Science.gov

Sample records for asialoglycoprotein receptor deficiency

  1. Impact of asialoglycoprotein receptor deficiency on the development of liver injury

    PubMed Central

    Lee, Serene ML; Casey, Carol A; McVicker, Benita L

    2009-01-01

    The asialoglycoprotein (ASGP) receptor is a well-characterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the mis-sorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously, we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanol-mediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations, studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti-Fas (CD95) antibody, carbon tetrachloride (CCl4) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels, histopathological scores, as well as hepatocellular death. Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxin-mediated liver diseases. PMID:19291819

  2. A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation

    PubMed Central

    Christie, Michelle P.; Simerská, Pavla; Jen, Freda E.-C.; Hussein, Waleed M.; Rawi, Mohamad F. M.; Hartley-Tassell, Lauren E.; Day, Christopher J.; Jennings, Michael P.; Toth, Istvan

    2014-01-01

    Glycosylation of biopharmaceuticals can mediate cell specific delivery by targeting carbohydrate receptors. Additionally, glycosylation can improve the physico-chemical (drug-like) properties of peptide based drug candidates. The main purpose of this study was to examine if glycosylation of the peptide enkephalin could facilitate its binding to the carbohydrate receptor, asialoglycoprotein. Firstly, we described the one-pot enzymatic galactosylation of lactose modified enkephalin in the presence of uridine-5′-diphosphogalactose 4-epimerase and lipopolysaccharyl α-1,4-galactosyltransferase. Stability experiments using human plasma and Caco-2 cell homogenates showed that glycosylation considerably improved the stability of enkephalin (at least 60% remained stable after a 2 hr incubation at 37°C). In vitro permeability experiments using Caco-2 cells revealed that the permeability of mono- and trisaccharide conjugated enkephalins was 14 and 28 times higher, respectively, than that of enkephalin alone (Papp 3.1×10−8 cm/s). By the methods of surface plasmon resonance and molecular modeling, we demonstrated that the enzymatic glycosylation of enkephalin enabled binding the asialoglycoprotein receptor. The addition of a trisaccharide moiety to enkephalin improved the binding of enkephalin to the asialoglycoprotein receptor two fold (KD = 91 µM). The docking scores from molecular modeling showed that the binding modes and affinities of the glycosylated enkephalin derivatives to the asialoglycoprotein receptor complemented the results from the surface plasmon resonance experiments. PMID:24736570

  3. Galactosylated manganese ferrite nanoparticles for targeted MR imaging of asialoglycoprotein receptor

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hyun; Heo, Dan; Lee, Eugene; Kim, Eunjung; Lim, Eun-Kyung; Lee, Young Han; Haam, Seungjoo; Suh, Jin-Suck; Huh, Yong-Min; Yang, Jaemoon; Park, Sahng Wook

    2013-11-01

    Cancer cells can express specific biomarkers, such as cell membrane proteins and signaling factors. Thus, finding biomarkers and delivering diagnostic agents are important in the diagnosis of cancer. In this study, we investigated a biomarker imaging agent for the diagnosis of hepatic cancers. The asialoglycoprotein receptor (ASGPr) was selected as a biomarker for hepatoma cells and the ASGPr-targetable imaging agent bearing a galactosyl group was prepared using manganese ferrite nanoparticles (MFNP) and galactosylgluconic acid. The utility of the ASGPr-targetable imaging agent, galactosylated MFNP (G-MFNP) was assessed by several methods in ASGPr-expressing HepG2 cells as target cells and ASGPr-deficient MCF7 cells. Physical and chemical properties of G-MFNP were examined using Fourier-transform infrared spectroscopy, dynamic light scattering, zeta potential analysis, and transmission electron microscopy. No significant cytotoxicity was observed in either cell line. Targeting ability was assessed using flow cytometry, magnetic resonance imaging, inductively coupled plasma atomic emission spectroscopy, absorbance analysis, dark-field microscopy, Prussian blue staining, and transmission electron microscopy. We demonstrated that G-MFNP target successfully and bind to ASGPr-expressing HepG2 cells specifically. We suggest that these results will be useful in strategies for cancer diagnoses based on magnetic resonance imaging.

  4. Asialoglycoprotein receptor promotes cancer metastasis by activating the EGFR-ERK pathway.

    PubMed

    Ueno, Suguru; Mojic, Marija; Ohashi, Yoshimi; Higashi, Nobuaki; Hayakawa, Yoshihiro; Irimura, Tatsuro

    2011-10-15

    Although the importance of glycans in malignant cell behavior is well documented, the potential involvement of endogenous lectins as modifiers of progression and metastasis in the tumor microenvironment has not been explored. In this study, we show that loss of the hepatic asialoglycoprotein receptor (ASGPR) in mice severely reduces the frequency of spontaneous lung metastasis after intrahepatic implantation of murine Lewis lung carcinoma (3LL) cells. Conversely, in vitro treatment with recombinant ASGPR increased the invasive and metastatic capacity of 3LL cells before intrahepatic implantation. ASGPR treatment in vitro increased the expression and production of matrix metalloproteinase-9 through activation of the epidermal growth factor receptor-extracellular signal-regulated kinase (EGFR-ERK) pathway. Our findings identify ASGPR as a novel important factor that responds to endogenous lectins in the tumor microenvironment to promote cancer metastasis by activating the EGFR-ERK pathway through interactions with counter-receptors on cancer cells. PMID:21868757

  5. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting: synthesis, characterization, and proof of concept of hepatospecific delivery.

    PubMed

    Pathak, Pankaj Omprakash; Nagarsenker, Mangal Shailesh; Barhate, Chandrashekhar Rishikant; Padhye, Sameer Govind; Dhawan, Vivek Vijay; Bhattacharyya, Dibyendu; Viswanathan, C L; Steiniger, Frank; Fahr, Alfred

    2015-05-18

    Asialoglycoprotein receptors (ASGPR) are hepatocyte bound receptors, which exhibit receptor mediated endocytosis (RME) for galactose specific moieties. Arabinogalactan (AG), a liver specific high galactose containing branched polysaccharide was hydrophobized using cholesterol (CHOL) as a lipid anchor via a two step reaction process to yield the novel polysaccharide lipid conjugated ligand (CHOL-AL-AG). CHOL-AL-AG was characterized by Fourier transform infra red (FTIR) spectroscopy, (1)H and (13)C nuclear magnetic spectroscopy (NMR), size exclusion chromatography (SEC) and differential scanning calorimetry (DSC). Conventional liposomes (CL) and surface modified liposomes (SML) containing CHOL-AL-AG were prepared using reverse phase evaporation technique. Effect of CHOL-AL-AG concentration on particle size and zeta potential of SML was evaluated. Surface morphology of CL and SML was studied using cryo-transmission electron microscopy (cryo-TEM). In vitro binding affinity of SML and CL was evaluated using Ricinus communis agglutinin (RCA) assay. Cellular uptake of SML and CL was determined on ASGPR expressing HepG2 cell lines by confocal laser scanning microscopy technique (CLSM). FTIR spectra revealed bands at 1736 cm(-1) and 1664 cm(-1) corresponding to ester and carbamate functional groups, respectively. Signals at δ 0.5-2.5 corresponding to the cholestene ring and δ 3-5.5 corresponding to the carbohydrate backbone were observed in (1)H NMR spectrum of the product. CHOL-AL-AG possessed a mean average molecular weight of 27 KDa as determined by size exclusion chromatography. An endothermic peak at 207 °C was observed in the DSC thermogram of CHOL-AL-AG, which was not observed in thermograms of reactants and intermediate product. Synthesized CHOL-AL-AG was successfully incorporated in liposomes to yield SML. Both CL and SML possessed a mean particle size of ∼ 200 nm with polydispersity index of ∼ 0.25. The zeta potential of CLs was observed to be -17 m

  6. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    SciTech Connect

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.

  7. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity.

    PubMed

    Gu, Dishui; Jin, Haojie; Jin, Guangzhi; Wang, Cun; Wang, Ning; Hu, Fangyuan; Luo, Qin; Chu, Wei; Yao, Ming; Qin, Wenxin

    2016-08-28

    The asialoglycoprotein receptor (ASGR), which is expressed mainly in hepatocytes, is downregulated in poorly differentiated hepatocellular carcinoma (HCC). Here we investigated the role of ASGR1 in HCC metastasis as well as the possible underlying molecular mechanisms. We found that ASGR1 was downregulated in HCC tissue compared with adjacent non-tumorous liver tissue and that lower ASGR1 expression was associated with higher TNM stage and poorer prognosis in HCC patients. ASGR1 overexpression inhibited hepatoma cell migration and invasion in vitro and in vivo, while ASGR1 knockdown had the opposite effects. Furthermore, ASGR1 interacted directly with human longevity assurance homolog 2 of yeast LAG1 (LASS2). Knockdown of LASS2 attenuated the inhibitory effects of ASGR1 on hepatoma cell migration and invasion in vitro. ASGR1 decreased V-ATPase activity in hepatoma cells, and this was reversed by LASS2 knockdown. Finally, HCC patients with low LASS2 levels had poor prognosis, while those with high ASGR1 and LASS2 levels had better prognosis. Thus, ASGR1 may act as a potential metastasis suppressor in HCC, and the combination of ASGR1 and LASS2 may help predict the prognosis of HCC patients. PMID:27241665

  8. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  9. Targeted delivery of DNA using YEE(GalNAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor.

    PubMed

    Merwin, J R; Noell, G S; Thomas, W L; Chiou, H C; DeRome, M E; McKee, T D; Spitalny, G L; Findeis, M A

    1994-01-01

    In vivo gene therapy shows promise as a treatment for both genetic and acquired disorders. The hepatic asialoglycoprotein receptor (ASGPr) binds asialoorosomucoid-polylysine-DNA (ASOR-PL-DNA) complexes and allows targeted delivery to hepatocytes. The tris(N-acetylgalactosamine aminohexyl glycoside) amide of tyrosyl(glutamyl) glutamate [YEE(GalNAcAH)3] has been previously reported to have subnanomolar affinity for the ASGPr. We have used an iodinated derivative of YEE(GalNAcAH)3 linked to polylysine and complexed to the luciferase gene (pCMV-Luc) in receptor-binding experiments to establish the feasibility of substituting ASOR with the synthetic glycopeptide for gene therapy. Scatchard analyses revealed similar Kd values for both ASOR and the glycopeptide. Binding and internalization of 125I-Suc-YEE(GalNAcAH)3 were competitively inhibited with either unlabeled ASOR or glycopeptide. The reverse was also true; 125I-ASOR binding was competed with unlabeled YEE(GalNAcAH)3 suggesting specific binding to the ASGPr by both compounds. Examination of in vivo delivery revealed that the 125I-labeled glycopeptide complex mimicked previous results observed with 125I-ASOR-PL-DNA. CPM in the liver accounted for 96% of the radioactivity recovered from the five major organs (liver, spleen, kidney, heart, and lungs). Cryoautoradiography displayed iodinated glycopeptide complex bound preferentially to hepatocytes rather than nonparenchymal cells. In vitro, as well as in vivo, transfections using the glycopeptide-polylysine-pCMV-luciferase gene complex (YG3-PL-Luc) resulted in expression of the gene product. These data demonstrate that the YEE(GalNAcAH)3 synthetic glycopeptide can be used as a ligand in targeted delivery of DNA to the liver-specific ASGPr. PMID:7873664

  10. Fluorine-18 labeled galactosylated chitosan for asialoglycoprotein-receptor-mediated hepatocyte imaging.

    PubMed

    Yang, Wenjiang; Mou, Tiantian; Guo, Wenyan; Jing, Huihui; Peng, Cheng; Zhang, Xianzhong; Ma, Yunchuan; Liu, Boli

    2010-08-15

    Galactosylated chitosan (GC) was prepared by reacting lactobionic acid with water-soluble chitosan. GC was labeled with fluorine-18 by conjugation with N-succinimidyl-4-(18)F-fluorobenzoate ([(18)F]SFB) under a slightly basic condition. After rapid purification with HiTrap desalting column, [(18)F]FB-GC was obtained with high radiochemical purity (>97%) determined by radio-HPLC. The total reaction time for [(18)F]FB-GC was about 150 min. Typical decay-corrected radiochemical yield was about 4-8%. Ex vivo biodistribution in normal mice showed that [(18)F]FB-GC had moderate activity accumulation in liver with very good retention (11.13+/-1.63, 10.97+/-1.90 and 10.77+/-0.95%ID/g at 10, 60, 120 min after injection, respectively). The other tissues except kidney showed relative low radioactivity accumulation. The high liver/background ratio affords promising biological properties to get clear images. The specific binding of this radiotracer to the ASGP receptor was confirmed by blocking experiment in mice. Compared with the non-blocking group the hepatic uptake of [(18)F]FB-GC significantly declined in all selected time points. The better liver retention properties of [(18)F]FB-GC than that of albumin based imaging agents may improve imaging quality and simplify pharmacokinetic model of liver function in the future application with PET imaging. PMID:20634070

  11. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  12. Detection of Circulating Tumor Cells in Hepatocellular Carcinoma Using Antibodies against Asialoglycoprotein Receptor, Carbamoyl Phosphate Synthetase 1 and Pan-Cytokeratin

    PubMed Central

    Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng

    2014-01-01

    Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545

  13. Zonal differences in ethanol-induced impairments in receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J. )

    1991-02-01

    We have shown previously that ethanol-induced defects in receptor-mediated endocytosis of asialoorosomucoid occurred as early as 1 wk after ethanol feeding. This study was undertaken as an initial attempt to establish a possible role of defective receptor-mediated endocytosis in liver injury by investigating whether differences exist in the effects of ethanol on receptor-mediated endocytosis in hepatocytes isolated from different regions of the liver. Perivenule cells, present in the distal half of the liver, are thought to be more susceptible to ethanol-induced liver injury than are the periportal cells located in the proximal half of the liver acini. For these studies, we fed male Sprague-Dawley rats for 7 days with liquid diets containing either ethanol (36% of calories) or isocaloric carbohydrate. Perivenule and periportal hepatocytes were then isolated using a digitonin-collagenase perfusion method. In control animals, cells isolated from the perivenule region bound significantly more ligand than did cells from the periportal region. Amounts of ligand internalized and degraded were also greater in perivenule than in periportal cells in these animals. After ethanol feeding, cells isolated from both the perivenule and periportal regions bound significantly less ligand than their respective controls. This impairment in surface and total binding was more pronounced in perivenule than in periportal cells. Internalization and degradation of the ligand were also more adversely affected in the centrilobular region as shown by decreases of greater than 60% in perivenule cells and by only 20% to 30% in periportal cells of ethanol-fed animals compared with controls.

  14. Effect of size and conformation of the ligand on asialoglycoprotein receptor-mediated ligand internalization and degradation in rat hepatocytes

    SciTech Connect

    Chang, C.H.; Chang, T.M.

    1987-05-01

    The rates of internalization and degradation of /sup 125/-I-labeled desialylated cyanogen bromide fragment I of orosomucoid (AS-CNBr-I) and its reduced and carboxymethylated derivative (AS-RC-CNBr-I) were compared with those of /sup 125/I-labeled asialoorosomucoid (ASOR) in rat hepatocytes. At 30 nM the rates of internalization and degradation of /sup 125/I-AS-CNBr-I were greater than those of /sup 125/I-ASOR. /sup 125/I-AS-RC-CNBr-I also had a lower rate of internalization and degradation. In contrast to /sup 125/I-ASOR, when degradation was inhibited by 5 ..mu..M colchicine there was a significant intracellular accumulation of the smaller ligands. At 4/sup 0/C the hepatocytes were found to bind the fragmented ligands more than /sup 125/I-ASOR. Incubation of the cells with bound ligand at 37/sup 0/ indicated that diacytosis of /sup 125/I-ASOR was greater than the smaller ligands. Colchincine markedly enhanced diacytosis of /sup 125/I-ASOR. On the other hand, there were marked accumulation of the smaller ligands by colchicine. These results suggest that the rates of internalization, degradation and diacytosis of the ligand are affected by the size and conformation of the ligand through different rates of receptor binding and intracellular transport.

  15. Simplified quantification method for in vivo SPECT/CT imaging of asialoglycoprotein receptor with (99m)Tc-p(VLA-co-VNI) to assess and stage hepatic fibrosis in mice.

    PubMed

    Zhang, Deliang; Guo, Zhide; Zhang, Pu; Li, Yesen; Su, Xinhui; You, Linyi; Gao, Mengna; Liu, Chang; Wu, Hua; Zhang, Xianzhong

    2016-01-01

    The goal of this study is to develop a noninvasive method of SPECT imaging to quantify and stage liver fibrosis with an Asialoglycoprotein receptor (ASGP-R) targeting tracer-(99m)Tc-p(VLA-co-VNI). ASGP-Rs are well known to specifically express in the mammalian liver. Here, we demonstrated ASGP-R expression decreased in carbon tetrachloride (CCl4)-induced mouse model. ASGP-R expression correlated with liver fibrosis progression. ASGP-R could be a useful marker in the stage of liver fibrosis. Liver uptake value (LUV) derived by SPECT imaging was used to assess liver fibrosis in the CCl4-induced mouse model. LUV = [radioactivity (liver uptake)/radioactivity (injected)] × 100/liver volume. The LUV decreased along with the disease progression. The relationships between LUV and liver hydroxyproline (i.e. collagen), as well as Sirius Red were established and verified. A strong negative linear correlation was found between LUV and hydroxyproline levels (r = -0.83) as well as LUV and Sirius Red quantification (r = -0.83). In conclusion, SPECT imaging with (99m)Tc-p(VLA-co-VNI) is useful in evaluating and staging liver fibrosis in vivo. PMID:27150943

  16. Simplified quantification method for in vivo SPECT/CT imaging of asialoglycoprotein receptor with 99mTc-p(VLA-co-VNI) to assess and stage hepatic fibrosis in mice

    PubMed Central

    Zhang, Deliang; Guo, Zhide; Zhang, Pu; Li, Yesen; Su, Xinhui; You, Linyi; Gao, Mengna; Liu, Chang; Wu, Hua; Zhang, Xianzhong

    2016-01-01

    The goal of this study is to develop a noninvasive method of SPECT imaging to quantify and stage liver fibrosis with an Asialoglycoprotein receptor (ASGP-R) targeting tracer—99mTc-p(VLA-co-VNI). ASGP-Rs are well known to specifically express in the mammalian liver. Here, we demonstrated ASGP-R expression decreased in carbon tetrachloride (CCl4)-induced mouse model. ASGP-R expression correlated with liver fibrosis progression. ASGP-R could be a useful marker in the stage of liver fibrosis. Liver uptake value (LUV) derived by SPECT imaging was used to assess liver fibrosis in the CCl4-induced mouse model. LUV = [radioactivity (liver uptake)/radioactivity (injected)] × 100/liver volume. The LUV decreased along with the disease progression. The relationships between LUV and liver hydroxyproline (i.e. collagen), as well as Sirius Red were established and verified. A strong negative linear correlation was found between LUV and hydroxyproline levels (r = −0.83) as well as LUV and Sirius Red quantification (r = −0.83). In conclusion, SPECT imaging with 99mTc-p(VLA-co-VNI) is useful in evaluating and staging liver fibrosis in vivo. PMID:27150943

  17. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation.

    PubMed

    Pathak, Pankaj; Dhawan, Vivek; Magarkar, Aniket; Danne, Reinis; Govindarajan, Srinath; Ghosh, Sandipto; Steiniger, Frank; Chaudhari, Pradip; Gopal, Vijaya; Bunker, Alex; Róg, Tomasz; Fahr, Alfred; Nagarsenker, Mangal

    2016-07-25

    We have developed active targeting liposomes to deliver anticancer agents to ASGPR which will contribute to effective treatment of hepatocellular carcinoma. Active targeting is achieved through polymeric ligands on the liposome surface. The liposomes were prepared using reverse phase evaporation method and doxorubicin hydrocholoride, a model drug, was loaded using the ammonium sulphate gradient method. Liposomes loaded with DOX were found to have a particle size of 200nm with more than 90% entrapment efficiency. Systems were observed to release the drug in a sustained manner in acidic pH in vitro. Liposomes containing targeting ligands possessed greater and selective toxicity to ASGPR positive HepG2 cell lines due to specific ligand receptor interaction. Bio-distribution studies revealed that liposomes were concentrated in the liver even after 3h of administration, thus providing conclusive evidence of targeting potential for formulated nanosystems. Tumor regression studies indicated greater tumor suppression with targeted liposomes thereby establishing superiority of the liposomal system. In this work, we used a novel methodology to guide the determination of the optimal composition of the targeting liposomes: molecular dynamics (MD) simulation that aided our understanding of the behaviour of the ligand within the bilayer. This can be seen as a demonstration of the utility of this methodology as a rational design tool for active targeting liposome formulation. PMID:27231122

  18. TAM receptor deficiency affects adult hippocampal neurogenesis.

    PubMed

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2015-06-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  19. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  20. α5GABAA receptor deficiency causes autism-like behaviors.

    PubMed

    Zurek, Agnieszka A; Kemp, Stephen W P; Aga, Zeenia; Walker, Susan; Milenkovic, Marija; Ramsey, Amy J; Sibille, Etienne; Scherer, Stephen W; Orser, Beverley A

    2016-05-01

    The prevalence of autism spectrum disorders (ASDs), which affect over 1% of the population, has increased twofold in recent years. Reduced expression of GABAA receptors has been observed in postmortem brain tissue and neuroimaging of individuals with ASDs. We found that deletion of the gene for the α5 subunit of the GABAA receptor caused robust autism-like behaviors in mice, including reduced social contacts and vocalizations. Screening of human exome sequencing data from 396 ASD subjects revealed potential missense mutations in GABRA5 and in RDX, the gene for the α5GABAA receptor-anchoring protein radixin, further supporting a α5GABAA receptor deficiency in ASDs. PMID:27231709

  1. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398-401. Citation ... and human weight regulation: lessons from experiments of nature. Ann Acad Med Singapore. 2009 Jan;38(1): ...

  2. Deficiency of interleukin-1 receptor antagonist responsive to anakinra.

    PubMed

    Schnellbacher, Charlotte; Ciocca, Giovanna; Menendez, Roxanna; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Duarte, Ana M; Rivas-Chacon, Rafael

    2013-01-01

    We describe a 3-month-old infant who presented to our institution with interleukin (IL)-1 receptor antagonist deficiency (DIRA), which consists of neutrophilic pustular dermatosis, periostitis, aseptic multifocal osteomyelitis, and persistently high acute-phase reactants. Skin findings promptly improved upon initiation of treatment with anakinra (recombinant human IL-1 receptor antagonist), and the bony lesions and systemic inflammation resolved with continued therapy. PMID:22471702

  3. Striatal dopamine receptor plasticity in neurotensin deficient mice

    PubMed Central

    Chastain, Lucy G.; Qu, Hongyan; Bourke, Chase H.; Iuvone, P. Michael; Dobner, Paul R.; Nemeroff, Charles B.; Kinkead, Becky

    2015-01-01

    Schizophrenia is thought to be caused, at least in part, by dysfunction in striatal dopamine neurotransmission. Both clinical studies and animal research have implicated the dopamine neuromodulator neurotensin (NT) in the pathophysiology of schizophrenia. Utilizing male mice lacking the NT gene (NT−/−), these studies examined the consequences of NT deficiency on dopaminergic tone and function, investigating (1) dopamine concentrations and dopamine receptor and transporter expression and binding in dopaminergic terminal regions, and (2) the behavioral effects of selective dopamine receptor agonists on locomotion and sensorimotor gating in adult NT−/− mice compared to wildtype (NT+/+) mice. NT−/− mice did not differ from NT+/+ mice in concentrations of dopamine or its metabolite DOPAC in any brain region examined. However, NT−/− mice showed significantly increased D1 receptor, D2 receptor, and dopamine transporter (DAT) mRNA in the caudate putamen compared to NT+/+ controls. NT−/− mice also showed elevated D2 receptor binding densities in both the caudate putamen and nucleus accumbens shell compared to NT+/+ mice. In addition, some of the behavioral effects of the D1-type receptor agonist SKF-82958 and the D2-type receptor agonist quinpirole on locomotion, startle amplitude, and prepulse inhibition were dose-dependently altered in NT−/− mice, showing altered D1-type and D2-type receptor sensitivity to stimulation by agonists in the absence of NT. The results indicate that NT deficiency alters striatal dopamine receptor expression, binding, and function. This suggests a critical role for the NT system in the maintenance of striatal DA system homeostasis and implicates NT deficiency in the etiology of dopamine-associated disorders such as schizophrenia. PMID:25449842

  4. Platelets deficient in glycoprotein I have normal Fc receptor expression.

    PubMed

    Pfueller, S L; de Rosbo, N K; Bilston, R A

    1984-04-01

    Platelet glycoprotein I (GPI) is known to be required for the interaction of platelets with ristocetin and factor VIII:von Willebrand factor (VIII:vWf). However, its role as Fc receptor is not clear. Some studies have shown that enzymatic removal of GPI destroys the ability of platelets to react with VIII:vWf but not their ability to bind Ig G (IgG). Others have shown that IgG immune complexes which block the Fc receptor also inhibit VIII:vWf interaction with platelets. This subject has been re-examined by testing the ability of platelets with reduced amounts of GPI to aggregate and undergo the release reaction in response to stimuli which act at the platelet Fc receptor. Platelets from two patients with Bernard-Soulier syndrome, congenitally deficient in GPI, both aggregated and released 14C-serotonin normally when exposed to latex particles coated with IgG. Levels of GPI were decreased experimentally in normal platelets by treating them with chymotrypsin. Platelets treated in this manner did not aggregate or release [14C]serotonin in response to ristocetin-VIII:vWf. They did, however, both aggregate and release when incubated with heat-aggregated IgG, antigen-antibody complexes or latex particles coated with IgG. Thus the presence of GPI is not a prerequisite for platelet stimulation via the Fc receptor. PMID:6231945

  5. Toll-like receptor signaling in primary immune deficiencies.

    PubMed

    Maglione, Paul J; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-11-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  6. Impact of AT2 Receptor Deficiency on Postnatal Cardiovascular Development

    PubMed Central

    Biermann, Daniel; Heilmann, Andreas; Didié, Michael; Schlossarek, Saskia; Wahab, Azadeh; Grimm, Michael; Römer, Maria; Reichenspurner, Hermann; Sultan, Karim R.; Steenpass, Anna; Ergün, Süleyman; Donzelli, Sonia; Carrier, Lucie; Ehmke, Heimo; Zimmermann, Wolfram H.; Hein, Lutz; Böger, Rainer H.; Benndorf, Ralf A.

    2012-01-01

    Background The angiotensin II receptor subtype 2 (AT2 receptor) is ubiquitously and highly expressed in early postnatal life. However, its role in postnatal cardiac development remained unclear. Methodology/Principal Findings Hearts from 1, 7, 14 and 56 days old wild-type (WT) and AT2 receptor-deficient (KO) mice were extracted for histomorphometrical analysis as well as analysis of cardiac signaling and gene expression. Furthermore, heart and body weights of examined animals were recorded and echocardiographic analysis of cardiac function as well as telemetric blood pressure measurements were performed. Moreover, gene expression, sarcomere shortening and calcium transients were examined in ventricular cardiomyocytes isolated from both genotypes. KO mice exhibited an accelerated body weight gain and a reduced heart to body weight ratio as compared to WT mice in the postnatal period. However, in adult KO mice the heart to body weight ratio was significantly increased most likely due to elevated systemic blood pressure. At postnatal day 7 ventricular capillarization index and the density of α-smooth muscle cell actin-positive blood vessels were higher in KO mice as compared to WT mice but normalized during adolescence. Echocardiographic assessment of cardiac systolic function at postnatal day 7 revealed decreased contractility of KO hearts in response to beta-adrenergic stimulation. Moreover, cardiomyocytes from KO mice showed a decreased sarcomere shortening and an increased peak Ca2+ transient in response to isoprenaline when stimulated concomitantly with angiotensin II. Conclusion The AT2 receptor affects postnatal cardiac growth possibly via reducing body weight gain and systemic blood pressure. Moreover, it moderately attenuates postnatal vascularization of the heart and modulates the beta adrenergic response of the neonatal heart. These AT2 receptor-mediated effects may be implicated in the physiological maturation process of the heart. PMID:23144713

  7. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  8. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist.

    PubMed

    Kühnen, Peter; Clément, Karine; Wiegand, Susanna; Blankenstein, Oliver; Gottesdiener, Keith; Martini, Lea L; Mai, Knut; Blume-Peytavi, Ulrike; Grüters, Annette; Krude, Heiko

    2016-07-21

    Patients with rare defects in the gene encoding proopiomelanocortin (POMC) have extreme early-onset obesity, hyperphagia, hypopigmentation, and hypocortisolism, resulting from the lack of the proopiomelanocortin-derived peptides melanocyte-stimulating hormone and corticotropin. In such patients, adrenal insufficiency must be treated with hydrocortisone early in life. No effective pharmacologic treatments have been available for the hyperphagia and obesity that characterize the condition. In this investigator-initiated, open-label study, two patients with proopiomelanocortin deficiency were treated with setmelanotide, a new melanocortin-4 receptor agonist. The patients had a sustainable reduction in hunger and substantial weight loss (51.0 kg after 42 weeks in Patient 1 and 20.5 kg after 12 weeks in Patient 2). PMID:27468060

  9. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  10. A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice

    PubMed Central

    Teng, Bunyen; Smith, Jonathan D.; Rosenfeld, Michael E.; Robinet, Peggy; Davis, Mary E.; Morrison, R. Ray; Mustafa, S. Jamal

    2014-01-01

    Aims The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. Methods and results Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. Conclusion The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties. PMID:24525840

  11. A natural kinase-deficient variant of fibroblast growth factor receptor 1.

    PubMed

    Wang, L Y; Edenson, S P; Yu, Y L; Senderowicz, L; Turck, C W

    1996-08-01

    A fibroblast growth factor receptor 1 variant missing 37 amino acids from the carboxy-terminal tyrosine kinase catalytic domain was discovered in human lung fibroblasts and several other human cell lines. The receptor variant binds specifically to acidic fibroblast growth factor but has no tyrosine kinase activity. It was found that cellular transfectants expressing the fibroblast growth factor receptor 1 variant are mitogenically inactive and ligand binding to the receptor causes neither receptor autophosphorylation nor phospholipase C-gamma transphosphorylation. The fibroblast growth factor receptor 1 variant therefore represents an inactive receptor for acidic fibroblast growth factor. Since both kinase and kinase-deficient receptor forms are expressed in cells, it is conceivable that the kinase-deficient receptor plays an important role in regulating cellular responses elicited by acidic fibroblast growth factor stimulation. PMID:8756477

  12. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    PubMed Central

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  13. IL-12 receptordeficiency with features of autoimmunity and photosensitivity.

    PubMed

    Ling, Galina; Ling, Eduard; Broides, Arnon; Poran Feldman, Hagit; Levy, Jacov; Garty, Ben-Zion; Nahum, Amit

    2016-05-01

    Primary immunodeficiences are often accompanied by autoimmune phenomena. IL-12 receptor deficiency is a well characterized primary immunodeficiency that leads to propensity to intracellular infections mainly with mycobacteria and Salmonella. We report on two patients with IL-12 receptor β1 deficiency that presented with autoimmune manifestations and photosensitivity dermatitis and describe possible pathogenetic mechanisms leading to development of clinically significant autoimmune phenomena. PMID:26761636

  14. Toxicity of teriflunomide in aryl hydrocarbon receptor deficient mice.

    PubMed

    Redaelli, Chiara; Gaffarogullari, Ece Cazibe; Brune, Maik; Pilz, Caroline; Becker, Simon; Sonner, Jana; Jäschke, Andres; Gröne, Hermann-Josef; Wick, Wolfgang; Platten, Michael; Lanz, Tobias Volker

    2015-12-01

    The intracellular transcription factor aryl hydrocarbon receptor (AHR) is bound and activated by xenobiotics, thereby promoting their catabolism by inducing expression of cytochrome P450 oxidase (CYP) genes through binding xenobiotic response elements (XRE) in their promoter region. In addition, it is involved in several cellular pathways like cell proliferation, differentiation, regeneration, tumor invasiveness and immune responses. Several pharmaceutical compounds like benzimidazoles activate the AHR and induce their own metabolic degradation. Using newly generated XRE-reporter mice, which allow in vivo bioluminescence imaging of AHR activation, we show here that the AHR is activated in vivo by teriflunomide (TER), which has recently been approved for the treatment of multiple sclerosis. While we did not find any evidence that the AHR mediates the immunomodulatory effects of TER, AHR activation led to metabolism and detoxification of teriflunomide, most likely via CYP. Mice deficient for the AHR show higher blood levels of teriflunomide, suffer from enhanced thrombo- and leukopenia and elevated liver enzymes as well as from severe gastrointestinal ulcers and bleeding which are lethal after 8-11 days of treatment. Leukopenia, acute liver damage and diarrhea have also been described as common side effects in human trials with TER. These data suggest that the AHR is relevant for detoxification not only of environmental toxins but also of drugs in clinical use, with potential implications for the application of AHR-modifying therapies in conjunction to TER in humans. The XRE-reporter mouse is a useful novel tool for monitoring AHR activation using in vivo imaging. PMID:26341389

  15. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  16. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  17. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.

    PubMed Central

    Blum, K; Sheridan, P J; Wood, R C; Braverman, E R; Chen, T J; Cull, J G; Comings, D E

    1996-01-01

    The dopaminergic system, and in particular the dopamine D2 receptor, has been profoundly implicated in reward mechanisms in the brain. Dysfunction of the D2 dopamine receptors leads to aberrant substance seeking behaviour (alcohol, drug, tobacco, and food) and other related behaviours (pathological gambling, Tourette's syndrome, and attention deficit hyperactivity disorder). We propose that variants of the D2 dopamine receptor gene are important common genetic determinants of the 'reward deficiency syndrome'. PMID:8774539

  18. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  19. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  20. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  1. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  2. Cutaneous leukocytoclastic vasculitis in a child with interleukin-12 receptor beta-1 deficiency.

    PubMed

    Kutukculer, Necil; Genel, Ferah; Aksu, Guzide; Karapinar, Bulent; Ozturk, Can; Cavusoglu, Cengiz; Casanova, Jean-Laurent; Fieschi, Claire

    2006-03-01

    We report a patient with complete interleukin-12 receptor beta-1 deficiency associated with cutaneous leukocytoclastic vasculitis. The patient experienced Bacille Calmette Guérin, Mycobacterium chelonae, and Salmonella enteritidis infection. Vasculitis affecting both small arteries and postcapillary venules due to deposition of immune complexes was probably caused by S. enteritidis and/or M. chelonae infection. PMID:16615980

  3. Endogenous Androgen Deficiency Enhances Diet-Induced Hypercholesterolemia and Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

    PubMed Central

    Hatch, Nicholas W.; Srodulski, Sarah J.; Chan, Huei-Wei; Zhang, Xuan; Tannock, Lisa R.; King, Victoria L.

    2012-01-01

    Background Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. Objective We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. Methods Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. Results Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. Conclusions These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in lowdensity lipoprotein receptor-deficient mice in response to a low-fat diet. PMID:22981166

  4. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. PMID:27526995

  5. Evaluation of serum transferrin receptor for iron deficiency in women of child-bearing age.

    PubMed

    Lin, Xiao-Ming; Zhang, Juan; Zou, Zhi-Yong; Long, Zhu; Tian, Wei

    2008-11-01

    The objective was to study the evaluation of serum transferrin receptor (sTfR) for Fe deficiency in women of child-bearing age. Primary screening was performed in 942 women ranging in child-bearing age. Serum ferritin (SF), Zn protoporphyrin (ZPP) and Hb were determined. Then the subjects were divided into four groups: normal, Fe store depletion (IDs), Fe-deficiency erythropoiesis and Fe-deficiency anaemia. sTfR was determined and sTfR/SF (sTfR/logSF and log(sTfR/SF)) was calculated. Changes of sTfR in women of different Fe status were observed. A receiver-operating characteristic (ROC) curve was used to evaluate whether sTfR had proper diagnostic efficacy for functional Fe deficiency. The levels of sTfR increased significantly along with the aggravation of Fe deficiency. Increase of STfR/SF along with the aggravation of Fe deficiency was more significant than that of sTfR. STfR had a significant negative correlation with SF and Hb, while it had a significant positive correlation with ZPP. The ROC curve showed that the diagnostic effective rate of sTfR for Fe deficiency could reach 83 %. At this point, the sensitivity was 79 % and the specificity was 63 %. Log(sTfR/SF) could be considered to have the highest effective ratio in detecting IDs, since it reached 99 %. STfR and sTfR/SF could both reflect body Fe-deficiency status specifically. They could be used as reliable indicators for evaluating Fe status and diagnosing Fe deficiency in women of child-bearing age. PMID:18377683

  6. Management of a transcranial abscess secondary to interleukin-1 receptor associated kinase 4 deficiency.

    PubMed

    Pidgeon, Thomas Edward; Ahmad, Fateh; Hackett, Scott; Rodrigues, Desiderio; Nishikawa, Hiroshi

    2015-01-01

    Interleukin-1 receptor associated kinase 4 (IRAK-4) deficiency is a primary immunodeficiency that predisposes to opportunistic pyogenic infections in affected patients. The presentation can be variable, and the microbiological and immunologic management of this condition has been documented; however, the atypical nature of its presentation calls for a different approach in its surgical management. This is the first reported case of transcranial progression of a soft tissue abscess in a patient with IRAK-4 deficiency, with an emphasis on a multidisciplinary approach to treat infection at an extremely vulnerable anatomic site. PMID:25569407

  7. Urethral Dysfunction in Female Mice with Estrogen Receptor β Deficiency

    PubMed Central

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI. PMID:25275480

  8. Altered immune response in mice deficient for the G protein-coupled receptor GPR34.

    PubMed

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M Y; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-21

    The X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  9. Altered Immune Response in Mice Deficient for the G Protein-coupled Receptor GPR34*

    PubMed Central

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M. Y.; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W.; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-01

    The X-chromosomal GPR34 gene encodes an orphan Gi protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  10. Deficiency of interleukin-1 receptor-associated kinase 4 presenting as fatal Pseudomonas aeruginosa bacteremia in two siblings.

    PubMed

    Stergiopoulou, Theodouli; Walsh, Thomas J; Seghaye, Marie-Christine; Netea, Mihai G; Casanova, Jean-Laurent; Moutschen, Michel; Picard, Capucine

    2015-03-01

    Interleukin-1 receptor-associated kinase 4 (IRAK-4) deficiency is a primary immunodeficiency of innate immunity. This is the case of a previous healthy toddler and his sibling, who both died of fulminant sepsis due to Pseudomonas aeruginosa. Subsequent genetic analysis demonstrated IRAK-4 deficiency with compound heterozygous splice mutations. Fulminant fatal P. aeruginosa sepsis may be the first manifestation of IRAK-4 deficiency. PMID:25232776

  11. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index

    PubMed Central

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-01-01

    Abstract Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD. Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation. One-hundred fifty patients with median age 38 years (16–78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients. TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  12. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index.

    PubMed

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-07-01

    Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD.Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation.One-hundred fifty patients with median age 38 years (16-78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients.TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  13. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.

    PubMed Central

    Ludwig, T; Munier-Lehmann, H; Bauer, U; Hollinshead, M; Ovitt, C; Lobel, P; Hoflack, B

    1994-01-01

    In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells. Images PMID:8062819

  14. Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line.

    PubMed

    Dib, Lea H; Ortega, M Teresa; Melgarejo, Tonatiuh; Chapes, Stephen K

    2016-08-01

    Metabolic and immune mediators activate many of the same signal transduction pathways. Therefore, molecules that regulate metabolism often affect immune responses. Leptin is an adipokine that exemplifies this interplay. Leptin is the body's major nutritional status sensor, but it also plays a key role in immune system regulation. To provide an in vitro tool to investigate the link between leptin and innate immunity, we immortalized and characterized a leptin receptor-deficient macrophage cell line, DB-1. The cell line was created using bone marrow cells from leptin receptor-deficient mice. Bone marrow cells were differentiated into macrophages by culturing them with recombinant mouse macrophage colony stimulating factor, and passaged when confluent for 6 months. The cells spontaneously immortalized at approximately passage 20. Cells were cloned twice by limiting dilution cloning prior to characterization. The macrophage cell line is diploid and grows at a linear rate for 4-5 days before reaching the growth plateau. The cells are MAC-2 and F4/80 positive and have phagocytic activity similar to primary macrophages from wild-type and leptin receptor-deficient mice. DB-1 cells were responsive to stimulation with interferon-γ as measured by increase in Nos2 transcript levels. In addition, DB-1 macrophages are not responsive to the chemotactic signaling of adipocyte conditioned media nor leptin when compared to primary WT macrophages. We believe that DB-1 cells provide a dependable tool to study the role of leptin or the leptin receptor in obesity-associated inflammation and immune system dysregulation. PMID:25599862

  15. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  16. Aberrant distribution of junctional complex components in retinoic acid receptor alpha-deficient mice

    PubMed Central

    Chung, Sanny S W; Choi, Cindy; Wang, Xiangyuan; Hallock, Loretta; Wolgemuth, Debra J

    2009-01-01

    Retinoic acid receptor alpha (RARα)-deficient mice are sterile, with abnormalities in the progression of spermatogenesis and spermiogenesis. In the present study, we investigated whether defective retinoid signaling involved at least in part, disrupted cell-cell interactions. Hypertonic fixation approaches revealed defects in the integrity of the Sertoli-cell barrier in the tubules of RARα-deficient testes. Dye transfer experiments further revealed that coupling between cells from the basal to adluminal compartments was aberrant. There were also differences in the expression of several known retinoic acid (RA)-responsive genes encoding structural components of tight junctions and gap junctions. Immunostaining demonstrated a delay in the incorporation of zonula occludens (ZO-1), a peripheral component protein of tight junctions, into the Sertoli cell tight junctions. Markedly reduced expression of connexin-40 in mutant pachytene spermatocytes and round spermatids was found by in situ hybridization. An ectopic distribution of vimentin and disrupted cyclic expression of vimentin, which is usually tightly regulated during spermiogenesis, was found in RARα-deficient testes at all ages examined. Thus, the specific defects in spermiogenesis in RARα-deficient testes may correlate with a disrupted cyclic expression of RA-responsive structural components, including vimentin, a down-regulation of connexin-40 in spermatogenic cells, and delayed assembly of ZO-1 into Sertoli cell tight junctions. Interestingly, bioinformatic analysis revealed that many genes that are components of tight junctions and gap junctions contained potential retinoic acid response element binding sites. PMID:19937743

  17. Fc receptor-mediated phagocytosis, superoxide production and calcium signaling of beta 2 integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, H; Sawada, C; Higuchi, H; Teraoka, H; Yamaguchi, M

    1997-01-01

    Fc receptor for immunoglobulin G-mediated phagocytosis, superoxide production and intracellular calcium ([Ca2+]i) signaling of complement receptor type 3 (CR3)-deficient neutrophils from a heifer with leukocyte adhesion deficiency (BLAD) were compared to those of control heifers. The mean phagocytic activity of IgG-coated yeasts and aggregated bovine IgG (Agg-IgG)-induced superoxide production of CR3-deficient neutrophils were 10% and 77.9%, respectively, of those of control neutrophils. The [Ca2+]i signals in CR3-deficient neutrophils stimulated with Agg-IgG or concanavalin A were different with mean peak [Ca2+]i concentrations of 78% and 41.9%, respectively, of those of control neutrophils. These findings suggest that Fc receptor-mediated neutrophil functions are closely dependent on the presence of CR3 (CD11b/CD18) on the neutrophil cell surfaces. PMID:9343828

  18. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma.

    PubMed

    Metz, Heather E; Kargl, Julia; Busch, Stephanie E; Kim, Kyoung-Hee; Kurland, Brenda F; Abberbock, Shira R; Randolph-Habecker, Julie; Knoblaugh, Sue E; Kolls, Jay K; White, Morris F; Houghton, A McGarry

    2016-08-01

    Insulin receptor substrate-1 (IRS-1) is a signaling adaptor protein that interfaces with many pathways activated in lung cancer. It has been assumed that IRS-1 promotes tumor growth through its ability to activate PI3K signaling downstream of the insulin-like growth factor receptor. Surprisingly, tumors with reduced IRS-1 staining in a human lung adenocarcinoma tissue microarray displayed a significant survival disadvantage, especially within the Kirsten rat sarcoma viral oncogene homolog (KRAS) mutant subgroup. Accordingly, adenoviral Cre recombinase (AdCre)-treated LSL-Kras/Irs-1(fl/fl) (Kras/Irs-1(-/-)) mice displayed increased tumor burden and mortality compared with controls. Mechanistically, IRS-1 deficiency promotes Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling via the IL-22 receptor, resulting in enhanced tumor-promoting inflammation. Treatment of Kras/Irs-1(+/+) and Kras/Irs-1(-/-) mice with JAK inhibitors significantly reduced tumor burden, most notably in the IRS-1-deficient group. PMID:27439864

  19. Increased insulin receptor binding in erythrocytes from growth hormone-deficient children.

    PubMed

    Dávila, N; Barceló, B; Carranza, M C; Calle, C

    1991-08-01

    Erythrocytes from growth hormone-deficient children (GHd-children) (n = 10) showed a statistically significant increase in insulin binding at low unlabeled insulin concentrations, together with a threefold decrease in apparent receptor affinity, as compared to control children (C) (n = 11). Scatchard analysis of the binding data using the two-site model revealed that both the receptor concentration R1 [GHd-children 0.10 +/- 0.01 ng/ml and C 0.03 +/- 0.002 ng/ml] and the dissociation constant KD1 [GHd-children (0.48 +/- 0.05) x 10(-9) M and C (0.19 +/- 0.01) x 10(-9) M] for high affinity-low capacity sites were significantly increased in erythrocytes from GHd-children, while neither receptor concentrations (R2) nor the dissociation constant (KD2) for low affinity-high capacity sites proved to be altered. These events were accompanied by a normal sensitivity to insulin as well as glucose tolerance in the GHd-group. The meaning of the increased insulin binding with normal insulin sensitivity in GH-deficiency is discussed. PMID:1760528

  20. Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass

    PubMed Central

    Simon, Becky R.; Learman, Brian S.; Parlee, Sebastian D.; Scheller, Erica L.; Mori, Hiroyuki; Cawthorn, William P.; Ning, Xiaomin; Krishnan, Venkatesh; Ma, Yanfei L.; Tyrberg, Björn; MacDougald, Ormond A.

    2014-01-01

    Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo. PMID:24466105

  1. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  2. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    SciTech Connect

    Muta, K.; Nishimura, J.; Ideguchi, H.; Umemura, T.; Ibayashi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia vera compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.

  3. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency.

    PubMed

    Guevara-Aguirre, Jaime; Rosenbloom, Arlan L

    2015-01-01

    Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal. PMID:25316432

  4. Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice.

    PubMed

    Lawlor, Michael W; Read, Benjamin P; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R; Stein, Matthew J; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L; Seehra, Jasbir S; Beggs, Alan H

    2011-02-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  5. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  6. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency

    PubMed Central

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    Backgrounds Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. Material/Methods A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. Results The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. Conclusions Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  7. Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine.

    PubMed

    Ramsey, Amy J; Laakso, Aki; Cyr, Michel; Sotnikova, Tatyana D; Salahpour, Ali; Medvedev, Ivan O; Dykstra, Linda A; Gainetdinov, Raul R; Caron, Marc G

    2008-10-01

    NMDA receptor-mediated glutamate transmission is required for several forms of neuronal plasticity. Its role in the neuronal responses to addictive drugs is an ongoing subject of investigation. We report here that the acute locomotor-stimulating effect of cocaine is absent in NMDA receptor-deficient mice (NR1-KD). In contrast, their acute responses to amphetamine and to direct dopamine receptor agonists are not significantly altered. The striking attenuation of cocaine's acute effects is not likely explained by alterations in the dopaminergic system of NR1-KD mice, since most parameters of pre- and postsynaptic dopamine function are unchanged. Consistent with the behavioral findings, cocaine induces less c-Fos expression in the striatum of these mice, while amphetamine-induced c-Fos expression is intact. Furthermore, chronic cocaine-induced sensitization and conditioned place preference are attenuated and develop more slowly in mutant animals, but amphetamine's effects are not altered significantly. Our results highlight the importance of NMDA receptor-mediated glutamatergic transmission specifically in cocaine actions, and support a hypothesis that cocaine and amphetamine elicit their effects through differential actions on signaling pathways. PMID:18185498

  8. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    PubMed

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  9. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  10. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency

    PubMed Central

    Richmond, Bradley W.; Brucker, Robert M.; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E.; Bordenstein, Seth R.; Blackwell, Timothy S.; Polosukhin, Vasiliy V.

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  11. Systemic availability of guanidinoacetate affects GABAA receptor function and seizure threshold in GAMT deficient mice.

    PubMed

    Schulze, A; Tran, C; Levandovskiy, V; Patel, V; Cortez, M A

    2016-08-01

    Deficiency of guanidinoacetate methyltransferase (GAMT) causes creatine depletion and guanidinoacetate accumulation in brain with the latter deemed to be responsible for the severe seizure disorder seen in affected patients. We studied electrical brain activity and GABAA mediated mechanisms of B6J.Cg-Gamt(tm1Isb) mice. Electrocorticographic (ECoG) monitoring of pharmacological treatments with ornithine (5 % in drinking water for 5-18 days) and/or Picrotoxin (PTX) (a GABAA receptor antagonist) (1.5 mg/kg, I.P.) in Gamt(MUT) and Gamt(WT) groups [n = 3, mean age (SEM) = 6.9 (0.2) weeks]. Mice were fitted with two frontal and two parietal epidural electrodes under ketamine/xylazine anesthesia. Baseline and test recordings were performed for determination of seizure activity over a 2 h period. The ECoG baseline of Gamt(MUT) exhibited an abnormal monotonous cortical rhythm (7-8 Hz) with little variability during awake and sleep states compared to wild type recordings. Ornithine treatment and also PTX administration led to a relative normalization of the Gamt(MUT) ECoG phenotype. Gamt(WT) on PTX exhibited electro-behavioral seizures, whereas the Gamt(MUT) did not have PTX induced seizures at the same PTX dose. Gamt(MUT) treated with both ornithine and PTX did not show electro-behavioral seizures while ornithine elevated the PTX seizure threshold of Gamt(MUT) mice even further. These data demonstrate: (1) that there is expression of electrical seizure activity in this Gamt-deficient transgenic mouse strain, and (2) that the systemic availability of guanidinoacetate affects GABAA receptor function and seizure thresholds. These findings are directly and clinically relevant for patients with a creatine-deficiency syndrome due to genetic defects in GAMT and provide a rational basis for a combined ornithine/picrotoxin therapeutic intervention. PMID:26898547

  12. Rapsyn Mutations in Humans Cause Endplate Acetylcholine-Receptor Deficiency and Myasthenic Syndrome

    PubMed Central

    Ohno, Kinji; Engel, Andrew G.; Shen, Xin-Ming; Selcen, Duygu; Brengman, Joan; Harper, C. Michel; Tsujino, Akira; Milone, Margherita

    2002-01-01

    Congenital myasthenic syndromes (CMSs) stem from genetic defects in endplate (EP)-specific presynaptic, synaptic, and postsynaptic proteins. The postsynaptic CMSs identified to date stem from a deficiency or kinetic abnormality of the acetylcholine receptor (AChR). All CMSs with a kinetic abnormality of AChR, as well as many CMSs with a deficiency of AChR, have been traced to mutations in AChR-subunit genes. However, in a subset of patients with EP AChR deficiency, the genetic defect has remained elusive. Rapsyn, a 43-kDa postsynaptic protein, plays an essential role in the clustering of AChR at the EP. Seven tetratricopeptide repeats (TPRs) of rapsyn subserve self-association, a coiled-coil domain binds to AChR, and a RING-H2 domain associates with β-dystroglycan and links rapsyn to the subsynaptic cytoskeleton. Rapsyn self-association precedes recruitment of AChR to rapsyn clusters. In four patients with EP AChR deficiency but with no mutations in AChR subunits, we identify three recessive rapsyn mutations: one patient carries L14P in TPR1 and N88K in TPR3; two are homozygous for N88K; and one carries N88K and 553ins5, which frameshifts in TPR5. EP studies in each case show decreased staining for rapsyn and AChR, as well as impaired postsynaptic morphological development. Expression studies in HEK cells indicate that none of the mutations hinders rapsyn self-association but that all three diminish coclustering of AChR with rapsyn. PMID:11791205

  13. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation

    PubMed Central

    Martineau, Corine; Kevorkova, Olha; Brissette, Louise; Moreau, Robert

    2014-01-01

    Abstract Scavenger receptor class B type I (SR‐BI), the Scarb1 gene product, is a high‐density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1‐deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1‐null and wild‐type (WT) cells. Scarb1 genic expression was down‐regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1‐null mice. Genic expression of co‐receptors for Wnt signaling, namely LDL‐related protein (Lrp) 5 and Lrp8, was increased, respectively, by two‐ and threefold, and of transcription target‐genes axis inhibition protein 2 (Axin2) and lymphoid enhancer‐binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs‐related protein 1 (Dkk1) were found to be increased 10‐ to 20‐fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1‐deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice. PMID:25281615

  14. Deficiency in the metabolite receptor SUCNR1 (GPR91) leads to outer retinal lesions

    PubMed Central

    Lapalme, Eric; Leboeuf, Dominique; Carbadillo, Jose; Rubic, Tina; Picard, Emilie; Mawambo, Gaelle; Tetreault, Nicolas; Joyal, Jean-Sebastien; Chemtob, Sylvain; Sennlaub, Florian; SanGiovanni, John Paul; Guimond, Martin; Sapieha, Przemyslaw

    2013-01-01

    Age-related macular degeneration (AMD) is a prominent cause of blindness in the Western world. To date, its molecular pathogenesis as well as the sequence of events leading to retinal degeneration remain largely ill-defined. While the invasion of choroidal neovasculature in the retina is the primary mechanism that precipitates loss of sight, an earlier dry form may accompany it. Here we provide the first evidence for the protective role of the Retinal Pigment Epithelium (RPE)-resident metabolite receptor, succinate receptor 1 (SUCNR1; G-Protein coupled Receptor-91 (GPR91), in preventing dry AMD-like lesions of the outer retina. Genetic analysis of 925 patients with geographic atrophy and 1199 AMD-free peers revealed an increased risk of developing geographic atrophy associated with intronic variants in the SUCNR1 gene. In mice, outer retinal expression of SUCNR1 is observed in the RPE as well as microglial cells and decreases progressively with age. Accordingly, Sucnr1−/− mice show signs of premature sub-retinal dystrophy with accumulation of oxidized-LDL, abnormal thickening of Bruch's membrane and a buildup of subretinal microglia. The accumulation of microglia in Sucnr1-deficient mice is likely triggered by the inefficient clearance of oxidized lipids by the RPE as bone marrow transfer of wild-type microglia into Sucnr1−/− mice did not salvage the patho-phenotype and systemic lipolysis was equivalent between wild-type and control mice. Our findings suggest that deficiency in SUCNR1 is a possible contributing factor to the pathogenesis of dry AMD and thus broaden our understanding of this clinically unmet need. PMID:23833031

  15. Functional characteristics of enhanced Fc receptor expression of beta 2 integrin-deficient bovine mononuclear phagocytes.

    PubMed

    Nagahata, H; Higuchi, H; Goji, N; Noda, H; Kuwabara, M

    1996-01-01

    Fc receptor expression, cytoplasmic Ca2+ signaling, chemiluminescent (CL) response, and electron spin resonance (ESR) combined with spin trapping of blood mononuclear phagocytes from control heifers and a heifer with leukocyte adhesion deficiency (LAD) were evaluated to elucidate the relationships between complement receptor type 3 (CR3) and Fc receptor expression and their functional responses. The mean fluorescence intensity of fluorescein isothiocyanate (FITC)-conjugated anti-bovine IgG bound to mononuclear phagocytes from the heifer with LAD was 1.8-fold higher than that of control heifers. The mean increments of cytoplasmic Ca2+ concentrations of mononuclear phagocytes from the heifer with LAD stimulated with OPZ, Agg-IgG, and PMA were 39.4 (P < 0.05), 118, and 71.6% compared with those of control heifers. A 1.27-fold increase in the CL response relative to control heifers was detected when mononuclear phagocytes from the heifer with LAD were stimulated with Agg-IgG. The OPZ-induced CL response of mononuclear phagocytes from the heifer with LAD was significantly (P < 0.05) decreased, whereas the PMA-induced CL response was similar to that of control heifers. The ESR spectrum of mononuclear phagocytes from the heifer with LAD was increased when stimulated with Agg-IgG, and was impaired when stimulated by OPZ compared with that of control heifers. The ESR spectrum of mononuclear phagocytes stimulated with PMA was similar in control heifers and the heifer with LAD. Fc receptors on mononuclear phagocytes from the heifer with LAD were enhanced, and their cytoplasmic Ca2+ signaling, CL response, and ESR-spin trapping when stimulated with Agg-IgG and OPZ appeared to be associated with enhanced Fc receptors. PMID:8805104

  16. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  17. Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype.

    PubMed

    Tang, Xiaobin; Tian, Linjie; Esteso, Gloria; Choi, Seung-Chul; Barrow, Alexander D; Colonna, Marco; Borrego, Francisco; Coligan, John E

    2012-01-15

    Cross-linking of the collagen binding receptor leukocyte-associated Ig-like receptor-1 (LAIR-1) in vitro delivers an inhibitory signal that is able to downregulate activation-mediated signals. To study the in vivo function of LAIR-1, we generated LAIR-1(-/-) mice. They are healthy and fertile and have normal longevity; however, they show certain phenotypic characteristics distinct from wild-type mice, including increased numbers of splenic B, regulatory T, and dendritic cells. As LAIR-1(-/-) mice age, the splenic T cell population shows a higher frequency of activated and memory T cells. Because LAIR-1(+/+) and LAIR-1(-/-) T cells traffic with equal proficiency to peripheral lymphoid organs, this is not likely due to abnormal T lymphocyte trafficking. LAIR-1(-/-) mice have lower serum levels of IgG1 and, in response to T-dependent immunization with trinitrophenyl-OVA, switch less efficiently to Ag specific IgG2a and IgG2b, whereas switching to IgG1 is not affected. Several mouse disease models, including experimental autoimmune encephalitis and colitis, were used to examine the effect of LAIR-1 deficiency, and no differences in the responses of LAIR-1(-/-) and LAIR-1(+/+) mice were observed. Taken together, these observations indicate that LAIR-1 plays a role in regulating immune cells and suggest that any adverse effects of its absence may be balanced in vivo by other inhibitory receptors. PMID:22156345

  18. Interleukin 1 Receptor Antagonist Deficiency Presenting as Infantile Pustulosis Mimicking Infantile Pustular Psoriasis

    PubMed Central

    Minkis, Kira; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Magro, Cynthia; Scott, Rachelle; Davis, Jessica G.; Sardana, Niti; Herzog, Ronit

    2012-01-01

    Background Deficiency of interleukin 1 receptor antagonist (DIRA) is a recently described autoinflammatory syndrome of skin and bone caused by recessive mutations in the gene encoding the interleukin 1 receptor antagonist. Few studies have been published about this debilitating condition. Early identification is critical for targeted lifesaving intervention. Observations A male infant, born to nonconsanguineous Puerto Rican parents, was referred for management of a pustular eruption diagnosed as pustular psoriasis. At 2 months of age, the infant developed a pustular eruption. After extensive evaluation, he was confirmed to be homozygous for a 175-kb genomic deletion on chromosome 2 that includes the IL1RN gene, commonly found in Puerto Ricans. Therapy with anakinra was initiated, with rapid clearance of skin lesions and resolution of systemic inflammation. Conclusions Recent identification of DIRA as a disease entity, compounded by the limited number of reported cases, makes early identification difficult. It is critical to consider this entity in the differential diagnosis of infantile pustulosis. Targeted therapy with the recombinant human interleukin 1 receptor antagonist anakinra can be lifesaving if initiated early. A high carrier frequency of the 175-kb DIRA-associated genomic deletion in the Puerto Rican population strongly supports testing infants presenting with unexplained pustulosis in patients from this geographic region. PMID:22431714

  19. Enhanced expression of Fc receptors on neutrophils from calves with leukocyte adhesion deficiency.

    PubMed

    Nagahata, H; Higuchi, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    The expression of Fc receptors for immunoglobulin G(IgG) and concanavalin A (con A)-binding receptors, luminol-dependent chemiluminescent (LDCL) responses, and the effect of anti-bovine IgG on LDCL responses were evaluated in neutrophils from Holstein calves with leukocyte adhesion deficiency (BLAD). Neutrophils from affected calves showed a 2.1- to 2.5-fold increase in Fc receptor expression compared with those of control calves by flow cytometric analysis. Con A-binding activities of neutrophils from affected calves were similar to those of control calves. Neutrophils from a calf with BLAD, when stimulated with zymosan opsonized with bovine serum (OPZ), heat-aggregated bovine IgG (Agg-bovine IgG), sheep red blood cells (SRBC) sensitized with anti-SRBC antibody (SRBC-anti-SRBC Ab), or con A had LDCL responses of 36 (P < 0.05), 77, 126 and 119% of peak LDCL values of controls, respectively. The NBT-reducing value of neutrophils from a calf with BLAD when stimulated with Agg-bovine IgG after pretreatment with anti-bovine IgG was 116.5% of the values of neutrophils from control calves, but the difference was not significant. The LDCL responses of neutrophils from a control calf and a calf with BLAD stimulated with OPZ were inhibited markedly by pre-incubation with anti-bovine IgG antiserum at concentrations ranging from 1.25 to 20 or 40 micrograms/ml. Although an increase in Fc receptor expression on neutrophils from calves with BLAD was observed, the LDCL responses stimulated with SRBC-anti-SRBC Ab and NBT-reducing activity stimulated with Agg-bovine IgG after pretreatment with anti-bovine IgG did not correlate significantly with the increased Fc receptor expression. These results support that neutrophil functions mediated by the Fc receptors are associated synergistically with the presence of the complement receptor type 3 (CR3)(CD11b/CD18). PMID:8577284

  20. Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex.

    PubMed

    Doboszewska, Urszula; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Młyniec, Katarzyna; Rafało, Anna; Ostachowicz, Beata; Lankosz, Marek; Nowak, Gabriel

    2015-01-01

    The zinc deficiency animal model of depression has been proposed; however, it has not been validated in a detailed manner. We have recently shown that depression-like behavior induced by dietary zinc restriction is associated with up-regulation of hippocampal N-methyl-d-aspartate receptor (NMDAR). Here we examined the effects of chronic administration of a selective serotonin reuptake inhibitor, fluoxetine (FLX), on behavioral and biochemical alterations (within NMDAR signaling pathway) induced by zinc deficiency. Male Sprague Dawley rats were fed a zinc adequate diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then, FLX treatment (10mg/kg, i.p.) begun. Following 2 weeks of FLX administration the behavior of the rats was examined in the forced swim test (FST) and the spontaneous locomotor activity test. Twenty four hours later tissue was harvested. The proteins of NMDAR (GluN1, GluN2A and GluN2B) or AMPAR (GluA1) subunits, p-CREB and BDNF in the hippocampus (Western blot) and serum zinc level (TXRF) were examined. Depression-like behavior induced by ZnD in the FST was sensitive to chronic treatment with FLX. ZnD increased levels of GluN1, GluN2A, GluN2B and decreased pS485-GluA1, p-CREB and BDNF proteins. Administration of FLX counteracted the zinc restriction-induced changes in serum zinc level and hippocampal GluN1, GluN2A, GluN2B and p-CREB but not BDNF or pS845-GluA1 protein levels. This finding adds new evidence to the predictive validity of the proposed zinc deficiency model of depression. Antidepressant-like activity of FLX in the zinc deficiency model is associated with NMDAR complex. PMID:25845739

  1. An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist

    PubMed Central

    Aksentijevich, Ivona; Masters, Seth L.; Ferguson, Polly J.; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W.; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D.; Sandler, Netanya G.; Plass, Nicole; Stone, Deborah L.; Turner, Maria L.; Hill, Suvimol; Butman, John A.; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I.; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R.; Chapelle, Dawn; Clarke, Gillian I.; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D.; Gregersen, Peter K.; van Hagen, P. Martin; Hak, A. Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C.; Remmers, Elaine F.; Kastner, Daniel L.; Goldbach-Mansky, Raphaela

    2010-01-01

    Background Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1–receptor antagonist, with prominent involvement of skin and bone. Methods We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1–receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1–pathway genes including IL1RN. Results We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from the Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1–family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1β stimulation. Patients treated with anakinra responded rapidly. Conclusions We propose the term deficiency of the interleukin-1–receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1–receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) PMID:19494218

  2. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. PMID:27469058

  3. Cardioprotective role of vitamin D receptor in circulating endothelial cells of ApoE-deficient mice

    PubMed Central

    Ding, Yan; Liao, Wang; Yi, Zhuwen; Xiang, Wei; He, Xiaojie

    2015-01-01

    Atherosclerosis is the key course of coronary heart disease. In this study, we investigated the effect of vitamin D receptor on serum 1,25-(OH)2D levels, lipid profiles, nitric oxide expression, apoptosis-related gene Bcl-2, fas protein levels, in ApoE-deficient mice. The proliferation activity of VDR-RNAi transfected endothelial cells was decreased, the ability of apoptosis was increased, nitric oxide concentration was decreased and eNOS protein level was significantly reduced. VDR-RNAi induced lipid metabolism abnormality, reduced eNOS and ApoE levels, promoted lipid peroxidation, damaged the endothelial function and accelerated the process of atheroscleros. Together, our data presented a novel role for VDR in the pathogenesis process of atheroscleros by up regulating eNOS protein expression which could lay a solid foundation of VDR-specific activator treatment for coronary artery disease. PMID:26131079

  4. [Treatment approach to congenital myasthenic syndrome in a patient with acetylcholine receptor deficiency].

    PubMed

    Ishigaki, Keiko; Murakami, Terumi; Ito, Yasushi; Yanagisawa, Akiko; Kodaira, Kayano; Shishikura, Keiko; Suzuki, Haruko; Hirayama, Yoshito; Osawa, Makiko

    2009-01-01

    Congenital myasthenic syndromes (CMS) are rare heterogeneous disorders of neurotransmission caused by genetic defects of neuromuscular junction molecules. While CMS patients have been reported worldwide, in Japan there have been only a few descriptions of adult CMS patients with acetylcholinesterase (AChE) deficiency and slow channel syndrome. Herein, we report a Japanese CMS patient with acetylcholine receptor (AChR) deficiency, diagnosed during childhood, and our treatment approach to the patient. This 13-year-old Japanese boy had had severe myasthenic symptoms since infancy. Ptosis, his first symptom, appeared at 5 months and nasal voice was recognized at 2 years of age. AchR and anti-muscle-specific tyrosine kinase (Musk) antibody remained negative. A positive tensilon test and decremental response on electromyogram supported the diagnosis of sero-negative myasthenia gravis. Despite thymectomy and strong immunosuppressive therapy including steroid pulse and FK 506, he gradually deteriorated and became wheelchair bound. Genetic analyses for AchR, Rapsyn, Musk and AChE were negative. At age 11 years, a muscle biopsy was performed in the deltoid muscle for neuromuscular junction sampling. Electron microscopic and confocal microscopic analysis of endplates showed almost complete loss of AChR and the diagnosis of CMS with AChR deficiency was confirmed. All immunosuppressive therapies were discontinued. Instead, we started Ubretide and 3,4-diaminopyridine (DAP) after obtaining informed consent. Although not approved in Japan for this use, 3,4-DAP is reportedly effective in refractory cases of CMS. The patient experienced no side effects. Despite all of the objective data were improving, his subjective symptoms and ADL remained poor. There are still many challenges in the treatment of the patient. PMID:19172815

  5. Vitamin D receptor overexpression in osteoblasts and osteocytes prevents bone loss during vitamin D-deficiency.

    PubMed

    Lam, Nga N; Triliana, Rahma; Sawyer, Rebecca K; Atkins, Gerald J; Morris, Howard A; O'Loughlin, Peter D; Anderson, Paul H

    2014-10-01

    There are several lines of evidence that demonstrate the ability of 1,25-dihydroxyvitamin D (1,25(OH)2D3), acting via the vitamin D receptor (VDR) to mediate negative or positive effects in bone. Transgenic over-expression of VDR in osteoblasts and osteocytes in a mouse model (OSVDR) has been previously shown to inhibit processes of bone resorption and enhance bone formation, under conditions of adequate calcium intake. While these findings suggest that vitamin D signalling in osteoblasts and osteocytes promotes bone mineral accrual, the vitamin D requirement for this action is not well understood. In this study, 4 week old female OSVDR and wild-type (WT) mice were fed either a vitamin D-replete (1000IU/kg diet, D+) or vitamin D-deficient (D-) diet for 4 months to observe changes to bone mineral homeostasis. Tibial bone mineral volume was analysed by micro-CT and changes to bone cell activities were measured using standard dynamic histomorphometric techniques. While vitamin D-deplete WT mice demonstrated a reduction in periosteal bone accrual and overall bone mineral volume, OSVDR mice, however, displayed increased cortical and cancellous bone volume in mice which remained higher during vitamin D-depletion due to a reduced osteoclast number and increased bone formation rate. These data suggest that increased VDR-mediated activity in osteoblast and osteocytes prevents bone loss due to vitamin D-deficiency. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24434283

  6. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  7. Prolonged survival of scavenger receptor class A-deficient mice from pulmonary Mycobacterium tuberculosis infection

    PubMed Central

    Sever-Chroneos, Zvjezdana; Tvinnereim, Amy; Hunter, Robert L.; Chroneos, Zissis C.

    2016-01-01

    SUMMARY The present study tested the hypothesis that the scavenger receptor SR-A modulates granuloma formation in response to pulmonary infection with Mycobacterium tuberculosis (MTB). To test this hypothesis, we monitored survival and histopathology in WT and SR-A-deficient mice following aerosol infection with MTB Rv. SR-A-deficient (SR-A−/−) mice infected with MTB survived significantly longer than WT mice; the mean survival of SR-A−/− mice exceeded 430 days compared to 230 days for WT mice. Early granuloma formation was not impaired in SR-A−/− mice. The extended survival of SR-A−/− mice was associated with 13- and 3-fold higher number of CD4+ lymphocytes and antigen presenting cells in SR-A−/− lungs compared to WT mice 280 after infection. The histopathology of chronically infected SR-A−/− lungs, however, was marked by abundant cholesterol clefts in parenchymal lesions containing infection in multinucleated giant cells. The present study indicates SR-A as a candidate gene of the innate immune system influencing the chronic phase of M. tuberculosis infection. PMID:22088322

  8. A Neutralizing Prolactin Receptor Antibody Whose In Vivo Application Mimics the Phenotype of Female Prolactin Receptor-Deficient Mice.

    PubMed

    Otto, Christiane; Särnefält, Anna; Ljungars, Anne; Wolf, Siegmund; Rohde-Schulz, Beate; Fuchs, Iris; Schkoldow, Jenny; Mattsson, Mikael; Vonk, Richardus; Harrenga, Axel; Freiberg, Christoph

    2015-11-01

    The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease. PMID:26284426

  9. Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice.

    PubMed

    Zhang, Xiaoyan; Huang, Shizheng; Gao, Min; Liu, Jia; Jia, Xiao; Han, Qifei; Zheng, Senfeng; Miao, Yifei; Li, Shuo; Weng, Haoyu; Xia, Xuan; Du, Shengnan; Wu, Wanfu; Gustafsson, Jan-Åke; Guan, Youfei

    2014-02-11

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. FXR is mainly expressed in liver and small intestine, where it plays an important role in bile acid, lipid, and glucose metabolism. The kidney also has a high FXR expression level, with its physiological function unknown. Here we demonstrate that FXR is ubiquitously distributed in renal tubules. FXR agonist treatment significantly lowered urine volume and increased urine osmolality, whereas FXR knockout mice exhibited an impaired urine concentrating ability, which led to a polyuria phenotype. We further found that treatment of C57BL/6 mice with chenodeoxycholic acid, an FXR endogenous ligand, significantly up-regulated renal aquaporin 2 (AQP2) expression, whereas FXR gene deficiency markedly reduced AQP2 expression levels in the kidney. In vitro studies showed that the AQP2 gene promoter contained a putative FXR response element site, which can be bound and activated by FXR, resulting in a significant increase of AQP2 transcription in cultured primary inner medullary collecting duct cells. In conclusion, the present study demonstrates that FXR plays a critical role in the regulation of urine volume, and its activation increases urinary concentrating capacity mainly via up-regulating its target gene AQP2 expression in the collecting ducts. PMID:24464484

  10. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  11. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  12. M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes.

    PubMed

    Gautam, Dinesh; Duttaroy, Alokesh; Cui, Yinghong; Han, Sung-Jun; Deng, Chuxia; Seeger, Thomas; Alzheimer, Christian; Wess, Jürgen

    2006-01-01

    The five muscarinic acetylcholine receptors (M1-M5 mAChRs) mediate a very large number of important physiological functions (Caulfield, 1993; Caulfield and Birdsall, 1998; Wess, 2004). Because of the lack of small molecule ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proved to be a challenging task. To overcome these difficulties, we recently generated mutant mouse lines deficient in each of the five mAChR genes (M1R-/- mice, M2R-/- mice, M3R-/- mice, etc. [Wess, 2004]). Phenotyping studies showed that each of the five mutant mouse lines displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits (Wess, 2004). This chapter summarizes recent findings dealing with the importance of the M2mAChR for cognitive processes and the roles of the M1 and M3 mAChRs in mediating stimulation of glandular secretion. PMID:17192665

  13. Neuropeptide Y and Agouti-Related Peptide Mediate Complementary Functions of Hyperphagia and Reduced Energy Expenditure in Leptin Receptor Deficiency

    PubMed Central

    Luo, Na; Marcelin, Genevieve; Liu, Shun Mei; Schwartz, Gary

    2011-01-01

    Neuropeptide Y (NPY) and agouti-related peptide (AGRP) can produce hyperphagia, reduce energy expenditure, and promote triglyceride deposition in adipose depots. As these two neuropeptides are coexpressed within the hypothalamic arcuate nucleus and mediate a major portion of the obesity caused by leptin signaling deficiency, we sought to determine whether the two neuropeptides mediated identical or complementary actions. Because of separate neuropeptide receptors and signal transduction mechanisms, there is a possibility of distinct encoding systems for the feeding and energy expenditure aspects of leptin-regulated metabolism. We have genetically added NPY deficiency and/or AGRP deficiency to LEPR deficiency isolated to AGRP cells. Our results indicate that the obesity of LEPR deficiency in AGRP/NPY neurons can produce obesity with either AGRP or NPY alone with AGRP producing hyperphagia while NPY promotes reduced energy expenditure. The absence of both NPY and AGRP prevents the development of obesity attributable to isolated LEPR deficiency in AGRP/NPY neurons. Operant behavioral testing indicated that there were no alterations in the reward for a food pellet from the AGRP-specific LEPR deficiency. PMID:21285324

  14. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system

    PubMed Central

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Wlodarczyk, Bogdan J.; Cabrera, Robert M.; Finnell, Richard H.; Bottiglieri, Teodoro; Quadros, Edward V.

    2013-01-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P<0.01) indicates that TCblR is the only receptor responsible for Cbl uptake in the CNS. Metabolic Cbl deficiency in the brain was evident from the increased methylmalonic acid (P<0.01–0.04), homocysteine (P<0.01), cystathionine (P<0.01), and the decreased S-adenosylmethionine/S-adenosyl homocysteine ratio (P<0.01). The CNS pathology of Cbl deficiency seen in humans may not manifest in this mouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected.—Lai, S.-C., Nakayama, Y., Sequeira, J. M., Wlodarczyk, B. J., Cabrera, R. M., Finnell, R. H., Bottiglieri, T., Quadros, E. V. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system. PMID:23430977

  15. Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor DevelopmentS⃞

    PubMed Central

    Maran, Rengasamy R.M.; Thomas, Ann; Roth, Megan; Sheng, Zhonghua; Esterly, Noriko; Pinson, David; Gao, Xin; Zhang, Yawei; Ganapathy, Vadivel; Gonzalez, Frank J.; Guo, Grace L.

    2009-01-01

    Increased dietary fat consumption is associated with colon cancer development. The exact mechanism by which fat induces colon cancer is not clear, however, increased bile acid excretion in response to high-fat diet may promote colon carcinogenesis. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, and bile acids are endogenous ligands of FXR. FXR is highly expressed in the intestine and liver where FXR is essential for maintaining bile acid homeostasis. The role of FXR in intestine cancer development is not known. The current study evaluated the effects of FXR deficiency in mice on intestinal cell proliferation and cancer development. The results showed that FXR deficiency resulted in increased colon cell proliferation, which was accompanied by an up-regulation in the expression of genes involved in cell cycle progression and inflammation, including cyclin D1 and interleukin-6. Most importantly, FXR deficiency led to an increase in the size of small intestine adenocarcinomas in adenomatous polyposis coli mutant mice. Furthermore, after treatment with a colon carcinogen, azoxymethane, FXR deficiency increased the adenocarcinoma multiplicity and size in colon and rectum of C57BL/6 mice. Loss of FXR function also increased the intestinal lymphoid nodule numbers in the intestine. Taken together, the current study is the first to show that FXR deficiency promotes cell proliferation, inflammation, and tumorigenesis in the intestine, suggesting that activation of FXR by nonbile acid ligands may protect against intestinal carcinogenesis. PMID:18981289

  16. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice

    PubMed Central

    2011-01-01

    Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin) induced cardiac toxicity. Toll-like receptors (TLRs) are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p.), left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+) and HeJ mutant (TLR4-/-) treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs) for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α), Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN), in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p < 0.05, attenuation of mononuclear cell infiltration in TLR4 -/-; p < 0.05 vs.TLR-4 competent (HeN), reduced level of cytokines TNF-α, MCP-1 and ICAM-1 expression in TLR4-/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p < 0.05 vs.TLR-4 competent (HeN). Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1), so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy. PMID:21999911

  17. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of

  18. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice.

    PubMed

    Kato-Nagaoka, Noriko; Shimada, Shin-Ichiro; Yamakawa, Yoko; Tsujibe, Satoshi; Naito, Tomoaki; Setoyama, Hiromi; Watanabe, Yohei; Shida, Kan; Matsumoto, Satoshi; Nanno, Masanobu

    2015-09-01

    To clarify the effect of secretory IgA (sIgA) deficiency on gut homeostasis, we examined intraepithelial lymphocytes (IELs) in the small intestine (SI) of polymeric immunoglobulin receptor-deficient (pIgR(-/-) ) mice. The pIgR(-/-) mice exhibited the accumulation of CD8αβ(+) T-cell receptor (TCR)-αβ(+) IELs (CD8αβ(+) αβ-IELs) after weaning, but no increase of CD8αβ(+) γδ-IELs was detected in pIgR(-/-) TCR-β(-/-) mice compared with pIgR(+/+) TCR-β(-/-) mice. When 5-bromo-2'-deoxyuridine (BrdU) was given for 14 days, the proportion of BrdU-labelled cells in SI-IELs was not different between pIgR(+/+) mice and pIgR(-/-) mice. However, the proportion of BrdU-labelled CD8αβ(+) -IELs became higher in pIgR(-/-) mice than pIgR(+/+) mice 10 days after discontinuing BrdU-labelling. Intravenously transferred splenic T cells migrated into the intraepithelial compartments of pIgR(+/+) TCR-β(-/-) mice and pIgR(-/-) TCR-β(-/-) mice to a similar extent. In contrast, in the case of injection of immature bone marrow cells, CD8αβ(+) αβ-IELs increased much more in the SI of pIgR(-/-) TCR-β(-/-) mice than pIgR(+/+) TCR-β(-/-) mice 8 weeks after the transfer. αβ-IELs from pIgR(-/-) mice could produce more interferon-γ and interleukin-17 than those of pIgR(+/+) mice, and intestinal permeability tended to increase in the SI of pIgR(-/-) mice with aging. Taken together, these results indicate that activated CD8αβ(+) αβ-IELs preferentially accumulate in pIgR(-/-) mice through the enhanced differentiation of immature haematopoietic precursor cells, which may subsequently result in the disruption of epithelial integrity. PMID:25967857

  19. Skeletal phenotype of the leptin receptor-deficient db/db mouse.

    PubMed

    Williams, Garry A; Callon, Karen E; Watson, Maureen; Costa, Jessica L; Ding, Yaoyao; Dickinson, Michelle; Wang, Yu; Naot, Dorit; Reid, Ian R; Cornish, Jillian

    2011-08-01

    Leptin, a major hormonal product of the adipocyte, regulates appetite and reproductive function through its hypothalamic receptors. The leptin receptor is present in osteoblasts and chondrocytes, and previously we have shown leptin to be an anabolic bone factor in vitro, stimulating osteoblast proliferation and inhibiting osteoclastogenesis. Leptin increases bone mass and reduces bone fragility when administered peripherally but also can indirectly reduce bone mass when administered into the central nervous system. However, data from animal models deficient in either leptin (ob/ob) or its receptor (db/db) remain contradictory. We compared the bone phenotype of leptin receptor-deficient (db/db) and wild-type mice using micro-computed tomographic (µCT) analysis of the proximal tibias and vertebrae. In the tibia, db/db mice had reduced percent trabecular bone volume (13.0 ± 1.62% in wild-type versus 6.01 ± 0.601% in db/db mice, p = .002) and cortical bone volume (411 ± 21.5 µm(3) versus 316 ± 3.53 µm(3), p = .0014), trabecular thickness (48.4 ± 001.07 µm versus 45.1 ± 0.929 µm, p = .041) and trabecular number (2.68 ± 0.319 mm(-1) versus 1.34 ± 0.148 mm(-1), p = .0034). In the fifth lumbar vertebral body, the trabecular thickness and cortical thickness were decreased in the db/db versus wild-type mice (0.053 ± 0.0011 mm versus 0.047 ± 0.0013 mm, p = .0002 and 0.062 ± 0.00054 mm versus 0.056 ± 0.0009 mm, p = .0001), respectively, whereas the trabecular and cortical percent bone volume and trabecular number did not reach significance. The total (endosteal and periosteal) cortical perimeter (12.2 ± 0.19 mm versus 13.2 ± 0.30 mm, p = .01) was increased. The serum osteocalcin levels were reduced in the db/db mice, suggesting that bone formation rates are decreased. The material properties of db/db femurs were determined by three-point bending and nanoindentation, showing decreased bone strength (13.3 ± 0.280 N versus 7.99 ± 0.984 N, p =

  20. Angiotensin receptor antagonists delay nitric oxide-deficient stroke in stroke-prone rats.

    PubMed

    Ahmad, S

    1997-08-20

    We investigated whether chronic deficiency of nitric oxide (NO) in stroke-prone spontaneously hypertensive rats (SHRSP) precipitates stroke and whether exogenous nitrates and other pharmacological agents can prevent stroke. Groups of five-week-old male SHRSP rats chronically received saline, L-nitro-arginine methyl ester (L-NAME) in saline, L-NAME along with pharmacological agents (L-arginine, isosorbide dinitrate, enalapril maleate and L-158,809; angiotensin receptor antagonist; 5,7-dimethyl-2-ethyl-3(-)[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]meth yl]-imidazo[4,5-b]pyridine) in saline to drink. The development of visible neurological deficits following various treatments was considered as an occurrence of stroke. Within hours following onset of stroke, the rats were anesthetized, catheterized and attached to a Cardiomax blood pressure recorder. SHRSP treated with L-NAME (10+/-2 mg/day) developed stroke in 11+/-2 days while no neurological deficit was seen in animals receiving saline till the end of the study period (35 days). Blockade of the renin-angiotensin system with enalapril or L-158,809 significantly delayed the onset of stroke (19+/-2 and 20+/-2 days, respectively), but caused only slight reductions in mean arterial blood pressure. These results suggest that chronic inhibition of NO synthase in SHRSP is associated with the development of stroke and such stroke appears to be renin-angiotensin system-dependent. PMID:9311659

  1. Identification of Androgen Receptor Splice Variants in the Pten Deficient Murine Prostate Cancer Model.

    PubMed

    Liang, Mengmeng; Adisetiyo, Helty; Li, Xiuqing; Liu, Xiuqing; Liu, Ren; Gill, Parkash; Roy-Burman, Pradip; Jones, Jeremy O; Mulholland, David J

    2015-01-01

    Androgen receptor (AR) variants are associated with resistance to anti androgen therapy both in human prostate cancer cell lines and clinical samples. These observations support the hypothesis that AR isoform accumulation is a consequence of selective therapeutic pressure on the full length AR. The Pten deficient prostate cancer model proceeds with well-defined kinetics including progression to castration resistant prostate cancer (CRPC). While surgical castration and enzalutamide treatments yield an initial therapeutic response, Pten-/-epithelia continue to proliferate yielding locally invasive primary tumor pathology. That most epithelium remains AR positive, but ligand independent, suggests the presence of oncogenic AR variants. To address this hypothesis, we have used a panel of recently described Pten-/- tumor cell lines derived from both from hormone intact (E4, E8) and castrated Pten mutants (cE1, cE2) followed by RACE PCR to identify and characterize three novel truncated, amino terminus containing AR variants (mAR-Va, b, c). Variants appear not only conserved throughout progression but are correlated with nearly complete loss of full length AR (AR-FL) at castrate androgen levels. The overexpression of variants leads to enhanced transcriptional activity of AR while knock down studies show reduced transcriptional output. Collectively, the identification of truncated AR variants in the conditional PTEN deletion model supports a role for maintaining the CRPC phenotype and provides further therapeutic applications of this preclinical model. PMID:26196517

  2. Characterization of mice deficient in melanocortin 2 receptor on a B6/Balbc mix background.

    PubMed

    Chida, Dai; Sato, Tsuyoshi; Sato, Yoshinori; Kubo, Mitsumasa; Yoda, Tetsuya; Suzuki, Harumi; Iwakura, Yoichiro

    2009-03-01

    We have previously reported that Melanocortin 2 receptor (MC2R(-/-)) deficient mice on B6 N5 generations exhibited macroscopically detectable adrenal glands with markedly atrophied zona fasciculata (zF) and lack of detectable levels of corticosterone, and reduced serum concentrations of aldosterone and epinephrine. All MC2R(-/-) mice on B6/N8 background die within 2 days after birth, while about half of the MC2R(-/-) mice on B6/Balbc mix background survived to adulthood. Both male and female MC2R(-/-) mice were fertile, suggesting that normal development and function of reproductive organs. MC2R(-/-) mice delivered from MC2R(-/-) dams failed to survive due to lung failure, suggesting that fetal or maternal corticosterone is essential for lung maturation. MC2R(-/-) mice failed to activate the hypothalamic-pituitary-adrenal axis in response to both immune and non-immune stimuli. MC2R(-/-) mice maintained glomerular structure and achieved electrolyte homeostasis by the activation of the renin-angiotensin-aldosterone system under low aldosterone and undetectable levels of corticosterone. PMID:19022343

  3. Maternal profiling of corticotropin-releasing factor receptor 2 deficient mice in association with restraint stress

    PubMed Central

    D’Anna, Kimberly L.; Stevenson, Sharon A.; Gammie, Stephen C.

    2008-01-01

    Mice deficient in corticotropin releasing factor receptor 2 (CRF2) (C57BL/6J:129Sv background) exhibit impaired maternal defense (protection of offspring) and are more reactive to stressors than wild-type mice. To further understand CRF2’s role in maternal behavior, we crossed the knockout mice with a line bred for high maternal defense that also has elevated maternal care relative to inbred lines. Maternal care was normal in knockout mice (relative to wild-type). Maternal defense was impaired as previously observed. Exposure to a mild stressor (15 min restraint) did not trigger deficits in maternal defense in either genotype as determined by a two-way repeated measures ANOVA analysis. However, when examining difference scores between unrestrained and restrained conditions, knockout mice exhibited significant decreases in maternal defense with stress, suggesting knockouts are more susceptible to a mild stressor’s effects. To gain possible insights into brain activity differences between WT and KO mice, we examined c-Fos expression in association with stress. Unrestrained KO mice exhibited significantly lower c-Fos levels relative to unrestrained WT mice in 9 regions, including lateral septum and periaqueductal gray. For WT mice, restraint stress triggered c-Fos activity increases in 3 regions while for KO mice, restraint stress triggered c-Fos increases in 16 regions. Taken together, our results suggest both altered behavioral and c-Fos responses to stress in lactating CRF2 KO mice. PMID:18817761

  4. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions.

    PubMed

    Ge, Hongfei; Zhang, Jun; Gong, Yan; Gupte, Jamila; Ye, Jay; Weiszmann, Jennifer; Samayoa, Kim; Coberly, Suzanne; Gardner, Jonitha; Wang, Huilan; Corbin, Tim; Chui, Danny; Baribault, Helene; Li, Yang

    2014-10-31

    The role of fibroblast growth factor receptor 4 (FGFR4) in regulating bile acid synthesis has been well defined; however, its reported role on glucose and energy metabolism remains unresolved. Here, we show that FGFR4 deficiency in mice leads to improvement in glucose metabolism, insulin sensitivity, and reduction in body weight under high fat conditions. Mechanism of action studies in FGFR4-deficient mice suggest that the effects are mediated in part by increased plasma levels of adiponectin and the endocrine FGF factors FGF21 and FGF15, the latter of which increase in response to an elevated bile acid pool. Direct actions of increased bile acids on bile acid receptors, and other potential indirect mechanisms, may also contribute to the observed metabolic changes. The results described herein suggest that FGFR4 antagonists alone, or in combination with other agents, could serve as a novel treatment for diabetes. PMID:25204652

  5. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    SciTech Connect

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  6. Multiorgan chronic inflammatory hepatobiliary pancreatic murine model deficient in tumor necrosis factor receptors 1 and 2

    PubMed Central

    Oz, Helieh S

    2016-01-01

    AIM: To provoke persistent/chronic multiorgan inflammatory response and to contribute to stones formation followed by fibrosis in hepatobiliary and pancreatic tissues. METHODS: Tumor necrosis factor receptors 1 and 2 (TNFR1/R2) deficient mice reared in-house were given dibutyltin dichloride (DBTC) twice within 10 d by oral gavage delivery. Sham control animals received vehicle treatment and naïve animals remained untreated throughout the study. Animals were monitored daily for symptoms of pain and discomfort. The abdominal and hindpaw hypersensitivity were assessed with von Frey microfilaments. Exploratory behaviors were recorded at the baseline, after initiation of treatment, and before study termination. Histopathological changes were examined postmortem in tissues. Collagen accumulation and fibrosis were confirmed with Sirius Red staining. RESULTS: Animals lost weight after oral administration of DBTC and developed persistent inflammatory abdominal and hindpaw hypersensitivity compared to sham-treated controls (P < 0.0001). These pain related secondary mechanical hypersensitivity responses increased more than 2-fold in DBTC-treated animals. The drastically diminished rearing and grooming rates persisted after DBTC administration throughout the study. Gross as well as micropathology at one month confirmed that animals treated with DBTC developed chronic hepatobiliary injuries evidenced with activation of stellate cells, multifocal necrosis, fatty degeneration of hepatocytes, periportal infiltration of inflammatory cells, and prominent biliary ductal dilation. The severity of hepatitis was scored 3.7 ± 0.2 (severe) in DBTC-treated animals vs score 0 (normal) in sham-treated animals. Fibrotic thickening was extensive around portal ducts, in hepatic parenchyma as well as in lobular pancreatic structures and confirmed with Sirius Red histopathology. In addition, pancreatic microarchitecture was presented with distortion of islets, and parenchyma, infiltration of

  7. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  8. Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    PubMed Central

    Teupser, Daniel; Holdt, Lesca Miriam; Tönjes, Anke; Kern, Matthias; Dietrich, Kerstin; Kovacs, Peter; Krügel, Ute; Scheidt, Holger A.; Schiller, Jürgen; Huster, Daniel; Brockmann, Gudrun A.; Augustin, Martin; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Schöneberg, Torsten; Schulz, Angela

    2011-01-01

    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments. PMID:22216272

  9. GH deficiency status combined with GH receptor polymorphism affects response to GH in children.

    PubMed

    Valsesia, Armand; Chatelain, Pierre; Stevens, Adam; Peterkova, Valentina A; Belgorosky, Alicia; Maghnie, Mohamad; Antoniazzi, Franco; Koledova, Ekaterina; Wojcik, Jerome; Farmer, Pierre; Destenaves, Benoit; Clayton, Peter

    2015-12-01

    Meta-analysis has shown a modest improvement in first-year growth response to recombinant human GH (r-hGH) for carriers of the exon 3-deleted GH receptor (GHRd3) polymorphism but with significant interstudy variability. The associations between GHRd3 and growth response to r-hGH over 3 years in relation to severity of GH deficiency (GHD) were investigated in patients from 14 countries. Treatment-naïve pre-pubertal children with GHD were enrolled from the PREDICT studies (NCT00256126 and NCT00699855), categorized by peak GH level (peak GH) during provocation test: ≤4 μg/l (severe GHD; n=45) and >4 to <10 μg/l mild GHD; n=49) and genotyped for the GHRd3 polymorphism (full length (fl/fl, fl/d3, d3/d3). Gene expression (GE) profiles were characterized at baseline. Changes in growth (height (cm) and SDS) over 3 years were measured. There was a dichotomous influence of GHRd3 polymorphism on response to r-hGH, dependent on peak GH level. GH peak level (higher vs lower) and GHRd3 (fl/fl vs d3 carriers) combined status was associated with height change over 3 years (P<0.05). GHRd3 carriers with lower peak GH had lower growth than subjects with fl/fl (median difference after 3 years -3.3 cm; -0.3 SDS). Conversely, GHRd3 carriers with higher peak GH had better growth (+2.7 cm; +0.2 SDS). Similar patterns were observed for GH-dependent biomarkers. GE profiles were significantly different between the groups, indicating that the interaction between GH status and GHRd3 carriage can be identified at a transcriptomic level. This study demonstrates that responses to r-hGH depend on the interaction between GHD severity and GHRd3 carriage. PMID:26340968

  10. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  11. Sphingosine 1-Phosphate Receptor 3-Deficient Dendritic Cells Modulate Splenic Responses to Ischemia-Reperfusion Injury.

    PubMed

    Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Gigliotti, Joseph C; Ye, Hong; Miller, Jacqueline; Rosin, Diane L; Lobo, Peter I; Okusa, Mark D

    2016-04-01

    The plasticity of dendritic cells (DCs) permits phenotypic modulationex vivoby gene expression or pharmacologic agents, and these modified DCs can exert therapeutic immunosuppressive effectsin vivothrough direct interactions with T cells, either inducing T regulatory cells (TREGs) or causing anergy. Sphingosine 1-phosphate (S1P) is a sphingolipid and the natural ligand for five G protein-coupled receptors (S1P1, S1P2, S1P3, S1P4, and S1P5), and S1PR agonists reduce kidney ischemia-reperfusion injury (IRI) in mice.S1pr3(-/-)mice are protected from kidney IRI, because DCs do not mature. We tested the therapeutic advantage ofS1pr3(-/-)bone marrow-derived dendritic cell (BMDC) transfers in kidney IRI. IRI produced a rise in plasma creatinine (PCr) levels in mice receiving no cells (NCs) and mice pretreated with wild-type (WT) BMDCs. However,S1pr3(-/-)BMDC-pretreated mice were protected from kidney IRI.S1pr3(-/-)BMDC-pretreated mice had significantly higher numbers of splenic TREGs compared with NC and WT BMDC-pretreated mice.S1pr3(-/-)BMDCs did not attenuate IRI in splenectomized,Rag-1(-/-), or CD11c(+)DC-depleted mice. Additionally,S1pr3(-/-)BMDC-dependent protection required CD169(+)marginal zone macrophages and the macrophage-derived chemokine CCL22 to increase splenic CD4(+)Foxp3(+)TREGs. Pretreatment withS1pr3(-/-)BMDCs also induced TREG-dependent protection against IRI in an allogeneic mouse model. In summary, adoptively transferredS1pr3(-/-)BMDCs prevent kidney IRI through interactions within the spleen and expansion of splenic CD4(+)Foxp3(+)TREGs. We conclude that genetically induced deficiency ofS1pr3in allogenic BMDCs could serve as a therapeutic approach to prevent IRI-induced AKI. PMID:26286732

  12. EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling

    PubMed Central

    Lu, Ankang; Zuo, Caojian; He, Yuhu; Chen, Guilin; Piao, Lingjuan; Zhang, Jian; Xiao, Bing; Shen, Yujun; Tang, Juan; Kong, Deping; Alberti, Sara; Chen, Di; Zuo, Shenkai; Zhang, Qianqian; Yan, Shuai; Fei, Xiaochun; Yuan, Fei; Zhou, Bin; Duan, Shengzhong; Yu, Yu; Lazarus, Michael; Su, Yunchao; Breyer, Richard M.; Funk, Colin D.; Yu, Ying

    2015-01-01

    Pulmonary arterial hypertension (PAH) is commonly associated with chronic hypoxemia in disorders such as chronic obstructive pulmonary disease (COPD). Prostacyclin analogs are widely used in the management of PAH patients; however, clinical efficacy and long-term tolerability of some prostacyclin analogs may be compromised by concomitant activation of the E-prostanoid 3 (EP3) receptor. Here, we found that EP3 expression is upregulated in pulmonary arterial smooth muscle cells (PASMCs) and human distal pulmonary arteries (PAs) in response to hypoxia. Either pharmacological inhibition of EP3 or Ep3 deletion attenuated both hypoxia and monocrotaline-induced pulmonary hypertension and restrained extracellular matrix accumulation in PAs in rodent models. In a murine PAH model, Ep3 deletion in SMCs, but not endothelial cells, retarded PA medial thickness. Knockdown of EP3α and EP3β, but not EP3γ, isoforms diminished hypoxia-induced TGF-β1 activation. Expression of either EP3α or EP3β in EP3-deficient PASMCs restored TGF-β1 activation in response to hypoxia. EP3α/β activation in PASMCs increased RhoA-dependent membrane type 1 extracellular matrix metalloproteinase (MMP) translocation to the cell surface, subsequently activating pro–MMP-2 and promoting TGF-β1 signaling. Activation or disruption of EP3 did not influence PASMC proliferation. Together, our results indicate that EP3 activation facilitates hypoxia-induced vascular remodeling and pulmonary hypertension in mice and suggest EP3 inhibition as a potential therapeutic strategy for pulmonary hypertension. PMID:25664856

  13. DEFICIENCY OF THE TYPE I INTERFERON RECEPTOR PROTECTS MICE FROM EXPERIMENTAL LUPUS

    PubMed Central

    Nacionales, Dina C.; Kelly-Scumpia, Kindra M.; Lee, Pui Y.; Weinstein, Jason S.; Lyons, Robert; Sobel, Eric; Satoh, Minoru; Reeves, Westley H.

    2010-01-01

    Objective Systemic lupus erythematosus (SLE) is diagnosed by a spectrum of clinical manifestations and autoantibodies associated with abnormal expression of Type I interferon (IFN-I) stimulated genes (ISGs). The role of IFN-I in the pathogenesis of SLE remains uncertain, partly due to the lack of suitable animal models. The objective of this study was to examine the role of IFN-I signaling in the pathogenesis of murine lupus induced by 2, 6, 10, 14 tetramethylpentadecane (TMPD). Methods 129Sv IFN-I receptor deficient (IFNAR−/−) and control 129Sv mice were treated i.p. with TMPD. The expression of ISGs was measured by real-time PCR. Autoantibody production was evaluated by immunofluorescence and ELISA. Proteinuria and renal glomerular cellularity were measured and renal immune complexes were examined by immunofluorescence. Results Increased ISG expression was seen in peripheral blood of TMPD-treated wild type but not IFNAR−/− mice. TMPD did not induce lupus-specific autoantibodies (anti-nRNP/Sm, -dsDNA) in IFNAR−/− mice, whereas 129Sv controls developed these specificities. Although glomerular immune complexes were present in IFNAR−/− mice, proteinuria and glomerular hypercellularity did not develop, unlike TMPD-treated controls. Thus, consistent with the association of increased ISG expression with lupus-specific autoantibodies, and nephritis in humans, these clinical and serological manifestations were strongly dependent on IFNAR signaling in TMPD-treated mice. Conclusion Signaling via the IFNAR is central to the pathogenesis of autoantibodies and glomerulonephritis in TMPD-lupus, consistent with a similar role in human SLE. TMPD-lupus is the first animal model shown to recapitulate the interferon signature in peripheral blood. PMID:17968932

  14. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  15. EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling.

    PubMed

    Lu, Ankang; Zuo, Caojian; He, Yuhu; Chen, Guilin; Piao, Lingjuan; Zhang, Jian; Xiao, Bing; Shen, Yujun; Tang, Juan; Kong, Deping; Alberti, Sara; Chen, Di; Zuo, Shenkai; Zhang, Qianqian; Yan, Shuai; Fei, Xiaochun; Yuan, Fei; Zhou, Bin; Duan, Shengzhong; Yu, Yu; Lazarus, Michael; Su, Yunchao; Breyer, Richard M; Funk, Colin D; Yu, Ying

    2015-03-01

    Pulmonary arterial hypertension (PAH) is commonly associated with chronic hypoxemia in disorders such as chronic obstructive pulmonary disease (COPD). Prostacyclin analogs are widely used in the management of PAH patients; however, clinical efficacy and long-term tolerability of some prostacyclin analogs may be compromised by concomitant activation of the E-prostanoid 3 (EP3) receptor. Here, we found that EP3 expression is upregulated in pulmonary arterial smooth muscle cells (PASMCs) and human distal pulmonary arteries (PAs) in response to hypoxia. Either pharmacological inhibition of EP3 or Ep3 deletion attenuated both hypoxia and monocrotaline-induced pulmonary hypertension and restrained extracellular matrix accumulation in PAs in rodent models. In a murine PAH model, Ep3 deletion in SMCs, but not endothelial cells, retarded PA medial thickness. Knockdown of EP3α and EP3β, but not EP3γ, isoforms diminished hypoxia-induced TGF-β1 activation. Expression of either EP3α or EP3β in EP3-deficient PASMCs restored TGF-β1 activation in response to hypoxia. EP3α/β activation in PASMCs increased RhoA-dependent membrane type 1 extracellular matrix metalloproteinase (MMP) translocation to the cell surface, subsequently activating pro-MMP-2 and promoting TGF-β1 signaling. Activation or disruption of EP3 did not influence PASMC proliferation. Together, our results indicate that EP3 activation facilitates hypoxia-induced vascular remodeling and pulmonary hypertension in mice and suggest EP3 inhibition as a potential therapeutic strategy for pulmonary hypertension. PMID:25664856

  16. GH deficiency status combined with GH receptor polymorphism affects response to GH in children

    PubMed Central

    Valsesia, Armand; Chatelain, Pierre; Stevens, Adam; Peterkova, Valentina A; Belgorosky, Alicia; Maghnie, Mohamad; Antoniazzi, Franco; Koledova, Ekaterina; Wojcik, Jerome; Farmer, Pierre; Destenaves, Benoit; Clayton, Peter

    2015-01-01

    Meta-analysis has shown a modest improvement in first-year growth response to recombinant human GH (r-hGH) for carriers of the exon 3-deleted GH receptor (GHRd3) polymorphism but with significant interstudy variability. The associations between GHRd3 and growth response to r-hGH over 3 years in relation to severity of GH deficiency (GHD) were investigated in patients from 14 countries. Treatment-naïve pre-pubertal children with GHD were enrolled from the PREDICT studies (NCT00256126 and NCT00699855), categorized by peak GH level (peak GH) during provocation test: ≤4 μg/l (severe GHD; n=45) and >4 to <10 μg/l mild GHD; n=49) and genotyped for the GHRd3 polymorphism (full length (fl/fl, fl/d3, d3/d3). Gene expression (GE) profiles were characterized at baseline. Changes in growth (height (cm) and SDS) over 3 years were measured. There was a dichotomous influence of GHRd3 polymorphism on response to r-hGH, dependent on peak GH level. GH peak level (higher vs lower) and GHRd3 (fl/fl vs d3 carriers) combined status was associated with height change over 3 years (P<0.05). GHRd3 carriers with lower peak GH had lower growth than subjects with fl/fl (median difference after 3 years −3.3 cm; −0.3 SDS). Conversely, GHRd3 carriers with higher peak GH had better growth (+2.7 cm; +0.2 SDS). Similar patterns were observed for GH-dependent biomarkers. GE profiles were significantly different between the groups, indicating that the interaction between GH status and GHRd3 carriage can be identified at a transcriptomic level. This study demonstrates that responses to r-hGH depend on the interaction between GHD severity and GHRd3 carriage. PMID:26340968

  17. Complement C1q Reduces Early Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

    PubMed Central

    Bhatia, Vinay K.; Yun, Sheng; Leung, Viola; Grimsditch, David C.; Benson, G. Martin; Botto, Marina B.; Boyle, Joseph J.; Haskard, Dorian O.

    2007-01-01

    We explored the role of the classic complement pathway in atherogenesis by intercrossing C1q-deficient mice (C1qa−/−) with low-density lipoprotein receptor knockout mice (Ldlr−/−). Mice were fed a normal rodent diet until 22 weeks of age. Aortic root lesions were threefold larger in C1qa−/−/Ldlr−/− mice compared with Ldlr−/− mice (3.72 ± 1.0% aortic root versus 1.1 ± 0.4%; mean ± SEM, P < 0.001). Furthermore, the cellular composition of lesions in C1qa−/−/Ldlr−/− was more complex, with an increase in vascular smooth muscle cells. The greater aortic root lesion size in C1qa−/−/Ldlr−/− mice occurred despite a significant reduction in C5b-9 deposition per lesion unit area, suggesting the critical importance of proximal pathway activity. Apoptotic cells were readily detectable by cleaved caspase-3 staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and electron microscopy in C1qa−/−/Ldlr−/−, whereas apoptotic cells were not detected in Ldlr−/− mice. This is the first direct demonstration of a role for the classic complement pathway in atherogenesis. The greater lesion size in C1qa−/−/Ldlr−/− mice is consistent with the emerging homeostatic role for C1q in the disposal of dying cells. This study suggests the importance of effective apoptotic cell removal for containing the size and complexity of early lesions in atherosclerosis. PMID:17200212

  18. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet.

    PubMed

    Noll, Christophe; Labbé, Sébastien M; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C; Gallo-Payet, Nicole

    2016-01-01

    The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[(1) (8)F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  19. Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice.

    PubMed

    Wu, Chia-Hua; Mohammadmoradi, Shayan; Thompson, Joel; Su, Wen; Gong, Ming; Nguyen, Genevieve; Yiannikouris, Frédérique

    2016-07-01

    Adipose tissue dysfunction related to obesity is overwhelmingly associated with increased risk of developing cardiovascular diseases. In the setting of obesity, (pro)renin receptor (PRR) is increased in adipose tissue of mice. We sought to determine the physiological consequences of adipocyte-PRR deficiency using adiponectin-Cre mice. We report a unique model of adipocyte-PRR-deficient mice (PRR(Adi/Y)) with almost no detectable white adipose tissues. As a consequence, the livers of PRR(Adi/Y) mice were enlarged and demonstrated a marked accumulation of lipids. Adipocyte-specific deficiency of PRR increased systolic blood pressure and the concentration of soluble PRR in plasma. To determine whether adipocyte-PRR was involved in the development of obesity-induced hypertension, mice were fed a low-fat or a high-fat diet for 16 weeks. Adipocyte-PRR-deficient mice were resistant to diet-induced obesity. Both high-fat- and low-fat-fed PRR(Adi/Y) mice had elevated insulin levels. Interestingly, adipocyte-PRR deficiency improved glucose tolerance in high-fat-fed PRR(Adi/Y) mice. In response to feeding either low-fat or high-fat diets, systolic blood pressure was greater in PRR(Adi/Y) mice than in control mice. High-fat feeding elevated soluble PRR concentration in control and PRR(Adi/Y) mice. In vitro knockdown of PRR by siRNA significantly decreased mRNA abundance of PPARγ (peroxisome proliferator-activated receptor gamma), suggesting an important role for PRR in adipogenesis. Our data indicate that adipocyte-PRR is involved in lipid homeostasis and glucose and insulin homeostasis, and that soluble PRR may be a predictor of metabolic disturbances and play a role in systolic blood pressure regulation. PMID:27185751

  20. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma.

    PubMed

    Xue, Wan-Jiang; Feng, Ying; Wang, Fei; Guo, Yi-Bing; Li, Peng; Wang, Lei; Liu, Yi-Fei; Wang, Zhi-Wei; Yang, Yu-Min; Mao, Qin-Sheng

    2016-01-01

    We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC. PMID:26915683

  1. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma

    PubMed Central

    Xue, Wan-Jiang; Feng, Ying; Wang, Fei; Guo, Yi-Bing; Li, Peng; Wang, Lei; Liu, Yi-Fei; Wang, Zhi-Wei; Yang, Yu-Min; Mao, Qin-Sheng

    2016-01-01

    We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC. PMID:26915683

  2. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Xue, Wan-Jiang; Feng, Ying; Wang, Fei; Guo, Yi-Bing; Li, Peng; Wang, Lei; Liu, Yi-Fei; Wang, Zhi-Wei; Yang, Yu-Min; Mao, Qin-Sheng

    2016-02-01

    We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC.

  3. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory.

    PubMed

    Moraga-Amaro, Rodrigo; González, Hugo; Ugalde, Valentina; Donoso-Ramos, Juan Pablo; Quintana-Donoso, Daisy; Lara, Marcelo; Morales, Bernardo; Rojas, Patricio; Pacheco, Rodrigo; Stehberg, Jimmy

    2016-04-01

    Pharmacological evidence associates type I dopamine receptors, including subtypes D1 and D5, with learning and memory. Analyses using genetic approaches have determined the relative contribution of dopamine receptor D1 (D1R) in cognitive tasks. However, the lack of drugs that can discriminate between D1R and D5R has made the pharmacological distinction between the two receptors difficult. Here, we aimed to determine the role of D5R in learning and memory. In this study we tested D5R knockout mice and wild-type littermates in a battery of behavioral tests, including memory, attention, locomotion, anxiety and motivational evaluations. Our results show that genetic deficiency of D5R significantly impairs performance in the Morris water maze paradigm, object location and object recognition memory, indicating a relevant role for D5R in spatial memory and recognition memory. Moreover, the lack of D5R resulted in decreased exploration and locomotion. In contrast, D5R deficiency had no impact on working memory, anxiety and depressive-like behavior, measured using the spontaneous alternation, open-field, tail suspension test, and forced swimming test. Electrophysiological analyses performed on hippocampal slices showed impairment in long-term-potentiation in mice lacking D5R. Further analyses at the molecular level showed that genetic deficiency of D5R results in a strong and selective reduction in the expression of the NMDA receptor subunit NR2B in the hippocampus. These findings demonstrate the relevant contribution of D5R in memory and suggest a functional interaction of D5R with hippocampal glutamatergic pathways. PMID:26714288

  4. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    SciTech Connect

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  5. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system.

    PubMed

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M; Wlodarczyk, Bogdan J; Cabrera, Robert M; Finnell, Richard H; Bottiglieri, Teodoro; Quadros, Edward V

    2013-06-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P<0.01) indicates that TCblR is the only receptor responsible for Cbl uptake in the CNS. Metabolic Cbl deficiency in the brain was evident from the increased methylmalonic acid (P<0.01-0.04), homocysteine (P<0.01), cystathionine (P<0.01), and the decreased S-adenosylmethionine/S-adenosyl homocysteine ratio (P<0.01). The CNS pathology of Cbl deficiency seen in humans may not manifest in this mouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected. PMID:23430977

  6. Impact of toll-like receptor 4 deficiency on the response to uterine ischemia/reperfusion in mice.

    PubMed

    Thaete, Larry G; Qu, Xiao-Wu; Jilling, Tamas; Crawford, Susan E; Fitchev, Philip; Hirsch, Emmet; Khan, Saira; Neerhof, Mark G

    2013-05-01

    Our objective was to determine the role of toll-like receptor 4 (TLR4) in uterine ischemia/reperfusion (I/R)-induced fetal growth restriction (FGR). Pregnant TLR4-deficient and wild-type mice were subjected to I/R or a sham procedure. Fetal and placental weights were recorded and tissues were collected. Pep-1 (inhibits low-molecular-weight hyaluronan (LMW-HA) binding to TLR4) was used to determine whether LMW-HA-TLR4 interaction has a role in FGR. TLR4-deficient mice exhibited significantly lower baseline fetal weights compared with wild-type mice (P<0.05), along with extensive placental calcification that was not present in wild-type mice. Following I/R, fetal and placental weights were significantly reduced in wild-type (P<0.05) but not in TLR4-deficient mice. However, I/R increased fetal loss (P<0.05) only in TLR4-deficient mice. Corresponding with the reduced fetal weights, uterine myeloperoxidase activity increased in wild-type mice (P<0.001), indicating an inflammatory response, which was absent in TLR4-deficient mice. TLR4 was shown to have a regulatory role for two anti-inflammatory cytokines: interferon-B1 decreased only in wild-type mice (P<0.01) and interleukin-10 increased only in TLR4-deficient mice (P<0.001), in response to I/R. Pep-1 completely prevented I/R-induced FGR (P<0.001), indicating a potential role for the endogenous TLR4 ligand LMW-HA in I/R-induced FGR. In conclusion, uterine I/R in pregnancy produces FGR that is dependent on TLR4 and endogenous ligand(s), including breakdown products of HA. In addition, TLR4 may play a role in preventing pregnancy loss after uterine I/R. PMID:23509372

  7. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients. PMID:26340429

  8. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  9. Progesterone Receptor A Stability Is Mediated by Glycogen Synthase Kinase-3β in the Brca1-deficient Mammary Gland*

    PubMed Central

    Wang, Shaohui; Li, Ying; Hsu, Pang-Hung; Lee, Sou-Ying; Kim, Yoon; Lee, Eva Y.-H. P.

    2013-01-01

    Germ line mutations of the BRCA1 gene increase the risk of breast and ovarian cancer, but the basis of this tissue-specific tumor predisposition is not fully understood. Previously, we reported that the progesterone receptors are stabilized in Brca1-deficient mammary epithelial cells, and treating with anti-progesterone delays mammary tumorigenesis in Brca1/p53 conditional knock-out mice, suggesting that the progesterone has a critical role in breast carcinogenesis. To further explore how the stability of progesterone receptor is modulated, here, we have found that glycogen synthase kinase (GSK)-3β phosphorylation of progesterone receptor-A (PR-A) facilitates its ubiquitination. GSK-3β-mediated phosphorylation of serine 390 in PR-A regulates its subsequent ubiquitination and protein stability. Expression of PR-AS390A mutant in the human breast epithelial cells, MCF-10A, results in enhanced proliferation and formation of aberrant acini structure in the three-dimensional culture. Consistently, reduction of phosphorylation of serine 390 of PR-A and GSK-3β activity is observed in the Brca1-deficient mammary gland. Taken together, these results provide important aspects of tissue specificity of BRCA1-mediated suppression of breast carcinogenesis. PMID:23880761

  10. Receptor-Interacting Protein Kinase 3 Deficiency Delays Cutaneous Wound Healing

    PubMed Central

    Yang, Weng-Lang; Wang, Zhimin; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2015-01-01

    Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3-/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3-/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3-/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3-/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3-/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3-/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3-/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3-/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3-/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression

  11. Receptor-Interacting Protein Kinase 3 Deficiency Delays Cutaneous Wound Healing.

    PubMed

    Godwin, Andrew; Sharma, Archna; Yang, Weng-Lang; Wang, Zhimin; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3-/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3-/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3-/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3-/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3-/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3-/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3-/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3-/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3-/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression

  12. Lipoprotein receptors in copper-deficient rats: high density lipoprotein binding to liver membranes

    SciTech Connect

    Hassel, C.A.; Lei, K.Y.; Marchello, J.A.

    1986-03-05

    In copper-deficient rats, the observed hyperlipoproteinemia was mainly due to the elevation in high density lipoproteins (HDL). This study was designed to determine whether an impairment in the binding of HDL to liver membrane is responsible for the hyperlipoproteinemia. Sixty male Sprague-Dawley rats were randomly divided into 2 treatments, namely copper (Cu) deficient and adequate (less than 1 and 8 mg Cu/kg of diet). After 8 weeks, plasma, heart and liver tissues were obtained. Reduction in liver Cu content and elevation in heart to body weight ratio and plasma cholesterol confirmed that rats fed the test diet were Cu-deficient. Plasma HDL isolated from both Cu-deficient and control rats were iodinated and bound to liver membranes prepared from rats of each treatment. Binding of /sup 125/I-HDL was competitively inhibited by unlabelled rat HDL from both treatments, but not by human LDL. Scatchard analysis of specific binding data showed that maximal /sup 125/I-HDL binding (per mg membrane protein) to membranes prepared from Cu-deficient rats was not lower than controls. Furthermore, the amount of /sup 125/I-HDL from deficient rats specifically bound to liver membranes prepared from either treatment was not less than the amount of /sup 125/I-HDL from control rats bound to the same membranes. The data suggest that the hyperlipoproteinemia in Cu-deficient rats may not have resulted from a decrease in the number of hepatic HDL binding sites.

  13. Autoimmune Kidney Disease and Impaired Engulfment of Apoptotic Cells in Mice with Macrophage Peroxisome Proliferator-Activated Receptor γ or Retinoid X Receptor α Deficiency

    PubMed Central

    Rőszer, Tamás; Menéndez-Gutiérrez, María P.; Lefterova, Martina I.; Alameda, Daniel; Núñez, Vanessa; Lazar, Mitchell A.; Fischer, Thierry; Ricote, Mercedes

    2014-01-01

    Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE. PMID:21135166

  14. FcgammaRIIB inhibits the development of atherosclerosis in low-density lipoprotein receptor-deficient mice.

    PubMed

    Zhao, Ming; Wigren, Maria; Dunér, Pontus; Kolbus, Daniel; Olofsson, Katarina E; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla Nordin

    2010-03-01

    The immune processes associated with atherogenesis have received considerable attention during recent years. IgG FcRs (FcgammaR) are involved in activating the immune system and in maintaining peripheral tolerance. However, the role of the inhibitory IgG receptor FcgammaRIIB in atherosclerosis has not been defined. Bone marrow cells from FcgammaRIIB-deficient mice and C57BL/6 control mice were transplanted to low-density lipoprotein receptor-deficient mice. Atherosclerosis was induced by feeding the recipient mice a high-fat diet for 8 wk and evaluated using Oil Red O staining of the descending aorta at sacrifice. The molecular mechanisms triggering atherosclerosis was studied by examining splenic B and T cells, as well as Th1 and Th2 immune responses using flow cytometry and ELISA. The atherosclerotic lesion area in the descending aorta was ~5-fold larger in mice lacking FcgammaRIIB than in control mice (2.75 +/- 2.57 versus 0.44 +/- 0.42%; p < 0.01). Moreover, the FcgammaRIIB deficiency resulted in an amplified splenocyte proliferative response to Con A stimulation (proliferation index 30.26 +/- 8.81 versus 2.96 +/- 0.81%, p < 0.0001) and an enhanced expression of MHC class II on the B cells (6.65 +/- 0.64 versus 2.33 +/- 0.25%; p < 0.001). In accordance, an enlarged amount of CD25-positive CD4 T cells was found in the spleen (42.74 +/- 4.05 versus 2.45 +/- 0.31%; p < 0.0001). The plasma Ab and cytokine pattern suggested increased Th1 and Th2 immune responses, respectively. These results show that FcgammaRIIB inhibits the development of atherosclerosis in mice. In addition, they indicate that absence of the inhibiting IgG receptor cause disease, depending on an imbalance of activating and inhibiting immune cells. PMID:20097865

  15. Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice.

    PubMed

    Putnam, Kelly; Batifoulier-Yiannikouris, Frederique; Bharadwaj, Kalyani G; Lewis, Eboni; Karounos, Michael; Daugherty, Alan; Cassis, Lisa A

    2012-10-01

    Adipocytes express angiotensin receptors, but the direct effects of angiotensin II (AngII) stimulating this cell type are undefined. Adipocytes express angiotensin type 1a receptor (AT1aR) and AT2R, both of which have been implicated in obesity. In this study, we determined the effects of adipocyte AT1aR deficiency on adipocyte differentiation and the development of obesity in mice fed low-fat (LF) or high-fat (HF) diets. Mice expressing Cre recombinase under the control of the aP2 promoter were bred with AT1aR-floxed mice to generate mice with adipocyte AT1aR deficiency (AT1aR(aP2)). AT1aR mRNA abundance was reduced significantly in both white and brown adipose tissue from AT1aR(aP2) mice compared with nontransgenic littermates (AT1aR(fl/fl)). Adipocyte AT1aR deficiency did not influence body weight, glucose tolerance, or blood pressure in mice fed either LF or high-fat diets. However, LF-fed AT1aR(aP2) mice exhibited striking adipocyte hypertrophy even though total fat mass was not different between genotypes. Stromal vascular cells from AT1aR(aP2) mice differentiated to a lesser extent to adipocytes compared with controls. Conversely, incubation of 3T3-L1 adipocytes with AngII increased Oil Red O staining and increased mRNA abundance of peroxisome proliferator-activated receptor γ (PPARγ) via AT1R stimulation. These results suggest that reductions in adipocyte differentiation in LF-fed AT1aR(aP2) mice resulted in increased lipid storage and hypertrophy of remaining adipocytes. These results demonstrate that AngII regulates adipocyte differentiation and morphology through the adipocyte AT1aR in lean mice. PMID:22919058

  16. Retinoic acid affects the expression of nuclear retinoic acid receptors in tissues of retinol-deficient rats.

    PubMed Central

    Haq, R; Pfahl, M; Chytil, F

    1991-01-01

    The multitude of biological effects of the vitamin A metabolite, retinoic acid, are mediated by nuclear retinoic acid receptors (RARs), which are members of the steroid/thyroid hormone receptor superfamily. RAR-alpha, -beta, and -gamma are encoded by three genes from which multiple isoforms can be generated. Recent studies suggest that the expression of at least some RAR isoforms can be regulated by retinoic acid in certain cell lines. Here we examined regulation of RAR expression in the adult animal. RARs were analyzed by Northern blots from lung, liver, and testes of retinol-deficient rats. Retinol deficiency caused a 65-70% decrease in the mRNA levels of lung and liver RAR-beta, whereas no change was observed in RAR-alpha and -gamma mRNA levels in these organs. In the testes of retinol-deficient animals, two transcripts, RAR-alpha 1 (3.7 kb) and RAR-alpha 2 (2.8 kb), were detected as compared with one RAR-alpha 1 (3.7 kb) transcript in retinol-sufficient testes. When retinol-deficient rats were orally administered 1 dose of retinoic acid (100 micrograms per rat), lung RAR-beta mRNA levels started to increase after 1 hr and reached a 16-fold higher level after 4 hr; after 4 hr these retinoic acid-fed rats also showed a 7-fold increase in liver RAR-beta mRNA levels as compared with levels in the retinol-deficient rats. In contrast, liver, lung, and testes RAR-alpha transcripts remained either unchanged or showed only a slight increase in response to retinoic acid. RAR-gamma was constitutively expressed in lung, and its mRNA levels were induced 2-fold by retinoic acid. These results show tissue diversity in the rapid induction of RAR-beta and RAR-gamma by retinoic acid in the adult animal and suggest distinct roles for the various receptor isoforms in the control of the retinoid response. Images PMID:1654565

  17. Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells

    PubMed Central

    Ramakrishnan, Venkat M.; Yang, Jeong-Yeh; Tien, Kevin T.; McKinley, Thomas R.; Bocard, Braden R.; Maijub, John G.; Burchell, Patrick O.; Williams, Stuart K.; Morris, Marvin E.; Hoying, James B.; Wade-Martins, Richard; West, Franklin D.; Boyd, Nolan L.

    2015-01-01

    Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes. PMID:26307169

  18. Deficiency of the B Cell-Activating Factor Receptor Results in Limited CD169+ Macrophage Function during Viral Infection

    PubMed Central

    Xu, Haifeng C.; Huang, Jun; Khairnar, Vishal; Duhan, Vikas; Pandyra, Aleksandra A.; Grusdat, Melanie; Shinde, Prashant; McIlwain, David R.; Maney, Sathish Kumar; Gommerman, Jennifer; Löhning, Max; Ohashi, Pamela S.; Mak, Tak W.; Pieper, Kathrin; Sic, Heiko; Speletas, Matthaios; Eibel, Hermann; Ware, Carl F.; Tumanov, Alexei V.; Kruglov, Andrey A.; Nedospasov, Sergei A.; Häussinger, Dieter; Recher, Mike; Lang, Karl S.

    2015-01-01

    ABSTRACT The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169+ macrophage compartment. Consequently, Baffr−/− mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr−/− animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169+ cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169+ macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR

  19. Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells.

    PubMed

    Ramakrishnan, Venkat M; Yang, Jeong-Yeh; Tien, Kevin T; McKinley, Thomas R; Bocard, Braden R; Maijub, John G; Burchell, Patrick O; Williams, Stuart K; Morris, Marvin E; Hoying, James B; Wade-Martins, Richard; West, Franklin D; Boyd, Nolan L

    2015-01-01

    Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes. PMID:26307169

  20. Galanin 3 receptor-deficient mice show no alteration in the oxazolone-induced contact dermatitis phenotype.

    PubMed

    Botz, Bálint; Brunner, Susanne M; Kemény, Ágnes; Pintér, Erika; McDougall, Jason J; Kofler, Barbara; Helyes, Zsuzsanna

    2016-09-01

    Allergic contact dermatitis (ACD) is an inflammatory skin disease induced by allergen exposure and characterized by erythema, oedema and immune cell infiltration. The sensory peptide galanin (GAL) and its three receptors (GAL1-3 ) are involved in regulating inflammation. As GAL and its receptors are expressed in human and murine skin and GAL expression is increased in oxazolone-induced contact allergy, it could play a role in dermatitis. As GAL reduces neurogenic plasma extravasation in the mouse skin via GAL3 activation, the role of GAL3 in the oxazolone-induced dermatitis model was explored. Following topical challenge with oxazolone, GAL3 gene-deficient mice showed a trend towards reduced ear thickness. Plasma extravasation and neutrophil infiltration increased considerably upon oxazolone challenge in both GAL3 knockout animals and wild-type controls without any observable effect of the gene deletion. We conclude that a lack of GAL3 does not influence oxazolone-induced ACD. PMID:27121264

  1. Receptor mutations and haplotypes in growth hormone receptor deficiency: a global survey and identification of the Ecuadorean E180splice mutation in an oriental Jewish patient.

    PubMed

    Berg, M A; Peoples, R; Pérez-Jurado, L; Guevara-Aguirre, J; Rosenbloom, A L; Laron, Z; Milner, R D; Francke, U

    1994-04-01

    Eight different mutations were detected in the growth hormone (GH) receptor gene of patients with inherited GH receptor deficiency (GHRD; Laron syndrome) from five continents. All the mutations are located in the extracellular domain of the receptor and are predicted to cause gross structural abnormalities and non-functional receptor molecules. They include three nucleotide changes in the coding region causing translational stop signals, including the newly identified E183X mutation; two nucleotide changes in introns that affect splice junctions; two dinucleotide deletions that result in stop codons downstream; and one single nucleotide change that activates a donor splice site within an exon and results in a transcript missing 24 nucleotides. This latter mutation (E180splice) was first identified in a cohort of patients with GHRD from southern Ecuador. Based on the fact that the E180splice mutation generates a new cleavage site for the restriction enzyme MnlI, a simple diagnostic test has been developed that can be carried out on dried blood spots collected on filter paper. A total of 55 affected individuals from Ecuador has been found to be homozygous for this mutation. Asymptomatic carriers can also be detected, and 104 of 150 individuals screened were found to be carriers. Using this test, the E180splice mutation has recently been detected in one of two oriental Jewish patients from Israel. PMID:7949594

  2. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model

    PubMed Central

    Quan, Chao; Hu, Chunxiu; Xie, Bingxian; Du, Yinan; Chen, Liang; Yang, Wei; Yang, Liu; Chen, Qiaoli; Shen, Bin; Hu, Bian; Zheng, Zhihong; Zhu, Haibo; Huang, Xingxu; Xu, Guowang; Chen, Shuai

    2016-01-01

    ABSTRACT The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. PMID:27378433

  3. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model.

    PubMed

    Wang, Hong Yu; Quan, Chao; Hu, Chunxiu; Xie, Bingxian; Du, Yinan; Chen, Liang; Yang, Wei; Yang, Liu; Chen, Qiaoli; Shen, Bin; Hu, Bian; Zheng, Zhihong; Zhu, Haibo; Huang, Xingxu; Xu, Guowang; Chen, Shuai

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. PMID:27378433

  4. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex.

    PubMed

    Hoshiko, Maki; Arnoux, Isabelle; Avignone, Elena; Yamamoto, Nobuhiko; Audinat, Etienne

    2012-10-24

    Accumulative evidence indicates that microglial cells influence the normal development of brain synapses. Yet, the mechanisms by which these immune cells target maturating synapses and influence their functional development at early postnatal stages remain poorly understood. Here, we analyzed the role of CX3CR1, a microglial receptor activated by the neuronal chemokine CX3CL1 (or fractalkine) which controls key functions of microglial cells. In the whisker-related barrel field of the mouse somatosensory cortex, we show that the recruitment of microglia to the sites where developing thalamocortical synapses are concentrated (i.e., the barrel centers) occurs only after postnatal day 5 and is controlled by the fractalkine/CX3CR1 signaling pathway. Indeed, at this developmental stage fractalkine is overexpressed within the barrels and CX3CR1 deficiency delays microglial cell recruitment into the barrel centers. Functional analysis of thalamocortical synapses shows that CX3CR1 deficiency also delays the functional maturation of postsynaptic glutamate receptors which normally occurs at these synapses between the first and second postnatal week. These results show that reciprocal interactions between neurons and microglial cells control the functional maturation of cortical synapses. PMID:23100431

  5. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  6. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  7. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated plasma homocysteine (Hcy) levels have been recognized as an independent risk factor for cardiovascular and cerebrovascular diseases. However, the causative mechanisms have not been delineated. Scavenger receptors such as scavenger receptor-AI/II (SR-A), CD36, and lectin-like oxidized LDL ...

  8. Expression and regulation of neuromedin B in pituitary corticotrophs of male melanocortin 2 receptor-deficient mice.

    PubMed

    Kameda, Hiraku; Miyoshi, Hideaki; Shimizu, Chikara; Nagai, So; Nakamura, Akinobu; Kondo, Takuma; Chida, Dai; Atsumi, Tatsuya

    2014-07-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a major part of the neuroendocrine system that controls responses to stress, and has an important function in the regulation of various body processes. We previously created a mouse line deficient in the melanocortin 2 receptor (MC2R). MC2R-deficient mice (MC2R(-/-) mice) have high adrenocorticotropic hormone (ACTH) levels because of undetectable corticosterone levels. Increased neuromedin B (NMB) expression was recently reported in the pituitary gland of adrenalectomized mice, a model for acute adrenal insufficiency. To investigate gene expression in the pituitary gland under chronic adrenal deficiency, we examined the pituitary gland of MC2R(-/-) mice, a model of chronic adrenal insufficiency. To understand the molecular background of pituitary cells under chronic adrenal deficiency, we first performed DNA microarray analyses using the pituitary glands of the MC2R(-/-) mice. The DNA microarray analysis and real-time polymerase chain reaction showed that NMB expression was higher in the MC2R(-/-) than in the wild-type (WT) mice. We detected NMB expression in the MC2R(-/-) pituitary corticotrophs by immunohistochemistry using the specific antibodies for ACTH and NMB. In addition, the plasma NMB concentration was significantly higher in the MC2R(-/-) mice than in the WT mice. Subcutaneous implantation of a sustained-release corticosterone pellet decreased the expression of NMB mRNA as well as pituitary proopiomelanocortin mRNA. In isolated anterior pituitary cells, NMB mRNA expression was increased by the administration of corticotropin-releasing hormone (CRH) and was suppressed by dexamethasone treatment. In this study, we first demonstrate NMB expression in corticotrophs and its regulation by CRH and glucocorticoids. Furthermore, corticotrophs seemed to secrete NMB into the systemic circulation. PMID:24742195

  9. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension

    PubMed Central

    Soon, Elaine; Crosby, Alexi; Southwood, Mark; Yang, Peiran; Tajsic, Tamara; Toshner, Mark; Appleby, Sarah; Shanahan, Catherine M.; Bloch, Kenneth D.; Pepke-Zaba, Joanna; Upton, Paul

    2015-01-01

    Rationale: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20–30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. Objectives: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. Methods: We used pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2+/−) and wild-type littermates. Measurements and Main Results: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2+/− mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2+/− mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. Conclusions: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension. PMID:26073741

  10. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    PubMed Central

    Huang, Le; You, Yong-ke; Zhu, Tracy Y; Zheng, Li-zhen; Huang, Xiao-ru; Chen, Hai-yong; Yao, Dong; Lan, Hui-yao; Qin, Ling

    2016-01-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM. PMID:27283954

  11. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis.

    PubMed

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-01-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM. PMID:27283954

  12. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    NASA Astrophysics Data System (ADS)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  13. Complement component C3b and immunoglobulin Fc receptors on neutrophils from calves with leukocyte adhesion deficiency.

    PubMed

    Worku, M; Paape, M J; Di Carlo, A; Kehrli, M E; Marquardt, W W

    1995-04-01

    Receptors for opsonins, such as complement component C3b (CR1) and immunoglobulins, Fc receptors, interact with adhesion glycoproteins in mediating immune functions. Defects in expression of the adhesion glycoproteins CD11/CD18 results in severely hampered in vitro and in vivo adherence-related functions of leukocytes. Little is known regarding the effect of leukocyte adhesion deficiency (LAD) on ligand binding and receptor expression. We investigated the binding and expression of CR1 and Fc receptors by bovine neutrophils isolated from dairy calves suffering from LAD, compared with clinically normal (hereafter referred to as normal) age-matched calves. Neutrophils were also assayed for endogenously bound IgG and IgM and for exogenous binding of C3b, IgG1, IgG2, IgM, and aggregated IgG (aIgG), using flow cytometry. Luminol-enhanced chemiluminescence (CL) production in response to IgG2 opsonized zymosan was studied, and specific inhibition of CL was used to determine the specificity of IgG2 binding. Activation of protein kinase C with phorbol myristate acetate was used to determine the effect of cellular activation on expression of CR1. A greater percentage of neutrophils from normal calves bound C3b than did neutrophils from LAD-affected calves. Receptor expression was similar. Activation with phorbol myristate acetate resulted in increased expression of CR1 on neutrophils from normal and LAD-affected calves, but expression was almost twofold greater on neutrophils from normal calves. There was no difference between LAD-affected and normal calves in percentage of neutrophils that bound endogenous IgG and IgM. A greater percentage of neutrophils from normal calves bound exogenous IgM than did neutrophils from LAD-affected calves.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7785817

  14. Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor (GIR) deficient mice

    PubMed Central

    Vollmer, Lauren E.; Ghosal, Sriparna; Rush, Jennifer A.; Sallee, Floyd R.; Herman, James P.; Weinert, Mychal; Sah, Renu

    2012-01-01

    The glucocorticoid induced receptor (GIR) is a stress-responsive gene that is abundantly expressed in forebrain limbic regions. GIR has been classified as a NPY-like receptor, however, physiological attributes have not been investigated. In the current study mice lacking GIR (−/−) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR −/− mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal (HPA) axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR −/− mice suggestive of modulation of reward-associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR −/− mice. There were no effects of genotype on the modulation of anxiety-like behavior, activity, and fear conditioning-extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provides novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress. PMID:23088626

  15. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks.

    PubMed

    Vertkin, Irena; Styr, Boaz; Slomowitz, Edden; Ofir, Nir; Shapira, Ilana; Berner, David; Fedorova, Tatiana; Laviv, Tal; Barak-Broner, Noa; Greitzer-Antes, Dafna; Gassmann, Martin; Bettler, Bernhard; Lotan, Ilana; Slutsky, Inna

    2015-06-23

    Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs. PMID:26056260

  16. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks

    PubMed Central

    Vertkin, Irena; Styr, Boaz; Slomowitz, Edden; Ofir, Nir; Shapira, Ilana; Berner, David; Fedorova, Tatiana; Laviv, Tal; Barak-Broner, Noa; Greitzer-Antes, Dafna; Gassmann, Martin; Bettler, Bernhard; Lotan, Ilana; Slutsky, Inna

    2015-01-01

    Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABAA, receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABAB receptor (GABABR) blockade or genetic deletion of the GB1a receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABABRs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB1a-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB1a intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the CaV2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB1b-containing receptors. Thus, GABABRs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABABR as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABABRs. PMID:26056260

  17. Urate Crystal Induced Inflammation and Joint Pain Are Reduced in Transient Receptor Potential Ankyrin 1 Deficient Mice – Potential Role for Transient Receptor Potential Ankyrin 1 in Gout

    PubMed Central

    Moilanen, Lauri J.; Hämäläinen, Mari; Lehtimäki, Lauri; Nieminen, Riina M.; Moilanen, Eeva

    2015-01-01

    Introduction In gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models. Methods The effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling. Results Intra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw. Conclusions TRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare. PMID:25658427

  18. Paternal Uniparental Isodisomy of Chromosome 6 Causing a Complex Syndrome Including Complete IFN-γ Receptor 1 Deficiency

    PubMed Central

    Prando, Carolina; Boisson-Dupuis, Stéphanie; Grant, Audrey; Kong, Xiao-Fei; Bustamante, Jacinta; Feinberg, Jacqueline; Chapgier, Ariane; Rose, Yoann; Jannière, Lucile; Rizzardi, Elena; Zhang, Qiuping; Shanahan, Catherine M; Viollet, Louis; Lyonnet, Stanislas; Abel, Laurent; Ruga, Ezia Maria; Casanova, Jean-Laurent

    2010-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency associated with clinical disease caused by weakly virulent mycobacterial species. Interferon gamma receptor 1 (IFN-γR1) deficiency is a genetic etiology of MSMD. We describe the clinical and genetic features of a seven-year-old Italian boy suffering from MSMD associated with a complex phenotype, including neonatal hyperglycemia, neuromuscular disease, and dysmorphic features. The child also developed necrotizing pneumonia caused by Rhodococcus equi. The child is homozygous for a nonsense mutation in exon 3 of IFNGR1 as a result of paternal uniparental disomy (UPD) of the entire chromosome 6. This is the first reported case of uniparental disomy resulting in a complex phenotype including MSMD. PMID:20186794

  19. Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits.

    PubMed

    Larrieu, Thomas; Hilal, Muna L; De Smedt-Peyrusse, Véronique; Sans, Nathalie; Layé, Sophie

    2016-01-01

    Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits. PMID:27057368

  20. Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits

    PubMed Central

    Larrieu, Thomas; Hilal, Muna L.; De Smedt-Peyrusse, Véronique; Sans, Nathalie; Layé, Sophie

    2016-01-01

    Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits. PMID:27057368

  1. Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation.

    PubMed

    Gujral, Jaspreet S; Liu, Jie; Farhood, Anwar; Jaeschke, Hartmut

    2004-10-01

    Neutrophils aggravate cholestatic liver injury after bile duct ligation (BDL). Recently, it was suggested that hepatocellular apoptosis might be critical for liver injury in this model. To test the hypothesis that apoptosis could be a signal for neutrophil extravasation and injury, we assessed parameters of apoptosis and inflammation after BDL using 2 different approaches: (1) wild-type and Fas receptor-deficient lpr mice of the C57BL/6J or C3H/HeJ strains, and (2) treatment with the pancaspase inhibitor z-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk)in C3HeB/FeJ mice. After BDL for 3 days, total cell death was estimated to be between 10% and 50% of all cells evaluated. However, less than 0.1% of hepatocytes showed apoptotic morphology in all 3 strains. Processing of procaspase-3, caspase-3 enzyme activities, and immunohistochemical staining for cytokeratin 18 cleavage products indicated no activation of caspases. Real-time reverse-transcriptase polymerase chain reaction analysis revealed increased expression of many inflammatory mediators but no effect on proapoptotic genes. More than 50% of all accumulated neutrophils were extravasated and colocalized with foci of oncotic hepatocytes and chlorotyrosine adducts. z-VAD-fmk treatment had no effect on apoptosis or liver injury after BDL but eliminated apoptosis after galactosamine/endotoxin in C3HeB/FeJ mice. In Fas receptor-deficient lpr mice (C57BL/6J), expression of inflammatory mediators, neutrophil accumulation and extravasation, chlorotyrosine adduct formation, and liver injury were reduced. This protection was not observed in lpr mice of the endotoxin-resistant C3H/HeJ strain. In conclusion, liver injury (oncotic necrosis) after BDL correlated with the severity of the inflammatory response. The minimal amount of apoptosis had no effect on inflammation or on the overall injury. PMID:15382126

  2. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice

    PubMed Central

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities. PMID:27489502

  3. Effects of Radiation Combined Injury on Hippocampal Function are Modulated in Mice Deficient in Chemokine Receptor 2 (CCR2)

    PubMed Central

    Allen, Antiño R.; Eilertson, Kirsten; Sharma, Sourabh; Schneider, Danielle; Baure, Jennifer; Allen, Barrett; Rosi, Susanna; Raber, Jacob; Fike, John R.

    2014-01-01

    Chemokines and their receptors play a crucial role in normal brain function as well as in pathological conditions such as injury and disease-associated neuroinflammation. Chemokine receptor-2 (CCR2), which mediates the recruitment of infiltrating and resident microglia to sites of central nervous system (CNS) inflammation, is upregulated by ionizing irradiation and traumatic brain injury. Our objective was to determine if a deficiency in CCR2 and subsequent effects on brain microglia affect neurogenesis and cognitive function after radiation combined injury (RCI). CCR2 knock-out (−/−) and wild-type (WT) mice received 4 Gy of whole body 137Cs irradiation. Immediately after irradiation, unilateral traumatic brain injury was induced using a controlled cortical impact system. Forty-four days postirradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains snap frozen for immunohistochemical assessment of neuroinflammation (activated microglia) and neurogenesis in the hippocampal dentate gyrus. All animals were able to locate the visible and hidden platform locations in the water maze; however, treatment effects were seen when spatial memory retention was assessed in the probe trials (no platform). In WT animals that received combined injury, a significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden platform training (first probe trial). This impairment was associated with increased neurogenesis in the ipsilateral hemisphere of the dentate gyrus. In contrast, CCR2−/− mice, independent of insult showed significant memory retention in the first probe trial and there were no differences in the numbers of newly born neurons in the animals receiving irradiation, trauma or combined injury. Although the mechanisms involved are not clear, our data suggests that CCR2 deficiency can exert a protective

  4. Pineal germinoma in a child with interferon-γ receptor 1 deficiency. case report and literature review.

    PubMed

    Taramasso, L; Boisson-Dupuis, S; Garrè, M L; Bondi, E; Cama, A; Nozza, P; Morana, G; Casanova, J L; Marazzi, M G

    2014-11-01

    Interferon-γ receptor 1 (IFN-γR1) deficiency is one of the primary immunodeficiencies conferring Mendelian Susceptibility to Mycobacterial Disease (MSMD). Some cases of neoplasms have been recently reported in patients with MSMD, underlying the already known link between immunodeficiency and carcinogenesis. We report the first case of intracranial tumour, i.e. pineal germinoma, in a 11-year-old patient with complete IFN-γR1 deficiency. The first clinical presentation of the genetic immunodeficiency dates back to when the child was aged 2 y and 10 mo, when he presented a multi-focal osteomyelitis caused by Mycobacterium scrofulaceum. The diagnosis of IFN-γR1 deficiency (523delT/523delT in IFNGR1 gene) was subsequently made. The child responded to antibiotic therapy and remained in stable clinical condition until the age of 11 years, when he started complaining of frontal, chronic headache. MRI revealed a solid pineal region mass lesion measuring 20 × 29 × 36 mm. Histological findings revealed a diagnosis of pineal germinoma. The patient received chemotherapy followed by local whole ventricular irradiation with boost on pineal site, experiencing complete remission, and to date he is tumor-free at four years follow-up. Four other cases of tumors have been reported in patients affected by MSMD in our knowledge: a case of Kaposi sarcoma, a case of B-cell lymphoma, a case of cutaneous squamous cell carcinoma and a case of oesophageal squamous cell carcinoma. In conclusion, in patients with MSMD, not only the surveillance of infectious diseases, but also that of tumors is important. PMID:25216720

  5. Toll-Like Receptor-4 Dependent Intestinal Gene Expression During Arcobacter Butzleri Infection of Gnotobiotic Il-10 Deficient Mice

    PubMed Central

    Gölz1, Greta; Alter, Thomas; Bereswill, Stefan; Heimesaat, Markus M.

    2016-01-01

    We have previously shown that Arcobacter butzleri infection induces Toll-like receptor (TLR) -4 dependent immune responses in perorally infected gnotobiotic IL-10–/– mice. Here, we analyzed TLR-4-dependent expression of genes encoding inflammatory mediators and matrix-degrading gelatinases MMP-2 and -9 in the small and large intestines of gnotobiotic TLR-4-deficient IL-10–/– mice that were perorally infected with A. butzleri strains CCUG 30485 or C1, of human and chicken origin, respectively. At day 6 following A. butzleri infection, colonic mucin-2 mRNA, as integral part of the intestinal mucus layer, was downregulated in the colon, but not ileum, of IL-10–/– but not TLR-4–/– IL-10–/– mice. CCUG 30485 strain-infected TLR-4-deficient IL-10–/– mice displayed less distinctly upregulated IFN-γ, IL-17A, and IL-1β mRNA levels in ileum and colon, which was also true for colonic IL-22. These changes were accompanied by upregulated colonic MMP-2 and ileal MMP-9 mRNA exclusively in IL-10–/– mice. In conclusion, TLR-4 is essentially involved in A. butzleri mediated modulation of gene expression in the intestines of gnotobiotic IL-10–/– mice. PMID:27141316

  6. Blueberry diet protect against atherosclerosis in apoE-deficient mice by inhibiting scavenger receptor expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atherosclerosis is an inflammatory process that leads to the onset of cardiovascular disease. The scavenger receptor-mediated uptake of oxLDL by macrophages leads to foam cell formation, which is an initial event in the formation of atherosclerotic fatty streak lesions. In this report, the mechanism...

  7. Working Memory Deficits in Retinoid X receptor [gamma]-Deficient Mice

    ERIC Educational Resources Information Center

    Wietrzych, Marta; Meziane, Hamid; Sutter, Anne; Ghyselinck, Norbert; Chapman, Paul F.; Chambon, Pierre; Krezel, Wojciech

    2005-01-01

    Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RAR[subscript [beta

  8. GLP-2 receptor deficiency in the mouse brain impairs glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to food intake, glucagon-like peptide-2 (GLP-2) with GLP-1 is co-secreted from enteroendocrine L cells in the gut. GLP-2 receptor (GLP-2R) is expressed in the hypothalamus, a key tissue to integrate energy signals to regulate energy balance and glucose homeostasis. However, the physiolog...

  9. [Disseminated BCG disease revealing a partial deficiency in receptor 1 interferon gamma].

    PubMed

    Antonietti, J; Retornaz, K; Bernasconi, A; Laporte, R-J; Minodier, P; Bustamante, J-C; Dubus, J-C

    2015-09-01

    We report on a case of disseminated BCGitis with an unusual presentation in a 4-month-old infant revealing a syndrome of Mendelian susceptibility to mycobacteria due to a partial dominant mutation of the interferon gamma receptor 1 gene. PMID:26251056

  10. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    PubMed

    Caracciolo, Luca; Barbon, Alessandro; Palumbo, Sara; Mora, Cristina; Toscano, Christopher D; Bosetti, Francesca; Barlati, Sergio

    2011-01-01

    Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  11. Combined effects of cholesterol reduction and apolipoprotein A-I expression on atherosclerosis in LDL receptor deficient mice.

    PubMed

    Kawashiri, Masa-aki; Zhang, YuZhen; Puré, Ellen; Rader, Daniel J

    2002-11-01

    Reduction of total and LDL cholesterol reduces atherosclerosis and clinical cardiovascular events. High density lipoprotein (HDL) cholesterol levels have a strong inverse association with atherosclerosis, and overexpression of apolipoprotein A-I (apoA-I), the major protein component of HDL, reduces atherosclerosis in hypercholesterolemic animals. However, little is known about the potential for additive or synergistic effects between cholesterol reduction and apoA-I overexpression on atherosclerosis. In the current study, we tested the hypothesis that significant reduction of plasma cholesterol combined with overexpression of apoA-I would reduce atherosclerosis to a greater extent than either one alone. We used somatic gene transfer of the LDL receptor (to induce cholesterol reduction) and apoA-I in LDL receptor deficient mice fed a Western type diet and compared the combination to expression of each gene alone and to controls. Atherosclerosis was quantitated using two independent methods, by en face analysis of the entire aorta and by cross-sectional analysis of the aortic root. Although the reduction of cholesterol was transient, expression of the LDL receptor alone significantly reduced atherosclerosis by 45% in the aorta and 44% in the aortic root compared with controls. Overexpression of human apoA-I alone reduced atherosclerosis by 42% in the aorta and 44% in the aortic root compared with controls. Co-expression of the LDL receptor with apoA-I resulted in significantly higher levels of apoA-I than expression of apoA-I alone. Although co-expression of the LDL receptor and apoA-I reduced atherosclerosis by 37% in the aorta and 32% in the aortic root compared with controls, the reduction in atherosclerosis was no different than that seen with expression of the LDL receptor alone or apoA-I alone. In summary, in this relatively short-term murine model, simultaneous reduction of cholesterol and expression of apoA-I was associated with higher levels of apoA-I than

  12. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  13. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  14. Activity of DL-alpha-Difluoromethylarginine and Polyamine Analogues against Cryptosporidium parvum Infection in a T-Cell Receptor Alpha-Deficient Mouse Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vivo effectiveness of a series of conformationally restricted polyamine analogs alone and in combination with DL-alpha-difluoromethylarginine (DFMA) towards a T-cell receptor-alpha deficient mouse model infection of Cryptosporidium parvum was tested. Polyamine analogues were constructed from ...

  15. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice

    PubMed Central

    Willecke, Florian; Yuan, Chujun; Oka, Kazuhiro; Chan, Lawrence; Hu, Yunying; Barnhart, Shelley; Bornfeldt, Karin E.; Goldberg, Ira J.; Fisher, Edward A.

    2015-01-01

    We tested whether a high fat diet (HFD) containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/-) mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd) carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR). After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD), showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ)-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states. PMID:26046657

  16. Effects of Adipocyte Aryl Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice

    PubMed Central

    Baker, Nicki A.; Shoemaker, Robin; English, Victoria; Larian, Nika; Sunkara, Manjula; Morris, Andrew J.; Walker, Mary; Yiannikouris, Frederique

    2015-01-01

    Background Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear. Objectives In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss. Methods and Results PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)–fed control (AhRfl/fl) mice but not in adipocyte AhR–deficient mice (AhRAdQ). Unexpectedly, AhRAdQ mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhRAdQ mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhRfl/fl controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhRfl/fl mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhRAdQ mice exhibiting weight loss. Conclusions Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis. Citation Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ, Walker M, Yiannikouris F, Cassis LA. 2015. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB

  17. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  18. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  19. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice.

    PubMed

    Mohsenin, Amir; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Chen, Jiang-Fan; Blackburn, Michael R

    2007-09-01

    Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation. PMID:17601796

  20. Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination.

    PubMed

    Zhou, Liang; Yang, Dong; Wang, De-Juan; Xie, Ya-Jun; Zhou, Jia-Huan; Zhou, Lin; Huang, Hao; Han, Shuo; Shao, Chong-Yu; Li, Hua-Shun; Zhu, J Julius; Qiu, Meng-Sheng; De Zeeuw, Chris I; Shen, Ying

    2015-12-15

    Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1. PMID:26621723

  1. Enhanced blood pressure sensitivity to DOCA-salt treatment in endothelin ETB receptor-deficient rats

    PubMed Central

    Matsumura, Yasuo; Kuro, Toshihiko; Konishi, Fumiko; Takaoka, Masanori; Gariepy, Cheryl E; Yanagisawa, Masashi

    2000-01-01

    The role of endothelin ETB receptor-mediated action in the development and maintenance of deoxycorticosterone acetate (DOCA)-salt-induced hypertension was evaluated using the spotting-lethal (sl) rat which carries a naturally occurring deletion in the ETB receptor gene. Homozygous (sl/sl) rats treated with DOCA-salt for 1 week exhibited an earlier onset of hypertension than heterozygous (sl/+) and wild-type (+/+) rats (systolic blood pressure, SBP; 156.7±3.4 versus 128.8±5.3 and 132.9±3.7 mmHg, respectively). Four weeks after the start of DOCA-salt treatment, homozygous rats developed marked hypertension, with a SBP of 206.0±4.5 mmHg, compared with 184.8±10.7 mmHg in heterozygous and 164.3±4.8 mmHg in wild-type rats. Cardiovascular hypertrophy and renal dysfunction observed after 4-weeks treatment with DOCA-salt were more severe in homozygous rats, compared to wild-type and heterozygous animals. These evidences support strongly the view that ETB receptor-mediated actions are a protective factor in the pathogenesis of DOCA-salt-induced hypertension. PMID:10725252

  2. Leptin deficiency leads to the regulation of kinin receptors expression in mice.

    PubMed

    Abe, Karina Camasmie; Mori, Marcelo Alves da Silva; Pesquero, Joao Bosco

    2007-02-01

    Kinins are vasoactive and pro-inflammatory peptides generated by the cleavage of the kininogen by kallikreins. Two kinin receptors have been described and denominated B1 and B2. Obesity frequently accompanies other pathologies, such as diabetes and hypertention. The clustering of these pathologies is usually known as "metabolic syndrome". Mice lacking leptin gene (ob/ob) are severely obese and hyperphagic. Using quantitative RT-PCR analysis of B1 and B2 mRNAs expression, we described for the first time a correlation between the kallikrein-kinin system (KKS) and severe obesity in mice. The ob/ob mice presented lower expression of B2 mRNA in the white adipose tissue (WAT) and hypothalamus, both primary sites for neuroendocrine regulation of the energetic metabolism. B1 mRNA, however, is overexpressed in these tissues of ob/ob mice. An upregulation of the B1 mRNA has also been seen in liver, abdominal aorta and stomach fundus. However, different from the lean mice, the expression of the B1 mRNA in brown adipose tissue (BAT) and heart is completely abolished. Our data show that kinin receptors are differently modulated in distinct tissues in obesity. These findings suggest a connection between the KKS and obesity, and suggest that kinin receptors could be involved in the ethiopathogenesis of the metabolic syndrome. PMID:17184856

  3. Natural Killer Cell Receptors and Cytotoxic Activity in Phosphomannomutase 2 Deficiency (PMM2-CDG)

    PubMed Central

    García-López, Roberto; de la Morena-Barrio, María Eugenia; Alsina, Laia; Pérez-Dueñas, Belén; Jaeken, Jaak; Serrano, Mercedes; Casado, Mercedes; Hernández-Caselles, Trinidad

    2016-01-01

    Background PMM2-CDG is the most common N-glycosylation defect and shows an increased risk of recurrent and/or severe, sometimes fatal, infections in early life. We hypothesized that natural killer (NK) cells, as important mediators of the immune response against microbial pathogens and regulators of adaptive immunity, might be affected in this genetic disorder. Objective To evaluate possible defects on PMM2-CDG NK peripheral blood cell number, killing activity and expression of membrane receptors. Methods We studied fresh and activated NK cells from twelve PMM2-CDG cells. The number and expression of lymphoid surface receptors were studied by flow cytometry. The NK responsiveness (frequency of degranulated NK cells) and killing activity against K562 target cells was determined in the NK cytotoxicity assay. Results We found an increase of blood NK cells in three patients with a severe phenotype. Two of them, who had suffered from moderate/severe viral infections during their first year of life, also had reduced T lymphocyte numbers. Patient activated NK cells showed increased expression of CD54 adhesion molecule and NKG2D and NKp46 activating receptors. NKp46 and 2B4 expression was inversely correlated with the expression of NKG2D in activated PMM2-CDG cells. Maximal NK activity against K562 target cells was similar in control and PMM2-CDG cells. Interestingly, the NK cell responsiveness was higher in patient cells. NKG2D and specially CD54 increased surface expression significantly correlated with the increased NK cell cytolytic activity according to the modulation of the killer activity by expression of triggering receptors and adhesion molecules. Conclusions Our results indicate that hypoglycosylation in PMM2-CDG altered NK cell reactivity against target cells and the expression of CD54 and NKG2D, NKp46 and 2B4 activating receptors during NK cell activation. This suggests a defective control of NK cell killing activity and the overall anti-viral immune response

  4. Cell-surface targeting of α2-adrenergic receptors — Inhibition by a transport deficient mutant through dimerization

    PubMed Central

    Zhou, Fuguo; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2009-01-01

    We previously demonstrated that the α2B-adrenergic receptor mutant, in which the F(x)6IL motif in the membrane-proximal carboxyl terminus were mutated to alanines (α2B-ARm), is deficient in export from the endoplasmic reticulum (ER). In this report, we determined if α2B-ARm could modulate transport from the ER to the cell surface and signaling of its wild-type counterpart. Transient expression of α2B-ARm in HEK293T cells markedly inhibited cell-surface expression of wild-type α2B-AR, as measured by radioligand binding. Subcellular localization demonstrated that α2B-ARm trapped α2B-AR in the ER. The α2B-AR was shown to form homodimers and heterodimers with α2B-ARm as measured by co-immunoprecipitation of the receptors tagged with green fluorescent protein and hemagglutinin epitopes. In addition to α2B-AR, the transport of α2A-AR and α2C-AR to the cell surface was also inhibited by α2B-ARm. Furthermore, transient expression of α2B-ARm significantly reduced cell-surface expression of endogenous α2-AR in NG108-15 and HT29 cells. Consistent with its effect on α2-AR cell-surface expression, α2B-ARm attenuated α2A-AR- and α2B-AR-mediated ERK1/2 activation. These data demonstrated that the ER-retained mutant α2B-ARm conferred a dominant negative effect on the cell-surface expression of wild-type α2-AR, which is likely mediated through heterodimerization. These data indicate a crucial role of ER export in the regulation of cell-surface targeting and signaling of G protein-coupled receptors. PMID:15961277

  5. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict.

    PubMed

    Li, Chunlu; Yan, Yixiu; Cheng, Jingjing; Xiao, Gang; Gu, Jueqing; Zhang, Luqi; Yuan, Siyu; Wang, Junlu; Shen, Yi; Zhou, Yu-Dong

    2016-04-01

    Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient (TLR4(-/-)) and wild-type (WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed, large spaces. We found that TLR4(-/-) mice exhibited reduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4(-/-) mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approach-avoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4(-/-) mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly, the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell (NAcSh) in TLR4(-/-) mice than in WT mice. Partially inactivating the NAcSh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4(-/-) mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAcSh may contribute to this phenomenon. PMID:26898297

  6. Impact of PACAP and PAC1 Receptor Deficiency on the Neurochemical and Behavioral Effects of Acute and Chronic Restraint Stress in Male C57BL/6 Mice

    PubMed Central

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M.; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E.

    2016-01-01

    Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress. PMID:25853791

  7. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice.

    PubMed

    Rana, Ujala; Liu, Zhong; Kumar, Suresh N; Zhao, Baofeng; Hu, Wenquan; Bordas, Michelle; Cossette, Stephanie; Szabo, Sara; Foeckler, Jamie; Weiler, Hartmut; Chrzanowska-Wodnicka, Magdalena; Holtz, Mary L; Misra, Ravindra P; Salato, Valerie; North, Paula E; Ramchandran, Ramani; Miao, Qing Robert

    2016-02-15

    Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development. PMID:26746789

  8. Altered adherent leukocyte profile on biomaterials in Toll-like receptor 4 deficient mice

    PubMed Central

    Rogers, Todd H.; Babensee, Julia E.

    2011-01-01

    The host response to a biomaterial is characterized by both acute recruitment and attachment of cells as well as chronic encapsulating tissue reaction. The implantation procedure induces production of damage-associated molecular patterns (DAMPs) which may contribute to host recognition of the material. Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that bind not only pathogen-associated molecular patterns (PAMPs) but also DAMPs. We sought to investigate whether TLR4/DAMP interactions were involved in the acute and chronic inflammatory response to an implanted biomaterial. When PET discs were implanted intraperitoneally for 16 h, no differences were found in the number of leukocytes recruited between TLR4+ (C57BL/10J) and TLR4− (C57BL/10ScNJ) mice. However, a significant shift in the leukocyte profile on the biomaterial surface was observed for TLR4− mice. While the total number of adherent cells was the same in both strains, TLR4+ mice had a profile with equivalent neutrophil and monocyte/macrophage presence on the material surface, and TLR4− mice had a profile of predominantly neutrophils with fewer monocyte/macrophages. When implants were placed subcutaneously for 2 weeks, the fibrous capsule thicknesses were not different between TLR4+ and TLR4− mouse strains. These findings illustrate that TLR4 may play a role in the initial recognition of a biomaterial by directing the adhesive cellular profile. PMID:19818491

  9. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    SciTech Connect

    Guilarte, T.R. )

    1990-02-26

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of {sup 3}H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of {sup 3}H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and {sup 3}H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of {sup 3}H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of {sup 3}H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain.

  10. Apolipoprotein E receptor-2 deficiency enhances macrophage susceptibility to lipid accumulation and cell death to augment atherosclerotic plaque progression and necrosis

    PubMed Central

    Waltmann, Meaghan D.; Basford, Joshua E.; Konaniah, Eddy S.; Weintraub, Neal L.; Hui, David Y.

    2014-01-01

    Genome-wide association studies have linked LRP8 polymorphisms to premature coronary artery disease and myocardial infarction in humans. However, the mechanisms by which dysfunctions of apolipoprotein E receptor-2 (apoER2), the protein encoded by LRP8 gene, influence atherosclerosis have not been elucidated completely. The current study focused on the role of apoER2 in macrophages, a cell type that plays an important role in atherosclerosis. Results showed that apoER2-deficient mouse macrophages accumulated more lipids and were more susceptible to oxidized LDL (oxLDL)-induced death compared to control cells. Consistent with these findings, apoER2 deficient macrophages also displayed defective serum-induced Akt activation and higher levels of the pro-apoptotic protein phosphorylated p53. Furthermore, the expression and activation of peroxisome proliferator-activated receptor γ (PPARγ) was increased in apoER2-deficient macrophages. Deficiency of apoER2 in hypercholesterolemic LDL receptor-null mice (Lrp8−/−Ldlr−/− mice) also resulted in accelerated atherosclerosis with more complex lesions and extensive lesion necrosis compared to Lrp8+/+Ldlr−/− mice. The atherosclerotic plaques of Lrp8−/−Ldlr−/− mice displayed significantly higher levels of p53-positive macrophages, indicating that the apoER2-deficient macrophages contribute to the accelerated atherosclerotic lesion necrosis observed in these animals. Taken together, this study indicates that apoER2 in macrophages limits PPARγ expression and protects against oxLDL-induced cell death. Thus, abnormal apoER2 functions in macrophages may at least in part contribute to the premature coronary artery disease and myocardial infarction in humans with LRP8 polymorphisms. Moreover, the elevated PPARγ expression in apoER2-deficient macrophages suggests that LRP8 polymorphism may be a genetic modifier of cardiovascular risk with PPARγ therapy. PMID:24840660

  11. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice

    PubMed Central

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  12. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  13. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation☆

    PubMed Central

    Obici, Silvana; Magrisso, I. Jack; Ghazarian, Armen S.; Shirazian, Alireza; Miller, Jonas R.; Loyd, Christine M.; Begg, Denovan P.; Krawczewski Carhuatanta, Kimberly A.; Haas, Michael K.; Davis, Jon F.; Woods, Stephen C.; Sandoval, Darleen A.; Seeley, Randy J.; Goodyear, Laurie J.; Pothos, Emmanuel N.; Mul, Joram D.

    2015-01-01

    Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive

  14. Melanocortin 1 Receptor-Signaling Deficiency Results in an Articular Cartilage Phenotype and Accelerates Pathogenesis of Surgically Induced Murine Osteoarthritis

    PubMed Central

    Hackmayer, Gerit; Greth, Carina; Bauer, Richard J.; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT–analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  15. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice

    PubMed Central

    Wan, Wuzhou; Lionakis, Michail S.; Liu, Qian; Roffê, Ester; Murphy, Philip M.

    2013-01-01

    Aims Recent evidence suggests that both Ccr7 and its ligands, Ccl19 and Ccl21, are present in mouse and human atherosclerotic plaques; however, the role of Ccr7 in atherogenesis is still controversial. Here, we addressed this question by using the classic apolipoprotein E-deficient (ApoE−/−) mouse model of atherosclerosis. Methods and results Ccr7−/−ApoE−/− double knockout mice and Ccr7+/+ApoE−/− littermates were generated and maintained on a high-fat Western diet for 8 weeks to induce atherosclerosis. Ccr7−/−ApoE−/− mice showed an ∼80% increase in atherosclerotic lesion size in the whole aorta and a two-fold increase in the aortic root compared with Ccr7+/+ApoE−/− mice. Ccr7−/−ApoE−/− mice had increased T cells in the blood, bone marrow, and spleen, as well as in atherosclerotic lesions. Competitive repopulation experiments revealed that T cells from Ccr7−/−ApoE−/− mice migrated poorly into lymph nodes but better into mouse aortas compared with T cells from Ccr7+/+ApoE−/− mice. Transplantation of the bone marrow from Ccr7−/−ApoE−/− mice into lethally irradiated Ccr7+/+ApoE−/− mice resulted in ∼60% more atherosclerotic lesions compared with Ccr7+/+ApoE−/− donor bone marrow, suggesting that exacerbation was mediated by a Ccr7+ bone marrow-derived cell(s). Furthermore, in Ccr7−/−ApoE−/− mice the serum level of IL-12 was markedly increased, whereas the level of transforming growth factor beta (TGF-β) was significantly decreased, suggesting an imbalance of T cell responses in these mice. Conclusion Our data suggest that genetic deletion of Ccr7 exacerbates atherosclerosis by increasing T cell accumulation in atherosclerotic lesions. PMID:23180724

  16. TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes.

    PubMed

    Lu, Zhongyang; Zhang, Xiaoming; Li, Yanchun; Lopes-Virella, Maria F; Huang, Yan

    2015-11-01

    Although a large number of studies have well documented a key role of toll-like receptor (TLR)4 in atherosclerosis, it remains undetermined if TLR4 antagonist attenuates atherogenesis in mouse model for type 2 diabetes. In this study, we induced type 2 diabetes in low-density lipoprotein receptor-deficient (LDLR(-/-)) mice by high-fat diet (HFD). At 8 weeks old, 20 mice were fed HFD and 20 mice fed regular chow (RC) for 24 weeks. In the last 10 weeks, half HFD-fed mice and half RC-fed mice were treated with Rhodobacter sphaeroides lipopolysaccharide (Rs-LPS), an established TLR4 antagonist. After the treatment, atherosclerotic lesions in aortas were analyzed. Results showed that the HFD significantly increased bodyweight, glucose, lipids including total cholesterol, triglycerides and free fatty acids, and insulin resistance, indicating that the HFD induced type 2 diabetes in LDLR(-/-) mice. Results also showed that Rs-LPS had no effect on HFD-increased metabolic parameters in both nondiabetic and diabetic mice. Lipid staining of aortas and histological analysis of cross-sections of aortic roots showed that diabetes increased atherosclerotic lesions, but Rs-LPS attenuated atherogenesis in diabetic mice. Furthermore, immunohistochemical studies showed that Rs-LPS reduced infiltration of monocytes/macrophages and expression of interleukin (IL)-6 and matrix metalloproteinase-9 in atherosclerotic lesions of diabetic mice. Finally, the antagonistic effect of Rs-LPS on TLR4 was demonstrated by our in vitro studies showing that Rs-LPS inhibited IL-6 secretion from macrophages and endothelial cells stimulated by LPS or LPS plus saturated fatty acid palmitate. Taken together, our study demonstrated that TLR4 antagonist was capable of attenuating vascular inflammation and atherogenesis in mice with HFD-induced type 2 diabetes. PMID:26162692

  17. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress

    PubMed Central

    Murray, Jennifer; Auwerx, Johan; Huss, Janice M.

    2013-01-01

    Specialized contractile function and increased mitochondrial number and oxidative capacity are hallmark features of myocyte differentiation. The estrogen-related receptors (ERRs) can regulate mitochondrial biogenesis or mitochondrial enzyme expression in skeletal muscle, suggesting that ERRs may have a role in promoting myogenesis. Therefore, we characterized myogenic programs in primary myocytes isolated from wild-type (M-ERRγWT) and muscle-specific ERRγ−/− (M-ERRγ−/−) mice. Myotube maturation and number were decreased throughout differentiation in M-ERRγ−/− primary myocytes, resulting in myotubes with reduced mitochondrial content and sarcomere assembly. Compared with M-ERRγWT myocytes at the same differentiation stage, the glucose oxidation rate was reduced by 30% in M-ERRγ−/− myotubes, while medium-chain fatty acid oxidation was increased by 34% in M-ERRγ−/− myoblasts and 36% in M-ERRγ−/− myotubes. Concomitant with increased reliance on mitochondrial β-oxidation, H2O2 production was significantly increased by 40% in M-ERRγ−/− myoblasts and 70% in M-ERRγ−/− myotubes compared to M-ERRγWT myocytes. ROS activation of FoxO and NF-κB and their downstream targets, atrogin-1 and MuRF1, was observed in M-ERRγ−/− myocytes. The antioxidant N-acetyl cysteine rescued myotube formation and atrophy gene induction in M-ERRγ−/− myocytes. These results suggest that loss of ERRγ causes metabolic defects and oxidative stress that impair myotube formation through activation of skeletal muscle atrophy pathways.—Murray, J., Auwerx, J., Huss, J. M. Impaired myogenesis in estrogen-related receptor γ (ERRγ)-deficient skeletal myocytes due to oxidative stress. PMID:23038752

  18. Vitamin D Nuclear Receptor Deficiency Promotes Cholestatic Liver Injury by Disruption of Biliary Epithelial Cell Junctions in Mice

    PubMed Central

    Firrincieli, Delphine; Zúñiga, Silvia; Rey, Colette; Wendum, Dominique; Lasnier, Elisabeth; Rainteau, Dominique; Braescu, Thomas; Falguières, Thomas; Boissan, Mathieu; Cadoret, Axelle; Housset, Chantal; Chignard, Nicolas

    2013-01-01

    Alterations in apical junctional complexes (AJCs) have been reported in genetic or acquired biliary diseases. The vitamin D nuclear receptor (VDR), predominantly expressed in biliary epithelial cells in the liver, has been shown to regulate AJCs. The aim of our study was thus to investigate the role of VDR in the maintenance of bile duct integrity in mice challenged with biliary-type liver injury. Vdr−/− mice subjected to bile duct ligation (BDL) displayed increased liver damage compared to wildtype BDL mice. Adaptation to cholestasis, ascertained by expression of genes involved in bile acid metabolism and tissue repair, was limited in Vdr−/− BDL mice. Furthermore, evaluation of Vdr−/− BDL mouse liver tissue sections indicated altered E-cadherin staining associated with increased bile duct rupture. Total liver protein analysis revealed that a truncated form of E-cadherin was present in higher amounts in Vdr−/− mice subjected to BDL compared to wildtype BDL mice. Truncated E-cadherin was also associated with loss of cell adhesion in biliary epithelial cells silenced for VDR. In these cells, E-cadherin cleavage occurred together with calpain 1 activation and was prevented by the silencing of calpain 1. Furthermore, VDR deficiency led to the activation of the epidermal growth factor receptor (EGFR) pathway, while EGFR activation by EGF induced both calpain 1 activation and E-cadherin cleavage in these cells. Finally, truncation of E-cadherin was blunted when EGFR signaling was inhibited in VDR-silenced cells. Conclusion: Biliary-type liver injury is exacerbated in Vdr−/− mice by limited adaptive response and increased bile duct rupture. These results indicate that loss of VDR restricts the adaptation to cholestasis and diminishes bile duct integrity in the setting of biliary-type liver injury. (Hepatology 2013;58:1401–1412) PMID:23696511

  19. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor.

    PubMed Central

    Eldredge, E R; Korf, G M; Christensen, T A; Connolly, D C; Getz, M J; Maihle, N J

    1994-01-01

    The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function

  20. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling.

    PubMed

    Qian, Lingling; Li, Xiaoyu; Fang, Ru; Wang, Zhuoyun; Xu, Yiming; Zhang, Hanwen; Bai, Hui; Yang, Qing; Zhu, Xudong; Ben, Jingjing; Xu, Yong; Chen, Qi

    2014-08-01

    Class A scavenger receptor (SR-A) is a multifunctional molecule that participates in macrophage-mediated inflammation. Here we evaluated the role of SR-A in angiotensin II (Ang II)-induced hypertensive vascular remodeling. Chronic infusion of Ang II leads to an increased systolic blood pressure both in SR-A knockout (SR-A(-/-)) and wild type (SR-A(+/+)) mice with no significant difference between these two groups. SR-A(-/-) hypertensive mice, however, exhibited a marked augmentation of arterial wall thickening and vascular cell proliferation compared with SR-A(+/+) hypertensive mice. M1 macrophage markers were increased whereas M2 macrophage markers were decreased in vascular tissues of SR-A(-/-) mice. Co-culture experiments revealed that more pro-inflammatory cytokines like TNF-α were produced by SR-A(-/-) peritoneal macrophages leading to a stronger proliferation of primary vascular smooth muscle cells in vitro. In addition, SR-A(-/-) macrophages were more prone to lipopolysaccharide-induced M1 differentiation while resisting interleukin-4-induced M2 differentiation. Importantly, transplantation of SR-A(-/-) bone marrow into SR-A(+/+) mice significantly augmented Ang II-induced vascular remodeling. These results show that SR-A is critical for Ang II-induced vascular remodeling by regulating macrophage polarization. Therefore, SR-A may be a useful therapeutic target for the intervention of hypertensive vascular remodeling. PMID:24875449

  1. Deficiency of platelet-derived growth factor receptor-α-positive cells in Hirschsprung's disease colon

    PubMed Central

    O’Donnell, Anne-Marie; Coyle, David; Puri, Prem

    2016-01-01

    AIM: To investigate whether the expression of platelet-derived growth factor receptor-α-positive (PDGFRα+)-cells is altered in Hirschsprung’s disease (HD). METHODS: HD tissue specimens (n = 10) were collected at the time of pull-through surgery, while colonic control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 10). Immunolabelling of PDGFRα+-cells was visualized using confocal microscopy to assess the distribution of these cells, while Western blot analysis was undertaken to quantify PDGFRα protein expression. RESULTS: Confocal microscopy revealed PDGFRα+-cells within the mucosa, myenteric plexus and smooth muscle in normal controls, with a marked reduction in PDGFRα+-cells in the HD specimens. Western blotting revealed high levels of PDGFRα protein expression in normal controls, while there was a striking decrease in PDGFRα protein expression in the HD colon. CONCLUSION: These findings suggest that the altered distribution of PDGFRα+-cells in both the aganglionic and ganglionic HD bowel may contribute to the motility dysfunction in HD. PMID:27022215

  2. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress.

    PubMed

    Milior, Giampaolo; Lecours, Cynthia; Samson, Louis; Bisht, Kanchan; Poggini, Silvia; Pagani, Francesca; Deflorio, Cristina; Lauro, Clotilde; Alboni, Silvia; Limatola, Cristina; Branchi, Igor; Tremblay, Marie-Eve; Maggi, Laura

    2016-07-01

    Chronic stress is one of the most relevant triggering factors for major depression. Microglial cells are highly sensitive to stress and, more generally, to environmental challenges. However, the role of these brain immune cells in mediating the effects of stress is still unclear. Fractalkine signaling - which comprises the chemokine CX3CL1, mainly expressed by neurons, and its receptor CX3CR1, almost exclusively present on microglia in the healthy brain - has been reported to critically regulate microglial activity. Here, we investigated whether interfering with microglial function by deleting the Cx3cr1 gene affects the brain's response to chronic stress. To this purpose, we housed Cx3cr1 knockout and wild-type adult mice in either control or stressful environments for 2weeks, and investigated the consequences on microglial phenotype and interactions with synapses, synaptic transmission, behavioral response and corticosterone levels. Our results show that hampering neuron-microglia communication via the CX3CR1-CX3CL1 pathway prevents the effects of chronic unpredictable stress on microglial function, short- and long-term neuronal plasticity and depressive-like behavior. Overall, the present findings suggest that microglia-regulated mechanisms may underlie the differential susceptibility to stress and consequently the vulnerability to diseases triggered by the experience of stressful events, such as major depression. PMID:26231972

  3. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    SciTech Connect

    Cao Canxiang; Yang Qingwu . E-mail: yangqwmlys@hotmail.com; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-02-09

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.

  4. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction

    PubMed Central

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Xiong, Ren-Ping; Zhang, Xiu-Zhu; Li, Ping; Zhao, Yan; Chen, Xing-Yun; Liu, Ping; Peng, Yan; Wang, Zheng-Guo; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2013-01-01

    Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment. PMID:23921902

  5. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    PubMed

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism. PMID:26921684

  6. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus.

    PubMed

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Cañas-Arranz, Rodrigo; Vázquez-Calvo, Ángela; Merino-Ramos, Teresa; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-04-19

    Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen. PMID:26993334

  7. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice.

    PubMed

    Reardon, Catherine A; Blachowicz, Lydia; Gupta, Gaorav; Lukens, John; Nissenbaum, Michael; Getz, Godfrey S

    2006-08-01

    Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms. PMID:16280127

  8. Obese melanocortin-4 receptor-deficient rats exhibit augmented angiogenic balance and vasorelaxation during pregnancy

    PubMed Central

    Spradley, Frank T; Palei, Ana C; Granger, Joey P

    2013-01-01

    While obesity is a major risk factor for preeclampsia, the mechanisms linking obesity and hypertension during preeclampsia remain unclear. Hypertension in preeclampsia is associated with placental ischemia-induced release of antiangiogenic soluble fms-like tyrosine kinase (sFlt-1) into the maternal circulation, which antagonizes vascular endothelial growth factor (VEGF) promoting endothelial dysfunction. Haploinsufficiency, defined as loss of one copy of a gene via a mutation, of the melanocortin-4 receptor (MC4R) is the most common cause of monogenetic obesity in humans. The purpose of our study was to determine the effects of genetic obesity on angiogenic balance, endothelial function, and blood pressure in pregnant MC4R+/− and MC4R+/+ rats. At gestational day (GD) 18, body weight and total body fat mass were greater in MC4R+/− than MC4R+/+ rats. On GD 19, plasma sFlt-1 was not significantly different between groups. Interestingly, circulating VEGF was greater in the obese rats with the source being adipose tissue and not the placenta. Wire myography showed in third-order mesenteric arteries that sensitivity (logEC50) to endothelial-dependent and nitric oxide donor-induced vasorelaxation was greater in MC4R+/− versus MC4R+/+. Mean arterial blood pressure was similar between groups. In conclusion, under normal pregnant conditions, genetically obese pregnant animals have greater angiogenic balance and dependency of vasorelaxation on nitric oxide signaling protecting against the development of hypertension. However, we speculate that, in the face of reduced uterine perfusion, a rise in circulating placental factors that target and reduce nitric oxide bioavailability exposes the susceptibility of genetically obese animals to greater hypertension in pregnancy. PMID:24159378

  9. Myeloid Cell-Restricted Insulin/IGF-1 Receptor Deficiency Protects against Skin Inflammation.

    PubMed

    Knuever, Jana; Willenborg, Sebastian; Ding, Xiaolei; Akyüz, Mehmet D; Partridge, Linda; Niessen, Carien M; Brüning, Jens C; Eming, Sabine A

    2015-12-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM. PMID:26519530

  10. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice.

    PubMed

    Inagaki-Ohara, K; Mayuzumi, H; Kato, S; Minokoshi, Y; Otsubo, T; Kawamura, Y I; Dohi, T; Matsuzaki, G; Yoshimura, A

    2014-01-01

    Leptin acts on its receptor (ObR) in the hypothalamus to inhibit food intake and energy expenditure. Leptin and ObR are also expressed in the gastrointestinal tract; however, the physiological significance of leptin signaling in the gut remains uncertain. Suppressor of cytokine signaling 3 (SOCS3) is a key negative feedback regulator of ObR-mediated signaling in the hypothalamus. We now show that gastrointestinal epithelial cell-specific SOCS3 conditional knockout (T3b-SOCS3 cKO) mice developed gastric tumors by enhancing leptin production and the ObRb/signal transducer and activator of transcription 3 (STAT3) signaling pathway. All T3b-SOCS3 cKO mice developed tumors in the stomach but not in the bowels by 2 months of age, even though the SOCS3 deletion occurred in both the epithelium of stomach and bowels. The tumors developed in the absence of the inflammatory response and all cKO mice died within 6 months. These tumors displayed pathology and molecular alterations, such as an increase in MUC2 (Mucin 2, oligomeric mucus/gel-forming) and TFF3 (trefoil factor 3), resembling human intestinal-type gastric tumors. Administration of antileptin antibody to T3b-SOCS3 cKO mice reduced hyperplasia of gastric mucosa, which is the step of the initiation of gastric tumor. These data suggest that SOCS3 is an antigastric tumor gene that suppresses leptin overexpression and ObRb/STAT3 hyperactivation, supporting the hypothesis that the leptin/ObRb/STAT3 axis accelerates tumorigenesis and that it may represent a new therapeutic target for the treatment of gastric cancer. PMID:23178499

  11. Leptin receptor deficiency confers resistance to behavioral effects of fluoxetine and desipramine via separable substrates

    PubMed Central

    Guo, M; Lu, X-Y

    2014-01-01

    Depression is a complex, heterogeneous mental disorder. Currently available antidepressants are only effective in about one-third to one-half of all patients. The mechanisms underlying antidepressant response and treatment resistance are poorly understood. Recent clinical evidence implicates the involvement of leptin in treatment response to antidepressants. In this study, we determined the functional role of the leptin receptor (LepRb) in behavioral responses to the selective serotonergic antidepressant fluoxetine and the noradrenergic antidepressant desipramine. While acute and chronic treatment with fluoxetine or desipramine in wild-type mice elicited antidepressant-like effects in the forced swim test, mice null for LepRb (db/db) displayed resistance to treatment with either fluoxetine or desipramine. Fluoxetine stimulated phosphorylation of Akt(Thr308) and GSK-3β(Ser9) in the hippocampus and prefrontal cortex (PFC) of wild-type mice but not in db/db mice. Desipramine failed to induce measurable changes in Akt, GSK-3β or ERK1/2 phosphorylation in the hippocampus and PFC, as well as hypothalamus of either genotype of mice. Deletion of LepRb specifically from hippocampal and cortical neurons resulted in fluoxetine insensitivity in the forced swim test and tail suspension test while leaving the response to desipramine intact. These results suggest that functional LepRb is critically involved in regulating the antidepressant-like behavioral effects of both fluoxetine and desipramine. The antidepressant effects of fluoxetine but not desipramine are dependent on the presence of functional LepRb in the hippocampus and cortex. PMID:25463972

  12. Trypanosoma cruzi Infection in Tumor Necrosis Factor Receptor p55-Deficient Mice

    PubMed Central

    Castaños-Velez, Esmeralda; Maerlan, Stephanie; Osorio, Lyda M.; Åberg, Frederik; Biberfeld, Peter; Örn, Anders; Rottenberg, Martín E.

    1998-01-01

    Tumor necrosis factor receptor p55 (TNFRp55) mediates host resistance to several pathogens by allowing microbicidal activities of phagocytes. In the studies reported here, TNFRp55−/− mice infected with the intracellular parasite Trypanosoma cruzi showed clearly higher parasitemia and cumulative mortality than wild-type (WT) controls did. However, gamma interferon (IFN-γ)-activated macrophages from TNFRp55−/− mice produced control levels of nitric oxide and killed the parasite efficiently in vitro. Trypanocidal mechanisms of nonphagocytic cells (myocardial fibroblasts) from both TNFRp55−/− and WT mice were also activated by IFN-γ in a dose-dependent way. However, IFN-γ-activated TNFRp55−/− nonphagocytes showed less effective killing of T. cruzi than WT control nonphagocytes, even when interleukin 1β (IL-1β) was added as a costimulator. In vivo, T. cruzi-infected TNFRp55−/− mice and WT mice released similar levels of NO and showed similar levels of IFN-γ mRNA and inducible nitric oxide synthase mRNA in their tissues. Instead, increased susceptibility to T. cruzi of TNFRp55−/− mice was associated with reduced levels of parasite-specific immunoglobulin G (IgG) (but not IgM) antibodies during infection, which is probably linked to abnormal B-cell differentiation in secondary lymphoid tissues of the mutant mice. Surprisingly, T. cruzi-infected TNFRp55−/− mice showed increased inflammatory and necrotic lesions in several tissues, especially in skeletal muscles, indicating that TNFRp55 plays an important role in controlling the inflammatory process. Accordingly, levels of Mn2+ superoxide dismutase mRNA, a TNF-induced enzyme which protects the cell from the toxic effects of superoxide, were lower in mutant than in WT infected mice. PMID:9596773

  13. CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli.

    PubMed Central

    Weaver, C T; Pingel, J T; Nelson, J O; Thomas, M L

    1991-01-01

    CD45 is a high-molecular-weight transmembrane protein tyrosine phosphatase expressed only by nucleated cells of hematopoietic origin. To examine function, mouse CD8+ cytolytic T-cell clones were derived that had a specific defect in the expression of CD45. Northern (RNA) blot analysis indicates that the CD45 deficiency is due to either a transcriptional defect or mRNA instability. The CD45-deficient cells were greatly diminished in their ability to respond to antigen. All functional parameters of T-cell receptor signalling analyzed (cytolysis of targets, proliferation, and cytokine production) were markedly diminished. A CD45+ revertant was isolated, and the ability to respond to antigen was restored. These results support a central and immediate role for this transmembrane protein tyrosine phosphatase in T-cell receptor signalling. Images PMID:1652055

  14. Elevated CD14 (Cluster of Differentiation 14) and Toll-Like Receptor (TLR) 4 Signaling Deteriorate Periapical Inflammation in TLR2 Deficient Mice.

    PubMed

    Rider, Daniel; Furusho, Hisako; Xu, Shuang; Trachtenberg, Alexander J; Kuo, Winston Patrick; Hirai, Kimito; Susa, Mako; Bahammam, Laila; Stashenko, Philip; Fujimura, Akira; Sasaki, Hajime

    2016-09-01

    Apical periodontitis (periapical lesions) is an infection-induced chronic inflammation in the jaw, ultimately resulting in the destruction of apical periodontal tissue. Toll-like receptors (TLRs) are prominent in the initial recognition of pathogens. Our previous study showed that TLR4 signaling is proinflammatory in periapical lesions induced by a polymicrobial endodontic infection. In contrast, the functional role of TLR2 in regulation of periapical tissue destruction is still not fully understood. Using TLR2 deficient (KO), TLR2/TLR4 double deficient (dKO), and wild-type (WT) mice, we demonstrate that TLR2 KO mice are highly responsive to polymicrobial infection-induced periapical lesion caused by over activation of TLR4 signal transduction pathway that resulted in elevation of NF-kB (nuclear factor kappa B) and proinflammatory cytokine production. The altered TLR4 signaling is caused by TLR2 deficiency-dependent elevation of CD14 (cluster of differentiation 14), which is a co-receptor of TLR4. Indeed, neutralization of CD14 strikingly suppresses TLR2 deficiency-dependent inflammation and tissue destruction in vitro and in vivo. Our findings suggest that a network of TLR2, TLR4, and CD14 is a key factor in regulation of polymicrobial dentoalveolar infection and subsequent tissue destruction. Anat Rec, 299:1281-1292, 2016. © 2016 Wiley Periodicals, Inc. PMID:27314637

  15. A Transmembrane Polymorphism of Fcγ Receptor IIb Is Associated with Kidney Deficiency Syndrome in Rheumatoid Arthritis

    PubMed Central

    Mo, Na; Lai, Ruogu; Luo, Shizi; Xie, Jianglin; Wang, Xizi; Liu, Lijuan; Liu, Xiaoling

    2016-01-01

    Objective. The purpose is to investigate the role of kidney deficiency and the association between kidney deficiency and a polymorphism FcγRIIb 695T>C coding for nonsynonymous substitution IIe232Thr (I232T) in rheumatoid arthritis (RA). Methods. Clinical parameters and autoantibodies were analyzed and genotyping was performed in 159 kidney deficiency and 161 non-kidney-deficiency RA patients. Results. The age of disease onset and disease duration exhibited significant differences between two groups (P < 0.01). Patients with kidney deficiency tend to have higher activity of disease (P < 0.05). Anti-cyclic citrullinated peptides antibodies (ACPA) levels of patients with kidney deficiency were higher than the controls (P = 0.039). 125 (78.6%) kidney deficiency and 114 (70.8%) non-kidney-deficiency patients had both ACPA-positive and RF-positive (P = 0.04, OR = 3.29). FcγRIIb I232TT homozygotes were identified in 10 of 159 (6.3%) kidney deficiency subjects and 1 of 161 (0.6%) controls (P = 0.000, OR = 16.45). Furthermore, in pooled genotype analysis, I232IT and I232TT homozygotes were significantly enriched in kidney deficiency individuals compared with the controls (P = 0.000, OR = 3.79). Frequency of T allele was associated with kidney deficiency RA population (P = 0.000, OR = 3.18). Conclusion. This study confirmed that kidney deficiency was closely associated with disease activity and autoimmune disorder in RA. Kidney deficiency in RA is first to reveal a strong genetic link to FcγRIIb variants. PMID:27051449

  16. Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice

    PubMed Central

    Wang, Jing; Sjöberg, Sara; Tia, Viviane; Secco, Blandine; Chen, Han; Yang, Min; Sukhova, Galina K.; Shi, Guo-Ping

    2013-01-01

    Mast cells (MCs) contribute to atherogenesis by releasing pro-inflammatory mediators to activate vascular cells and other inflammatory cells. This study examined whether MC activation or stabilization affects diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr−/−) mice. When Ldlr−/− mice consumed an atherogenic diet for 3 or 6 months, MC activation with compound 48/80 (C48/80) increased aortic arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels, whereas MC stabilization with cromolyn reduced these parameters. There were significant differences in arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels between C48/80-treated and cromolyn-treated mice. To examine a therapeutic application of cromolyn in atherosclerosis, we fed Ldlr−/− mice an atherogenic diet for 3 months followed by giving mice cromolyn for additional 3 months. Cromolyn did not affect aortic arch intima area, but significantly reduced lipid deposition in the thoracic-abdominal aortas. In aortic arches, however, cromolyn treatment significantly reduced lesion contents of Mac-3+ macrophages, CD4+ T cells, activated MCs, and lesion cell proliferation. While plasma total cholesterol and LDL levels increased and high-density lipoprotein (HDL) levels decreased from 3 months to 6 months of an atherogenic diet, cromolyn treatment decreased significantly plasma total cholesterol, LDL, and triglyceride levels and increased HDL levels above those of 3-month time point. These observations demonstrate that MC stabilization reduces lesion inflammation, ameliorates plasma lipid profiles, and may serve as a potential therapy for this cardiovascular disease. PMID:23880180

  17. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages

    PubMed Central

    Hamers, Anouk A. J.; van Dam, Laura; Teixeira Duarte, José M.; Vos, Mariska; Marinković, Goran; van Tiel, Claudia M.; Meijer, Sybren L.; van Stalborch, Anne-Marieke; Huveneers, Stephan; te Velde, Anje A.

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn’s disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  18. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    PubMed

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. PMID:26800321

  19. Mice Deficient in Interferon-Gamma or Interferon-Gamma Receptor 1 Have Distinct Inflammatory Responses to Acute Viral Encephalomyelitis

    PubMed Central

    Lee, Eun-Young; Schultz, Kimberly L. W.; Griffin, Diane E.

    2013-01-01

    Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin+ cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3+ T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections. PMID:24204622

  20. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages.

    PubMed

    Hamers, Anouk A J; van Dam, Laura; Teixeira Duarte, José M; Vos, Mariska; Marinković, Goran; van Tiel, Claudia M; Meijer, Sybren L; van Stalborch, Anne-Marieke; Huveneers, Stephan; Te Velde, Anje A; de Jonge, Wouter J; de Vries, Carlie J M

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  1. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia.

    PubMed

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-08-01

    Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc. PMID:27169626

  2. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α.

    PubMed

    Pourié, Grégory; Martin, Nicolas; Bossenmeyer-Pourié, Carine; Akchiche, Nassila; Guéant-Rodriguez, Rosa Maria; Geoffroy, Andréa; Jeannesson, Elise; El Hajj Chehadeh, Sarah; Mimoun, Khalid; Brachet, Patrick; Koziel, Violette; Alberto, Jean-Marc; Helle, Deborah; Debard, Renée; Leininger, Brigitte; Daval, Jean-Luc; Guéant, Jean-Louis

    2015-09-01

    Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway. PMID:26018677

  3. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model.

    PubMed

    Parmentier, Régis; Zhao, Yan; Perier, Magali; Akaoka, Hideo; Lintunen, Minnamaija; Hou, Yiping; Panula, Pertti; Watanabe, Takeshi; Franco, Patricia; Lin, Jian-Sheng

    2016-07-01

    Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26723880

  4. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice

    PubMed Central

    O’Flaherty, Brigid M.; Matar, Caline G.; Wakeman, Brian S.; Garcia, AnaPatricia; Wilke, Carol A.; Courtney, Cynthia L.; Moore, Bethany B.; Speck, Samuel H.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs—despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis—further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  5. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    PubMed

    O'Flaherty, Brigid M; Matar, Caline G; Wakeman, Brian S; Garcia, AnaPatricia; Wilke, Carol A; Courtney, Cynthia L; Moore, Bethany B; Speck, Samuel H

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  6. Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency

    SciTech Connect

    Naville, D.; Barjhoux, L.; Jaillard, C.

    1996-04-01

    The hereditary syndrome of unresponsiveness to ACTH is a rare autosomal recessive disorder characterized by low levels of serum cortisol and high levels of plasma ACTH. There is no cortisol response to exogenous ACTH. Recent cloning of the human ACTH receptor gene has enabled us to study this gene in patients with glucocorticoid deficiency. By using the PCR to amplify the coding sequence of the ACTH receptor gene, we identified three mutations in two unrelated patients. One mutation present in homozygous form converted the negatively charged Asp{sup 107}, located in the third transmembrane domain, to an uncharged Asn residue. The second patient was a compound heterozygote: the paternal allele contained a one-nucleotide insertion leading to a stop codon within the third extracellular loop, and the maternal allele contained a point mutation converting Cys{sup 235} to Phe, also in the third extracellular loop. Normal and mutant ACTH receptor genes were expressed in the M3 cell line, and intracellular cAMP production in response to ACTH was measured. For the mutant receptors, no response to physiological ACTH concentrations was detected, suggesting an impaired binding of ACTH to the receptors and/or an altered coupling to the adenylate cyclase effector. 24 refs., 6 figs., 2 tabs.

  7. Ligand binding and internalization by the rat hepatic asialoglycoprotein receptor does not generate polyphosphoinositide derived second messengers

    SciTech Connect

    Medh, J.D.; Haynes, P.A.; Weigel, P.H.; LaBelle, E.F. )

    1989-01-01

    We have studied the effects of asialoorosomucoid (ASOR) on the hydrolysis of ({sup 32}P)-inositol phospholipids in isolated rat hepatocytes. When internalization of ASOR is maximal at 310 molecules/cell/sec, there is neither a decrease in the amount of ({sup 32}P)-phosphatidylinositol-4,5-bisphosphate (PIP{sub 2}) not an increase in ({sup 32}P)-phosphatidic acid (PA) up to 30 min after stimulation. On the other hand, 10-{sup 6}M vasopressin, which was used as a positive control, caused a 35-40% decrease in the level of ({sup 32}P)-PIP{sub 2} and a 70-80% increase in ({sup 32}P)-PA within 30 sec. Addition of orosomucoid or ASOR, even at concentrations 1000-times the K{sub d}, did not change the levels of any of the six phospholipids tested. Similarly, addition of ASOR did not increase the levels of soluble ({sup 3}H)-inositol phosphates, whereas vasopressin caused a 6-fold increase in ({sup 3}H)-inositol-1,4-diphosphate (IP{sub 2}) and a 4-fold increase in ({sup 3}H)-inositol-1,4,5-triphosphate (IP{sub 3}) in isolated rat hepatocytes prelabeled with ({sup 3}H)-inositol.

  8. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  9. Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice

    PubMed Central

    Baca, Michael; Allan, Andrea M.; Partridge, L. Donald; Wilson, Michael C.

    2013-01-01

    Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is a candidate environmental risk factor for ADHD. We utilized mice heterozygous for a Snap25 null allele and deficient in SNAP-25 expression to model genetic effects in combination with prenatal exposure to nicotine to explore genetic and environmental interactions in synaptic plasticity and behavior. We show that SNAP-25 deficient mice exposed to prenatal nicotine exhibit hyperactivity and deficits in social interaction. Using a high frequency stimulus electrophysiological paradigm for long-term depression (LTD) induction, we examined the roles of dopaminergic D2 receptors (D2Rs) and cannabinoid CB1 receptors (CB1Rs), both critical for LTD induction in the striatum. We found that prenatal exposure to nicotine in Snap25 heterozygote null mice produced a deficit in the D2R-dependent induction of LTD, although CB1R regulation of plasticity was not impaired. We also show that prenatal nicotine exposure altered the affinity and/or receptor coupling of D2Rs, but not the number of these receptors in heterozygote null Snap25 mutants. These results refine the observations made in the coloboma mouse mutant, a proposed mouse model of ADHD, and illustrate how gene × environmental influences can interact to perturb neural functions that regulate behavior. PMID:23939223

  10. Estrogen retention and estrogen receptor distribution in uterus of rats deficient in zinc and/or vitamin B/sub 6/

    SciTech Connect

    Bunce, G.E.; Vessal, M.

    1986-03-01

    Holley et al have reported that uptake and retention of a tracer dose of (/sup 3/H)-estradiol (E/sub 2/) by rat uteri nuclei was increased four-fold in pyridoxine-deprived young rats as compared to controls. The diet lacked a specific input of zinc, a nutrient which may also influence estrogen impact on target cells. The authors have tested the effect of diets restricted in either zinc or pyridoxine singly or in combination upon both retention of estrogen and subcellular distribution of estrogen receptor in rat uterus. Female Sprague-Dawley rats were fed their respective diets for five weeks. Stage of estrous cycle was determined by examination of vaginal smears. On the morning of estrous, each rat was given an IP injection of (/sup 3/H) E/sub 2/. Nuclear and cytosolic E/sub 2/ was determined after 20 minutes. A second series of animals were killed at estrous after the same period of dietary treatment and nuclear and cytosolic estradiol receptors were measured. Uterine retention of injected E/sub 2/ was increased 2-fold when Zn was limiting (3 ppm), 1.5-fold when B/sub 6/ was low and 3.5-fold when both were low. Dually deficient rats displayed a 10-fold increase in nuclear content of E/sub 2/ receptor but no significant change in total cellular receptor content.

  11. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire

    PubMed Central

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells. PMID:27064277

  12. Relationship between autophagy and the intracellular degradation of asialoglycoproteins in cultured rat hepatocytes

    SciTech Connect

    Kindberg, G.M.; Refsnes, M.; Christoffersen, T.; Norum, K.R.; Berg, T.

    1987-05-25

    The relationship between autophagy and the intracellular distribution of endocytosed asialoorosomucoid was studied in cultured rat hepatocytes. Overt autophagy was induced by shifting the cells to a minimal salt medium. Incubation in minimal salt medium led to the formation of buoyant lysosomes at the expense of denser lysosomes manifested as a dual distribution of these organelles in Nycodenz gradients. Asialoorosomucoid was labeled with /sup 125/I-tyramine cellobiose. The labeled degradation products formed from this ligand are trapped at the site of degradation and may therefore serve as markers for the subgroup of lysosomes involved in the degradation. In control cells the degradation of the ligand was initiated in a light prelysosomal compartment and continued in denser lysosomes. In cells with high autophagic activity, the degradation of labeled asialoorosomucoid took place exclusively in a buoyant group of lysosomes. These results suggest that degradation of endocytosed ligand takes place in the same secondary lysosomes as substrate sequestered by autophagic mechanisms. These light lysosomes represent a subgroup of active lysosomes which are gradually recruited from dense bodies. Data are also presented that indicate that insulin may prevent the change in buoyant density brought about by incubation in deficient medium.

  13. Relation between increased anxiety and reduced expression of alpha1 and alpha2 subunits of GABA(A) receptors in Wfs1-deficient mice.

    PubMed

    Raud, Sirli; Sütt, Silva; Luuk, Hendrik; Plaas, Mario; Innos, Jürgen; Kõks, Sulev; Vasar, Eero

    2009-08-28

    Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. In clinical studies a relation between mutations in the Wfs1 gene and increased susceptibility for mood disorders has been established. According to our previous studies, mice lacking Wfs1 gene displayed increased anxiety in stressful environment. As the GABA-ergic system plays a significant role in the regulation of anxiety, we analyzed the expression of GABA-related genes in the forebrain structures of wild-type and Wfs1-deficient mice. Experimentally naïve Wfs1-deficient animals displayed a significant down-regulation of alpha1 (Gabra1) and alpha2 (Gabra2) subunits of GABA(A) receptors in the temporal lobe and frontal cortex. Exposure of wild-type mice to the elevated plus-maze decreased levels of Gabra1 and Gabra2 genes in the temporal lobe. A similar tendency was also established in the frontal cortex of wild-type animals exposed to behavioral test. In Wfs1-deficient mice the elevated plus-maze exposure did not induce further changes in the expression of Gabra1 and Gabra2 genes. By contrast, the expression of Gad1 and Gad2 genes, enzymes responsible for the synthesis of GABA, was not significantly affected by the exposure of mice to the elevated plus-maze or by the invalidation of Wfs1 gene. Altogether, the present study demonstrates that increased anxiety of Wfs1-deficient mice is probably linked to reduced expression of Gabra1 and Gabra2 genes in the frontal cortex and temporal lobe. PMID:19477223

  14. [1N,12N]Bis(Ethyl)-cis-6,7-Dehydrospermine: a New Drug for Treatment and Prevention of Cryptosporidium parvum Infection of Mice Deficient in T-Cell Receptor Alpha

    PubMed Central

    Waters, W. R.; Frydman, B.; Marton, L. J.; Valasinas, A.; Reddy, V. K.; Harp, J. A.; Wannemuehler, M. J.; Yarlett, N.

    2000-01-01

    Cryptosporidium parvum infection of T-cell receptor alpha (TCR-α)-deficient mice results in a persistent infection. In this study, treatment with a polyamine analogue (SL-11047) prevented C. parvum infection in suckling TCR-α-deficient mice and cleared an existing infection in older mice. Treatment with putrescine, while capable of preventing infection, did not clear C. parvum from previously infected mice. These findings provide further evidence that polyamine metabolic pathways are targets for new anticryptosporidial chemotherapeutic agents. PMID:10991882

  15. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors

    PubMed Central

    Oka, Takakazu; Oka, Kae; Kobayashi, Takuya; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Narumiya, Shuh; Saper, Clifford B

    2003-01-01

    Previous studies have disagreed about whether prostaglandin EP1 or EP3 receptors are critical for producing febrile responses. We therefore injected lipopolysaccharide (LPS) at a variety doses (1 μg kg−1−1 mg kg−1) intraperitoneally (I.P.) into wild-type (WT) mice and mice lacking the EP1 or the EP3 receptors and measured changes in core temperature (Tc) by using telemetry. In WT mice, I.P. injection of LPS at 10 μg kg−1 increased Tc about 1 °C, peaking 2 h after injection. At 100 μg kg−1, LPS increased Tc, peaking 5–8 h after injection. LPS at 1 mg kg−1 decreased Tc, reaching a nadir at 5–8 h after injection. In EP1 receptor knockout (KO) mice injected with 10 μg kg−1 LPS, only the initial (< 40 min) increase in Tc was lacking; with 100 μg kg−1 LPS the mice showed no febrile response. In EP3 receptor KO mice, LPS decreased Tc in a dose- and time-dependent manner. Furthermore, in EP3 receptor KO mice subcutaneous injection of turpentine did not induce fever. Both EP1 and EP3 receptor KO mice showed a normal circadian cycle of Tc and brief hyperthermia following psychological stress (cage-exchange stress and buddy-removal stress). The present study suggests that both the EP1 and the EP3 receptors play a role in fever induced by systemic inflammation but neither EP receptor is involved in the circadian rise in Tc or psychological stress-induced hyperthermia in mice. PMID:12837930

  16. The Unique Functions of the Type-II IL-4 Receptor are revealed in IL-13R¿1-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The IL-4 receptor is a central mediator of Th2-mediated diseases and associates with either the common gamma chain (type-I IL-4R) or IL-13Ra1 (type-II IL-4R) to form two receptor complexes. Here, using IL-13Ra1-/- mice, we characterized the distinct functions of the type-II IL-4R. In contrast to IL-...

  17. Mutations in Prokineticin 2 and Prokineticin receptor 2genes in Human Gonadotrophin-Releasing Hormone Deficiency: Molecular Genetics and Clinical Spectrum

    PubMed Central

    Cole, Lindsay W.; Sidis, Yisrael; Zhang, ChengKang; Quinton, Richard; Plummer, Lacey; Pignatelli, Duarte; Hughes, Virginia A.; Dwyer, Andrew A.; Raivio, Taneli; Hayes, Frances J.; Seminara, Stephanie B.; Huot, Celine; Alos, Nathalie; Speiser, Phyllis; Takeshita, Akira; VanVliet, Guy; Pearce, Simon; Crowley, William F.; Zhou, Qun-Yong; Pitteloud, Nelly

    2008-01-01

    Context: Mice deficient in prokineticin 2(PROK2) and prokineticin receptor2 (PROKR2) exhibit variable olfactory bulb dysgenesis and GnRH neuronal migration defects reminiscent of human GnRH deficiency. Objectives: We aimed to screen a large cohort of patients with Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (IHH) for mutations in PROK2/PROKR2, evaluate their prevalence, define the genotype/phenotype relationship, and assess the functionality of these mutant alleles in vitro. Design: Sequencing of the PROK2 and PROKR2 genes was performed in 170 KS patients and 154 nIHH. Mutations were examined using early growth response 1-luciferase assays in HEK 293 cells and aequorin assays in Chinese hamster ovary cells. Results: Four heterozygous and one homozygous PROK2 mutation (p.A24P, p.C34Y, p.I50M, p.R73C, and p.I55fsX1) were identified in five probands. Four probands had KS and one nIHH, and all had absent puberty. Each mutant peptide impaired receptor signaling in vitro except the I50M. There were 11 patients who carried a heterozygous PROKR2 mutation (p.R85C, p.Y113H, p.V115M, p.R164Q, p.L173R, p.W178S, p.S188L, p.R248Q, p.V331M, and p.R357W). Among them, six had KS, four nIHH, and one KS proband carried both a PROKR2 (p.V115M) and PROK2 (p.A24P) mutation. Reproductive phenotypes ranged from absent to partial puberty to complete reversal of GnRH deficiency after discontinuation of therapy. All mutant alleles appear to decrease intracellular calcium mobilization; seven exhibited decreased MAPK signaling, and six displayed decreased receptor expression. Nonreproductive phenotypes included fibrous dysplasia, sleep disorder, synkinesia, and epilepsy. Finally, considerable variability was evident in family members with the same mutation, including asymptomatic carriers. Conclusion: Loss-of-function mutations in PROK2 and PROKR2 underlie both KS and nIHH. PMID:18559922

  18. Accelerated Pathological and Clinical Nephritis in Systemic Lupus Erythematosus-Prone New Zealand Mixed 2328 Mice Doubly Deficient in TNF Receptor 1 and TNF Receptor 2 via a Th17-Associated Pathway1

    PubMed Central

    Jacob, Noam; Yang, Haitao; Pricop, Luminita; Liu, Yi; Gao, Xiaoni; Zheng, Song Guo; Wang, Juhua; Gao, Hua-Xin; Putterman, Chaim; Koss, Michael N.; Stohl, William; Jacob, Chaim O.

    2009-01-01

    TNF-α has both proinflammatory and immunoregulatory functions. Whereas a protective role for TNF administration in systemic lupus erythematosus (SLE)-prone (New Zealand Black × New Zealand White)F1 mice has been established, it remains uncertain whether this effect segregates at the individual TNFR. We generated SLE-prone New Zealand Mixed 2328 mice genetically deficient in TNFR1, in TNFR2, or in both receptors. Doubly-deficient mice developed accelerated pathological and clinical nephritis with elevated levels of circulating IgG anti-dsDNA autoantibodies and increased numbers of CD4+ T lymphocytes, especially activated memory (CD44highCD62Llow) CD4+ T cells. We show that these cells expressed a Th17 gene profile, were positive for IL-17 intracellular staining by FACS, and produced exogenous IL-17 in culture. In contrast, immunological, pathological, and clinical profiles of mice deficient in either TNFR alone did not differ from those in each other or from those in wild-type controls. Thus, total ablation of TNF-α-mediated signaling was highly deleterious to the host in the New Zealand Mixed 2328 SLE model. These observations may have profound ramifications for the use of TNF and TNFR antagonists in human SLE and related autoimmune disorders, as well as demonstrate, for the first time, the association of the Th17 pathway with an animal model of SLE. PMID:19201910

  19. Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action.

    PubMed

    Bay-Richter, Cecilie; O'Tuathaigh, Colm M P; O'Sullivan, Gerard; Heery, David M; Waddington, John L; Moran, Paula M

    2009-04-01

    Latent inhibition (LI) is reduced learning to a stimulus that has previously been experienced without consequence. It is an important model of abnormal allocation of salience to irrelevant information in patients with schizophrenia. In rodents LI is abolished by psychotomimetic drugs and in experimental conditions where LI is low in controls, its expression is enhanced by antipsychotic drugs with activity at dopamine (DA) receptors. It is however unclear what the independent contributions of DA receptor subtypes are to these effects. This study therefore examined LI in congenic DA D1 and D2 receptor knockout (D1 KO and D2 KO) mice. Conditioned suppression of drinking was used as the measure of learning in the LI procedure. Both male and female DA D2 KO mice showed clear enhancement of LI reproducing antipsychotic drug effects in the model. Unexpectedly, enhancement was also seen in D1 KO female mice but not in D1 KO male mice. This sex-specific pattern was not replicated in locomotor or motor coordination tasks nor in the effect of DA KOs on baseline learning in control groups indicating some specificity of the effect to LI. These data suggest that the dopaminergic mechanism underlying LI potentiation and possibly antipsychotic action may differ between the sexes, being mediated by D2 receptors in males but by both D1 and D2 receptors in females. These data suggest that the DA D1 receptor may prove an important target for understanding sex differences in the mechanisms of action of antipsychotic drugs and in the aetiology of aberrant salience allocation in schizophrenia. PMID:19012810

  20. Clinical significance of complement deficiencies.

    PubMed

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  1. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    PubMed Central

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  2. T−B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3ζ subunit of the T-cell antigen receptor complex

    PubMed Central

    Lauritsen, Jens Peter H.; Cooney, Myriah; Parrott, Roberta E.; Sajaroff, Elisa O.; Win, Chan M.; Keller, Michael D.; Carpenter, Jeffery H.; Carabana, Juan; Krangel, Michael S.; Sarzotti, Marcella; Zhong, Xiao-Ping; Wiest, David L.; Buckley, Rebecca H.

    2007-01-01

    CD3ζ is a subunit of the T-cell antigen receptor (TCR) complex required for its assembly and surface expression that also plays an important role in TCR-mediated signal transduction. We report here a patient with T−B+NK+ severe combined immunodeficiency (SCID) who was homozygous for a single C insertion following nucleotide 411 in exon 7 of the CD3ζ gene. The few T cells present contained no detectable CD3ζ protein, expressed low levels of cell surface CD3ε, and were nonfunctional. CD4+CD8−CD3εlow, CD4−CD8+CD3εlow, and CD4−CD8−CD3εlow cells were detected in the periphery, and the patient also exhibited an unusual population of CD56−CD16+ NK cells with diminished cytolytic activity. Additional studies demonstrated that retrovirally transduced patient mutant CD3ζ cDNA failed to rescue assembly of nascent complete TCR complexes or surface TCR expression in CD3ζ-deficient MA5.8 murine T-cell hybridoma cells. Nascent transduced mutant CD3ζ protein was also not detected in metabolically labeled MA5.8 cells, suggesting that it was unstable and rapidly degraded. Taken together, these findings provide the first demonstration that complete CD3ζ deficiency in humans can cause SCID by preventing normal TCR assembly and surface expression. PMID:17170122

  3. Fibromodulin-deficiency alters temporospatial expression patterns of transforming growth factor-β ligands and receptors during adult mouse skin wound healing.

    PubMed

    Zheng, Zhong; Lee, Kevin S; Zhang, Xinli; Nguyen, Calvin; Hsu, Chingyun; Wang, Joyce Z; Rackohn, Todd Matthew; Enjamuri, Dwarak Reddy; Murphy, Maxwell; Ting, Kang; Soo, Chia

    2014-01-01

    Fibromodulin (FMOD) is a small leucine-rich proteoglycan required for scarless fetal cutaneous wound repair. Interestingly, increased FMOD levels have been correlated with decreased transforming growth factor (TGF)-β1 expression in multiple fetal and adult rodent models. Our previous studies demonstrated that FMOD-deficiency in adult animals results in delayed wound closure and increased scar size accompanied by loose package collagen fiber networks with increased fibril diameter. In addition, we found that FMOD modulates in vitro expression and activities of TGF-β ligands in an isoform-specific manner. In this study, temporospatial expression profiles of TGF-β ligands and receptors in FMOD-null and wild-type (WT) mice were compared by immunohistochemical staining and quantitative reverse transcriptase-polymerase chain reaction using a full-thickness, primary intention wound closure model. During the inflammatory stage, elevated inflammatory infiltration accompanied by increased type I TGF-β receptor levels in individual inflammatory cells was observed in FMOD-null wounds. This increased inflammation was correlated with accelerated epithelial migration during the proliferative stage. On the other hand, significantly more robust expression of TGF-β3 and TGF-β receptors in FMOD-null wounds during the proliferative stage was associated with delayed dermal cell migration and proliferation, which led to postponed granulation tissue formation and wound closure and increased scar size. Compared with WT controls, expression of TGF-β ligands and receptors by FMOD-null dermal cells was markedly reduced during the remodeling stage, which may have contributed to the declined collagen synthesis capability and unordinary collagen architecture. Taken together, this study demonstrates that a single missing gene, FMOD, leads to conspicuous alternations in TGF-β ligand and receptor expression at all stages of wound repair in various cell types. Therefore, FMOD critically

  4. Melatonin receptor deficiency decreases and temporally shifts ecto-5'-nucleotidase mRNA levels in mouse prosencephalon.

    PubMed

    Homola, Moran; Pfeffer, Martina; Robson, Simon C; Fischer, Claudia; Zimmermann, Herbert; Korf, Horst-Werner

    2016-07-01

    Ecto-5'-nucleotidase (eN) is the major extracellular adenosine-producing ecto-enzyme in mouse brain. Via the production of adenosine, eN participates in many physiological and pathological processes, such as wakefulness, inflammation, nociception and neuroprotection. The mechanisms regulating the expression of eN are therefore of considerable neurobiological and clinical interest. Having previously described a modulatory effect of melatonin in the regulation of eN mRNA levels, we decided to analyze the melatonin receptor subtype involved in the regulation of eN mRNA levels by comparing eN mRNA patterns in melatonin-proficient transgenic mice lacking either the melatonin receptor subtype 1 (MT1 KO) or both melatonin receptor subtypes (MT1 and MT2; MT1/2 KO) with the corresponding melatonin-proficient wild-type (WT) controls. By means of radioactive in situ hybridization, eN mRNA levels were found to be diminished in both MT1 and MT1/2 KO mice compared with WT controls suggesting stimulatory impacts of melatonin receptors on eN mRNA levels. Whereas eN mRNA levels increased during the day and peaked at night in WT and MT1 KO mice, eN mRNA levels at night were reduced and the peak was shifted toward day-time in double MT1/2 KO mice. These data suggest that the MT2 receptor subtype may play a role in the temporal regulation of eN mRNA availability. Notably, day-time locomotor activity was significantly higher in MT1/2 KO compared with WT mice. Our results suggest melatoninergic signaling as an interface between the purinergic system and the circadian system. PMID:26917036

  5. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  6. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development.

    PubMed

    Magnusson, Peetra; Rolny, Charlotte; Jakobsson, Lars; Wikner, Charlotte; Wu, Yan; Hicklin, Daniel J; Claesson-Welsh, Lena

    2004-03-15

    We have employed embryoid bodies derived from murine embryonal stem cells to study effects on vascular development induced by fibroblast growth factor (FGF)-2 and FGF receptor-1, in comparison to the established angiogenic factor vascular endothelial growth factor (VEGF)-A and its receptor VEGF receptor-2. Exogenous FGF-2 promoted formation of morphologically distinct, long slender vessels in the embryoid bodies, whereas VEGF-A-treated bodies displayed a compact plexus of capillaries. FGF-2 stimulation of embryonal stem cells under conditions where VEGF-A/VEGFR-2 function was blocked, led to formation of endothelial cell clusters, which failed to develop into vessels. FGFR-1(-/-) embryoid bodies responded to VEGF-A by establishment of the characteristic vascular plexus, but FGF-2 had no effect on vascular development in the absence of FGFR-1. The FGFR-1(-/-) embryoid bodies displayed considerably increased basal level of vessel formation, detected by immunohistochemical staining for platelet-endothelial cell adhesion molecule (PECAM)/CD31. This basal vascularization was blocked by neutralizing antibodies against VEGFR-2 or VEGF-A and biochemical analyses indicated changes in regulation of VEGFR-2 in the absence of FGFR-1 expression. We conclude that VEGF-A/VEGFR-2-dependent vessel formation occurs in the absence of FGF-2/FGFR-1, which, however, serve to modulate vascular development. PMID:15020678

  7. Fas Receptor-deficient lpr Mice are protected against Acetaminophen Hepatotoxicity due to Higher Glutathione Synthesis and Enhanced Detoxification of Oxidant Stress

    PubMed Central

    Williams, C. David; McGill, Mitchell R.; Farhood, Anwar; Jaeschke, Hartmut

    2013-01-01

    Acetaminophen (APAP) overdose is a classical model of hepatocellular necrosis; however, the involvement of the Fas receptor in the pathophysiology remains controversial. Fas receptor-deficient (lpr) and C57BL/6 mice were treated with APAP to compare the mechanisms of hepatotoxicity. Lpr mice were partially protected against APAP hepatotoxicity as indicated by reduced plasma ALT and GDH levels and liver necrosis. Hepatic Cyp2e1 protein, adduct formation and hepatic glutathione (GSH) depletion were similar, demonstrating equivalent reactive metabolite generation. There was no difference in cytokine formation or hepatic neutrophil recruitment. Interestingly, hepatic GSH recovered faster in lpr mice than in wild type animals resulting in enhanced detoxification of reactive oxygen species. Driving the increased GSH levels, mRNA induction and protein expression of glutamate-cysteine ligase (gclc) were higher in lpr mice. Inducible nitric oxide synthase (iNOS) mRNA and protein levels at 6h were significantly lower in lpr mice, which correlated with reduced nitrotyrosine staining. Heat shock protein 70 (Hsp70) mRNA levels were substantially higher in lpr mice after APAP. Conclusion: Our data suggest that the faster recovery of hepatic GSH levels during oxidant stress and peroxynitrite formation, reduced iNOS expression and enhanced induction of Hsp70 attenuated the susceptibility to APAP-induced cell death in lpr mice. PMID:23628456

  8. The use of an IL-1 receptor antagonist peptide to control inflammation in the treatment of corneal limbal epithelial stem cell deficiency.

    PubMed

    Fok, E; Sandeman, S R; Guildford, A L; Martin, Y H

    2015-01-01

    Corneal limbal stem cell deficiency (LSCD) may be treated using ex vivo limbal epithelial stem cells (LESCs) derived from cadaveric donor tissue. However, continuing challenges exist around tissue availability, inflammation, and transplant rejection. Lipopolysaccharide (LPS) or recombinant human IL-1β stimulated primary human keratocyte and LESC models were used to investigate the anti-inflammatory properties of a short chain, IL-1 receptor antagonist peptide for use in LESC sheet growth to control inflammation. The peptide was characterized using mass spectroscopy and high performance liquid chromatography. Peptide cytotoxicity, patterns of cell cytokine expression in response to LPS or IL-1β stimulation, and peptide suppression of this response were investigated by MTS/LDH assays, ELISA, and q-PCR. Cell differences in LPS stimulated toll-like receptor 4 expression were investigated using immunocytochemistry. A significant reduction in rIL-1β stimulated inflammatory cytokine production occurred following LESC and keratocyte incubation with anti-inflammatory peptide and in LPS stimulated IL-6 and IL-8 production following keratocyte incubation with peptide (1 mg/mL) (P < 0.05). LESCs produced no cytokine response to LPS stimulation and showed no TLR4 expression. The peptide supported LESC growth when adhered to a silicone hydrogel contact lens indicating potential use in improved LESC grafting through suppression of inflammation. PMID:25705668

  9. Capturing intercellular sugar-mediated ligand-receptor recognitions via a simple yet highly biospecific interfacial system

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Deng, Si-Si; Zang, Yi; Gu, Zhen; He, Xiao-Peng; Chen, Guo-Rong; Chen, Kaixian; James, Tony D.; Li, Jia; Long, Yi-Tao

    2013-07-01

    Intercellular ligand-receptor recognitions are crucial natural interactions that initiate a number of biological and pathological events. We present here the simple construction of a unique class of biomimetic interfaces based on a graphene-mediated self-assembly of glycosyl anthraquinones to a screen-printed electrode for the detection of transmembrane glycoprotein receptors expressed on a hepatoma cell line. We show that an electroactive interface confined with densely clustered galactosyl ligands is able to ingeniously recognize the asialoglycoprotein receptors on live Hep-G2 cells employing simple electrochemical techniques. The only facility used is a personal laptop in connection with a cheap and portable electrochemical workstation.

  10. High salt diet increases the pressor response to stress in female, but not male ETB-receptor-deficient rats.

    PubMed

    Speed, Joshua S; D'Angelo, Gerard; Wach, Paul A; Sullivan, Jennifer C; Pollock, Jennifer S; Pollock, David M

    2015-03-01

    Acute stress in both rodents and humans causes a transient rise in blood pressure associated with an increase in plasma endothelin-1 (ET-1). High salt (HS) intake also increases ET-1 production, and interestingly, blunts the pressor response to acute air jet stress in rats. We previously reported that female rats lacking functional ETB receptors everywhere except sympathetic nerves (ETB def) had a greater degree of hypertension in response to a HS diet compared to their male counterparts when measured by the tail cuff method. However, we now report that salt-induced hypertension is not different between sexes when measured by telemetry. Therefore, additional experiments were designed to test the hypothesis that female ETB def rats are more sensitive to acute stress when on a HS diet. The pressor response, measured by telemetry, to acute air jet stress was similar between male transgenic control (Tg control) and ETB def rats following chronic HS intake. In contrast, female ETB def rats had a significantly greater pressor response (about twofold higher) than female or male Tg control or male ETB def rats maintained on HS, a finding that cannot be explained by increased vascular reactivity to ET-1 in female rats as we observed that male ETB def rats had a greater pressor response to i.v. infusion of ET-1 compared to females. Furthermore, HS feeding exacerbated the pressor response to ET-1 in both male and female ETB def rats. Given our previous studies demonstrating that the ETA receptor functions to reduce the pressor response to acute stress, these findings further support a role for the ET receptor system in the pressor response to acute stress and that female rats have reduced ETA receptor activity when on a HS diet compared to males. PMID:25802361