. This was done by analysing how state-led frameworks at the regional, basin, national and local level provided for local participation. These frameworks were compared to a bottom-up approach based on action research in three second tier local government administrative units (wards) in Shashe subcatchment of Mzingwane catchment. The catchment represents the entirety of the Limpopo basin in Zimbabwe. Data collection was based on document reviews, key informants, focus group discussions and participatory observations. In general the top-down efforts were found to express intent but lacked appropriately conceptualised implementation guidelines. Views of local people regarding how they could meaningfully participate in transboundary water resource management were based on practical considerations rather than theoretical abstractions. This was shown by a different conceptualisation of stakeholder identification and representation, demarcation of boundaries, role of intermediate institutions, and direct participation of local people at the basin level. The paper concludes that a bottom-up institutional model can enhance the conceptualisation and application of the subsidiarity principle. It also provides evidence that prescriptive approaches may not be the best way to achieve participatory governance in transboundary water resource management.

  5. Reinforcement Learning Multi-Agent Modeling of Decision-Making Agents for the Study of Transboundary Surface Water Conflicts with Application to the Syr Darya River Basin

    NASA Astrophysics Data System (ADS)

    Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.

    2008-12-01

    -cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.

  6. South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

    SciTech Connect

    RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

    2000-04-01

    To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

  7. Monitoring Lake Victoria Water Quality from Space: Opportunities for Strengthening Trans-boundary Information Sharing for Effective Resource Management

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Korme, T.; Farah, H.; Nyaga, J. W.; Irwin, D.; Flores, A.; Limaye, A. S.; Artis, G.

    2014-12-01

    converted to croplands. On-going dissemination of our findings together with capacity building efforts with the three main fishery and research institutions working in the lake, will enable informed decision making for the water management of LV. Enhanced capacity in trans-boundary water resources research is critical for successful decision making.

  8. An assessment of potential hydro-political tensions in transboundary river basins using environmental, political, and economic indicators

    NASA Astrophysics Data System (ADS)

    De Stefano, Lucia; Petersen-Perlman, Jacob; Sproles, Eric; Eynard, James; Wolf, Aaron T.

    2015-04-01

    Globally 286 river basins extend across international borders, covering over 61.9 million km2 of the earth's surface and hosting a total of approximately 2.7 billion people. In these basins, transboundary water resources support an interdependent web of environmental, political, and economic systems that can enhance or destabilize a region. We present an integrated global-scale assessment of transboundary watersheds to identify regions more likely to experience hydro-political tensions over the next decade and beyond based upon environmental, political, and economic indicators. We combine NASA's Gravity Recovery and Climate Experiment (GRACE) measurements of changes in terrestrial water storage with metrics of projected climate change impacts on water variability, the institutional capacity of countries to manage shared water resources, the development of new water infrastructure, per capita gross national income, domestic and international armed conflicts, and recent history of disputes over transboundary waters. The construction of new water-related infrastructure is on-going or planned in many basins worldwide. New water infrastructure is foreseen also in areas where instruments of international cooperation are still absent or limited in scope, e.g. in Southeast Asia, South Asia, Central America, the northern part of the South American continent, and the southern Balkans as well as in different parts of Africa. Moreover, in Central and Eastern Africa, the Middle East, and Central, South and South-East Asia there is a concomitance of several political, environmental and socioeconomic factors that could exacerbate hydropolitical tensions. Our analysis integrates political, economic and environmental metrics and is part of the United Nation's Transboundary Waters Assessment Programme to provide the first global-scale assessment of its type.

  9. Ozone Enhancement in the Lower Troposphere over East Asia Observed by OMI: Evidence of Transboundary Pollution Transport from China to Korea and Japan

    NASA Astrophysics Data System (ADS)

    Hayashida, S.; Ono, A.; Liu, X.; Yang, K.; Kanaya, Y.; Chance, K.

    2014-12-01

    Liu et al. (2010) developed an algorithm to retrieve ozone profiles from the ground to ~60 km from OMI ultraviolet radiances using the optimal estimation technique (Rogers, 2000). This algorithm is for derivation of an ozone profile divided into 24 layers, with three layers in the troposphere (0-3km, 3-6km, 6-9km). In this study, we report results for the analysis of lower tropospheric ozone over CEC using the OMI ozone profiles mentioned above. First, we show good correlation of OMI-derived ozone with aircraft measurements and ozonesonde measurements. Second, we show significant enhancement of ozone derived from OMI over CEC. To interpret this remarkable enhancement of ozone, we show correlation of ozone with carbon monoxide (CO) and hotspot numbers suggesting the effects of crop burning on ozone enhancement. Third, we also show complementary data obtained in the field campaign at Mt. Tai in 2005 and 2006 (Kayana et al., 2013) to demonstrate ozone enhancement in June every year and show the relationship with residue burning in fields over Shandong and Hebei Provinces. Finally, we show important evidence of transboundary pollution transport from China to Korea and Japan.References:Kanaya, Y., et al. (2013), Atmos. Chem. Phys., 13(16), 8265-8283.Liu, X., et al. (2010), Atmos. Chem. Phys., 10(5), 2521-2537.Rodgers, C. D. (2000), Inverse methods for atmospheric sounding: Theory and practice, World Scientific Publishing, Singapore.

  10. Transboundary water resources and public health in the U.S.-Mexico border region

    SciTech Connect

    Varady, R.G.; Mack, M.D.

    1995-04-01

    The ``Ambos Nogales Water Project`` represents an interdisciplinary study of water management policy in a community straddling the US-Mexico border. The project was a joint effort undertaken from 1989 through 1993 by the Udall Center for Studies in Public Policy at the University of Arizona and El Colegio de la Frontera Norte (COLEF) in Nogales, Sonor. Funding was provided by the Ford Foundation. Three key water management issues were the research focus: quantity (water supply), sewerage (water and waste removal), and quality. All three have inseparable linkages with public health. Regarding quantity, the study revealed that entire neighborhoods, especially in Nogales, Sonora, are unsupplied or undersupplied with running water, suggesting negative implications for the health of residents on both sides of the border. Sewerage systems do not reach many neighborhoods in Nogales, Sonora. Even sewered areas are problematic due to breaks in poorly maintained systems, resulting in leaks to the aquifer and threats to groundwater quality. A pilot, water sample survey to assess water quality of area wells revealed significant bacteriologic contamination due to wastewater, elevated nitrate levels, and detectable concentrations of volatile organic compounds, all of which have potentially deleterious health effects. The project database offers an opportunity to analyze environment-related health problems in Ambos Nogales.

  11. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    NASA Astrophysics Data System (ADS)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250

  12. Assessing and managing water scarcity within the Nile River Transboundary Basin

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  13. Transboundary water resources management and livelihoods: interactions in the Senegal river

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  14. Water-energy nexus in the Sava River Basin: energy security in a transboundary perspective

    NASA Astrophysics Data System (ADS)

    Ramos, Eunice; Howells, Mark

    2016-04-01

    Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources spans over different nations. This paper focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin (SRB), using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technology types dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin's water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential

  15. Changes of Glaciation and Their Probable Impact on Water Resources in Central Asia

    NASA Astrophysics Data System (ADS)

    Severskiy, I.

    2009-04-01

    In the Central Asia the main limiting factor of sustainable development is increasing water shortage. Even now the overwhelming part of territory of Kazakhstan and the adjacent countries of Central Asia are characterized by a condition of the strongest water stress. Fresh water deficiency is, to this or that extent, observed practically on all the territory of Central Asia and transboundary character of the main rivers is one of the main risk factors for sustainable development of national economy of the countries in this region. For the last 20 years a great number of scientific publications appeared in which their authors express an increasingly serious fears about significant reduction of water resources in the arid regions of the world as a reaction to global warming. One of the arguments substantiating such forecasts is the indisputable fact of a continuous intensive degradation of glaciers. Predominating opinion about the inevitability of glaciers disappearance in Central Asia Mountains cannot be accepted as an axiom. Taking into account stability in the sum of precipitation and especially in the snow resources, one can suppose that glaciers in this region will not disappear during this century. Despite the reduction of glaciers, annual runoff volumes and runoff distribution within a year remained unchanged during the last decades. During the same period, norms of atmospheric precipitation and maximum snow-water storage in the zone of runoff formation remained stable. All these suggest the existence of a certain compensation mechanism. Research, based on data analysis of repeated photogrammetric surveys of a group of glaciers and temperature regime of permafrost in Zailiyskiy Alatau range (Northern Tien Shan), suggests that such mechanism can be more and more significant (with climate warming) participation of melting waters of underground ice (buried glaciers, rock glaciers, permafrost) in runoff formation. During last decade the Global Climate system

  16. Will Climate Change Exacerbate or Mitigate Water Stress in Central Asia?

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Bernauer, T.; Guiennet, R.; Sellars, S. L.; Robertson, A. W.; Mankin, J.; Bauer-Gottwein, P.

    2010-12-01

    Millions of people in Central Asia depend on water from the region's snow and glacier melt driven rivers, most of all the Syr Darya and Amu Darya. Their riparian countries are involved in intense conflicts over scarce transboundary water ever since the Soviet Union collapsed. We report results from a new coupled climate-land ice-hydrological model for the Syr Darya to assess how water availability in Central Asia could be affected by a warming climate. The basin area is approximately 400'000 km^2 with an annual precipitation average of 320 mm and pronounced differences between the mountainous Tien Shan region (500 - 1500 mm), where the Syr Darya originates, and the low land steppes (100 - 200 mm). Annual runoff averages 39 km^3, approximately, with 80 percent occurring between March and September because of combined snow and glacier melt. The model is driven by two climate scenarios: a baseline scenario and a pronounced warming scenario based on the IPCC SRES A2 scenario. 50 year precipitation simulations were created using a Non-Homogeneous Hidden Markov model. For each of the subcatchments, the NHMM was trained on 10 years of daily Tropical Rainfall Measuring Mission precipitation data from January 1st, 2000 to December 31st, 2009. Because of the large seasonal changes in precipitation within the Tien Shan region (winter/spring time rainy season versus summer time dry season), the NHMM relies on a predictor for generating a realistic seasonal distribution of precipitation. As for the low-frequency variation at decadal to multi-decadal scales, the idea was to develop stochastic scenarios via long-term proxies for regional climate (80 year runoff measurements in undisturbed catchments) that include low-frequency variations. A precipitation matching 50 years temperature time series was generated by statistical modeling. A Monte Carlo approach for creating 100 climate scenarios was utilized to account forcing uncertainty. Results suggest that under the likely warming

  17. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as

  18. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  19. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region

    PubMed Central

    Voss, Katalyn A; Famiglietti, James S; Lo, MinHui; Linage, Caroline; Rodell, Matthew; Swenson, Sean C

    2013-01-01

    In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately −27.2±0.6 mm yr−1 equivalent water height, equal to a volume of 143.6 km3 during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of “best current capabilities” in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3±2.1 mm yr−1 equivalent water height of groundwater during the study period, or 91.3±10.9 km3 in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget. PMID:23658469

  20. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region

    NASA Technical Reports Server (NTRS)

    Voss, Katalyn; Famiglietti, James S.; Lo, MinHui; de Linage, Caroline; Rodell, Matthew; Swenson, Sean C.

    2013-01-01

    In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 plus or minus 0.6 mm per yr equivalent water height, equal to a volume of 143.6 cubic kilometers during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of ''best current capabilities'' in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 plus or minus 2.1 mm per yr equivalent water height of groundwater during the study period, or 91.3 plus or minus 10.9 cubic kilometers in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget

  1. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region

    NASA Technical Reports Server (NTRS)

    Voss, Katalyn A.; Famiglietti, James S.; Lo, MinHui; De Linage, Caroline; Rodell, Matthew; Swenson, Sean C.

    2013-01-01

    In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 plus or minus 0.6 millimeters per year equivalent water height, equal to a volume of 143.6 cubic kimometers during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of ''best current capabilities'' in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 plus or minus 2.1 millimeters per year equivalent water height of groundwater during the study period, or 91.3 plus or minus 10.9 cubic kilometers in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget.

  2. Valuing environmental water pulses into the Incomati estuary: Key to achieving equitable and sustainable utilisation of transboundary waters

    NASA Astrophysics Data System (ADS)

    Sengo, D. José; Kachapila, Albert; Zaag, Pieter van der; Mul, Marloes; Nkomo, Sakhiwe

    Upstream developments in the Incomati river basin, shared by South Africa, Swaziland and Mozambique, have altered downstream flows significantly. The frequency of small floods into the estuary has been reduced dramatically. This change in the flow regime has impacted on the state of the environment downstream, and the Incomati estuary in particular. The estuary requires fresh water pulses that naturally occur, and the resulting seasonal flooding of the plains. Resource-poor rural households depend on the goods and services that the estuary and flood plains provide such as wood, charcoal, building materials, fish and shrimp, wetland farming, and tourism. Alteration of the flow regime into the estuary has a negative impact on the state of the environment and hence on the goods and services the estuary yields; a phenomenon the people living near the estuary are keenly aware of. The article estimates the value of the goods and services that the estuary currently provides, that is under the conditions of a changed flow regime. A linear relationship is then assumed between fresh water pulses into the estuary and the goods and services it provides, so that the order of magnitude of the economic value of fresh water pulses into the estuary may be approximated. Various development scenarios in the Incomati basin are then considered, that have different upstream and downstream impacts on water availability, and the basin-wide benefits and costs are compared. The paper concludes that the principle of sharing the benefits derived from the water resources, rather than the water itself, as proposed by authors such as [Sadoff, C.W., Grey, D., 2002. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389-403], may be a feasible approach only if the less tangible benefits and functions, especially those of the environment, are assigned an appropriate value and corresponding priority.

  3. Some aspects of integrated water resources management in central Asia

    NASA Astrophysics Data System (ADS)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  4. Impacts of global change on water-related sectors and society in a trans-boundary central European river basin - Part 1: project framework and impacts on agriculture

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Gömann, H.; Conradt, T.; Kaltofen, M.; Kreins, P.; Wechsung, F.

    2007-06-01

    Central Europe, the focus region of this study, is a region in transition, climatically from maritime to continental and politically from formerly more planning-oriented to more market-oriented management regimes, and in terms of climate change from regions of increasing precipitation in the west and north of Europe to regions of decreasing precipitation in central and southern Europe. The Elbe basin, a trans-boundary catchment flowing from the Czech Republic through Germany into the North Sea, was selected to investigate the possible impacts of global change on crop yields and water resources in this region. For technical reasons, the paper has been split into two parts, the first showing the overall model concept, the model set-up for the agricultural sector, and first results linking eco-hydrological and agro-economic tools for the German part of the basin. The second part describes the model set-up for simulating water supply and demand linking eco-hydrological and water management tools for the entire basin including the Czech part.

  5. Some aspects of integrated water resources management in central Asia

    NASA Astrophysics Data System (ADS)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  6. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  7. Identifying and characterizing transboundary aquifers along the Mexico-US border: An initial assessment

    NASA Astrophysics Data System (ADS)

    Sanchez, Rosario; Lopez, Victoria; Eckstein, Gabriel

    2016-04-01

    The transboundary nature of water dividing Mexico and the United States (U.S.) transforms the entire border region into an instrument of cooperation, a source of conflict, a national security issue, and an environmental concern. Reasonable data collection and research analysis have been conducted for surface waters by joint governmental institutions and non-governmental bodies. However, with the exception of the U.S. Transboundary Assessment Act Program (TAAP) (focusing on the Hueco Bolson, Mesilla Bolson, San Pedro and Santa Cruz aquifers), there is no comparable research, institutional development, or assessment of transboundary groundwater issues on the frontier. Moreover, data collection and methodologies vary between the two countries, there is no broadly accepted definition of the transboundary nature of an aquifer, and available legal and policy frameworks are constrained by non-hydrological considerations. Hence, there is a conceptual and institutional void regarding transboundary groundwater resources between Mexico and the U.S. The purpose of this paper is to bridge this void and characterize transboundary aquifers on the Mexico-US border. It reviews existing international frameworks for identifying hydrological and social criteria that characterize an aquifer as transboundary. It then assesses data from both countries to propose where and which aquifers could be considered transboundary. Finally, the paper proposes an agenda for assessing Mexico-US transboundary aquifers as a means for improving groundwater management in the border region.

  8. Security of water, energy, and food nexus in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Endo, A.; Fujii, M.; Shoji, J.; Baba, K.; Gurdak, J. J.; Allen, D. M.; Siringan, F. P.; Delinom, R.

    2014-12-01

    Water, energy, and food are the most important and fundamental resources for human beings and society. Demands for these resources are escalating rapidly because of increases in populations and changes in lifestyles. Therefore intensive demand for those resources makes conflicts between resources. Securities of water, energy, and food are treated separately, however they should be considered as one integrated matter, because water-energy-food are connected and it makes nexus and tradeoff. Security in terms of self-production, diversity of alternatives, and variability are evaluated for water, energy and food for thirty two countries in the Asia-Pacific region. The water and energy nexus includes water consumption for the cooling of power plant systems, water use for hydro power generation, and energy consumption for water allocation and pumping. The water and food nexus consists of water consumption for agriculture and aquaculture. The energy and food nexus includes energy consumption for food production and biomass for energy. Analyses of 11 countries within the Asia- Pacific region show that energy consumption for fish is the largest among foods in Japan, Philippines, and Peru, while energy consumption for cereals is the largest among foods in Canada, US, Indonesia, and others. Water consumption for different types of food and energy are also analyzed, including nexus ratio to total water consumption. The water-energy-food nexus at a local level in the Asia Pacific region are examined by the Research Institute for Humanity and Nature project "Human environmental security in Asia Pacific Ring of Fire". Themes including geothermal power plants for energy development and hot springs as water, shale gas for energy development and water consumption/contamination, aquaculture for food and water contamination are used to evaluate the water-energy-food nexus in the Asia-Pacific region.

  9. Characterizing hydrological hazards and trends with the NASA South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Ghatak, D.; Zaitchik, B. F.; Limaye, A. S.; Searby, N. D.; Doorn, B.; Bolten, J. D.; Toll, D. L.; Lee, S.; Mourad, B.; Narula, K.; Nischal, S.; Iceland, C.; Bajracharya, B.; Kumar, S.; Shrestha, B. R.; Murthy, M.; Hain, C.; Anderson, M. C.

    2015-12-01

    South Asia faces severe challenges to meet the need of water for agricultural, domestic and industrial purposes while coping with the threats posed by climate and land use/cover changes on regional hydrology. South Asia is also characterized by extreme climate contrasts, remote and poorly-monitored headwaters regions, and large uncertainties in estimates of consumptive water withdrawals. Here, we present results from the South Asia Land Data Assimilation System (South Asia LDAS) that apply multiple simulations involving different combination of forcing datasets, land surface models, and satellite-derived parameter datasets to characterize the distributed water balance of the subcontinent. The South Asia LDAS ensemble of simulations provides a range of uncertainty associated with model products. The system includes customized irrigation schemes to capture water use and HYMAP streamflow routing for application to floods. This presentation focuses on two key application areas for South Asia LDAS: the representation of extreme floods in transboundary rivers, and the estimate of water use in irrigated agriculture. We show that South Asia LDAS captures important features of both phenomena, address opportunities and barriers for the use of South Asia LDAS in decision support, and review uncertainties and limitations.This work is being performed by an interdisciplinary team of scientists and decision makers, to ensure that the modeling system meets the needs of decision makers at national and regional levels.

  10. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of

  11. Resolving conflicts over trans-boundary rivers using bankruptcy methods

    NASA Astrophysics Data System (ADS)

    Zarezadeh, M.; Madani, K.; Morid, S.

    2013-11-01

    A bankruptcy approach is proposed for resolving trans-boundary rivers conflicts in which the total water demand or claim of the riparian parties is more than the available water. Bankruptcy solution methods can allocate the available water to the conflicting parties with respect to their claims. Four bankruptcy rules are used here to allocate the available water to the riparian parties. Given the non-uniform spatial and temporal distribution of water across river basins, bankruptcy optimization models are proposed to allocate water based on these rules with respect to time sensitivity of water deliveries during the planning horizon. Once allocation solutions are developed, their acceptability and stability must be evaluated. Thus, a new stability index method is developed for evaluating the acceptability of bankruptcy solutions. To show how the bankruptcy framework can be helpful in practice, the suggested methods are applied to a real-world tarns-boundary river system with eight riparians under various hydrologic regimes. Stability analysis based on the proposed stability index method suggests that the acceptability of allocation rules is sensitive to hydrologic conditions and demand values. This finding has an important policy implication suggesting that fixed allocation rules and trans-boundary treaties may not be reliable for securing cooperation over trans-boundary water resources as they are vulnerable to changing socio-economic and climatic conditions as well as hydrologic non-stationarity.

  12. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service

  13. Natural radionuclides and toxic elements in transboundary rivers of Kazakhstan.

    PubMed

    Solodukhin, V; Poznyak, V; Kabirova, G; Stepanov, V; Ryazanova, L; Lennik, S; Liventsova, A; Bychenko, A; Zheltov, D

    2015-06-01

    The paper reports on the study of radionuclide and elemental composition of water, bottom sediment and soil samples collected at the border areas of the following transboundary rivers in Kazakhstan: Chagan, Ural, Ilek, Tobol, Ayat, Irtysh, Emel, Ili, Tekes, Shu, Karabalta, Talas and Syrdarya. The employed analyses include the following methods: instrumental gamma-ray spectrometry, radiochemical analysis, neutron activation analysis, XRF and the inductively coupled plasma mass spectrometry (ICP-MS). Evidence of water environment contamination with radionuclides and toxic elements has been revealed in many of the studied rivers both in Kazakhstan and in adjacent countries. Transboundary transfer of the contaminants is most likely related to local industry (uranium mining and processing) and the presence of radioactive substances in the river basins. PMID:25971346

  14. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  15. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  16. Crop-specific seasonal estimates of irrigation water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  17. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Huang, Hu-Ching

    2016-03-01

    Transboundary transport of air pollution is a serious environmental concern as pollutant affects both human health and the environment. Many numerical approaches have been utilized to quantify the amounts of pollutants transported to receptor regions, based on emission inventories from possible source regions. However, sparse temporal-spatial observational data and uncertainty in emission inventories might make the transboundary transport contribution difficult to estimate. This study presents a conceptual quantitative approach that uses transport pathway classification in combination with curve fitting models to simulate an air pollutant concentration baseline for pollution background concentrations. This approach is used to investigate the transboundary transport contribution of atmospheric pollutants to a metropolitan area in the East Asian Pacific rim region. Trajectory analysis categorized pollution sources for the study area into three regions: East Asia, Southeast Asia, and Taiwan cities. The occurrence frequency and transboundary contribution results suggest the predominant source region is the East Asian continent. This study also presents an application to evaluate heavy pollution cases for health concerns. This new baseline construction model provides a useful tool for the study of the contribution of transboundary pollution delivered to receptors, especially for areas deficient in emission inventories and regulatory monitoring data for harmful air pollutants. PMID:26760713

  18. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  19. Transboundary Groundwater Along the Canadian-American Border

    NASA Astrophysics Data System (ADS)

    Rivera, A.

    2009-05-01

    Canada does not have obvious problems as a consequence of the intensive use of surface water or groundwater. Canada mostly struggles to keep the quality of its waters, in the highest standards, and to overcome the knowledge gaps of its groundwater resources. In assessing water resources, it has become obvious that both surface and groundwater resources are equally important. Because of this shift, Canada is interested in transboundary groundwater issues, both between provinces and internationally. There is no competition in Canada for groundwater resources between provinces or internationally. When an aquifer extends beneath the border of two jurisdictions, conflict may arise when one jurisdiction depletes groundwater resources that affect the quantity and quality of water available to the other jurisdiction. The most important cases of transboundary aquifers within Canada are located in the Prairie Provinces, but no competition has been reported. The equitable and "reasonable" use of shared waters is the most essential principle considered when negotiating a groundwater apportionment method. Other factors considered are: the priority use, the sustainable yield of the aquifer, and the joint apportionment of surface water and groundwater Over 20 million Canadians live in watersheds that cross the Canada-US border (over 17 million of them in the Great Lakes-St Lawrence watershed), and are therefore affected by American policies, or else affect American water quality. The International Joint Commission is one well-developed and valuable mechanism for coordinating policies between Canada and the United States. Other mechanisms include provisions under the North American Free Trade Agreement, supported by its environmental commission, which attempt to ensure that the Agreement's policies are consistent with environmental protection and conservation as well as strengthening the development and enforcement of environmental laws and regulations. Policies affecting

  20. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  1. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  2. Water-Energy-Food Nexus in Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Endo, A.; Gurdak, J. J.; Allen, D. M.; Siringan, F.; Delinom, R.; Shoji, J.; Fujii, M.; Baba, K.

    2013-12-01

    Climate change and economic development are causing increased pressure on water, energy and food resources, presenting communities with increased levels of tradeoffs and potential conflicts among these resources. Therefore, the water-energy-food nexus is one of the most important and fundamental global environmental issues facing the world. For the purposes of this research project, we define human-environmental security as the joint optimization between human and environmental security as well as the water-energy-food nexus. To optimize the governance and management within these inter-connected needs, it is desirable to increase human-environmental security by improving social managements for the water-energy-food nexus. In this research project, we intend to establish a method to manage and optimize the human-environmental security of the water-energy-food nexus by using integrated models, indices, and maps as well as social and natural investigations with stakeholder analyses. We base our approach on the viewpoint that it is important for a sustainable society to increase human-environmental security with decreasing risk and increasing resilience by optimizing the connections within the critical water-energy and water-food clusters. We will take a regional perspective to address these global environmental problems. The geological and geomorphological conditions in our proposed study area are heavily influenced by the so-called 'Ring of Fire,' around the Pacific Ocean. Within these areas including Japan and Southeast Asia, the hydro-meteorological conditions are dominated by the Asia monsoon. The populations that live under these natural conditions face elevated risk and potential disaster as negative impacts, while also benefitting from positive ecological goods and services. There are therefore tradeoffs and conflicts within the water-energy-food nexus, as well as among various stakeholders in the region. The objective of this project is to maximize human

  3. Diagnosing the inter-model spread in snow water equivalent for CMIP5 over Southwest Asia

    NASA Astrophysics Data System (ADS)

    Mankin, J. S.; Scherer, M.; Diffenbaugh, N. S.

    2012-12-01

    Recent analysis of the CMIP5 set of integrations has highlighted a wide divergence in the models' ability to resolve historical observations of snow water equivalent (SWE) throughout the Northern Hemisphere. However, despite the difficulty of resolving SWE in hindcasts, there exists a consistent signal in the magnitude of SWE decline under the RCP8.5 forcing scenario among the CMIP5. Separately, our work has established that lower yields in irrigated wheat induce Afghan farmers to plant more opium poppy, a more drought resistant crop planted at the same time. In Southwest and Central Asia, subsistence and industrial agriculture rely on irrigation supplied by runoff from upland snowmelt, and crop yields, including those of wheat and poppy, are influenced by this water availability. If water availability attenuates driving yield declines in staple crops like wheat, farmers in Afghanistan can be driven to cultivate more opium poppy in response—a crop that has a complex influence on stability and conflict there. Bounding the ensemble uncertainty in model simulations of SWE is an important step in assessing the ways in which farmer decisions have and will be constrained. Therefore, diagnosing the sources of model divergence in this important metric for subsistence and large-scale agriculture in Southwest and Central Asia is a first step for improving model resolution of such processes in projections of climate change. We present initial results that quantify the extent to which snow albedo feedback (SAF) parameterizations among the models in CMIP5 influence SWE simulation uncertainties over Southwest and Central Asia.

  4. Health risks from large-scale water pollution: trends in Central Asia.

    PubMed

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. PMID:21131050

  5. Contemporary changes of water resources, water and land use in Central Asia based on observations and modeling.

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Prousevitch, A.; Sokolik, I. N.; Lammers, R. B.

    2015-12-01

    Water is a key agent in Central Asia ultimately determining human well-being, food security, and economic development. There are complex interplays among the natural and anthropogenic drivers effecting the regional hydrological processes and water availability. Analysis of the data combined from regional censuses and remote sensing shows a decline in areas of arable and irrigated lands and a significant decrease in availability of arable and irrigated lands per capita across all Central Asian countries since the middle of 1990thas the result of post-Soviet transformation processes. This change could lead to considerable deterioration in food security and human system sustainability. The change of political situation in the region has also resulted in the escalated problems of water demand between countries in international river basins. We applied the University of New Hampshire - Water Balance Model - Transport from Anthropogenic and Natural Systems (WBM-TrANS) to understand the consequences of changes in climate, water and land use on regional hydrological processes and water availability. The model accounts for sub-pixel land cover types, glacier and snow-pack accumulation/melt across sub-pixel elevation bands, anthropogenic water use (e.g. domestic and industrial consumption, and irrigation for most of existing crop types), hydro-infrastructure for inter-basin water transfer and reservoir/dam regulations. A suite of historical climate re-analysis and temporal extrapolation of MIRCA-2000 crop structure datasets has been used in WBM-TrANS for this project. A preliminary analysis of the model simulations over the last 30 years has shown significant spatial and temporal changes in hydrology and water availability for crops and human across the region due to climatic and anthropogenic causes. We found that regional water availability is mostly impacted by changes in extents and efficiency of crop filed irrigation, especially in highly arid areas of Central Asia

  6. A Regional Strategy for the Assessment and Management of Transboundary Aquifer Systems in the Americas

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Rivera, A.; Tujchneider, O.; Guillén, C.; Campos, M.; Da Franca, N.; May, Z.; Aureli, A.

    2015-12-01

    The UNESCO-IHP ISARM-Americas technical committee has developed a regional strategy for the assessment and management of transboundary aquifer systems in the Americas as part of their ongoing cooperative assistance to help neighboring countries sustain water resources and reduce potential conflict. The fourth book in the series of publications sponsored by UNESCO and OAS documents this strategy. The goal of this strategy is the collective understanding, developing, managing, and protecting of the transboundary aquifers in the Americas This strategy includes technical, social, and governance recommendations for an integrated resource management of groundwater based on flexible arrangements that not only manage but also demand social participation in solving problems, consider changes in land use and water use and promote the increase of water sustainability for all transboundary neighbors. The successful implementation of this strategy starts with sharing information of the status and use of land and water as well as intergovernmental partnerships to link science and policy with existing instruments for managing the water resources. International organizations such as UNESCO and OAS also can help facilitate the development of transboundary agreements and establish cooperation on transboundary aquifers between neighbors. The UNESCO-IHP ISARM-Americas technical committee has been successful in creating a network of partners from 24 countries and in translating existing aquifer knowledge into a meaningful strategy for the American hemisphere. The strategy aims to explain and develop the role of science and the informed-decision approach. Examples from North and South America show how the process has begun to develop for selected transboundary aquifers. These include the Milk River basin between the US and Canada, the Rio Grande and Colorado River basins between the US and Mexico, and the Guarani River basin in South America.

  7. Uncertainties in hydrological modelling and its consequences for water management in Central Asia

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; aus der Beek, Tim; Flörke, Martina

    2013-04-01

    Central Asia features an extreme continental climate with mostly arid to semi-arid conditions. Due to low precipitation and therefore low water availability, water is a scarce resource and often the limiting factor in terms of socio-economic development. The aim of this model study is to compare the uncertainties of hydrological modelling induced by global and regional climate datasets and to calculate the impacts on estimates of local water resources. Within this integrated model study the hydrological and water use model WaterGAP 3 (Global Assessment and Prognosis) is being applied to all river basins located in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Mongolia in five arc minutes spatial resolution (~ 6 x 9 km per grid cell). First of all, water abstractions for the sectors households, irrigation, livestock, manufacturing industries, and electricity production are being computed and fed into the hydrological module of WaterGAP. Then, water fluxes of the terrestrial water cycle are being modelled. The performance of the model is then being evaluated by comparing modelled and observed river discharge for the time period 1971 to 2000. As WaterGAP input, various global and regional climate datasets are available for the study region. In detail, these are the global TS dataset of the Climate Research Unit (CRU), the WATCH forcing data (WFD) developed within the EU-FP6 Project WATer and global CHange (WATCH) and the regional Aphrodités Water Resources dataset. Finally, the uncertainties in modelled water availability induced by the different datasets are quantified to point out the consequences for a sustainable water management. The results show that the datasets differ in both aspects, temporal and spatial goodness. At this, not only differences between the regional and the global datasets, but also among the global datasets are evident.

  8. Comparative water law, policies, and administration in Asia: Evidence from 17 countries

    NASA Astrophysics Data System (ADS)

    Araral, Eduardo; Yu, David J.

    2013-09-01

    Conventional wisdom suggests that improving water governance is the key to solving water insecurity in developing countries but there are also many disagreements on operational and methodological issues. In this paper, we build on the work of Saleth and Dinar and surveyed 100 water experts from 17 countries in Asia to compare 19 indicators of water laws, policies, and administration among and within countries from 2001 to 2010. We present the results of our study in a comparative dashboard and report how water governance indicators vary with a country's level of economic development, which ones do not and how and why some indicators change overtime in some countries. We have two main results. First, our initial findings suggest the possibility of water Kuznet's curve, i.e., certain water governance indicators vary with a country's level of economic development. However, more studies are needed given the caveats and limitations of our study. Second, the results have practical value for policy makers and researchers for benchmarking with other countries and tracking changes within their countries overtime. We conclude with implications for a second-generation research agenda on water governance.

  9. Estimating continental water storage variations in Central Asia area using GRACE data

    NASA Astrophysics Data System (ADS)

    Dapeng, Mu; Zhongchang, Sun; Jinyun, Guo

    2014-03-01

    The goal of GRACE satellite is to determine time-variations of the Earth's gravity, and particularly the effects of fluid mass redistributions at the surface of the Earth. This paper uses GRACE Level-2 RL05 data provided by CSR to estimate water storage variations of four river basins in Asia area for the period from 2003 to 2011. We apply a two-step filtering method to reduce the errors in GRACE data, which combines Gaussian averaging function and empirical de-correlation method. We use GLDAS hydrology to validate the result from GRACE. Special averaging approach is preformed to reduce the errors in GLDAS. The results of former three basins from GRACE are consistent with GLDAS hydrology model. In the Tarim River basin, there is more discrepancy between GRACE and GLDAS. Precipitation data from weather station proves that the results of GRACE are more plausible. We use spectral analysis to obtain the main periods of GRACE and GLDAS time series and then use least squares adjustment to determine the amplitude and phase. The results show that water storage in Central Asia is decreasing.

  10. Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Located in the inland arid area of central Asia and northwest China, Xinjiang is recently getting more concerns on soil water erosion issues, which is highly related with the sustainable utilization of barren soil and limited water resources. Historical soil erosion data were analyzed to determine t...

  11. Optimizing the Water-Energy-Food Nexus in the Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto; Allen, Diana; Gurdak, Jason

    2013-11-01

    Climate change and economic development are causing increased pressure on global water, energy, and food resources, presenting increased levels of trade-offs and conflicts among these resources and stakeholders. Because these resources are interconnected, policy development and resource management require careful consideration of the complex interconnections between nature and society. A balance between risk and resilience is critical for achieving human and environmental security, particularly in Asia's region within the "Ring of Fire," which is experiencing drastic social change alongside the huge potential risks and benefits associated with development. The 2011 Fukushima nuclear accident and aftermath underscore the importance of developing policy and management options that maximize security and minimize risk within the water-energy-food (WEF) nexus.

  12. Optimizing the Water-Energy-Food Nexus in the Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto; Allen, Diana; Gurdak, Jason

    2013-12-01

    Climate change and economic development are causing increased pressure on global water, energy, and food resources, presenting increased levels of trade-offs and conflicts among these resources and stakeholders. Because these resources are interconnected, policy development and resource management require careful consideration of the complex interconnections between nature and society. A balance between risk and resilience is critical for achieving human and environmental security, particularly in Asia, a region within the "Ring of Fire," which is experiencing drastic social change alongside the huge potential risks and benefits associated with development. The 2011 Fukushima nuclear accident and aftermath underscore the importance of developing policy and management options that maximize security and minimize risk within the water-energy-food (WEF) nexus.

  13. Analysis of Water Use Efficiency derived from MODIS satellite image in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J.; Jang, K.; Kang, S.

    2014-12-01

    Water Use Efficiency (WUE) is defined as ratio of evapotranspriation (ET) to gross primary productivity (GPP). It can detect the changes of ecosystem properties due to the variability of enviromental condition, and provide a chance to understand the linkage between carbon and water processes in terrestrial ecosystem. In a changing climate, the understanding of ecosystem functional responses to climate variability is crucial for evaluating effect. However, continental or sub-continental scale WUE analysis is were rare. In this study, WUE was estimated in the Northeast Asia using satellite data from 2003 to 2010. ET and GPP were estimated using various MODIS products. The estimated ET and GPP showed favorable agreements with flux tower observations. WUE in the study domain showed considerable variations according to the plant functional types and climatic and elevational gradients. The results produced in this study indicate that satellite remote sensing provides a useful tool for monitoring variability of terrestrial ecosystem functions.

  14. The Influence of Summertime Convection Over Southeast Asia on Water Vapor in the Tropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, J. S.; Fu, R.; Fueglistaler, S.; Liu, Y. S.; Zhang, Y.

    2011-01-01

    The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.

  15. Indicators for transboundary river management.

    PubMed

    Lorenz, C M; Gilbert, A J; Cofino, W P

    2001-07-01

    The aim of this paper is to analyze the potential of indicators for integrated river basin management and to develop a set of indicators for the management of transboundary river basins. An indicator, comprising a variable or some aggregation of variables, describes a system or process such that it has significance beyond the face value of its components. Integrated river basin management takes into account policies and measures for the multifunctional use of rivers on a catchment scale and associated institutional changes. Indicators are useful instruments for this process for two reasons. Firstly, they meet the information need of policy- and decision-makers. Secondly, indicators can be used to structure the definition and description of information needs and collection of information between the different international, institutional, and sectoral management levels. The development of indicators involves a number of steps: definition of aim, construction of conceptual model, selection of variables, comparison with selection criteria, database assessment, and indicator selection. In this paper these steps are discussed and specified for integrated river basin management. This results in a set of indicators describing the pressure to the river, the state of the river ecosystem, the impact to goods and services provided by the river, and the societal response. The proposed set of indicators measured at a river basin scale provides integrated information on the use and supply of goods and services, underlying cause-effect relationships and possible trade-offs and their spatial distribution (e.g., upstream versus downstream). Furthermore, we propose a division of tasks and responsibilities for river basin management with regard to the development of indicators, data collection, and their application in decision-making. PMID:11436995

  16. Beyond the Transboundary River: Issues of Riparian Responsibilities

    NASA Astrophysics Data System (ADS)

    Parhi, P. K.; Sankhua, R. N.

    2013-11-01

    The issues of riparian countries sharing transboundary waters spans decades, and has been greatly strengthened by its collaboration with partner agencies. International cooperation on shared water resources is critical, especially in water scarce regions experiencing the impacts of over-consumption and pollution. Where, river basins are transboundary, this requires regular and structured consultation, coordination and cooperation among all states sharing the catchment. Rapid and unsustainable development of river basins and their wetlands has led to the disruption of natural hydrological cycles. In many cases this has resulted in greater frequency and severity of flooding, drought and pollution. Appropriate transnational planning, protection and allocation of water to wetlands are essential to avoid disaster and enable these ecosystems to continue to provide important goods and services to local communities. Integrated river basin management takes into account policies and measures for the multifunctional use of rivers on a catchment scale and associated institutional changes. The implementation of these involves a number of steps such as definition of aim, construction of conceptual model, selection of variables, comparison with selection criteria, database assessment, and indicator selection division of tasks and responsibilities for river basin management with regard to the development of indicators, data collection, and their application in decision-making. This work presents issues pertaining to the pressure to the river, the state of the river ecosystem, the impact to goods and services provided by the river, and the societal response.

  17. Modeling drought variability in the water scarce Middle East and Southwest Asia

    NASA Astrophysics Data System (ADS)

    Barlow, Mathew; Hoell, Andrew; Schubert, Siegfried; Wang, Hailan

    2016-04-01

    The ability to simulate drought variability across the water scarce Middle East and Southwest Asia [40-80E,10-45N] is examined in terms of the seasonal precipitation variability simulated in a suite of different atmospheric models forced with observed sea surface temperatures. Several, but not all, of the models are able to capture key circulation changes known to be associated with large-scale forcing of severe drought in the region. Simulation skill also varies across the region. The model differences and skill areas have important implications for seasonal prediction of regional drought, which is explored both in general and for specific regional drought events, including 1999-2001, 2007-2008, and 2014-2015. The societal impact of the drought variability is considered in terms of the occurrence of drought disasters, as recorded in the CRED EM-DAT database.

  18. Streamflow model of the six-country transboundary Ganges-Bhramaputra and Meghna river basin

    NASA Astrophysics Data System (ADS)

    Rahman, K.; Lehmann, A.; Dennedy-Frank, P. J.; Gorelick, S.

    2014-12-01

    Extremely large-scale river basin modelling remains a challenge for water resources planning in the developing world. Such planning is particularly difficult in the developing world because of the lack of data on both natural (climatological, hydrological) processes and complex anthropological influences. We simulate three enormous river basins located in south Asia. The Ganges-Bhramaputra and Meghna (GBM) River Basins cover an area of 1.75 million km2 associated with 6 different countries, including the Bengal delta, which is the most densely populated delta in the world with ~600 million people. We target this developing region to better understand the hydrological system and improve water management planning in these transboundary watersheds. This effort uses the Soil and Water Assessment Tool (SWAT) to simulate streamflow in the GBM River Basins and assess the use of global climatological datasets for such large scale river modeling. We evaluate the utility of three global rainfall datasets to reproduce measured river discharge: the Tropical Rainfall Measuring Mission (TRMM) from NASA, the National Centers for Environmental Prediction (NCEP) reanalysis, and the World Metrological Organization (WMO) reanalysis. We use global datasets for spatial information as well: 90m DEM from the Shuttle Radar Topographic Mission, 300m GlobCover land use maps, and 1000 km FAO soil map. We find that SWAT discharge estimates match the observed streamflow well (NSE=0.40-0.66, R2=0.60-0.70) when using meteorological estimates from the NCEP reanalysis. However, SWAT estimates diverge from observed discharge when using meteorological estimates from TRMM and the WMO reanalysis.

  19. Assessment of transboundary environmental effects in the Pearl River Delta Region: Is there a role for strategic environmental assessment?

    SciTech Connect

    Marsden, Simon

    2011-11-15

    China's EIA Law does not require transboundary proposals to be assessed, despite recognition of this globally, for example in the Espoo Convention and Kiev Protocol, and in the European EIA and SEA Directives. In a transboundary context assessment within a state is unusual, as regulating these effects is primarily about the relationship between states. However where a state has more than one legal system such as in the Pearl River Delta (PRD) Region of southern China, transboundary effects should also be addressed. Yet despite the geographical connections between Guangdong Province in mainland China (where the EIA Law applies) and the Hong Kong and Macau Special Administrative Regions (which have their own provisions, neither of which requires transboundary assessments), EIA and SEA are carried out separately. Coordinated or joint approaches to transboundary assessment are generally absent, with the legal autonomy of Hong Kong and Macau a major constraint. As a result institutional responses at the policy level have developed. The article considers global experiences with regulating transboundary EIA and SEA, and analyses potential application to land use, transport and air and water planning in the PRD Region. If applied, benefits may include prevention or mitigation of cumulative effects, broader public participation, and improvements to environmental governance. The PRD Region experience may encourage China to conduct and coordinate EIA and SEA processes with neighbouring states, which has been non-existent or extremely limited to date.

  20. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2009-08-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves

  1. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially

  2. Feasibility of large-scale water monitoring and forecasting in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Peña-Arancibia, J. L.; Sardella, C. S. E.

    2012-04-01

    The Asian-Pacific region (including China, India and Pakistan) is home to 51% of the global population. It accounts for 53% of agricultural and 32% of domestic water use world wide. Due to the influence of Pacific Ocean and Indian Ocean circulation patterns, the region experiences strong inter-annual variations in water availability and occurrence of drought, flood and severe weather. Some of the countries in the region have national water monitoring or forecasting systems, but they are typically of fairly narrow scope. We investigated the feasibility and utility of an integrated regional water monitoring and forecasting system for water resources, floods and drought. In particular, we assessed the quality of information that can be achieved by relying on internationally available data sources, including numerical weather prediction (NWP) and satellite observations of precipitation, soil moisture and vegetation. Combining these data sources with a large scale hydrological model, we produced monitoring and forecast information for selected retrospective case studies. The information was compared to that from national systems, both in terms of information content and system characteristics (e.g. scope, data sources, and information latency). While national systems typically have better access to national observation systems, they do not always make effective use of the available data, science and technology. The relatively slow changing nature of important Pacific and Indian Ocean circulation patterns adds meaningful seasonal forecast skill for some regions. Satellite and NWP precipitation estimates can add considerable value to the national gauge networks: as forecasts, as near-real time observations and as historic reference data. Satellite observations of soil moisture and vegetation are valuable for drought monitoring and underutilised. Overall, we identify several important opportunities for better water monitoring and forecasting in the Asia-Pacific region.

  3. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with

  4. Statistical separation and forecast of water storage patterns over West Asia using GRACE data and climate indicators

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Schumacher, Maike; Anyah, Richard; Awange, Joseph; Mostafaie, Abdorrahman

    2014-05-01

    Recent studies indicate that large parts of West Asia, specifically the arid Middle East region, exhibited a rapid loss of freshwater reserves during the past decade. A reliable estimation of large scale terrestrial water storage (TWS) and groundwater storage (GWS) changes and the ability of forecasting them, with respect to climate variability and change, are therefore essential for West Asia. This study first implemented a least squares inversion approach to separate the Gravity Recovery and Climate Experiment (GRACE)-derived total water storage products over West Asia. Time series of separated terrestrial water and groundwater storage changes were then generated over the region, covering the period of 2003 to 2013. Forecasting scenarios were generated to predict TWS and GWS changes by applying low-degree autoregressive models which relate basin averaged TWS and GWS changes to input values of precipitation and evaporation as well as the North Atlantic Oscillation index as the remote controller of the region's climate. Dry, normal, and wet scenarios were designed to forecast West Asia's TWS and GWS variations over the period of 2013 to 2015. Our separated results over 2003 to 2013 indicated a decline in TWS and GW over the Middle East. A strong correlation was found between the NAO index and variability of water storage over West Asia, specifically during the period of 2005 to 2008. Dry forecasting scenarios indicated continuous GWS decline over the northwest part of Iran, entire Iraq and Syria, which have been already facing challenges of limited water resources. Key words: Forecsting GRACE-TWS; Groundwater; Signal Separation; Middle East

  5. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    PubMed Central

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  6. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    NASA Astrophysics Data System (ADS)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  7. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    PubMed

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  8. Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.

    2006-05-01

    There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on

  9. Transboundary aquifer mapping and management in Africa: a harmonised approach

    NASA Astrophysics Data System (ADS)

    Altchenko, Yvan; Villholth, Karen G.

    2013-11-01

    Recent attention to transboundary aquifers (TBAs) in Africa reflects the growing importance of these resources for development in the continent. However, relatively little research on these aquifers and their best management strategies has been published. This report recapitulates progress on mapping and management frameworks for TBAs in Africa. The world map on transboundary aquifers presented at the 6th World Water Forum in 2012 identified 71 TBA systems in Africa. This report presents an updated African TBA map including 80 shared aquifers and aquifer systems superimposed on 63 international river basins. Furthermore, it proposes a new nomenclature for the mapping based on three sub-regions, reflecting the leading regional development communities. The map shows that TBAs represent approximately 42 % of the continental area and 30 % of the population. Finally, a brief review of current international law, specific bi- or multilateral treaties, and TBA management practice in Africa reveals little documented international conflicts over TBAs. The existing or upcoming international river and lake basin organisations offer a harmonised institutional base for TBA management while alternative or supportive models involving the regional development communities are also required. The proposed map and geographical classification scheme for TBAs facilitates identification of options for joint institutional setups.

  10. Trends and Collaboration in Transboundary Aquifer Management in the Americas

    NASA Astrophysics Data System (ADS)

    Salame, L.; Stephan, R. M.

    2009-05-01

    In the framework of the UNESCO/OAS ISARM Americas project, a questionnaire on Sustainable Socioeconomic and Environmental Aspects of Transboundary Aquifers was addressed to the participating countries. The questionnaire inquired about interactions between countries sharing one or more aquifers, during the past twenty years. Forty nine transboundary aquifers are considered, based on the answers received. Very few interactions are reported; with a majority of positive ones. When competition is reported, its main reason is the quantity of water, and in some cases its quality. However the level of competition is sometimes assessed differently depending on the way it is interpreted. Reported cooperative interactions differ not only in intensity and level of success, but also in the field and range of subjects and objectives on which it has been developed; it ranges from information exchange to a complex strategic management on several subjects. In some cases, while no interactions are reported at the level of the governments, scientific cooperation is reported as a positive interaction between countries sharing an aquifer, such as in the case of most aquifers shared by Mexico and Guatemala. Countries indeed find many reasons to cooperate. The most often mentioned activities to foster cooperation are the conduction of bi or multilateral projects. The information collected lead to the conclusion that the balance of interactions over the use of shared aquifers leans towards cooperation.

  11. The International Drinking Water Supply and Sanitation Decade in South-East Asia.

    PubMed

    1984-01-01

    The International Drinking Water Supply and Sanitation Decade, 1981-90, which has a diversity of objectives, takes a different form in each country. What makes this decade different from previous actions for water and sanitation is the way in which the programs, projects, and servces are to be conceived, planned, implemented, managed, operated, and maintained. The urban population to be covered by water and sanitation services, in the developing nations that have prepared plans for the Decade, is roughly between 280-290 million people. In rural areas, some 750 million people are to be provided with drinking water and around 300 million with sanitation facilities. The initial goal of 100% of the population to be provided with water and sanitation by 1990 is proving difficult to realize. Only a small proportion of developing nations have even planned for 100% coverage by 1990. The initial optimism arising from the declaration of the Decade and the expectations of increased aid has given way to realism in the face of the global recession and the scarcity of development capital. The Southeast Asia Region of the World Health Organization (WHO) covers 11 member countries with a combined population of over 1000 million people. Among the countries in Southeast Asia that have prepared Decade plans, the following populations are to be covered by 1990: urban water supply, 126 million; urban sanitation, 156 million; rural water supply, 585 million; and rural sanitation, 212 million. Such a challenge calls for a stock taking of the real issues in order to identify what action can be taken. The lack of up-to-date and comprehensive databases is a serious problem. The information system for the Decade should be and integral part of it, be timed to keep pace with it, and be developed from the lowest level. The annual investment needed during the Decade is estimated at over 4 times that prior to the Decade. The accepted strategy is to meet the minimum needs of the largest number of

  12. A new framework for resolving conflicts over transboundary rivers using bankruptcy methods

    NASA Astrophysics Data System (ADS)

    Madani, K.; Zarezadeh, M.; Morid, S.

    2014-08-01

    A novel bankruptcy approach is proposed for resolving transboundary river conflicts in which the total water demand or claim of the riparian parties is more than the available water. Bankruptcy solution methods can allocate the available water to the conflicting parties with respect to their claims. Four commonly used bankruptcy methods in the economic literature are used here to develop new river bankruptcy solution methods for allocating water to the riparian parties of river systems. Given the non-uniform spatial and temporal distribution of water across river basins, the proposed solution methods are formulated as non-linear network flow optimization models to allocate water with respect to time sensitivity of water deliveries at different locations in a river network during the planning horizon. Once allocation optimization solutions are developed, their acceptability and stability must be evaluated. Thus, a new bankruptcy allocation stability index (BASI) is developed for evaluating the acceptability of river bankruptcy solutions. To show how the proposed river bankruptcy framework can be helpful in practice, the suggested methods are applied to a real-world transboundary river system with eight riparians under various hydrologic regimes. Stability analysis based on the proposed stability evaluation method suggests that the acceptability of allocation rules is sensitive to hydrologic conditions and demand values. This finding has an important policy implication suggesting that fixed allocation rules and treaties may not be reliable for securing cooperation over transboundary water resources as they are vulnerable to changing socioeconomic and climatic conditions as well as hydrologic non-stationarity.

  13. Five-year interim report of the United States-Mexico Transboundary Aquifer Assessment Program: 2007--2012

    USGS Publications Warehouse

    Alley, William M., (Edited By)

    2013-01-01

    Transboundary aquifers are an essential, and in many cases, singular source of water for United States – Mexico border communities, particularly in arid regions. Declining water levels, deteriorating water quality, and increasing use of groundwater resources by municipal, industrial, and agricultural water users on both sides of the international border have raised concerns about the long-term availability of this supply. Water quantity and quality are determining and limiting factors that ultimately control agriculture, future economic development, population growth, human health, and ecological conditions along the border. Knowledge about the extent, depletion rates, and quality of transboundary aquifers, however, is limited and, in some areas, completely absent. The U.S. – Mexico Transboundary Aquifer Assessment Act (Public Law 109-448), referred to in this report as “the Act,” was signed into law by the President of the United States on December 22, 2006, to conduct binational scientific research to systematically assess priority transboundary aquifers and to address water information needs of border communities. The Act authorizes the Secretary of the Interior, through the U.S. Geological Survey (USGS), to collaborate with the States of Arizona, New Mexico, and Texas through their Water Resources Research Institutes (WRRIs) and with the International Boundary and Water Commission (IBWC), stakeholders, and Mexican counterparts to provide new information and a scientific foundation for State and local officials to address pressing water-resource challenges along the U.S. – Mexico border.

  14. A global assessment of transboundary watersheds for potential hydro-political tensions using environmental, political, and economic indicators

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; De Stefano, L.; Petersen-Perlman, J.; Eynard, J.; Wolf, A.

    2014-12-01

    Watersheds do not recognize political boundaries. However globally 286 of them extend across international borders. In these basins, transboundary water resources support an interdependent web of environmental, political, and economic systems that can enhance or destabilize a region. We present an integrated global-scale assessment of transboundary watersheds to identify regions more likely to experience hydro-political tensions over the next decade and beyond based upon environmental, political, and economic indicators. We apply NASA's Gravity Recovery and Climate Experiment (GRACE) data to bridge the sparse and inconsistent hydrologic monitoring networks that exist in many regions of the world. GRACE does not distinguish political boundaries, and provides novel insights into terrestrial water storage anomalies across and through a watershed. We combine GRACE measurements of changes in terrestrial water storage with metrics of projected climate change impacts on water variability, the institutional capacity of countries to manage shared water resources, the development of new water infrastructure, gross national income, domestic and international armed conflicts, and disputes over transboundary waters. Our analysis integrates political, economic and environmental metrics as part of the United Nation's Transboundary Waters Assessment Programme to provide the first global-scale assessment of its type.

  15. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  16. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    PubMed

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  17. Projections of water stress based on an ensemble of socioeconomic growth and climate change scenarios: A case study in Asia

    DOE PAGESBeta

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John; Ebi, Kristie L.

    2016-03-30

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify themore » primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Lastly, tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.« less

  18. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    PubMed Central

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  19. ASSESSING TRANSBOUNDARY INFLUENCES IN THE LOWER RIO GRANDE VALLEY

    EPA Science Inventory

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a U.S.-Mexico Border XXI Program project to assess transboundary air pollution in and near Brownsville, Texas. The study used a three-site air monitoring network very close to the border to capture the d...

  20. Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman; Yasunari, Tetsuzo

    2011-05-01

    This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.

  1. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  2. Satellite-Based Assessment of Possible Dust Aerosols Semi-Direct Effect on Cloud Water Path over East Asia

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Lin, Bing; Minnis, Patrick; Wang, Tainhe; Wang, Xin; Hu, Yongxiang; Yi, Yuhong; Ayers, J. Kirk

    2006-01-01

    The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.

  3. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    PubMed

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  4. On the relations between land-surface Water Use Efficiency and Asian dust storms in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J.; Kang, S.

    2015-12-01

    Asian dust storm is one of major environmental issures in the Northeast Asia. The dust storm occurrence is typically influenced by both atmospheric (i.e. pressure, wind speed, precipitation, etc.) and land-surface conditions (i.e. vegetation cover and vitality, soil dryness, etc). Severe water stess in arid and semi-arid regions can resulted in reduction of vegetation cover fraction ultimately. Plant physiological change might however precede the vegetation structural change by regulating leaf stomatal resistance. In this study, we tested whether plant physiological index can be used for early indicator of plant recession causing dust storm increase. For the purpose, satellite-based eco-physiological variables such as gross primary production (GPP), evapotranspiration (ET), and water use efficiency (WUE) were prepared and then, compared their spatial and temporal variability with Synop dust storm data for the Northeast Asia. In results, the asian dust storms occurrence decreased in early 2000s but again increased, especially, in eastern mongolia during late 2000s. Our tentative result indicates that this region was appeared consistently low water use efficiency result during the period of late 2000s. In this study, the relations between WUE and dust sorm were interpreted and discussed as a tool for early indicator of land degradation of arid and semi-arid grasslands.

  5. Study on the water related disaster risks using the future socio-economic scenario in Asia

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Hatono, M.; Ikeuchi, H.; Nakamura, S.; Hirabayashi, Y.; Kanae, S.; Oki, T.

    2014-12-01

    In this study, flood risks in the present and the end of the 21st century in Asia are estimated using a future socio-economic scenario. Using the runoff data of 7 GCMs (RCP 8.5) of CMIP5, the river discharge, inundation area, and inundation depth are calculated for the assessment of flood risk. Finally, the flood risk is estimated using a function of damage. The flood frequency in the end of the 21st century in Asia tends to increase. Inundation area in Japan, Taiwan, and Kyrgyz is almost unchanged. At the same time, that in Sri Lanka, Bangladesh, Laos, and Myanmar reached about 1.4-1.6 times compared to present. Damage cost is largely influenced by economic growth, however, we show that it is important that we distinguish the influence of climate change from economic development and evaluate it when we think about an adaptation.

  6. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia

    PubMed Central

    Wallace, Michael P.; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H. E.; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  7. Southeast Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Home to beautiful jungles, booming industry, and age-old temples, Southeast Asia has become a confluence of ancient and modern life. This true-color image of mainland Southeast Asia was acquired on November 30, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The body of water in the upper righthand corner of the image is the Gulf of Tonkin. East and southeast of the gulf are the dark green jungles of Vietnam, Laos, and Cambodia. The light brown Mekong River winds its way through the center of the Cambodian jungle and into southern Vietnam. The dark blue patch to the left of the river at the bottom of the image is the Tonle Sap. Literally translated to mean 'Great Lake,' the Tonle Sap is the largest freshwater lake in Southeast Asia. During the rainy season from May to October, the lake will more than double in size growing from its wintertime extent of 3,000 square kilometers to over 7,500 square kilometers. North of the lake, approximately in the center of the image, is a saucer-shaped patch of reddish brown land known as the Khorat Plateau. Situated 90 to 200 meters above sea level in eastern Thailand, the dry plateau is mostly covered with farmland and savanna-type grasses and shrubs. Moving south again, the large body of light blue water at the bottom central portion of the image is the Gulf of Thailand. By switching to the full resolution image (250 meters per pixel) and following the Gulf of Thailand to its northernmost extent, one can see a pinkish beige patch of terrain covered by a faint latticework of fine lines. These are likely to be the network of roads that crisscross Bangkok and its surrounding suburbs and fertile farmland. The narrow strip of land to the east of the Gulf of Thailand is the Malay Peninsula. The body of water to the left of the peninsula is the Gulf of Martaban, which borders Myanmar (Burma). At the far upper lefthand corner of the image, the water has turned light brown from

  8. GRACE Data-based Estimation of Spatial Variations in Water Storage over the Central Asia during 2003-2013

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Tashpolat, T.; Ding, J. L.; Zhang, F.; Mamat, S.

    2014-11-01

    We used the GRACE (Gravity Recovery And Climate Experiment) satellite gravity data obtained from January 2003 to January 2013, with supports of other data, including the TRMM (Tropical Rainfall Measuring Mission) and CMAP (Climate Prediction Center's Merged Analysis of Precipitation) precipitation data, the NDVI (Normalized Difference Vegetation Index) data, and the DEM (Digital Elevation Model) data, to analyze the annual variations in water storage over central Asia. Following conclusions can be drawn from this study. (1) The amplitudes of the annual variations in the water storage exhibit a general E-W increasing trend. (2) The water storage has an increasing trend in the following areas: the Balkhash Basin, the Ob River Basin, and the middle and lower reaches of the Yenisei River Basin. This is caused by the global warming, the melting of permafrost, and the vegetation coverage continued to increase, as well as the improved industrial technologies to reduce water usage, and the other natural and human factors. (3) The water storage has a decreasing trend in the following areas: the Syr Darya River Basin, the Amu Darya River Basin, and the conjunction area between the Euphrates-Tigris Basin and the southwestern shore of the Caspian Sea. (4) The water storage is primarily influenced by the precipitation, the evaporation, the vegetation coverage, and the topography. (5) The water storage maximum normally responds to the precipitation maximum with certain time lags.

  9. Assessing Snow Water Equivalent (SWE) storage and seasonal melting in High Mountain Asia using passive microwave data

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2013-12-01

    High Mountain Asia (HMA) contains the world's tallest peaks, and stores the largest quantity of snow and ice barring Earth's Polar Regions. The water derived from these mountains, whether from rain, snow or ice, is critical for the water supply of Central Asia, of which half the world's people are reliant. Consequently, climate change could have serious implications for Central Asia water resource security and regional stability. Seasonal snow represents a substantial part of the HMA hydrological budget. This is especially the case for western HMA where snowmelt can contribute in excess of 40% of the annual river discharge. Nevertheless the magnitude and spatiotemporal distribution of HMA snow is essentially an unknown. In principle, this is due to an insufficient number of surface stations. As a result, knowledge gained through remotely sensed observations of mountain snows could greatly enhance water resource planning and regional precipitation models. Since November 1978, passive microwave radiometers aboard satellites have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of passive microwave radiometers to directly measure SWE, and at a high temporal frequency during the day or night, offers some distinct advantages over optical remote sensors. Therefore, between 1979 and 2013, we used passive microwave observations to measure the magnitude, and spatiotemporal distribution of SWE throughout HMA. Our principal goals were: 1) to compare the rank order of observed discharge for individual watersheds with that of their observed SWE; 2) to observe any changes in the spatial temporal distribution of SWE that may have occurred as a result of changes in climate; and 3) to assess the contribution of SWE to the major river basins of HMA. We used pre-processed SWE products from the National Snow and Ice Data Center (NSIDC) and developed our own calibrated products for comparison purposes using atmospherically corrected

  10. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  11. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  12. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Jacob, Daniel J.; Field, Brendan D.; Yantosca, Robert M.; Chin, Mian

    2004-08-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of "natural visibility conditions" by 2064. We present full-year simulations for 1998 and 2001 and evaluate them with nationwide networks of observations in the United States and Europe (Interagency Monitoring of Protected Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), National Atmospheric Deposition Program (NADP), European Monitoring and Evaluation Programme (EMEP)) and with Asian outflow observations from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission. Shutting off U.S. anthropogenic emissions in the model defines "background" aerosol concentrations representing contributions from both natural and transboundary pollution sources. We find that transboundary transport of pollution from Canada, Mexico, and Asia dominates over natural influences for both sulfate and nitrate. Trans-Pacific transport of Asian pollution accounts for 30% of background sulfate in both the western and eastern United States. Our best estimates of natural concentrations for ammonium sulfate and ammonium nitrate in the United States are either consistent with or lower than the default values recommended by EPA for natural visibility calculations. However, the large transboundary pollution influence in our calculation suggests that a natural visibility objective cannot be approached without international emission controls.

  13. Future of water resources in the Aral Sea Region, Central Asia - Reality-checked climate model projections

    NASA Astrophysics Data System (ADS)

    Asokan, Shilpa M.; Destouni, Georgia

    2014-05-01

    The future of water resources in a region invariably depends on its historic as well as present water use management policy. In order to understand the past hydro-climatic conditions and changes, one needs to analyze observation data and their implications for climate and hydrology, such as Temperature, Precipitation, Runoff and Evapotranspiration in the region. In addition to the changes in climate, human re-distribution of water through land- and water­use changes is found to significantly alter the water transfer from land to atmosphere through an increase or decrease in evapotranspiration. The Aral region in Central Asia, comprising the Aral Sea Drainage Basin and the Aral Sea, is an example case where the human induced changes in water-use have led to one of the worst environmental disasters of our time, the desiccation of the Aral Sea. Identification of the historical hydro-climatic changes that have happened in this region and their drivers is required before one can project future changes to water and its availability in the landscape. Knowledge of the future of water resources in the Aral region is needed for planning to meet increasing water and food demands of the growing population in conjunction with ecosystem sustainability. In order to project future scenarios of water on land, the Global Climate Model (GCM) ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) was analyzed for their performance against hydrologically important, basin-scale observational climate and hydrological datasets. We found that the ensemble mean of 22 GCMs over-estimated the observed temperature by about 1°C for the historic period of 1961-1990. For the future extreme climate scenario RCP8.5 the increase in temperature was projected to be about 5°C by 2070-2099, the accuracy of which is questionable from identified biases of GCMs and their ensemble results compared with observations for the period 1961-1990. In particular, the water balance components

  14. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    PubMed Central

    Giang, Pham Quy; Sakata, Masahiro; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season. PMID:25243206

  15. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

    PubMed

    Giang, Pham Quy; Toshiki, Kosuke; Sakata, Masahiro; Kunikane, Shoichi; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season. PMID:25243206

  16. Climatic Change, Conflict and Peace in Transboundary River Basins - A Theoretical Perspective

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Beck, L.; Koubi, V.; Bernauer, T.

    2011-12-01

    Recent research shows that one of the most significant risk for societal development pertains to water availability and that the greatest risks for unrest stemming from economic deprivation and the erosion of livelihoods is found in transboundary river basins in poor and politically unstable parts of the world. While until now, historic linkages between water scarcity and conflict were weak at best, there is growing fear that environmental change will increasingly lead to an entanglement of conflict and resources dynamics in the future. Where resources are not jointly managed in a cooperative way and resources sharing mechanisms not legislated by sound international institutions and were significant impacts from environmental change are expected, these developments give rise to concern. To study environmental change and conflict interlinkages, we develop a formal hydro-climatological model for transboundary freshwater resources and investigate theoretically how climate change translates into potential for conflict and peace, contingent on configurations of power between riparians. The model accounts for how upstream countries exercise power by using water whereas downstream countries use power to obtain water. We show that equilibrium water allocation outcomes are biased towards the more powerful riparian, and that absolute upstream or downstream river basin dominance are limiting cases of our general model. Our model suggests that the basin-wide conflict potential is always more sensitive to changes in relative power between riparian states than to impacts from climatic changes.

  17. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  18. Hunza Landslide and Monsoon Flooding in Pakistan Call for International Attention to Transboundary Natural Hazards

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fink, W.; Furfaro, R.; Leonard, G. J.; Patterson, M.; Glims, Gaphaz

    2010-12-01

    rockslide-formed Lake Gojal and of the region’s glacier dynamics seen by satellite to show the promise of remote sensing to address disaster management and hazard identification. However, the biggest role of remote sensing should be in the identification of hazard-prone situations, such as areas where landslides or the development of dangerous glacier lakes is likely. Increased satellite surveillance and deployment of air- and land surface-borne sensor platforms, and in some cases surface or subsurface watercraft, may aid the characterization of the landscape, identify geologic and climatic instabilities, and identify vulnerabilities among the people and infrastructure. A broad-based remote sensing program should fit within a coherent regional/international approach to the key related issues of natural hazards, water resources, urban planning, food security, hydropower, and environmental conservation. Notably, these issues all are interlinked to transboundary hydrology and climate change.

  19. Advances in the Knowledge of Transboundary Aquifers Shared by Canada and the USA, through the UNESCO's IHP ISARM Initiative

    NASA Astrophysics Data System (ADS)

    Rivera, A.

    2015-12-01

    Canada's involvement in the UNESCO IHP ISARM initiative prompted an accrued analysis on the knowledge and state of transboundary aquifers located along the Canada-USA border. As a result, 10 Transboundary Aquifer Systems (TAS) were identified and some have been assessed in cooperation with the United States. This study is a review of the current state of the 10 TAS. Documentation of scientifically-based knowledge on TAS is an important step in identifying potential issues in policies that might be adopted to address shared water-resource issues. The newly acquired hydrological insights for this very long international border emphasizes the need for more scientific data, widespread communication and information sharing between Canadian and American organizations, and a more clearly defined governments' role to manage groundwater at the international level. The study reviews the legal frameworks and summarises the current scientific knowledge for the TAS with respect to the hydrologic and geologic framework as well as some of the major drivers for supply and demand. It also describes the links, approach and relevance of studies on the TAS to the UN Law of Transboundary Aquifers and on how these might fit in the ISARM's regional strategy for the assessment and management of the TAS. Clear communication, shared knowledge and common objectives in the management of TAS will prepare the countries for future negotiations and cooperative binational programs. Encouraged by the ISARM approach of the International Hydrological Programme of UNESCO, Canada is now looking forward to playing a key regional role in improving water management, facilitating transboundary water sharing, and enhancing water research and data sharing in future relations between these two nations.

  20. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    SciTech Connect

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peats and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.

  1. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  2. Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia

    PubMed Central

    Xia, Jiangzhou; Liang, Shunlin; Chen, Jiquan; Yuan, Wenping; Liu, Shuguang; Li, Linghao; Cai, Wenwen; Zhang, Li; Fu, Yang; Zhao, Tianbao; Feng, Jinming; Ma, Zhuguo; Ma, Mingguo; Liu, Shaomin; Zhou, Guangsheng; Asanuma, Jun; Chen, Shiping; Du, Mingyuan; Davaa, Gombo; Kato, Tomomichi; Liu, Qiang; Liu, Suhong; Li, Shenggong; Shao, Changliang; Tang, Yanhong; Zhao, Xiang

    2014-01-01

    The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr−1 over the DEA region with an average of 245.8 mm yr−1 from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions. PMID:24845063

  3. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  4. Asia Lakes

    Atmospheric Science Data Center

    2013-04-16

    article title:  Central Asia - Mongolia, China and Russia     View Larger ... Imaging SpectroRadiometer (MISR) image of Mongolia, China and Russia covers an area of about 317 kilometers x 412 kilometers, and ...

  5. Water Productivity Mapping (WPM) Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

    PubMed Central

    Platonov, Alexander; Thenkabail, Prasad S.; Biradar, Chandrashekhar M.; Cai, Xueliang; Gumma, Muralikrishna; Dheeravath, Venkateswarlu; Cohen, Yafit; Alchanatis, Victor; Goldshlager, Naftali; Ben-Dor, Eyal; Vithanage, Jagath; Manthrithilake, Herath; Kendjabaev, Shavkat; Isaev, Sabirjan

    2008-01-01

    The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involving crop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fraction by reference ET. The ET fraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET) and “cold” pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices.

  6. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of this subpart, the following transboundary shipments are not considered exports or imports: (a) PCB... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit, through the United States (e.g., from Mexico to Canada, from Canada to Mexico). (c) PCB waste...

  7. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of this subpart, the following transboundary shipments are not considered exports or imports: (a) PCB... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit, through the United States (e.g., from Mexico to Canada, from Canada to Mexico). (c) PCB waste...

  8. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of this subpart, the following transboundary shipments are not considered exports or imports: (a) PCB... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit, through the United States (e.g., from Mexico to Canada, from Canada to Mexico). (c) PCB waste...

  9. 40 CFR 761.99 - Other transboundary shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of this subpart, the following transboundary shipments are not considered exports or imports: (a) PCB... disposal. (b) PCB waste in transit, including any residuals resulting from cleanup of spills during transit, through the United States (e.g., from Mexico to Canada, from Canada to Mexico). (c) PCB waste...

  10. Evaluation of transboundary environmental issues in Central Europe

    SciTech Connect

    Engi, D.; Kapustka, L.A.; Williams, B.A.; Meganck, R.A.; Garrison, J.G.; Glicken, J.; Hostetler, C.J.; Lawrence, S.

    1997-05-01

    Central Europe has experienced environmental degradation for hundreds of years. The proximity of countries, their shared resources, and transboundary movement of environmental pollution, create the potential for regional environmental strife. The goal of this project was to identify the sources and sinks of environmental pollution in Central Europe and evaluate the possible impact of transboundary movement of pollution on the countries of Central Europe. In meeting the objectives of identifying sources of contaminants, determining transboundary movement of contaminants, and assessing socio-economic implications, large quantities of disparate data were examined. To facilitate use of the data, the authors refined mapping procedures that enable processing information from virtually any map or spreadsheet data that can be geo-referenced. Because the procedure is freed from a priori constraints of scale that confound most Geographical Information Systems, they have the capacity to generate new projections and apply sophisticated statistical analyses to the data. The analysis indicates substantial environmental problems. While transboundary pollution issues may spawn conflict among the Central European countries and their neighbors, it appears that common environmental problems facing the entire region have had the effect of bringing the countries together, even though opportunities for deteriorating relationships may still arise.

  11. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    NASA Astrophysics Data System (ADS)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  12. Central Asia Environmental Security Technical Workshop: Responding to the CENTCOM Vision

    SciTech Connect

    Knapp, R

    2002-08-01

    Environmental security is not formally classified as a ''vital mission'' in the USCENTCOM ranking of priorities in its area of responsibility. Rather, it is ranked as an ''other/important'' mission in Central Asia, thereby supporting the war making efforts in the region by improving stability of the regimes in the region. Environmental security is, however, the USCENTCOM primary mechanism for engagement in the region. USCENTCOM sees environmental issues as among the most destabilizing issues in the region; anything that can be done to ameliorate them, works to enhance stability. By environmental issues, USCENTCOM includes: water access, quality, and control, transboundary resource competition, migration of pollutants, land use, public health/HIV/Famine, and industrial pollution. Objectives of USCENTCOM work in Central Asia are: improving resource use, disaster response, international cooperation, and civil-military cooperation, particularly with the local military and between the local civilians and the U.S. military. Activities to date include assistance, education, and military-to-military contacts, bilateral and multilateral conferences on the issues, and interagency coordination in the region. The Comprehensive Threat Reduction program has been the backbone of its Central Asian funding.

  13. Statistical Analyses of d18O in Meteoric Waters From the Western US and East Asia: Implications for Paleoaltimetry

    NASA Astrophysics Data System (ADS)

    Lechler, A. R.; Niemi, N. A.

    2008-12-01

    Questions on the timing of Tibetan Plateau uplift and its associated influence on the development of the Indian and Asian monsoons are best addressed through accurate determinations of regional paleoelevation. Previous determinations of paleoaltimetry utilized the stable isotopic composition of paleo-meteoric waters as recorded in various proxies (authigenic minerals, fossils, etc.), in combination with empirically and model determined elevation isotopic lapse rates. However, the applicability of these lapse rates, derived principally from orogenic settings, to high continental plateaus remains uncertain. Our research aims to gain a better understanding of the potential controls on the δ18O composition of meteoric waters over continental plateaus through a principal component analysis (PCA) of modern waters from eastern Asia and the western US. In particular, we investigate how various environmental parameters (elevation, latitude, longitude, MAP, and MAT) influence the δ18O composition of these waters. First, these analyses reveal that elevation and latitude are the primary controls on isotopic composition in all regions investigated, as expected. Second, PCA results yield elevation lapse rates from orogenic settings (i.e. Sierra Nevada, Himalaya) of ~ -3‰/km, in strong agreement with both empirical and Rayleigh distillation model derived lapse rates. The Great Plains of the US, although not an orogenic setting, represents a monotonic topographic rise, and is also characterized by a ~ -3‰/km lapse rate. In high, arid plateau regions (Basin and Range, Tibet), however, elevation lapse rates are ~ -1.5‰/km, half that of orogenic settings. An empirically derived lapse rate from small source area springs collected over a 2 km elevation change from a single mountain range in the Basin and Range yields an identical rate. One clue as to the source of this lowered lapse rate is eastern China, which also displays an elevation lapse rate of ~ -1.5‰/km, despite

  14. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. PMID:27058126

  15. Terrestrial Water Cycle in South and East Asia: Hydrospheric and Cryospheric Data Products

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Liu, Q.; Jia, L.; Xin, X.; Roupioz, L.; Li, Z.; Faivre, R.; Ghafarian, H.; Hien, V. P.; Lindenbergh, R.; Li, J.; Wen, J.; Li, L.; Zhao, J.; Dou, B.

    2014-11-01

    New or significantly improved algorithms have been developed and evaluated against ground measurements. Variables retrieved include land surface properties, rain rate, aerosol optical depth, water vapour, snow cover and water equivalent, soil moisture and lake level. The three year time series (2008 - 2010) of gap-free daily and hourly land surface temperature and actual evaporation derived from geostationary data collected by the FY-2D satellite was a major achievement. We have evaluated a parameterization of sensible heat transfer using the bi-angular thermal infrared measurements provided by AATSR to characterize the sub-pixel thermal heterogeneity of the land surface. We developed a hybrid remotely sensed ET estimation model named ETMonitor and applied it to estimate the daily actual ET of the Heihe River basin for the years 2009-2011 at a spatial resolution of 1 km. The model is forced by a variety of biophysical parameters derived from microwave and optical remote sensing observations and evaluated using eddy covariance flux observations. The spatial distribution and the seasonal and interannual variations of the estimated actual ET are analysed.

  16. Asia-Pacific mussel watch for emerging pollutants: Distribution of synthetic musks and benzotriazole UV stabilizers in Asian and US coastal waters.

    PubMed

    Nakata, Haruhiko; Shinohara, Ryu-Ichi; Nakazawa, Yusuke; Isobe, Tomohiko; Sudaryanto, Agus; Subramanian, Annamalai; Tanabe, Shinsuke; Zakaria, Mohamad Pauzi; Zheng, Gene J; Lam, Paul K S; Kim, Eun Young; Min, Byung-Yoon; We, Sung-Ug; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Frank, Donnell; Lauenstein, Gunnar; Kannan, Kurunthachalam

    2012-10-01

    We analyzed 68 green and blue mussels collected from Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Vietnam and the USA during 2003 and 2007, to elucidate the occurrence and widespread distributions of emerging pollutants, synthetic musks and benzotriazole UV stabilizers (BUVSs) in Asia-Pacific coastal waters. Synthetic musks and BUVSs were detected in mussels from all countries, suggesting their ubiquitous contamination and widespread distribution. High concentrations of musks and BUVSs were detected in mussels from Japan and Korea, where the levels were comparable or greater than those of PCBs, DDTs and PBDEs. Significant correlations were found between the concentrations of HHCB and AHTN, and also between the concentrations of UV-327 and UV-328, which suggest similar sources and compositions of these compounds in commercial and industrial products. To our knowledge, this is the first study of large-scale monitoring of synthetic musks and BUVSs in Asia-Pacific coastal waters. PMID:22910332

  17. Hydrogeology of a Transboundary Sandstone Aquifer, Quebec - New York

    NASA Astrophysics Data System (ADS)

    Nastev, M.; Lamontagne, C.; Morin, R.; Williams, J.; Lavigne, M.; Croteau, A.; Tremblay, T.; Godin, R.; Dagenais, M.; Rouleau, A.

    2005-12-01

    The Potsdam sandstone aquifer of Cambrian age straddles southern Quebec and northern New York in a region known for its abundant and good quality groundwater, a resource that recently has been coveted by several bottling companies. The potential conflicts and concerns of the mainly rural and groundwater dependent population about the possible overuse of this resource has led the Quebec Ministry of Environment, Geological Survey of Canada and the U. S. Geological Survey to jointly carry out a transboundary hydrogeological study of the Potsdam sandstone aquifer. The Potsdam sandstone aquifer consists of a lower unit of arkose and conglomerate and an upper unit of well-cemented quartz arenite. The thickness of the regional aquifer ranges from nil at the base of Adirondacks to more than 500 m near the St. Lawrence River. Glacial till, littoral sand and gravel, and marine silt and clay discontinuously overlie the aquifer. The aquifer's water budget is characterized by low rates of surface runoff and high rates of infiltration and sub-surface runoff. Major recharge areas are present at higher altitudes near and to the south of the border. Strong downward hydraulic gradients in these areas result in cascading water and water-level depths of more than 30 m in deep wells. Bedding in the Potsdam sandstone is gently dipping with fractures along sub-horizontal bedding planes forming major flow conduits. Bedrock folds and faults, mainly developed by east-west compression during the Appalachian orogenies, locally complicates aquifer geometry and groundwater flow. Hydraulic tests (pump, slug, flowmeter and straddle packer) indicate similar horizontal transmissivities in the lower and upper aquifer units. However, differences in lithology and structure of the aquifer units impose some apparent differences in hydraulic properties and groundwater flow patterns. In the lower unit, regional flow appears to be sustained by a limited number of laterally extensive bedding-plane fractures

  18. Features of groundwaters in basins shared between Ethiopia and Kenya and the implications for international legislation on transboundary aquifers

    NASA Astrophysics Data System (ADS)

    Kebede, Seifu; Ketema, Abebe; Tesema, Zenaw

    2010-11-01

    The implementation of laws relating to transboundary aquifers necessitates field knowledge so that the laws can be coincident with reality on the ground. The definition of ‘shared aquifer’ is more complex than the mere physically shared body of groundwater flowing from country A to country B. The border between Ethiopia and Kenya is characterized by low-volume groundwater storage and low transboundary flows. However, groundwater has visible environmental, social and economic functions. The characteristics of groundwater flow and storage in aquifers shared between Ethiopia and Kenya are different from those used in setting the foundation of the international legal framework on shared aquifers. By describing the characteristics of the groundwaters that are shared between Ethiopia and Kenya, this work demonstrates that the international legal framework is inadequate when applied in this region. The main inadequacies are: (1) international law does not specify the minimum volume of transboundary flow in an aquifer for it to qualify to be treated under the law, and (2) the physical aspects of water get more emphasis than the functions of groundwater. A more adequate international legal framework would be one that considers specific types of groundwater and local needs.

  19. Science for informed decision: A 3D unified conceptual model of the Milk River Transboundary Aquifer (Alberta-Montana)

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Pétré, M.

    2013-12-01

    The Milk River transboundary aquifer straddles southern Alberta (Canada) and northern Montana (United States), in a semi-arid region considered water short. This confined sandstone aquifer is a source for municipal supply and agricultural uses on the Canadian side, as well as for secondary oil recovery on the US-side of the border. The extensive use of this resource since the mid 1950's has led to a dramatic drop in the water level in some places and concerns about the durability of the resource have risen. The Milk River aquifer has been the object of many studies during the 20th century; however most of them were limited by the USCanada border, preventing a sound understanding of the global dynamics of the aquifer. The objectives of this transboundary study are to better understand the dynamics of the Milk River aquifer, following its natural limits, in order to make recommendations for a sustainable management and its good governance by the two international jurisdictions, as recommended in the UNGA resolution 63/124 on the Law of Transboundary Aquifers. Since 2009, the Milk River transboundary aquifer is part of the inventory of UNESCO ISARM-Americas initiative, which encourages riparian states to work cooperatively toward mutually beneficial and sustainable aquifer development However, the use of this shared resource is not ruled by any international agreement or convention between the USA and the Canada. Stakeholders from the two countries have been involved, at various levels of jurisdictions (municipal, provincial, state, federal) to establish a strong cooperation. In these contexts, models can constitute useful tools for informed decisions. In the case of the Milk River aquifer, models could support scientists and managers from both countries in avoiding potential tensions linked to the water shortage context in this region. Models can determine the conditions of overexploitation and provide an assessment of a sustainable yield. A unified conceptual model

  20. Seeing beyond borders: a game theoretic approach to anticipate the effect of satellite monitoring data on transboundary freshwater allocation.

    NASA Astrophysics Data System (ADS)

    Muller, M. F.; Gorelick, S.; Muller-Itten, M. C.

    2015-12-01

    The allocation of transboundary freshwater resources is a ubiquitous challenge with direct repercussions on the political stability of the concerned region. Under the right conditions, the need to share scarce water resources can act as a catalyst for dialogue between otherwise hostile neighbors. Yet the strategic reluctance of the involved parties to share water diversion and use data remains a major barrier that raises the probability of conflict. In that context, high-quality satellite data are progressively available to monitor water resources beyond political boundaries. These datasets have an increasing role to play in the allocation of shared waters. We develop a game theoretical framework to predict their effect on transboundary water negotiations. We consider repetitions of a game between two countries that have a water allocation agreement for transboundary river flow. The upstream country can observe the available flow in any given year and decide whether or not to provide her neighbor with the agreed upon river discharge. The downstream country cannot observe the initially available flow. He only observes the water allocated provided by his upstream neighbor and can take actions to impose a sanction on her if he can confidently determine that the agreement has been breached. In that context, satellite monitoring data will affect the informational advantage of the upstream country and increase her probability of either abiding by the agreement or being caught when breaching it. We find that the informed equilibrium will produce a lower probability of conflict, but changes in both players' positions regarding equitable allocation may destabilize the existing agreement in the short term.

  1. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste. PMID:16784171

  2. Pathogenic landscape of transboundary zoonotic diseases in the Mexico-U.S. border along the Rio Grande

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...

  3. Transboundary Groundwater Body Karavanke/Karawanken Between Austria and Slovenia

    NASA Astrophysics Data System (ADS)

    Brencic, M.; Poltnig, W.

    2009-04-01

    low water discharge measurements followed this stage. Samples were taken for basic chemistry and stable isotope determination of water as well as some more sophisticated analyses (e.g. isotope analyses of noble gases) in the area of mineral waters appearance. Important part of investigations was production and compilation of new geological map based on older published and unpublished geological maps from both sides of the state border. This map represented background for the definition of hydrogeological and other detailed and specific maps (e.g. risk potential and vulnerability maps). Based on these results basic hydrological balance of the area was calculated, identification of cross border flow was performed and finally protection measures were suggested. A large part of Karavanke/Karawanken is built from karstified carbonate rocks of limestone and dolomite with underlying Paleozoic limestones. The largest part of karstified rocks lies in the area of North Karavanke/Karawanken, the Košuta unit and the Kamnik-Savinja Alps. About 3600 springs were recorded in the area of Karavanke/Karawanken on both sides of the Austrian-Slovenian state border from 1990 to 2002. For each spring, water flow, electrical conductivity and water temperature were determined. Mostly the springs have a small water flow. Only some very large springs flowing from a karstic aquifer were found to have a recharge area extending across the state border. In 2004 based on the bilateral agreement between Republic of Slovenia and Republic of Austria the common transboundary groundwater body Karavanke/Karawanken was defined. The body is defined according to the Water Framework Directive requirements and extends to the area of the main border ridge. It is divided on areas, where prevails the surface water outflow, which depends only on the surface form and areas, where groundwater outflow is present. Within the area of common water body of the Karavanke/Karawanken five cross-border aquifers were

  4. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  5. Data sharing in international transboundary contexts: The Vietnamese perspective on data sharing in the Lower Mekong Basin

    NASA Astrophysics Data System (ADS)

    Thu, Hang Ngo; Wehn, Uta

    2016-05-01

    Transboundary data sharing is widely recognised as a necessary element in the successful handling of water-related climate change issues, as it is a means towards integrated water resources management (IWRM). However, in practice it is often a challenge to achieve it. The Mekong River Commission (MRC), an inter-governmental agency established by Cambodia, Lao PDR, Thailand and Vietnam, has adopted IWRM in its water strategy plan in order to properly manage the transboundary waters of the Mekong River. In this context, data sharing procedures were institutionalised and have been officially implemented by the four member countries since 2001. This paper uses a systematic approach to identify the extent of data sharing and the factors influencing the willingness of key individuals in the Vietnam National Mekong Committee and its Primary Custodians to share data. We find that the initial objectives of the Procedures for Data and Information Exchange and Sharing (PDIES) have not been fully achieved and, further, that Vietnam has much to gain and little to lose by engaging in data sharing in the MRC context. The primary motivation for data sharing stems from the desire to protect national benefits and to prevent upstream countries from overexploiting the shared water resources. However, data sharing is hindered by a lack of national regulations in the Vietnam context concerning data sharing between state agencies and outdated information management systems.

  6. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region. PMID:24898296

  7. LOWER RIO GRANDE VALLEY TRANSBOUNDARY AIR POLLUTION PROJECT (TAPP) (MAIN REPORT)

    EPA Science Inventory

    The purpose of the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was to obtain air quality data for a full year at three border monitoring sites to assess anthropogenic and biogenic emission impacts and transboundary air pollution transport in the Lower Rio...

  8. Assessment of temporal hydrologic anomalies coupled with drought impact for a transboundary river flow regime: The Diyala watershed case study

    NASA Astrophysics Data System (ADS)

    Al-Faraj, Furat A. M.; Scholz, Miklas

    2014-09-01

    Recent increases in human activities in shared river basins have unquestionably raised concerns about potential hydrological impacts, especially impacts of dams and large-scale water withdrawal schemes in the highlands. Anthropogenic pressures twinned with drought impacts have exacerbated water management challenges. This article assesses the cumulative consequences of upstream anthropogenic pressures and drought spells on temporal river flow regimes for the downstream country. The size and complexity of problems confronting transboundary river watersheds makes it necessary to use a representative example basin to study the problems and potential solutions. The Diyala (Sīrvān) river basin, which shares dozens of transboundary watersheds between Iraq and Iran, has been selected as a representative case study. A subset of the Indicators of Hydrologic Alteration (IHA) was utilised and climate variability was considered in assessing the combined effect of various forms of upstream human-river regulations and climatic conditions on natural flow regimes in the downstream state. Findings indicated that the anthropogenic river-regulation coupled with the impact of drought periods have noticeably modified the natural flow paradigm. The yearly average runoffs, which are no longer available for the downstream country, have soared to very high levels, particularly over the last fifteen years. More adverse impacts were detected in the non-rainy season. Findings reveal also that damming and considerable water diversion to large-scale irrigation projects in the upstream state are the main regulations affecting the management of shared water resources in the downstream country.

  9. Decentralized and efficient control of transboundary pollution in federal systems

    SciTech Connect

    Silva, E.C.D.

    1997-01-01

    Decentralized control of transboundary pollution in federal systems can be efficient when population crowding is socially costly. In this paper, an upstream region abates pollution or makes an interregional income transfer to the downstream region with the sole intent of deterring immigration. Because either instrument, abatement expenditure or interregional income transfer, alone implements an efficient population distribution between the regions, interregional income transfers are unnecessary for efficiency. Without explicit income transfers, each region provides the efficient portion of the aggregate level of pollution abatement in the Nash equilibrium. 12 refs.

  10. Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy

    NASA Astrophysics Data System (ADS)

    Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas

    2015-04-01

    The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the

  11. Resilience in Transboundary Water Governance: the Okavango River Basin…

    EPA Science Inventory

    When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for cer...

  12. Field Studies for Secondary Organic Aerosol in the Transboundary Air

    NASA Astrophysics Data System (ADS)

    Irei, S.; Takami, A.; Sadanaga, Y.; Nozoe, S.; Hayashi, M.; Hara, K.; Arakaki, T.; Hatakeyama, S.; Miyoshi, T.; Yokouchi, Y.; Bandow, H.

    2014-12-01

    To study formation of secondary organic aerosol (SOA) in the air outflowed from the Chinese continent and its fraction in an urban city located in downwind, we have conducted field studies at two background sites and one urban site in the western Japan: the Cape Hedo Aerosol and Atmospheric Monitoring Station (26.9˚N, 128.3˚E), the Fukue Atmospheric Monitoring Station (32.8˚N, 128.7˚E), and Fukuoka University (33.6˚N, 130.4˚E), respectively. During the studies, stable carbon isotope ratio (δ13C) of low-volatile water-soluble organic carbon (LV-WSOC) was measured in 24 h collected filter samples of total suspended particulate matter. Concentration of fine organic aerosol and the proportion of the signal at m/z 44 (ions from the carboxyl group) in the organic mass spectra (f44) were also measured by Aerodyne aerosol mass spectrometers. Limited to the Fukue site only, mixing ratios of trace gas species, such as aromatic hydrocarbons, NOx, and NOy, were also measured using GC-FID and NOx and NOyanalyzers for estimation of photochemical age (t[OH]). A case study in December 2010 showed that plots of δ13C versus f44 showed systematic variations at Hedo and Fukue. However, their trends were opposite. At Fukue the trend was consistent in the plot of δ13C of LV-WSOC versus t[OH] estimated by the NOx/NOy or the hydrocarbon ratios, indicating influence of SOA. The systematic trends aforementioned qualitatively agreed with a binary mixture model of SOA with background LV-WSOC having the f44 of ~0.06 and the δ13C of -17‰ or higher, implication of some influence of primary emission associated with C4plants. Given that the LV-WSOC at the urban Fukuoka site was a binary mixture, a mass balance for δ13C was constructed below. In the equation, δ13CMix, δ13CLocal, δ13CTrans, and FLocal are δ13C of binary LV-WSOC mixture, δ13C of LV-WSOC from local emission origin, δ13C of LV-WSOC from transboundary pollution origin, and a fraction of LV-WSOC from local emission

  13. Effects of Ocean Climate on Transboundary Movement of Coastal Pelagic Resources Between the EEZs of Mexico and the United States

    NASA Astrophysics Data System (ADS)

    Baumgartner, T. R.; Garcia, J.; Sanchez, C.; Lo, N. C.; Charter, R.

    2007-05-01

    Interannual to multidecadal changes in ocean climate directly impact access to transboundary coastal pelagic resources between fisheries operating in U.S. and Mexican waters. This study provides a preliminary analysis of the scale of year-to-year shifts in the distribution of the Pacific sardine (Sardinops sagax caeruleus) with data from 2002 and 2003. One of the purposes of this initiative is to provide a template for collaborative research to guide regional policy development for responsible and sustainable utilization of the shared resource. This work is based on coordinated quarterly ocean surveys run by Mexican (the IMECOCAL program=Investigaciones Mexicanas de la Corriente de California) and U.S. scientists (the CalCOFI program=California Cooperative Oceanic Fisheries Investigations) allowing us to evaluate the annual state of the pelagic ecosystem from northern California to southern Baja California. The subject of this study is the "subarctic stock" of the Pacific sardine which is centered off California in the U.S. and extends southwards to the region off central Baja California. Estimates of sardine biomass in U.S. and Mexican waters, based on the rates of egg production measured during the IMECOCAL and CalCOFI surveys of April 2002 and April 2003, show order of magnitude differences in the relative proportions of biomass in the Mexican EEZ that is associated with the contrasts in ocean climate resulting from the regional effects of El Niño during April 2003. Results indicate a significant northward shift of the sardine stock off Mexico during 2003: we estimate that approximately 20 percent of the total biomass of the stock was located in the Mexican EEZ during spring of 2002 while the shift in ocean climate resulted in the presence of only 2 percent of the biomass of the stock in Mexican waters during April, 2003. A second, more southerly sardine stock extended from southern to central Baja California in April, 2003, but it was out of reach of the fleet

  14. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  15. Energy use, emissions and air pollution reduction strategies in Asia

    SciTech Connect

    Foell, W.; Green, C.; Sarkar, A.; Legler, J.

    1995-12-31

    The pace of economic progress and development experienced in many Asian countries has not occurred without costs to the natural environment. In particular, energy policies and technologies are a primary driving force behind air pollution problems arising from air pollution emissions in Asia. Economic growth, energy use, and reliance on fossil fuels are experiencing extremely high growth throughout most of the continent. Electric power expansion plans in many countries of Asia, particularly China and India, call for substantial increases in coal combustion. In the 1990`s, two-thirds of all power related investments in developing countries will be in Asia. In contrast to the situation in Europe and North America, emissions of air pollution species in Asia are increasing rapidly, resulting in both local air pollution problems and higher acidic deposition in many regions. In general, most Asian countries do not have a strong scientific nor public constituency for addressing potentially serious air pollution problems impacting important economic and cultural activities such as forestry, agriculture, and tourism. The complex political ramifications of trans-boundary air pollution in Asia have not yet begun to be addressed.

  16. Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments

    NASA Astrophysics Data System (ADS)

    Mazzoni, A.; Heggy, E.

    2014-12-01

    The increase in awareness about the overexploitation of transboundary groundwater resources in hyper-arid environments that occurred in the last decades has highlighted the need to better map, monitor and manage these resources. Climate change, economic and population growth are driving forces that put more pressure on these fragile but fundamental resources. The aim of our approach is to address the question of whether or not groundwater resources, especially non-renewable, could serve as "backstop" water resource during water shortage periods that would probably affect the drylands in the upcoming 100 years. The high dependence of arid regions on these resources requires prudent management to be able to preserve their fossil aquifers and exploit them in a more sustainable way. We use the NetLogo environment with the FAO Aquastat Database to evaluate if the actual trends of extraction, consumption and use of non-renewable groundwater resources would remain feasible with the future climate change impacts and the population growth scenarios. The case studies selected are three: the Nubian Sandstone Aquifer System, shared between Egypt, Libya, Sudan and Chad; the North Western Sahara Aquifer System, with Algeria, Tunisia and Libya and the Umm Radhuma Dammam Aquifer, in its central part, shared between Saudi Arabia, Qatar and Bahrain. The reason these three fossil aquifers were selected are manifold. First, they represent properly transboundary non-renewable groundwater resources, with all the implications that derive from this, i.e. the necessity of scientific and socio-political cooperation among riparians, the importance of monitoring the status of shared resources and the need to elaborate a shared management policy. Furthermore, each country is characterized by hyper-arid climatic conditions, which will be exacerbated in the next century by climate change and lead to probable severe water shortage periods. Together with climate change, the rate of population

  17. Assessing the Roles of Regional Climate Uncertainty, Policy, and Economics on Future Risks to Water Stress: A Large-Ensemble Pilot Case for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C. W.; Blanc, E.; Monier, E.; Sokolov, A. P.; Paltsev, S.; Arndt, C.; Prinn, R. G.; Reilly, J. M.; Jacoby, H.

    2013-12-01

    The fate of natural and managed water resources is controlled to varying degrees by interlinked energy, agricultural, and environmental systems, as well as the hydro-climate cycles. The need for risk-based assessments of impacts and adaptation to regional change calls for likelihood quantification of outcomes via the representation of uncertainty - to the fullest extent possible. A hybrid approach of the MIT Integrated Global System Model (IGSM) framework provides probabilistic projections of regional climate change - generated in tandem with consistent socio-economic projections. A Water Resources System (WRS) then tracks water allocation and availability across these competing demands. As such, the IGSM-WRS is an integrated tool that provides quantitative insights on the risks and sustainability of water resources over large river basins. This pilot project focuses the IGSM-WRS on Southeast Asia (Figure 1). This region presents exceptional challenges toward sustainable water resources given its texture of basins that traverse and interconnect developing nations as well as large, ascending economies and populations - such as China and India. We employ the IGSM-WRS in a large ensemble of outcomes spanning hydro-climatic, economic, and policy uncertainties. For computational efficiency, a Gaussian Quadrature procedure sub-samples these outcomes (Figure 2). The IGSM-WRS impacts are quantified through frequency distributions of water stress changes. The results allow for interpretation of: the effects of policy measures; impacts on food production; and the value of design flexibility of infrastructure/institutions. An area of model development and exploration is the feedback of water-stress shocks to economic activity (i.e. GDP and land use). We discuss these further results (where possible) as well as other efforts to refine: uncertainty methods, greater basin-level and climate detail, and process-level representation glacial melt-water sources. Figure 1 Figure 2

  18. Transboundary effects on health care services in the European Community.

    PubMed

    du Pré, F M

    1993-01-01

    This article deals with the rights that community law gives to the medical and allied professions to exercise their professional activities in a member state other than their state of origin. Firstly, the scope of the general economic provisions of the European Community (EC) Treaty is broadly described. Secondly, the specific rules of the EC secondary legislation concerning the harmonization of the national legislations on professional qualifications in the health care sector are reviewed. Lastly, an example is given of the application of these rules in the health care sector by the Court of Justice of the European Community. It is submitted that the exercise of these rights can contribute to transboundary cooperation within the EC in the rendering of health care services to patients in the member states. This is specially relevant in frontier areas. PMID:8377626

  19. Integrated Optical and SAR Imagery with DEM to Quantify Glacier Water Storage Change in Upper Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Liu, G. T.; Chen, J. B.; Le, T. S.; Chang, C. P.; Shum, C. K.; Tseng, K. H.

    2015-12-01

    In the past few decades, regional increase in air temperature has accelerated the ice melting in polar, sub-polar, and major land glacial areas. The glaciers in Tibetan Plateau, the largest glaciers outside Polar Regions and the sources of several trans-boundary major rivers, are now showing aggravated terminus retreat and thinning. The variation of freshwater availability is crucial for the economic development in Mainland Southeast Asia, especially in hydroelectric generation and agriculture irrigation. These rives, including the Mekong River, is also subject to upstream-downstream conflict and transboundary issues. In this study, we propose to estimate the remaining glacier water storage in Mekong River basin, and further analyze the impact of glacier retreat on these dams/reservoirs for the next decade. By calculating the Modified Normalized Difference Water Index (MNDWI), the water surface area (WSA) can thus be extracted from optical satellite images. On the other hand, the ice surface area (ISA) can be derived from the Polarimetric Synthetic Aperture Radar (POLSAR) images. With different polarization states of electromagnetic wave reflected by earth surface, POLSAR image can effectively identify glacier/ice from snow. Combined WSA and ISA information with digital elevation model (DEM), the change of freshwater storage in glaciers can be estimated. In the end, the influence on dams/reservoirs in the Mekong River caused by glacier retreat can be forecasted. The result can also be applied to hydrology, water allocation, and economy/agriculture policy determination.

  20. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    PubMed

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation. PMID:26604008

  1. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study

    NASA Astrophysics Data System (ADS)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  2. Sensitivity analysis of photochemical ozone to its precursor emissions over East Asia by CMAQ-DDM

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Kim, S.

    2011-12-01

    In the past three decades, anthropogenic emissions in East Asia have increased dramatically in parallel with the economic growth, and the trans-boundary air pollution arose as a concerning issue. For instance, high photochemical oxidant (over 120 ppbv) was observed at the remote clean island in Japan during 2007 springtime. In this event, many studies concluded that the high possibility of the impact of Asian-scale trans-boundary pollutants. To investigate the source-receptor relationships, modeling study is useful, however, if the chemical reaction involves the nonlinear response (e.g., ozone), to estimate its S-R relationships is quite difficult. The decoupled direct method (DDM) which was implemented in CMAQ ver. 4.7.1 is an efficient and accurate way of performing sensitivity analysis to model inputs. CMAQ-DDM has been extended to higher-order (HDDM) for gas-phase, and calculates first and second-order sensitivity coefficients representing the responsiveness of atmospheric chemical concentrations to perturbations in a model input or parameter (e.g., emission, reaction rate, initical condition, or boundary condition). This applications are well conducted in the U.S., whereas it is not fully examined in East Asia. In this study, we apply CMAQ-DDM technique for ozone and its precursor pollutants in East Asia. In the case of trans-boundary air pollution episode occurred on 7-9 May, 2007, the 1st order ozone sensitivity to the anthropogenic NOx emissions from China show the positive value in almost part over East Asia, namely represent the NOx-sensitive region, whereas in the large-point sources in China (e.g., Beijing and Shanghai), it shows the negative value due to the ozone titration by NO. We will also report more detailed region specified S-R analysis and cross-sensitivity analysis between NOx and VOC over China, Korea and Japan.

  3. Transboundary study of the Milk River aquifer (Canada, USA): geological, conceptual and numerical models for the sound management of the regional groundwater resources

    NASA Astrophysics Data System (ADS)

    Pétré, Marie-Amélie; Rivera, Alfonso; Lefebvre, René

    2016-04-01

    The Milk River transboundary aquifer straddles southern Alberta (Canada) and northern Montana (United States), a semi-arid and water-short region. The extensive use of this regional sandstone aquifer over the 20th century has led to a major drop in water levels locally, and concerns about the durability of the resources have been raised since the mid-1950. Even though the Milk River Aquifer (MRA) has been studied for decades, most of the previous studies were limited by the international border, preventing a sound understanding of the aquifer dynamics. Yet, a complete portrait of the aquifer is required for proper management of this shared resource. The transboundary study of the MRA aims to overcome transboundary limitations by providing a comprehensive characterization of the groundwater resource at the aquifer scale, following a three-stage approach: 1) The development of a 3D unified geological model of the MRA (50,000 km2). The stratigraphic framework on both sides of the border was harmonized and various sources of geological data were unified to build the transboundary geological model. The delineation of the aquifer and the geometry and thicknesses of the geological units were defined continuously across the border. 2) Elaboration of a conceptual hydrogeological model by linking hydrogeological and geochemical data with the 3D unified geological model. This stage is based on a thorough literature review and focused complementary field work on both sides of the border. The conceptual model includes the determination of the groundwater flow pattern, the spatial distribution of hydraulic properties, a groundwater budget and the definition of the groundwater types. Isotopes (3H, 14C, 36Cl) were used to delineate the recharge area as well as the active and low-flow areas. 3) The building of a 3D numerical groundwater flow model of the MRA (26,000 km2). This model is a transposition of the geological and hydrogeological conceptual models. A pre

  4. Comparative analysis of two hydrological models with different glacier parameterisations for climate impact assessment and water resources management in the Syrdarya Basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Duethmann, Doris; Agaltseva, Natalya; Merkushkin, Alexander; Pak, Alexander; Kriegel, David; Huss, Matthias; Güntner, Andreas; Merz, Bruno; Unger-Shayesteh, Katy; Mannig, Birgit; Paeth, Heiko; Vorogushyn, Sergiy

    2014-05-01

    Central Asian river basins in general and zones of run-off formation in particular are currently experiencing the impact of increasing temperatures and changes in precipitation. The headwaters thus exhibit negative glacier mass balances, decreasing glacierisation, changes in snow cover characteristics and changing runoff response. These changes are likely to intensify in future under the changing climate. Both hydropower industry and irrigated agriculture in the downstream areas strongly depend on the water amount, its seasonal and long-term distribution. This fact calls for an effort to reliably assess water availability in the runoff formation zone of Central Asia in order to improve water management policy in the region. One of the approaches to assessment of water resources is the evaluation of climate scenarios with the climate-and-hydrology model chain. Application of several models allows reducing the modeling uncertainty and proceeding with more robust water balance components assessment. We present the comparison of the two hydrological models AISHF (Automated Information System for Hydrological Forecasting) developed at the Centre for Hydrometeorology of Uzbekistan and WASA run at GFZ Potsdam, implemented for the Naryn and Karadarya basins (Syrdarya). These models use different parameterization and calibration schemes. Whereas in the AISHF model glacier dynamics is considered in scenarios of glacier area loss, the WASA model simulates continuous glacier mass balance, glacier area and volume evolution based on meteorological drivers. Consideration of initial glacier volume and its temporal dynamics can be essential for climate impact assessment in transient model simulations. The impact of climate change scenarios, developed with the regional climate model REMO at the University of Würzburg, are compared with respect to total discharge dynamics and runoff contributions from glacier, snowmelt and rainfall. Implications of water availability assessment

  5. Implementing the Espoo Convention in transboundary EIA between Germany and Poland

    SciTech Connect

    Albrecht, Eike

    2008-08-15

    Poland and Germany have a long common border which leads to the necessity to cooperate and consult each other in the case of large-scale projects or infrastructure measures likely to cause negative transboundary effects on the environment. There are already binding provisions for transboundary EIA. In the area of the UN Economic Commission for Europe (UNECE), transboundary EIA is intended to be legally binding for the Member States by the Espoo Convention which was ratified by Germany 8.8.2002 and by Poland 12.6.1997. Due to corresponding directives, the same is applicable in the context of the European Union. In German legislation, this issue is regulated by Art. 8 of the Federal EIA Act in regard to transboundary participation of administration and by Art. 9a in respect of transboundary public participation. However, these EIA regulations on transboundary participation do not surpass a certain detail level, as they have to be applied between Germany and all neighbouring states. Therefore both countries decided to agree on more detailed provisions in particular regarding procedural questions. During the 12th German-Polish Environmental Council, Germany and Poland reached an agreement on 11.4.2006 in Neuhardenberg/Brandenburg an agreement upon the implementation of the Espoo Convention, the so called Neuhardenberg Agreement. This article assesses the agreement under consideration of already existing law and discusses major improvements and problems.

  6. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Te; Chuang, Ming-Tung; Lin, Neng-Huei; Wang, Jia-Lin; Sheu, Guey-Rong; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Huang, Hill; Chen, Horng-Wen; Liu, Yuan-Liang; Weng, Guo-Hau; Lai, Hsin-Yo; Hsu, Shao-Peng

    2011-10-01

    Biomass burning (BB) in Southeast Asia (Indochina and southern China) occurs frequently in March and April every year. The burning plume is ordinarily transported eastward by the prevailing westerly, further affecting downstream air quality in East Asia. In this study, atmospheric aerosols were collected at the downstream Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., central Taiwan) from April 2003 to April 2009. Results show that monthly means of PM2.5 were highest during the BB period, especially in March. The PM2.5 mean for BB activity was 17.5 μg m-3, while the daily PM2.5 mean can sometimes be above 40 μg m-3. The background PM2.5 level in free troposphere of the West Pacific was at 3.7 ± 1.8 μg m-3. This mean is roughly the same regardless of the air masses moving from China, Pacific Ocean, and South China Sea toward LABS. In addition, the highest PM2.5 level occurred in 2004, making it the most active year of BB for the whole observation period. Greater amounts of nitrate and potassium ions were observed in the PM2.5 collected during the BB period compared to the non-BB (NBB) period. Linear regression analysis on PM2.5 water-soluble ions shows a moderate correlation (R2 = 0.59) between non-sea-salt potassium and nitrate ions during the BB period. Furthermore, for all trajectory source origins, ammonium ion had the best correlation (R2 = 0.84) with non-sea-salt sulfate when the air masses were influenced by anthropogenic sources during the NBB period. The enhancement ratios of nitrate ion during the BB period could reach 6.7 and 9.7 relative to air masses from the BB source region and from the pristine area during the NBB period, respectively. During the study period, ammonia gas was found to be insufficient to neutralize sulfuric and nitric gases. Therefore, most aerosols were more acidic than basic. Our long-term observation of atmospheric aerosols with inter-annual variability is valuable in providing data for verifying BB source inventory

  7. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    SciTech Connect

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  8. Transboundary Irtysh River Basin: UNESCO-IHP to enhance research and data sharing

    NASA Astrophysics Data System (ADS)

    Sagintayev, Z.; Mashtayeva, S., Sr.

    2015-12-01

    Transboundary Irtysh River Basin, which is shared by China, Kazakhstan, Mongolia, and Russia, is under intensive anthropogenic stress. We are working on the comprehensive study using multiple approaches that integrate observations extracted from remote sensing with traditional approaches (surficial geology, hydrogeology, geochemistry, GIS, and hydrologic modeling) to gain a comprehensive understanding of the response of a large-scale Irtysh River Basin hydrologic system to a variety of climatic and anthropic forcing parameters. Global warming over the study area could cause higher temperatures, increased evaporation, decreased precipitation, and droughts. On the other hand, the impacts could be just the opposite, increased precipitation rates and floods. Anthropic forcing influences over the Irtysh River Basin could result from impoundment of surface water by dams or decreased flow due to water diversion projects and excessive groundwater extraction from the surrounding aquifers. The ultimate objective of these investigations will be a predictive capability that can relate forcing by climate change and anthropic activities to anticipated hydrologic system responses. UNESCO-IHP network and cooperation support can very helpful for this complex research work. The current research findings will be shared during the meeting.

  9. Year-round observations of water-soluble ionic species and trace metals in Sapporo aerosols: implication for significant contributions from terrestrial biological sources in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Fu, P.

    2013-03-01

    High aerosol loadings are prevalent in the atmosphere of East Asia, where the aerosols impact the Earth's climate system and human health; however, their sources and seasonal variations are not clearly understood. To better understand the sources of water-soluble ionic species and trace metals in Northeast Asia, we studied atmospheric aerosol samples collected in Sapporo, northern Japan for one-year period. SO42- (average 3.47 ± 1.03 μg m-3) was found as the most abundant ionic species, which accounted for on average 43 ± 15% of the measured total ionic mass followed by Cl- (13 ± 12%) ≈ NO3- ≈ Na+ > NH4+ > Ca2+ > Mg2+ > K+ > MSA-. Among the metals determined, Ca was found as the most abundant (45 ± 5.2%) followed by Fe (27 ± 4.5%), Al (21± 3.1%), Zn (3.2 ± 1.7), Ti, Mn, Ni, Pb, Cu, V, As, Cr and Cd. Based on factor analysis, linear relations of selected species with biomarkers, and backward air mass trajectories, we found that long-range atmospheric transport of soil dust (∼ 33%) from arid regions of Mongolia and/or Northeast China is a major source for Sapporo aerosols as well as terrestrial biogenic emissions (≥ 24%) including microbial activities and biomass burning mostly from distant source region(s) (e.g. Siberia). We also found that the contributions of soil dust to the aerosols maximized in early spring whereas those of vegetational emissions maximized in spring/summer. Contributions of microbial activities to aerosols peaked in autumn whereas forest fires/biomass burning peaked in autumn/winter. On the contrary, fossil fuel combustion/industrial activities and oceanic emissions to Sapporo aerosols are suggested to be rather minor. This study also suggests that fungal spores contribute to some trace metals (i.e. Ni, Cu, As) while pollen contributes to Zn in aerosols.

  10. Effects of climate change and population growth on the transboundary Santa Cruz aquifer

    USGS Publications Warehouse

    Scott, Christopher A.; Megdal, Sharon; Oroz, Lucas Antonio; Callegary, James; Vandervoet, Prescott

    2012-01-01

    The USA and Mexico have initiated comprehensive assessment of 4 of the 18 aquifers underlying their 3000 km border. Binational management of groundwater is not currently proposed. University and agency researchers plus USA and Mexican federal, state, and local agency staff have collaboratively identified key challenges facing the Santa Cruz River Valley Aquifer located between the states of Arizona and Sonora. The aquifer is subject to recharge variability, which is compounded by climate change, and is experiencing growing urban demand for groundwater. In this paper, we briefly review past, current, and projected pressures on Santa Cruz groundwater. We undertake first-order approximation of the relative magnitude of climate change and human demand drivers on the Santa Cruz water balance. Global circulation model output for emissions scenarios A1B, B1, and A2 present mixed trends, with annual precipitation projected to vary by ±20% over the 21st century. Results of our analysis indicate that urban water use will experience greater percentage change than climate-induced recharge (which remains the largest single component of the water balance). In the Mexican portion of the Santa Cruz, up to half of future total water demand will need to be met from non-aquifer sources. In the absence of water importation and with agricultural water use and rights increasingly appropriated for urban demand, wastewater is increasingly seen as a resource to meet urban demand. We consider decision making on both sides of the border and conclude by identifying short- and longer-term opportunities for further binational collaboration on transboundary aquifer assessment.

  11. Geographic information systems applied to the international surveillance and control of transboundary animal diseases, a focus on highly pathogenic avian influenza.

    PubMed

    Martin, Vincent; De Simone, Lorenzo; Lubroth, Juan

    2007-01-01

    To respond to the lack of early warning in dealing with livestock diseases, the Food and Agriculture Organization (FAO) developed and launched the Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases (EMPRES) programme in 1994. Emphasis was placed on the prevention of emergencies due to transboundary epidemic diseases of livestock of significant economic, trade and/or food security importance. EMPRES early warning activities, mainly based on disease surveillance, reporting and epidemiological analysis are supported by the EMPRES-i information system which enables integration, analysis and sharing of animal health data, combined with relevant layers of information, such as socio-economic, production and climatic data. Indeed, data integration, analysis and mapping represent a key step towards a better understanding of the distribution and behaviour, source and evolution of a disease (or infection) for the definition of appropriate cost-effective disease control strategies. With the emergence of highly pathogenic avian influenza (HPAI) H5N1 in South-East Asia and its rapid spread beyond its known original distribution range, through its EMPRES programme the FAO has invested time and resources in the implementation of several studies to reveal HPAI epidemiological features in specific ecosystems of Asia and advise member countries accordingly on the best disease control options. Some of the key findings are presented in this paper and illustrate the incredible potential of using geographic information systems as part of international early warning systems and their multiple applications in the surveillance and control of infectious diseases, such as HPAI. PMID:20422520

  12. Identifying transboundary aquifers in need of international resource management in the Southern African Development Community region

    NASA Astrophysics Data System (ADS)

    Davies, Jeff; Robins, Nick S.; Farr, John; Sorensen, James; Beetlestone, Philip; Cobbing, Jude E.

    2013-03-01

    Transboundary aquifer (TBA) management, in part, seeks to mitigate degradation of groundwater resources caused either by an imbalance of abstraction between countries or by cross-border pollution. Fourteen potential TBAs were identified within a hydrogeological mapping programme based on simple hydrogeological selection criteria for the Southern African Development Community (SADC) region. These have been reassessed against a set of data associated with five categories: (1) groundwater flow and vulnerability (which is perceived as the over-arching influence on the activity level of each TBA), (2) knowledge and understanding, (3) governance capability, (4) socio-economic/water-demand factors, and (5) environmental issues. These assessments enable the TBAs to be classified according to their need for cross-border co-operation and management. The study shows that only two of the 14 TBAs have potential to be the cause of tension between neighbouring states, while nine are potentially troublesome and three are unlikely to become problematic even in the future. The classification highlights the need to focus on data gathering to enable improved understanding of the TBAs that could potentially become troublesome in the future due to, for example, change in demographics and climate.

  13. Isla Hispaniola: A trans-boundary flood risk mitigation plan

    NASA Astrophysics Data System (ADS)

    Brandimarte, Luigia; Brath, Armando; Castellarin, Attilio; Baldassarre, Giuliano Di

    It is sadly known that over the past decades Isla Hispaniola (Haiti and the Dominican Republic) has been exposed to the devastating passage of several hurricanes and tropical storms. Territories that are economically weak and extremely poor in terms of natural resources have been shaken by severe flood events that caused the loss of thousands of human lives, displacement of people and damage to the environment. On May 24th 2004, the flooding of the trans-boundary river Soliette killed over 1000 Haitian and Dominican people, wiping out villages and leaving behind desolation and poverty. After this catastrophic flood event, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded through the Istituto Italo-Latino Americano (IILA, www.iila.org) an international cooperation initiative (ICI), coordinated and directed by the University of Bologna. The ICI involved Haitian and Dominican institutions and was twofold: (a) institutional capacity building on flood risk management and mitigation measures and policies; (b) hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures.

  14. System dynamics modeling of transboundary systems: the bear river basin model.

    PubMed

    Sehlke, Gerald; Jacobson, Jake

    2005-01-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multipurpose national laboratory managed by the Department of Energy, has developed a system dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River basin, a transboundary basin that includes portions of Idaho, Utah, and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found that system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory, and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple "what-if" scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause-effect relationships in large-scale hydrological systems, for integrating disparate data, for incorporating output from traditional hydraulic/hydrologic models, and for integration of interdisciplinary data, information, and criteria to support better management decisions. PMID:16149968

  15. Genetic differentiation of water buffalo (Bubalus bubalis) populations in China, Nepal and south-east Asia: inferences on the region of domestication of the swamp buffalo.

    PubMed

    Zhang, Y; Vankan, D; Zhang, Y; Barker, J S F

    2011-08-01

    Data from three published studies of genetic variation at 18 microsatellite loci in water buffalo populations in China (18 swamp type, two river type), Nepal (one wild, one domestic river, one hybrid) and south-east Asia (eight swamp, three river) were combined so as to gain a broader understanding of genetic relationships among the populations and their demographic history. Mean numbers of alleles and expected heterozygosities were significantly different among populations. Estimates of θ (a measure of population differentiation) were significant among the swamp populations for all loci and among the river populations for most loci. Differentiation among the Chinese swamp populations (which was due primarily to just one population) was much less than among the south-east Asian. The Nepal wild animals, phenotypically swamp type but genetically like river type, are significantly different from all the domestic river populations and presumably represent the ancestral Bubalus arnee (possibly with some river-type introgression). Relationships among the swamp populations (D(A) genetic distances, principal component analysis and structure analyses) show the south-east Asian populations separated into two groups by the Chinese populations. Given these relationships and the patterns of genetic variability, we postulate that the swamp buffalo was domesticated in the region of the far south of China, northern Thailand and Indochina. Following domestication, it spread south through peninsular Malaysia to Sumatra, Java and Sulawesi, and north through China, and then to Taiwan, the Philippines and Borneo. PMID:21749419

  16. Numerical Modeling for Flood Mapping under Climate Change Impacts: Transboundary Dniester River Study

    NASA Astrophysics Data System (ADS)

    Zheleznyak, Mark; Kolomiets, Pavlo; Dzjuba, Natalia; Ievgen, Ievgen; Sorokin, Maxim; Denisov, Nickolai; Ischuk, Oleksiy; Koeppel, Sonja

    2015-04-01

    The Dniester river is shared by Ukraine and Moldova. Ukraine being both upstream and downstream of Moldova. The basin is especially suffering from heavy floods, often with transboundary impacts: in Ukraine, disastrous floods in July 2008, which were possibly partly caused or exacerbated by climate change. Within the UNECE | ENVSEC project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" the numerical flood risks mapping for several "hot spots" along the Dniester river was initiated Two transboundary sites: "Mohyliv Podylskiy- Ataki" and "Dubossary HPP-, Mayaki" (in the delta zone) were chosen for flood risk modelling/mapping. . Floodplain inundation at Mohyliv Podylskiy- Ataki during historical and projected extreme floods scenarios is simulated by 2D model COASTOX -UN based on the numerical solution of shallow water equations on unstructured grid. The scenario of extreme flood, July 2008 that caused hazardous flooding of the riverside areas of Mohyliv Podylskiy has been used for model verification and calibration. The floodmarks of the inundated in 2008 streets have been collected and GIS processed to be used together with the data from the city's water gage station for model testing. The comparison of the simulated dynamics of floodplain inundation during 2008 flood with the observed data show good accuracy of the model. The technologies of the flood modeling and GIS based risk assessments verified for this site are implemented for analyses of the vulnerability to extreme floods for Q=7600 m3 / sec inflow to Dniester reservoir ( 1% flood for contemporary climate assessment) and for Q=8700 m3 / sec. that is considered as projection of 1% flood maximum for XXI century The detailed flood mapping was provided for all cases and was shown that 13% increase in water elevation for future extreme flood scenario will provide at 20% increasing of flooded areas in Mohilev Podolsky. For the site Dubossary NPP in Moldova downstream till

  17. Proceedings of a USGS Workshop on Facing Tomorrow's Challenges Along the U.S.-Mexico Border - Monitoring, Modeling, and Forecasting Change Within the Arizona-Sonora Transboundary Watersheds

    USGS Publications Warehouse

    Norman, Laura M.; Hirsch, Derrick D.; Ward, A. Wesley

    2008-01-01

    INTRODUCTION TO THE WORKSHOP PROCEEDINGS Competition for water resources, habitats, and urban areas in the Borderlands has become an international concern. In the United States, Department of Interior Bureaus, Native American Tribes, and other State and Federal partners rely on the U.S. Geological Survey (USGS) to provide unbiased science and leadership in the Borderlands region. Consequently, the USGS hosted a workshop, ?Facing Tomorrow?s Challenges along the U.S.-Mexico Border,? on March 20?22, 2007, in Tucson, Ariz., focused specifically on monitoring, modeling, and forecasting change within the Arizona-Sonora Transboundary Watersheds

  18. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling

    NASA Astrophysics Data System (ADS)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-03-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  19. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modelin

    USGS Publications Warehouse

    Voss, Clifford I.; Soliman, Safaa M.

    2014-01-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world’s largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  20. Study on resources and environmental data integration towards data warehouse construction covering trans-boundary area of China, Russia and Mongolia

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, J.; Gao, M.; Zhu, L.

    2014-02-01

    The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online.

  1. RAINS-ASIA: An assessment model for acid deposition in Asia

    SciTech Connect

    Downing, R.J.; Ramankutty, R.; Shah, J.J.

    1997-08-31

    Asia`s rapid economic growth has fueled a growing appetite for commercial energy, which is satisfied by fossil fuels that emit pollutants. These pollutants are oxidized and transported into the atmosphere, creating acidic depositions known as acid rain that can damage foliage, soils, and surface waters. At current energy consumption growth rates, by the year 2000 sulfur dioxide emissions from Asia will surpass the emissions of North America and Europe combined. RAINS-ASIA is an assessment tool developed by the World Bank, the Asian Development Bank, and donors to study the implications of alternative energy development strategies for air pollution and acid rain and to help identify cost-effective abatement methods. This report provides an overview of the model and some results of analyses that have been conducted as part of the RAINS-ASIA program.

  2. AED in Asia

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2004

    2004-01-01

    Founded in 1961, the Academy for Educational Development (AED) is an independent, nonprofit, charitable organization that operates development programs in the United States and throughout the world. This directory presents an overview of AED endeavors in Asia. AED's work in Asia has centered on institution-building, taking advantage of its…

  3. ESP in Southeast Asia.

    ERIC Educational Resources Information Center

    Crooks, Tony, Ed.

    Seven conference papers discuss English language training and political development in Asia, including language project design and evaluation, counterparting, sustainability, appropriate technology, and languages and the politics of development. Papers included are: "Linguistic and Cultural Considerations of Writing ELT Texts for Use in Asia"…

  4. Assessing basin heterogeneities for rainfall-runoff modelling of the Okavango River and its transboundary management

    NASA Astrophysics Data System (ADS)

    Baumberg, V.; Helmschrot, J.; Steudel, T.; Göhmann, H.; Fischer, C.; Flügel, W.-A.

    2014-09-01

    The neighbouring river systems Cubango and Cuito drain the southeastern part of the Angolan Highlands and form the Okavango River after their confluence, thus providing 95% of the Okavango River discharge. Although they are characterised by similar environmental conditions, runoff records indicate remarkable differences regarding the hydrological dynamics. The Cubango River is known for rapid discharges with high peaks and low baseflow whereas the Cuito runoff appears more balanced. These differences are mainly caused by heterogeneous geological conditions or terrain features. The Cubango headwaters are dominated by crystalline bedrock and steeper, v-shaped valleys while the Cuito system is characterised by wide, swampy valleys and thick sand layers, thus attenuating runoff. This study presents model exercises which have been performed to assess and quantify these effects by applying the distributive model J2000g for each sub-basin. The models provide reasonable results representing the spatio-temporal runoff pattern, although some peaks are over- or underestimated, particularly in the Cuito catchment. This is explained by the scarce information on extent and structure of storages, such as aquifers or swamps, in the Cuito system. However, the model results aid understanding of the differences of both tributaries in runoff generation and underpin the importance of floodplains regarding the control of runoff peaks and low flows in the Cuito system. Model exercises reveal that basin heterogeneity needs to be taken into account and must be parameterised appropriately for reliable modelling and assessment of the entire Okavango River basin for managing the water resources of the transboundary Okavango River in a harmonious way.

  5. ASSESSING TRANSBOUNDARY INFLUENCES IN THE LOWER RIO GRANDE VALLEY (COMMUNITY SUMMARY)

    EPA Science Inventory

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was done to determine if movement of air pollutants across the U.S.-Mexico border was occurring in the Lower Rio Grande Valley (hereinafter called "the Valley") and, if so, the extent. The study w...

  6. Is Central Asia really exsiccating?

    NASA Astrophysics Data System (ADS)

    Aizen, V. B.; Aizen, E. M.; Surazakov, A. B.

    2008-12-01

    At the end of 20th and the beginning of 21st century central Asia oases suffered from serious drought caused lack of water for agriculture, economy growth and population increase. However, people of this region always experienced lack of water for irrigation and fought a war over the rights to control river streams. The drying up of central Asian rivers is not a new phenomenon according to the ancient manuscripts. Thus, lets see about what has happened with the past century climate and water resources of central Asia using the long-term observational data. We analyzed data from more than 200 meteorological stations and stream gauges over the central Asia in elevation range from 25 m. b.s.l. to 4,000 m. a.s.l. to understand the last 100 years variability in climate and water resources, examining changes in the extreme and mean monthly air temperatures, precipitation and river runoff. The evaluation of seasonal snow and glacier's covered areas between 1970th and 2007th in central Asia derived from AVHRR, MODIS, Hexagon KH-9, Landsat ETM and ASTER data exhibit 15% reduction of the seasonal snow covered area and 10.1% of the glacier area. It has been found that during last twenty years the duration of snowmelt, from the date of maximum snow cover to date of its disappearance, reduced by 30 days and in 2007 was equal to 138 days in the central Asian mountains. The decrease of seasonal snow cover is not a linear process. The further decrease may be accelerated due to increase of rainfall instead of snowfall in early spring months at high elevations, and consequently a lesser heat expenditure for the snowmelt. The growth in summer air temperatures, especially observable since the 1970th, accompanied by increase of evapotranspiration and precipitation, notably in summer and autumn, and at high elevations over 3,000 m, and at the western peripheral mountain ridges. Average difference in the means of annual air temperatures for the two thirty-year periods before and after

  7. [Current status of surface water acidification in Northeast China].

    PubMed

    Xu, Guang-yi; Kang, Rong-hua; Luo, Yao; Duan, Lei

    2013-05-01

    In order to evaluate the status of surface water acidification in Northeast China, chemical composition of 33 small streams was investigated in August, 2011. It was found that only a few waters located in Changbai Mountain had pH of lower than 6.0, and all waters had acid neutralizing capacity (ANC) of higher than 0.2 meq x L(-1). This indicated that surface water acidification was not a regional environmental issue in Northeast China. HCO3- was the major anion, with SO4(2-) concentration mostly below 150 microeq x L(-1) and even much lower NO3- concentration. Low concentration of SO4(2-) and NO3- means no serious acid deposition in this area. However, the distribution of acidic forest soils, with low base cation weathering rate, could only provide limited buffering capacity for surface water to acidification in Northeast China, and the potential risk of water acidification still existed. Currently, acid deposition in Northeast Asia could hardly cause severe acidification of surface water. The neighboring countries should therefore not amplify the environmental impact by transboundary air pollutants from China. PMID:23914517

  8. Neurology in Asia.

    PubMed

    Tan, Chong-Tin

    2015-02-10

    Asia is important as it accounts for more than half of the world population. The majority of Asian countries fall into the middle income category. As for cultural traditions, Asia is highly varied, with many languages spoken. The pattern of neurologic diseases in Asia is largely similar to the West, with some disease features being specific to Asia. Whereas Asia constitutes 60% of the world's population, it contains only 20% of the world's neurologists. This disparity is particularly evident in South and South East Asia. As for neurologic care, it is highly variable depending on whether it is an urban or rural setting, the level of economic development, and the system of health care financing. To help remedy the shortage of neurologists, most counties with larger populations have established training programs in neurology. These programs are diverse, with many areas of concern. There are regional organizations serving as a vehicle for networking in neurology and various subspecialties, as well as an official journal (Neurology Asia). The Asian Epilepsy Academy, with its emphasis on workshops in various locations, EEG certification examination, and fellowships, may provide a template of effective regional networking for improving neurology care in the region. PMID:25666629

  9. Radiocarbon-Based Source Apportionment of the Water-Soluble Organic Carbon (wsoc) of Atmospheric Aerosols in South and East Asia

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Sheesley, R. J.; Andersson, A.; Gustafsson, O.; Safai, P. D.; Budhavant, K.; Rao, P. S.; Kang, E.; Han, J.; Lee, M.

    2011-12-01

    The air quality and regional climate in South and East Asia are considerably affected by atmospheric aerosols produced by anthropogenic activities. Recent studies have investigated the sources of the black carbon aerosol component in these regions. This study seeks to make progress in apportioning the sources of the water soluble organic carbon (WSOC) component, which makes up 20-65% of the carbonaceous aerosol mass in these areas. WSOC is important as it enhances the ability of particles to serve as cloud condensation nuclei (CCN) and, therefore, has an impact on regional climate and radiative forcing. Atmospheric particulate matter was collected during fifteen-month continuous sampling campaigns Jan 2008 - March 2009 at both the Maldives Climate Observatory at Hannimaadho (MCOH) and at the Sinhagad hilltop sampling site of the Indian Institute of Tropical Meteorology (SIN) in central-western India. The radiocarbon method is an ideal approach to identify fossil sources (14C "dead") compared to biogenic and biomass combustion products (with a contemporary 14C signal). WSOC is a large fraction of organic aerosols and its annual average contribution to TOC during 2008 is 26% at MCOH and 40% at SIN. There is a distinct seasonal variability in WSOC concentrations at both sites with high concentrations during the winter season (0.92±0.49μg m-3 at MCOH and 3.5±2.0μg m-3 at SIN) and very low concentrations during the summer monsoon season (0.08±0.04μg m-3 at MCOH and 0.27±0.20μg m-3 at SIN). The radiocarbon source apportionment of WSOC in winter dry season was similar at MCOH and SIN with 80-85% from biogenic/biomass combustion and the rest from fossil fuel precursors. For the rest of the year, the biogenic/biomass contribution to WSOC is higher at the Indian Ocean site (86-93%) compared to the Indian site (74-83%). In March 2011 the GoPoEx2011 intensive sampling campaign at the Gosan ABC Superstation, Jeju Island, South Korea was dedicated to study atmospheric

  10. Stroke in Asia.

    PubMed

    Thammaroj, Jureerat; Subramaniam, Valarmathi; Bhattacharya, Joti J

    2005-05-01

    The epidemic of cardiovascular disease across most of Asia is at a different stage from that in the West; the incidence and prevalence of stroke are increasing steadily, associated with nutritional changes and aging of the population. Epidemiologic data, crucial in combating stroke, have been relatively sparse in Asian populations, but a few international collaborative studies on stroke have been in progress for several years. Through these, we now know that ischemic stroke is actually the most frequent type of cerebrovascular accident in Asia, although hemorrhagic stroke remains more common in Asia than in the West. Also, the percentage of ischemic stroke attributable to intracranial vascular disease is much higher than in the West. In Japan and a few other countries, stroke rates are declining; however, increasing rates in most other countries make primary prevention of critical importance in minimizing the severe impact of this epidemic in Asia. PMID:16198940

  11. Pass Over Southeastern Asia

    NASA Video Gallery

    This video over Southeastern Asia was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was taken on Oct. 7, 2011, from 12:41:10 to 12:50:46 GMT, on ...

  12. The disappearing Environmental Kuznets Curve: a study of water quality in the Lower Mekong Basin (LMB).

    PubMed

    Wong, Yoon Loong Andrew; Lewis, Lynne

    2013-12-15

    The literature is flush with articles focused on estimating the Environmental Kuznets Curve (EKC) for various pollutants and various locations. Most studies have utilized air pollution variables; far fewer have utilized water quality variables, all with mixed results. We suspect that mixed evidence of the EKC stems from model and error specification. We analyze annual data for four water quality indicators, three of them previously unstudied - total phosphorus (TOTP), dissolved oxygen (DO), ammonium (NH4) and nitrites (NO2) - from the Lower Mekong Basin region to determine whether an Environmental Kuznets Curve (EKC) is evident for a transboundary river in a developing country and whether that curve is dependent on model specification and/or pollutant. We build upon previous studies by correcting for the problems of heteroskedasticity, serial correlation and cross-sectional dependence. Unlike multi-country EKC studies, we mitigate for potential distortion from pooling data across geographically heterogeneous locations by analyzing data drawn from proximate locations within a specific international river basin in Southeast Asia. We also attempt to identify vital socioeconomic determinants of water pollution by including a broad list of explanatory variables alongside the income term. Finally, we attempt to shed light on the pollution-income relationship as it pertains to trans-boundary water pollution by examining data from an international river system. We do not find consistent evidence of an EKC for any of the 4 pollutant indicators in this study, but find the results are entirely dependent on model and error specification as well as pollutant. PMID:24211570

  13. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal

    NASA Astrophysics Data System (ADS)

    López-Moreno, J. I.; Vicente-Serrano, S. M.; BegueríA, S.; GarcíA-Ruiz, J. M.; Portela, M. M.; Almeida, A. B.

    2009-02-01

    This study examines the effects of a large dam on hydrological droughts in the transboundary Tagus River, central Spain and Portugal. The magnitude and duration of droughts are analyzed by comparing a monthly drought index calculated for the flow series upstream and downstream of the Alcántara reservoir. The dam was built in 1969, and the reservoir is the second largest in Europe (3,162 hm3). Water management in the area is complex because of large seasonal and interannual variability in the flow regime, which is characteristic of Mediterranean environments. This paper demonstrates that, as a result of exploitation of the Alcántara reservoir, (1) during periods of water scarcity, the releases in winter and spring are reduced dramatically and the magnitude and duration of summer low flow show a slight increase and (2) the nature of droughts along the Tagus river basin downstream of the dam has shown severe changes since construction of the dam. In fact, during the predam period (1943-1969), droughts were longer and more intense in the Spanish part of the basin than that in the Portuguese part. Since the construction of the Alcántara dam, however, the Portuguese part of the basin has experienced more severe droughts than did the upstream part in terms of both magnitude and duration.

  14. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande.

    PubMed

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A; Romero-Salas, Dora; Feria-Arroyo, Teresa P; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  15. Communication Strategy of Transboundary Air Pollution Findings in a US-Mexico Border XXI Program Project

    NASA Astrophysics Data System (ADS)

    Mukerjee, Shaibal

    2002-01-01

    From 1996 to 1997, the US Environmental Protection Agency (EPA) and the Texas Natural Resource Conservation Commission (TNRCC) conducted an air quality study known as the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP). The study was a US-Mexico Border XXI program project and was developed in response to local community requests on a need for more air quality measurements and concerns about the health impact of local air pollutants; this included concerns about emissions from border-dependent industries in Mexico, known as maquiladoras. The TAPP was a follow-up study to environmental monitoring done by EPA in this area in 1993 and incorporated scientific and community participation in development, review of results, and public presentation of findings. In spite of this, critical remarks were leveled by community activists against the study's preliminary "good news" findings regarding local air quality and the influence of transboundary air pollution. To resolve these criticisms and to refine the findings to address these concerns, analyses included comparisons of daily and near real-time measurements to TNRCC effects screening levels and data from other studies along with wind sector analyses. Reassessment of the data suggested that although regional source emissions occurred and outliers of elevated pollutant levels were found, movement of air pollution across the border did not appear to cause noticeable deterioration of air quality. In spite of limitations stated to the community, the TAPP was presented as establishing a benchmark to assess current and future transboundary air quality in the Valley. The study has application in Border XXI Program or other air quality studies where transboundary transport is a concern since it involved interagency coordination, public involvement, and communication of scientifically sound results for local environmental protection efforts.

  16. Communication strategy of transboundary air pollution findings in a US-Mexico Border XXI program project.

    PubMed

    Mukerjee, Shaibal

    2002-01-01

    From 1996 to 1997, the US Environmental Protection Agency (EPA) and the Texas Natural Resource Conservation Commission (TNRCC) conducted an air quality study known as the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP). The study was a US-Mexico Border XXI program project and was developed in response to local community requests on a need for more air quality measurements and concerns about the health impact of local air pollutants; this included concerns about emissions from border-dependent industries in Mexico, known as maquiladoras. The TAPP was a follow-up study to environmental monitoring done by EPA in this area in 1993 and incorporated scientific and community participation in development, review of results, and public presentation of findings. In spite of this, critical remarks were leveled by community activists against the study's preliminary "good news" findings regarding local air quality and the influence of transboundary air pollution. To resolve these criticisms and to refine the findings to address these concerns, analyses included comparisons of daily and near real-time measurements to TNRCC effects screening levels and data from other studies along with wind sector analyses. Reassessment of the data suggested that although regional source emissions occurred and outliers of elevated pollutant levels were found, movement of air pollution across the border did not appear to cause noticeable deterioration of air quality. In spite of limitations stated to the community, the TAPP was presented as establishing a benchmark to assess current and future transboundary air quality in the Valley. The study has application in Border XXI Program or other air quality studies where transboundary transport is a concern since it involved interagency coordination, public involvement, and communication of scientifically sound results for local environmental protection efforts. PMID:11740622

  17. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande

    PubMed Central

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A.; Romero-Salas, Dora; Feria-Arroyo, Teresa P.; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas–Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico–US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  18. An agent-based modeling approach for determining corn stover removal rate and transboundary effects.

    PubMed

    Gan, Jianbang; Langeveld, J W A; Smith, C T

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers. PMID:24276896

  19. Collaborative science, policy development and program implementation in the transboundary Georgia Basin/Puget Sound ecosystem.

    PubMed

    Fraser, David A; Gaydos, Joseph K; Karlsen, Erik; Rylko, Michael S

    2006-02-01

    The transboundary Georgia Basin Puget Sound ecosystem is situated in the southwest corner of British Columbia and northwest comer of Washington State. While bountiful and beautiful, this international region is facing significant threats to its marine and freshwater resources, air quality, habitats and species. These environmental challenges are compounded by rapid population growth and attendant uiban sprawl. As ecosystem stresses amplified and partnerships formed around possible solutions, it became increasingly clear that the shared sustainability challenges in the Georgia Basin and Puget Sound required shared solutions. Federal, state and provincial institutional arrangements were made between jurisdictions, which formalized small scale interest in transboundary management of this ecosystem. Formal agreements, however, can only do so much to further management of an ecosystem that spans international boarders. A transboundary regional research meeting, the 2003 GB/PS Research Conference, opened the doors for large-scale informal cross-boarder cooperation and management. In addition to cooperation, continued efforts to stem toxic pollution, contain urban growth, and protect and restore ecosystems, require a commitment from scientists, educators and policy makers to better integrate research and science with decision-making. PMID:16502034

  20. An Agent-Based Modeling Approach for Determining Corn Stover Removal Rate and Transboundary Effects

    NASA Astrophysics Data System (ADS)

    Gan, Jianbang; Langeveld, J. W. A.; Smith, C. T.

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  1. Contribution Assessment of Regional Air Pollution over Northeast Asia using CMAQ Source Apportionment Tools

    NASA Astrophysics Data System (ADS)

    Choi, K.; Woo, J.; Kim, H.; Lee, J.; Kim, C.

    2011-12-01

    East Asia is one of the largest emission source regions in the world because of the large population and fast economic growth for several decades. Recent observation from space also demonstrates that emissions in East Asia - especially China - have been increased impressively since 1995. A number of regional scale transport studies using comprehensive 3D modeling system such as CMAQ have been conducted to understand transboundary air pollution. The contribution assessment using such a comprehensive modeling system, however, was not extensively investigated in this region. Air pollution contributions from multiple source types and regions over East Asia were examined using CMAQ based source apportionment tool off-line coupled with a meteorological model (WRF). The simulation was conducted for the entire year of 2009. The CMAQ ozone & particle precursor tagging methodologies (OPTM) source apportionment tool were applied in our study. An anthropogenic emissions inventory and processing methodology have been developed in support of the source-receptor modeling study in East Asia region. Emissions from open biomass burning and biogenic source were also estimated to support air quality contributions assessment from various sources and source types. Remote sensing-based atmosphere information and ground based monitoring data has been included to evaluate the simulation results. The results of our analysis will be presented at the conference.

  2. Literature of Southeast Asia.

    ERIC Educational Resources Information Center

    Echols, John M.

    This paper provides a brief description of the literature of Southeast Asia. This area, which embraces the region south of China and east of India, includes the modern nations of Burma, Thailand, Cambodia, Laos, Vietnam, The Philippines, Malaysia and Indonesia. The earliest historical influence came from India around the beginnings of the…

  3. OCLC in Asia Pacific.

    ERIC Educational Resources Information Center

    Chang, Min-min

    1998-01-01

    Discusses the Online Computer Library Center (OCLC) and the changing Asia Pacific library scene under the broad headings of the three phases of technology innovation. Highlights include WorldCat and the OCLC shared cataloging system; resource sharing and interlibrary loan; enriching OCLC online catalog with Asian collections; and future outlooks.…

  4. Multicultural Central Asia.

    ERIC Educational Resources Information Center

    Boyle, Eric D.

    This article addresses the multicultural aspect of Central Asia in response to the discussion on diversity in U.S. classrooms. Many areas of the world are more diverse than the U.S., and these areas experience successes and failures with many of the same issues the U.S. is currently struggling with. Comparing the U.S. diversity debate with similar…

  5. HRD Issues in Asia.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on human resource development (HRD) issues in Asia. "The Japanese Human Resource Development System" (Kiyoe Harada) provides a comprehensive model of the Japanese HRD system based on the current state of the art, including management practices and issues and trends in Japanese HRD. "Structured…

  6. Planning and Design of Water Resources Systems Under Climate Change and Variability

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.

    2014-12-01

    Regional and local water supplies and demands are impacted by global and national systems: climate, economics, population and energy as well as policies: development, energy, and environmental. These drivers can result in complex interactions that require deeper understanding in order to provide actionable information for water planners and stakeholders to develop strategic plans in the face of a changing and growing world. To add more complexity to this issue is the fact that all these drivers are uncertain and the type of uncertainty is not the same. This talk will address approaches to Water Resource Planning at sub-national water regions, national levels and trans-boundary river basins under a non-stationary hydro-climatic future. Additionally the talk will address the design of specific water resource projects such as reservoirs and hydroplants that are being designed now but will operate far in the future when the hydro-climatology will be very different. Examples will be drawn from recent work in Africa, Eastern Europe and Central Asia, and North America and some insights and outstanding questions will be presented.

  7. The art of trans-boundary governance: the case of synthetic biology.

    PubMed

    Zhang, Joy Y

    2013-09-01

    Synthetic biology raises few, if any, social concerns that are distinctively new. Similar to many other convergent technologies, synthetic biology's interface across various scientific communities and interests groups presents an incessant challenge to political and conceptual boundaries. However, the scale and intensity of these interfaces seem to necessitate a reflection over how corresponding governance capacities can be developed. This paper argues that, in addition to existing regulatory approaches, such capacities may be gained through the art of trans-boundary governance, which is not only attentive to the crossing and erosion of particular boundaries but also adept in keeping up with the dynamics among evolving networks of actors. PMID:24432148

  8. Border Security Fencing and Wildlife: The End of the Transboundary Paradigm in Eurasia?

    PubMed Central

    Linnell, John D. C.; Trouwborst, Arie; Boitani, Luigi; Kaczensky, Petra; Kusak, Josip; Skrbinsek, Tomaz; Buuveibaatar, Bayarbaatar; Bischof, Richard; Breitenmoser, Urs

    2016-01-01

    The ongoing refugee crisis in Europe has seen many countries rush to construct border security fencing to divert or control the flow of people. This follows a trend of border fence construction across Eurasia during the post-9/11 era. This development has gone largely unnoticed by conservation biologists during an era in which, ironically, transboundary cooperation has emerged as a conservation paradigm. These fences represent a major threat to wildlife because they can cause mortality, obstruct access to seasonally important resources, and reduce effective population size. We summarise the extent of the issue and propose concrete mitigation measures. PMID:27331878

  9. Border Security Fencing and Wildlife: The End of the Transboundary Paradigm in Eurasia?

    PubMed

    Linnell, John D C; Trouwborst, Arie; Boitani, Luigi; Kaczensky, Petra; Huber, Djuro; Reljic, Slaven; Kusak, Josip; Majic, Aleksandra; Skrbinsek, Tomaz; Potocnik, Hubert; Hayward, Matt W; Milner-Gulland, E J; Buuveibaatar, Bayarbaatar; Olson, Kirk A; Badamjav, Lkhagvasuren; Bischof, Richard; Zuther, Steffen; Breitenmoser, Urs

    2016-06-01

    The ongoing refugee crisis in Europe has seen many countries rush to construct border security fencing to divert or control the flow of people. This follows a trend of border fence construction across Eurasia during the post-9/11 era. This development has gone largely unnoticed by conservation biologists during an era in which, ironically, transboundary cooperation has emerged as a conservation paradigm. These fences represent a major threat to wildlife because they can cause mortality, obstruct access to seasonally important resources, and reduce effective population size. We summarise the extent of the issue and propose concrete mitigation measures. PMID:27331878

  10. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  11. Southeast Asia: `A robust market`

    SciTech Connect

    Pagano, S.S.

    1997-04-01

    Southeast Asia is emerging as a robust market for exploration and field development activities. While much of the worldwide attention is focused on lucrative deep water drilling and production in the U.S. Gulf of Mexico, Brazil, and West Africa, the burgeoning Pacific Rim region is very much in the spotlight. As the industry approaches the next century. Southeast Asia is a key growth area that will be the focus of extensive drilling and development. Regional licensing activity is buoyant as oil and gas companies continue to express interest in Southeast Asian opportunities. During 1996, about 75 new license awards were granted. This year, at least an equal number of licenses likely will be awarded to international major and independent oil companies. In the past five years, the number of production-sharing contracts and concessions awarded declined slightly as oil companies apparently opted to invest in other foreign markets. Brunei government officials plan to open offshore areas to licensing in 1997, including what may prove to be attractive deep water areas. Indonesia`s state oil company Pertamina will offer 26 offshore tracts under production-sharing and technical assistance contracts this year. Malaysia expects to attract international interest in some 30 blocks it will soon offer under production-sharing terms. Bangladesh expects to call for tenders for an unspecified number of concessions later this year. Nearby, bids were submitted earlier this year to the Australian government for rights to explore 38 offshore areas. Results are expected to be announced by mid-year.

  12. Evaluation of the taxonomic status of water dropwort (Oenanthe, Apiaceae) accessions from East Asia based on nuclear rDNA internal transcribed spacer sequences.

    PubMed

    Fu, S; Li, L N; Long, Z C; Ke, W D; Ye, A H; Guo, Y H; Chen, J M

    2016-01-01

    Oenanthe L. is a taxonomically complex genus, several species of which have long been used as vegetables and traditional medicines in East Asia. In order to clarify the taxonomic status of Oenanthe accessions and provide baseline data for the sustainable use of its genetic resources, we examined sequence variations in the internal transcribed spacer (ITS) region of Oenanthe accessions collected from a wide geographical area in China and its neighboring countries. For comparison, ITS sequences in GenBank for almost all currently reported species of Oenanthe were also included in our analyses. Both phylogenetic tree construction methods (Bayesian inference and maximum likelihood) revealed that the accessions tended to cluster into two groups, which were closely related to O. mildbraedii and O. sarmentosa. However, these two species have never been recorded in China or its neighboring countries. Therefore, it seems probable that in our sampled locations, Oenanthe accessions have been given an incorrect name, such as O. javanica. Future studies should carefully check the morphological characteristics of other Oenanthe species and sequence their ITS regions in order to clarify the taxonomic status of the genus. PMID:27173234

  13. Anthropogenic Climate Change in Asia: Key Challenges

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.

    2009-12-01

    The energy, agricultural, and water sectors in Asia, a vast continent that comprises more than half of the world's population, are crucially vulnerable to shifts in climate. The acceleration of economic development in Asia over the past few decades, the dependence of its huge agricultural economy on rainfall, and its growing energy demands have thrust climate change and its impacts squarely into important sectors of the Asian society. Further, it is likely that there has been significant anthropogenic warming over the past 50 years averaged over the Asian continent (Intergovernmental Panel on Climate Change (IPCC) [2007]; see Figure 1a). Asian megacities are already witnessing stresses in food, water, transportation, health, and air quality. The situation could become even worse with projected changes in temperature and rainfall in the 21st century, coupled with the likelihood that climate change will exacerbate extremes.

  14. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  15. Modeling study of surface ozone source-receptor relationships in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yang, Wenyi; Wang, Zifa; Chen, Huansheng; Hu, Bo; Li, Jianjun.; Sun, Yele.; Fu, Pingqing; Zhang, Yuqia

    2016-01-01

    Ozone source-receptor relationships over East Asia have been quantitatively investigated using a chemical transport model including an on-line tracer-tagged procedure, with a particular focus on the source regions of different daily ozone mixing ratios. Comparison with observations showed that the model reproduced surface ozone and tropospheric nitrogen dioxide column densities. Long-range transport from outside East Asia contributed the greatest fraction to annual surface ozone over remote regions, the Korean peninsula, and Japan, reaching 50%-80% of total ozone. Self-contributions accounted for 5%-20% ozone in the Korean peninsula and Japan, whereas the contribution of trans-boundary transport from photochemical production in China was less than 5%-10%. At extra-high ozone levels, self-contributions reached 50%-60% in the Korean peninsula. Ozone source-receptor relationships showed high seasonal variability over East Asia. Significant transport was also found between sub-regions in China, which presents a great challenge to policy-makers because most current control strategies are confined to specific regions.

  16. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game.

    PubMed

    Chang, Shuhua; Wang, Xinyu; Wang, Zheng

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  17. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game

    PubMed Central

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions’ cooperative and noncooperative optimal emission paths, which maximize the regions’ discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  18. Glaciers of Asia

    USGS Publications Warehouse

    Williams, Richard S., Jr.; Ferrigno, Jane G.

    2010-01-01

    -glacier systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.

  19. Emerging drug problems in Asia

    PubMed Central

    Bart, Gavin

    2014-01-01

    This session, “Emerging Drug Problems in Asia,” focused on emerging drug problems in Asia. Dr. Juana Tomás-Rosselló discussed “East and Southeast Asia: Emerging Drug Problems and Response” and Dr. Wei J. Chen discussed “Ketamine Use among Regular Tobacco and Alcohol Users as Revealed by Respondent Driven Sampling in Taipei: Prevalence, Expectancy, and Users' Risky Decision Making.” PMID:25267884

  20. Gondwana to Asia: Preface

    NASA Astrophysics Data System (ADS)

    Kwon, Sanghoon; Kim, Sung Won; Santosh, M.

    2014-12-01

    The Korean Peninsula, China, Japan, India, Sri Lanka, and Timor, among other regions, preserve important clues for the tectonic evolution of present-day Asia derived from the break-up of Mesozoic supercontinent Pangea. Evidence for the formation, evolution, and destruction of Earth's first coherent supercontinent Columbia during Paleoproterozoic, followed by the Neoproterozoic Rodinia and late Neoproterozoic-Cambrian Gondwana supercontinents are also recorded in many of these regions. The debates surrounding some of these aspects and the state-of-the-art knowledge from these terranes were the focal themes of discussion during the "2013 Annual Convention of the International Association for Gondwana Research (IAGR) and the 10th Gondwana to Asia International Conference" held at the Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea during September 30th to October 2nd 2013. The conference was attended by more than 200 delegates representing 11 countries. The discussion continued at the "International conference on Continental Dynamics" held in Xian, China during April 2014. This special issue of Journal of Asian Earth Sciences, assembling 24 research papers is an outcome of the deliberations under various sessions of the above conferences. In assembling this special issue, we attempt to provide evidence-driven discussions on the construction and destruction of Precambrian and Paleozoic supercontinents preserved in present-day Asian continents. We also address a variety of themes including magmatic, metamorphic and metallogenic processes, as well as issues related to natural environment. We hope that the papers assembled in this special issue offer new insights into some of the key issues surrounding the geological, geophysical and geodynamic milieu in Asia, and a better understanding of analogous processes in other parts of the world.

  1. Human Population Admixture in Asia

    PubMed Central

    2012-01-01

    Genetic admixture in human, the result of inter-marriage among people from different well-differentiated populations, has been extensively studied in the New World, where European colonization brought contact between peoples of Europe, Africa, and Asia and the Amerindian populations. In Asia, genetic admixing has been also prevalent among previously separated human populations. However, studies on admixed populations in Asia have been largely underrepresented in similar efforts in the New World. Here, I will provide an overview of population genomic studies that have been published to date on human admixture in Asia, focusing on population structure and population history. PMID:23166524

  2. Labor migration in Asia.

    PubMed

    Martin, P L

    1991-01-01

    "A recent conference sponsored by the United Nations Center for Regional Development (UNCRD) in Nagoya, Japan examined the growing importance of labor migration for four major Asian labor importers (Japan, Hong Kong, Malaysia, and Singapore) and five major labor exporters (Bangladesh, Korea, Pakistan, Philippines, and Thailand).... The conference concluded that international labor migration would increase within Asia because the tight labor markets and rising wages which have stimulated Japanese investment in other Asian nations, for example, have not been sufficient to eliminate migration push and pull forces...." PMID:12316776

  3. Mortality in Asia.

    PubMed

    1981-01-01

    Although the general trend in mortality between 1950 and 1975 in South and East Asia has been downward, there is considerable country-to-country variation in the rate of decline. In countries where combined economic, social, and political circumstances resulted in controlling the disease spectrum (e.g., China, Malaysia, Sri Lanka), mortality levels declined to those seen in low-mortality countries. In most of the large countries of the region however, mortality declined at a slower rate, even slowing down considerably in the 1970's while the death rates remained high (e.g., India, Bangladesh, Thailand, Philippines); this slowing down of mortality level is attributed essentially to the poverty-stricken masses of society which were not able to take advantage of social, technological, and health-promoting behavioral changes conducive to mortality decline. Infant mortality levels, although declining since 1950, followed the same dismal pattern of the general mortality level. The rate varies from less than 10/1000 live births (Japan) to more than 140/1000 (Bangladesh, Laos, Nepal). Generally, rural areas exhibited higher infant mortality than urban areas. The level of child mortality declines with increases in the mother's educational level in Bangladesh, India, Indonesia, Sri Lanka, and Thailand. The largest decline in child mortality occurs when at least 1 parent has secondary education. The premature retardation of mortality decline is caused by several factors: economic development, nutrition and food supply, provision and adequacy of health services, and demographic trends. The outlook for the year 2000 for most of Asia's countries will depend heavily on significant population increases. In most countries, particularly in South Asia, population is expected to increase by 75%, much of it in rural areas and among poorer socioeconomic groups. In view of this, Asia's health planners and policymakers will have to develop health policies which will strike a balance

  4. Underground laboratories in Asia

    SciTech Connect

    Lin, Shin Ted; Yue, Qian

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  5. Projected effect of 2000-2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport

    EPA Science Inventory

    We investigate projected 2000–2050 changes in concentrations of aerosols in China and the associated transboundary aerosol transport by using the chemical transport model GEOS-Chem driven by the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 at 4° × ...

  6. COMMUNICATION STRATEGY OF TRANSBOUNDARY AIR POLLUTION FINDINGS IN A U.S.-MEXICO BORDER XXI PROGRAM PROJECT

    EPA Science Inventory

    From 1996 to 1997, the U.S. Environmental Protection Agency (EPA) and the Texas Natural Resource Conservation Commission (TNRCC) conducted an air quality study known as the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP). The study was a U.S.-Mexico Border X...

  7. Pharmacovigilance in Asia

    PubMed Central

    Biswas, Pipasha

    2013-01-01

    An increase in drug safety concerns in recent years with some high profile drug withdrawals have led to raising the bar by various stakeholders more importantly by the regulatory authorities. The number of Adverse Drug Reactions (ADRs) reported have also resulted in an increase in the volume of data handled and to understand pharmacovigilance a high level of expertise is required to rapidly detect drug risks as well as to defend the product against an inappropriate removal. Proactive pharmacovigilance throughout the product life cycle is the way forward and the future direction for drug safety in Asia. It has been a constant challenge to standardize pharmacovigilance in Asia, in the context of clinical trials and post-marketing pharmacovigilance due to varied geaographical, cultural and medical practices in these regioon. While major advancements of the discipline of pharmacovigilance have taken place in the West, not much has been achieved in Asian countries, though several attempts have been taken. However, with more clinical trials and clinical research activity being conducted in the Asian continent, there is an immense need to understand and implement pharmacovigilance. For this to happen, the mind set of people working in regulatory agencies, the Pharmaceutical companies, prescribers and patients/consumers need to change. PMID:24347987

  8. Uniportal VATS in Asia

    PubMed Central

    2013-01-01

    The history of uniportal Video-assisted thoracic surgery (VATS) stretches back almost a decade with the treatment of simple thoracic conditions. As the technique matures with increasing ability to tackle the full spectrum of thoracic surgical diseases, most notably major lung resections for lung tumours, the spread of uniportal VATS across the globe has been phenomenal. VATS centres in Asia are now performing uniportal VATS, and developing their individual styles and techniques with great successes. The enthusiasm from surgeons, demand from patients, as well as the dynamism and diversity of uniportal VATS in the region have helped fuel this excitement and change. The 1st Asian Single Port VATS Symposium in 2013 heralded the beginning of academic exchange between uniportal VATS centres in Asia and experts from around the world. Wetlabs in the region will provide further training for thoracic surgeons interested in super-specializing in uniportal VATS. The future of this approach will hinge on good regional collaboration, research and training. PMID:24040529

  9. Wintertime simultaneous measurement and model analysis of fine- and coarse-mode sulfateand nitrate over East Asia

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; PAN, X.; Kuribayashi, M.; Hara, Y.; Yamamoto, S.; Shimohara, T.

    2014-12-01

    Sulfate and nitrate aerosols are major component of PM2.5. In East Asia, it is well known that sulfate aerosols are widely distributed due to large-scale trans-boundary air pollution. For nitrate aerosols, it is considered that fine-mode nitrate can be converted into coarse-mode nitrate on reactions with sea-salt aerosols over East China Sea when transported from China to Japan, however, contributions of trans-boundary air pollution on fine-mode nitrate is not clarified. We observed sulfate and nitrate aerosols on the basis of ACSA (Aerosol Chemical Speciation Analyzer; KIMOTO Electric Co., LTD.) in high-temporal resolution (1 hr) on fine- and coarse-mode at Dazaifu, Fukuoka located in western-part of Japan. Two-way nested (81-27 km) simulation in East Asia by WRF-CMAQ modeling system was developed to investigate the source contributions of fine- and coarse-mode nitrate when the trans-boundary air pollution was occurred. Observed monthly mean concentration in January 2014 at Dazaifu site were 3.41 μg/m3 for fine-mode nitrate, 1.51 μg/m3 for coarse-model nitrate, and 3.81 μg/m3 for fine-mode sulfate. Simulation in fine scale resolution can reproduce the observed concentration with 4.79 μg/m3 (r = 0.60) for fine-mode nitrate, 1.24 μg/m3 (r = 0.51) for coarse-model nitrate, and 3.36 μg/m3 (r = 0.46) for fine-mode sulfate. At urban site in Japan, local-scale contributions are also considered to attribute fine-mode nitrate, and in order to further examine the contributions of trans-boundary air pollution, emission sensitivity analysis with switching off the anthropogenic emissions from Japan was conducted. This sensitivity simulation calculated that monthly mean concentration of 1.19 μg/m3 for coarse-mode nitrate and 3.26 μg/m3 for fine-mode sulfate, suggesting the dominance of trans-boundary air pollution for coarse-mode nitrate and fine-mode sulfate. On the other hand, monthly mean concentration was 1.80 μg/m3 for fine-mode nitrate on sensitivity simulation

  10. Water stress, energy security and adaptation under changing climate: case study of Zeravshan river

    NASA Astrophysics Data System (ADS)

    Khujanazarov, T.; Namura, R.; Touge, Y.; Tanaka, K.; Toderich, K.

    2014-12-01

    Zeravshan a transboundary river in Central Asia is a snow-glacier fed river originating in Tajikistan that use only 4% of its resources, further flows to Uzbekistan who fully utilize river resources for irrigation. Such disparity in river usage causes Tajikistan to consider heavy investments in hydropower dams that will increase social and political tension between counterparts. Traditional irrigation under arid climate causes high rates of water losses in infiltration and evapotranspiration leading to land. Water stress analysis and water resources distribution under climate change and possible adaptation measures were investigated. The framework includes model to analyze available water resources and assessment of the basin efficiency including dam operation and irrigation demand, based on it adaptation measures were suggested. Comparison of the increasing irrigation efficiency in downstream to the 10% rate can decrease water requirements on early stages, however there are still large deficiency of the water resources in the peak irrigation season. Dam operation to benefit irrigation has positive impact while can't compensate the needs of energy in winter months. Cooperation of the both sides are required to address such changes in river flow as interest lies on opposite side. Increasing irrigation efficiency through using return marginal waters and salt tolerant crops under water stress were suggested. The plants were tested on several sites in the downstream of the river using mineralized return waters. The results suggest that using such plants can provide additional outcome for the local community while decreasing demand of the water resources and improving soil conditions. Combination of dam operation for energy production and increasing irrigation efficiency additionally by using return waters can provide a beneficial scenario for the region under future climate change. However, it will require strong political will to address energy swap to achieve nexus