Science.gov

Sample records for asia water resources

  1. South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

    SciTech Connect

    RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

    2000-04-01

    To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

  2. Some aspects of integrated water resources management in central Asia

    NASA Astrophysics Data System (ADS)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  3. Some aspects of integrated water resources management in central Asia

    NASA Astrophysics Data System (ADS)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  4. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  5. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  6. Changes of Glaciation and Their Probable Impact on Water Resources in Central Asia

    NASA Astrophysics Data System (ADS)

    Severskiy, I.

    2009-04-01

    In the Central Asia the main limiting factor of sustainable development is increasing water shortage. Even now the overwhelming part of territory of Kazakhstan and the adjacent countries of Central Asia are characterized by a condition of the strongest water stress. Fresh water deficiency is, to this or that extent, observed practically on all the territory of Central Asia and transboundary character of the main rivers is one of the main risk factors for sustainable development of national economy of the countries in this region. For the last 20 years a great number of scientific publications appeared in which their authors express an increasingly serious fears about significant reduction of water resources in the arid regions of the world as a reaction to global warming. One of the arguments substantiating such forecasts is the indisputable fact of a continuous intensive degradation of glaciers. Predominating opinion about the inevitability of glaciers disappearance in Central Asia Mountains cannot be accepted as an axiom. Taking into account stability in the sum of precipitation and especially in the snow resources, one can suppose that glaciers in this region will not disappear during this century. Despite the reduction of glaciers, annual runoff volumes and runoff distribution within a year remained unchanged during the last decades. During the same period, norms of atmospheric precipitation and maximum snow-water storage in the zone of runoff formation remained stable. All these suggest the existence of a certain compensation mechanism. Research, based on data analysis of repeated photogrammetric surveys of a group of glaciers and temperature regime of permafrost in Zailiyskiy Alatau range (Northern Tien Shan), suggests that such mechanism can be more and more significant (with climate warming) participation of melting waters of underground ice (buried glaciers, rock glaciers, permafrost) in runoff formation. During last decade the Global Climate system

  7. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with

  8. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  9. Contemporary changes of water resources, water and land use in Central Asia based on observations and modeling.

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Prousevitch, A.; Sokolik, I. N.; Lammers, R. B.

    2015-12-01

    Water is a key agent in Central Asia ultimately determining human well-being, food security, and economic development. There are complex interplays among the natural and anthropogenic drivers effecting the regional hydrological processes and water availability. Analysis of the data combined from regional censuses and remote sensing shows a decline in areas of arable and irrigated lands and a significant decrease in availability of arable and irrigated lands per capita across all Central Asian countries since the middle of 1990thas the result of post-Soviet transformation processes. This change could lead to considerable deterioration in food security and human system sustainability. The change of political situation in the region has also resulted in the escalated problems of water demand between countries in international river basins. We applied the University of New Hampshire - Water Balance Model - Transport from Anthropogenic and Natural Systems (WBM-TrANS) to understand the consequences of changes in climate, water and land use on regional hydrological processes and water availability. The model accounts for sub-pixel land cover types, glacier and snow-pack accumulation/melt across sub-pixel elevation bands, anthropogenic water use (e.g. domestic and industrial consumption, and irrigation for most of existing crop types), hydro-infrastructure for inter-basin water transfer and reservoir/dam regulations. A suite of historical climate re-analysis and temporal extrapolation of MIRCA-2000 crop structure datasets has been used in WBM-TrANS for this project. A preliminary analysis of the model simulations over the last 30 years has shown significant spatial and temporal changes in hydrology and water availability for crops and human across the region due to climatic and anthropogenic causes. We found that regional water availability is mostly impacted by changes in extents and efficiency of crop filed irrigation, especially in highly arid areas of Central Asia

  10. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    PubMed Central

    Giang, Pham Quy; Sakata, Masahiro; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season. PMID:25243206

  11. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

    PubMed

    Giang, Pham Quy; Toshiki, Kosuke; Sakata, Masahiro; Kunikane, Shoichi; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season. PMID:25243206

  12. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as

  13. Future of water resources in the Aral Sea Region, Central Asia - Reality-checked climate model projections

    NASA Astrophysics Data System (ADS)

    Asokan, Shilpa M.; Destouni, Georgia

    2014-05-01

    The future of water resources in a region invariably depends on its historic as well as present water use management policy. In order to understand the past hydro-climatic conditions and changes, one needs to analyze observation data and their implications for climate and hydrology, such as Temperature, Precipitation, Runoff and Evapotranspiration in the region. In addition to the changes in climate, human re-distribution of water through land- and water­use changes is found to significantly alter the water transfer from land to atmosphere through an increase or decrease in evapotranspiration. The Aral region in Central Asia, comprising the Aral Sea Drainage Basin and the Aral Sea, is an example case where the human induced changes in water-use have led to one of the worst environmental disasters of our time, the desiccation of the Aral Sea. Identification of the historical hydro-climatic changes that have happened in this region and their drivers is required before one can project future changes to water and its availability in the landscape. Knowledge of the future of water resources in the Aral region is needed for planning to meet increasing water and food demands of the growing population in conjunction with ecosystem sustainability. In order to project future scenarios of water on land, the Global Climate Model (GCM) ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) was analyzed for their performance against hydrologically important, basin-scale observational climate and hydrological datasets. We found that the ensemble mean of 22 GCMs over-estimated the observed temperature by about 1°C for the historic period of 1961-1990. For the future extreme climate scenario RCP8.5 the increase in temperature was projected to be about 5°C by 2070-2099, the accuracy of which is questionable from identified biases of GCMs and their ensemble results compared with observations for the period 1961-1990. In particular, the water balance components

  14. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  15. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    SciTech Connect

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peats and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.

  16. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region. PMID:24898296

  17. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    NASA Astrophysics Data System (ADS)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  18. Petroleum systems, resources of Southeast Asia, Australasia

    SciTech Connect

    Howes, J.

    1997-12-15

    The Southeast Asia-Australasia region has over 100 productive petroleum systems ranging in age from the Paleozoic to the Pliocene. Plate tectonics have played a fundamental role in controlling the distribution and character of the region`s petroleum systems. There is a clear division between those systems on the Eurasian plate and those on the Indo-Australian plate. The distribution of significant oil and gas resources is highly concentrated in just a few chrono-stratigraphic units. Early Tertiary Paleogene source rocks account for over 50% of the region`s in-place petroleum resources. This article summarizes the region`s systems and resources, and compares and contrasts some of their essential elements in Southeast Asia and Australasia. With average production of 3.2 million b/d of oil and 18 bscfd of gas, the region accounts for almost 6% of world oil and gas production.

  19. Water Resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1973-01-01

    Uses of ERTS-1 imagery and data for water resources surveys and management are summarized. Areas discussed are: (1) land use and geology; (2) flood plain and flood inundation mapping; (3) snow cover mapping; (4) glacier observations; (5) data collection systems; (6) surface waters; (7) wetlands mapping; (8) water quality; (9) soil mapping; (10) phreatophyte and riparian vegetation mapping; and (11) evapotranspiration.

  20. Water resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.

    1973-01-01

    The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.

  1. Comparative analysis of two hydrological models with different glacier parameterisations for climate impact assessment and water resources management in the Syrdarya Basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Duethmann, Doris; Agaltseva, Natalya; Merkushkin, Alexander; Pak, Alexander; Kriegel, David; Huss, Matthias; Güntner, Andreas; Merz, Bruno; Unger-Shayesteh, Katy; Mannig, Birgit; Paeth, Heiko; Vorogushyn, Sergiy

    2014-05-01

    Central Asian river basins in general and zones of run-off formation in particular are currently experiencing the impact of increasing temperatures and changes in precipitation. The headwaters thus exhibit negative glacier mass balances, decreasing glacierisation, changes in snow cover characteristics and changing runoff response. These changes are likely to intensify in future under the changing climate. Both hydropower industry and irrigated agriculture in the downstream areas strongly depend on the water amount, its seasonal and long-term distribution. This fact calls for an effort to reliably assess water availability in the runoff formation zone of Central Asia in order to improve water management policy in the region. One of the approaches to assessment of water resources is the evaluation of climate scenarios with the climate-and-hydrology model chain. Application of several models allows reducing the modeling uncertainty and proceeding with more robust water balance components assessment. We present the comparison of the two hydrological models AISHF (Automated Information System for Hydrological Forecasting) developed at the Centre for Hydrometeorology of Uzbekistan and WASA run at GFZ Potsdam, implemented for the Naryn and Karadarya basins (Syrdarya). These models use different parameterization and calibration schemes. Whereas in the AISHF model glacier dynamics is considered in scenarios of glacier area loss, the WASA model simulates continuous glacier mass balance, glacier area and volume evolution based on meteorological drivers. Consideration of initial glacier volume and its temporal dynamics can be essential for climate impact assessment in transient model simulations. The impact of climate change scenarios, developed with the regional climate model REMO at the University of Würzburg, are compared with respect to total discharge dynamics and runoff contributions from glacier, snowmelt and rainfall. Implications of water availability assessment

  2. Undiscovered petroleum resources of south Asia

    SciTech Connect

    Kingston, J.

    1986-05-01

    Sedimentary basins of south Asia (Pakistan, India, Bangladesh, and Burma) evolved from two tectonic events: (1) separation of India from Gondwana, and (2) northward movement of the India block, shouldering past and obliquely subducting under margins of previously arrived blocks (Afghan on the west and Sunda - Burma - on the east) before colliding with the Asian continental mass. The first event resulted in a rifted continental-margin basinal trend along the west coast of India and a similar trend along the east coast. The second event caused three trenches, Indus basin on the west, Bengal-Assam basins on the east, and sub-Himalayan basins to the north. Burma is the fore-arc basins of the eastern oblique subduction. Taking into account various geologic factors (reservoirs, traps, source, seal, and migration-timing), the authors estimated six most likely occurrences of undiscovered recoverable petroleum resources. (1) The western rifted margin, the richest trend probably because of its relatively high geothermal gradient, is assessed at 1.3 billion bbl of oil and 13.2 tcf of gas; (2) the eastern rifted margin at 0.82 billion bbl of oil and 10.2 tcf of gas; (3) the western trench (gas-prone) at 0.11 billion bbl of oil and 8.1 tcf of gas; (4) the eastern trench (gas-prone), assessed higher than the western trench because of more favorable reservoir properties, at 0.10 billion bbl of oil and 17.5 tcf of gas; (5) the northern trench, the poorest trend mostly because of the absence of properly matured source rocks, at 0.10 billion bbl of oil and 0.91 tcf of gas; and (6) the Burma basin, which received a relatively high assessment for a fore-arc basin because of the very thick stratigraphic section, at 0.56 billion bbl of oil and 1.78 tcf of gas.

  3. Water resources

    NASA Technical Reports Server (NTRS)

    Simons, D. B.

    1975-01-01

    Applications of remote sensing technology to analysis of watersheds, snow cover, snowmelt, water runoff, soil moisture, land use, playa lakes, flooding, and water quality are summarized. Recommendations are given for further utilization of this technology.

  4. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  5. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  6. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in the third section…

  7. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  8. Security of water, energy, and food nexus in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Endo, A.; Fujii, M.; Shoji, J.; Baba, K.; Gurdak, J. J.; Allen, D. M.; Siringan, F. P.; Delinom, R.

    2014-12-01

    Water, energy, and food are the most important and fundamental resources for human beings and society. Demands for these resources are escalating rapidly because of increases in populations and changes in lifestyles. Therefore intensive demand for those resources makes conflicts between resources. Securities of water, energy, and food are treated separately, however they should be considered as one integrated matter, because water-energy-food are connected and it makes nexus and tradeoff. Security in terms of self-production, diversity of alternatives, and variability are evaluated for water, energy and food for thirty two countries in the Asia-Pacific region. The water and energy nexus includes water consumption for the cooling of power plant systems, water use for hydro power generation, and energy consumption for water allocation and pumping. The water and food nexus consists of water consumption for agriculture and aquaculture. The energy and food nexus includes energy consumption for food production and biomass for energy. Analyses of 11 countries within the Asia- Pacific region show that energy consumption for fish is the largest among foods in Japan, Philippines, and Peru, while energy consumption for cereals is the largest among foods in Canada, US, Indonesia, and others. Water consumption for different types of food and energy are also analyzed, including nexus ratio to total water consumption. The water-energy-food nexus at a local level in the Asia Pacific region are examined by the Research Institute for Humanity and Nature project "Human environmental security in Asia Pacific Ring of Fire". Themes including geothermal power plants for energy development and hot springs as water, shale gas for energy development and water consumption/contamination, aquaculture for food and water contamination are used to evaluate the water-energy-food nexus in the Asia-Pacific region.

  9. Developing Our Water Resources

    ERIC Educational Resources Information Center

    Volker, Adriaan

    1977-01-01

    Only very recently developed as a refined scientific discipline, hydrology has to cope with a complexity of problems concerning the present and future management of a vital natural resource, water. This article examines available water supplies and the problems and prospects of water resource development. (Author/MA)

  10. Analyzing water resources

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  11. Splash! Water Resource Education.

    ERIC Educational Resources Information Center

    Southwest Florida Water Management District, Brooksville.

    This set of activities is designed to bring water resource education into the middle school classroom using an interdisciplinary approach. The packet contains timely, localized information about the water resources of west central Florida. Each activity is aligned to middle-school Sunshine State Standards. These hands-on, minds-on activities can…

  12. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  13. Protecting Our Water Resources.

    ERIC Educational Resources Information Center

    Jewett, Jon

    1996-01-01

    Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)

  14. Water - an inexhaustible resource?

    NASA Astrophysics Data System (ADS)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  15. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  16. Water resources, summary

    NASA Technical Reports Server (NTRS)

    Simons, D. B.

    1975-01-01

    The application of remote sensing products to the development and understanding of water resources problems is considered. Geology and hydrogeology, analysis of watersheds, snow and ice, prediction of runoff from snowmelt, hydrologic land use classifications, soil moisture, evapotranspiration, flood hazards, and water quality surveys are among the topics discussed. Suggestions for further use of remotely sensed data are given along with increased user requirements.

  17. Inland water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The work is reported of the panel concerning the application of space technology to the improved management of the nation's inland resources. The progress since the 1967-68 study is briefly reviewed. The data needed for the management of inlet water ways, and the potential benefits of better management are discussed along with 16 proposed demonstration projects.

  18. Water-related problems of central Asia: some results of the (GIWA) International Water Assessment Program.

    PubMed

    Severskiy, Igor Vasilievich

    2004-02-01

    This paper presents results of the research under the program Global International Waters Assessment (GIWA) for the Aral Sea basin (Subregion 24 of the GIWA program). These results show that the detemining factor for the region is freshwater shortage and the main issue is modification of stream flow. According to GIWA assessment estimations, freshwater shortage is responsible for about 70% of the developmental problems in the region. The current economy is developing under conditions of increasing water deficiency. In spite of increasing efforts by the governments of the countries in the region, and by the international community, the situation in regard to water supply and economic objectives in the countries of central Asia remains tense and shows clear tendencies towards aggravation and conflict. The main causes for this sharpening of ecological and socioeconomic conditions in the region are analyzed, and measures to mitigate stress in transboundary water-resources use are presented. PMID:15083650

  19. Water resource systems group

    NASA Astrophysics Data System (ADS)

    Stedinger, Jery R.; Lettenmaier, Dennis P.

    The 11th meeting of the Water Resource Systems Group was held at the University of Washington (Seattle), August 7-8, 1987. These systems group meetings, which are informal gatherings of professionals who have an interest in the educational and research aspects of water resources systems analysis, have usually been held on university campuses. The 30 attendees of the 1987 meeting represented a cross section of university faculty and graduate students, government managers and researchers, and engineering consultants.The meeting opened with short discussions by Steve Burges (University of Washington), Chuck Howard (CDD Howard and Associates, Victoria, Canada), David Dawdy (consultant, San Francisco, Calif.), and Jon Liebman (University of Illinois, Urbana) outlining their views of current issues in the water resources area. Burges emphasized the limitations and inadequacies of many of the models currently used in hydrology: rainfall runoff models may not adequately capture the physical characteristics of the movement of water into channels, vadose and saturated zone pollutant transport models are incapable of reproducing many of the features observed in the field, and many streamflow forecasting models used for reservoir operations have been constructed to reproduce average conditions but break down under the extreme conditions (floods and droughts) where they are most needed.

  20. Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Located in the inland arid area of central Asia and northwest China, Xinjiang is recently getting more concerns on soil water erosion issues, which is highly related with the sustainable utilization of barren soil and limited water resources. Historical soil erosion data were analyzed to determine t...

  1. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service

  2. Advances in water resources technology

    NASA Astrophysics Data System (ADS)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  3. Optimizing the Water-Energy-Food Nexus in the Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto; Allen, Diana; Gurdak, Jason

    2013-11-01

    Climate change and economic development are causing increased pressure on global water, energy, and food resources, presenting increased levels of trade-offs and conflicts among these resources and stakeholders. Because these resources are interconnected, policy development and resource management require careful consideration of the complex interconnections between nature and society. A balance between risk and resilience is critical for achieving human and environmental security, particularly in Asia's region within the "Ring of Fire," which is experiencing drastic social change alongside the huge potential risks and benefits associated with development. The 2011 Fukushima nuclear accident and aftermath underscore the importance of developing policy and management options that maximize security and minimize risk within the water-energy-food (WEF) nexus.

  4. Optimizing the Water-Energy-Food Nexus in the Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto; Allen, Diana; Gurdak, Jason

    2013-12-01

    Climate change and economic development are causing increased pressure on global water, energy, and food resources, presenting increased levels of trade-offs and conflicts among these resources and stakeholders. Because these resources are interconnected, policy development and resource management require careful consideration of the complex interconnections between nature and society. A balance between risk and resilience is critical for achieving human and environmental security, particularly in Asia, a region within the "Ring of Fire," which is experiencing drastic social change alongside the huge potential risks and benefits associated with development. The 2011 Fukushima nuclear accident and aftermath underscore the importance of developing policy and management options that maximize security and minimize risk within the water-energy-food (WEF) nexus.

  5. Karst water resources

    NASA Astrophysics Data System (ADS)

    The Administrative Committee for the International Symposium on Karst Water Resources met on November 12, 1984, at Hacettepe University in Ankara, Turkey. In attendance were representatives of most of the various Turkish government agencies and universities, the International Association of Hydrological Sciences (IAHS), and the United Nations, sponsors of the symposium. Under the chairmanship of M. Koksoy, Vice Rector of Hacettepe University, the group elected Gültekin Günay as Chairman and IAHS representative Ivan Johnson of Colorado as Vice Chairman of the Symposium Organizing Committee. V. Yevjevich, George Washington University, was not present but was elected Technical Program Chairman. Decisions also were made on the chairmen and members of a variety of subcommittees of the Local Arrangements Committee. In several meetings later in November a very interesting postsymposium technical field trip was planned.

  6. Integrated Water Resources Management: A Global Review

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  7. Scientific Allocation of Water Resources.

    ERIC Educational Resources Information Center

    Buras, Nathan

    Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…

  8. South Asia transboundary water quality monitoring workshop summary report.

    SciTech Connect

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of

  9. Water resources in the Everglades

    USGS Publications Warehouse

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  10. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    NASA Astrophysics Data System (ADS)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  11. Graduate Studies in Water Resources.

    ERIC Educational Resources Information Center

    Universities Council on Water Resources.

    This brochure is the third edition of a publication designed to give brief information about educational opportunities in the United States for graduate studies in water resources. The 65 universities listed from 42 states are all members of the Universities Council on Water Resources. For each university, a brief description of the program is…

  12. Game theory and water resources

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2010-02-01

    SummaryManaging water resources systems usually involves conflicts. Behaviors of stakeholders, who might be willing to contribute to improvements and reach a win-win situation, sometimes result in worse conditions for all parties. Game theory can identify and interpret the behaviors of parties to water resource problems and describe how interactions of different parties who give priority to their own objectives, rather than system's objective, result in a system's evolution. Outcomes predicted by game theory often differ from results suggested by optimization methods which assume all parties are willing to act towards the best system-wide outcome. This study reviews applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. The paper illustrates the dynamic structure of water resource problems and the importance of considering the game's evolution path while studying such problems.

  13. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  14. Crop-specific seasonal estimates of irrigation water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  15. Water Conservation Resource List.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  16. Preliminary publications Book 1 from Project on Mineral Resources, Metallogenesis and Tectonics of Northeast Asia

    USGS Publications Warehouse

    Ariunbileg, Sodov; Badarch, Gombosuren; Berzin, Nikolai A.; Bulgatov, Alexander N.; Chimed, Noosoi; Deikunenko, Aleksey V.; Dejidmaa, Gunchin; Diggles, Michael F.; Distanov, Elimir G.; Dorjgotov, Dangindorjiin; Gerel, Ochir; Gordienko, Ivan V.; Gotovsuren, Ayurzana; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Koch, Richard D.; Miller, Robert J.; Nokleberg, Warren J.; Obolenskiy, Alexander A.; Ogasawara, Masatsugu; Orolmaa, Demberel; Oxman, Vladimir S.; Parfenov, Leonid M.; Popeko, Ludmila I.; Prokopiev, Andrey V.; Smelov, Alexander P.; Sotnikov, Vitaliy I.; Sudo, Sadahisa; Timofeev, Vladimir F.; Tret'yakov, Felix F.; Vernikovsky, Valery A.; Ye, Mao; Zadgenizov, Alexander P.

    1999-01-01

    This report consists of preliminary data tables, maps, and interpretative articles compiled in late 1997 and early 1998 for a new project on the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia (Eastern and Southern Siberia, Mongolia, North-eastern China, South Korea, and Japan).

  17. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  18. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  19. Water Resources Data, Louisiana, Water Year 2001

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Sasser, D.C., Jr.; Walters, David J.

    2002-01-01

    Water resources data for the 2001 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 71 gaging stations; stage only for 73 gaging stations and 7 lakes; water quality for 66 surface-water stations (including 39 gaging stations) and 92 wells; and water levels for 205 observation wells. Also included are data for 166 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  20. Water resources data, Louisiana, water year 2003

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Ross, Garron B.; Sasser, D.C., Jr.; Walters, D.J.

    2004-01-01

    Water resources data for the 2003 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 76 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 56 surface-water stations (including 44 gaging stations) and 142 wells; and water levels for 313 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal and State agencies in Louisiana.

  1. Water Resources Data, Louisiana, Water Year 2000

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Sasser, D.C., Jr.; Walters, David J.

    2001-01-01

    Water resources data for the 2000 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 66 gaging stations; stage only for 70 gaging stations and 7 lakes; water quality for 45 surface-water stations (including 25 gaging stations) and 108 wells; and water levels for 221 observation wells. Also included are data for 204 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  2. Population momentum and the demand on land and water resources

    PubMed Central

    Fischer, G.; Heilig, G. K.

    1997-01-01

    Future world population growth is fuelled by two components: the demographic momentum, which is built into the age composition of current populations, and changes in reproductive behaviour and mortality of generations yet to come. This paper investigates, by major world regions and countries, what we know about population growth, what can be projected with reasonable certainty, and what is pure speculation. The exposition sets a frame for analysing demographic driving forces that are expected to increase human demand and pressures on land and water resources. These have been contrasted with current resource assessments of regional availability and use of land, in particular with estimates of remaining land with cultivation potential. In establishing a balance between availabilty of land resources and projected needs, the paper distinguishes regions with limited land and water resources and high population pressure from areas with abundant resources and low or moderate demographic demand. Overall, it is estimated that two-thirds of the remaining balance of land with rainfed cultivation potential is currently covered by various forest ecosystems and wetlands. The respective percentages by region vary between 23% in Southern Africa to 89% in South-Eastern Asia. For Latin America and Asia the estimated share of the balance of land with cultivation potential under forest and wetland ecosystems is about 70%, in Africa this is about 60%. If these were to be preserved, the remaining balance of land with some potential for rainfed crop cultivation would amount to some 550 million hectares. The regions which will experience the largest difficulties in meeting future demand for land resources and water, or alternatively have to cope with much increased dependency on external supplies, include foremost Western Asia, South-Central Asia, and Northern Africa. A large stress on resources is to be expected also in many countries of Eastern, Western and Southern Africa

  3. Uncertainties in hydrological modelling and its consequences for water management in Central Asia

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; aus der Beek, Tim; Flörke, Martina

    2013-04-01

    Central Asia features an extreme continental climate with mostly arid to semi-arid conditions. Due to low precipitation and therefore low water availability, water is a scarce resource and often the limiting factor in terms of socio-economic development. The aim of this model study is to compare the uncertainties of hydrological modelling induced by global and regional climate datasets and to calculate the impacts on estimates of local water resources. Within this integrated model study the hydrological and water use model WaterGAP 3 (Global Assessment and Prognosis) is being applied to all river basins located in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Mongolia in five arc minutes spatial resolution (~ 6 x 9 km per grid cell). First of all, water abstractions for the sectors households, irrigation, livestock, manufacturing industries, and electricity production are being computed and fed into the hydrological module of WaterGAP. Then, water fluxes of the terrestrial water cycle are being modelled. The performance of the model is then being evaluated by comparing modelled and observed river discharge for the time period 1971 to 2000. As WaterGAP input, various global and regional climate datasets are available for the study region. In detail, these are the global TS dataset of the Climate Research Unit (CRU), the WATCH forcing data (WFD) developed within the EU-FP6 Project WATer and global CHange (WATCH) and the regional Aphrodités Water Resources dataset. Finally, the uncertainties in modelled water availability induced by the different datasets are quantified to point out the consequences for a sustainable water management. The results show that the datasets differ in both aspects, temporal and spatial goodness. At this, not only differences between the regional and the global datasets, but also among the global datasets are evident.

  4. OFFICE OF WATER RESOURCE CENTER

    EPA Science Inventory

    Resource Purpose:The Resource Center provides support to the management of the Immediate Office, Office of Groundwater and Drinking Water, Office of Science and Technology, Office of Wastewater Management, and Office of Wetlands, Oceans, and Watersheds. Support includes: ...

  5. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E., (compiler); Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  6. Water Resources Data, Nebraska, Water Year 2003

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.

    2004-01-01

    The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.

  7. Water resources data, Alaska, water year 2004

    USGS Publications Warehouse

    Meyer, D.F.; Best, H.R.; Host, R.H.; Murray, R.P.; Solin, G.L.

    2005-01-01

    Water resources data for the 2004 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 115 gaging stations; stage or contents only at 3 gaging stations; water quality at 39 gaging stations; and water levels for 26 observation wells. Also included are data for 55 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. Some data collected during 2004 will be published in subsequent reports. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  8. Glaciers: A water resource

    USGS Publications Warehouse

    Meier, Mark; Post, Austin

    1995-01-01

    Most Americans have never seen a glacier, and most would say that glaciers are rare features found only in inaccessible, isolated wilderness mountains. Are they really so rare? Or are they really potentially important sources of water supply?

  9. GLOBAL CHANGE AND WATER RESOURCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of global change on future water resources is difficult to predict because various components are likely to be affected in opposing ways. Global warming would tend to increase evapotranspiration (ET) rates and irrigation water requirements, while increasing precipitation would both dec...

  10. Management of gastric cancer in Asia: resource-stratified guidelines.

    PubMed

    Shen, Lin; Shan, Yan-Shen; Hu, Huang-Ming; Price, Timothy J; Sirohi, Bhawna; Yeh, Kun-Huei; Yang, Yi-Hsin; Sano, Takeshi; Yang, Han-Kwang; Zhang, Xiaotian; Park, Sook Ryun; Fujii, Masashi; Kang, Yoon-Koo; Chen, Li-Tzong

    2013-11-01

    Gastric cancer is the fourth most common cancer globally, and is the second most common cause of death from cancer worldwide. About three-quarters of newly diagnosed cases in 2008 were from Asian countries. With a high mortality-to-incidence ratio, management of gastric cancer is challenging. We discuss evidence for optimum management of gastric cancer in aspects of screening and early detection, diagnosis, and staging; endoscopic and surgical intervention; and the concepts of perioperative, postoperative, and palliative chemotherapy and use of molecularly targeted therapy. Recommendations are formulated on the basis of the framework provided by the Breast Health Global Initiative, using the categories of basic, limited, enhanced, and maximum level. We aim to provide a stepwise strategy for management of gastric cancer applicable to different levels of health-care resources in Asian countries. PMID:24176572

  11. Water-Energy-Food Nexus in Asia-Pacific Ring of Fire

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Endo, A.; Gurdak, J. J.; Allen, D. M.; Siringan, F.; Delinom, R.; Shoji, J.; Fujii, M.; Baba, K.

    2013-12-01

    Climate change and economic development are causing increased pressure on water, energy and food resources, presenting communities with increased levels of tradeoffs and potential conflicts among these resources. Therefore, the water-energy-food nexus is one of the most important and fundamental global environmental issues facing the world. For the purposes of this research project, we define human-environmental security as the joint optimization between human and environmental security as well as the water-energy-food nexus. To optimize the governance and management within these inter-connected needs, it is desirable to increase human-environmental security by improving social managements for the water-energy-food nexus. In this research project, we intend to establish a method to manage and optimize the human-environmental security of the water-energy-food nexus by using integrated models, indices, and maps as well as social and natural investigations with stakeholder analyses. We base our approach on the viewpoint that it is important for a sustainable society to increase human-environmental security with decreasing risk and increasing resilience by optimizing the connections within the critical water-energy and water-food clusters. We will take a regional perspective to address these global environmental problems. The geological and geomorphological conditions in our proposed study area are heavily influenced by the so-called 'Ring of Fire,' around the Pacific Ocean. Within these areas including Japan and Southeast Asia, the hydro-meteorological conditions are dominated by the Asia monsoon. The populations that live under these natural conditions face elevated risk and potential disaster as negative impacts, while also benefitting from positive ecological goods and services. There are therefore tradeoffs and conflicts within the water-energy-food nexus, as well as among various stakeholders in the region. The objective of this project is to maximize human

  12. Water resources data, Kentucky, water year 2004

    USGS Publications Warehouse

    McClain, Dennis L.; Moses, Clifford R.; Darnell, Roy S.

    2005-01-01

    Water resources data for the 2004 water year for Kentucky consist of records of stage, discharge, and water-quality of streams and lakes; and water levels of wells. This report includes daily discharge records for 131 stream-stations. It also includes water-quality data for 15 stations sampled at regular intervals, continuous temperature at 7 stations, and continuous water-quality at 11 stations. Ground-water levels are published for 8 recording and 22 partial record sites. Precipitation data at a regular interval are published for two sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Kentucky.

  13. Water Resources Data, Kentucky, Water Year 2003

    USGS Publications Warehouse

    McClain, D.L.; Brown, A.C.; Moses, C.R.; Darnell, R.S.

    2004-01-01

    Water resources data for the 2003 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water levels of wells. This report includes daily discharge records for 127 stream-gaging stations. It also includes water-quality data for eight stations sampled at regular intervals, continuous temperature at seven stations, and continuous water quality at nine stations. Ground-water levels are published for 8 recording and 16 partial-record sites. Precipitation data at regular intervals are published for one site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Kentucky.

  14. Water Resources Data, Kentucky, Water Year 2002

    USGS Publications Warehouse

    McClain, D.L.; Byrd, F.D.; Brown, A.C.; Moses, C.R.

    2003-01-01

    Water resources data for the 2002 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water levels of wells. This report includes daily discharge records for 120 streamgaging stations. It also includes water-quality data for eight stations sampled at regular intervals, continuous temperature at four stations, and continuous water quality at nine stations. Ground-water levels are published for 8 recording and 23 partial-record sites. Precipitation data at regular intervals are published for one site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Kentucky.

  15. Water Resources Data, Utah, Water Year 1989

    USGS Publications Warehouse

    ReMillard, M.D.; Herbert, L.R.; Sandberg, G.W.; Birdwell, G.A.

    1990-01-01

    Water resources data for the 1989 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water quality of ground water. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 21 hydrologic stations and 217 wells; miscellaneous temperature measurements and field determinations for 147 stations; and water levels for 29 observations wells. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  16. Water Resources Data, Mississippi, Water Year 2002

    USGS Publications Warehouse

    Morris, F., III; Turnipseed, D.P.; Storm, J.B.

    2003-01-01

    Water resources data for the 2002 water year for Mississippi consist of records of surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 91 streamflow-gaging stations, stage records for 22 of these gaging stations, discharge records for 91 partial-record stations or miscellaneous streamflow sites, including 13 flood hydrograph partial-record stations, 78 crest-stage partial-record stations, and 0 special study and miscellaneous sites; (2) stage only at 9 gaging stations; (3) water-quality records for 13 streamflow-gaging stations, 7 stage-only stations, and 3 water-quality monitor stations, 0 partial-record stations or miscellaneous sites, 97 short-term study sites, and 39 wells; and (4) water-level records for 18 observation wells. Records obtained from water-resources investigations are also included in special sections of the report. These data represent that part of the National Water Data System operated by the U.S. Geological Survey, and cooperating local, State, and Federal agencies in Mississippi.

  17. Lunar Water Resource Demonstration (LWRD)

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  18. Water Resources Research supports water economics submissions

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  19. Statistical separation and forecast of water storage patterns over West Asia using GRACE data and climate indicators

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Schumacher, Maike; Anyah, Richard; Awange, Joseph; Mostafaie, Abdorrahman

    2014-05-01

    Recent studies indicate that large parts of West Asia, specifically the arid Middle East region, exhibited a rapid loss of freshwater reserves during the past decade. A reliable estimation of large scale terrestrial water storage (TWS) and groundwater storage (GWS) changes and the ability of forecasting them, with respect to climate variability and change, are therefore essential for West Asia. This study first implemented a least squares inversion approach to separate the Gravity Recovery and Climate Experiment (GRACE)-derived total water storage products over West Asia. Time series of separated terrestrial water and groundwater storage changes were then generated over the region, covering the period of 2003 to 2013. Forecasting scenarios were generated to predict TWS and GWS changes by applying low-degree autoregressive models which relate basin averaged TWS and GWS changes to input values of precipitation and evaporation as well as the North Atlantic Oscillation index as the remote controller of the region's climate. Dry, normal, and wet scenarios were designed to forecast West Asia's TWS and GWS variations over the period of 2013 to 2015. Our separated results over 2003 to 2013 indicated a decline in TWS and GW over the Middle East. A strong correlation was found between the NAO index and variability of water storage over West Asia, specifically during the period of 2005 to 2008. Dry forecasting scenarios indicated continuous GWS decline over the northwest part of Iran, entire Iraq and Syria, which have been already facing challenges of limited water resources. Key words: Forecsting GRACE-TWS; Groundwater; Signal Separation; Middle East

  20. Technologies for water resources management: an integrated approach to manage global and regional water resources

    SciTech Connect

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  1. Water resources data, Kentucky. Water year 1991

    SciTech Connect

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  2. Water Resources Division training catalog

    USGS Publications Warehouse

    Hotchkiss, W.R.; Foxhoven, L.A.

    1984-01-01

    The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)

  3. Water Resources Research Catalog, Volume 4.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. Science Information Exchange.

    Described are 4501 projects in progress during 1968 under the general headings: Nature of Water; Water Cycle; Water Supply Augmentation and Conservation; Water Quality Management and Control; Water Quality Management and Protection; Water Resources Planning; Resource Data; Engineering Works; and Manpower, Grants and Facilities. Each description…

  4. Projections of water stress based on an ensemble of socioeconomic growth and climate change scenarios: A case study in Asia

    DOE PAGESBeta

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John; Ebi, Kristie L.

    2016-03-30

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify themore » primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Lastly, tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.« less

  5. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    PubMed

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  6. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    PubMed Central

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  7. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    PubMed

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  8. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  9. Water resources. [mapping and management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Substantial progress has been made in applying ERTS-1 data to water resources problems, nevertheless, more time and effort still appear necessary for further quantification of results, including the specification of thematic measurement accuracies. More modeling can be done very profitably. In particular, more strategy models describing the processes wherein ERTS-1 data would be acquired, analyzed, processed, and utilized in operational situations could be profitably accomplished. It is generally observed that the ERTS-1 data applicability is evident in several areas and that the next most general and substantive steps in the implementation of the data in operational situations would be greatly encouraged by the establishment of an operational earth resources satellite organization and capability. Further encouragement of this operational capability would be facilitated by all investigators striving to document their procedures as fully as possible and by providing time and cost comparisons between ERTS-1 and conventional acquisition approaches.

  10. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  11. Summary Analysis [United States Water Resources Council].

    ERIC Educational Resources Information Center

    Roose, John B.; Cobb, Gary D.

    This report contains a summary and analysis of public response to the Water Resources Council proposed principles and standards and its accompanying draft environmental impact statement for planning the use of water and related land resources as well as planning and evaluating water and related land resources programs and projects. Both written…

  12. NASA Earth Resources Survey Symposium. Volume 1-D: Water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Conference papers on water resources and management are summarized. Summaries cover land use, flood control and prediction, watersheds and the effects of snow melt, soil moisture content, and the usefulness of satellite remote sensors in detecting ground and surface water.

  13. Will Climate Change Exacerbate or Mitigate Water Stress in Central Asia?

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Bernauer, T.; Guiennet, R.; Sellars, S. L.; Robertson, A. W.; Mankin, J.; Bauer-Gottwein, P.

    2010-12-01

    Millions of people in Central Asia depend on water from the region's snow and glacier melt driven rivers, most of all the Syr Darya and Amu Darya. Their riparian countries are involved in intense conflicts over scarce transboundary water ever since the Soviet Union collapsed. We report results from a new coupled climate-land ice-hydrological model for the Syr Darya to assess how water availability in Central Asia could be affected by a warming climate. The basin area is approximately 400'000 km^2 with an annual precipitation average of 320 mm and pronounced differences between the mountainous Tien Shan region (500 - 1500 mm), where the Syr Darya originates, and the low land steppes (100 - 200 mm). Annual runoff averages 39 km^3, approximately, with 80 percent occurring between March and September because of combined snow and glacier melt. The model is driven by two climate scenarios: a baseline scenario and a pronounced warming scenario based on the IPCC SRES A2 scenario. 50 year precipitation simulations were created using a Non-Homogeneous Hidden Markov model. For each of the subcatchments, the NHMM was trained on 10 years of daily Tropical Rainfall Measuring Mission precipitation data from January 1st, 2000 to December 31st, 2009. Because of the large seasonal changes in precipitation within the Tien Shan region (winter/spring time rainy season versus summer time dry season), the NHMM relies on a predictor for generating a realistic seasonal distribution of precipitation. As for the low-frequency variation at decadal to multi-decadal scales, the idea was to develop stochastic scenarios via long-term proxies for regional climate (80 year runoff measurements in undisturbed catchments) that include low-frequency variations. A precipitation matching 50 years temperature time series was generated by statistical modeling. A Monte Carlo approach for creating 100 climate scenarios was utilized to account forcing uncertainty. Results suggest that under the likely warming

  14. Feasibility of large-scale water monitoring and forecasting in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Peña-Arancibia, J. L.; Sardella, C. S. E.

    2012-04-01

    The Asian-Pacific region (including China, India and Pakistan) is home to 51% of the global population. It accounts for 53% of agricultural and 32% of domestic water use world wide. Due to the influence of Pacific Ocean and Indian Ocean circulation patterns, the region experiences strong inter-annual variations in water availability and occurrence of drought, flood and severe weather. Some of the countries in the region have national water monitoring or forecasting systems, but they are typically of fairly narrow scope. We investigated the feasibility and utility of an integrated regional water monitoring and forecasting system for water resources, floods and drought. In particular, we assessed the quality of information that can be achieved by relying on internationally available data sources, including numerical weather prediction (NWP) and satellite observations of precipitation, soil moisture and vegetation. Combining these data sources with a large scale hydrological model, we produced monitoring and forecast information for selected retrospective case studies. The information was compared to that from national systems, both in terms of information content and system characteristics (e.g. scope, data sources, and information latency). While national systems typically have better access to national observation systems, they do not always make effective use of the available data, science and technology. The relatively slow changing nature of important Pacific and Indian Ocean circulation patterns adds meaningful seasonal forecast skill for some regions. Satellite and NWP precipitation estimates can add considerable value to the national gauge networks: as forecasts, as near-real time observations and as historic reference data. Satellite observations of soil moisture and vegetation are valuable for drought monitoring and underutilised. Overall, we identify several important opportunities for better water monitoring and forecasting in the Asia-Pacific region.

  15. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  16. Introduction To Water Resources and Environmental Issues

    NASA Astrophysics Data System (ADS)

    Bulkley, Jonathan W.

    2011-04-01

    Water is an essential life-sustaining resource whose existence and availability for human use are often taken for granted. It is often utilized by people who are unaware of where the water originated and what happens to the water following use. Beyond meeting direct human use, water enables all living species to survive and flourish and is a renewable natural resource. The authors' preface frames the context for this book; namely, it is to make the subject of water, water resources, and water's interactions in the environment understandable, approachable, and relevant to a wide range of students.

  17. Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain)

    NASA Astrophysics Data System (ADS)

    Momblanch, Andrea; Andreu, Joaquín; Paredes-Arquiola, Javier; Solera, Abel; Pedro-Monzonís, María

    2014-11-01

    An increase in water demands, exacerbated by climate change and the tightening of environmental requirements, leads to a reduction in available water resources for economic uses. This situation poses challenges for water resource planning and management. Water accounting has emerged as an appropriate tool to improve transparency and control in water management. There are multiple water accounting approaches, but they generally involve a very exhaustive list of accounted concepts. According to our findings in this research, one of the best water accounting methodologies is the Australian Water Accounting Standard. However, its implementation for integrated water resource planning and management purposes calls into questioning the amount of information and level of detail necessary for the users of water accounts. In this paper, we present a different method of applying the Australian Water Accounting Standard in relation to water resource management, which improves its utility. In order to compare the original approach and that proposed here, we present and discuss an application to the Júcar Water Resource System, in eastern Spain.

  18. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    NASA Astrophysics Data System (ADS)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  19. Research on Texas Water and Recreation Resources.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Texas Agricultural Experiment Station.

    The need for research pertaining to the best use of water and recreation resources in Texas is emphasized in these four papers presented at the 1968 Experiment Station Conference, College Station, Texas. "Parameters of Water Resources in Texas" identifies and elaborates upon the important elements presently constituting the water resources…

  20. Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.

    2006-05-01

    There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on

  1. Water resource management: an Indian perspective.

    PubMed

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India. PMID:25151722

  2. International cooperation in water resources

    USGS Publications Warehouse

    Jones, J.R.; Beall, R.M.; Giusti, E.V.

    1979-01-01

    bewildering variety of organizations, there certainly exists, for any nation, group, or individual, a demonstrated mechanism for almost any conceivable form of international cooperation in hydrology and water resources. ?? 1979 Akademische Verlagsgesellschaft.

  3. Stochastic concomitance of water resources and needs

    NASA Astrophysics Data System (ADS)

    Domokos, M.

    1991-10-01

    One of the simplest ways of determining the dimensions of and controlling water resources is by comparison of some water shortage index with an upper limit value, called water deficiency tolerance, based on economic considerations. The situation is considered satisfactory if water shortage is smaller than the limit value. Otherwise the dimensions and operating rules of system elements (such as the volumes of storage reservoirs and water intakes) have to be changed. Earlier workers gave several indices of water shortage and showed their calculation when water demand is a constant value and water resources are characterized by a probability distribution function. Methods for the calculation of water shortage indices in this particular case have been given. Indices of water shortage when water demand is not constant but a stochastic or deterministic relation exists between water demand and resources are examined. Indices characterizing the concomitance of two arbitrary random variables are considered. Flow discharges and water consumption of the Tisza basin provide examples of their use. The calculation of water shortage indices depends on the relationship between resources and demands: (a) If the relation between water resources and demand is stochastic, water shortage indices should be calculated either directly from the time functions of the two variables (by computer) or from their joint frequency function, by simple formulae; (b) if there is a deterministic functional monotonic, non-increasing relationship of unknown form, the water balance may be based on the duration functions of the two variables; (c) Finally, if the relationship between water resources and demand is known, the water shortage index can be calculated from a simple formula and the distribution function of water resources.

  4. WATER SUPPLY AND WATER RESOURCES DIVISION - HOME PAGE

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) conducts research to help prepare the primary and secondary regulations for drinking water and to develop technologies and strategies for controlling waterborne contaminants. The program integrates chemistry, engineering, micr...

  5. How predictable are water resources?

    NASA Astrophysics Data System (ADS)

    Mason, P.

    2010-10-01

    Peter Mason, technical director of international dams and hydropower at MWH, explains how some water resources might be more predictable than generally supposed. Some years ago the writer examined the levels of Lake Victoria in east Africa as part of a major refurbishment project. This revealed a clear cyclic behavior in lake level and hence in discharges from the lake down the Nile system and up into Egypt. A recent study by the writer demonstrated that 20-year mean flows in the Kafue River in Zambia corresponded well to reconstructed rainfall records based on regional tree ring records. The Rio Parana has a catchment area of 3,100,000km 2 and a mean stream flow of 21,300m 3/sec. In the wider context an improved understanding of apparent periodicities in the natural record would seem to offer at least one planning scenario to be considered in terms of investment and even for the long term planning of aid and famine relief.

  6. Assessment of the fish resources of southeast Asia, with emphasis of the Banda and Arafura seas

    NASA Astrophysics Data System (ADS)

    Dalzell, Paul; Pauly, Daniel

    Following a brief presentation of marine catch trends in Southeast Asia, some biological peculiarities of the stocks upon which these fisheries rely are discussed. Two empirical log- linear models are presented allowing rough estimation of potential yield of small pelagic fishes fish from primary production, and of demersal fish from mean water depth and primary production. These models are applied to the Banda and Arafura Seas, and the results compared with yield estimates from similar ecological areas, the Sulu Sea (Philippines) and Gulf of Papua. The standing stock and ecological production of mesopelagic fishes in the Banda Sea are also estimated. The implications for management of these findings are discussed, with emphasis on the strong east to west human population gradient of Indonesia.

  7. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the...

  8. Water resources and the urban environment

    SciTech Connect

    Loucks, E.D.

    1998-07-01

    140 abstracts from the conference cover topics such as urban stormwater management; geographic information systems, hydrologic and hydraulic computer modeling; groundwater analysis and management; drinking water supply and quality; and international water resources issues.

  9. Water resources data, Arizona, water year 2004

    USGS Publications Warehouse

    Fisk, G.G.; Duet, N.R.; McGuire, E.H.; Angeroth, C.E.; Castillo, N.K.; Smith, C.F.

    2005-01-01

    The USGS Arizona Water Science Center water data report includes records on both surface water and ground water in the State for water year 2004. Specifically, it contains: (1) Discharge records for 206 streamflow-gaging stations and 21 crest-stage, partial-record streamflow stations; (2) stage and (or) content records for 8 lakes and reservoirs; (3) water-quality records for 20 streamflow-gaging stations; (4) ground-water levels and compaction values for 14 stations; and (5) water levels for 18 wells.

  10. Color photographs for water resources studies

    USGS Publications Warehouse

    Schneider, William J.

    1968-01-01

    Air-photo interpretation is very well suited to water resources studies where limited observations of hydrologic data must be extended to regional characteristics for large areas. It is also useful in monitoring the hydrologic regimen of an area to detect possible changes. Color aerial photography is generally superior to black-and-white photography for these water resources investigations. Depth penetration through water, and excellent discrimination of water indicators, such as vegetation, are its -main assets. Meaningful interpretation of the photography depends on adequate ground control data. Experiences of the Water Resources Division, U. S. Geological Survey, indicate that the best interpretation is done by professional personnel-engineers, geologists, and water chemists intimately associated with a particular water resources project for which the photography has been obtained.

  11. Water Resources Data, Arizona, Water Year 2003

    USGS Publications Warehouse

    Fisk, G.G.; Duet, N.R.; Evans, D.W.; Angeroth, C.E.; Castillo, N.K.; Longsworth, S.A.

    2004-01-01

    The Arizona District water data report includes records on both surface water and ground water in the State for water year 2003. Specifically, it contains: (1) discharge records for 203 streamflow-gaging stations, for 29 crest-stage, partial-record streamflow stations, and 50 miscellaneous sites; (2) stage and (or) content only records for 9 lakes and reservoirs; (3) water-quality records for 29 streamflow-gaging stations; (4) ground-water levels and compaction values for 14 stations; and (5) water levels for 19 wells.

  12. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    SciTech Connect

    Gerald Sehlke

    2005-03-01

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  13. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. PMID:26683766

  14. Overcoming data scarcity: Seasonal forecasting of reservoir inflows using public domain resources in Central Asia

    NASA Astrophysics Data System (ADS)

    Dixon, Samuel G.; Wilby, Robert L.

    2016-04-01

    Management of large hydropower reservoirs can be politically and strategically problematic. Traditional flow forecasting techniques rely on accurate ground based observations, a requirement not met in many areas of the globe (Artan et al., 2007). In particular, access to real-time observational data in transnational river basins is often not possible. In these regions, novel techniques are required to combat the challenges of flow forecasting for efficient reservoir management. Near real time remotely sensed information regarding flow predictors (e.g. satellite precipitation estimates) could combat data availability issues, improving the utility of seasonal reservoir inflow forecasts. This study investigates the potential for river flow forecasting using public domain resources, including satellite and re-analysis precipitation as well as climate indices for several strategically important reservoirs throughout Central Asia (including Toktogul, Andijan, Kayrakkum and Nurek). Using reservoir inflows from 2001-2010, parsimonious numerical models were created for each study site using selected significant predictors for lead times of 1-3 months as well half year averages. Preliminary investigation has shown that parsimonious statistical models can explain over 80% of the variance in monthly inflows with three month lead to the Toktogul reservoir, Kyrgyzstan (Dixon and Wilby, 2015). Such findings show promise for improving the safety and efficiency of reservoir operations as well as reducing risks emerging from climate change.

  15. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    USGS Publications Warehouse

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The assessment includes a discussion of the tectonic and geologic setting of porphyry copper deposits in western Central Asia (chapter 1), an application of remote sensing data for hydrothermal alteration mapping as a tool for porphyry copper assessment in the region (chapter 2), and a probabilistic assessment of undiscovered porphyry copper resources in four areas that represent Ordovician and Late Paleozoic (Carboniferous-Permian) magmatic arcs (chapter 3). The principal litho-tectonic terrane concept used to delineate permissive tracts was that of a magmatic arc that formed in the subduction boundary zone above a subducting plate. Eight permissive tracts are delineated on the basis of mapped and inferred subsurface distributions of igneous rocks assigned to magmatic arcs of specified age ranges that define areas where the occurrence of porphyry copper deposits within 1 kilometer of the Earth’s surface is possible. These tracts range in area from about 8,000 to 200,000 square kilometers and host 18 known porphyry copper deposits that contain about 54 million metric tons of copper. Available data included geologic maps, the distribution of significant porphyry copper occurrences and potentially related deposit types, the distribution of hydrothermal alteration patterns that are consistent with porphyry copper mineralization, and information on possible subsurface extensions of permissive rocks. On the basis of analyses of these data, the assessment team estimated a mean of 25 undis

  16. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  17. Internet-based information resource and discussion platform on GHG reduction strategies in Asia

    SciTech Connect

    2000-12-28

    The website (www.ccasia.teri.res.in) provides a consolidated Internet based information source and platform for discussions on climate change issues in Asia. The effort has been successful in reaching the target audience and in stimulating awareness about the crucial debate on GHG (greenhouse gas) reduction strategies in Asia.

  18. Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: The AsiaFluCap Simulator

    PubMed Central

    2012-01-01

    Background Health care planning for pandemic influenza is a challenging task which requires predictive models by which the impact of different response strategies can be evaluated. However, current preparedness plans and simulations exercises, as well as freely available simulation models previously made for policy makers, do not explicitly address the availability of health care resources or determine the impact of shortages on public health. Nevertheless, the feasibility of health systems to implement response measures or interventions described in plans and trained in exercises depends on the available resource capacity. As part of the AsiaFluCap project, we developed a comprehensive and flexible resource modelling tool to support public health officials in understanding and preparing for surges in resource demand during future pandemics. Results The AsiaFluCap Simulator is a combination of a resource model containing 28 health care resources and an epidemiological model. The tool was built in MS Excel© and contains a user-friendly interface which allows users to select mild or severe pandemic scenarios, change resource parameters and run simulations for one or multiple regions. Besides epidemiological estimations, the simulator provides indications on resource gaps or surpluses, and the impact of shortages on public health for each selected region. It allows for a comparative analysis of the effects of resource availability and consequences of different strategies of resource use, which can provide guidance on resource prioritising and/or mobilisation. Simulation results are displayed in various tables and graphs, and can also be easily exported to GIS software to create maps for geographical analysis of the distribution of resources. Conclusions The AsiaFluCap Simulator is freely available software (http://www.cdprg.org) which can be used by policy makers, policy advisors, donors and other stakeholders involved in preparedness for providing evidence based and

  19. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  20. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    EPA Science Inventory

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  1. Techniques for integrated water resources management

    NASA Astrophysics Data System (ADS)

    The course, Decision Support Techniques for Integrated Water Resources Management, is designed mainly for technical managers and staff of water resources management agencies at the international, national, regional, and local water board level, as well as consultants in other professions working in or interested in the field of water resources development, planning, and operation. It will be held in Wageningen, The Netherlands, June 10-15, 1991.The course objective is to promote better understanding and dissemination of techniques to be applied in “real-world” integrated water resources management. The course offers an introduction to the concepts of decision modeling, plus ample case studies to demonstrate their applicability. It covers decision theory, operations research and simulation methods, as well as certain aspects of law and psychology. Selected multiple objective techniques will be presented, followed by an overview of recent trends in the field. Computer-based techniques will be demonstrated.

  2. Water resource impacts of alternative strategies

    SciTech Connect

    1995-10-01

    This portion of the Energy Vision 2020 draft report summarizes the differences among TVA`s final strategies with respect to potential impacts on water resources. Three water-quality impacts were considered: (1) human health impacts by ingestion, (2) impacts on water supply and waste assimilation, and (3) impacts on fish, aquatic life, and aquatic biodiversity.

  3. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  4. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  5. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  6. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  7. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  8. Managing water resources for crop production

    PubMed Central

    Wallace, J. S.; Batchelor, C. H.

    1997-01-01

    Increasing crop production to meet the food requirements of the world's growing population will put great pressure on global water resources. Given that the vast freshwater resources that are available in the world are far from fully exploited, globally there should be sufficient water for future agricultural requirements. However, there are large areas where low water supply and high human demand may lead to regional shortages of water for future food production. In these arid and semi-arid areas, where water is a major constraint on production, improving water resource management is crucial if Malthusian disasters are to be avoided. There is considerable scope for improvement, since in both dryland and irrigated agriculture only about one-third of the available water (as rainfall, surface, or groundwater) is used to grow useful plants. This paper illustrates a range of techniques that could lead to increased crop production by improving agricultural water use efficiency. This may be achieved by increasing the total amount of water available to plants or by increasing the efficiency with which that water is used to produce biomass. Although the crash from the Malthusian precipice may ultimately be inevitable if population growth is not addressed, the time taken to reach the edge of the precipice could be lengthened by more efficient use of existing water resources.

  9. Assessing Snow Water Equivalent (SWE) storage and seasonal melting in High Mountain Asia using passive microwave data

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2013-12-01

    High Mountain Asia (HMA) contains the world's tallest peaks, and stores the largest quantity of snow and ice barring Earth's Polar Regions. The water derived from these mountains, whether from rain, snow or ice, is critical for the water supply of Central Asia, of which half the world's people are reliant. Consequently, climate change could have serious implications for Central Asia water resource security and regional stability. Seasonal snow represents a substantial part of the HMA hydrological budget. This is especially the case for western HMA where snowmelt can contribute in excess of 40% of the annual river discharge. Nevertheless the magnitude and spatiotemporal distribution of HMA snow is essentially an unknown. In principle, this is due to an insufficient number of surface stations. As a result, knowledge gained through remotely sensed observations of mountain snows could greatly enhance water resource planning and regional precipitation models. Since November 1978, passive microwave radiometers aboard satellites have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of passive microwave radiometers to directly measure SWE, and at a high temporal frequency during the day or night, offers some distinct advantages over optical remote sensors. Therefore, between 1979 and 2013, we used passive microwave observations to measure the magnitude, and spatiotemporal distribution of SWE throughout HMA. Our principal goals were: 1) to compare the rank order of observed discharge for individual watersheds with that of their observed SWE; 2) to observe any changes in the spatial temporal distribution of SWE that may have occurred as a result of changes in climate; and 3) to assess the contribution of SWE to the major river basins of HMA. We used pre-processed SWE products from the National Snow and Ice Data Center (NSIDC) and developed our own calibrated products for comparison purposes using atmospherically corrected

  10. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  11. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  12. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  13. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  14. National water summary on wetland resources

    USGS Publications Warehouse

    Fretwell, J. D., (compiler); Williams, John S.; Redman, Phillip J.

    1996-01-01

    This National Water Summary on Wetland Resources documents wetland resources in the United States. It presents an overview of the status of knowledge of wetlands at the present time-what they are, where they are found, why they are important, and the controversies surrounding them, with an emphasis on their hydrology. Wetland resources in each State, the District of Columbia (combined with Maryland), Puerto Rico, the U.S. Virgin Islands, and the western Pacific Islands are described.

  15. Criticality of Water: Aligning Water and Mineral Resources Assessment.

    PubMed

    Sonderegger, Thomas; Pfister, Stephan; Hellweg, Stefanie

    2015-10-20

    The concept of criticality has been used to assess whether a resource may become a limiting factor to economic activities. It has been primarily applied to nonrenewable resources, in particular to metals. However, renewable resources such as water may also be overused and become a limiting factor. In this paper, we therefore developed a water criticality method that allows for a new, user-oriented assessment of water availability and accessibility. Comparability of criticality across resources is desirable, which is why the presented adaptation of the criticality approach to water is based on a metal criticality method, whose basic structure is maintained. With respect to the necessary adaptations to the water context, a transparent water criticality framework is proposed that may pave the way for future integrated criticality assessment of metals, water, and other resources. Water criticality scores were calculated for 159 countries subdivided into 512 geographic units for the year 2000. Results allow for a detailed analysis of criticality profiles, revealing locally specific characteristics of water criticality. This is useful for the screening of sites and their related water criticality, for indication of water related problems and possible mitigation options and water policies, and for future water scenario analysis. PMID:26392153

  16. Water resources data-Maine water year 2004

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.; Flight, L.E.

    2005-01-01

    The Water Resources Dicipline of the U.S. Geological Survey, in cooperation with State, Federal,and other local governmental agencies, obtains a large amount of data pertaining to the water resources of Maine each year. These data, accumulated during the many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. Water-resources data for the 2004 water year for Maine consists of records of stage, discharge, ground water levels, water quality of streams and ground-water wells, precipitation quantity, and snow quantity. This report contains discharge records for: 6 gage-height stations, 62 discharge gaging stations, stream water-quality data for 6 stations, water level for 23 ground-water wells, water-quality data for 24 ground-water wells, precipitation quantity data for 15 stations, and snow quantity data for 80 stations, Additional water data were collected at other sites, not part of the systematic data-collection program, and are published as special study and miscellaneous record sections.

  17. Glossary of Water Resource Terms.

    ERIC Educational Resources Information Center

    Titelbaum, Olga Adler

    Twelve reference sources were used in the compilation of this glossary of water pollution control terminology. Definitions for 364 words, acronyms, and phrases are included with cross references. (KP)

  18. Assessment of Undiscovered Oil and Gas Resources of Southeast Asia, 2010

    USGS Publications Warehouse

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated means of 21.6 billion barrels of oil and 299 trillion cubic feet of undiscovered natural gas in 22 provinces of southeast Asia.

  19. Water Availability and Management of Water Resources

    EPA Science Inventory

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  20. Strategy of Water Resources Planning Under Risk

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Ye, M.

    2007-12-01

    In water resources systems analysis, risk, caused by uncertainty, is an important issue to consider, whereas definition of risk and its measure is controversial (many definitions are available in different research fields). The problem of computing the degree of risk in water resources planning is very difficult, and has received more and more attentions from more hydrologists. This study discussed the necessity of risk analysis on decision-making associated with problems of managing regional water quantity. A new concept of risk function for regional water resource planning was introduced, and a theory of risk analysis of water resource systems was developed and implemented numerically. The developed methodology is general and can be used to tackle many kinds of decision-making problems. When loss (or benefit) volumes of an action set and probabilities of nature state of decision environments are given, non-inferior planning strategy or strategies can be derived by ordering the size of risk degrees calculated by the proposed risk function. This method was illustrated in a case study at the Huanghuaihai basin, China, one of the major food-producing areas in north China. In the last several decades, problems of water shortage and pollution are severe, and extreme weather conditions frequently occur. How to reasonably allocate the limited fresh water in the future under uncertainty is an urgent task. In this research, alternative strategies of water resource planning were investigated and risk of the strategies was assessed to facilitate the decision-making of Chinese government. The developed methodology selected the optimum choice of water resources planning strategies to avoid the risk of water shortage. This research has practicably provided support of decision-making of the Chinese central and local governments and organizations in their regional and national planning.

  1. Water resources of West Feliciana Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; Tomaszewski, Dan J.; Griffith, Jason M.

    2014-01-01

    Information concerning the availability, use, and quality of water in West Feliciana Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  2. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  3. International Symposium on Karst Water Resources

    NASA Astrophysics Data System (ADS)

    Back, William

    The International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH) joined the Hacettepe University of Ankara, Turkey, in sponsoring the International Symposium on Karst Water Resources. The other sponsors of the symposium were the Karst Water Resources Research Center Project of Hacettepe University and the United Nations Development Program through the United Nations Department of Technical Cooperation for Development, in addition to the following government organizations of Turkey: Ministry of Energy and Natural Resources, State Hydraulic, Works (DSI), General Directorate of Mineral Research and Exploration (MTA), Electrical Power Resources Survey and Development Administration (EIE) and Geological Engineering Department of the Engineering Faculty and Karst Hydrogeology Research Group (KRG) at the Hacettepe University Earth Sciences Application and Research Center. Cooperating organizations included the Turkish National Committee of the International Hydrological Program, the United Nations Educational, Scientific, and Cultural Organization (UNESCO), and the International Water Resources Association (IWRA). The symposium was divided into two parts: a paper presentation session held at the new Turkish National Library in Ankara during July 7-12, 1985, and a field trip from Ankara through Konya and Antalya to Izmir during July 13-18. The symposium chairman was Gultekin Gunay of the Hydrogeological Engineering Department of Ankara's Hacettepe University, and the cochairman was A. Ivan Johnson, a water resources consultant from Denver, Colo., and editor of WaterWatch. Scientists from 27 countries were represented among the 200 or so participants in attendance.

  4. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  5. Water Resources Availability in Kabul, Afghanistan

    NASA Astrophysics Data System (ADS)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  6. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  7. Water-resources investigations, Collier County, Florida

    USGS Publications Warehouse

    Klein, Howard

    1980-01-01

    Early water-resources investigations in Collier County, Fla., were related to saltwater intrusion in Naples. With the advent of canal drainage and land reclamation farther inland, investigations were directed at effects of canals on water resources and the environment. High on the list of investigative needs are: (1) areal and vertical delineation of the shallow aquifer, the prime source of freshwater; (2) delineation of areas of poor quality ground water and the sources of the poor quality; (3) establishment of network of hydrologic data stations; and (4) determination of the relation between canals and the shallow aquifer. (USGS)

  8. Water resources in the next millennium

    NASA Astrophysics Data System (ADS)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  9. Water resources management. World Bank policy paper

    SciTech Connect

    Easter, K.W.; Feder, G.; Le Moigne, G.; Duda, A.M.; Forsyth, E.

    1993-01-01

    Water resources have been one of the most important areas of World Bank lending during the past three decades. Through its support for sector work and investments in irrigation, water supply, sanitation, flood control, and hydropower, the Bank has contributed to the development of many countries and helped provide essential services to many communities. Moreover, the Bank and governments have not taken sufficient account of environmental concerns in the management of water resources. (Copyright (c) 1993 International Bank for Reconstruction and Development/The World Bank.)

  10. Water resources, chapter 2, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications and projected applications of active microwave instruments for studying water resources. Most applications involve use of an imaging system operating primarily at wavelengths of less than 30 cm (i.e., K-, X-, and L-bands). Discussion is also included concerning longer wavelength nonimaging systems for use in sounding polar glaciers and icecaps (e.g., Greenland and the Antarctic). The section is divided into six topics: (1) stream runoff, drainage basin analysis, and floods, (2) lake detection and fluctuating levels, (3) coastal processes and wetlands, (4) seasonally and permanently frozen (permafrost) ground, (5) solid water resources (snow, ice, and glaciers), and (6) water pollution.

  11. Help with Bolivia's water resources

    NASA Astrophysics Data System (ADS)

    The Regional State Corporation for Development (CORDECO) in Cochabamba, Bolivia, is seeking geoscientists who can help plan and carry out a variety of hydrological projects. Water pollution, erosion control, basin management, and small-scale irrigation programs are all within the scope of these projects, as are land control and reclamation, river regulation and control, and village water supplies.CORDECO will welcome scientists and graduate students who have relevant experience. CORDECO will provide local office and fieldwork facilities (including technicians) and will cover the projects' expenses. The participating scientists must arrange for their subsistence and travel expenses to and from Bolivia to be paid by their own institutions. It is not necessary for the participating scientists to know Spanish.

  12. Water Matters: Water Resources Teacher's Guide, Vol. 2.

    ERIC Educational Resources Information Center

    Crowder, Jane Nelson; Cain, Joe

    This guide is one of three teacher's guides developed for the U.S. Geological Survey's Water Resources Education Initiative. Each guide supplements a set in the accompanying poster series which forms the core of this project. This guide covers navigating the water highways, groundwater, and water quality and helps teachers use the included Water…

  13. Redressing China's Strategy of Water Resource Exploitation

    NASA Astrophysics Data System (ADS)

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.

  14. Redressing China's strategy of water resource exploitation.

    PubMed

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed. PMID:23314565

  15. Water Resources by 2100 in Mountains with Declining Glaciers

    NASA Astrophysics Data System (ADS)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  16. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  17. Water, Society and the future of water resources research (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  18. World Water Resources Assessment for 2050

    NASA Astrophysics Data System (ADS)

    Oki, T.; Agata, Y.; Kanae, S.; Musiake, K.; Saruhashi, T.

    2003-04-01

    nticipated water scarcity in the first half of this century is one of the most concerned international issues to be assessed adequately. However, even though the issue has an international impact and world wide monitoring is critical, there are limited number of global estimates at present. In this study, annual water availability was derived from annual runoff estimated by land surface models using Total Runoff Integrating Pathways (TRIP) with 0.5 degree by 0.5 degree longitude/latitude resolution globally. Global distribution of water withdrawal for each sector in the same horizontal spatial resolution was estimated based on country-base statistics of municipal water use, industrial water use, and agricultural intake, using global geographical information system with global distributions of population and irrigated crop land area. The total population under water stress estimated for 1995 corresponded very well with former estimates, however, the number is highly depend on how to assume the ratio how much water from upstream of the region can be considered as ``available'' water resources within the region. It suggests the importance of regional studies evaluating the the water quality deterioration in the upper stream, the real consumption of water resources in the upper stream, and the accessibility to water. The last factor should be closely related to how many large scale water withdrawal schemes are implemented in the region. Further studies by an integrated approach to improve the accuracy of future projections on both the natural and social sides of the water resources should be promoted. About the future projection of the global water resources assessment, population growth, climatic change, and the increase of water consumption per capita are considered. Population growth scenario follows the UN projection in each country. Change in annual runoff was estimated based on the climatic simulation by a general circulation model by the Center of Climate System

  19. Population and water resources: a delicate balance.

    PubMed

    Falkenmark, M; Widstrand, C

    1992-11-01

    Various avenues exist to minimize the effects of the current water crisis in some regions of the world and the more widespread problems that will threaten the world in the future. Active management of existing water resources and a reduction in population growth in water-scarce areas are needed to minimize the effects of the water crisis. National boundaries do not effect water systems. Cooperation and commitment of local, national, and international governments, institutions, and other organizations are needed to manage water systems. Development in each country must entail conscientious and effective balancing of unavoidable manipulations of the land and the unavoidable environmental impacts of those manipulations. The conditions of environmental sustainability must include protection of land productivity, ground water potability, and biodiversity. Humans must deal with these factors either by adopting methods to protect natural systems or by correcting existing damage and reducing future problems. They need to understand the demographic forces in each country so they can balance society's rising needs for clean water with the finite amount of water available. Factors affecting future needs at all levels include rapid rural-urban migration, high fertility, and changing patterns of international population movement. Given an increased awareness of global water systems, demographic trends, and active management of resources, the fragile balance between population and water can be maintained. PMID:12344702

  20. Water Intensity of Electricity from Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  1. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  2. The tectonic development of south-central Asia and the paleogeographic setting of its hydrocarbon resources

    SciTech Connect

    Scotese, C.R. ); Tyrell, W.W. Jr. ); Maher, K.A. )

    1990-05-01

    The countries of south-central Asia (Afghanistan to Thailand) are made up of fragments of Gondwana that collided with the southern margin of Eurasia during the Mesozoic and Cenozoic. The Cimmerian terranes (Turkey, Iran, Afghanistan, Qiang Tang, and Burma-Malaya) rifted away from Gondwana beginning in the Late Carboniferous and were accreted to Asia during the Late Triassic-Jurassic. The Lhasa terrane, presumably also derived from Gondwana, was accreted during the Late Jurassic. By the Early Cretaceous, India-Madagascar had separated from Africa and from Australia-Antarctica. In the middle Cretaceous, India rapidly rifted away from Madagascar, and during the early Eocene collided with Asia giving rise to the Tibetam Plateau and the mountain belts from Afghanistan through Burma. The sedimentary basins and petroleum provinces adjacent to and south of these collision zones are best understood when viewed in the context of their tectonic history and paleogeographic setting. About 7 billion bbl of oil and 50 tcf of gas have been discovered in south-central Asia, mostly in Cenozoic deltaic sandstones or marine carbonate reservoirs in rift (Cambay), passive margin (Bombay shelf), and foreland basins (Assam, Indux, Potwar, Bengal) in India, Pakistan, and Bangladesh, and in a fore-arc setting in Burma. Source rocks are mostly Paleogene shale, but some Paleozoic and Mesozoic sources be present in Pakistan. New exploration is underway or will begin soon in India, Bangladesh, Nepal, and Burma.

  3. Spotlight on Inner Asia: The Bizarre Bazaar. Teacher and Student Resource Guide.

    ERIC Educational Resources Information Center

    American Forum for Global Education, New York, NY.

    Inner and Central Asia extends as far east as central China and as far west as areas in the Middle East. The changing empires over time (as well as the "shifting sands" of the geographic landmass) made it difficult to consider this as a single area. Moreover, the cultural exchanges which took place across this landmass, the transport of ideas as…

  4. Modeling Renewable Water Resources under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  5. Linking water resources to food security through virtual water

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  6. Cooperative water resource technology transfer program

    SciTech Connect

    D'itri, F.M.

    1982-06-01

    This cooperative water resource technology transfer program sought to develop/present educational programs (conferences/seminars/workshops) and technology transfer brochures to enhance public awareness/appreciation of state water quality problems and to stress economic tradeoffs needed to resolve given problems. Accomplishments of this program for the different conferences held 1979-1981 are described (inland lake eutrophication: causes, effects, and remedies; contamination of groundwater supplies by toxic chemicals: causes, effects, and prevention; supplemental irrigation; stormwater management; cooperative research needs for renovation and reuse of municipal water in agriculture; selection and management of vegetation for slow rate and overland flow land application systems to treat municipal wastewater; effects of acid precipitation on ecological systems: Great Lakes region; water competition in Michigan; Michigan natural resources outlook.

  7. Scientific basis of water-resource management

    SciTech Connect

    Not Available

    1982-01-01

    This volume contains 11 reports regarding water-resource management. Topics include: long-term and large-scale problems of water management, such as groundwater contamination due to toxic and nuclear-waste disposal; nonpoint sources of pollution on our stream systems; impacts of changes in both flow and water quality on the aquatic ecosystem; the frequency, duration, and impacts of droughts including long-term trends toward desertification; long-term hydrologic budgets for assessing the adequacy of regional or national water resources; global geochemical cycles such as the fate of nitrogen and sulfur; and protection of engineered systems against hydrologic extrema. These macroscale and long-term problems, involving large investments and the health and well-being of much of the world's population, demand increasingly precise and accurate predictive statements. Individual reports are indexed separately on the energy data base.

  8. Water Resources Data, New Mexico, Water Year 1994

    USGS Publications Warehouse

    Borland, J.P.; Ong, Kim

    1995-01-01

    Water-resources data for the 1994 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 184 gaging stations; stage and contents for 26 lakes and reservoirs; water quality for 51 gaging stations and 72 wells; and water levels at 132 observation wells. Also included are 109 crest-stage partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  9. WATER: Water Activities Teaching Environmental Responsibility: Teacher Resource, Environmental Science.

    ERIC Educational Resources Information Center

    Kramer, Ed, Ed.; And Others

    This activity book was developed as part of an effort to protect water quality of the Stillwater River, Ohio, through a Watershed Protection Project. It is designed to raise teachers' and students' awareness and trigger a sense of stewardship towards the preservation of water resources. The activities are generally appropriate for elementary age…

  10. Game Theory in water resources management

    NASA Astrophysics Data System (ADS)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  11. Water Resources Research and Interdisciplinary Hydrology

    NASA Astrophysics Data System (ADS)

    Freeze, R. Allan

    1990-09-01

    Water Resource Research was born under the watchful eye of Walter Langbein, a modern-day Renaissance man whose interests spanned not only hydrology but all of the earth sciences, and not only the earth sciences but all of science. From its founding in1965 to the present day, the editors of WRR have always seen the journal as a medium of interdisciplinary interaction. On this 25th anniversary of WRR, I thought it might be worthwhile to look back on the interdisciplinary successes and failures of the past quarter decade, in our journal and in our science. There is no question that research in water resources is an interdisciplinary endeavor. At my university we have a graduate program in interdisciplinary hydrology on the books, and on those occasions when we gather together, there are students and faculty there from as many as seven different departments: geography, geology, soil science, forestry, civil engineering, mining engineering, and bioresource engineering. In addition, our campus hosts the Westwater Research Institute where physical scientists can get involved in interdisciplinary research with social scientists from regional and community planning, resource management, resource economics, commerce, and law. I suspect that many campuses have a similar breadth of water resources interests. It is this breadth that WRR is designed to serve.

  12. Impact of climate change on water resources

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Werners, Saskia; Ludwig, Fulco

    2014-05-01

    Climate change will affect hydrological regimes of rivers, and have a direct impact on availability, renewability, and quality of water resources. To better understand current and future water resources in the Pearl River basin, here we assess the impact of climate change on river discharge, and identify whether climate change will lead to increasing water availability or scarcity at the catchment scale. The Variable Infiltration Capacity (VIC) model is used for hydrological simulation driven by WATCH (the Integrated Project Water and Global Change) forcing data (1958-2001), WATCH forcing data ERA interim (1979-2001) and ten bias-corrected projected climate scenarios from MPI-ESM-LR, HadGEM2-ES, CNRM-CM5, IPSL-CM5A-LR and EC-EARTH forced by RCP4.5 and RCP8.5 (1961-2099). All subbasins except Yujiang basin show a decrease in streamflow from 1961 to 2099. The results also indicate that the wet season will become more wet, and the dry season will become drier over the whole Pearl River basin after 2030. Highly uneven spatial and temporal distribution of water resources may result in water shortages and severe hazards in this region.

  13. Diagnosing the inter-model spread in snow water equivalent for CMIP5 over Southwest Asia

    NASA Astrophysics Data System (ADS)

    Mankin, J. S.; Scherer, M.; Diffenbaugh, N. S.

    2012-12-01

    Recent analysis of the CMIP5 set of integrations has highlighted a wide divergence in the models' ability to resolve historical observations of snow water equivalent (SWE) throughout the Northern Hemisphere. However, despite the difficulty of resolving SWE in hindcasts, there exists a consistent signal in the magnitude of SWE decline under the RCP8.5 forcing scenario among the CMIP5. Separately, our work has established that lower yields in irrigated wheat induce Afghan farmers to plant more opium poppy, a more drought resistant crop planted at the same time. In Southwest and Central Asia, subsistence and industrial agriculture rely on irrigation supplied by runoff from upland snowmelt, and crop yields, including those of wheat and poppy, are influenced by this water availability. If water availability attenuates driving yield declines in staple crops like wheat, farmers in Afghanistan can be driven to cultivate more opium poppy in response—a crop that has a complex influence on stability and conflict there. Bounding the ensemble uncertainty in model simulations of SWE is an important step in assessing the ways in which farmer decisions have and will be constrained. Therefore, diagnosing the sources of model divergence in this important metric for subsistence and large-scale agriculture in Southwest and Central Asia is a first step for improving model resolution of such processes in projections of climate change. We present initial results that quantify the extent to which snow albedo feedback (SAF) parameterizations among the models in CMIP5 influence SWE simulation uncertainties over Southwest and Central Asia.

  14. Health risks from large-scale water pollution: trends in Central Asia.

    PubMed

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. PMID:21131050

  15. Emerging climate services for water resources planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The author’s perspective on new or experimental forecasts and data products that may be important for water resource planning were shared. Everyone who lives and works with the consequences of weather and climate have known or suspected for years that climate is shifting, have been adapting, and wa...

  16. Policy Sciences in Water Resources Research

    NASA Astrophysics Data System (ADS)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  17. Environmental Education Compendium for Water Resources.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Interdisciplinary by nature, environmental education is appropriate in any subject area and many educators often integrate environmental concepts into their lesson plans. This compendium of 109 collections of curriculum materials has been developed to assist educators in their selection of materials focusing on water resources. Curricula cover…

  18. Water resources in the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Takagi, T.

    2005-12-01

    Due to its limited land area and limited range of natural resources (particularly fuel), Japan has developed a highly efficient economy in terms of resource utilization. This also applies to water resources. For sustainable use of water resources in the Japanese Islands, integrated and unified analyses of the data of groundwater by the nation and local governments have been needed. Land area of the Japanese Islands is 377,000 square kilometers, which is equivalent to the area of the state of Montana, but extends for 3,600 kilometers along the margin of the Eurasian continent. Mountainous areas separated by isolated, narrow plains make up 80 % of the land area. Due to the topography of Japan, rivers are generally short with steep grades, the longest being only 367 kilometers in length. Average annual precipitation is 1,600 millimeters but is highly seasonal. The annual water demand was approximately 87 billion cubic meters during the past 25 years, which represents 21 % of the total usable water. The water demand for agriculture makes up 66 % of the total water demand, and 96 % of the water for agricultural uses is used for the irrigation of rice paddies. Municipal and industrial uses make up 15.4 and 18.9 % of the demand, respectively (as of 2000). Nearly 80 % of the water used by industry in recycled. Approximately 87 % of the water demand is supplied from surface water with the rest from ground water. Because of its mountainous topography, the extent of individual aquifers is far smaller than in United States. Groundwater basins in the Japanese Islands are classified into the following six types: plain type (thick Quaternary strata); basin type (intermontane terraces and fans; hill type (highly eroded old volcanoes); volcano type (permeable lava and pyroclasitc flows comprising Quaternary strato volcanoes); pyroclastic type (thick tuff associated with large caldera formations); and limestone type (limestone blocks with karsts). Of the above types, the only major

  19. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  20. Water resource conflicts in the Middle East.

    PubMed

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates. PMID:12178551

  1. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    NASA Astrophysics Data System (ADS)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  2. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  3. Dynamic Programming Applications in Water Resources

    NASA Astrophysics Data System (ADS)

    Yakowitz, Sidney

    1982-08-01

    The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.

  4. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  5. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  6. ``Virtual water'': An unfolding concept in integrated water resources management

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Zehnder, Alexander

    2007-12-01

    In its broadest sense, virtual water refers to the water required for the production of food commodities. Issues relating to virtual water have drawn much attention in scientific communities and the political sphere since the mid 1990s. This paper provides a critical review of major research issues and results in the virtual water literature and pinpoints the remaining questions and the direction of research in future virtual water studies. We conclude that virtual water studies have helped to raise the awareness of water scarcity and its impact on food security and to improve the understanding of the role of food trade in compensating for water deficit. However, the studies so far have been overwhelmingly concerned with the international food trade, and many solely quantified virtual water flows associated with food trade. There is a general lack of direct policy relevance to the solutions to water scarcity and food insecurity, which are often local, regional, and river basin issues. The obscurity in the conceptual basis of virtual water also entails some confusion. The methodologies and databases of the studies are often crude, affecting the robustness and reliability of the results. Looking ahead, future virtual water studies need to enhance the policy relevance by strengthening their linkages with national and regional water resources management. Meanwhile, integrated approaches taking into consideration the spatial and temporal variations of blue and green water resources availability and the complexity of natural, socioeconomic, and political conditions are necessary in assessing the trade-offs of the virtual water strategy in dealing with water scarcity. To this end, interdisciplinary efforts and quantitative methods supported by improved data availability are greatly important.

  7. Comparative water law, policies, and administration in Asia: Evidence from 17 countries

    NASA Astrophysics Data System (ADS)

    Araral, Eduardo; Yu, David J.

    2013-09-01

    Conventional wisdom suggests that improving water governance is the key to solving water insecurity in developing countries but there are also many disagreements on operational and methodological issues. In this paper, we build on the work of Saleth and Dinar and surveyed 100 water experts from 17 countries in Asia to compare 19 indicators of water laws, policies, and administration among and within countries from 2001 to 2010. We present the results of our study in a comparative dashboard and report how water governance indicators vary with a country's level of economic development, which ones do not and how and why some indicators change overtime in some countries. We have two main results. First, our initial findings suggest the possibility of water Kuznet's curve, i.e., certain water governance indicators vary with a country's level of economic development. However, more studies are needed given the caveats and limitations of our study. Second, the results have practical value for policy makers and researchers for benchmarking with other countries and tracking changes within their countries overtime. We conclude with implications for a second-generation research agenda on water governance.

  8. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  9. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  10. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  11. Estimating continental water storage variations in Central Asia area using GRACE data

    NASA Astrophysics Data System (ADS)

    Dapeng, Mu; Zhongchang, Sun; Jinyun, Guo

    2014-03-01

    The goal of GRACE satellite is to determine time-variations of the Earth's gravity, and particularly the effects of fluid mass redistributions at the surface of the Earth. This paper uses GRACE Level-2 RL05 data provided by CSR to estimate water storage variations of four river basins in Asia area for the period from 2003 to 2011. We apply a two-step filtering method to reduce the errors in GRACE data, which combines Gaussian averaging function and empirical de-correlation method. We use GLDAS hydrology to validate the result from GRACE. Special averaging approach is preformed to reduce the errors in GLDAS. The results of former three basins from GRACE are consistent with GLDAS hydrology model. In the Tarim River basin, there is more discrepancy between GRACE and GLDAS. Precipitation data from weather station proves that the results of GRACE are more plausible. We use spectral analysis to obtain the main periods of GRACE and GLDAS time series and then use least squares adjustment to determine the amplitude and phase. The results show that water storage in Central Asia is decreasing.

  12. Water: a strategic resource. Student essay

    SciTech Connect

    Thornton, R.E.

    1986-04-15

    Availability of fresh water has been taken for granted throughout our history. In fact, the United States has been blessed with what was once thought to be a limitless natural resource, fresh water. The sources for this fresh water are precipitation, surface water, and ground water. Today, these sources are under relentless pressure from chronic pollution and over-usage. The federal government has begun the process of studying and doumenting the problems associated with our water supply but, to date, its efforts are far to little, too late. Budget constraints and funding projections only add to the already bleak picture. We are learning that water problems can't be contained and that they cross state, local, and private boundaries. This problem of area pollution has drawn considerable concern within the Department of Defense (DOD) as more and more of our installations are finding their water environment jeopardized. Solutions for the preservation cleansing and protection of our fresh-water systems are going to be expensive and technically complicated to accomplish and administer. Action is needed now.

  13. Lunar Water Resource Demonstration (LWRD) Test Results

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.

    2009-01-01

    NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,

  14. Analysis of Water Use Efficiency derived from MODIS satellite image in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J.; Jang, K.; Kang, S.

    2014-12-01

    Water Use Efficiency (WUE) is defined as ratio of evapotranspriation (ET) to gross primary productivity (GPP). It can detect the changes of ecosystem properties due to the variability of enviromental condition, and provide a chance to understand the linkage between carbon and water processes in terrestrial ecosystem. In a changing climate, the understanding of ecosystem functional responses to climate variability is crucial for evaluating effect. However, continental or sub-continental scale WUE analysis is were rare. In this study, WUE was estimated in the Northeast Asia using satellite data from 2003 to 2010. ET and GPP were estimated using various MODIS products. The estimated ET and GPP showed favorable agreements with flux tower observations. WUE in the study domain showed considerable variations according to the plant functional types and climatic and elevational gradients. The results produced in this study indicate that satellite remote sensing provides a useful tool for monitoring variability of terrestrial ecosystem functions.

  15. Troubled waters: managing our vital resources.

    PubMed

    1999-03-01

    Presented are articles from Global Issues, an electronic journal of the US Information Agency that focuses on managing the water resources of the world. The three main articles are as follows: 1) ¿The Quiet Revolution to Restore Our Aquatic Ecosystems¿, 2) ¿Charting a New Course to Save America's Waters¿, and 3) ¿Freshwater: Will the World's Future Needs be Met?¿ The journal also presents commentaries on the age-old water shortage in the Middle East; solutions to water waste on the farm and in cities; managing water scarcity in the driest region of the US; and a new approach to environmental management in the Bermejo River in Argentina and Bolivia. Furthermore, this issue contains statistics on water usage and supplies and a report that examines proposals for policies that could set the world on a better course for water management. Lastly, this issue provides a bibliography of books, documents, and articles on freshwater issues as well as a list of Internet sites offering further information on water quality, supplies, and conservation. PMID:12290381

  16. The Influence of Summertime Convection Over Southeast Asia on Water Vapor in the Tropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, J. S.; Fu, R.; Fueglistaler, S.; Liu, Y. S.; Zhang, Y.

    2011-01-01

    The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.

  17. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  18. 33 CFR 209.345 - Water resource policies and authorities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Water resource policies and... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities... other Non-Federal Entities on Authorized Water Resources Projects.” (3) Section 221, FCA of 1970 (Pub....

  19. 33 CFR 209.345 - Water resource policies and authorities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Water resource policies and... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities... other Non-Federal Entities on Authorized Water Resources Projects.” (3) Section 221, FCA of 1970 (Pub....

  20. Water Matters. Water Resources Teacher's Guide, Vol. 1.

    ERIC Educational Resources Information Center

    Kauffman, Sue Cox

    This teachers guide is designed to accompany a series of posters developed through the U.S. Geological Survey's Water Resources Education Initiative, a cooperative effort between public and private education interests. It provides teacher guidance, background information, suggestions for a variety of classroom activities, and supplemental resource…

  1. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  2. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  3. Water resources inventory of northwest Florida

    USGS Publications Warehouse

    Dysart, J.E.; Pascale, C.A.; Trapp, Henry

    1977-01-01

    Water resources of the 16 counties of the northwest Florida appear adequate unitl at least 2020. In the 4 westernmost counties, the sand-and-gravel aquifer and streams combined could provide 2,200 to 3,600 million gallons per day of water. Streams outside these counties could provide 5,600 million gallons per day. The Floridan aquifer could provide 220 million gallons per day. Generally, water of quality suitable for most purposes is available throughout the area, although water in smaller streams and in the sand-and-gravel aquifer is acidic and locally contains excessive iron. Water in the upper part of the Floridan aquifer is generally fresh, but saline at depth and in some coastal areas. The quantity of water available in the study area is about 8,020 to 9,420 million gallons per day and projected needs for the year 2020 range from 2,520 to 4,130 million gallons per day. ' Approximate method ' flood-prone area maps cover most of the area. (Woodard-USGS)

  4. Integrated water resources management using engineering measures

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  5. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.

    PubMed

    Sweeney, Michael W; Kabouris, John C

    2016-10-01

    A review of the literature published in 2015 on topics relating to water resource recovery facilities (WRRF) in the areas of modeling, automation, measurement and sensors and optimization of wastewater treatment (or water resource reclamation) is presented. PMID:27620091

  6. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013

    PubMed Central

    Yeoh, Allen EJ; Tan, Daryl; Li, Chi-Kong; Hori, Hiroki; Tse, Eric; Pui, Ching-Hon

    2014-01-01

    The survival rates for both adult and children with acute lymphoblastic leukaemia have improved substantially in recent years with wider use of improved risk-directed therapy and supportive care. In nearly all developed countries, clinical practice guidelines have been formulated by multidisciplinary panels of leukaemia experts, with the goal of providing recommendations on standard treatment approaches based on current evidence. However, those guidelines do not take into account resource limitations in low-income countries, including financial and technical challenges. In Asia, there are huge disparities in economy and infrastructure among the countries, and even among different regions in some large countries. This review summarizes the recommendations developed for Asian countries by a panel of adult and paediatric leukaemia therapists, based on the availability of financial, skill and logistical resources, at a consensus session held as part of the 2013 Asian Oncology Summit in Bangkok, Thailand. The management strategies described here are stratified by a four-tier system (basic, limited, enhanced and maximum) based on the resources available to a particular country or region. PMID:24176570

  7. Modeling drought variability in the water scarce Middle East and Southwest Asia

    NASA Astrophysics Data System (ADS)

    Barlow, Mathew; Hoell, Andrew; Schubert, Siegfried; Wang, Hailan

    2016-04-01

    The ability to simulate drought variability across the water scarce Middle East and Southwest Asia [40-80E,10-45N] is examined in terms of the seasonal precipitation variability simulated in a suite of different atmospheric models forced with observed sea surface temperatures. Several, but not all, of the models are able to capture key circulation changes known to be associated with large-scale forcing of severe drought in the region. Simulation skill also varies across the region. The model differences and skill areas have important implications for seasonal prediction of regional drought, which is explored both in general and for specific regional drought events, including 1999-2001, 2007-2008, and 2014-2015. The societal impact of the drought variability is considered in terms of the occurrence of drought disasters, as recorded in the CRED EM-DAT database.

  8. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  9. Increasing life expectancy of water resources literature

    NASA Astrophysics Data System (ADS)

    Heistermann, M.; Francke, T.; Georgi, C.; Bronstert, A.

    2014-06-01

    In a study from 2008, Larivière and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Larivière and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.

  10. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  11. Accelerated Capacity Development in Water Resources Education: the experiences of the Ethiopian Institute of Water Resources

    NASA Astrophysics Data System (ADS)

    Alamirew, T.; Mekonnen, G.; Viglione, A.

    2012-04-01

    Ethiopia recently recognises that the water resources development is the major entry point in poverty alleviation and sustainable development. Water in Ethiopia plays a key role in the Water-Energy-Food-nexus. Over 98% of the electricity in the country is generated using hydropower and yet about 2000 MW has been developed. Out of the 3.5 Mha potentially irrigable land, only 0.25 Mha has been developed to date. Access to drinking water supply coverage is among the lowest in the world. One of the limiting factors in harnessing the resource base is the absence of water professionals to face the fast growing demand in education, research, development in the water sector. Recognising this, in collaboration with University of Connecticut of the United States, Addis Ababa University launched the Ethiopian Institute of Water Resources (EIWR) by enrolling 18 PhD and 24 MSc students. The program is unique in that much of the course instructors are coming from US and European Universities, but deliver courses together with Ethiopian collaborators. This is supposed to facilitate knowledge and experience transfer from the US/EU scientist to Ethiopian counterparts. The theses/dissertations are designed to focus on Ethiopia's immediate hydrological problems on selected basins, and will be coordinated by three advisors for each PhD - one from US/EU, one from Ethiopian Universities, and one water professional from the sector. We report here the lessons learned in setting up the EIWR institute and the education program.

  12. Slowflow Signatures of Sustainable Water Resources

    NASA Astrophysics Data System (ADS)

    Schwartz, S. S.; Smith, B.

    2012-12-01

    Land transformation changes the sustainability of water resources by (a) altering the vegetation, impervious landcover, and drainage of the land surface hydrology system; (b) increasing withdrawals from surface and groundwater systems to support human water use; and (c) re-engineering the water budget through water and wastewater infrastructure that conveys interbasin water transfers and modifies both recharge and subsurface drainage. Slowflow derived from observed streamflow integrates watershed-scale hydrologic forcings and cumulative landscape changes. Multiple slowflow indices derived from USGS streamflow records are used to frame an endpoint mixing model of dominant hydrologic processes and human hydrologic alteration. Multimetric slowflow fingerprints can support more refined process-based inferences, distinguishing, e.g., changes in hydrologic response - (runoff and recharge) from changes in hydraulic response (effective aquifer drainage) in regional streamflow analysis. Examples drawn from USGS streamflow records along the urban-rural landuse gradient in the watersheds of the Baltimore Ecosystem Study (an NSF Urban Long Term Ecological Research site in the Baltimore Metropolitan area) and piedmont Hydroclimatic Data Network (HCDN) basins in the Chesapeake Bay watershed, are used to illustrate multimetric fingerprinting of slowflow response. Within the inherent limits of equifinality in observed streamflow response, multimetric slowflow analysis can refine the signature and attribution of hydroclimatic variability and human hydrologic alteration inferred from regional streamflow information.

  13. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  14. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  15. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  16. Water Resources Data - Texas Water Year 2000, Volume 6. Ground Water

    USGS Publications Warehouse

    Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 898 observation wells and 145 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  17. Water Resources Data - Texas, Water Year 2002, Volume 6. Ground Water

    USGS Publications Warehouse

    Barbie, D.L.

    2003-01-01

    Water-resources data for the 2002 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 960 observation wells and water-quality data for 173 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  18. Water resources data - Texas water year 2001 : Volume 6. Ground water

    USGS Publications Warehouse

    Barbie, D.L.

    2002-01-01

    Water-resources data for the 2001 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 908 observation wells and water-quality data for 155 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  19. Water Resources Data - Texas Water Year 1999, Volume 6. Ground Water

    USGS Publications Warehouse

    Gandara, S.C.; Barbie, D.L.

    2000-01-01

    Water-resources data for the 1999 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 759 observation wells and 146 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  20. Water Resources Data, Texas Water Year 1998, Volume 4. Ground Water

    USGS Publications Warehouse

    Gandara, S.C.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 759 observation wells and 146 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  1. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  2. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.

    1976-01-01

    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.

  3. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2009-08-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves

  4. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially

  5. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  6. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  7. Water resources of the Palau Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1984-01-01

    The Palau Islands are a group of 350 islands, ranging in size from a few hundred square feet to the 153-square-mile island of Babelthuap. Babelthuap is the second largest island in the Western Pacific and comprises more than 80 percent of the total land area of the Palau Islands. Most of the islands are uninhabited limestone ridges covered with dense vegetation. These islands have no freshwater resources and are not included in this report. The island of Koror with an area of 3.6 square miles is the administrative, commercial, and population center of Palau and has an annual average rainfall of 148 inches. Short-term rainfall records at other locations in the islands indicate little variation in annual rainfall throughout the Palau Islands. Runoff-to-rainfall ratios for streams on Babelthuap show that about 70 percent of the rain falling on the island runs off to the ocean. The uniformity of rainfall and basin characteristics is shown by the excellent correlation between mean annual rainfall on Koror and streamflow on Babelthuap and by the close correlations between discharge at gaging stations and partial-record sites. Surface water quality is generally very good as shown by 55 chemical analyses of water from 18 sources. The dissolved solids concentration of water samples did not exceed 66 milligrams per liter. This report summarizes in one volume hydrologic data collection in a 14-year period of study and provides interpretations of the data than can be used by planners and public works officials as a basis for making decisions on the development and management of the islands ' water resources.

  8. Assessment tools for dryland water resources

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike; Gallart, Francesc; Irvine, Brian; Fleskens, Luuk; Froebrich, Jochen

    2013-04-01

    Since water resources are scarce across dryland areas, including Mediterranean Europe and much of Africa, the sparseness of meteo and hydrometric networks require the application of indirect methods to make best use of existing resources, and to plan for future needs in a world of changing climates. Although remote sensing methods may be among the most effective for present conditions, they have limited forecasting potential. Here we apply coarse scale modelling approaches, based on partitioning precipitation between evapotranspiration, runoff and recharge , and making use of CRU interpolated gridded climate data for the present and recent past, with offsets for future conditions based on GCM scenarios. These methods can be applied at a range of scales: first to provide broad regionalisation patterns for hydrological response and second to provide default background data that can be supplemented by local data to provide site-specific advice to land managers. These methods have been applied in the EU MIRAGE project to regionalise the frequency of the dry phase in temporary streams during the Mediterranean summer, to help define reference ecological conditions across the humid to arid spectrum. They are also being applied in the EU WAHARA project to support the sharing of appropriate good practice for water harvesting in semi-arid Africa, in partnership with researchers in Ethiopia, Tunisia, Zambia and Burkina-Faso. Initial results show where it appropriate to consider transferring techniques between climatically comparable areas.

  9. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    ERIC Educational Resources Information Center

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  10. Assessing the Roles of Regional Climate Uncertainty, Policy, and Economics on Future Risks to Water Stress: A Large-Ensemble Pilot Case for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C. W.; Blanc, E.; Monier, E.; Sokolov, A. P.; Paltsev, S.; Arndt, C.; Prinn, R. G.; Reilly, J. M.; Jacoby, H.

    2013-12-01

    The fate of natural and managed water resources is controlled to varying degrees by interlinked energy, agricultural, and environmental systems, as well as the hydro-climate cycles. The need for risk-based assessments of impacts and adaptation to regional change calls for likelihood quantification of outcomes via the representation of uncertainty - to the fullest extent possible. A hybrid approach of the MIT Integrated Global System Model (IGSM) framework provides probabilistic projections of regional climate change - generated in tandem with consistent socio-economic projections. A Water Resources System (WRS) then tracks water allocation and availability across these competing demands. As such, the IGSM-WRS is an integrated tool that provides quantitative insights on the risks and sustainability of water resources over large river basins. This pilot project focuses the IGSM-WRS on Southeast Asia (Figure 1). This region presents exceptional challenges toward sustainable water resources given its texture of basins that traverse and interconnect developing nations as well as large, ascending economies and populations - such as China and India. We employ the IGSM-WRS in a large ensemble of outcomes spanning hydro-climatic, economic, and policy uncertainties. For computational efficiency, a Gaussian Quadrature procedure sub-samples these outcomes (Figure 2). The IGSM-WRS impacts are quantified through frequency distributions of water stress changes. The results allow for interpretation of: the effects of policy measures; impacts on food production; and the value of design flexibility of infrastructure/institutions. An area of model development and exploration is the feedback of water-stress shocks to economic activity (i.e. GDP and land use). We discuss these further results (where possible) as well as other efforts to refine: uncertainty methods, greater basin-level and climate detail, and process-level representation glacial melt-water sources. Figure 1 Figure 2

  11. Changing Hydrological Cycle in Asian Monsoon Region in Relation to Water Resources

    NASA Astrophysics Data System (ADS)

    Kabat, P.

    2006-12-01

    Water is a key resource for sustainable development in the Monsoon Asian Region. Frequent occurrence of flood disasters related to increasing Asian monsoon climate variability, progressing land degradation associated with anomalous monsoon dry climate and land overexploitation, increasing water use due to rapid social/economic development, and water pollution under the development of industrialization, urbanization and intensive agriculture, all pose fundamental questions about mid- and long term future carrying capacity of water systems in this key-region of the globe. We review some of the most recent data and methodological insights about how the hydrological cycle and hydroclimate in monsoon Asia is changing or has already changed in association with the global warming (GHG increase). Next,we analyze how regional-scale anthropogenic impacts such land cover/use changes, forest fire, dust increase, affect the hydrological cycle and water resources in the monsoon Asia and Northern China. The issues addressed in the presentation include: (i)the current regional hydrological cycle, especially causal chains leading to observable changes in droughts and floods;(ii)how the water cycle and the extremes may respond to future drivers of global change;(iii) feedbacks in the coupled system as they affect the hydrological cycle; (iv)the uncertainties in the predictions of coupled climate-hydrological- land use models and (v)the future vulnerability of water as a resource. We argue for a substantial increase of international collaborative research efforts into integrated impact assessment of climate change and human activity on water systems in this region.

  12. Water resources activities in Louisiana district, fiscal year 1985

    USGS Publications Warehouse

    Herbert, R.A.; Ellsworth, E.A.

    1985-01-01

    Water resources activities of the U.S. Geological Survey (USGS) in Louisiana consist of collecting water resources data and conducting interpretive hydrologic investigations and research. The water resources data and the results of the interpretive investigations are published or released by either the USGS or by cooperating agencies. The USGS water resources activities in Louisiana for the 1985 fiscal year (October 1, 1984 to September 30, 1985) are described, including data collection and dissemination, water resources appraisals (interpretive studies) and research. (Lantz-PTT)

  13. Water Exploration: An Online High School Water Resource Education Program

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; McCall, L. R.; Amos, S.; McGowan, R. F.; Mote, A.; Negrito, K.; Paloski, B.; Ryan, C.; Cameron, B.

    2010-12-01

    The Institute for Geophysics at The University of Texas at Austin and 4empowerment.com, a Texas-based for-profit educational enterprise, teamed up with the Texas Water Development Board to develop and implement a Web-based water resources education program for Texas high school students. The program, Water Exploration uses a project-based learning approach called the Legacy Cycle model to permit students to conduct research and build an understanding about water science and critical water-related issues, using the Internet and computer technology. The three Legacy Cycle modules in the Water Exploration curriculum are: Water Basics, Water-Earth Dynamics and People Need Water. Within each Legacy Cycle there are three different challenges, or instructional modules, laid out as projects with clearly stated goals for students to carry out. Each challenge address themes that map to the water-related “Big Ideas” and supporting concepts found in the new Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science. As students work through a challenge they follow a series of steps, each of which is associated (i.e., linked online) with a manageable number of corresponding, high quality, research-based learning activities and Internet resources, including scholarly articles, cyber tools, and visualizations intended to enhance understanding of the concepts presented. The culmination of each challenge is a set of “Go Public” products that are the students’ answers to the challenge and which serve as the final assessment for the challenge. The “Go Public” products are posted to a collaborative workspace on the Internet as the “legacy” of the students’ work, thereby allowing subsequent groups of students who take the challenge to add new products. Twenty-two science educators have been trained on the implementation of the Water Exploration curriculum. A graduate student pursuing a master’s degree in science education through The

  14. Alternative medicines for AIDS in resource-poor settings: insights from exploratory anthropological studies in Asia and Africa.

    PubMed

    Hardon, Anita; Desclaux, Alice; Egrot, Marc; Simon, Emmanuelle; Micollier, Evelyne; Kyakuwa, Margaret

    2008-01-01

    The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and in their geographic and cultural origin. The sessions focused on the role of these medications in selected resource poor settings in Africa and Asia now that access to anti-retroviral therapy is increasing. The aims of the sessions were to (1) identify the actors involved in the diffusion of these alternative medicines for HIV/AIDS, (2) explore uses and forms, and the way these medicines are given legitimacy, (3) reflect on underlying processes of globalisation and cultural differentiation, and (4) define priority questions for future research in this area. This article presents the insights generated at the meeting, illustrated with some findings from the case studies (Uganda, Senegal, Benin, Burkina Faso, China and Indonesia) that were presented. These case studies reveal the wide range of actors who are involved in the marketing and supply of alternative medicines. Regulatory mechanisms are weak. The efficacy claims of alternative medicines often reinforce a biomedical paradigm for HIV/AIDS, and fit with a healthy living ideology promoted by AIDS care programs and support groups. The AIDSImpact session concluded that more interdisciplinary research is needed on the experience of people living with HIV/AIDS with these alternative medicines, and on the ways in which these products interact (or not) with anti-retroviral therapy at pharmacological as well as psychosocial levels. PMID:18616794

  15. ANALYTICAL CAPABILITY - ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WATER SUPPLY AND WATER RESOURCES DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Water Supply and Water Resources Division's Isotope Hydrology Laboratory is to resolve environmental hydrology problems through research and application of naturally occurring isotopes.Analytical capabilities at IHL include light stable isotope radio mass...

  16. ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WATER SUPPLY AND WATER RESOURCES DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Water Supply and Water Resources Division's Isotope Hydrology Laboratory (IHL) is to resolve environmental hydrology problems through research and application of naturally occurring isotopes.The emergent field of isotope hydrology follows advances in anal...

  17. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    NASA Astrophysics Data System (ADS)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  18. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    PubMed Central

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  19. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    PubMed

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  20. 33 CFR 209.345 - Water resource policies and authorities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Water resource policies and authorities. 209.345 Section 209.345 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities. Reimbursement for Advance...

  1. Water resource management planning guide for Savannah River Plant

    SciTech Connect

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. and Co., Aiken, SC . Savannah River Lab.); Gordon, D.E. and Co., Aiken, SC . Savannah River Plant)

    1988-10-01

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  2. The gender gap in primary health care resource utilization in Central Asia.

    PubMed

    Cashin, Cheryl E; Borowitz, Michael; Zuess, Olga

    2002-09-01

    There is a large gender gap in life expectancy in some countries of the former Soviet Union. Life expectancy of males is as much as 13 years less than that of females, and a significant portion of the excess male mortality is caused by cardiovascular disease. Although effective primary health care is necessary to manage cardiovascular disease and reduce acute episodes and mortality, the primary health care system is under-utilized by adult males in the region. This study combines disaggregated utilization data with cost data to analyze patterns of per capita primary care resource consumption in urban and rural regions of Kazakhstan and Uzbekistan. The results show that both in absolute and per capita terms, the principal users of primary health are women of reproductive age and children under five. Based on a combination of utilization and cost of services, women of reproductive age consume approximately 1.5 times the average per capita primary health care resources, while men in the same age group consume approximately one-half of the average. Children under five consume about three to five times the average per capita primary care resources. Based on the results of the study, regional government health purchasers worked together with providers to develop a new per capita payment system with age/sex adjustments and incentives for outreach to bring adult men into the primary care system. PMID:12135992

  3. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  4. The International Drinking Water Supply and Sanitation Decade in South-East Asia.

    PubMed

    1984-01-01

    The International Drinking Water Supply and Sanitation Decade, 1981-90, which has a diversity of objectives, takes a different form in each country. What makes this decade different from previous actions for water and sanitation is the way in which the programs, projects, and servces are to be conceived, planned, implemented, managed, operated, and maintained. The urban population to be covered by water and sanitation services, in the developing nations that have prepared plans for the Decade, is roughly between 280-290 million people. In rural areas, some 750 million people are to be provided with drinking water and around 300 million with sanitation facilities. The initial goal of 100% of the population to be provided with water and sanitation by 1990 is proving difficult to realize. Only a small proportion of developing nations have even planned for 100% coverage by 1990. The initial optimism arising from the declaration of the Decade and the expectations of increased aid has given way to realism in the face of the global recession and the scarcity of development capital. The Southeast Asia Region of the World Health Organization (WHO) covers 11 member countries with a combined population of over 1000 million people. Among the countries in Southeast Asia that have prepared Decade plans, the following populations are to be covered by 1990: urban water supply, 126 million; urban sanitation, 156 million; rural water supply, 585 million; and rural sanitation, 212 million. Such a challenge calls for a stock taking of the real issues in order to identify what action can be taken. The lack of up-to-date and comprehensive databases is a serious problem. The information system for the Decade should be and integral part of it, be timed to keep pace with it, and be developed from the lowest level. The annual investment needed during the Decade is estimated at over 4 times that prior to the Decade. The accepted strategy is to meet the minimum needs of the largest number of

  5. Water Resources Management Issues in Turkey and Recommendations

    NASA Astrophysics Data System (ADS)

    Emin Baris, Mehmet; Ayfer Karadag, Aybike

    The prevailing trends towards rising population, increasing urbanization, spread of more water intensive life styles as well as widespread use of water intensive agriculture sweeping around the world are going to make water resources even scarcer especially in countries like Turkey with scarce water resources and high development and population growth rate, economic and social aspects of water resources become even more important. Turkey, like many countries today, faces challenges in efficiently developing and managing its limited water resources while maintaining water quality and protecting the environment. To add to the challenge, Turkey will need to continue to develop its water resources in order for its economic and social development to keep pace with its rapidly growing and urbanizing population. This article deals with water resources management problems in Turkey and provides recommendations on water resources management issues at the country level. Its objectives are to summarize key water resources management issues to review institutional and legal framework and to provide suggestions for effective water resources management in Turkey.

  6. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R., Jr.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    On a regional basis, both the Indochina Peninsula area and the Indonesian-Malaysian Islands area are estimated to contain about 10 times as much in place copper in undiscovered porphyry copper deposits as has been identified to date. For the New Guinea Island areas, the ratio of undiscovered to identified copper resources is about 2. Some parts of the region have a long history of porphyry exploration cycles and mine development, interrupted at times by political and social unrest, environmental concerns, and natural disasters. Changes in mining laws within the region and the recent high price of gold on the world market have prompted renewed inter

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  8. Water Resources Data - Texas, Water Year 2003, Volume 6. Ground Water

    USGS Publications Warehouse

    Barbie, D.L.

    2003-01-01

    Water-resources data for the 2003 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 880 ground-water observation wells and water-quality data for 158 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  9. Scientific Basis of Water Resource Management

    NASA Astrophysics Data System (ADS)

    Morel-Seytoux, H. J.

    The least that one can say about the report is that it is very enjoyable reading. Every chapter has been carefully written, and the literary merit of some chapters is outstanding (particularly those by Klemes, ‘Empirical and Causal Models in Hydrology,’ and by Baker, ‘Geology, Determinism, and Risk Assessment’). The best that one can say about the report is that it does meet its stated objectives of (1) evaluation of the adequacy of present hydrologic knowledge and of the appropriateness of present research programs to provide information for decision making and (2) description of the impact of hydrologic knowledge on the planning and management of water resources. The worst that one can say about the report is that it is not particularly original and that there are few really fresh new arguments developed in it. One notable exception is provided in Chapter 11, by Matalas, Landwehr, and Wolman, which challenges the traditional (implicit) assumption that ‘human activity is an external perturbation of the hydrologic cycle.’ Though not the explicit intent of chapter 4, by Bredehoeft, Papadopulos, and Cooper, with the explosion of the water-budget myth in groundwater, this chapter illustrates clearly the profound interaction of man (through wells) in the hydrologic cycle, a situation that cannot be comprehended from a study of the system free from human influence.

  10. Overcoming undernutrition with local resources in Africa, Asia and Latin America.

    PubMed

    Krawinkel, Michael B

    2012-11-01

    Even in the 21st century, undernutrition is a challenge to be overcome. In the year 2009, 1.02 billion people were reported as food insecure and 180 million children were undernourished. Food insecurity and undernutrition are more than a lack of food energy: they are not reflected countrywide by prevalence means; they are mostly not permanent but seasonal; they are mostly not caused by insufficient amounts of food being produced; and they first affect parents and later children. Food insecurity and undernutrition often manifest themselves as micronutrient deficiency. While undernutrition is still a challenge for global nutrition, a second challenge has arisen: preventing caloric overnutrition. In various countries, food pyramids or food circles have been plotted supporting nutrition education and illustrating the challenge. Such integrative approaches are desirable for all countries of the world, as in all countries, to a smaller or larger extent, undernutrition and caloric overnutrition are the problems of today and tomorrow. The International Assessment of Agriculture for Science Technology and Development (IAASTD) has paid attention to the inescapable interconnectedness of agriculture's different roles and functions in the world and in all societies. Overcoming undernutrition with local resources means first protecting and promoting the use of local resources against imports of low-priced processed foods from subsidised production in industrialised countries; second, it means developing education and training material for regional food production with a nutrition orientation; and third, the experiences of organic farming can contribute much to support farmers in developing countries in planting their indigenous varieties and applying integrated pest management strategies. PMID:22936403

  11. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  12. Water resources management: case study of Sharkia governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Y. A.; Rashad, M.

    2012-06-01

    Ministry of water resources and irrigation in Egypt is currently implementing projects that expand new cultivated area, and accordingly the supplies of Nile River to the Nile Delta will be negatively affected. So, Enormous interest toward water resources management has been taken in the Egyptian water sector. Conveyance infrastructure and irrigation technology has been gradually improved to ensure efficient distribution and utilization of scarce water resources. The present study is focused on the optimum utilization of water resources in Sharkia governorate, Egypt. Operational and planning distribution model is implemented on the selected case study (Sharkia governorate) to develop appropriate water plan. The gross revenue of all crops is correlated to surface water discharge, ground water discharge, surface water salinity, and ground water salinity. In addition, the effect of varying both surface and groundwater quantities and qualities on the gross revenue has been investigated. Moreover, the effect of limiting rice production on the gross revenue is allocated.

  13. Managing Scarce Water Resources in China's Coal Power Industry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  14. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  15. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  16. Assessment of undiscovered oil and gas resources of the Assam, Bombay, Cauvery, and Krishna-Godavari Provinces, South Asia, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Cook, Troy A.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Assam, Bombay, Cauvery, and Krishna–Godavari Provinces, South Asia. The estimated mean volumes are as follows: (1) Assam Province, 273 million barrels of crude oil, 1,559 billion cubic feet of natural gas, and 43 million barrels of natural gas liquids; (2) Bombay Province, 1,854 million barrels of crude oil, 15,417 billion cubic feet of natural gas, and 498 million barrels of natural gas liquids; (3) Cauvery Province, 941 million barrels of crude oil, 25,208 billion cubic feet of natural gas, and 654 million barrels of natural gas liquids; and (4) Krishna–Godavari Province, 466 million barrels of crude oil, 37,168 billion cubic feet of natural gas, and 484 million barrels of natural gas liquids. The totals for the four provinces are 3,534 million barrels of crude oil, 79,352 billion cubic feet of natural gas, and 1,679 million barrels of natural gas liquids.

  17. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  18. Total Water Management: The New Paradigm for Urban Water Resources Planning

    EPA Science Inventory

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  19. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  20. International Conference of Directors of National Libraries on Resource Sharing in Asia and Oceanic [Proceedings] (Canberra, Australia, May 14-18, 1979). Development of Resource Sharing Networks. Networks Study No. 11.

    ERIC Educational Resources Information Center

    National Library of Australia, Canberra.

    The proceedings of this 1979 conference on library cooperation begin with proposals for the promotion of resource sharing among the national libraries of Asia and Oceania, the text of a policy statement on the role of national and international systems as approved at a 1976 meeting of directors of national libraries held in Lausanne, and a summary…

  1. Multi-agent Water Resources Management

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  2. Annual water-resources review, White Sands Missile Range: 1971

    USGS Publications Warehouse

    Cruz, R.R.

    1972-01-01

    This report presents water-resource information that was collected at White Sands Missile Range during 1971 and early 1972 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality, percipitation, and surface-water runoff are summarized in the report. The data were obtained as a result of the continuing water-resources basic-data collection program sponsored by the Facilities Engineering Directorate, White Sands Missile Range.

  3. Current perspectives in contaminant hydrology and water resources sustainability

    USGS Publications Warehouse

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  4. Water resources data Texas, water year 2004, volume 6. ground water

    USGS Publications Warehouse

    Barbie, Dana L.; Reece, Brian D.; Eames, Deanna R.

    2005-01-01

    Water-resources data for the 2004 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 913 groundwater observation wells and water-quality data for 150 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  5. Water resources management. (Arabic version). World Bank policy paper

    SciTech Connect

    1993-10-01

    A new approach, recognizing that water is a scarce natural resource-subject to many interdependencies in conveyance and use-should be adopted by the World Bank and its member countries. Chapter 2 discusses the management problems that have beset the sector in many countries and how these are being aggravated by increasing demands for water and rising costs of new supplies. Chapter 3 outlines the strategy for improving the management of water resources. Chapter 4 spells out the role of the World Bank in helping countries implement better approaches to water resources management. Five appendixes discuss in detail market failures and public policy; lessons learned about the relation among water, people, and the environment; privatization and user participation; Bank guidelines related to water resources; and Bank experience with investments in water resources.

  6. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources...

  7. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources...

  8. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  9. New technology and illness self-management: Potential relevance for resource-poor populations in Asia.

    PubMed

    Lucas, Henry

    2015-11-01

    Advances in technology have made it possible for many standard diagnostic and health monitoring procedures, traditionally carried out by qualified personnel within medical facilities, to be reliably undertaken by patients or carers in their own homes with a minimum of basic training. There has also been a dramatic increase in the number and diversity of both sources of information on health issues and the possibilities for sharing information and experiences over ICT-based social networks. It has been suggested that these developments have the potential to 'empower' patients, reducing their dependence on providers and possibly improving their quality of care by increasing the volume and timeliness of diagnostic data and encouraging active self-management of their condition, for example through lifestyle changes. Perhaps more significantly, it is also seen by many economies with ageing populations as a way to contain high and ever rising healthcare costs. It has also been suggested that a move to greater self-management supported by expert networks and smart phone technology could improve the treatment of many millions of patients with chronic diseases in low and middle income economies that are also confronting the potential cost implications of epidemiological and demographic transitions, combined with the higher expectations of a more educated and knowledgeable population. There is now limited evidence that some fairly basic e- and mHealth interventions, for example in the areas of MNCH, malaria and HIV/AIDS can have a positive impact, even in resource-poor contexts. The aim here is to explore the extent to which further investment in technology could play a role in the development of an effective and affordable health sector strategy for at least some developing economies. It is suggested that the effectiveness of the approach may be highly dependent on the specific health conditions addressed, the nature of existing health systems and the overall socio

  10. A stochastic optimization approach for integrated urban water resource planning.

    PubMed

    Huang, Y; Chen, J; Zeng, S; Sun, F; Dong, X

    2013-01-01

    Urban water is facing the challenges of both scarcity and water quality deterioration. Consideration of nonconventional water resources has increasingly become essential over the last decade in urban water resource planning. In addition, rapid urbanization and economic development has led to an increasing uncertain water demand and fragile water infrastructures. Planning of urban water resources is thus in need of not only an integrated consideration of both conventional and nonconventional urban water resources including reclaimed wastewater and harvested rainwater, but also the ability to design under gross future uncertainties for better reliability. This paper developed an integrated nonlinear stochastic optimization model for urban water resource evaluation and planning in order to optimize urban water flows. It accounted for not only water quantity but also water quality from different sources and for different uses with different costs. The model successfully applied to a case study in Beijing, which is facing a significant water shortage. The results reveal how various urban water resources could be cost-effectively allocated by different planning alternatives and how their reliabilities would change. PMID:23552255

  11. Domestic livestock resources of Turkey: water buffalo.

    PubMed

    Yilmaz, Orhan; Ertugrul, Mehmet; Wilson, Richard Trevor

    2012-04-01

    Water buffalo are an ancient component of Turkey's domestic livestock resources. Commonly referred to as the Anatolian buffalo the animal is part of the Mediterranean group which includes Syrian, Egyptian and Southeast European animals. Once quite numerous, there have been drastic reductions in their numbers since the 1970s due to intensification of dairy activities, agricultural mechanization and changing consumer preferences. The main areas of distribution are in northwest Turkey in the Marmara and Black Sea Regions. Buffalo are kept in small herds by livestock and mixed crop-livestock farmers. Milk is the main product, meat is largely a by-product of the dairy function and provision of the once-important draught power is now a minor output. Buffalo milk is used to prepare a variety of speciality products but output of both milk and meat is very low in comparison to cattle. Conditions of welfare and health status are not optimal. Internal parasites are a constraint on productivity. Some buffalo are being used for conservation grazing in the Black Sea area to maintain optimal conditions for bird life in a nature reserve. Long neglected by government there are recent activities to establish conservation herds, set up in vitro banks and undertake molecular characterization. More effort is needed by government to promote buffalo production and to engage the general public in conservation of their national heritage. PMID:21870064

  12. The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia

    PubMed Central

    2009-01-01

    The burden of coronary heart disease (CHD) is increasing at a greater rate in South Asia than in any other region globally, but there is little direct evidence about its determinants. The Pakistan Risk of Myocardial Infarction Study (PROMIS) is an epidemiological resource to enable reliable study of genetic, lifestyle and other determinants of CHD in South Asia. By March 2009, PROMIS had recruited over 5,000 cases of first-ever confirmed acute myocardial infarction (MI) and over 5,000 matched controls aged 30–80 years. For each participant, information has been recorded on demographic factors, lifestyle, medical and family history, anthropometry, and a 12-lead electrocardiogram. A range of biological samples has been collected and stored, including DNA, plasma, serum and whole blood. During its next stage, the study aims to expand recruitment to achieve a total of about 20,000 cases and about 20,000 controls, and, in subsets of participants, to enrich the resource by collection of monocytes, establishment of lymphoblastoid cell lines, and by resurveying participants. Measurements in progress include profiling of candidate biochemical factors, assay of 45,000 variants in 2,100 candidate genes, and a genomewide association scan of over 650,000 genetic markers. We have established a large epidemiological resource for CHD in South Asia. In parallel with its further expansion and enrichment, the PROMIS resource will be systematically harvested to help identify and evaluate genetic and other determinants of MI in South Asia. Findings from this study should advance scientific understanding and inform regionally appropriate disease prevention and control strategies. PMID:19404752

  13. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the Water Resources Council to...

  14. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the Water Resources Council to effectuate...

  15. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  16. Vermont Water Resources Research Center five-year plan for water resources research and development

    SciTech Connect

    Long, M.; Cassell, E.A.

    1980-10-01

    Vermont has identified eight priority research areas: acid precipitation, allocation of water resources, data base lakes and wetlands management, land runoff, management of toxic and hazardous materials, and waste water management and drinking water supply. Vermont has an average annual precipitation of 42 inches and is generally decentralized both culturally and hydrologically. This decentralization presents special management problems due to the economic limitations on small communities in the provision of facilities for water supply and waste water treatment. Some problems such as acid precipitation and toxic and hazardous materials management originate outside of the state and need regional research efforts. Energy production significantly impacts Vermont's water use with 70% of total use since 1975 being attributed to cooling at electric production facilities. Major factors in the state's five-year plan are vigorous technology transfer and information dissemination efforts. A generic listing of research projects and technology transfer activities considered necessary for Vermont is presented along with a table showing the interrelationships of the various program elements and the research projects. 21 references, 4 figures, 9 tables.

  17. US scientific contributions to the water resources program of the International Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Aggarwal, P. K.; Schneider, V. R.

    2007-12-01

    It is well recognized that a better understanding of the water cycle and increased availability of hydrological information for surface and groundwater resources are key factors in the ability to sustainably manage water resources. Since its inception in 1957, the International Atomic Energy Agency (IAEA) has played a critical role in developing isotope applications for hydrology and building scientific capacity in developing countries. Through an active technical cooperation program with a funding of nearly $8M per biennium, the IAEA assists developing countries in using isotope techniques for the assessment and monitoring of water resources, in particular, groundwater resources. In addition, substantial human resources and institutional capacity are built through the provision of training and appropriate equipment for monitoring. The water resources program of the IAEA is implemented with the support of a number of experts and the United States contributes extensively to this program. Although spanning the entire 50 year history of the IAEA, the contribution of US scientists, and particularly those from the US Geological Survey, has been substantial over the past 10 years. These contributions have included assistance in technical cooperation projects in Africa, Latin America and Asia, as well as internationally coordinated research projects in vadose zone hydrology, surface water - groundwater interactions, and regional aquifer studies. In Ethiopia, a national groundwater assessment program was formulated and a computer database was provided to manage hydrological information. A robust program of capacity building in cooperation with the USGS and Argonne National Laboratory has provided training to a number of IAEA-sponsored candidates from Africa and Latin America. This paper will describe the objectives and results of some of these cooperative efforts.

  18. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  19. Fiscal Year 1990 program report: Oklahoma Water Resources Research Institute

    SciTech Connect

    Collins, T.C.

    1991-09-01

    The FY 1990 Oklahoma Water Resources Research Institute research program addressed the issues of surface and ground water quality and management of water resources. It emphasized the determination of water quality and remediation of water resources determined to be contaminated. Research projects funded by the OWRRI to address these issues included: an investigation of the rate and quality of groundwater recharge to shallow aquifers; the development of a field application to determine microbial populations in soil; the improvement of parameter estimation for multipurpose hydrologic models; an investigation of the effect of inorganic cations and water-soluble polymers on the mobility and persistence of sulfonylurea herbicides; an analysis of the impacts on local economies of large, water-based natural resource projects using a Social Accounting Matrix (SAM); an investigation of methods for assessing nutrient limitation in streams; an evaluation of the use of microorganisms with elevated enzyme activity as a potential in-situ aquifer restoration technique.

  20. On the matter of sustainable water resources management

    EPA Science Inventory

    This chapter attempts to develop the concept of sustainability and make it operational in the realm of water resources management. Water is unique in its primacy among natural resources as an essential component of life itself. Due to its equally unique chemical and physical prop...

  1. Assessment of Resources and Needs for Water Development

    ERIC Educational Resources Information Center

    United Nations and Water, 1977

    1977-01-01

    Presents a brief history of water resource utilization, the present availability and uses of water, and strategies for water management. Three characteristic features of water demand management are explained: (1) emphasis on non-structural measures; (2) multi-dimensional organization and policies; (3) emphasis on research. (MA)

  2. The Wealth of Water: The Value of an Essential Resource

    ERIC Educational Resources Information Center

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  3. Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman; Yasunari, Tetsuzo

    2011-05-01

    This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.

  4. Natural resources accounting: A tool for water resources management in Botswana

    NASA Astrophysics Data System (ADS)

    Hambira, Wame L.

    Natural Resource Accounting (NRA) has become an important environmental/natural resources management tool in recent years. It provides information on stocks of a resource available at a particular point in time and what activities the resource is being used for. The conventional System of National Income Accounts (SNA) normally does not capture the cost of depletion, degradation or pollution of natural resources. This encourages unsustainable use of natural resources since the costs are not reflected when assessing the country’s economic performance or development progress. NRA is thus an attempt to integrate environmental issues into the conventional national accounts. The water sector is one sector that could greatly benefit from this natural resource management tool. Botswana has adopted NRA as a natural resource management tool and has so far developed accounts for minerals, livestock and water. The focus of this paper is on Water Accounting (WA) in relation to Integrated Water Resources Management (IWRM). IWRM is concerned with coordinated development and management of water in order to maximise economic and social welfare without compromising the sustainability of ecosystems. WA helps fill data gaps since it provides the required information for IWRM to be achieved. The aim of this paper therefore is to evaluate the Water Accounts of Botswana Report of 2006 to determine the extent to which it can contribute to integrated water resources management. The paper is based on literature review and the results show that: the available water stocks vary depending on rainfall patterns, well fields are over utilised, there has been growth in consumption, and more than 80% of the waste water produced is not being put to use. These results calls for changes in policies, role of institutions and practices pertaining to water resources management which is what IWRM is all about hence the paper concludes that indeed WA can contribute to the realisation of IWRM.

  5. Review of water resource potential for developing geothermal resource sites in the western United States

    SciTech Connect

    Sonnichsen, J.C. Jr.

    1980-07-01

    Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

  6. What about tomorrow. [Water resources and usage

    SciTech Connect

    Tufty, B.

    1984-08-01

    Our major national problems with water concern the distribution and use of water. Major conceptual plans to augment present water supplies are discussed, including the damming of Long Island Sound and towing icebergs from the Arctic. New and improved methods of irrigation are described, along with pricing incentives to encourage water conservation. The need for and general goals of a national water plan are outlined.

  7. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  8. Fuzzy pricing for urban water resources: model construction and application.

    PubMed

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP. PMID:17499421

  9. Satellite-Based Assessment of Possible Dust Aerosols Semi-Direct Effect on Cloud Water Path over East Asia

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Lin, Bing; Minnis, Patrick; Wang, Tainhe; Wang, Xin; Hu, Yongxiang; Yi, Yuhong; Ayers, J. Kirk

    2006-01-01

    The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.

  10. Water Resources Data, New Jersey, Water Year 2002--Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Hoppe, H.L.; Heckathorn, H.A.; Gray, B.J.; Riskin, M.L.

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  11. An Analysis of Historical Impacts of Water Resources Development on Water Levels of the Mekong River (Invited)

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Piman, T.

    2013-12-01

    The rapid rate of water resources development in the Mekong basin of Southeast Asia is a cause for concern due to potential impacts on highly valued fisheries and natural ecosystems. Historical water levels of the Mekong were analyzed by comparing pre and post 1991 daily data of 6 stations along the mainstream from Chiang Sean, in northern Lao PDR and Thailand, to Stung Treng, in Cambodia, and the Pre Kdam station near the Tonle Sap Lake in the lower Mekong floodplain using the Indicators of Hydrological Alteration (IHA) software. The year 1991 marks a turning point in the rate of development in the basin, with the start of development of mainstream dams in the upper Mekong and accelerated hydropower and irrigation development in key tributaries. Observed changes in water level patterns along the Mekong were linked to temporal and spatial water resources development from 1960 to 2010. Variations in climate were accounted for and are important, but they were not observed to be the main causes of changes in key hydrological indicators related to ecosystem productivity. The development of mainstream dams in the upper Mekong basin in the post 1991 period resulted in a significant change of seasonal water levels, raise rates, fall rates, and the number of water level fluctuations at Chiang Sean. This effect diminishes downstream until it becomes negligible at the Mukdahan monitoring station in Thailand, which represents a drainage area of over 50% of the total Mekong Basin. Further downstream at Pakse station in Southern Lao PDR, changes in hydrological indicators post 1991 were observed to be significant again, which can be directly attributed to water resource development in the Chi and Mun River basins in Northeastern Thailand. A reduction of 23% and 11% in water level raising rates and fall rates, respectively at Prek Kdam, provides clear evidence of a diminished flood pulse of the Tonle Sap Lake in the post 1991 period. Given the observed water level alterations

  12. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  13. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  14. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  15. Evaluating participation in water resource management: A review

    NASA Astrophysics Data System (ADS)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  16. Planning and Design of Water Resources Systems Under Climate Change and Variability

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.

    2014-12-01

    Regional and local water supplies and demands are impacted by global and national systems: climate, economics, population and energy as well as policies: development, energy, and environmental. These drivers can result in complex interactions that require deeper understanding in order to provide actionable information for water planners and stakeholders to develop strategic plans in the face of a changing and growing world. To add more complexity to this issue is the fact that all these drivers are uncertain and the type of uncertainty is not the same. This talk will address approaches to Water Resource Planning at sub-national water regions, national levels and trans-boundary river basins under a non-stationary hydro-climatic future. Additionally the talk will address the design of specific water resource projects such as reservoirs and hydroplants that are being designed now but will operate far in the future when the hydro-climatology will be very different. Examples will be drawn from recent work in Africa, Eastern Europe and Central Asia, and North America and some insights and outstanding questions will be presented.

  17. Water resources of Taos County, New Mexico

    USGS Publications Warehouse

    Garrabrant, Lynn A.

    1993-01-01

    In Taos County, ground water generally is unconfined and moves toward the Rio Grande or perennial streams. Water quality is good except in some areas where water has high values of specific conductance and hardness and contains high concentrations of dissolved solids and fluoride. Most wells are completed in alluvial sediments of Quaternary and Tertiary age in the Costilla Plains. A few wells are completed in basalt of the Taos Plateau and in alluvium of stream channels in the Sangre de Cristo Mountains. Depths to water in wells range from less than 1 to 1,080 feet below land surface. Well yields range from 1 to 3,000 gallons per minute. Water levels in wells in Sunshine Valley dropped 5 to 50 feet between 1955 and 1970. Ground-water irrigation has since declined and water levels have risen. Surface-water records show the county is a net producer of water. The average discharge gained in the Rio Grande as it flows through the county was 271,700 acre-feet per year for water years 1931-89. The highest mean monthly discharge occurs in May or June due to snowmelt runoff. Water quality ranges from good in upstream reaches to fair in lower reaches. Surface water was the source for 93 percent of water withdrawn in 1990, but ground water was used for all public supply, domestic, and industrial purposes. The largest water use is irrigation. About 28,500 acres were irrigated in 1990; alfalfa, native pasture, and planted pasture accounted for 91 percent of this acreage.

  18. Landsat - What is operational in water resources

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Munday, J. C., Jr.

    1981-01-01

    Applications of Landsat data in hydrology and water quality measurement were examined to determine which applications are operational. In hydrology, the principal applications have been surface water inventory, and land cover analysis for (1) runoff modeling and (2) abatement planning for non-point pollution and erosion. In water quality measurement, the principal applications have been: (1) trophic state assessment, and (2) measurement of turbidity and suspended sediment. The following applications were found to be operational: mapping of surface water, snow cover, and land cover (USGS Level 1) for watershed applications; measurement of turbidity, Secchi disk depth, suspended sediment concentration, and water depth.

  19. Conjunctive use of water resources for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2014-11-01

    The continuous increase in global population and simultaneous decrease in good quality water resources emphasizes the need of using surface water and groundwater resources conjunctively for irrigation. The conjunctive use allows the utilization of poor quality water, which cannot be used as such for the crop production due to its harmful effect on soil and crop health. This paper presents an overview on issues and methods of the conjunctive use of surface water and groundwater resources for sustainable irrigated agriculture. The background of the conjunctive water use and its applications for the management of poor quality water and management of rising watertable are presented. The management of conjunctive water use through the computer-based models is also covered in this review. The advantages and disadvantages of the approach have been described. Conclusions are provided based on this review which could be useful for all the stakeholders.

  20. The future of water resources systems analysis: Toward a scientific framework for sustainable water management

    NASA Astrophysics Data System (ADS)

    Brown, Casey M.; Lund, Jay R.; Cai, Ximing; Reed, Patrick M.; Zagona, Edith A.; Ostfeld, Avi; Hall, Jim; Characklis, Gregory W.; Yu, Winston; Brekke, Levi

    2015-08-01

    This paper presents a short history of water resources systems analysis from its beginnings in the Harvard Water Program, through its continuing evolution toward a general field of water resources systems science. Current systems analysis practice is widespread and addresses the most challenging water issues of our times, including water scarcity and drought, climate change, providing water for food and energy production, decision making amid competing objectives, and bringing economic incentives to bear on water use. The emergence of public recognition and concern for the state of water resources provides an opportune moment for the field to reorient to meet the complex, interdependent, interdisciplinary, and global nature of today's water challenges. At present, water resources systems analysis is limited by low scientific and academic visibility relative to its influence in practice and bridled by localized findings that are difficult to generalize. The evident success of water resource systems analysis in practice (which is set out in this paper) needs in future to be strengthened by substantiating the field as the science of water resources that seeks to predict the water resources variables and outcomes that are important to governments, industries, and the public the world over. Doing so promotes the scientific credibility of the field, provides understanding of the state of water resources and furnishes the basis for predicting the impacts of our water choices.

  1. Water resources and the urban environment--98

    SciTech Connect

    Wilson, T.E.

    1998-07-01

    This report contains all the papers presented at the meeting. There are 25 sessions and one poster session in the document. The Sessions are: (1) Landfill gas/groundwater interactions; (2) Urban solids management; (3) Local issues; (4) Surface water quality studies 1; (5) Reductive treatment of hazardous wastes with zero-valent iron; (6) Water reuse 1; (7) Biosolids management; (8) GIS information systems 1; (9) Drinking water distribution; (10) Anaerobic treatment; (11) Water reuse 2; (12) Municipal wastewater treatment technology; (13) GIS information systems 2; (14) Drinking water treatment 1; (15) Risk-based site remediation; (16) Small urban watersheds; (17) Disinfection; (18) Air pollution control and risk assessment; (19) Drinking water treatment 2; (20) Biological wastewater treatment; (21) Wastewater treatment; (22) Decentralized small-scale alternative wastewater management systems; (23) General environmental issues; (24) Drinking water treatment 3; and (25) Groundwater remediation. Papers have been processed separately for inclusion on the database.

  2. Current water resources activities in Arkansas, 1984-85

    USGS Publications Warehouse

    Louthian, B.L.; Gann, E.E.

    1985-01-01

    This report describes water resources activities conducted by the Arkansas District of the U.S. Geological Survey, Water Resources Division, during fiscal years 1984 and 1985. Activities included surface water, groundwater, water quality, and water-use investigations. Twenty-five projects were funded during 1984 and 1985. For each project, a description of the project objectives, approach, plans and reports is included. Lists are included of reports completed during the period and of reports previously published by, or in conjunction with the Geological Survey. (USGS)

  3. Current water resources activities in Arkansas, 1986-87

    USGS Publications Warehouse

    Louthian, B.L.; Gann, E.E.

    1988-01-01

    This report describes water resources activities conducted by the Arkansas District of the U.S. Geological Survey, Water Resources Division during fiscal years 1986 and 1987. Activities included surface water, groundwater, water quality, and water-use investigations. Eighteen projects were funded during 1986 and 1987. For each project, a description of the project objectives, approach, plans and reports is included. Lists are included of reports completed during the period and of reports previously published by, or in conjunction with, the Geological Survey. (USGS)

  4. [Optimal allocation of irrigation water resources based on systematical strategy].

    PubMed

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security. PMID:25985685

  5. Water resources. [monitoring and management from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    ERTS-1 applications in snow and ice monitoring, surface water monitoring, including monitoring of wetland areas and flood inundated area mapping, and also watershed monitoring for runoff prediction are discussed. Results also indicate that geological features can be noted which relate to ground water. ERTS-1 data can be used successfully in operational situations by water resources management agencies.

  6. The Concept of 'Peak Water' for Managing Water Resources in a Rapidly Changing World (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2010-12-01

    Managing water resources, and new threats to those resources, will require new thinking, strategies, and tools. Part of the inability to successfully address water problems is the result of traditional approaches to water management that fail to integrate economic, social, and political considerations into technology- and science-based strategies. In particular, human uses of water have consistently come at the expense of ecosystems because of, initially, a lack of knowledge of the links between human and environmental water needs, and later, an inability to integrate the two. This talk will introduce the concept of "Peak Water," recently defined in three ways: peak renewable water resources, peak non-renewable water resources, and peak ecological water. Each of these terms offers the opportunity to help reshape water management decisions in particular regions in ways that can reduce risks to water systems and help managers develop adaptation strategies that meet multiple objectives.

  7. Idaho Wilderness Water Resources Protection Act

    THOMAS, 113th Congress

    Sen. Risch, James E. [R-ID

    2013-08-01

    08/01/2013 Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Notes: For further action, see H.R.876, which became Public Law 113-136 on 7/25/2014. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    PubMed

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  9. Water resources and hydrology of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Gulick, V. C.; Kargel, J. S.; Strom, R. G.

    1991-01-01

    The surface of Mars has been extensively modified by a large variety of water erosional and depositional processes. Although liquid water is presently unstable on the planet's surface, in its cold, hyperarid climate, there is abundant geomorphological evidence of past fluvial valley development multiple episodes of catastrophic flooding, periglacial landforms, ice-related permafrost, lake deposits, eroded impact craters and possible glacial landforms throughout much of Mars' geological history. The amount of water required to form such features is estimated to be equivalent to a planet-wide layer approximately 50 meters deep. Some of this water undoubtedly was removed from the planet by atmospheric escape processes, but much probably remains in the subsurface of Mars. Jakosky summarized the present partitioning of water on Mars, expressed as an average global depth, as follows: in the polar caps, 30 meters; in the megaregolith, 500 to 1000 meters; structurally bound in clays, 10 meters; and in high latitude regolith, a few meters. However, most of this water is probably in the form of ice, except in anomalous areas of possible near surface liquid water, and in regions where hydrothermal systems are still active. The best locations for prospecting are those areas where water or ice is sufficiently concentrated at shallow enough depths to make it feasible to pump out or mine.

  10. Water resources activities in Kentucky, 1993-94

    USGS Publications Warehouse

    Maglothin, L. S., (compiler); Forbes, R.W.

    1994-01-01

    The U.S. Geological Survey (USGS) is the principal Federal water-resources data collection and investigation agency. Through the Water Resources Division District Office in Kentucky, the USGS investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface and ground water in the State. The mission of this program is to collect, interpret, and publish information on water resources. Almost all research and data collection is a cooperative effort in which planning and financial support are shared by State and local agencies and governments. Other activities are funded by other Federal agencies or by direct Congressional appropriation. This report is intended to inform the public and cooperating agencies, vitally interested in the water resources of Kentucky, as to the current status of the Distfict's data collection and investigation program. Included in the report are summaries of water-resources activities in Kentucky conducted by the USGS. Also included is a description of the USGS mission and program, District organization, funding sources and cooperating agencies, and a list of USGS publications relevant to the water resources of the State.

  11. On the relations between land-surface Water Use Efficiency and Asian dust storms in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J.; Kang, S.

    2015-12-01

    Asian dust storm is one of major environmental issures in the Northeast Asia. The dust storm occurrence is typically influenced by both atmospheric (i.e. pressure, wind speed, precipitation, etc.) and land-surface conditions (i.e. vegetation cover and vitality, soil dryness, etc). Severe water stess in arid and semi-arid regions can resulted in reduction of vegetation cover fraction ultimately. Plant physiological change might however precede the vegetation structural change by regulating leaf stomatal resistance. In this study, we tested whether plant physiological index can be used for early indicator of plant recession causing dust storm increase. For the purpose, satellite-based eco-physiological variables such as gross primary production (GPP), evapotranspiration (ET), and water use efficiency (WUE) were prepared and then, compared their spatial and temporal variability with Synop dust storm data for the Northeast Asia. In results, the asian dust storms occurrence decreased in early 2000s but again increased, especially, in eastern mongolia during late 2000s. Our tentative result indicates that this region was appeared consistently low water use efficiency result during the period of late 2000s. In this study, the relations between WUE and dust sorm were interpreted and discussed as a tool for early indicator of land degradation of arid and semi-arid grasslands.

  12. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of...

  13. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of...

  14. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of...

  15. Water resources data, Florida, water year 2005. Volume 3A: Southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.; Dickman, Mark

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains records for continuous or daily discharge for 113 streams, periodic discharge for 4 streams, continuous or daily stage for 80 streams, periodic stage for 2 stream, peak stage and discharge for 8 streams, continuous or daily elevations for 3 lakes, continous or daily elevations for 3 lakes, and quality of water for 75 surface water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  16. Water resources data, Florida, water year 2004, volume 3A: southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 104 streams, periodic discharge for 6 streams, continuous or daily stage for 36 streams, periodic stage for 14 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 3 lakes, and quality-of-water data for 58 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Impact of Water Resorts Development along Laguna de Bay on Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Jago-on, K. A. B.; Reyes, Y. K.; Siringan, F. P.; Lloren, R. B.; Balangue, M. I. R. D.; Pena, M. A. Z.; Taniguchi, M.

    2014-12-01

    Rapid urbanization and land use changes in areas along Laguna de Bay, one of the largest freshwater lake in Southeast Asia, have resulted in increased economic activities and demand for groundwater resources from households, commerce and industries. One significant activity that can affect groundwater is the development of the water resorts industry, which includes hot springs spas. This study aims to determine the impact of the proliferation of these water resorts in Calamba and Los Banos, urban areas located at the southern coast of the lake on the groundwater as a resource. Calamba, being the "Hot Spring Capital of the Philippines", presently has more than 300 resorts, while Los Banos has at least 38 resorts. Results from an initial survey of resorts show that the swimming pools are drained/ changed on an average of 2-3 times a week or even daily during peak periods of tourist arrivals. This indicates a large demand on the groundwater. Monitoring of actual groundwater extraction is a challenge however, as most of these resorts operate without water use permits. The unrestrained exploitation of groundwater has resulted to drying up of older wells and decrease in hot spring water temperature. It is necessary to strengthen implementation of laws and policies, and enhance partnerships among government, private sector groups, civil society and communities to promote groundwater sustainability.

  18. Study on the water related disaster risks using the future socio-economic scenario in Asia

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Hatono, M.; Ikeuchi, H.; Nakamura, S.; Hirabayashi, Y.; Kanae, S.; Oki, T.

    2014-12-01

    In this study, flood risks in the present and the end of the 21st century in Asia are estimated using a future socio-economic scenario. Using the runoff data of 7 GCMs (RCP 8.5) of CMIP5, the river discharge, inundation area, and inundation depth are calculated for the assessment of flood risk. Finally, the flood risk is estimated using a function of damage. The flood frequency in the end of the 21st century in Asia tends to increase. Inundation area in Japan, Taiwan, and Kyrgyz is almost unchanged. At the same time, that in Sri Lanka, Bangladesh, Laos, and Myanmar reached about 1.4-1.6 times compared to present. Damage cost is largely influenced by economic growth, however, we show that it is important that we distinguish the influence of climate change from economic development and evaluate it when we think about an adaptation.

  19. Current water resources activities in Alabama, fiscal year 1986

    USGS Publications Warehouse

    Slack, L.J.; Meadows, E.A.

    1986-01-01

    The purpose of this report is to describe the current (as of 1986) water resources activities of the U.S. Geological Survey in Alabama. The responsibilities and objectives of the Survey; organization of the Alabama District; sources of funding; current projects; hydrologic data program; and a selected bibliography of hydrologic reports are presented. Water resources projects are undertaken usually at the request of and with partial funding from another agency, provided: they are high priority problems and generally identified to fall within the mission of the Water Resources Division and they are consistent with the Program Management Plan developed by the Water Resources Division in Alabama to meet the long range plan for hydrologic data in the State. (USGS)

  20. Scouting It Out: Interpreting Water Resources at the National Jamboree.

    ERIC Educational Resources Information Center

    Hays, Dave

    1998-01-01

    Federal natural-resource-management agencies combined efforts with volunteer scouting staff to develop a conservation area at the 1997 National Boy Scout Jamboree. Profiles the program, which adopted the theme of environmental stewardship, and focuses on how the U.S. Army Corps of Engineers interpreted water resources. The exhibit highlighted the…

  1. A Citizen's Guide to Coastal Water Resource Management.

    ERIC Educational Resources Information Center

    Kennedy, Jim; Miller, Todd

    More people than ever are using coastal waters for recreation and business activities and living along the shores. This puts more pressure on natural resources and creates more conflicts between the people using the resources. This guidebook is designed to help citizens develop an understanding of how coastal management works. Four chapters in…

  2. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia

    PubMed Central

    Wallace, Michael P.; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H. E.; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  3. Water resources investigation program for Rio Aconcagua Valley, Chile

    USGS Publications Warehouse

    Moore, John Ezra

    1969-01-01

    This report, prepared at the request of the Government of Chile under the auspices of the U. S. Agency for International Development (US AID), is based on a 2-month assignment (Oct. 22 to Dec. 31, 1969) of the author and outlines a program of water resources studies. The study program, if followed to its conclusion, will provide the basic hydrologic and hydrogeologic information and analysis essential for planning optimum future development and use of the water resources of the valley.

  4. Water on Mars - Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  5. Toward sustainable management of water resources. Directions in development

    SciTech Connect

    Serageldin, I.

    1995-08-01

    The report describes some of the problems with present water policies throughout the world, the environmental and socioeconomic effects of these policies, and how some countries are attempting to maintain water quality and quantity without inhibiting economic growth. The text is derived from an address made by the author to the VII World Congress on Water Resources of the International Water Association in Cairo, Egypt, on November 22, 1994.

  6. Water resources of the Cumberland area, Maryland-West Virginia

    USGS Publications Warehouse

    Bennett, R. R.; LeFever, F. F.; Martin, R. O. R.; Otton, E. G.

    1950-01-01

    The report was prepared in response to a request from the United States Department of Commerce, which desired an appraisal of the water resources of the Cumberland atra in order to evaluate the effect of the availability of water on the economic development of the area. Accordingly, the purpose of this report is to summarize the available water information and to describe the hydrologic factors that affect the availability of water.

  7. Advances in water resources monitoring from space

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.

  8. Student Understanding of Water and Water Resources: A Review of the Literature.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    This paper reviews the educational research related to student understanding of water and water resources. The literature is drawn primarily from science and environmental education literature and is divided into student knowledge of: physical and chemical properties, biology, earth systems and water resources. The majority of work has been in the…

  9. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  10. Water resources of Langlade County, Wisconsin

    USGS Publications Warehouse

    Batten, W. G.

    1987-01-01

    An average of about 4.7 million gallons of water was pumped daily in Langlade County in 1983. Irrigation and fish rearing are the major ground-water uses in the county. An average of about 4.2 million gallons per day was pumped for irrigation during the months of June, July, and August. Results of this study show that present irrigation pumpage rates have little effect on groundwater levels in the Antigo Flats area.

  11. Final Report: California water resources research and applicationscenter

    SciTech Connect

    Miller, Norman L.

    2003-05-30

    The California Water Resources RESAC objectives were toutilize NASA data to provide state-of-the-art real-time and forecastinformation (observation and simulation) on hydroclimate, water quantityand quality, and runoff related hazards to water resources managers(e.g., NWS, CA Dept. of Water Resources, USBR), the insurance industry,emergency response agencies, policy decision-makers, and the generalpublic. In addition, the RESAC acts as an umbrella organization fosteringgrowing collaborations and partnerships. It was built on the foundationestablished through the U.S. Global Change Research Program and theNational and California Assessments. It is designed to support theongoing regional and national assessment process by improving ourunderstanding of specific regional features of the climate system and itsimpacts, and facilitating the dissemination of these results throughdata, publications, and outreach.The California Water Resources RESACproduces three types of regional climate products that are enhanced byincorporation of NASA satellite data: (1) short-term (2-3 day) weatherand streamflow forecasts, (2) seasonal hydroclimate, and (3) long-termclimate change scenarios and hydrologic impacts. Our team has built anexcellent record in providing quantitative precipitation and streamflowforecasts to the water resources and weather prediction communities. Wehave been working with scientists from various University of Californiainstitutions and government agencies to improve weather and streamflowpredictions and studies of regional hydroclimate, and its impacts onwater resources, the environment, and the economy.

  12. Water resources of Big Horn County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Cassidy, E.W.; Smalley, M.L.

    1993-01-01

    Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison/Bighorn aquifer. Shut-in pressure from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, by as much as 390 ft. Water samples from wells completed,in unconsolidated aquifers had concentration of dissolved solids less than 2000 mg/L. Water samples from wells in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate. Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USEPA) maximum contaminant levels. Pesticides detected in groundwater samples included dicamba and picloram at a concentration of 0.40 microg/L, atrazines (0.40 microg/L), aldicarb sulfoxide (1.44 microg/L), aldicarb sulfoxide (0.52 microg/L), and malathion (0.02 microg/L). Analyses of groundwater samples for radionuclides indicated that concentrations from four municipal wells exceeded the maximum contaminant levels established by the USEPA. Surface water accounts for 96 percent and groundwater accounts for 4 percent of total off-stream water use in Big Horn County. Irrigation is the largest off-stream use of both surface and groundwater. Groundwater supplies 89 percent of water used for domestic purposes and about 16 percent of water used

  13. HRD Issues in Asia.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on human resource development (HRD) issues in Asia. "The Japanese Human Resource Development System" (Kiyoe Harada) provides a comprehensive model of the Japanese HRD system based on the current state of the art, including management practices and issues and trends in Japanese HRD. "Structured…

  14. Spatial and temporal characteristics of water resources in Argun River basin based on multi-source data

    NASA Astrophysics Data System (ADS)

    Hui, L.; Baoligao, B.; Xingru, C.; Xiuying, W.

    2015-05-01

    The wetlands of Argun River basin are important habitat for birds migrating between East Asia and Australia. Investigating spatial and temporal characteristics and evolution trends of water resources of this region is of significant importance for sustainable water management and coping with climate change. Using in-field data and NCEP (National Centers for Environmental Prediction) reanalysis data, the Mann-Kendall method and wavelet analysis method are applied to obtain the temporal characteristics. Spatial distribution analysis includes use of gridded data and data along the river. The results illustrate that water resources of upstream regions show descending trends, and the temporal distribution of the flow presents an "M" shape. Precipitation of this region has 10-year and 24-year scale primary periods. The period analysis is verified by the large flood in 2013, and forecasts that the next high flow year could be around 2021.

  15. Southeast Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Home to beautiful jungles, booming industry, and age-old temples, Southeast Asia has become a confluence of ancient and modern life. This true-color image of mainland Southeast Asia was acquired on November 30, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The body of water in the upper righthand corner of the image is the Gulf of Tonkin. East and southeast of the gulf are the dark green jungles of Vietnam, Laos, and Cambodia. The light brown Mekong River winds its way through the center of the Cambodian jungle and into southern Vietnam. The dark blue patch to the left of the river at the bottom of the image is the Tonle Sap. Literally translated to mean 'Great Lake,' the Tonle Sap is the largest freshwater lake in Southeast Asia. During the rainy season from May to October, the lake will more than double in size growing from its wintertime extent of 3,000 square kilometers to over 7,500 square kilometers. North of the lake, approximately in the center of the image, is a saucer-shaped patch of reddish brown land known as the Khorat Plateau. Situated 90 to 200 meters above sea level in eastern Thailand, the dry plateau is mostly covered with farmland and savanna-type grasses and shrubs. Moving south again, the large body of light blue water at the bottom central portion of the image is the Gulf of Thailand. By switching to the full resolution image (250 meters per pixel) and following the Gulf of Thailand to its northernmost extent, one can see a pinkish beige patch of terrain covered by a faint latticework of fine lines. These are likely to be the network of roads that crisscross Bangkok and its surrounding suburbs and fertile farmland. The narrow strip of land to the east of the Gulf of Thailand is the Malay Peninsula. The body of water to the left of the peninsula is the Gulf of Martaban, which borders Myanmar (Burma). At the far upper lefthand corner of the image, the water has turned light brown from

  16. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  17. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. PMID:23900082

  18. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  19. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  20. Water resources of East Baton Rouge Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in East Baton Rouge Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  1. Treatment Technology and Alternative Water Resources

    NASA Astrophysics Data System (ADS)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  2. Water resources of Vilas County, Wisconsin

    SciTech Connect

    Patterson, G.L.

    1989-01-01

    The Pleistocene drift in Vilas County, Wisconsin, consists of three types of material: till, debris-flow sediment, and fluvial sediment. Hydraulic conductivity of the sand and gravel is on the order of 0.001 ft/sec but that of the till and debris-flow sediment is on the order of 0.0001 ft/sec. Calculations of transmissivity indicate that most sand and gravel deposits can yield sufficient quantities of potable water for domestic use, but the till and debris-flow deposits cannot. The water table is generally shallow and there is little water-level fluctuation throughout the county. Fifty-six wells had median depths to water of less than 20 ft. The range of fluctuations varied from 0.5 to 7.36 ft. Analysis of water samples collected from 50 observation wells indicate that calcium, magnesium, and bicarbonate are the major dissolved constituents. Alkalinity concentrations in Vilas County ranged from 2 to 152 mg/L and had a median concentration of 28 mg/L. The median concentration was lower than the 102 mg/L median for the surrounding area. The low alkalinity concentration in groundwater implies a limited capacity to neutralize acid; this may increase the potential for degradation of lakes by acid precipitation. Alkalinity data for surface water were used to classify 546 lakes according to their sensitivity to acid precipitation. Five lakes are classified as ultrasensitive, 108 lakes are classified as extremely sensitive, 185 lakes are classified as moderately sensitive, 89 lakes are classified as having low sensitivity, and 159 lakes are classified as not sensitive. 19 refs., 10 figs., 10 tabs.

  3. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    SciTech Connect

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  4. Hale Crater — Ancient Water Science, Contemporary Water Resource

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Robbins, S. J.; Michaels, T. I.; Enke, B. L.

    2015-10-01

    Hale has easy access to liquid water via RSL. Scientifically the site has a rich history of water via outflow channel, fluidized ejecta, hydrothermal activity, gullies, and RSL. Lastly, the site would allow age dating of Aryge and Hale crater.

  5. Impact of remote sensing upon the planning, management and development of water resources, appendix

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.

    1975-01-01

    Lists are presented of water resource agencies from the federal, state, Water Resources Research Institute, university, local, and private sectors. Information is provided on their water resource activities, computers, and models used. For Basic doc., see N75-25263.

  6. Water resources: Research network to track alpine water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water cycle in alpine environments worldwide supplies fresh water to vast downstream areas inhabited by more than half of humanity. The International Network for Alpine Research Catchment Hydrology (INARCH) was launched this year by the Global Energy and Water Exchanges project of the World Clim...

  7. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  8. CLIMATIC SENSITIVITY OF CALIFORNIA WATER RESOURCES

    EPA Science Inventory

    The possible effects of climate change on the combined Central Valley Project-California State Water Project (CVP/SWP) were evaluated using a three-stage approach. n the first stage, runoff from four headwater "study catchments" was simulated using rainfall/snowmelt-runoff models...

  9. GRACE Data-based Estimation of Spatial Variations in Water Storage over the Central Asia during 2003-2013

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Tashpolat, T.; Ding, J. L.; Zhang, F.; Mamat, S.

    2014-11-01

    We used the GRACE (Gravity Recovery And Climate Experiment) satellite gravity data obtained from January 2003 to January 2013, with supports of other data, including the TRMM (Tropical Rainfall Measuring Mission) and CMAP (Climate Prediction Center's Merged Analysis of Precipitation) precipitation data, the NDVI (Normalized Difference Vegetation Index) data, and the DEM (Digital Elevation Model) data, to analyze the annual variations in water storage over central Asia. Following conclusions can be drawn from this study. (1) The amplitudes of the annual variations in the water storage exhibit a general E-W increasing trend. (2) The water storage has an increasing trend in the following areas: the Balkhash Basin, the Ob River Basin, and the middle and lower reaches of the Yenisei River Basin. This is caused by the global warming, the melting of permafrost, and the vegetation coverage continued to increase, as well as the improved industrial technologies to reduce water usage, and the other natural and human factors. (3) The water storage has a decreasing trend in the following areas: the Syr Darya River Basin, the Amu Darya River Basin, and the conjunction area between the Euphrates-Tigris Basin and the southwestern shore of the Caspian Sea. (4) The water storage is primarily influenced by the precipitation, the evaporation, the vegetation coverage, and the topography. (5) The water storage maximum normally responds to the precipitation maximum with certain time lags.

  10. Review of Water Resources and Desalination Technologies

    SciTech Connect

    MILLER, JAMES E.

    2003-03-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

  11. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  12. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  13. Water Resource Preservation: Personal Values and Public Support.

    ERIC Educational Resources Information Center

    Pierce, John C.

    1979-01-01

    A survey instrument collected data from heads of households in Washington concerning attitudes on seven possible water use priorities. Personal values were also surveyed for the sample population. Orientation to water resource preservation was found to relate to personal values. (RE)

  14. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  15. Advances in water resources assessment with SWAT - an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper introduces a Special Issue containing 12 research articles which present current applications of the Soil and Water Assessment Tool (SWAT) for water resources assessment. Firstly, an overview of selected recently published articles with application of SWAT is given. The articles address ...

  16. Water Resource Uses and Recreational Activities in Rural Nigeria.

    ERIC Educational Resources Information Center

    Adekoya, Adebola

    1991-01-01

    This study surveys rural Nigerian residents concerning local water resource uses and tourists' recreational activities with respect to scales of awareness, understanding, and incentive. Results indicate a public willingness to encourage and finance the rural development of water bodies for agricultural purposes exclusive of investment for tourism…

  17. Water resources of the People's Republic of China.

    USGS Publications Warehouse

    Matalas, N.C.; Nordin, C.F., Jr.

    1980-01-01

    Report of a delegation of hydrologists and water engineers who visited China in 1978. A brief outline of the country's demography, hydrology, and hydrometeorologic network, plus a short resume of the history and possibilities of water resource development in the Republic is followed by descriptions of the major research institutes and universities concerned with this field. -M.Barrett

  18. A Public Education Program in Water Resources Management.

    ERIC Educational Resources Information Center

    Amend, John R.; Armold, Anita A.

    1983-01-01

    Describes a program designed to improve public awareness/understanding of major factors in managing water resources. Use is made of an interactive computer simulator to place lay people and teachers in decision-making situations involving real variables and alternatives and to project for them the probable consequences of their water management…

  19. SIMULATOR FOR WATER RESOURCES IN RURAL BASINS-WQ (SWRRBWQ)

    EPA Science Inventory

    The U.S. Department of Agricultures (USDA) Simulator for Water Resources in Rural Basins Water Quality (SWRRBWQ) was developed to simulate hydrologic, sedimentation, and nutrient and pesticide transport in a large, complex rural watershed. The model operates on a continuous time-...

  20. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program... RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources Technology Development Program. (a) Subject to the availability...

  1. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program... RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources Technology Development Program. (a) Subject to the availability...

  2. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  3. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  4. Assessing climate change impacts on water resources in remote mountain regions

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  5. Fiscal year 1990 program report: Louisiana Water Resources Research Institute

    SciTech Connect

    Constant, W.D.

    1991-10-01

    The 1990 cooperative research program of the Louisiana Water Resources Research Institute (LWRRI) addressed priority water resources problem areas identified for Louisiana - management of surface water supplies, groundwater control and restoration, wastewater treatment alternatives, and treatment of point and nonpoint sources of pollution. Four research projects funded to address these priority issues were: (1) A Feasibility Analysis of the Use of Louisiana Wetlands for Wastewater Treatment, (2) Use of Soil Biofilter Beds for Treating High Organic, Low Toxicity Wastewater, (3) Studies on the Uptake, Accumulation and Metabolism of 2,4-Dichlorophenol and Pentachlorophenol by Lemna gibba, and (4) Application of Colloidal Gas Aphrons for Soil Washing and Groundwater Remediation.

  6. NASA Data for Water Resources Applications

    NASA Technical Reports Server (NTRS)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  7. Water resources review: Chatuge Reservoir, 1991

    SciTech Connect

    Cox, J.; Wallus, R.

    1992-06-01

    TVA is preparing a series of reports that provide technical information on the characteristics and uses of individual TVA reservoirs. These reports present a summary of (1) reservoir purpose and operation; (2) physical characteristics of the reservoir and the watershed; (3) water quality conditions; (4) aquatic biological conditions; and (5) designated, actual, and potential uses of the reservoir and impairments of those uses. This report is for Chatuge Reservoir.

  8. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  9. Water resources in a changing climate: An Idaho research initiative

    NASA Astrophysics Data System (ADS)

    Walden, V. P.

    2009-12-01

    A new initiative in Idaho funded by NSF EPSCoR will build state-wide research infrastructure to address how changes in future climatic conditions may impact water resources, as well as ecological and human systems. This project is supporting complementary field studies on a highly managed river system (Snake River Plain) and a relatively unmanaged system (Salmon River Basin). The project aims to fill a critical niche in hydrology by understanding the connection between surface flow and groundwater. Research capacity is being developed in three main areas: 1) hydroclimatology to improve modeling of water resources affected by climate change, 2) integration of hydrology and economic modeling in the Snake River basin, and 3) highly interdisciplinary research in the Salmon River basin involving climate, water, fire, insect infestations, geomorphology, and stream health. The project will also enhance outreach and educational experiences in climate change and water resources. A description of the new initiative and the activities associated with it will be given.

  10. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  11. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  12. Improved methods for national water assessment, water resources contract: WR15249270

    USGS Publications Warehouse

    Thomas, Harold A., Jr.

    1981-01-01

    The purpose of our research is to develop methods to make National Water Assessment more useful in estimating water availability for economic growth and more helpful in determining the effect of water resource development upon the environmental quality of related land resources. There are serious questions pertaining to the 1975 Water Assessment and these amplify the significance of decisions made as to the planning and scheduling of the next assessment.

  13. The new regime for managing US—Mexican water resources

    NASA Astrophysics Data System (ADS)

    Mumme, Stephen P.

    1995-11-01

    United States-Mexican transboundary water resources management is presently experiencing significant reform resulting from long-term demographic processes in the border region and greater economic integration. The recently concluded North American Free Trade Agreement and supplementary environmental accord modify existing agreements and provide old institution with new mandates. Particularly affected is the International Boundary and Water Commission (IBWC), long the lead agency in binational water management. This essay reviews the development of the new water management regime against the two preceding phases of management reform and considers its implications for improved water management in the border region.

  14. Water: the resource that gets used & used & used for everything!

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank, (artist); Ramos-Ginés, Orlando, (translator)

    1996-01-01

    Water truly Is a resource that gets used and used for everything. The same Water can be utilized many times. This poster depicts 12 water uses which ere labeled in bold red letters, beginning with mining end ending with transportation. Withdrawals (water removed from the river or ground), distribution, and returns (water returned to the river or ground) are depicted by the blue arrows. The poster is folded Into 8 1/2" x 11" panels; front and back panels can easily be photocopied.

  15. Integrating Economics into Water Resources Systems Analysis

    NASA Astrophysics Data System (ADS)

    Howitt, R.

    2012-12-01

    The need to integrate economic and hydro-engineering models has been long recognized and is the subject of several articles and literature surveys. However difficulties of obtaining sufficient precision of economic data to span the significant differences in both spatial and temporal scales presents challenges, and opportunities for the use of new technologies. Most hydrologic models run on a daily time step, or at a minimum, monthly, whereas many economic models, particularly of agriculture, are estimated on an annual time step. The asymmetry in difficulty of downscaling versus aggregating is briefly reviewed, and an example of down-scaling irrigation water value functions to a monthly time step, using information from crop water use models is presented. Similarly, the spatial cell resolution of hydro-engineering models is usually much finer than economic models, which are usually aggregated at the level that prices or production quantities are reported. A method of downscaling regional measures of crop production and water use to the field level using the additional information from remote sensing measurements is demonstrated in the context of agricultural production in California's central valley. A problem that arises is that for spatial crop production the available data from Landsat measurements processed by NAAS in pixel form is very noisy when overlaid onto a field level boundary GIS layer. For complex cropping systems such as those found in California, it is not uncommon to have three different categories of pixel identification in the same field. The approach discussed uses a cross-entropy approach and additional data from locally measured sources, to estimate the most likely uniform crop in any given field. In addition, constraints on the combination of different sized fields and the total regional acreage measured by local county commissioners provides additional information and structure on the estimates. Initial results show significant noise in the

  16. Water-Resources Investigations in Wisconsin

    USGS Publications Warehouse

    Maertz, D. E., (compiler)

    1997-01-01

    Runoff was variable for rivers throughout the State ranging from 64 percent in southwest Wisconsin to 212 percent in east central Wisconsin. Runoff was lowest (64 percent of the average annual runoff from 1935-96) for the Platte River near Rockville and highest (212 percent of the average annual runoff from 1949-69, 1988-96) for the South Branch Rock River at Waupun. Departures of runoff in the 1996 water year as a percent of long-term average runoff in the State are shown in Figure 4. EXPLANATION

  17. Water resources of the Little Fork River watershed, northeastern Minnesota

    USGS Publications Warehouse

    Helgesen, John O.; Lindholm, Gerald F.; Ericson, Donald W.

    1976-01-01

    The Little Fork River watershed is one of 39 watershed units designated by the Minnesota Department of Natural Resources for evaluation of the State 's water resources. Included is an appraisal of the occurrence, quantity, quality, and availability of ground and surface waters. Water resources are not intensively developed anywhere in the watershed. Essentially all water used is withdrawn from ground-water sources, mainly glacial drift, which ranges from 0 to over 200 feet (61 meters) in thickness. Buried sand and gravel in the drift is the most favorable source for development. Most ground water is of the calcium or calcium magnesium bicarbonate type. The degree of mineralization generally increases downgradient in the flow system. Ground water is commonly very hard and high in iron and manganese. Lakes and wetlands have a natural regulating effect on streamflow. Water in streams is of the calcium bicarbonate type. The amount of mineralization reflects surficial geology, being greatest in streams draining glacial-lake sediments and least in streams draining areas of sand lakes. Color and iron concentration in stream waters generally exceed recommended domestic consumption limits.

  18. Adapting an evidence-based intervention for autism spectrum disorder for scaling up in resource-constrained settings: the development of the PASS intervention in South Asia

    PubMed Central

    Divan, Gauri; Hamdani, Syed Usman; Vajartkar, Vivek; Minhas, Ayesha; Taylor, Carol; Aldred, Catherine; Leadbitter, Kathy; Rahman, Atif; Green, Jonathan; Patel, Vikram

    2015-01-01

    Background Evidence-based interventions for autism spectrum disorders evaluated in high-income countries typically require highly specialised manpower, which is a scarce resource in most low- and middle-income settings. This resource limitation results in most children not having access to evidence-based interventions. Objective This paper reports on the systematic adaptation of an evidence-based intervention, the Preschool Autism Communication Therapy (PACT) evaluated in a large trial in the United Kingdom for delivery in a low-resource setting through the process of task-shifting. Design The adaptation process used the Medical Research Council framework for the development and adaptation of complex interventions, focusing on qualitative methods and case series and was conducted simultaneously in India and Pakistan. Results The original intervention delivered by speech and language therapists in a high-resource setting required adaptation in some aspects of its content and delivery to enhance contextual acceptability and to enable the intervention to be delivered by non-specialists. Conclusions The resulting intervention, the Parent-mediated intervention for Autism Spectrum Disorder in South Asia (PASS), shares the core theoretical foundations of the original PACT but is adapted in several respects to enhance its acceptability, feasibility, and scalability in low-resource settings. PMID:26243710

  19. Resources

    MedlinePlus

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  20. Impact of Water Intensity and Efficiency on Water Resources Sustainability in China

    NASA Astrophysics Data System (ADS)

    BIN, Lingling; XU, Xinyi; YANG, Zhongwen; XU, Kui

    2015-04-01

    Water problems in China have characters of less per capita, highly developed and low efficiency; it is essential to pay close attention to the sustainable utilization of water resources. This paper aims to explore the impact of human activities on the sustainability of water resources in China. Three important factors affecting sustainability significantly were involved: Water Resources (WR), Water Intensity (WI) and Water Efficiency (WE). Assessment of the three factors were conducted in 356 cities in mainland China, and each indicator is graded from "very low" to "very high" according to the eigenvalue magnitude. China is then classified into four zones to differentiate regional variations of the impact of human activities on water sustainability. Results show that 34% of the areas have high WI values and 58% have low WE values. It is recommended that water resource polices be turned to a more sustainable management strategy in areas with high intensity and low efficiency and sustainability significantly low. Zone I regions should be focused on particular attention for its exploitation of water resources reached an extreme state, water efficiency should be highly improved and water-saving management policy implemented to maintain the sustainable development of water resources and ecosystems.

  1. Water resources transfers through Chinese interprovincial and foreign food trade

    PubMed Central

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km3/y irrigation water savings, 41 km3/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements. PMID:24958864

  2. Water resources transfers through Chinese interprovincial and foreign food trade.

    PubMed

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-01

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements. PMID:24958864

  3. Trend detection in seasonal data: from hydrology to water resources

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Pianosi, Francesca; Soncini-Sessa, Rodolfo

    2014-04-01

    In this paper we investigate the relationship between hydro-climatic trends and their impacts on water resources at the basin scale, focusing on a catchment on the Italian and Swiss Alps in the period 1974-2010. More generally, we address the topic of trend detection in environmental time series combining novel and traditional tools in order to simultaneously tackle the issue of seasonality and interannual variability, which usually characterize natural processes. The paper's contribution is twofold. First, we propose a novel tool to be applied in Exploratory Data Analysis, named MASH (Moving Average over Shifting Horizon). It allows to simultaneously investigate the seasonality in the data and filter out the effects of interannual variability, thus facilitating trend detection. We describe how to combine the MASH with statistical trend detection tests, like the Mann-Kendall test, the Seasonal Kendall test, and the Linear Regression test, and Sen's method, to quantify the trends occurring in different seasons. Second, we estimate the impacts of hydrological changes in terms of water resources and we discuss their relevance from the water resources management perspective. We define and simulate a set of indicators of performances, resilience, reliability, and vulnerability, so to assess the ability of the water resources systems to absorb changes in the hydrological patterns. The analysis reveals that, in the case study area, statistically significant trends in hydro-climatic records have been undergoing in the last decades, although they have had limited impacts on water resources.

  4. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  5. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  6. Coping with increasing water and land resources limitation for meeting world's food needs: the role of virtual water and virtual land trade

    NASA Astrophysics Data System (ADS)

    Soriano, Barbara; Garrido, Alberto; Novo, Paula

    2013-04-01

    Increasing pressure to expand agriculture production is giving rise to renewed interest to obtain access to land and water resources in the world. Water footprint evaluations show the importance of green water in global food trade and production. Green water and land are almost inseparable resources. In this work we analyse the role of foreign direct investment and cooperation programmes from developed countries in developing counties, focusing on virtual water trade and associated resources. We develop econometric models with the aim to explain observed trends in virtual water exports from developing countries as explained by the inverse flow of investments and cooperation programmes. We analyse the main 19 emerging food exporters, from Africa, Asia and America, using 15 years of data. Results show that land per capita availability and foreign direct investments explain observed flows of virtual water exports. However, there is no causality with these and flows cooperation investments. Our analysis sheds light on the underlying forces explaining the phenomenon of land grab, which is the appropriation of land access in developing countries by food-importers.

  7. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  8. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  9. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  10. Fragmented local governance and water resource management outcomes.

    PubMed

    Kim, Jae Hong; Keane, Timothy D; Bernard, Eric A

    2015-03-01

    Fragmented jurisdictions and decision making structures can result in destructive competition and/or a lack of systematic cooperation that can hamper effective resource management and environmental planning, although the value of local autonomy and stakeholder participations should not be underestimated. This study empirically examines if political fragmentation in local governance is a significant barrier to successful resource management. To test this hypothesis, the authors quantify the degree of political fragmentation at two different geographical scales - 1) site-level: 12-digit watersheds and 2) regional: metropolitan statistical areas or equivalent regions - and analyze how water resource management outcomes vary with the level of political fragmentation using nationwide land cover and stream gauge information in the U.S. Regression analysis shows water quality declines (or slower quality improvements), measured in terms of total suspended solids, are associated with both site-level and regional political fragmentation indicators, suggesting that political fragmentation can make resource management more challenging. PMID:25567736

  11. Differences in International Human Resource Development among Indigenous Firms and Multinational Affiliates in East and Southeast Asia.

    ERIC Educational Resources Information Center

    Bartlett, Kenneth R.; Lawler, John J.; Bae, Johngseok; Chen, Shyh-jer; Wan, David

    2002-01-01

    Responses from 380 South Korean, Taiwanese, Thai, and Singaporean human resource managers in multinational and indigenous companies revealed significant differences between the two types in degree but not form or type of human resource development activity. U.S.-owned firms had higher activity levels. Strategic human resource orientation was…

  12. Water Foundations Teachers Guide. The Science of Florida's Water Resources: Lesson Plans for Teachers and Students.

    ERIC Educational Resources Information Center

    2001

    This document features lesson plans for teachers and students on Florida's water resources. The guide is divided into four grade levels: K-2, 3-5, 6-8, and 9-12. Each grade level includes objectives, guides, and five lesson plans. K-2 lesson plans include: (1) "We Are Water"; (2) "Why Water is Extra Special"; (3) "Water's Changing Shapes"; (4)…

  13. Sustainable water services and interaction with water resources in Europe and in Brazil

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  14. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  15. Collection, storage, retrieval, and publication of water-resources data

    USGS Publications Warehouse

    Showen, C. R., (compiler)

    1978-01-01

    This publication represents a series of papers devoted to the subject of collection, storage, retrieval, and publication of hydrologic data. The papers were presented by members of the U.S. Geological Survey at the International Seminar on Organization and Operation of Hydrologic Services, Ottawa, Canada, July 15-16, 1976, sponsored by the World Meteorological Organization. The first paper, ' Standardization of Hydrologic Measurements, ' by George F. Smoot discusses the need for standardization of the methods and instruments used in measuring hydrologic data. The second paper, ' Use of Earth Satellites for Automation of Hydrologic Data Collection, ' by Richard W. Paulson discusses the use of inexpensive battery-operated radios to transmit realtime hydrologic data to earth satellites and back to ground receiving stations for computer processing. The third paper, ' Operation Hydrometeorological Data-Collection System for the Columbia River, ' by Nicholas A. Kallio discusses the operation of a complex water-management system for a large river basin utilizing the latest automatic telemetry and processing devices. The fourth paper, ' Storage and Retrieval of Water-Resources Data, ' by Charles R. Showen discusses the U.S. Geological Survey 's National Water Data Storage and Retrieval System (WATSTORE) and its use in processing water resources data. The final paper, ' Publication of Water Resources Data, ' by S. M. Lang and C. B. Ham discusses the requirement for publication of water-resources data to meet the needs of a widespread audience and for archival purposes. (See W78-09324 thru W78-09328) (Woodard-USGS)

  16. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  17. Managing Water Resource Challenges in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  18. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.

    2015-09-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30

  19. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  20. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  1. Is Central Asia really exsiccating?

    NASA Astrophysics Data System (ADS)

    Aizen, V. B.; Aizen, E. M.; Surazakov, A. B.

    2008-12-01

    At the end of 20th and the beginning of 21st century central Asia oases suffered from serious drought caused lack of water for agriculture, economy growth and population increase. However, people of this region always experienced lack of water for irrigation and fought a war over the rights to control river streams. The drying up of central Asian rivers is not a new phenomenon according to the ancient manuscripts. Thus, lets see about what has happened with the past century climate and water resources of central Asia using the long-term observational data. We analyzed data from more than 200 meteorological stations and stream gauges over the central Asia in elevation range from 25 m. b.s.l. to 4,000 m. a.s.l. to understand the last 100 years variability in climate and water resources, examining changes in the extreme and mean monthly air temperatures, precipitation and river runoff. The evaluation of seasonal snow and glacier's covered areas between 1970th and 2007th in central Asia derived from AVHRR, MODIS, Hexagon KH-9, Landsat ETM and ASTER data exhibit 15% reduction of the seasonal snow covered area and 10.1% of the glacier area. It has been found that during last twenty years the duration of snowmelt, from the date of maximum snow cover to date of its disappearance, reduced by 30 days and in 2007 was equal to 138 days in the central Asian mountains. The decrease of seasonal snow cover is not a linear process. The further decrease may be accelerated due to increase of rainfall instead of snowfall in early spring months at high elevations, and consequently a lesser heat expenditure for the snowmelt. The growth in summer air temperatures, especially observable since the 1970th, accompanied by increase of evapotranspiration and precipitation, notably in summer and autumn, and at high elevations over 3,000 m, and at the western peripheral mountain ridges. Average difference in the means of annual air temperatures for the two thirty-year periods before and after

  2. The development of water services and their interaction with water resources in European and Brazilian cities

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  3. Roadmap for sustainable water resources in southwestern North America

    PubMed Central

    Gleick, Peter H.

    2010-01-01

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  4. Roadmap for sustainable water resources in southwestern North America.

    PubMed

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  5. Value of Landsat in urban water resources planning

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Ragan, R. M.

    1977-01-01

    The reported investigation had the objective to evaluate the utility of satellite multispectral remote sensing in urban water resources planning. The results are presented of a study which was conducted to determine the economic impact of Landsat data. The use of Landsat data to estimate hydrologic model parameters employed in urban water resources planning is discussed. A decision regarding an employment of the Landsat data has to consider the tradeoff between data accuracy and cost. Bayesian decision theory is used in this connection. It is concluded that computer-aided interpretation of Landsat data is a highly cost-effective method of estimating the percentage of impervious area.

  6. Operating Water Resources Systems Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2002-12-01

    Population and industrial growth has resulted in intense demands on the quantity and quality of water resources worldwide. Moreover, climate change/variability is making a growing percentage of the earth's population vulnerable to extreme weather events (drought and flood). The 1996 Saguenay flood, 1997 Red River flood, the 1998 ice storm, and recent droughts in prairies are few examples of extreme weather events in Canada. Rising economic prosperity, growth in urban population, aging infrastructure, and a changing climate are increasing the vulnerability of Canadians to even more serious impacts. This growing threat can seriously undermine the social and economic viability of the country. Our ability to understand the impacts of climate change/variability on water quantity, quality, and its distribution in time and space can prepare us for sustainable management of this precious resource. The sustainability of water resources, over the medium to long-term, is critically dependent on the ability to manage (plan and operate) water resource systems under a more variable and perhaps warmer future climate. Studying the impacts of climate change/variability on water resources is complex and challenging. It is further complicated by the fact that impacts vary with time and are different at different locations. This study deals with the impacts of climate change/variability on water resources in a portion of the Red River Basin in Canada, both in terms of change in quantity and spatial-temporal distribution. A System Dynamics model is developed to describe the operation of the Shellmouth Reservoir located on the Red River in Canada. The climate data from Canadian Global Coupled Model, CGCM1 is used. The spatial system dynamics approach, based on distributed parameter control theory, is used to model the impacts of climate change/variability on water resources in time and space. A decision support system is developed to help reservoir operators and decision makers in

  7. Fiscal Year 1990 program report: California Water Resources Center

    SciTech Connect

    Not Available

    1991-07-01

    The report contains a synopsis of the results of research projects sponsored under Grant No. 14-08-00001-G1550, the 1990 Water Research Institute Program (WRIP) for the University of California Water Resources Center. Five projects investigating the following topic areas are: Mixing in Bay/Delta Flows, Dynamics of Selenium and Arsenic Oxidation in Water-Sediment Systems, Adaptive Grid Refinement for Groundwater Contaminant Transport Simulation, Salinity and Fish Effects on the Plankton and Benthos of the Salton Sea: Microcosm Experiment, and Effects of Global Climate Change and Increased Atmospheric CO2 on Water Use.

  8. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 33, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…

  9. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  12. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  13. US water resources versus an announced but uncertain climate change

    SciTech Connect

    Waggoner, P.E. )

    1991-03-01

    The problems that arise in global temperature caused by the greenhouse gases are very troublesome for all of the 21 American water-resource regions. Five warning signals of vulnerability of water supplies to climate changes are the ratio of consumption and storage to supply, the ratio of vulnerability to runoff, dependence on hydroelectric power, and overdrawing of ground water. The leverage of climate upon future water resources is generally known, but the lack of the needed predictions of climate at hand or in the very near future frustrates the determination of future water resources. It is predicted that 10 to 50 years will pass before a concensus is reached about predictions of regional precipitation and runoff, and this lack of imminent prediction of water supplies (related to climate changes) necessitates the immediate need for coping with present variability to prepare for climate changes. Conservation and diversification also constitute practical precautions for water shortages. Thus the need for more accurate forecasting for a single season is of paramount importance.

  14. Resources

    MedlinePlus

    ... Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - resources Gastrointestinal disorders - resources Hearing impairment - resources ...

  15. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  16. Western Water Resources: Coming Problems and the Policy Alternatives

    NASA Astrophysics Data System (ADS)

    Wahl, Richard

    This quote from the book leads one to speculate as to what will happen to water policy in these times of increased concern for reducing federal spending, for more reliance on state and local governments as opposed to the federal government, and for more reliance on the private sector as opposed to any level of governmental control. Remembering that a wrenching debate preceded deregulation of oil and other energy prices, what are the opportunities for deregulation in the water resources field?Western Water Resources consists of the proceedings of a symposium held in Denver in September 1979 and Hosted by the Federal Reserve Bank of Kansas City. As in any conference, there is, in addition to the organized substantive content of the papers, a mixture of the clever and the banal, peppered with some humor and chit-chat. Among the contributors are economists, including Charles Howe, Allen Kneese, Emery Castle, and Kenneth Boulding; legal scholars, such as George Radosevich and Frank Trelease; and political figures, such as Scott Matheson, Governor of Utah, Guy Martin, former Assistant Secretary for Land and Water Resources of the Department of the Interior, and Leo Eisel, former Director of the Water Resources Council. Some papers are followed by a discussion from commentors.

  17. Integrating policy, disintegrating practice: water resources management in Botswana

    NASA Astrophysics Data System (ADS)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  18. Mapping Climate Change Vulnerability Distribution of Water Resources in a Regional Water Supply System

    NASA Astrophysics Data System (ADS)

    Liu, T.; Tung, C.; Li, M.

    2011-12-01

    In recent years, the threat of increasing frequency of extreme weather rise up human attention on climate change. It is important to know how climate change might effect regional water resources, however, there is not much information to help government understanding how climate change will effect the water resources locally. To a regional water supply system, there might be some hotspots more vulnerable to climate. For example, the water supply of some area is from the water of river. When the storm occurred, the water can't be treated due to high density of suspended sediment in the river. Then the water supply in this area is more vulnerable to climate. This study used an integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources, which includes 10 GCMs output of SRES A2, A1B, B2 scenarios, weather generator, GWLF model, and Analytic Hierarchy Process (AHP) tool. A water supply system is very complex which needs dynamic modeling to determine the vulnerability distribution. This study used a system dynamics model- VENSIM connected with TaiWAP to simulate a water supply system and evaluate vulnerability of each unit in a water supply system. The vulnerable hotspots will be indicated in the system and the adaptive strategies will be applied to strengthen the local vulnerable area. The adaptive capacity will be enhanced to mitigate climate change impacts on water supply system locally to achieve sustainable water uses.

  19. WATER QUALITY CONTROL STUDY, MIDDLE SNAKE RIVER WATER RESOURCES DEVELOPMENT

    EPA Science Inventory

    On February 5, 1964, the Federal Power Commission issued a license to Pacific Northwest Power Company for construction and operation of its proposed High Mountain Sheep Project on the Snake River (170602, 170501). This investigation by the Federal Water Pollution Control Adminis...

  20. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  1. Water reservoir as resource of raw material for ceramic industry

    NASA Astrophysics Data System (ADS)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  2. Water-resources optimization model for Santa Barbara, California

    USGS Publications Warehouse

    Nishikawa, T.

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  3. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, L. Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  4. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  5. Land utilization and water resource inventories over extended test sites

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  6. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique

  7. Water Resources Research Grant Program Project Descriptions: Fiscal Year 1988

    USGS Publications Warehouse

    Lew, Melvin, (compiler); McCoy, Beverly M.

    1989-01-01

    This report contains information on the 38 new projects funded by the U.S. Geological Survey's Water Resources Research Grant Program in fiscal year 1988 and on 11 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, and (4) approach. The 38 projects include 14 in the area of ground-water quality problems, 10 in the science and technology of water-quality management, 4 in climate variability and the hydrologic cycle, 7 in institutional change in water-resources management, and 3 in miscellaneous water-resources management problems. For the 11 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization.

  8. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    SciTech Connect

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  9. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The database of known deposits, significant prospects, and prospects includes an inventory of mineral resources in two known porphyry copper deposits, as well as key characteristics derived from available exploration reports for 70 significant porphyry copper prospects and 86 other prospects. Resource and exploration and development activity are updated with information current through February 2013.

  10. Prototype spectral analysis of water samples for monitoring and treatment of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Lee, M.; Yapijakis, C.; Ramsey, L. S.; Huang, L.; Shabaev, A.; Massa, L.

    2014-06-01

    Experimental measurements conducted in the laboratory, involving hyperspectral analysis of water samples taken from public water resources in the New York City metro area, have motivated a reevaluation of issues concerning the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. One issue concerns hyperspectral monitoring of contaminants with respect to types and relative concentrations. This implies a need for better understanding the statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. This issue also implies the need for establishing correlations between hyperspectral signatures and types of contaminants to be found within specific water resources. Another issue concerns the use of absorption spectra for determining changes in chemical and physical characteristics of contaminants after application of water treatments in order to determine levels of toxicity with respect to the environment.

  11. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  12. SITES-WATER RESOURCE SITE ANALYSIS COMPUTER PROGRAM, VERSION 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SITES Water Resource Site Analysis Computer program is used by USDA-NRCS and others for design and analysis of dams. The current program evolved from the DAMS2 program of the 1980’s with new features added for both functionality and ease of use. An Integrated Development Environment (IDE) was ...

  13. Environmental Research In Practice: Restoration And Protection Of Water Resources

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is tasked to protect human health and the environment. To carry out this task, the EPA makes use of technical expertise within its Office of Research and Development. Restoration and protection of water resources is one area of tec...

  14. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    ERIC Educational Resources Information Center

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  15. Water Resources Research Grant Program project descriptions, fiscal year 1985

    USGS Publications Warehouse

    U.S. Geological Survey Branch of Research Grants and Contracts

    1985-01-01

    Information on each of the 24 projects funded by the U.S. Geological Survey in FY 1985 under section 105 of Public Law 93-242 (the Water Resources Research Act of 1984) is presented, including the grant number, organization, the period of performance, and a brief description of the work to be carried out. (Lantz-PTT)

  16. Knowledge and information management for integrated water resource management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  17. Water-Resources Manpower: Supply and Demand Patterns to 1980.

    ERIC Educational Resources Information Center

    Lewis, James E.

    Relating the supply of scientific manpower to the educational potential of the general population and the productive capacity of the educational system, this study disaggregates independent projections of scientific manpower supply and demand to yield projections for water resources manpower. This supply of engineers, natural scientists, and…

  18. Water Resources Division Training Bulletin, July 1973 Through June 1974.

    ERIC Educational Resources Information Center

    Abrams, R. O.; Brown, D. W.

    This bulletin provides information about available training as well as information to assist supervisors and training officers in developing a coordinated, efficient training program in hydrology and other subjects related to water-resources investigations. Most of the training is presented at the Center at Lakewood, Colorado. Information is given…

  19. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    NASA Astrophysics Data System (ADS)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  20. Remote Sensing of Water Resources During the California Drought

    NASA Astrophysics Data System (ADS)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  1. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  2. Water resources data, Puerto Rico and the U.S. Virgin Islands, water year 2004

    USGS Publications Warehouse

    Figueroa-Alamo, Carlos; Aquino, Zaida; Guzman-Rios, Senen; Sanchez, Ana V.

    2006-01-01

    The Caribbean Water Science Center of the U.S. Geological Survey (USGS), in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 89 streamflow-gaging stations, daily sediment records for 13 sediment stations, stage records for 18 reservoirs, and (2) water-quality records for 20 streamflow-gaging stations, and for 38 ungaged stream sites, 13 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 72 observation wells. Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled 'Water Records of Puerto Rico.' Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled 'Water Records of U.S. Virgin Islands.' Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water. Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975 to 2003 water years consist of one volume each and contain data for streamflow, water quality, and ground water.

  3. Using a Cast Iron Hand-Pump to Teach Students About Water Resources and Resource Allocation

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Radloff, K. A.

    2010-12-01

    Simply turning on the tap brings safe, clean, fresh-tasting water to most Americans. Students never need to consider basic concepts about water supply, including their daily water consumption and the quality of the water required for drinking. In stark contrast, the issues of water quality and quantity play a central role in people’s daily lives in the developing world. It is difficult to convey this reality to our students through lectures alone and hands-on activities are required. In order to develop an active learning based approach, we transported a traditional cast iron hand-pump and aluminum urns from Bangladesh to the United States. The hand-pump is mounted on a cooler, which acts as a water reservoir, and is now functional and easily transportable. Using this powerful demonstration tool, we have developed an active learning module we call “How far will you walk for water?”. The goal of the module is to teach students about water quantity, water quality, and resource allocation with a focus on Arsenic and Bangladesh, but the system could be applied to other areas of concern. First the students are given a quick lecture on Arsenic, its health impacts, and the extent of contamination in Bangladesh. They are then assigned a specific well, complete with a map of their village and picture of their well and a water sample (pre-spiked with arsenic to be above or below the 10 ug/L WHO limit). Next they pump the wellhead, fill an urn, walk down the hall and back, and measure the distance walked. This is compared to the distance from their village home to their private well, to safe wells belonging to neighbors and to a community well. The students then use the Hach Arsenic test kit to test the arsenic levels in their water samples and learn if their well is safe to drink. Finally, given all this information students must determine if they should continue drinking from their well or switch to a new well, even if that means making multiple, long trips each day

  4. OCLC in Asia Pacific.

    ERIC Educational Resources Information Center

    Chang, Min-min

    1998-01-01

    Discusses the Online Computer Library Center (OCLC) and the changing Asia Pacific library scene under the broad headings of the three phases of technology innovation. Highlights include WorldCat and the OCLC shared cataloging system; resource sharing and interlibrary loan; enriching OCLC online catalog with Asian collections; and future outlooks.…

  5. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  6. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    NASA Astrophysics Data System (ADS)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  7. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  8. Systems Dynamic ToolBox for Water Resource Planning

    Energy Science and Technology Software Center (ESTSC)

    2006-08-01

    The Fully Integrated System Dynamics Tookbox for Water Resources Planning (Toolbox) is a library of generic modules intended to assist in water management planning and decision making in watersheds around the world. The modules - built in a commercially available modeling environment called Powersim Studio Expert, represent the different sub-systems ina watershed, including population, agriculture, economics, climate, reservoirs, stream flows, and fish populations, and provides generic building blocks with which complex models of complex modelsmore » of complex watersheds can be assembled. The resulting models provide a tool for observing how research management decision made in one sector of a basin can affect other sectors. Improved water resource management contributes to improved public health, economic development, ecological sustainability, and overall security and stability.« less

  9. Water resources transfers through southern African food trade: water efficiency and climate signals

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Conway, D.

    2015-12-01

    Temporal and spatial variability of precipitation in Southern Africa is particularly high. The associated drought and flood risks, combined with a largely rainfed agriculture, pose a challenge for water and food security in this region. It is thus important to understand both how climate variability affects agricultural productivity and how intra- and extra-regional trade can contribute to the region's capacity to deal with climate-related shocks. We combine international food trade data and a global hydrological model to quantify the water resources embedded in international food trade in southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic, political and climatic changes on agricultural trade and embedded water resources during that period. We find that regional food trade is efficient in terms of water resources but may be unsustainable because water-productive exporters, like South Africa, rely on increasingly scarce water resources. The role of imports from the rest of the world in the region's food supply is important, in particular during severe droughts. This reflects how trade can efficiently redistribute water resources across continents in response to a sudden gap in food production and water productivity. As regional collaboration strengthens through the Southern Africa Development Community (SADC) and trade with other regions increases, our results point out opportunities for improved water-efficiency and sustainability of the region's food production via trade.

  10. Establishing Vulnerability Map of Water Resources in Regional Water Supply System

    NASA Astrophysics Data System (ADS)

    Liu, T. M.; Tung, C. P.; Li, M. H.

    2012-04-01

    In recent years, the threat of increasing frequency of extreme weather rise up human attention on climate change. To reduce the threat of water scarcity, it is important to know how climate change might affect regional water resources and where the hotspots, the vulnerability points, are. However, there is not much information to help government understanding how climate change will affect the water resources locally. To a regional water supply system, there might be some hotspots more vulnerable to climate due to the lack of water treatment plants or tape water pipe system. And also, there might be some hotspots more vulnerable due to high population and high industrial product value when they expose to the same threat of water scarcity. This study aims to evaluate the spatial vulnerability distribution of water resources and propose the adaptive plan for southern region of Taiwan. An integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources, which includes 10 GCMs output of SRES A2, A1B, B2 scenarios, weather generator, GWLF model, and Analytic Hierarchy Process (AHP) tool is used for climate impact assessment. For the simulation of the complex water supply system, the system dynamics model- VENSIM which is connected with TaiWAP is adopted to simulate a water supply system and evaluate vulnerability of each unit in a water supply system. The vulnerable hotspots will be indicated in the system and the adaptive strategies will be applied to strengthen the local vulnerable area. The adaptive capacity will be enhanced to mitigate climate change impacts on water supply system locally to achieve sustainable water uses.

  11. Mediterranean water resources in a global change scenario

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; López-Moreno, J. Ignacio; Vicente-Serrano, Sergio M.; Lasanta–Martínez, Teodoro; Beguería, Santiago

    2011-04-01

    Mediterranean areas of both southern Europe and North Africa are subject to dramatic changes that will affect the sustainability, quantity, quality, and management of water resources. Most climate models forecast an increase in temperature and a decrease in precipitation at the end of the 21st century. This will enhance stress on natural forests and shrubs, and will result in more water consumption, evapotranspiration, and probably interception, which will affect the surface water balance and the partitioning of precipitation between evapotranspiration, runoff, and groundwater flow. As a consequence, soil water content will decline, saturation conditions will be increasingly rare and restricted to periods in winter and spring, and snow accumulation and melting will change, especially in the mid-mountain areas. Future land management will be characterized by forest and shrub expansion in most Mediterranean mountain areas, as a consequence of farmland and grazing abandonment, with increasing human pressure localized only in some places (ski resort and urbanized of valley floors). In the lowlands, particularly in the coastal fringe, increasing water demand will occur as a consequence of expansion of irrigated lands, as well as the growth of urban and industrial areas, and tourist resorts. Future scenarios for water resources in the Mediterranean region suggest (1) a progressive decline in the average streamflow (already observed in many rivers since the 1980s), including a decline in the frequency and magnitude of the most frequent floods due to the expansion of forests; (2) changes in important river regime characteristics, including an earlier decline in high flows from snowmelt in spring, an intensification of low flows in summer, and more irregular discharges in winter; (3) changes in reservoir inputs and management, including lower available discharges from dams to meet the water demand from irrigated and urban areas. Most reservoirs in mountain areas will be

  12. How important are glaciers for Indus water resources?

    NASA Astrophysics Data System (ADS)

    Sorteberg, A.

    2013-12-01

    How important are glaciers for Indus water resources? Looking into the literature reveals a wide range of estimates to this question. They partly diverge because of different definitions of a 'water resource' and partly due to the different estimates of the contribution from the glaciers. Defining the Indus water resources as precipitation (rain and snowfall) minus the loss of water due to evapotranspiration and sublimation for non-glaciated regions and the total runoff from the glaciated regions (sum of seasonal snowmelt on top of the glacier, percolating rainfall and loss of glacier ice), we have attempted to estimate the fraction of the total water resource that is coming from the glaciated regions and the fraction due to loss of glacier ice alone (which is the part that may be lost if a glacier disappears). Here we present estimates of water resources from non-glaciated regions using a wide range of estimates from observationally based, reanalysis and land data assimilation systems. Our results indicate large differences between the different estimates even for the annual values averaged over the whole basin. The implication of this finding is that the large uncertainties in the water resources of the non-glaciated regions will prevent us from making narrow estimates of the importance of the glaciers. For estimating the contribution from the glaciers we use an energy balance model with snow metamorphosis forced with 3 hourly reanalysis data (including perturbed precipitation and temperature runs based on the uncertainties in temperature and precipitation found from 10 different datasets). As there is over 10 000 glaciers in Indus it is not possible to model individual glaciers. Instead we model ';representative' glaciers where we get the average elevation of terminus and top, avg. glacier depth etc. from the Extended World Glacier Inventory in a given sub basin (using the FAO HydroSHEDS dataset to divide the Indus basin into subbasins). The mass balance and

  13. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  14. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  15. Water resources data New York water year 2003, volume 2: Long Island

    USGS Publications Warehouse

    Spinello, A.G.; Busciolano, R.; Pena-Cruz, G.; Winowitch, R.B.

    2004-01-01

    Water resources data for the 2003 water year for Long Island New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; stage and water quality of estuaries; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 15 gaging stations; lake stage at 7 gaging stations; tide stage at 6 gaging stations; and water levels at 478 observation wells. Also included are data for 10 low-flow partial record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements and analyses. These data, together with the data in volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State, Federal, and other agencies in New York.

  16. Modeling U.S. water resources under climate change

    NASA Astrophysics Data System (ADS)

    Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John

    2014-04-01

    Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.

  17. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    PubMed Central

    Paoloni, Juan D.; Sequeira, Mario E.; Espósito, Martín E.; Fiorentino, Carmen E.; del C. Blanco, María

    2009-01-01

    Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahía Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the WHO (Guidelines for Drinking Water Quality, 2004). and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water. PMID:19936127

  18. Managing Water Resources for Drought: Insights from California

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, Josue; Lund, Jay

    2016-04-01

    Droughts bring great opportunities to better understand and improve water systems. California's economic powerhouse relies on highly engineered water systems to fulfill large and growing urban and agricultural water demands. Current and past droughts show these systems are highly robust and resilient to droughts, as they recover promptly. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper provides an overview of the economic and ecosystem impacts of the recent multi-year drought in California in the context of a global economy. We explore the potential of water markets, groundwater management and use of remote sensing technology to improve understanding of adaptation to drought. Insights for future management of water resources and scientific work are discussed.

  19. Alpine Snow Cover - Water Resources in Arid Regions

    NASA Astrophysics Data System (ADS)

    Czyzowska, E. H.; Van Leeuwen, W. J.; Hirschboeck, K. K.; Wisniewski, W. T.; Marsh, S. E.

    2013-12-01

    There is an undisputed need to increase accuracy of snow cover estimation in regions of complex terrain, especially in areas dependent on winter snow accumulation for a substantial portion of their water supply, such as the Western United States, Central Asia, and the Andes. Presently, the most pertinent monitoring and research needs related to alpine snow cover extent (SCE) are: (1) to improve SCE monitoring by providing detailed fractional snow cover (FSC) products which perform well in temporal/spatial heterogeneous forested and/or alpine terrains; (2) to provide accurate measurements of FSC at the watershed scale for use in snow water equivalent (SWE) estimation for regional water management; (3) to provide detailed distributions of FSC in mountainous regions to investigate the temporal/spatial distribution of SCE/SWE in relation to recent climate changes; (4) to use FSC products as input for climate models at multiple scales; and (5) to estimate SCE and SWE for use in ecological studies (e.g., vegetation cover, water stress, primary production, fire, insect outbreaks, and pulses in tree demography). To address the above our approach is based on Landsat/MODIS Fractional Snow Cover (LandsatFSC, ModisFSC), as a measure of the temporal/spatial distribution of alpine SCE. We used a fusion methodology between remotely sensed multispectral data from Landsat TM/ETM+/MODIS and Ikonos utilized at their highest respective spatial resolutions. Artificial Neural Networks (ANNs) are used to capture the multi-scale information structure of the data by means of the ANN training process, followed by the ANN extracting FSC from all available information in the Landsat images. The LandsatFSC/ModisFSC algorithms were validated (RMSE ~ 0.09; mean error ~ 0.001-0.01 FSC) in watersheds characterized by diverse environmental factors such as: terrain, slope, exposition, vegetation cover, and wide-ranging snow cover conditions.

  20. Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Blodgett, D. L.; Booth, N.

    2014-12-01

    The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.

  1. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; Pilinger, C. T.

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  2. Water resources of the Rainy Lake watershed, northeastern Minnesota

    USGS Publications Warehouse

    Ericson, Donald W.; Lindholm, Gerald F.; Helgesen, John O.

    1976-01-01

    More than 60 percent of the lakes larger than 10 acres (4 hm2) are in the BWCA. The primitive character of the BWCA is maintained in accordance with the Wilderness Act of September 3, 1964. Most lakes not in the BWCA were assigned a Public Waters Classification by the Minnesota Department of Natural Resources, based upon the suitability of the lake for future shoreland development (unpublished data from the Minnesota Department of Natural Resources). “Natural environment” is most restrictive and “general development” least restrictive with respect to development standards. About 80 percent of lakes classified in the watershed have been designated “natural environment.”

  3. Water resources management plan: Great Basin National Park

    SciTech Connect

    Jacobs, R.W.; Flora, M.

    1994-06-01

    The enabling legislation creating Great Basin National Park calls for the National Park Service (NPS) to protect, manage, and administer the park in such manner as to conserve and protect the scenery as well as the natural, geologic, historic, and archaeological resources of the park. NPS policies require that each unit of the National Park System develop and implement a General Management Plan (GMP). This plan is designed to serve as a management action plan to guide park water-related activities over the next 10 to 15 years. This WRMP is complementary to, and consistent with, other existing park management documents, including the GMP (NPS 1993) and Resource Management Plan (in review).

  4. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  5. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.

    2016-05-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be

  6. Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia

    PubMed Central

    Xia, Jiangzhou; Liang, Shunlin; Chen, Jiquan; Yuan, Wenping; Liu, Shuguang; Li, Linghao; Cai, Wenwen; Zhang, Li; Fu, Yang; Zhao, Tianbao; Feng, Jinming; Ma, Zhuguo; Ma, Mingguo; Liu, Shaomin; Zhou, Guangsheng; Asanuma, Jun; Chen, Shiping; Du, Mingyuan; Davaa, Gombo; Kato, Tomomichi; Liu, Qiang; Liu, Suhong; Li, Shenggong; Shao, Changliang; Tang, Yanhong; Zhao, Xiang

    2014-01-01

    The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr−1 over the DEA region with an average of 245.8 mm yr−1 from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions. PMID:24845063

  7. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  8. Geomatic methods at the service of water resources modelling

    NASA Astrophysics Data System (ADS)

    Molina, José-Luis; Rodríguez-Gonzálvez, Pablo; Molina, Mª Carmen; González-Aguilera, Diego; Espejo, Fernando

    2014-02-01

    Acquisition, management and/or use of spatial information are crucial for the quality of water resources studies. In this sense, several geomatic methods arise at the service of water modelling, aiming the generation of cartographic products, especially in terms of 3D models and orthophotos. They may also perform as tools for problem solving and decision making. However, choosing the right geomatic method is still a challenge in this field. That is mostly due to the complexity of the different applications and variables involved for water resources management. This study is aimed to provide a guide to best practices in this context by tackling a deep review of geomatic methods and their suitability assessment for the following study types: Surface Hydrology, Groundwater Hydrology, Hydraulics, Agronomy, Morphodynamics and Geotechnical Processes. This assessment is driven by several decision variables grouped in two categories, classified depending on their nature as geometric or radiometric. As a result, the reader comes with the best choice/choices for the method to use, depending on the type of water resources modelling study in hand.

  9. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  10. Infrared photography and imagery in water resources research

    USGS Publications Warehouse

    Robinove, Charles J.

    1965-01-01

    Infrared photography has restricted usefulness in general water resources studies but is particularly useful in special problems such as shoreline mapping. Infrared imagery is beginning to be used in water resources studies for the identification of surface and sub surface thermal anomalies as expressed at the surface and the measurement of apparent water surface temperatures. It will attain its maximum usefulness only when interpretation criteria for infrared imagery are fully developed. Several important hydrologic problems to which infrared imagery may be applied are: (1) determination of circulation and cooling of water in power plant cooling ponds, (2) measurement of river temperature and temperature decline downstream from power plants discharging heated water, (3) identification of submarine springs along coasts, and (4) measurement of temperature differences along streams as indicators of effluent seepage of ground water. Although it is possible at this time to identify many features of importance to hydrology by the use of infrared imagery, the task remaining is to develop criteria to show the hydrologic significance of the features.

  11. Simulation Games: The Future of Water Resources Education and Management?

    NASA Astrophysics Data System (ADS)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Scientists rely on models of the water cycle to describe and predict problems of water scarcity in a changing climate, and to suggest adaptation strategies for securing future water needs. Yet these models are too often complicated for managers, the general public and for students to understand. Simpler modelling environments will help with finding solutions by engaging a broader segment of the population. Such environments will enable education at the earliest stages and collective action. I propose that simulation games can be an effective communication platform between scientists and 'non-experts' and that such games will shed light on problems of pollution and overuse of water resources. In the same way as pilots use flight simulators to become proficient at flying aircraft, simulation games—if underpinned by good science—can be used to educate the public, students and managers about how to best manage our water resources. I aim to motivate young scientists to think about using games to advance water education and management.

  12. Scenario workshops: A useful method for participatory water resources planning?

    NASA Astrophysics Data System (ADS)

    Hatzilacou, Dionyssia; Kallis, Giorgos; Mexa, Alexandra; Coccosis, Harris; Svoronou, Eleni

    2007-06-01

    This article reports on a scenario workshop (SW) for water resources management at the island of Naxos, Greece. The workshop was part of a European research project studying the advantages and limitations of different participatory methods in the context of the Water Framework Directive. It involved policy makers, scientists, business representatives, and citizens from different parts of the island. On the first day, participants worked to envision a sustainable development future for the island and its water resources. Discussion was inspired by four alternative water development scenarios prepared by the organizers. Participants' vision statements emphasized a diversified development path and balanced water solutions. On the second day, participants worked to plan the actions needed to realize their common vision. The SW turned out to be a good method to initiate a multipartner dialogue, to include new stakeholders in the water policy debate, and to a certain extent, to promote learning between participants. On the other hand, it did not appear well suited to resolve conflicts and aid decisions in the face of scientific complexity and uncertainty. SW seems to be a good method for the "upstream," preparatory, capacity-building tasks of a planning process but not for the production of substantive decision outputs such as consensual agreements or action plans. The Naxos experiment also raised the centrality of framing, participant selection, and facilitation in participatory processes.

  13. Earth and water resources and hazards in Central America

    USGS Publications Warehouse

    Cunningham, Charles G.; Fary, R.W.; Guffanti, Marianne; Laura, Della; Lee, M.P.; Masters, C.D.; Miller, R.L.; Quinones-Marques, Ferdinand; Peebles, R.W.; Reinemund, J.A.; Russ, D.P.

    1984-01-01

    Long-range economic development in Central America will depend in large part on production of indigenous mineral, energy, and water resources and on mitigation of the disastrous effects of geologic and hydrologic hazards such as landslides, earthquakes, volcanic eruptions, and floods. The region has six world-class metal mines at present as well as additional evidence of widespread mineralization. Systematic investigations using modern mineral exploration techniques should reveal more mineral deposits suitable for development. Widespread evidence of lignite and geothermal resources suggests that intensive studies could identify producible energy sources in most Central American countries. Water supply and water quality vary greatly from country to country. Local problems of ground- and surface-water availability and of contamination create a need for systematic programs to provide better hydrologic data, capital improvements, and management. Disastrous earthquakes have destroyed or severely damaged many cities in Central America. Volcanic eruptions, landslides, mudflows, and floods have devastated most of the Pacific side of Central America at one time or another. A regional approach to earthquake, volcano, and flood-risk analysis and monitoring, using modern technology and concepts, would provide the facilities and means for acquiring knowledge necessary to reduce future losses. All Central American countries need to strengthen institutions and programs dealing with earth and water resources and natural hazards. Some of these needs may be satisfied through existing or pending projects and technical and economic assistance from U.S. or other sources. The need for a comprehensive study of the natural resources of Central America and the requirements for their development is evident. The U.S. Caribbean Basin Initiative offers both an excellent opportunity for a regional approach to these pervasive problems and an opportunity for international cooperation.

  14. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  15. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  16. Water Resources Data, Ohio, Water Year 2000, Volume 1. Ohio River Basin Excluding Project Data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Trimble, L.E.

    2001-01-01

    Water-resources data for the 2000 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 122 gaging stations and 65 partial-record sites; water levels at 65 observation wells and 23 crest-stage gages; and water quality at 36 gaging stations, 69 observation wells, and 35 partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  17. Water Resources Data, Ohio, Water Year 1998, Volume 1. Ohio River Basin Excluding Project Data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Trimble, L.E.

    1999-01-01

    Water-resources data for the 1998 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 127 gaging stations and 65 partial-record sites; water levels at 348 observation wells and 24 crest-stage gages; and water quality at 25 gaging stations, 317 observation wells, and 26 partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  18. Water Resources Data, Ohio, Water Year 1999, Volume 1. Ohio River Basin Excluding Project Data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Trimble, L.E.

    2000-01-01

    Water-resources data for the 1999 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 120 gaging stations and 69 partial-record sites; water levels at 187 observation wells and 26 crest-stage gages; and water quality at 34 gaging stations, 337 observation wells, and 3 partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  19. Water Resources Data, Ohio, Water Year 2001, Volume 1. Ohio River Basin Excluding Project Data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Trimble, L.E.

    2002-01-01

    Water-resources data for the 2001 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 130 gaging stations and 65 partial-record sites; water levels at 160 observation wells and 25 crest-stage gages; and water quality at 25 gaging stations, 31 observation wells, and 9 partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  20. Water resources data, Oklahoma, water year 2004; Volume 2. Red River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2004 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 138 gaging stations; stage and contents for 18 lakes or reservoirs and 2 gage height stations; water quality for 55 gaging stations; 38 partial-record or miscellaneous streamflow stations and 4 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  1. Water resources data, Oklahoma, water year 2004;Volume 1. Arkansas River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2004 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 138 gaging stations; stage and contents for 18 lakes or reservoirs and 2 gage height stations; water quality for 55 gaging stations; 38 partial-record or miscellaneous streamflow stations and 4 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  2. Water resources data, Oklahoma, water year 2003; Volume 1. Arkansas River basin

    USGS Publications Warehouse

    Blazs, R.L.; Walters, D.M.; Coffey, T.E.; Boyle, D.L.; Wellman, J.J.

    2004-01-01

    Volumes 1 and 2 of the water resources data for the 2003 water year for Oklahoma consists of record of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes or reservoirs; and water levels of ground-water wells. This report contains discharge records for 139 gaging stations; stage and contents for 17 lakes or reservoirs and 2 gage height stations; water quality for 46 gaging stations; 32 partial-record or miscellaneous streamflow stations and 5 ground-water sites. Also included are lists of discontinued surface-water discharge and water-quality sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Oklahoma.

  3. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. PMID:27161139

  4. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.

  5. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 1999

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1999.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 25 streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 107 observation wells.

  6. Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.

  7. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  8. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  9. Assessing the impacts of climatic change on mountain water resources.

    PubMed

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. PMID:24360916

  10. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining , Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  11. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  12. Integrating water resources management in eco-hydrological modelling.

    PubMed

    Koch, H; Liersch, S; Hattermann, F F

    2013-01-01

    In this paper the integration of water resources management with regard to reservoir management in an eco-hydrological model is described. The model was designed to simulate different reservoir management options, such as optimized hydropower production, irrigation intake from the reservoir or optimized provisioning downstream. The integrated model can be used to investigate the impacts of climate variability/change on discharge or to study possible adaptation strategies in terms of reservoir management. The study area, the Upper Niger Basin located in the West African Sahel, is characterized by a monsoon-type climate. Rainfall and discharge regime are subject to strong seasonality. Measured data from a reservoir are used to show that the reservoir model and the integrated management options can be used to simulate the regulation of this reservoir. The inflow into the reservoir and the discharge downstream of the reservoir are quite distinctive, which points out the importance of the inclusion of water resources management. PMID:23552241

  13. [Catalogues of Third Country Training Resources in East, Near East, and South Asia. Volumes 1 and 2.

    ERIC Educational Resources Information Center

    Agency for International Development (Dept. of State), Washington, DC. Office of International Training.

    Both of these catalogs are part of a series of four official AID publications covering both academic and non-academic training opportunities. These two in particular were developed to encourage increased use by Asians of the regional training resources designed to assist them in the economic and social development of their countries. The…

  14. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  15. Drought in California; water resources data for 1977

    USGS Publications Warehouse

    Jorgensen, Leonard N.; Pearce, Verrie F.

    1978-01-01

    The 2-year dry period 1976-77 was the most severe drought in northern California 's history, and the quantity and quality of all water-supply sources in the State were affected. This report contains special water-resources data collected by the Geological Survey during 1977. These data include: streamflow at 11 selected stations, comparing the 1977 mean monthly and yearly flow to the period-of-record medians; base-flow measurements at 189 selected sites; water quality at 131 selected sites; ground-water levels in wells and river stages along a 158-mile reach of the Sacramento River; and, finally, graphs showing the effect of tidal action on suspended-sediment concentration at the stream-gaging station on the Sacramento River at Sacramento. (Woodard-USGS)

  16. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  17. Wastewater reuse potential analysis: implications for China's water resources management.

    PubMed

    Chu, Junying; Chen, Jining; Wang, Can; Fu, Ping

    2004-06-01

    It has been recognized that wastewater reuse or reclamation serves as an efficient and valuable way to cope with the scarcity of water resources and severity of water pollution. This paper presents the systematic framework of wastewater reuse potential estimation. Based on the regional disparities in China, a linear programming optimization model is developed to explore the potential wastewater reuse quantities, under physical and economic constraints. Sensitivity analysis and Robust Counterpart (RC) optimization are performed to discuss the influences of key parameters and the reuse quantity's decision making under uncertainty. Based on the model, effectiveness of different policy scenarios of water price changes are simulated and evaluated, providing information regarding China's water and wastewater management. PMID:15207605

  18. Integrating blue and green water flows for water resources management and planning

    NASA Astrophysics Data System (ADS)

    Jewitt, Graham

    The “Green Water” approach, where flows of water vapour in the form of transpiration, interception and evaporation from the soil and vegetation is considered green water and runoff and groundwater recharge is considered blue water, has been an extremely useful illustrative concept in many situations where the role of land use in water resources management needs to be highlighted. The approach has been the subject of much interest in recent years, particularly in semi-arid and arid regions where Green Water Flows dominate the hydrological cycle. However, it is clear that there are limits to the concept in informing water resources management and planning. In this paper, these limits are explored through case studies of commercial afforestation and runoff harvesting in the SADC region. Issues highlighted include the degree of simplification of the hydrological cycle in many green water focused studies, appropriate spatial and temporal scales for the consideration of low flows and the uncertainty regarding the storage of water in the soil profile and the generation of flows from saturated and unsaturated soil water. It is concluded that rather than focusing on green or blue water flows, it is the hydrological linkages between these and their representation in water resources management and planning that needs most attention.

  19. Asia Lakes

    Atmospheric Science Data Center

    2013-04-16

    article title:  Central Asia - Mongolia, China and Russia     View Larger ... Imaging SpectroRadiometer (MISR) image of Mongolia, China and Russia covers an area of about 317 kilometers x 412 kilometers, and ...

  20. Water resources planning for rivers draining into Mobile Bay

    NASA Technical Reports Server (NTRS)

    April, G. C.

    1976-01-01

    The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.