Sample records for asialoglycoprotein receptor deficiency

  1. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    PubMed

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  2. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.

    PubMed Central

    Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F

    1981-01-01

    The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585

  3. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  4. Reconstitution of the Hepatic Asialoglycoprotein Receptor with Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Klausner, Richard D.; Bridges, Kenneth; Tsunoo, Hajime; Blumenthal, Robert; Weinstein, John N.; Ashwell, Gilbert

    1980-09-01

    A solubilized detergent-free preparation of the hepatic binding protein specific for asialoglycoproteins associates spontaneously with small unilamellar lipid vesicles. This process is independent of the phase transition of the lipid and effectively restores the specific binding activity of the receptor protein. The insensitivity of the resulting lipid-protein complex to ionic strength provides evidence for a hydrophobic interaction. There is a perturbation of the lipid phase transition concomitant with addition of the protein. Circular dichroism studies indicate that the protein undergoes a conformational change on association with lipid. Binding of specific ligand produces further physical changes in the receptor as indicated by alterations in the tryptophan fluorescence quenching pattern.

  5. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor

    PubMed Central

    1983-01-01

    Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116

  6. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins.

    PubMed Central

    McPhaul, M; Berg, P

    1986-01-01

    The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162

  7. Effective Hepatocyte Transplantation Using Rat Hepatocytes with Low Asialoglycoprotein Receptor Expression

    PubMed Central

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-01-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 × 105 cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied ∼76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for ∼12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes. PMID:15277224

  8. Effective hepatocyte transplantation using rat hepatocytes with low asialoglycoprotein receptor expression.

    PubMed

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-08-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 x 10(5) cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied approximately 76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for approximately 12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes.

  9. Functional Consequences of Mannose and Asialoglycoprotein Receptor Ablation*

    PubMed Central

    Mi, Yiling; Coonce, Marcy; Fiete, Dorothy; Steirer, Lindsay; Dveksler, Gabriela; Townsend, R. Reid; Baenziger, Jacques U.

    2016-01-01

    The mannose receptor (ManR, Mrc1) and asialoglycoprotein receptor (ASGR, Asgr1 and Asgr2) are highly abundant endocytic receptors expressed by sinusoidal endothelial cells and parenchymal cells in the liver, respectively. We genetically manipulated either receptor individually or in combination, revealing phenotypic changes in female and male mice associated with changes in circulating levels of many glycoproteins. Both receptors rise and fall in response to progesterone during pregnancy. Thirty percent of Asgr2−/− and 65% of Mrc1−/−Asgr2−/− mice are unable to initiate parturition at the end of pregnancy, whereas Mrc1−/− mice initiate normally. Twenty five percent of Mrc1−/−Asgr2−/− male mice develop priapism when mating due to thrombosis of the penile vein, but neither Mrc1−/− nor Asgr2−/− mice do so. The half-life for luteinizing hormone (LH) clearance increases in Mrc1−/− and Mrc1−/−Asgr2−/− mice but not in Asgr2−/− mice; however, LH and testosterone are elevated in all three knockouts. The ManR clears LH thus regulating testosterone production, whereas the ASGR appears to mediate clearance of an unidentified glycoprotein that increases LH levels. More than 40 circulating glycoproteins are elevated >3.0-fold in pregnant Mrc1−/−Asgr2−/− mice. Pregnancy-specific glycoprotein 23, undetectable in WT mice (<50 ng/ml plasma), reaches levels of 1–10 mg/ml in the plasma of Mrc1−/−Asgr2−/− and Asgr2−/− mice, indicating it is cleared by the ASGR. Elevation of multiple coagulation factors in Mrc1−/−Asgr2−/− mice may account for priapism seen in males. These male and female phenotypic changes underscore the key roles of the ManR and ASGR in controlling circulating levels of numerous glycoproteins critical for regulating reproductive hormones and blood coagulation. PMID:27405760

  10. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  11. Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells

    PubMed Central

    1987-01-01

    After receptor-mediated uptake, asialoglycoproteins are routed to lysosomes, while transferrin is returned to the medium as apotransferrin. This sorting process was analyzed using 3,3'- diaminobenzidine (DAB) cytochemistry, followed by Percoll density gradient cell fractionation. A conjugate of asialoorosomucoid (ASOR) and horseradish peroxidase (HRP) was used as a ligand for the asialoglycoprotein receptor. Cells were incubated at 0 degree C in the presence of both 131I-transferrin and 125I-ASOR/HRP. Endocytosis of prebound 125I-ASOR/HRP and 131I-transferrin was monitored by cell fractionation on Percoll density gradients. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation gave rise to a density shift of 125I-ASOR/HRP-containing vesicles due to HRP-catalyzed DAB polymerization. An identical change in density for 125I-transferrin and 125I-ASOR/HRP, induced by DAB cytochemistry, is taken as evidence for the concomitant presence of both ligands in the same compartment. At 37 degrees C, sorting of the two ligands occurred with a half-time of approximately 2 min, and was nearly completed within 10 min. The 125I-ASOR/HRP-induced shift of 131I-transferrin was completely dependent on the receptor-mediated uptake of 125I-ASOR/HRP in the same compartment. In the presence of a weak base (0.3 mM primaquine), the recycling of transferrin receptors was blocked. The cell surface transferrin receptor population was decreased within 6 min to 15% of its original size. DAB cytochemistry showed that sorting between endocytosed 131I-transferrin and 125I-ASOR/HRP was also blocked in the presence of primaquine. These results indicate that transferrin and asialoglycoprotein are taken up via the same compartments and that segregation of the transferrin-receptor complex and asialoglycoprotein occurs very efficiently soon after uptake. PMID:3032986

  12. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  13. Soluble asialoglycoprotein receptors reflect the apoptosis of hepatocytes.

    PubMed

    Kakegawa, Tetsuji; Ise, Hirohiko; Sugihara, Nobuhiro; Nikaido, Toshio; Negishi, Naoki; Akaike, Toshihiro; Tanaka, Eiji

    2002-01-01

    Cell death is thought to take place through at least two distinct processes: apoptosis and necrosis. There is increasing evidence that dysregulation of the apoptotic program is involved in liver diseases. However, there is no method to simply evaluate apoptosis in the liver tissue at present. It has been reported that the expression of asialoglycoprotein receptors (AGPRs) increases with apoptosis, but there is no report until now that investigates the influence of soluble AGPRs on apoptosis of hepatocytes. Soluble AGPRs have been reported to be present in human serum under physiological conditions. In the present study, in order to investigate the correlation between apoptosis of hepatocytes and soluble AGPR, mouse soluble AGPRs were detected using SDS-PAGE and Western blot analysis was conducted using anti-extracellular mouse hepatic lectin-1 (Ex-MHL-1) antiserum (polyclonal rabbit serum). The mouse soluble AGPRs were present in culture medium and mouse serum when hepatocytes were damaged. The soluble AGPRs increased proportionately, as the number of dead hepatocytes increased. In addition, soluble AGPRs existed more when apoptotic cell death was observed in in vitro and in vivo than when necrotic cell death was observed. The extracellular moiety of MHL-1 exists in the culture medium and mouse serum as a soluble AGPR, but the detailed mechanism of releasing soluble AGPR from hepatocytes has not been revealed yet. We described the first evidence for the relation between quantity of soluble AGPRs with two kinds of cell death: necrosis and apoptosis. Based on the results of our study, soluble AGPRs might become a new marker of apoptosis in the liver tissue and be useful for clinical diagnosis and treatment for liver diseases.

  14. Evidence for an asialoglycoprotein receptor on nonparenchymal cells for O-linked glycoproteins.

    PubMed

    Stefanich, Eric G; Ren, Song; Danilenko, Dimitry M; Lim, Amy; Song, An; Iyer, Suhasini; Fielder, Paul J

    2008-11-01

    B cell-activating factor receptor 3 (BR3)-Fc is an IgG1-receptor dimeric fusion protein that has multiple O-linked glycosylation sites and sialylation levels that can vary in the manufacturing process. Increased sialic acid levels resulted from increased site occupancy with the O-linked N-acetylgalactosamine (GalNAc-Gal), but because the ratio of sialic acid per mole of oligosaccharide remained approximately 1, this led to increased asialo terminal GalNAc. Previous studies have demonstrated an effect of terminal asialo Gal or GalNAc on the clearance of glycoproteins due to uptake and degradation by lectin receptors in the liver. However, the previous studies examined N-linked oligosaccharides, and there are less data regarding O-linked oligosaccharides. The objective of these studies was to determine the effects on the pharmacokinetics and distribution of the asialo terminal GalNAc and varying amounts of sialic acid residues on BR3-Fc. The results of the data presented here suggest that exposed Gal on the desialylated BR3-Fc led to rapid clearance due to uptake and degradation in the liver that was associated with nonparenchymal cells. It is interesting to note that the data indicated a decreased clearance and increased exposure of BR3-Fc as the sialic acid levels increased, even though increased sialic acid was associated with increased asialo GalNAc. Therefore, the exposed GalNAc did not seem to play a role in the clearance of BR3-Fc; although the Gal linked to the hydroxyl group at position 3 may have prevented an interaction. Because we did not see uptake of desialylated BR3-Fc in hepatocytes where the asialoglycoprotein receptor is localized, this nonparenchymal cell lectin may have preference for O-linked glycoproteins.

  15. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  16. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments

    PubMed Central

    1985-01-01

    The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191

  17. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma.

    PubMed

    Pranatharthiharan, Sandhya; Patel, Mitesh D; Malshe, Vinod C; Pujari, Vaishali; Gorakshakar, Ajit; Madkaikar, Manisha; Ghosh, Kanjaksha; Devarajan, Padma V

    2017-11-01

    We report asialoglycoprotein receptor (ASGPR)-targeted doxorubicin hydrochloride (Dox) nanoparticles (NPs) for hepatocellular carcinoma (HCC). Polyethylene sebacate (PES)-Gantrez® AN 119 Dox NPs of average size 220 nm with PDI < 0.62 and ∼20% Dox loading were prepared by modified nanoprecipitation. ASGPR ligands, pullulan (Pul), arabinogalactan (AGn), and the combination (Pul-AGn), were anchored by adsorption. Ligand anchoring enabled high liver uptake with a remarkable hepatocyte:nonparenchymal cell ratio of 85:15. Furthermore, Pul-AGn NPs exhibited an additive effect implying incredibly high hepatocyte accumulation. Galactose-mediated competitive inhibition confirmed ASGPR-mediated uptake of ligand-anchored NPs in HepG2 cell lines. Subacute toxicity in rats confirmed the safety of the NP groups. However, histopathological evaluation suggested mild renal toxicity of AGn. Pul NPs revealed sustained reduction in tumor volume in PLC/PRF/5 liver tumor-bearing Nod/Scid mice up to 46 days. Extensive tumor necrosis, reduced collagen content, reduction in the HCC biomarker serum α-fetoprotein (p < 0.05), a mitotic index of 1.135 (day 46), and tumor treated/tumor control (T/C) values of <0.42 signified superior efficacy of Pul NPs. Furthermore, weight gain in the NP groups, and no histopathological alterations indicated that they were well tolerated by the mice. The high efficacy coupled with greater safety portrayed Pul Dox NPs as a promising nanocarrier for improved therapy of HCC.

  18. Constant serum levels of secreted asialoglycoprotein receptor sH2a and decrease with cirrhosis

    PubMed Central

    Benyair, Ron; Kondratyev, Maria; Veselkin, Elena; Tolchinsky, Sandra; Shenkman, Marina; Lurie, Yoav; Lederkremer, Gerardo Z

    2011-01-01

    AIM: To investigate the existence and levels of sH2a, a soluble secreted form of the asialoglycoprotein receptor in human serum. METHODS: Production of recombinant sH2a and development of a monoclonal antibody and an enzyme-linked immunosorbent assay (ELISA). This assay was used to determine the presence and concentration of sH2a in human sera of individuals of both sexes and a wide range of ages. RESULTS: The recombinant protein was produced successfully and a specific ELISA assay was developed. The levels of sH2a in sera from 62 healthy individuals varied minimally (147 ± 19 ng/mL). In contrast, 5 hepatitis C patients with cirrhosis showed much decreased sH2a levels (50 ± 9 ng/mL). CONCLUSION: Constant sH2a levels suggest constitutive secretion from hepatocytes in healthy individuals. This constant level and the decrease with cirrhosis suggest a diagnostic potential. PMID:22219600

  19. Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes.

    PubMed

    Ise, H; Sugihara, N; Negishi, N; Nikaido, T; Akaike, T

    2001-07-13

    Development of a reliable method to isolate highly proliferative potential hepatocytes will provide insight into the molecular mechanisms of liver regeneration, as well as proving crucial for the development of a biohybrid artificial liver. The aim of this study is to isolate highly proliferative, e.g., progenitor-like, hepatocytes. To this end, we fractionated hepatocytes expressing low and high levels of the asialoglycoprotein receptor (ASGP-R) based on the difference in their adhesion to poly[N-p-vinylbenzyl-O-beta-d-galactopyranosyl-(1-->4)-d-gluconamide] (PVLA), and examined the proliferative activity and gene expression of these fractionated hepatocytes. The results showed that approximately 0.5 to 1% of the total number of hepatocytes, which showed low adhesion to PVLA, expressed low levels of the ASGP-R, while the rest of hepatocyte population with high adhesion to PVLA expressed high levels of the ASGP-R. Interestingly hepatocytes with low ASGP-R expression levels had much higher DNA synthesizing activity (i.e., are much more proliferative) than those with high ASGP-R expression levels. Moreover, hepatocytes with low ASGP-R expression levels expressed higher levels of epidermal growth factor receptor (EGF-R), CD29 (beta1 integrin) and CD49f (alpha6 integrin) and lower levels of glutamine synthetase than those with high ASGP-R expression. These findings suggested that hepatocytes with low adhesion to PVLA due to their low ASGP-R expression could be potential candidates for progenitor-like hepatocytes due to their high proliferative capacity; hence, the low expression of the ASGP-R could be a unique marker for progenitor hepatocytes. The isolation of hepatocytes with different functional phenotypes using PVLA may provide a new research tool for a better understanding of the biology of hepatocytes and the mechanisms regulating their proliferation and differentiation in health and disease. Copyright 2001 Academic Press.

  20. Studies on the liver sequestration of lymphocytes bearing membrane-associated galactose-terminal glycoconjugates: reversal with agents that effectively compete for the asialoglycoprotein receptor.

    PubMed

    Samlowski, W E; Spangrude, G J; Daynes, R A

    1984-10-15

    The removal of "effete" glycoproteins from the circulation represents a proposed physiologic role for the hepatocyte asialoglycoprotein receptor. Our experiments support the hypothesis that this receptor may also be directly involved in the removal from the circulation of cells bearing asialoglycoconjugates. We report that the enhanced liver localization of neuraminidase-treated lymphocytes can be competitively inhibited by the coinjection of asialofetuin (ASF). Fetuin itself was without effect. Competitive inhibition of the liver receptor allowed normal localization to lymphoid tissues of the enzyme-treated lymphocytes, a condition which persisted as long as free ASF was present in the circulation. Our studies support the concept that cell surface carbohydrates play an important role in the tissue distribution of circulating lymphocytes. The process of thymocyte maturation, bone marrow transplantation, and the adoptive immunotherapy with continuous T-cell lines represent conditions where recirculation potential may be influenced by the presence of galactose terminal glycoconjugates.

  1. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  2. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  3. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  4. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  5. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  6. A Secreted Form of the Asialoglycoprotein Receptor, sH2a, as a Novel Potential Noninvasive Marker for Liver Fibrosis

    PubMed Central

    Lurie, Yoav; Ron, Efrat; Santo, Moshe; Reif, Shimon; Elashvili, Irma; Bar, Lana; Lederkremer, Gerardo Z.

    2011-01-01

    Background and Aim The human asialoglycoprotein receptor is a membrane heterooligomer expressed exclusively in hepatocytes. A soluble secreted form, sH2a, arises, not by shedding at the cell surface, but by intracellular cleavage of its membrane-bound precursor, which is encoded by an alternatively spliced form of the receptor H2 subunit. Here we determined and report that sH2a, present at constant levels in serum from healthy individuals is altered upon liver fibrosis, reflecting the status of hepatocyte function. Methods We measured sH2a levels in serum using a monoclonal antibody and an ELISA assay that we developed, comparing with routine liver function markers. We compared blindly pretreatment serum samples from a cohort of 44 hepatitis C patients, which had METAVIR-scored biopsies, with 28 healthy individuals. Results sH2a levels varied minimally for the healthy individuals (150±21 ng/ml), whereas the levels deviated from this normal range increasingly in correlation with fibrosis stage. A simple algorithm combining sH2a levels with those of alanine aminotransferase allowed prediction of fibrosis stage, with a very high area under the ROC curve of 0.86. Conclusions sH2a has the potential to be a uniquely sensitive and specific novel marker for liver fibrosis and function. PMID:22096539

  7. The two subunits of the human asialoglycoprotein receptor have different fates when expressed alone in fibroblasts

    PubMed Central

    Shia, Michael A.; Lodish, Harvey F.

    1989-01-01

    Two related polypeptides, H1 and H2, comprise the human asialoglycoprotein receptor (ASGP-R). Stable lines of murine NIH 3T3 fibroblasts expressing H1 alone or H2 alone do not bind or internalize the ligand asialoorosomucoid (ASOR), which contains triantennary oligosaccharides. In contrast, cells expressing H1 and H2 together bind and degrade ASOR with properties indistinguishable from those of the ASPG-R in human hepatoma HepG2 cells. Whether or not H2 is coexpressed, H1 is synthesized as a 40-kDa precursor bearing high-mannose oligosaccharides, processed to its mature 46-kDa form, and transported to the cell surface. In cells expressing only H1, homodimers and -trimers of H1 are formed. In contrast, when expressed in 3T3 cells without H1, H2 is synthesized as its 43-kDa precursor, bearing high-mannose oligosaccharides, but is rapidly degraded. When H1 and H2 are coexpressed in the same cell, the H1 polypeptide “rescues” the H2 polypeptide; H2 is processed to its characteristic 50-kDa mature form and is transported to the surface. We conclude that the human ASGP-R is a multichain heterooligomer, probably a trimer of H1 molecules in noncovalent association with one, two, or three H2 molecules, and that the two polypeptides normally interact early in biosynthesis. Images PMID:2919187

  8. Toxic ligand conjugates as tools in the study of receptor-ligand interactions.

    PubMed

    Herschman, H R; Simpson, D L; Cawley, D B

    1982-01-01

    We have constructed hybrid proteins in which the toxic A chains of ricin or diptheria toxin have been linked to either asialofetuin, fetuin, or epidermal growth factor (EGF). Both ASF-RTA and ASF-DTA are potent toxins on cultured rat hepatocytes, cells that display the asialoglycoprotein receptor. Toxicity of these two compounds is restricted to hepatocytes and can be blocked by asialoglycoproteins but not the native glycoproteins or asialoagalactoglycoprotein derivatives, indicating that the toxicity of the conjugates is mediated by the hepatic asialoglycoprotein receptor. The EGF-RTA conjugate is an extremely potent toxin on cells that can bind the hormone, but is only poorly effective on cells that are unable to bind EGF. The EGF-DTA conjugate, in contrast, is unable to kill 3T3 cells and is at least two orders of magnitude less effective than EGF-RTA on A431 cells, a cell line with 1-2 X 10(6) EGF receptors per cell. However, when EGF-RTA and EGF-DTA were tested on primary liver hepatocyte cultures, which were susceptible to both ASF-RTA and ASF-DTA, both EGF conjugates were potent toxins. Sensitivity of the hepatocyte cultures to ricin toxicity increases slightly during a 52-hr culture period. In contrast, sensitivity to EGF-RTA and ASF-RTA decline dramatically during this period. Receptors for both ligands remain plentiful on the cell surface during this time.

  9. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies.

    PubMed

    Kim, Eun-Mi; Jeong, Hwan-Jeong; Park, In-Kyu; Cho, Chong-Su; Moon, Hyung-Bae; Yu, Dae-Yeul; Bom, Hee-Seung; Sohn, Myung-Hee; Oh, In-Joon

    2005-11-28

    The asialoglycoprotein receptor (ASGP-R) on the hepatocyte membrane is a specific targeting marker for gene and drug delivery. Polyethylenimine (PEI) is a polycationic nonviral vector that is used for gene transfer. We have synthesized galactosylated polyethylenimine-graft-poly(ethylene glycol) (GPP) for performing gene delivery to the hepatocytes. The present study reports on the in vitro and in vivo data that was achieved in hepatoma bearing transgenic mice. The cytotoxicity was decreased with the increasing PEG content. The particle size of the complex was increased with the increasing PEG at an N/P ratio of 3.0, while the zeta potentials were decreased. The (99m)Tc labeled complexes were transfected into HepG2 and HeLa cells, while the GFP reporter genes were mainly expressed in the HepG2 cells. The in vivo data was achieved in ALB/c-Ha-ras transgenic mice. (99m)Tc labeled GPP(50)/DNA was injected into the mice via the tail vein, and the gamma images were acquired at 5, 15 and 30 min. The (99m)Tc labeled complexes were mainly localized in the heart and liver, and they were excreted through the kidneys. The GFP gene was mainly expressed in the proliferating cells at the tumor periphery. This result was confirmed by PCNA staining. The GPP(50)/DNA complexes were bound to ASGP-R of the proliferating hepatocytes in vitro and in vivo. The present results demonstrate the feasibility of nonviral gene transfer using galactosylated PEI-PEG in vivo.

  10. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    PubMed Central

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  12. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  13. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  14. Detection of Circulating Tumor Cells in Hepatocellular Carcinoma Using Antibodies against Asialoglycoprotein Receptor, Carbamoyl Phosphate Synthetase 1 and Pan-Cytokeratin

    PubMed Central

    Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng

    2014-01-01

    Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545

  15. trans-Golgi retention of a plasma membrane protein: mutations in the cytoplasmic domain of the asialoglycoprotein receptor subunit H1 result in trans-Golgi retention

    PubMed Central

    1995-01-01

    Unlike the wild-type asialoglycoprotein receptor subunit H1 which is transported to the cell surface, endocytosed and recycled, a mutant lacking residues 4-33 of the 40-amino acid cytoplasmic domain was found to be retained intracellularly upon expression in different cell lines. The mutant protein accumulated in the trans-Golgi, as judged from the acquisition of trans-Golgi-specific modifications of the protein and from the immunofluorescence staining pattern. It was localized to juxtanuclear, tubular structures that were also stained by antibodies against galactosyltransferase and gamma-adaptin. The results of further mutagenesis in the cytoplasmic domain indicated that the size rather than the specific sequence of the cytoplasmic domain determines whether H1 is retained in the trans-Golgi or transported to the cell surface. Truncation to less than 17 residues resulted in retention, and extension of a truncated tail by an unrelated sequence restored surface transport. The transmembrane segment of H1 was not sufficient for retention of a reporter molecule and it could be replaced by an artificial apolar sequence without affecting Golgi localization. The cytoplasmic domain thus appears to inhibit interaction(s) of the exoplasmic portion of H1 with trans-Golgi component(s) for example by steric hindrance or by changing the positioning of the protein in the membrane. This mechanism may also be functional in other proteins. PMID:7615632

  16. Dynamic interactions of the asialoglycoprotein receptor subunits with coated pits. Enhanced interactions of H2 following association with H1.

    PubMed

    Katzir, Z; Nardi, N; Geffen, I; Fuhrer, C; Henis, Y I

    1994-08-26

    Lateral mobility studies comparing native and mutated membrane proteins, combined with treatments that alter clathrin lattice structure, can measure membrane protein-coated pit interactions in intact cells (Fire, E., Zwart, D., Roth, M. G., and Henis, Y. I. (1991) J. Cell Biol. 115, 1585-1594). We applied this approach to study the interactions of the H1 and H2 human asialoglycoprotein receptor subunits with coated pits. The lateral mobilities of singly expressed and coexpressed H1 and H2B (the H2 species that reaches the cell surface) were measured by fluorescence photobleaching recovery. They were compared with mutant proteins, H1(5A) (Tyr-5 replaced by Ala) and H2(5A) (Phe-5 replaced by Ala). While the mobile fractions of H1, H2B, and their mutants were similar, the lateral diffusion rate (measured by D, the lateral diffusion coefficient) was significantly slower for H1, whether expressed alone or with H2B. Coexpression with H1 reduced D of H2B to that of H1. Disruption of the clathrin lattices by hypertonic medium elevated D of H1, H1(5A), H2B, and H2(5A) to the same final level, without affecting their mobile fractions. Cytosol acidification, which retains altered clathrin lattices attached to the membrane and prevents coated vesicle formation, immobilized part of the H1 molecules, reflecting stable entrapment in "frozen" coated pits. H1(5A), H2B, and H2(5A) were not affected; however, coexpression of H2B with H1 conferred the sensitivity to cytosol acidification on H2B. Our results suggest that H1 lateral mobility is inhibited by dynamic interactions with coated pits in which Tyr-5 is involved. H2B resembles H1(5A) rather than H1, and its interactions with coated pits are weaker; efficient interaction of H2B with coated pits depends on complex formation with H1.

  17. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.

    PubMed

    Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip

    2018-06-01

    PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.

  18. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor.

    PubMed

    Farooqi, I Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E; O'Rahilly, Stephen

    2007-01-18

    A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations--7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. Copyright 2007 Massachusetts Medical Society.

  19. Clinical and Molecular Genetic Spectrum of Congenital Deficiency of the Leptin Receptor

    PubMed Central

    Farooqi, I. Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M.; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T.; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A.; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E.; O'Rahilly, Stephen

    2009-01-01

    BACKGROUND A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. METHODS We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. RESULTS Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations — 7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. CONCLUSIONS The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. PMID:17229951

  20. Leptin- and Leptin Receptor-Deficient Rodent Models: Relevance for Human Type 2 Diabetes

    PubMed Central

    Wang, Bingxuan; P., Charukeshi Chandrasekera; Pippin, John J.

    2014-01-01

    Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor-based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management. PMID:24809394

  1. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes.

    PubMed

    Wang, Bingxuan; Chandrasekera, P Charukeshi; Pippin, John J

    2014-03-01

    Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor- based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management.

  2. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  3. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.

    PubMed

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi

    2016-12-01

    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D 2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A 1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A 2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS. Published by Elsevier Ltd.

  4. Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity.

    PubMed

    Mori, Marcelo A; Araújo, Ronaldo C; Reis, Felipe C G; Sgai, Daniela G; Fonseca, Raphael G; Barros, Carlos C; Merino, Vanessa F; Passadore, Mariana; Barbosa, Ana M; Ferrari, Bernard; Carayon, Pierre; Castro, Charlles H M; Shimuta, Suma I; Luz, Jacqueline; Bascands, Jean-Loup; Schanstra, Joost P; Even, Patrick C; Oliveira, Suzana M; Bader, Michael; Pesquero, João B

    2008-06-01

    Kinins mediate pathophysiological processes related to hypertension, pain, and inflammation through the activation of two G-protein-coupled receptors, named B(1) and B(2). Although these peptides have been related to glucose homeostasis, their effects on energy balance are still unknown. Using genetic and pharmacological strategies to abrogate the kinin B(1) receptor in different animal models of obesity, here we present evidence of a novel role for kinins in the regulation of satiety and adiposity. Kinin B(1) receptor deficiency in mice (B(1)(-/-)) resulted in less fat content, hypoleptinemia, increased leptin sensitivity, and robust protection against high-fat diet-induced weight gain. Under high-fat diet, B(1)(-/-) also exhibited reduced food intake, improved lipid oxidation, and increased energy expenditure. Surprisingly, B(1) receptor deficiency was not able to decrease food intake and adiposity in obese mice lacking leptin (ob/ob-B(1)(-/-)). However, ob/ob-B(1)(-/-) mice were more responsive to the effects of exogenous leptin on body weight and food intake, suggesting that B(1) receptors may be dependent on leptin to display their metabolic roles. Finally, inhibition of weight gain and food intake by B(1) receptor ablation was pharmacologically confirmed by long-term administration of the kinin B(1) receptor antagonist SSR240612 to mice under high-fat diet. Our data suggest that kinin B(1) receptors participate in the regulation of the energy balance via a mechanism that could involve the modulation of leptin sensitivity.

  5. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  6. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  7. Pharmacological endothelin receptor interaction does not occur in veins from ET(B) receptor deficient rats.

    PubMed

    Thakali, Keshari; Galligan, James J; Fink, Gregory D; Gariepy, Cheryl E; Watts, Stephanie W

    2008-07-01

    Heterodimerization of G-protein coupled receptors can alter receptor pharmacology. ET A and ET B receptors heterodimerize when co-expressed in heterologous expression lines. We hypothesized that ET A and ET B receptors heterodimerize and pharmacologically interact in vena cava from wild-type (WT) but not ET B receptor deficient (sl/sl) rats. Pharmacological endothelin receptor interaction was assessed by comparing ET-1-induced contraction in rings of rat thoracic aorta and thoracic vena cava from male Sprague Dawley rats under control conditions, ET A receptor blockade (atrasentan, 10 nM), ET B receptor blockade (BQ-788, 100 nM) or ET B receptor desensitization (Sarafotoxin 6c, 100 nM) and ET A plus ET B receptor blockade or ET A receptor blockade plus ET B receptor desensitization. In addition, similar pharmacological ET receptor antagonism experiments were performed in rat thoracic aorta and vena cava from WT and sl/sl rats. ET A but not ET B receptor blockade or ET B receptor desensitization inhibited aortic and venous ET-1-induced contraction. In vena cava but not aorta, when ET B receptors were blocked (BQ-788, 100 nM) or desensitized (S6c, 100 nM), atrasentan caused a greater inhibition of ET-1-induced contraction. Vena cava from WT but not sl/sl rats exhibited similar pharmacological ET receptor interaction. Immunocytochemistry was performed on freshly dissociated aortic and venous vascular smooth muscle cells to determine localization of ET A and ET B receptors. ET A and ET B receptors qualitatively co-localized more strongly to the plasma membrane of aortic compared to venous vascular smooth muscle cells. Our data suggest that pharmacological ET A and ET B receptor interaction may be dependent on the presence of functional ET B receptors and independent of receptor location.

  8. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  9. Increased ethanol preference and serotonin 1A receptor-dependent attenuation of ethanol-induced hypothermia in PACAP-deficient mice.

    PubMed

    Tanaka, Kazuhiro; Kunishige-Yamamoto, Akiko; Hashimoto, Hitoshi; Shintani, Norihito; Hayata, Atsuko; Baba, Akemichi

    2010-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice display remarkable behavioral changes including increased novelty-seeking behavior and reduced hypothermia induced by either serotonin (5-HT)(1A) receptor agonists or ethanol. Because 5-HT(1A) receptors have been implicated in the development of alcohol dependence, we have examined ethanol preference in PACAP-deficient mice using a two-bottle choice and a conditioned place preference test, as well as additive effects of ethanol and 5-HT(1A) receptor agents on hypothermia. PACAP-deficient mice showed an increased preference towards ethanol compared with wild-type mice. However, they showed no preference for the ethanol compartment after conditioning and neither preference nor aversion to sucrose or quinine. The 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) restored the attenuated hypothermic response to ethanol in the mutants to similar levels in wild-type mice, with no effect in wild-types. In contrast, the 5-HT(1A) receptor antagonist WAY-100635 attenuated the ethanol-induced hypothermia in wild-type mice, with no effect in the mutants. These results demonstrate increased ethanol preference in PACAP-deficient mice that may be mediated by 5-HT(1A) receptor-dependent attenuation of ethanol-induced central inhibition. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  11. Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3.

    PubMed

    Bhat, Mehrajuddin; Noolu, Bindu; Qadri, Syed S Y H; Ismail, Ayesha

    2014-10-01

    The vitamin D endocrine system is functional in the adipose tissue, as demonstrated in vitro, in cultured adipocytes, and in vivo in mutant mice that developed altered lipid metabolism and fat storage in the absence of either 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or the vitamin D receptor. The aim of the present study was to examine the role of vitamin D and calcium on body adiposity in a diet-induced vitamin D deficient rat model. Vitamin D-deficient rats gained less weight and had lower amounts of visceral fat. Consistent with reduced adipose tissue mass, the vitamin D-deficient rats had low circulating levels of leptin, which reflects body fat stores. Expression of vitamin D and calcium sensing receptors, and that of genes involved in adipogenesis such as peroxisome proliferator-activated receptor, fatty acid synthase and leptin were significantly reduced in white adipose tissue of deficient rats compared to vitamin D-sufficient rats. Furthermore, the expression of uncoupling proteins (Ucp1 and Ucp2) was elevated in the white adipose tissue of the deficient rat indicative of higher energy expenditure, thereby leading to a lean phenotype. Expression of the p160 steroid receptor coactivator3 (SRC3), a key regulator of adipogenesis in white adipose tissue was decreased in vitamin D-deficient state. Interestingly, most of the changes observed in vitamin D deficient rats were corrected by calcium supplementation alone. Our data demonstrates that dietary vitamin D and calcium regulate adipose tissue function and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis

    PubMed Central

    de Diego, Rebeca Pérez; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Puel, Anne; Plancoulaine, Sabine; Picard, Capucine; Herman, Melina; Cardon, Annabelle; Durandy, Anne; Bustamante, Jacinta; Vallabhapurapu, Sivakumar; Bravo, Jerónimo; Warnatz, Klaus; Chaix, Yves; Cascarrigny, Françoise; Lebon, Pierre; Rozenberg, Flore; Karin, Michael; Tardieu, Marc; Al-Muhsen, Saleh; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2010-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple receptors that induce interferon-α (IFN-α), IFN–β and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here we reported the autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele was a loss-of-expression, loss-of-function, dominant-negative phenotype, and was associated with impaired, but not abolished TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency was associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3. Highlight sentence Autosomal dominant TRAF3 deficiency is a genetic etiology of herpes simplex encephalitis. Highlight sentence R118W TRAF3 allele is loss-of-function, loss-of-expression, and dominant-negative. Highlight sentence Human TRAF3 deficiency impairs the TLR3-dependent induction of anti-viral interferons. PMID:20832341

  13. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  14. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    PubMed

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  15. Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: actions of an alternative urokinase receptor and LDL receptor-related protein.

    PubMed

    Zhang, Guoqiang; Cai, Xiaohe; López-Guisa, Jesús M; Collins, Sarah J; Eddy, Allison A

    2004-08-01

    The urokinase receptor (uPAR) attenuates myofibroblast recruitment and fibrosis in the kidney. This study examined the role of uPAR and its co-receptor LDL receptor-related protein (LRP) in the regulation of kidney fibroblast proliferation and extracellular signal-regulated kinase (ERK) signaling. Compared with uPAR+/+ cells, uPAR-/- kidney fibroblasts were hyperproliferative. UPAR-/- fibroblast proliferation was 60% inhibited by an ERK kinase inhibitor. LRP protein was reduced and extracellular accumulation of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) proteins were greater in uPAR-/- cultures. Addition of functional uPA protein or LRP antisense RNA significantly increased ERK signaling and cell mitosis in both genotypes. Enhanced uPAR-/- fibroblast proliferation was reversed by a recombinant nonfunctional uPA peptide. The density of cell-bound fluor-uPA was similar between uPAR-/- and uPAR+/+ fibroblasts (78 +/- 6 versus 92 +/- 16 units). These data suggest that uPAR-deficient kidney fibroblasts express lower levels of its scavenger co-receptor LRP, resulting in greater extracellular accumulation of uPA and PAI-1. Enhanced proliferation of uPAR-/- fibroblasts seems to be mediated by uPA-dependent ERK signaling via an alternative urokinase receptor.

  16. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse.

    PubMed

    Weiland, Tracey J; Voudouris, Nicholas J; Kent, Stephen

    2004-09-15

    The present study explored the contribution of type 2 cholecystokinin (CCK) receptors in energy regulation. A total of 78 CCK2 receptor-deficient mice and 80 wild-type controls were acclimated to a 12:12 light-dark cycle at 30 +/- 1 degrees C. Using a computer-monitored biotelemetry system, circadian patterns of body temperature, food intake, and activity were monitored for 4 days. Body weight and water consumption were manually recorded during this period. Results indicate that CCK2 receptor invalidation produces elevated body temperature during both the photophase and scotophase (by 0.38 and 0.12 degrees C, respectively), increased body weight (29.3 +/- 0.2 vs. 26.8 +/- 0.2 g) and water consumption (4.1 +/- 0.1 vs. 3.2 +/- 0.1 ml), and decreased scotophase locomotor activity (WT: 7.0 +/- 0.2 vs. KO: 6.1 +/- 0.2 counts/min). These findings suggest an important role for CCK2 receptors in processes underlying energy regulation during basal and possibly pathological states.

  17. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  18. An unusual case of iron deficiency anemia is associated with extremely low level of transferrin receptor.

    PubMed

    Hao, Shuangying; Li, Huihui; Sun, Xiaoyan; Li, Juan; Li, Kuanyu

    2015-01-01

    A case study of a female patient, diagnosed with iron deficiency anemia, was unresponsive to oral iron treatment and only partially responsive to parenteral iron therapy, a clinical profile resembling the iron-refractory iron deficiency anemia (IRIDA) disorder. However, the patient failed to exhibit microcytic phenotype, one of the IRIDA hallmarks. Biochemical assays revealed that serum iron, hepcidin, interluekin 6, and transferrin saturation were within the normal range of references or were comparable to her non-anemic offspring. Iron contents in serum and red blood cells and hemoglobin levels were measured, which confirmed the partial improvement of anemia after parenteral iron therapy. Strikingly, serum transferrin receptor in patient was almost undetectable, reflecting the very low activity of bone-marrow erythropoiesis. Our data demonstrate that this is not a case of systemic iron deficiency, but rather cellular iron deficit due to the low level of transferrin receptor, particularly in erythroid tissue.

  19. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    PubMed

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  20. Parkin Deficiency Reduces Hippocampal Glutamatergic Neurotransmission by Impairing AMPA Receptor Endocytosis.

    PubMed

    Cortese, Giuseppe P; Zhu, Mei; Williams, Damian; Heath, Sarah; Waites, Clarissa L

    2016-11-30

    Mutations in the gene encoding Parkin, an E3 ubiquitin ligase, lead to juvenile-onset Parkinson's disease by inducing the selective death of midbrain dopaminergic neurons. Accumulating evidence indicates that Parkin also has an important role in excitatory glutamatergic neurotransmission, although its precise mechanism of action remains unclear. Here, we investigate Parkin's role at glutamatergic synapses of rat hippocampal neurons. We find that Parkin-deficient neurons exhibit significantly reduced AMPA receptor (AMPAR)-mediated currents and cell-surface expression, and that these phenotypes result from decreased postsynaptic expression of the adaptor protein Homer1, which is necessary for coupling AMPAR endocytic zones with the postsynaptic density. Accordingly, Parkin loss of function leads to the reduced density of postsynaptic endocytic zones and to impaired AMPAR internalization. These findings demonstrate a novel and essential role for Parkin in glutamatergic neurotransmission, as a stabilizer of postsynaptic Homer1 and the Homer1-linked endocytic machinery necessary for maintaining normal cell-surface AMPAR levels. Mutations in Parkin, a ubiquitinating enzyme, lead to the selective loss of midbrain dopaminergic neurons and juvenile-onset Parkinson's disease (PD). Parkin loss of function has also been shown to alter hippocampal glutamatergic neurotransmission, providing a potential explanation for PD-associated cognitive impairment. However, very little is known about Parkin's specific sites or mechanisms of action at glutamatergic synapses. Here, we show that Parkin deficiency leads to decreased AMPA receptor-mediated activity due to disruption of the postsynaptic endocytic zones required for maintaining proper cell-surface AMPA receptor levels. These findings demonstrate a novel role for Parkin in synaptic AMPA receptor internalization and suggest a Parkin-dependent mechanism for hippocampal dysfunction that may explain cognitive deficits associated with

  1. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  2. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency.

    PubMed

    Kohlsdorf, Katja; Nunziata, Adriana; Funcke, Jan-Bernd; Brandt, Stephanie; von Schnurbein, Julia; Vollbach, Heike; Lennerz, Belinda; Fritsch, Maria; Greber-Platzer, Susanne; Fröhlich-Reiterer, Elke; Luedeke, Manuel; Borck, Guntram; Debatin, Klaus-Michael; Fischer-Posovszky, Pamela; Wabitsch, Martin

    2018-02-27

    To evaluate whether early childhood body mass index (BMI) is an appropriate indicator for monogenic obesity. A cohort of n = 21 children living in Germany or Austria with monogenic obesity due to congenital leptin deficiency (group LEP, n = 6), leptin receptor deficiency (group LEPR, n = 6) and primarily heterozygous MC4 receptor deficiency (group MC4R, n = 9) was analyzed. A control group (CTRL) was defined that consisted of n = 22 obese adolescents with no mutation in the above mentioned genes. Early childhood (0-5 years) BMI trajectories were compared between the groups at selected time points. The LEP and LEPR group showed a tremendous increase in BMI during the first 2 years of life with all patients displaying a BMI >27 kg/m 2 (27.2-38.4 kg/m 2 ) and %BMI P95 (percentage of the 95th percentile BMI for age and sex) >140% (144.8-198.6%) at the age of 2 years and a BMI > 33 kg/m 2 (33.3-45.9 kg/m 2 ) and %BMI P95  > 184% (184.1-212.6%) at the age of 5 years. The MC4R and CTRL groups had a later onset of obesity with significantly lower BMI values at both time points (p < 0.01). As result of the investigation of early childhood BMI trajectories in this pediatric cohort with monogenic obesity we suggest that BMI values >27.0 kg/m 2 or %BMI P95  > 140% at the age of 2 years and BMI values >33.0 kg/m 2 or %BMI P95  > 184% at the age of 5 years may be useful cut points to identify children who should undergo genetic screening for monogenic obesity due to functionally relevant mutations in the leptin gene or leptin receptor gene.

  3. High dose androgen therapy in male pseudohermaphroditism due to 5 alpha-reductase deficiency and disorders of the androgen receptor.

    PubMed

    Price, P; Wass, J A; Griffin, J E; Leshin, M; Savage, M O; Large, D M; Bu'Lock, D E; Anderson, D C; Wilson, J D; Besser, G M

    1984-10-01

    We describe the clinical and biochemical features of six men with male pseudohermaphroditism due to androgen resistance. Each of the subjects had male-gender behavior but incomplete virilization. The underlying defects in androgen metabolism were defined by studies of the 5 alpha-reductase enzyme and the androgen receptor in fibroblasts cultured from biopsies of genital skin. Four of the six have 5 alpha-reductase deficiency, and two have defects of the androgen receptor (the Reifenstein syndrome). The responses of these men to androgen treatment were assessed by monitoring nitrogen balance, plasma luteinizing hormone (LH) values, and clinical parameters of virilization including penile growth, potency and ejaculatory volume, muscle bulk, and growth of body and facial hair. In all of the subjects with 5 alpha-reductase deficiency and one man with the Reifenstein syndrome significant response occurred, as evidence by nitrogen retention, lowered plasma LH levels, and improved virilization, with doses of parenteral testosterone esters that raised plasma testosterone levels above the normal male range and brought plasma dihydrotestosterone levels into the normal male range. The subject who did not respond with clinical virilization nevertheless showed nitrogen retention in response to acute testosterone administration. This patient had a profound deficiency of the androgen receptor, whereas the man with a receptor defect who did respond clinically to therapy had normal amounts of a qualitatively abnormal receptor. We conclude that high dose androgen therapy may be of benefit in improving virilization, self-image, and sexual performance in subjects with 5 alpha-reductase deficiency who have male-gender behavior and in some subjects with defects of the androgen receptor.

  4. Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1

    PubMed Central

    Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan

    2009-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases. PMID:19479052

  5. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity.

    PubMed

    Wasim, Muhammad; Awan, Fazli Rabbi; Najam, Syeda Sadia; Khan, Abdul Rehman; Khan, Haq Nawaz

    2016-10-01

    Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity.

  6. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase.

    PubMed

    Gao, Yuanqing; Vidal-Itriago, Andrés; Milanova, Irina; Korpel, Nikita L; Kalsbeek, Martin J; Tom, Robby Zachariah; Kalsbeek, Andries; Hofmann, Susanna M; Yi, Chun-Xia

    2018-01-01

    Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory.

    PubMed

    Moraga-Amaro, Rodrigo; González, Hugo; Ugalde, Valentina; Donoso-Ramos, Juan Pablo; Quintana-Donoso, Daisy; Lara, Marcelo; Morales, Bernardo; Rojas, Patricio; Pacheco, Rodrigo; Stehberg, Jimmy

    2016-04-01

    Pharmacological evidence associates type I dopamine receptors, including subtypes D1 and D5, with learning and memory. Analyses using genetic approaches have determined the relative contribution of dopamine receptor D1 (D1R) in cognitive tasks. However, the lack of drugs that can discriminate between D1R and D5R has made the pharmacological distinction between the two receptors difficult. Here, we aimed to determine the role of D5R in learning and memory. In this study we tested D5R knockout mice and wild-type littermates in a battery of behavioral tests, including memory, attention, locomotion, anxiety and motivational evaluations. Our results show that genetic deficiency of D5R significantly impairs performance in the Morris water maze paradigm, object location and object recognition memory, indicating a relevant role for D5R in spatial memory and recognition memory. Moreover, the lack of D5R resulted in decreased exploration and locomotion. In contrast, D5R deficiency had no impact on working memory, anxiety and depressive-like behavior, measured using the spontaneous alternation, open-field, tail suspension test, and forced swimming test. Electrophysiological analyses performed on hippocampal slices showed impairment in long-term-potentiation in mice lacking D5R. Further analyses at the molecular level showed that genetic deficiency of D5R results in a strong and selective reduction in the expression of the NMDA receptor subunit NR2B in the hippocampus. These findings demonstrate the relevant contribution of D5R in memory and suggest a functional interaction of D5R with hippocampal glutamatergic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CRF2 Receptor Deficiency Eliminates the Long-Lasting Vulnerability of Motivational States Induced by Opiate Withdrawal

    PubMed Central

    Morisot, Nadège; Rouibi, Khalil; Contarino, Angelo

    2015-01-01

    Vulnerability to stressful life events is a hallmark of drug dependence that may persist long after cessation of drug intake and dramatically fuel key clinical features, such as deregulated up-shifted motivational states and craving. However, to date, no effective therapy is available for reducing vulnerability to stressful events in former drug users and drug-dependent patients, mostly because of poor knowledge of the mechanisms underlying it. In this study, we report that genetic inactivation of the stress-responsive corticotropin-releasing factor receptor-2 (CRF2−/−) completely eliminates the reemergence of increased nonrewarded nose-pokes, reflecting up-shifted motivational states, triggered by ethological environmental stressors long after cessation of morphine administration in mice. Accordingly, CRF2 receptor deficiency completely abolishes the increase in biomarkers of synthesis of major brain motivational substrates, such as ventral tegmental area (VTA) dopamine (DA) and amygdala γ-aminobutyric acid (GABA) systems, associated with the stress-induced reemergence of up-shifted motivational states long after opiate withdrawal. Nevertheless, neither CRF2 receptor deficiency nor long-term opiate withdrawal affects amygdala CRF or hypothalamus CRF expression, indicating preserved brain stress-coping systems. Moreover, CRF2 receptor deficiency does not influence the locomotor or the anxiety-like effect of long-term opiate withdrawal. Thus, the present results reveal an essential and specific role for the CRF2 receptor in the stress-induced reemergence of up-shifted motivational states and related alterations in brain motivational systems long after opiate withdrawal. These findings suggest new strategies for the treatment of the severe and long-lasting vulnerability that inexorably follows drug withdrawal and hinder drug abstinence. PMID:25672976

  9. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    PubMed Central

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  10. Expression and localization of taste receptor genes in the vallate papillae of rats: effect of zinc deficiency.

    PubMed

    Ikeda, Atsuo; Sekine, Hiroki; Takao, Kyoichi; Ikeda, Minoru

    2013-09-01

    We found a difference in expression sites between TAS2Rs and ENaC (epithelial sodium channels). The number of TAS2R-positive cells and ENaC-positive cells were decreased in zinc-deficient diet rats. These findings suggest that decreased expression of taste receptor genes may play an important role in the onset of zinc deficiency-associated taste disorder. The present study was aimed at histologically investigating the expression and localization of TAS2Rs and ENaC in the vallate taste buds of rats. Changes in expression of the taste receptor genes in zinc-deficient rats were also investigated. The vallate papillae of five rats fed a normal diet and five rats fed a zinc-deficient diet were used. In situ hybridization was performed to investigate the expression and localization of TAS2Rs and ENaC. TAS2R-positive cells per taste bud were counted, and differences in number between the normal and zinc-deficient diet rats were investigated. In the normal rats, expression of TAS2Rs was observed specifically in the taste bud cells. In contrast, ENaC-positive cells were observed in a part of the taste bud cells and a large number of epithelial cells. Fewer cells were positive for TAS2Rs and ENaC in the zinc-deficient diet rats.

  11. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  12. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  13. Estrogen receptor alpha deficiency modulates TLR ligand mediated PDC-TREM expression in plasmacytoid dendritic cells in lupus prone mice

    PubMed Central

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; EuDaly, Jackie G; Gilkeson, Gary S

    2016-01-01

    Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease. PMID:26553076

  14. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB.

    PubMed

    Mohamadi, Ali; Martari, Marco; Holladay, Cindy D; Phillips, John A; Mullis, Primus E; Salvatori, Roberto

    2009-07-01

    Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. We hypothesized that mAchR mutations may cause a subset of familial IGHD. After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.

  15. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems.

    PubMed

    Yan, Jing-Jun; Liao, Jia-Zhi; Lin, Ju-Sheng; He, Xing-Xing

    2015-01-01

    Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research.

  16. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor.

    PubMed

    Tsou, Ryan C; Rak, Kimberly S; Zimmer, Derek J; Bence, Kendra K

    2014-06-01

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B(-/-)) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb(-/-)) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B(-/-):LepRb(-/-)) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb(-/-) mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway.

  17. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less

  18. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muta, K.; Nishimura, J.; Ideguchi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia veramore » compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.« less

  19. Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor.

    PubMed

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru

    2015-06-01

    Anemia is a common comorbidity of patients with heart failure, and iron deficiency is known as one of the causes of anemia in heart failure. Recent studies have shown that iron deficiency alone, without overt anemia, is associated with poor outcomes in patients with heart failure. Thus, to minimize the mortality in patients with heart failure, it is important to understand the link between iron deficiency and cardiac function. Chronic untreated iron deficiency results in cardiac remodeling, and we have previously reported that erythropoietin (Epo) and cardiac Epo receptor (EpoR) signaling may be associated with its remodeling. However, the link between EpoR signaling and its remodeling remains to be elucidated. Herein, we investigated the role of EpoR signaling on cardiac remodeling in response to chronic iron deficiency. Wild-type mice and transgene-rescued EpoR-null mutant mice, which express EpoR only in the hematopoietic lineage (EpoR-restricted mice), were fed with either a normal or an iron-restricted diet, and the molecular mechanisms were investigated. Dietary iron restriction gradually induced anemia, Epo secretion, and cardiac hypertrophy in wild-type mice. In contrast, EpoR-restricted mice fed with an iron-restricted diet exhibited anemia, left ventricular dilatation, and cardiac dysfunction compared with wild-type mice. Interestingly, altered cardiac mitochondrial biogenesis was observed in EpoR-restricted mice following iron deficiency. Moreover, cardiac p53 expression was increased in EpoR-restricted mice compared with wild-type mice following iron deficiency. These data indicate that EpoR signaling is associated with cardiac remodeling following chronic iron deficiency.

  20. Glycosylation of immunoglobulin A influences its receptor binding.

    PubMed

    Basset, C; Devauchelle, V; Durand, V; Jamin, C; Pennec, Y L; Youinou, P; Dueymes, M

    1999-12-01

    Immunoglobulin A (IgA), which is heavily glycosylated, interacts with a variety of receptors, e.g. the asialoglycoprotein receptor (ASGP-R), which binds terminal galactose residues, and the Fcalpha receptor (FcalphaRI). It has thus been proposed that elevated serum levels of IgA in primary Sjögren's syndrome (pSS) are caused by its defective clearance. To test this hypothesis, we developed a method (based on sialyl transferases eluted from a hepatoma cell line) to increase the amount of sialic acid (SA) on IgA, and used a battery of IgA1- and IgA2-specific glycosidases to reduce this amount. Binding of IgA1 and IgA2 to ASGP-R and FcalphaRI was found to be sugar dependent because oversialylated IgA bound less than native or desialylated IgA. However, individual sugars did not play a direct role in this binding. Given that IgA are oversialylated in pSS, defective clearance of IgA may indeed be ascribed to an excess of SA in IgA1 and IgA2.

  1. IgA Fc receptors.

    PubMed

    Monteiro, Renato C; Van De Winkel, Jan G J

    2003-01-01

    The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.

  2. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  3. Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.

    PubMed

    Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.

  4. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    PubMed

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  5. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  6. Dopamine receptor D3 deficiency results in chronic depression and anxiety.

    PubMed

    Moraga-Amaro, Rodrigo; Gonzalez, Hugo; Pacheco, Rodrigo; Stehberg, Jimmy

    2014-11-01

    Over the last decade accumulating evidence suggests that brain dopamine (DA) has a role in depression, particularly given the high comorbidity of depression with Parkinson's Disease (PD) and the antidepressant effects of the DA receptor subtype 3 (D3R) agonist pramipexole. The present study assesses the role of D3R in depression. Here we hypothesized that D3R mediates the antidepressant effects of DA. Thus, genetic deficiency of D3R in D3R knockout (D3RKO) mice would yield animals with chronic depressive symptoms. Whereas D3R deficient mice did not show significant alterations in locomotion when tested in the openfield, these animals showed anxiety-like symptoms measured as a significant increase in thigmotaxis at the openfield and a significantly lower time spent in the lit compartment at the light/dark exploration test. D3RKO animals also showed depressive-like symptoms as measured by increased immobility time in the Porsolt forced swim test and the tail suspension test, as well as anhedonia measured in the non-motor dependent sucrose test. In conclusion, D3R deficiency results in anxiety-like and depressive-like symptoms that cannot be attributed to motor dysfunction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Credibility of the measurement of serum ferritin and transferrin receptor as indicators of iron deficiency anemia in hemodialysis patients.

    PubMed

    Mahdavi, M R; Makhlough, A; Kosaryan, M; Roshan, P

    2011-10-01

    Anemia is a common complication in uremic patients. Erythropoietin therapy is prescribed in these cases; however, this treatment is not successful in iron deficient patients. Ferritin-based diagnosis of iron deficiency in these patients is a challenging task, as serum ferritin level may be high due to chronic inflammation and mask iron deficiency. In the current study we evaluated the credibility of another indicator of body iron supply, serum transferrin receptor, in hemodialysis patients in two University-based Hospitals in North of Iran. In a cross-sectional study, 53 hemodialysis patients with a mean age of 56 +/- 18.7 years and 30 persons with iron deficiency and normal renal function with a mean age of 20.1 +/- 14.4 years were examined. All hemodialysis patients were on hemodialysis 2-3 times per week for 3-4 hours. All cases were examined for blood hemoglobin content, serum iron, CRP, serum ferritin and serum transferrin receptor levels. The reference ranges introduced by manufacturers were considered as standard ranges for analysis of the results. Using one sample T-test and Fisher's exact test, data were analyzed. p<0.05 was considered as significant. Hemodialysis patients had blood hemoglobin content below normal range (p<0.05 for men, p<0.001 for women) and CRP levels above normal range (p<0.001). In hemodialysis patients, serum ferritin level was significantly higher than control group (p<0.001), whilst serum transferrin receptor levels in the two groups were not significantly different (p=0.69), and both were above defined normal upper limit (p<0.001 for iron deficient patients; p<0.05 for hemodialysis patients). This study showed measurement of serum ferritin in the presence of chronic inflammation induced by renal failure cannot be a credible indicator of body iron supply, while under this certain condition serum transferrin receptor can more appropriately reflect the amount of body iron supply.

  8. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  9. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    PubMed

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  10. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.

    PubMed

    Omodaka, Kazuko; Nishiguchi, Koji M; Yasuda, Masayuki; Tanaka, Yuji; Sato, Kota; Nakamura, Orie; Maruyama, Kazuichi; Nakazawa, Toru

    2014-10-24

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Proton Pump Inhibitor and Histamine-2 Receptor Antagonist Use and Iron Deficiency.

    PubMed

    Lam, Jameson R; Schneider, Jennifer L; Quesenberry, Charles P; Corley, Douglas A

    2017-03-01

    Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) suppress gastric acid production, which can inhibit iron absorption. However, few data exist regarding whether these medications increase the risk of clinical iron deficiency. A community-based case-control study evaluated the association between acid-suppressing medication use and the subsequent risk of iron deficiency. It contrasted 77,046 patients with new iron deficiency diagnoses (January 1999-December 2013), with 389,314 controls. Medication exposures, outcomes, and potential confounders used electronic databases. We excluded patients with pre-existing risk factors for iron deficiency. Associations were estimated using conditional logistic regression. Among cases, 2343 (3.0%) received a prior ≥2-year supply of PPIs and 1063 (1.4%) received H2RAs (without PPI use). Among controls, 3354 (0.9%) received a prior ≥2-year supply of PPIs and 2247 (0.6%) H2RAs. Both ≥2 years of PPIs (adjusted odds ratio, 2.49; 95% confidence interval, 2.35-2.64) and ≥2 years of H2RAs (odds ratio, 1.58; 95% CI, 1.46-1.71) were associated with an increased subsequent risk for iron deficiency. Among PPI users, the associations were stronger for higher daily doses (>1.5 vs <0.75 PPI pills/d; P value interaction = .004) and decreased after medication discontinuation (P-trend < .001). Some of the strongest associations were among persons taking >1.5 pills per day for at least 10 years (odds ratio, 4.27; 95% CI, 2.53-7.21). No similar strong associations were found for other commonly used prescription medications. Among patients without known risk factors for iron deficiency, gastric acid inhibitor use for ≥2 years was associated with an increased subsequent risk of iron deficiency. The risk increased with increasing potency of acid inhibition and decreased after medication discontinuation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin.

    PubMed

    Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric

    2006-02-01

    Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.

  13. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  14. Hypocretin Receptor Expression in Canine and Murine Narcolepsy Models and in Hypocretin-Ligand Deficient Human Narcolepsy

    PubMed Central

    Mishima, Kazuo; Fujiki, Nobuhiro; Yoshida, Yasushi; Sakurai, Takeshi; Honda, Makoto; Mignot, Emmanuel; Nishino, Seiji

    2008-01-01

    Study Objective: To determine whether hypocretin receptor gene (hcrtR1 and hcrtR2) expression is affected after long-term hypocretin ligand loss in humans and animal models of narcolepsy. Design: Animal and human study. We measured hcrtR1 and hcrtR2 expression in the frontal cortex and pons using the RT-PCR method in murine models (8-week-old and 27-week-old orexin/ataxin-3 transgenic (TG) hypocretin cell ablated mice and wild-type mice from the same litter, 10 mice for each group), in canine models (8 genetically narcoleptic Dobermans with null mutations in the hcrtR2, 9 control Dobermans, 3 sporadic ligand-deficient narcoleptics, and 4 small breed controls), and in humans (5 narcolepsy-cataplexy patients with hypocretin deficiency (average age 77.0 years) and 5 control subjects (72.6 years). Measurement and Results: 27-week-old (but not 8-week-old) TG mice showed significant decreases in hcrtR1 expression, suggesting the influence of the long-term ligand loss on the receptor expression. Both sporadic narcoleptic dogs and human narcolepsy-cataplexy subjects showed a significant decrease in hcrtR1 expression, while declines in hcrtR2 expression were not significant in these cases. HcrtR2-mutated narcoleptic Dobermans (with normal ligand production) showed no alteration in hcrtR1 expression. Conclusions: Moderate declines in hcrtR expressions, possibly due to long-term postnatal loss of ligand production, were observed in hypocretin-ligand deficient narcoleptic subjects. These declines are not likely to be progressive and complete. The relative preservation of hcrtR2 expression also suggests that hypocretin based therapies are likely to be a viable therapeutic options in human narcolepsy-cataplexy. Citation: Mishima K; Fujiki N; Yoshida Y; Sakurai T; Honda M; Mignot E; Nishino S. Hypocretin receptor expression in canine and murine narcolepsy models and in hypocretin-ligand deficient human narcolepsy. SLEEP 2008;31(8):1119-1126. PMID:18714784

  15. How Ebola and Marburg Viruses Battle the Immune System

    DTIC Science & Technology

    2007-07-01

    macrophages, neutrophils) Asialoglycoprotein receptor ( hepatocytes ) TLR Other? NP VP35 VP40 GP VP30 VP24 L 3′ 5′ Cell-surface GP Filovirus Matrix... hepatocytes are particularly susceptible, elevated liver enzymes are among the first telling signs of disease and liver damage seems to account for much...of monocytic origin (such as immature DCs) also promotes filoviral entry10. Another C-type lectin, the asialoglycoprotein *US Army Medical Research

  16. Synthesis of galactosyl compounds for targeted gene delivery.

    PubMed

    Ren, T; Zhang, G; Liu, D

    2001-11-01

    Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.

  17. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    PubMed Central

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  18. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  19. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    PubMed

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P < 0.05). All the aforesaid indices all decreased in the ZP group and the YP group, with statistical difference when compared with the model group (P < 0.05). The protein expressions of NR2A and NR2B in hippocamus were lower in the model group than in the blank control group (P < 0.05). But when compared with the model group, they were obviously higher in the ZP group and the YP group (P < 0.05). SDC rats had degenerated learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  20. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    PubMed

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of

  1. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.

    PubMed

    Aksentijevich, Ivona; Masters, Seth L; Ferguson, Polly J; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D; Sandler, Netanya G; Plass, Nicole; Stone, Deborah L; Turner, Maria L; Hill, Suvimol; Butman, John A; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R; Chapelle, Dawn; Clarke, Gillian I; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D; Gregersen, Peter K; van Hagen, P Martin; Hak, A Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C; Remmers, Elaine F; Kastner, Daniel L; Goldbach-Mansky, Raphaela

    2009-06-04

    Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) 2009 Massachusetts Medical Society

  2. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  3. Neuropeptide Y and agouti-related peptide mediate complementary functions of hyperphagia and reduced energy expenditure in leptin receptor deficiency.

    PubMed

    Luo, Na; Marcelin, Genevieve; Liu, Shun Mei; Schwartz, Gary; Chua, Streamson

    2011-03-01

    Neuropeptide Y (NPY) and agouti-related peptide (AGRP) can produce hyperphagia, reduce energy expenditure, and promote triglyceride deposition in adipose depots. As these two neuropeptides are coexpressed within the hypothalamic arcuate nucleus and mediate a major portion of the obesity caused by leptin signaling deficiency, we sought to determine whether the two neuropeptides mediated identical or complementary actions. Because of separate neuropeptide receptors and signal transduction mechanisms, there is a possibility of distinct encoding systems for the feeding and energy expenditure aspects of leptin-regulated metabolism. We have genetically added NPY deficiency and/or AGRP deficiency to LEPR deficiency isolated to AGRP cells. Our results indicate that the obesity of LEPR deficiency in AGRP/NPY neurons can produce obesity with either AGRP or NPY alone with AGRP producing hyperphagia while NPY promotes reduced energy expenditure. The absence of both NPY and AGRP prevents the development of obesity attributable to isolated LEPR deficiency in AGRP/NPY neurons. Operant behavioral testing indicated that there were no alterations in the reward for a food pellet from the AGRP-specific LEPR deficiency.

  4. Neuropeptide Y and Agouti-Related Peptide Mediate Complementary Functions of Hyperphagia and Reduced Energy Expenditure in Leptin Receptor Deficiency

    PubMed Central

    Luo, Na; Marcelin, Genevieve; Liu, Shun Mei; Schwartz, Gary

    2011-01-01

    Neuropeptide Y (NPY) and agouti-related peptide (AGRP) can produce hyperphagia, reduce energy expenditure, and promote triglyceride deposition in adipose depots. As these two neuropeptides are coexpressed within the hypothalamic arcuate nucleus and mediate a major portion of the obesity caused by leptin signaling deficiency, we sought to determine whether the two neuropeptides mediated identical or complementary actions. Because of separate neuropeptide receptors and signal transduction mechanisms, there is a possibility of distinct encoding systems for the feeding and energy expenditure aspects of leptin-regulated metabolism. We have genetically added NPY deficiency and/or AGRP deficiency to LEPR deficiency isolated to AGRP cells. Our results indicate that the obesity of LEPR deficiency in AGRP/NPY neurons can produce obesity with either AGRP or NPY alone with AGRP producing hyperphagia while NPY promotes reduced energy expenditure. The absence of both NPY and AGRP prevents the development of obesity attributable to isolated LEPR deficiency in AGRP/NPY neurons. Operant behavioral testing indicated that there were no alterations in the reward for a food pellet from the AGRP-specific LEPR deficiency. PMID:21285324

  5. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  6. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-02-26

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility.

  7. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  8. Neonatal growth restriction-related leptin deficiency enhances leptin-triggered sympathetic activation and central angiotensin II receptor-dependent stress-evoked hypertension.

    PubMed

    Peotta, Veronica; Rahmouni, Kamal; Segar, Jeffrey L; Morgan, Donald A; Pitz, Kate M; Rice, Olivia M; Roghair, Robert D

    2016-08-01

    Neonatal growth restriction (nGR) leads to leptin deficiency and increases the risk of hypertension. Previous studies have shown nGR-related hypertension is normalized by neonatal leptin (nLep) and exacerbated by psychological stress. With recent studies linking leptin and angiotensin signaling, we hypothesized that nGR-induced nLep deficiency increases adult leptin sensitivity; leading to leptin- or stress-induced hypertension, through a pathway involving central angiotensin II type 1 receptors. We randomized mice with incipient nGR, by virtue of their presence in large litters, to vehicle or physiologic nLep supplementation (80 ng/g/d). Adult caloric intake and arterial pressure were monitored at baseline, during intracerebroventricular losartan infusion and during systemic leptin administration. nGR increased leptin-triggered renal sympathetic activation and hypertension with increased leptin receptor expression in the arcuate nucleus of the hypothalamus; all of those nGR-associated phenotypes were normalized by nLep. nGR mice also had stress-related hyperphagia and hypertension, but only the stress hypertension was blocked by central losartan infusion. nGR leads to stress hypertension through a pathway that involves central angiotensin II receptors, and nGR-associated leptin deficiency increases leptin-triggered hypertension in adulthood. These data suggest potential roles for preservation of neonatal growth and nLep supplementation in the prevention of nGR-related hypertension.

  9. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  10. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  11. Haematopoietic leptin receptor deficiency does not affect macrophage accumulation in adipose tissue or systemic insulin sensitivity.

    PubMed

    Gutierrez, Dario A; Hasty, Alyssa H

    2012-03-01

    The adipokine leptin is primarily produced by white adipose tissue (AT) and is a potent monocyte/macrophage chemoattractant in vitro. The long form of the leptin receptor (LepR) is required for monocyte/macrophage chemotaxis towards leptin. In this study, we examined the effects of haematopoietic LepR as well as LepR with C-C chemokine receptor 2 (CCR2) deficiency (double knockout (DKO)) on macrophage recruitment to AT after two different periods of high fat diet (HFD) feeding. Briefly, 8-week-old C57BL/6 mice were transplanted with bone marrow (BM) from Lepr(+/+), Lepr(-/-) or DKO donors (groups named BM-Lepr(+/+), BM-Lepr(-/-) and BM-DKO respectively), and were placed on an HFD for 6 or 12 weeks. At the end of the study, macrophage infiltration and the inflammatory state of AT were evaluated by real-time RT-PCR, histology and flow cytometry. In addition, glucose and insulin tolerance were assessed at both time points. Our results showed no differences in macrophage accumulation or AT inflammatory state between the BM-Lepr(+/+) and BM-Lepr(-/-) mice after 6 or 12 weeks of HFD feeding; any effects observed in the BM-DKO were attributed to the haematopoietic deficiency of CCR2. In addition, no changes in glucose or insulin tolerance were observed between groups after either period of HFD feeding. Our findings suggest that although leptin is a potent chemoattractant in vitro, haematopoietic LepR deficiency does not affect macrophage accumulation in AT in early to moderate stages of diet-induced obesity.

  12. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury

    PubMed Central

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M.

    2014-01-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα−/− (M-ERRα−/−) mice after injury by intramuscular cardiotoxin injection. M-ERRα−/− mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα−/− muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (−45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα−/− muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.—LaBarge, S., McDonald, M., Smith-Powell, L., Auwerx, J., Huss, J. M. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury. PMID:24277576

  13. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-09

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Genetics Home Reference: familial glucocorticoid deficiency

    MedlinePlus

    ... familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J ... short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012 Mar;122(3):814- ...

  15. Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice.

    PubMed

    Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son

    2014-01-01

    Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.

  16. Interleukin 1 Receptor Antagonist Deficiency Presenting as Infantile Pustulosis Mimicking Infantile Pustular Psoriasis

    PubMed Central

    Minkis, Kira; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Magro, Cynthia; Scott, Rachelle; Davis, Jessica G.; Sardana, Niti; Herzog, Ronit

    2012-01-01

    Background Deficiency of interleukin 1 receptor antagonist (DIRA) is a recently described autoinflammatory syndrome of skin and bone caused by recessive mutations in the gene encoding the interleukin 1 receptor antagonist. Few studies have been published about this debilitating condition. Early identification is critical for targeted lifesaving intervention. Observations A male infant, born to nonconsanguineous Puerto Rican parents, was referred for management of a pustular eruption diagnosed as pustular psoriasis. At 2 months of age, the infant developed a pustular eruption. After extensive evaluation, he was confirmed to be homozygous for a 175-kb genomic deletion on chromosome 2 that includes the IL1RN gene, commonly found in Puerto Ricans. Therapy with anakinra was initiated, with rapid clearance of skin lesions and resolution of systemic inflammation. Conclusions Recent identification of DIRA as a disease entity, compounded by the limited number of reported cases, makes early identification difficult. It is critical to consider this entity in the differential diagnosis of infantile pustulosis. Targeted therapy with the recombinant human interleukin 1 receptor antagonist anakinra can be lifesaving if initiated early. A high carrier frequency of the 175-kb DIRA-associated genomic deletion in the Puerto Rican population strongly supports testing infants presenting with unexplained pustulosis in patients from this geographic region. PMID:22431714

  17. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    PubMed

    Radigan, Kathryn A; Morales-Nebreda, Luisa; Soberanes, Saul; Nicholson, Trevor; Nigdelioglu, Recep; Cho, Takugo; Chi, Monica; Hamanaka, Robert B; Misharin, Alexander V; Perlman, Harris; Budinger, G R Scott; Mutlu, Gökhan M

    2014-01-01

    During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients. We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl) or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity. The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival. Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  19. Is there altered sensitivity to ghrelin-receptor ligands in leptin-deficient mice?: importance of satiety state and time of day.

    PubMed

    Finger, Beate C; Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2011-08-01

    Several fine-tuned and interconnected hypothalamic peptidergic systems orchestrate the regulation of energy homeostasis in the body. The orexigenic peptide ghrelin and the anorexigenic peptide leptin are among the most important, and both have been implicated in the development of eating disorders from obesity to anorexia nervosa. The goal of these studies was to examine the response of leptin-deficient ob/ob mice in ghrelin-receptor ligands in a food intake task. Changes in cumulative food intake were measured after peripheral administration of ghrelin (1 and 2 nmol/10 g) and the ghrelin-receptor antagonist (D-Lys(3))-GHRP-6 (66.6 and 133.3 nmol/10 g) in obese and lean control mice during the light and dark cycle as well as in a state of food restriction. Hypothalamic ghrelin and ghrelin-receptor expression was measured in ob/ob and lean mice at two different timepoints. Ghrelin increased food intake in lean and obese mice in the light and dark cycle, whereas the ghrelin-receptor antagonist caused significantly stronger reduction in food intake in obese mice only in the dark cycle. After fasting, ob/ob mice displayed decreased light cycle sensitivity to the anorexigenic effects of the ghrelin-receptor antagonist. Hypothalamic expression levels of ghrelin were unaltered during the light cycle but decreased during the dark cycle in ob/ob mice; whereas, although unchanged in the light cycle, ghrelin-receptor expression was increased in the dark cycle in obese mice. The functionality and sensitivity of the ghrelinergic system is dependent on the time of day and the satiety state in leptin-deficient ob/ob mice.

  20. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  1. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  2. An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist

    PubMed Central

    Aksentijevich, Ivona; Masters, Seth L.; Ferguson, Polly J.; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W.; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D.; Sandler, Netanya G.; Plass, Nicole; Stone, Deborah L.; Turner, Maria L.; Hill, Suvimol; Butman, John A.; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I.; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R.; Chapelle, Dawn; Clarke, Gillian I.; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D.; Gregersen, Peter K.; van Hagen, P. Martin; Hak, A. Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C.; Remmers, Elaine F.; Kastner, Daniel L.; Goldbach-Mansky, Raphaela

    2010-01-01

    Background Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1–receptor antagonist, with prominent involvement of skin and bone. Methods We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1–receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1–pathway genes including IL1RN. Results We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from the Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1–family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1β stimulation. Patients treated with anakinra responded rapidly. Conclusions We propose the term deficiency of the interleukin-1–receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1–receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) PMID:19494218

  3. Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: evidence of defective M-cell formation in vivo.

    PubMed

    Westphal, Sabine; Lügering, Andreas; von Wedel, Julia; von Eiff, Christof; Maaser, Christian; Spahn, Thomas; Heusipp, Gerhard; Schmidt, M Alexander; Herbst, Hermann; Williams, Ifor R; Domschke, Wolfram; Kucharzik, Torsten

    2008-03-01

    M cells, specialized cells within Peyer's patches (PPs), are reduced in number in chemokine receptor 6 (CCR6)-deficient mice. The pathogenic microorganism Yersinia enterocolitica exploits M cells for the purpose of mucosal tissue invasion exclusively through PPs. The aim of this study was to evaluate the course of yersiniosis in CCR6-deficient mice and to investigate whether these mice might be used as an in vivo model to determine M-cell function. After oral challenge with Y. enterocolitica, control mice suffered from lethal septic infection whereas CCR6-deficient mice showed very limited symptoms of infection. Immunohistochemical analysis demonstrated PP invasion by Y. enterocolitica in control mice whereas no bacteria could be found in CCR6-deficient mice. In addition, a significant induction of proinflammatory cytokines could be found in control mice whereas proinflammatory cytokine levels in CCR6-deficient mice remained unchanged. In contrast, intraperitoneal infection resulted in severe systemic yersiniosis in both mouse groups. Abrogated oral Y. enterocolitica infection in CCR6-deficient mice demonstrates the importance of CCR6 expression in the physiological and pathological immune responses generated within PPs by influencing M-cell differentiation, underscoring the important role of M cells in the process of microbial uptake. CCR6-deficient mice may therefore represent a suitable model for the study of M-cell function in vivo.

  4. GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation*

    PubMed Central

    Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835

  5. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice.

    PubMed

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S

    2015-12-15

    Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    PubMed

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  7. Toll-like receptor 9 deficiency impacts sensory and motor behaviors.

    PubMed

    Khariv, Veronika; Pang, Kevin; Servatius, Richard J; David, Brian T; Goodus, Matthew T; Beck, Kevin D; Heary, Robert F; Elkabes, Stella

    2013-08-01

    Toll-like receptors (TLRs) mediate the induction of the innate immune system in response to pathogens, injury and disease. However, they also play non-immune roles and are expressed in the central nervous system (CNS) during prenatal and postnatal stages including adulthood. Little is known about their roles in the CNS in the absence of pathology. Several members of the TLR family have been implicated in the development of neural and cognitive function although the contribution of TLR9 to these processes has not been well defined. The current studies were undertaken to determine whether developmental TLR9 deficiency affects motor, sensory or cognitive functions. We report that TLR9 deficient (TLR9(-/-)) mice show a hyper-responsive sensory and motor phenotype compared to wild type (TLR9(+/+)) controls. This is indicated by hypersensitivity to thermal stimuli in the hot plate paw withdrawal test, enhanced motor-responsivity under anxious conditions in the open field test and greater sensorimotor reactivity in the acoustic startle response. Prepulse inhibition (PPI) of the acoustic startle response was also enhanced, which indicates abnormal sensorimotor gating. In addition, subtle, but significant, gait abnormalities were noted in the TLR9(-/-) mice on the horizontal balance beam test with higher foot slip numbers than TLR9(+/+) controls. In contrast, spatial learning and memory, assessed by the Morris water maze, was similar in the TLR9(-/-) and TLR9(+/+) mice. These findings support the notion that TLR9 is important for the appropriate development of sensory and motor behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing.

    PubMed

    Rouet, Romain; Thuma, Benjamin A; Roy, Marc D; Lintner, Nathanael G; Rubitski, David M; Finley, James E; Wisniewska, Hanna M; Mendonsa, Rima; Hirsh, Ariana; de Oñate, Lorena; Compte Barrón, Joan; McLellan, Thomas J; Bellenger, Justin; Feng, Xidong; Varghese, Alison; Chrunyk, Boris A; Borzilleri, Kris; Hesp, Kevin D; Zhou, Kaihong; Ma, Nannan; Tu, Meihua; Dullea, Robert; McClure, Kim F; Wilson, Ross C; Liras, Spiros; Mascitti, Vincent; Doudna, Jennifer A

    2018-05-30

    CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.

  9. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  10. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase

  11. The role of serum transferrin receptor in the diagnosis of iron deficiency.

    PubMed

    Remacha, A F; Sarda, M P; Parellada, M; Ubeda, J; Manteiga, R

    1998-11-01

    Iron deficiency anemia (IDA) is often associated with inflammatory disorders. The most conventional parameters of iron metabolism are therefore affected, making the evaluation of iron status difficult. Serum transferrin receptor (sTfR) levels are raised in iron deficiency but are not influenced by inflammatory changes. The aim of this study was to investigate the role of sTfR in differentiating IDA with inflammatory features. A diagnostic study of sTfR measured by immunoassay was carried out in IDA and anemia of chronic disorders (ACD). The cut-off points of sTfR and the ratio of sTfR/serum ferritin, which were obtained after comparing IDA and ACD, were applied to a group of 64 patients with mixed iron patterns (MIX) (16 with ACD and 48 with IDA). The best cut-off point of sTfR between IDA and ACD was 4.7 mg/L. Applying this cut-off to the MIX group, an efficiency of 87% was obtained (sensitivity 92% and specificity 81%). This level of sTfR correctly classified 53 out of 64 cases of the MIX group (83%). Using the ratio of sTfRx 100/serum ferritin, the best cut-off point was 8 (efficiency 100%), which correctly classified 62 out of 64 cases of the MIX group (97%). This study demonstrates that sTfR in conjunction with other iron parameters is very useful in iron deficiency evaluation, especially in hospital practice. Iron treatment should be considered in patients with mixed patterns of iron status, in which the diagnosis of IDA versus ACD is difficult, when the levels of sTfR exceed the cut-off point.

  12. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  13. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  14. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  15. The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice.

    PubMed

    Tseng, Hsiu-Ting; Park, Young Joo; Lee, Yoon Kwang; Moore, David D

    2015-05-08

    Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.

  16. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  17. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    PubMed Central

    Rana, Kesha; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. PMID:24480924

  18. Activities of dl-α-Difluoromethylarginine and Polyamine Analogues against Cryptosporidium parvum Infection in a T-Cell Receptor Alpha-Deficient Mouse Model▿

    PubMed Central

    Yarlett, Nigel; Waters, W. Ray; Harp, James A.; Wannemuehler, Michael J.; Morada, Mary; Bellcastro, Josephine; Upton, Steve J.; Marton, Laurence J.; Frydman, Benjamin J.

    2007-01-01

    The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with dl-α-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model. When tested in combination with dl-α-difluoromethylarginine, the cis-restricted analogues were found to be more effective in preventing oocyst shedding. This study demonstrates the potential of polyamine analogues as anticryptosporidial agents and highlights the presence of multiple points in polyamine synthesis by this parasite that are susceptible to inhibition resulting in growth inhibition. PMID:17242149

  19. Potential role of gender specific effect of leptin receptor deficiency in an extended consanguineous family with severe early-onset obesity.

    PubMed

    Dehghani, Mohammad Reza; Mehrjardi, Mohammad Yahya Vahidi; Dilaver, Nafi; Tajamolian, Masoud; Enayati, Samaneh; Ebrahimi, Pirooz; Amoli, Mahsa M; Farooqi, Sadaf; Maroofian, Reza

    2018-03-12

    Congenital Leptin receptor (LEPR) deficiency is a rare genetic cause of early-onset morbid obesity characterised by severe early onset obesity, major hyperphagia, hypogonadotropic hypogonadism and immune and neuroendocrine/metabolic dysfunction. We identified a homozygous loss-of-function mutation, NM_002303.5:c.464 T > G; p.(Tyr155*), in the LEPR in an extended consanguineous family with multiple individuals affected by early-onset severe obesity and hyperphagia. Interestingly, the LEPR-deficient adult females have extremely high body mass index (BMI) with hypogonadal infertility, the BMI of the affected males began to decline around the onset of puberty (13-15 years) with fertility being preserved. These findings lead to the speculation that LEPR deficiency may have a gender-specific effect on the regulation of body weight. In order to elucidate gender-specific effects of LEPR deficiency on reproduction further investigations are needed. The limitations of this study are that our conclusion is based on observations of two males and two females. Further LEPR deficient males and females are required for comparison in order to support this finding more confidently. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Myeloid interferon-γ receptor deficiency does not affect atherosclerosis in LDLR(-/-) mice.

    PubMed

    Boshuizen, Marieke C S; Neele, Annette E; Gijbels, Marion J J; van der Velden, Saskia; Hoeksema, Marten A; Forman, Ruth A; Muller, Werner; Van den Bossche, Jan; de Winther, Menno P J

    2016-03-01

    Atherosclerosis is a chronic lipid-driven inflammatory disease of the arterial wall. Interferon gamma (IFNγ) is an important immunomodulatory cytokine and a known pro-atherosclerotic mediator. However, cell-specific targeting of IFNγ or its signaling in atherosclerosis development has not been studied yet. As macrophages are important IFNγ targets, we here addressed the involvement of myeloid IFNγ signaling in murine atherosclerosis. Bone marrow was isolated from interferon gamma receptor 2 chain (IFNγR2) wildtype and myeloid IFNγR2 deficient mice and injected into lethally irradiated LDLR(-/-) mice. After recovery mice were put on a high fat diet for 10 weeks after which atherosclerotic lesion analysis was performed. In addition, the accompanying liver inflammation was assessed. Even though absence of myeloid IFNγ signaling attenuated the myeloid IFNγ response, no significant differences in atherosclerotic lesion size or phenotype were found. Also, when examining the liver inflammatory state no effects of IFNγR2 deficiency could be observed. Overall, our data argue against a role for myeloid IFNγR2 in atherosclerosis development. Since myeloid IFNγ signaling seems to be nonessential throughout atherogenesis, it is important to understand the mechanisms by which IFNγ acts in atherogenesis. In the future new studies should be performed considering other cell-specific targets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations.

    PubMed

    Guevara-Aguirre, J; Rosenbloom, A L; Fielder, P J; Diamond, F B; Rosenfeld, R G

    1993-02-01

    We have identified 56 patients with GH receptor deficiency (Laron syndrome) from two provinces in southern Ecuador, one group of 26 (Loja province) with a 4:1 female predominance and 30 patients from neighboring El Oro province with a normal sex ratio. There were no significant differences between the Loja and El Oro populations in stature (-5.3 to -11.5 standard deviation score), other auxologic measures, or in biochemical measures. GH binding protein, the circulating extracellular domain of the GH receptor, was measured by ligand immunofunction assay and found to be comparably low in children and adults. Levels of insulin-like growth factor (IGF)-I and -II and the GH-dependent IGF binding protein-3 (measured by RIA) were significantly greater, and GH and IGF binding protein-2 levels significantly lower in adults than children. Levels of IGF-I (adults) and IGF binding protein-3 (children and adults) correlated inversely with statural deviation from normal (P < 0.01). School performance was at an exceptionally high level, 41 out of 47 who had attended school being in the top 3 in classes of 15-50 persons.

  2. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    NASA Astrophysics Data System (ADS)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  3. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis.

    PubMed

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-10

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  4. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl

    2018-04-01

    The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.

    PubMed

    Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F

    2000-04-01

    Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.

  7. Aβ Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    PubMed Central

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ 40 and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β 2 receptor function in glia. PMID:22645624

  8. Impact of PACAP and PAC1 Receptor Deficiency on the Neurochemical and Behavioral Effects of Acute and Chronic Restraint Stress in Male C57BL/6 Mice

    PubMed Central

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M.; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E.

    2016-01-01

    Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress. PMID:25853791

  9. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    PubMed

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.

  10. Hydrocortisone reduces the beneficial effects of toll-like receptor 2 deficiency on survival in a mouse model of polymicrobial sepsis.

    PubMed

    Bergt, Stefan; Wagner, Nana-Maria; Heidrich, Manja; Butschkau, Antje; Nöldge-Schomburg, Gabriele E F; Vollmar, Brigitte; Roesner, Jan P

    2013-11-01

    Toll-like receptors (TLRs) play a crucial role in early host defense against microorganisms. Toll-like receptor 2 (TLR2) polymorphisms have a prevalence of 10%; functional defects of TLR2 are associated with higher susceptibility toward gram-positive bacteria, and TLR2 deficiency has been associated with an impaired adrenal stress response. In the present study, we compared endogenous corticosterone production of wild-type (WT) and TLR2-deficient (TLR2) mice and analyzed survival after hydrocortisone therapy during sepsis induced by cecal ligation and puncture (CLP). Male C57BL/6J (WT); and B6.129-Tlr2tm1Kir/J (TLR2) mice were subjected to CLP or sham operation and randomly assigned to postoperative treatment with either hydrocortisone (5 mg/kg) or vehicle (n = 10 mice/group). Survival was documented for an observation period of 48 h. Endogenous corticosterone production following hydrocortisone treatment and lipoteichoic acid (LTA) exposure, interleukin 6 (IL-6) and IL-1β plasma levels, and blood counts were determined following sham operation or CLP using another n = 5 mice/group. Statistical analysis was performed using analysis of variance/Bonferroni. TLR2 mice exhibited a lack of suppression and an attenuated increase in endogenous corticosterone production following hydrocortisone or LTA treatment, respectively. After CLP, TLR2 mice exhibited an uncompromised adrenal stress response, higher IL-6 levels, and increased survival compared with WT controls (75 vs. 35%; P < 0.05). Hydrocortisone therapy of TLR2 mice completely abolished this advantage (decrease in survival to 45%, P < 0.05 vs. vehicle-treated TLR2 mice) and was associated with decreased IL-1β plasma concentrations. Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for

  11. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  12. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes.

    PubMed

    Gonzalez, Daniel R; Beigi, Farideh; Treuer, Adriana V; Hare, Joshua M

    2007-12-18

    Altered Ca(2+) homeostasis is a salient feature of heart disease, where the calcium release channel ryanodine receptor (RyR) plays a major role. Accumulating data support the notion that neuronal nitric oxide synthase (NOS1) regulates the cardiac RyR via S-nitrosylation. We tested the hypothesis that NOS1 deficiency impairs RyR S-nitrosylation, leading to altered Ca(2+) homeostasis. Diastolic Ca(2+) levels are elevated in NOS1(-/-) and NOS1/NOS3(-/-) but not NOS3(-/-) myocytes compared with wild-type (WT), suggesting diastolic Ca(2+) leakage. Measured leak was increased in NOS1(-/-) and NOS1/NOS3(-/-) but not in NOS3(-/-) myocytes compared with WT. Importantly, NOS1(-/-) and NOS1/NOS3(-/-) myocytes also exhibited spontaneous calcium waves. Whereas the stoichiometry and binding of FK-binding protein 12.6 to RyR and the degree of RyR phosphorylation were not altered in NOS1(-/-) hearts, RyR2 S-nitrosylation was substantially decreased, and the level of thiol oxidation increased. Together, these findings demonstrate that NOS1 deficiency causes RyR2 hyponitrosylation, leading to diastolic Ca(2+) leak and a proarrhythmic phenotype. NOS1 dysregulation may be a proximate cause of key phenotypes associated with heart disease.

  13. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression.

    PubMed

    Knutson, Todd P; Daniel, Andrea R; Fan, Danhua; Silverstein, Kevin At; Covington, Kyle R; Fuqua, Suzanne Aw; Lange, Carol A

    2012-06-14

    Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation

  14. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system.

    PubMed

    Ratzka, Andreas; Baron, Olga; Grothe, Claudia

    2011-01-01

    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in

  15. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.

    PubMed

    Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale

    2016-04-01

    Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador.

    PubMed

    Rosenbloom, A L; Guevara Aguirre, J; Rosenfeld, R G; Fielder, P J

    1990-11-15

    Laron-type dwarfism, which is characterized by the clinical appearance of isolated growth hormone deficiency with elevated serum levels of growth hormone and decreased serum levels of insulin-like growth factor I (IGF-I), has been described in approximately 50 patients. This condition is caused by a deficiency of the cellular receptor for growth hormone, and it is transmitted as an autosomal recessive trait, as indicated by an equal sex distribution and a high rate of consanguinity in affected families. We studied 20 patients (19 females and 1 male, 2 to 49 years of age), from an inbred Spanish population in southern Ecuador, who had the clinical features of Laron-type dwarfism. Seventeen patients were members of two large pedigrees. Among the 13 affected sibships, there were 19 affected and 24 unaffected female siblings and 1 affected and 21 unaffected male siblings. The patients' heights ranged from 10.0 to 6.7 SD below the normal mean height for age in the United States. In addition to the previously described features, 15 patients had limited elbow extensibility, all had blue scleras, affected adults had relatively short extremities, and all four affected women over 30 years of age had hip degeneration. Basal serum concentrations of growth hormone were elevated in all affected children (30 to 160 micrograms per liter) and normal to moderately elevated in the adults. The serum level of growth hormone-binding protein ranged from 1 to 30 percent of normal; IGF-I concentrations were low--less than or equal to 7 micrograms per liter in the children and less than or equal to 66 micrograms per liter in the adults (normal for Ecuadorean women, 98 to 238). Serum levels of IGF-II and growth hormone-dependent IGF-binding protein-3 were also low. We describe an inbred population with a high incidence of growth hormone-receptor deficiency resulting in a clinical picture resembling Laron-type dwarfism but differing principally in showing a marked predominance of affected

  17. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  18. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

    PubMed

    Tsou, Ryan C; Zimmer, Derek J; De Jonghe, Bart C; Bence, Kendra K

    2012-09-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.

  19. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors.

    PubMed

    Rangel, Alejandra; Burgaya, Ferran; Gavín, Rosalina; Soriano, Eduardo; Aguzzi, Adriano; Del Río, José A

    2007-09-01

    Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits. (c) 2007 Wiley-Liss, Inc.

  20. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice.

    PubMed

    Gross, Adi; Benninger, Felix; Madar, Ravit; Illouz, Tomer; Griffioen, Kathleen; Steiner, Israel; Offen, Daniel; Okun, Eitan

    2017-04-01

    Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)β. Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNβ, and increased survival following SE. This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  1. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  2. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety.

    PubMed

    Raber, Jacob; Duvoisin, Robert M

    2015-04-01

    The fast actions of the excitatory neurotransmitter glutamate are mediated by glutamate-gated ion channels (ionotropic Glu receptors). Metabotropic glutamate receptors (mGlus) are coupled to second messenger pathways via G proteins and modulate glutamatergic and GABAergic neurotransmission. Of the eight different types of mGlus (mGlu1-mGlu8), mGlu4, mGlu6, mGlu7 and mGlu8 are members of group III. Except for mGlu6, group III receptors are generally located presynaptically and regulate neurotransmitter release. Because of their role in modulating excitatory neurotransmission, mGlus are attractive targets for therapies aimed at treating anxiety disorders. In this review, the authors discuss the role of mGlu4 and mGlu8 in anxiety disorders. They also discuss how mGlu4 and mGlu8 have distinct expression patterns in the brain, which might have related functions. Finally, the authors discuss how compounds that target more than one mGlu receptor might be therapeutically more effective. mGlu4 might compensate for mGlu8 deficiency, and deficiency of both receptors might result in a more pronounced phenotype than deficiency of either receptor alone. The distinct and overlapping anatomical distribution and functions of mGlu4 and mGlu8 suggest that both receptors, either individually or combined, are attractive therapeutic targets in anxiety disorders, post-traumatic stress disorder, Parkinson's disease, and multiple sclerosis.

  3. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  4. A Novel Type of Macrothrombocytopenia Associated with a Defect in α2,3-Sialylation

    PubMed Central

    Jones, Claire; Denecke, Jonas; Sträter, Ronald; Stölting, Torsten; Schunicht, Yvonne; Zeuschner, Dagmar; Klumperman, Judith; Lefeber, Dirk J.; Spelten, Oliver; Zarbock, Alexander; Kelm, Sørge; Strenge, Karen; Haslam, Stuart M.; Lühn, Kerstin; Stahl, Dorothea; Gentile, Luca; Schreiter, Thomas; Hilgard, Philip; Beck-Sickinger, Annette G.; Marquardt, Thorsten; Wild, Martin K.

    2011-01-01

    We describe a novel type of human thrombocytopenia characterized by the appearance of giant platelets and variable neutropenia. Searching for the molecular defect, we found that neutrophils had strongly reduced sialyl-Lewis X and increased Lewis X surface expression, pointing to a deficiency in sialylation. We show that the glycosylation defect is restricted to α2,3-sialylation and can be detected in platelets, neutrophils, and monocytes. Platelets exhibited a distorted structure of the open canalicular system, indicating defective platelet generation. Importantly, patient platelets, but not normal platelets, bound to the asialoglycoprotein receptor (ASGP-R), a liver cell-surface protein that removes desialylated thrombocytes from the circulation in mice. Taken together, this is the first type of human thrombocytopenia in which a specific defect of α2,3-sialylation and an induction of platelet binding to the liver ASGP-R could be detected. PMID:21864493

  5. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    USDA-ARS?s Scientific Manuscript database

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  6. Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice

    PubMed Central

    Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.

    2011-01-01

    OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251

  7. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors.

    PubMed

    Wu, Xin; Zhang, Jie-Ting; Li, Di; Zhou, Jun; Yang, Jun; Zheng, Hui-Ling; Chen, Jian-Guo; Wang, Fang

    2017-01-01

    Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The majority of ACTH receptor (MC2R) mutations found in Familial Glucocorticoid Deficiency type 1 lead to defective trafficking of the receptor to the cell surface

    PubMed Central

    TT, Chung; TR, Webb; LF, Chan; SN, Cooray; LA, Metherell; PJ, King; JP, Chapple; AJL, Clark

    2008-01-01

    Context: There are at least twenty-four missense, non-conservative mutations found in the ACTH receptor (Melanocortin 2 receptor, MC2R) which have been associated with the autosomal recessive disease Familial Glucocorticoid Deficiency (FGD) type 1. The characterization of these mutations has been hindered by difficulties in establishing a functional heterologous cell transfection system for MC2R. Recently the melanocortin 2 receptor accessory protein (MRAP) was identified as essential for trafficking of MC2R to the cell surface; therefore a functional characterization of MC2R mutations is now possible. Objective: To elucidate the molecular mechanisms responsible for defective MC2R function in FGD. Methods: Stable cell lines expressing human MRAPα were established and transiently transfected with wild-type or mutant MC2R. Functional characterization of mutant MC2R was performed using a cell surface expression assay, a cAMP reporter assay, confocal microscopy and co-immunoprecipitation of MRAPα. Results: Two thirds of all MC2R mutations had a significant reduction in cell surface trafficking even though MRAPα interacted with all mutants. Analysis of those mutant receptors that reached the cell surface indicated that 4/6 failed to signal, following stimulation with ACTH. Conclusion: The majority of MC2R mutations found in FGD fail to function because they fail to traffic to the cell surface. PMID:18840636

  9. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method

    PubMed Central

    Bartko, Susan J.; Romberg, Carola; White, Benjamin; Wess, Jürgen; Bussey, Timothy J.; Saksida, Lisa M.

    2014-01-01

    Cholinergic receptors have been implicated in schizophrenia, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, to better target therapeutically the appropriate receptor subsystems, we need to understand more about the functions of those subsystems. In the current series of experiments, we assessed the functional role of M1 receptors in cognition by testing M1 receptor-deficient mice (M1R−/−) on the five-choice serial reaction time test of attentional and response functions, carried out using a computer-automated touchscreen test system. In addition, we tested these mice on several tasks featuring learning, memory and perceptual challenges. An advantage of the touchscreen method is that each test in the battery is carried out in the same task setting, using the same types of stimuli, responses and feedback, thus providing a high level of control and task comparability. The surprising finding, given the predominance of the M1 receptor in cortex, was the complete lack of effect of M1 deletion on measures of attentional function per se. Moreover, M1R−/− mice performed relatively normally on tests of learning, memory and perception, although they were impaired in object recognition memory with, but not without an interposed delay interval. They did, however, show clear abnormalities on a variety of response measures: M1R−/− mice displayed fewer omissions, more premature responses, and increased perseverative responding compared to wild-types. These data suggest that M1R−/− mice display abnormal responding in the face of relatively preserved attention, learning and perception. PMID:21903112

  10. Evidence for an interaction between leptin, T cell costimulatory antigens CD28, CTLA-4 and CD26 (dipeptidyl peptidase IV) in BCG-induced immune responses of leptin- and leptin receptor-deficient mice.

    PubMed

    Rüter, Jens; Hoffmann, Torsten; Demuth, Hans-Ulrich; Moschansky, Petra; Klapp, Burghard F; Hildebrandt, Martin

    2004-06-01

    We assessed changes of the enzyme dipeptidyl peptidase IV (DPP IV, CD26) in the context of leptin or leptin receptor deficiency. C57BL/6 mice, Leptin-deficient mice (ob/ob mice, B6.V-Lep) and Leptin-receptor-deficient mice (db/db mice, B6.Cg-m+/+Lepr) were infected with B. Calmette-Guerin (BCG) and sacrificed three days later. DPP IV activity in serum was higher in ob/ob mice and in db/db mice than in wild-type mice. The expression of DPP IV/CD26 on splenocytes was higher in ob/ob mice than in wild-type animals, and lower in db/db mice, and decreased upon stimulation with BCG in ob/ob mice only. Several T cell antigens including CTLA-4 were expressed aberrantly in ob/ob and in db/db mice. Our observations provide evidence for a relationship between DPP IV and leptin.

  11. Emotional response in dopamine D2L receptor-deficient mice

    PubMed Central

    Hranilovic, Dubravka; Bucan, Maja; Wang, Yanyan

    2008-01-01

    The dopamine D2 receptor (D2R) system has been implicated in emotional processing which is often impaired in neuropsychiatric disorders. The long (D2L) and the short (D2S) isoforms of D2R are generated by alternative splicing of the same gene. To study differential roles of the two D2R isoforms, D2L-deficient mice (D2L−/−) expressing functional D2S were previously generated. In this study the contribution of D2L isoform to emotional response was investigated by examining behaviors that reflect emotionality (exploratory behavior, anxiety-like behavior and learned helplessness) in D2L−/− and (wild-type) WT mice. While the thigmotactic, locomotor and general components of anxiety in zero maze did not differ among the genotypes, D2L−/− mice displayed significantly lower level of exploration in a hole board and zero maze, and significantly higher increase in latency to escape from a foot shock after the learned helplessness training, compared with WT mice. These results suggest that D2L may play a more prominent role than D2S in mediating emotional response, such as behavioral reactions to novelty and inescapable stress. Our findings contribute to a better understanding of the molecular and cellular mechanisms underlying emotional responses. PMID:18835570

  12. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  13. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  14. Synthesis and biological evaluation of (99m)Tc-DMP-NGA as a novel hepatic asialoglycoprotein receptor imaging agent.

    PubMed

    Yang, Wenjiang; Mou, Tiantian; Zhang, Xianzhong; Wang, Xuebin

    2010-01-01

    A novel bifunctional coupling agents-biomolecular compound DMP-NGA was prepared by coupling the SATP with galactosyl-neoglycoalbumin (NGA). The DMP-NGA was labeled with technetium-99m, and the radiochemical purity in excess of 98% after purified with HPLC. In vivo biodistribution showed that (99m)Tc-DMP-NGA had very high initial liver uptake with good retention. The liver accumulated 99.35+/-9.77%, 74.25+/-3.03%, 52.47+/-7.58% of the injected dose per gram at 5, 30 and 120min after injection, respectively. It had relative higher initial liver uptake and much lower blood uptake than that of (99m)Tc-GSA. The liver/blood ratio reached 83.4 at 30min post-injection, while the ratio of liver/kidney was 14.4. The uptakes in other organs in the abdomen were also slightly low. In addition, the hepatic uptake of (99m)Tc-DMP-NGA was blocked by preinjecting free GSA as blocking agent. The result indicates that (99m)Tc-DMP-NGA has specific binding to ASGP receptor. Images acquired with Kodak In-Vivo Imaging System FX Pro showed significant difference before and after inhibition. The promising biological properties of (99m)Tc-DMP-NGA afford potential applications in liver receptor imaging for assessment of hepatocyte function.

  15. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of

  16. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    PubMed

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  18. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  19. GABAB-ergic motor cortex dysfunction in SSADH deficiency

    PubMed Central

    Cohen, Leonardo G.; Pearl, Phillip L.; Fritsch, Brita; Jung, Nikolai H.; Dustin, Irene; Theodore, William H.

    2012-01-01

    Objective: Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder of GABA degradation leading to elevations in brain GABA and γ-hydroxybutyric acid (GHB). The effect of chronically elevated GABA and GHB on cortical excitability is unknown. We hypothesized that use-dependent downregulation of GABA receptor expression would promote cortical disinhibition rather than inhibition, predominantly via presynaptic GABAergic mechanisms. Methods: We quantified the magnitude of excitation and inhibition in primary motor cortex (M1) in patients with SSADH deficiency, their parents (obligate heterozygotes), age-matched healthy young controls, and healthy adults using single and paired pulse transcranial magnetic stimulation (TMS). Results: Long interval intracortical inhibition was significantly reduced and the cortical silent period was significantly shortened in patients with SSADH deficiency compared to heterozygous parents and control groups. Conclusions: Since long interval intracortical inhibition and cortical silent period are thought to reflect GABAB receptor–mediated inhibitory circuits, our results point to a particularly GABAB-ergic motor cortex dysfunction in patients with SSADH deficiency. This human phenotype is consistent with the proposed mechanism of use-dependent downregulation of postsynaptic GABAB receptors in SSADH deficiency animal models. Additionally, the results suggest autoinhibition of GABAergic neurons. This first demonstration of altered GABAB-ergic function in patients with SSADH deficiency may help to explain clinical features of the disease, and suggest pathophysiologic mechanisms in other neurotransmitter-related disorders. Neurology® 2012;79:47–54 PMID:22722631

  20. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    PubMed Central

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  1. SLP-76 is required for high-affinity IgE receptor- and IL-3 receptor-mediated activation of basophils.

    PubMed

    Hidano, Shinya; Kitamura, Daisuke; Kumar, Lalit; Geha, Raif S; Goitsuka, Ryo

    2012-11-01

    Basophils have been reported to play a critical role in allergic inflammation by secreting IL-4 in response to IL-3 or high-affinity IgE receptor (FcεRI)-cross-linking. However, the signaling pathways downstream of FcεRI and the IL-3 receptor in basophils have yet to be determined. In the present study, we used mice deficient in SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76kDa) to demonstrate critical functions of this adaptor molecule in transducing FcεRI- and IL-3 receptor-mediated signals that induce basophil activation. Although SLP-76 was dispensable for in vivo differentiation, as well as IL-3-induced in vitro proliferation of basophils, IL-4 production induced by both stimuli was completely ablated by SLP-76 deficiency. Biochemical analyses revealed that IL-3-induced phosphorylation of phospholipase C (PLC) γ2 and Akt, but not STAT5, was severely reduced in SLP-76-deficient basophils, whereas FcεRI cross-linking phosphorylation of PLCγ2, but not Akt, was abrogated by SLP-76 deficiency, suggesting important differences in the requirement of SLP-76 for Akt activation between FcεRI- and IL-3 receptor-mediated signaling pathways in basophils. Because IL-3-induced IL-4 production was sensitive to calcineurin inhibitors and an intracellular calcium chelator, in addition to PI3K inhibitors, SLP-76 appears to regulate FcεRI- and IL-3 receptor-induced IL-4 production via mediating PLCγ2 activation in basophils. Taken together, these findings indicate that SLP-76 is an essential signaling component for basophil activation downstream of both FcεRI and the IL-3 receptor.

  2. Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats.

    PubMed

    Mul, Joram D; Begg, Denovan P; Alsters, Suzanne I M; van Haaften, Gijs; Duran, Karen J; D'Alessio, David A; le Roux, Carel W; Woods, Stephen C; Sandoval, Darleen A; Blakemore, Alexandra I F; Cuppen, Edwin; van Haelst, Mieke M; Seeley, Randy J

    2012-07-01

    Bariatric surgery is currently the most effective treatment for obesity. Vertical sleeve gastrectomy (VSG), a commonly applied bariatric procedure, involves surgically incising most of the volume of the stomach. In humans, partial loss of melanocortin receptor-4 (MC4R) activity is the most common monogenic correlate of obesity regardless of lifestyle. At present it is unclear whether genetic alteration of MC4R signaling modulates the beneficial effects of VSG. Following VSG, we analyzed body weight, food intake, glucose sensitivity, and macronutrient preference of wild-type and MC4R-deficient (Mc4r(+/-) and Mc4r(-/-)) rats compared with sham-operated controls. VSG reduced body weight and fat mass and improved glucose metabolism and also shifted preference toward carbohydrates and away from fat. All of this occurred independently of MC4R activity. In addition, MC4R was resequenced in 46 human subjects who underwent VSG. We observed common genetic variations in the coding sequence of MC4R in five subjects. However, none of those variations appeared to affect the outcome of VSG. Taken together, these data suggest that the beneficial effect of VSG on body weight and glucose metabolism is not mediated by alterations in MC4R activity.

  3. Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats

    PubMed Central

    Mul, Joram D.; Begg, Denovan P.; Alsters, Suzanne I. M.; van Haaften, Gijs; Duran, Karen J.; D'Alessio, David A.; le Roux, Carel W.; Woods, Stephen C.; Sandoval, Darleen A.; Blakemore, Alexandra I. F.; Cuppen, Edwin; van Haelst, Mieke M.

    2012-01-01

    Bariatric surgery is currently the most effective treatment for obesity. Vertical sleeve gastrectomy (VSG), a commonly applied bariatric procedure, involves surgically incising most of the volume of the stomach. In humans, partial loss of melanocortin receptor-4 (MC4R) activity is the most common monogenic correlate of obesity regardless of lifestyle. At present it is unclear whether genetic alteration of MC4R signaling modulates the beneficial effects of VSG. Following VSG, we analyzed body weight, food intake, glucose sensitivity, and macronutrient preference of wild-type and MC4R-deficient (Mc4r+/− and Mc4r−/−) rats compared with sham-operated controls. VSG reduced body weight and fat mass and improved glucose metabolism and also shifted preference toward carbohydrates and away from fat. All of this occurred independently of MC4R activity. In addition, MC4R was resequenced in 46 human subjects who underwent VSG. We observed common genetic variations in the coding sequence of MC4R in five subjects. However, none of those variations appeared to affect the outcome of VSG. Taken together, these data suggest that the beneficial effect of VSG on body weight and glucose metabolism is not mediated by alterations in MC4R activity. PMID:22535749

  4. Pineal germinoma in a child with interferon-γ receptor 1 deficiency. case report and literature review.

    PubMed

    Taramasso, L; Boisson-Dupuis, S; Garrè, M L; Bondi, E; Cama, A; Nozza, P; Morana, G; Casanova, J L; Marazzi, M G

    2014-11-01

    Interferon-γ receptor 1 (IFN-γR1) deficiency is one of the primary immunodeficiencies conferring Mendelian Susceptibility to Mycobacterial Disease (MSMD). Some cases of neoplasms have been recently reported in patients with MSMD, underlying the already known link between immunodeficiency and carcinogenesis. We report the first case of intracranial tumour, i.e. pineal germinoma, in a 11-year-old patient with complete IFN-γR1 deficiency. The first clinical presentation of the genetic immunodeficiency dates back to when the child was aged 2 y and 10 mo, when he presented a multi-focal osteomyelitis caused by Mycobacterium scrofulaceum. The diagnosis of IFN-γR1 deficiency (523delT/523delT in IFNGR1 gene) was subsequently made. The child responded to antibiotic therapy and remained in stable clinical condition until the age of 11 years, when he started complaining of frontal, chronic headache. MRI revealed a solid pineal region mass lesion measuring 20 × 29 × 36 mm. Histological findings revealed a diagnosis of pineal germinoma. The patient received chemotherapy followed by local whole ventricular irradiation with boost on pineal site, experiencing complete remission, and to date he is tumor-free at four years follow-up. Four other cases of tumors have been reported in patients affected by MSMD in our knowledge: a case of Kaposi sarcoma, a case of B-cell lymphoma, a case of cutaneous squamous cell carcinoma and a case of oesophageal squamous cell carcinoma. In conclusion, in patients with MSMD, not only the surveillance of infectious diseases, but also that of tumors is important.

  5. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  6. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  7. The islet estrogen receptor-α is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes.

    PubMed

    Kilic, Gamze; Alvarez-Mercado, Ana I; Zarrouki, Bader; Opland, Darren; Liew, Chong Wee; Alonso, Laura C; Myers, Martin G; Jonas, Jean-Christophe; Poitout, Vincent; Kulkarni, Rohit N; Mauvais-Jarvis, Franck

    2014-01-01

    The female steroid, 17β-estradiol (E2), is important for pancreatic β-cell function and acts via at least three estrogen receptors (ER), ERα, ERβ, and the G-protein coupled ER (GPER). Using a pancreas-specific ERα knockout mouse generated using the Cre-lox-P system and a Pdx1-Cre transgenic line (PERαKO ⁻/⁻), we previously reported that islet ERα suppresses islet glucolipotoxicity and prevents β-cell dysfunction induced by high fat feeding. We also showed that E2 acts via ERα to prevent β-cell apoptosis in vivo. However, the contribution of the islet ERα to β-cell survival in vivo, without the contribution of ERα in other tissues is still unclear. Using the PERαKO ⁻/⁻ mouse, we show that ERα mRNA expression is only decreased by 20% in the arcuate nucleus of the hypothalamus, without a parallel decrease in the VMH, making it a reliable model of pancreas-specific ERα elimination. Following exposure to alloxan-induced oxidative stress in vivo, female and male PERαKO ⁻/⁻ mice exhibited a predisposition to β-cell destruction and insulin deficient diabetes. In male PERαKO ⁻/⁻ mice, exposure to E2 partially prevented alloxan-induced β-cell destruction and diabetes. ERα mRNA expression was induced by hyperglycemia in vivo in islets from young mice as well as in cultured rat islets. The induction of ERα mRNA by hyperglycemia was retained in insulin receptor-deficient β-cells, demonstrating independence from direct insulin regulation. These findings suggest that induction of ERα expression acts to naturally protect β-cells against oxidative injury.

  8. Development and Function of CD94-Deficient Natural Killer Cells

    PubMed Central

    Orr, Mark T.; Wu, Jun; Fang, Min; Sigal, Luis J.; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H.; Lanier, Lewis L.

    2010-01-01

    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions. PMID:21151939

  9. Development and function of CD94-deficient natural killer cells.

    PubMed

    Orr, Mark T; Wu, Jun; Fang, Min; Sigal, Luis J; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H; Lanier, Lewis L

    2010-12-03

    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.

  10. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsigos, C.; Arai, K.; Latronico, A.C.

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 famlies with triple A syndrome. The proband with IGD was a homozygote for an A {r_arrow}G substitution, changing tyrosine 254 to cysteine in the third extracellular loopmore » of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome. 19 refs., 1 fig.« less

  11. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  12. Stress-related arterial hypertension in Gper-deficient rats.

    PubMed

    Luo, Ping; Wu, Mei-Mei; Gao, Po; Gao, Ting; Dong, Li; Ding, Xiao-Wei; Meng, You-Qiang; Qian, Jia-Hong; Zhang, Guo-Hua; Rong, Wei-Fang

    2017-10-25

    Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERβ and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.

  13. Discoidin Domain Receptor-1 Deficiency Attenuates Atherosclerotic Calcification and Smooth Muscle Cell-Mediated Mineralization

    PubMed Central

    Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.

    2009-01-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047

  14. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization.

    PubMed

    Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P

    2009-12-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.

  15. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice.

    PubMed

    Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2009-02-25

    Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.

  16. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer.

    PubMed

    Carver, Brett S; Chapinski, Caren; Wongvipat, John; Hieronymus, Haley; Chen, Yu; Chandarlapaty, Sarat; Arora, Vivek K; Le, Carl; Koutcher, Jason; Scher, Howard; Scardino, Peter T; Rosen, Neal; Sawyers, Charles L

    2011-05-17

    Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  19. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses.

    PubMed

    Schijns, V E; Haagmans, B L; Rijke, E O; Huang, S; Aguet, M; Horzinek, M C

    1994-09-01

    The lymphokine IFN-gamma is a pleiotropic immunomodulator and possesses intrinsic antiviral activity. We studied its significance in the development of antiviral immune responses by using IFN-gamma receptor-deficient (IFN-gamma R-/-) mice. After inoculation with live attenuated pseudorabies virus (PRV), the mutant mice showed no infectivity titers in various tissues, and transient viral Ag expression only in the spleen, similar as in wild-type mice. However, the absence of the IFN-gamma R resulted in increased proliferative splenocyte responses. The PRV-immune animals showed a normal IFN-gamma and IL-2 production, without detectable IL-4, and with decreased IL-10 secretion in response to viral Ag or Con A. Immunohistochemically, an increased ratio of IFN-gamma:IL-4-producing spleen cells was found. After immunization with either live attenuated or inactivated PRV, IFN-gamma R-/- mice produced significantly less antiviral Ab, and more succumbed to challenge infection than the intact control animals. The reduction in Ab titers in the mutant mice correlated with lower protection by their sera in transfer experiments. Our data demonstrate that ablation of the IFN-gamma receptor surprisingly does not inhibit the generation of antiviral Th1-type and increase Th2-type cytokine responses. However, it profoundly impairs the generation of protective antiviral Ab.

  20. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis.

    PubMed

    Rogier, Rebecca; Ederveen, Thomas H A; Boekhorst, Jos; Wopereis, Harm; Scher, Jose U; Manasson, Julia; Frambach, Sanne J C M; Knol, Jan; Garssen, Johan; van der Kraan, Peter M; Koenders, Marije I; van den Berg, Wim B; van Hijum, Sacha A F T; Abdollahi-Roodsaz, Shahla

    2017-06-23

    Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further

  1. Aberrant antibody affinity selection in SHIP-deficient B cells.

    PubMed

    Leung, Wai-Hang; Tarasenko, Tatiana; Biesova, Zuzana; Kole, Hemanta; Walsh, Elizabeth R; Bolland, Silvia

    2013-02-01

    The strength of the Ag receptor signal influences development and negative selection of B cells, and it might also affect B-cell survival and selection in the GC. Here, we have used mice with B-cell-specific deletion of the 5'-inositol phosphatase SHIP as a model to study affinity selection in cells that are hyperresponsive to Ag and cytokine receptor stimulation. In the absence of SHIP, B cells have lower thresholds for Ag- and interferon (IFN)-induced activation, resulting in augmented negative selection in the BM and enhanced B-cell maturation in the periphery. Despite a tendency to spontaneously downregulate surface IgM expression, SHIP deficiency does not alter anergy induction in response to soluble hen-egg lysozyme Ag in the MDA4 transgenic model. SHIP-deficient B cells spontaneously produce isotype-switched antibodies; however, they are poor responders in immunization and infection models. While SHIP-deficient B cells form GCs and undergo mutation, they are not properly selected for high-affinity antibodies. These results illustrate the importance of negative regulation of B-cell responses, as lower thresholds for B-cell activation promote survival of low affinity and deleterious receptors to the detriment of optimal Ab affinity maturation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis.

    PubMed Central

    Jouanguy, E; Lamhamedi-Cherradi, S; Altare, F; Fondanèche, M C; Tuerlinckx, D; Blanche, S; Emile, J F; Gaillard, J L; Schreiber, R; Levin, M; Fischer, A; Hivroz, C; Casanova, J L

    1997-01-01

    Complete interferon-gamma receptor 1 (IFNgammaR1) deficiency has been identified previously as a cause of fatal bacillus Calmette-Guérin (BCG) infection with lepromatoid granulomas, and of disseminated nontuberculous mycobacterial (NTM) infection in children who had not been inoculated with BCG. We report here a kindred with partial IFNgammaR1 deficiency: one child afflicted by disseminated BCG infection with tuberculoid granulomas, and a sibling, who had not been inoculated previously with BCG, with clinical tuberculosis. Both responded to antimicrobials and are currently well without prophylactic therapy. Impaired response to IFN-gamma was documented in B cells by signal transducer and activator of transcription 1 nuclear translocation, in fibroblasts by cell surface HLA class II induction, and in monocytes by cell surface CD64 induction and TNF-alpha secretion. Whereas cells from healthy children responded to even low IFN-gamma concentrations (10 IU/ml), and cells from a child with complete IFNgammaR1 deficiency did not respond to even high IFN-gamma concentrations (10,000 IU/ml), cells from the two siblings did not respond to low or intermediate concentrations, yet responded to high IFN-gamma concentrations. A homozygous missense IFNgR1 mutation was identified, and its pathogenic role was ascertained by molecular complementation. Thus, whereas complete IFNgammaR1 deficiency in previously identified kindreds caused fatal lepromatoid BCG infection and disseminated NTM infection, partial IFNgammaR1 deficiency in this kindred caused curable tuberculoid BCG infection and clinical tuberculosis. PMID:9389728

  3. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans

    PubMed Central

    Nashiro, Kaoru; Braskie, Meredith N.; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M.; Nelson, Marvin D.; Guevara, Alexandra

    2017-01-01

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits. SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive

  4. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict.

    PubMed

    Li, Chunlu; Yan, Yixiu; Cheng, Jingjing; Xiao, Gang; Gu, Jueqing; Zhang, Luqi; Yuan, Siyu; Wang, Junlu; Shen, Yi; Zhou, Yu-Dong

    2016-04-01

    Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient (TLR4(-/-)) and wild-type (WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed, large spaces. We found that TLR4(-/-) mice exhibited reduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4(-/-) mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approach-avoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4(-/-) mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly, the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell (NAcSh) in TLR4(-/-) mice than in WT mice. Partially inactivating the NAcSh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4(-/-) mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAcSh may contribute to this phenomenon.

  5. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  6. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis.

    PubMed

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas D Y; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan W M; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-02-17

    A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug. © 2014 American Heart Association, Inc.

  7. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    PubMed

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  8. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers.

    PubMed

    Khambu, Bilon; Huda, Nazmul; Chen, Xiaoyun; Antoine, Daniel J; Li, Yong; Dai, Guoli; Köhler, Ulrike A; Zong, Wei-Xing; Waguri, Satoshi; Werner, Sabine; Oury, Tim D; Dong, Zheng; Yin, Xiao-Ming

    2018-06-01

    Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.

  9. Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes.

    PubMed

    Biessen, Erik A L; Sliedregt-Bol, Karen; 'T Hoen, Peter A Chr; Prince, Perry; Van der Bilt, Erica; Valentijn, A Rob P M; Meeuwenoord, Nico J; Princen, Hans; Bijsterbosch, Martin K; Van der Marel, Gijs A; Van Boom, Jacques H; Van Berkel, Theo J C

    2002-01-01

    In this study, we present the design and synthesis of an antisense peptide nucleic acid (asPNA) prodrug, which displays an improved biodistribution profile and an equally improved capacity to reduce the levels of target mRNA. The prodrug, K(GalNAc)(2)-asPNA, comprised of a 14-mer sequence complementary to the human microsomal triglyceride transfer protein (huMTP) gene, conjugated to a high-affinity tag for the hepatic asialoglycoprotein receptor (K(GalNAc)(2)). The prodrug was avidly bound and rapidly internalized by HepG2s. After iv injection into mice, K(GalNAc)(2)-asPNA accumulated in the parenchymal liver cells to a much greater extent than nonconjugated PNA (46% +/- 1% vs 3.1% +/- 0.5% of the injected dose, respectively). The prodrug was able to reduce MTP mRNA levels in HepG2 cells by 35-40% (P < 0.02) at 100 nM in an asialoglycoprotein receptor- and sequence-dependent fashion. In conclusion, hepatocyte-targeted PNA prodrugs combine a greatly improved tropism with an enhanced local intracellular availability and activity, making them attractive therapeutics to lower the expression level of hepatic target genes such as MTP.

  10. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  11. T cell-independent and T cell-dependent immunoglobulin G responses to polyomavirus infection are impaired in complement receptor 2-deficient mice.

    PubMed

    Szomolanyi-Tsuda, Eva; Seedhom, Mina O; Carroll, Michael C; Garcea, Robert L

    2006-08-15

    Polyomavirus (PyV) infection induces protective T cell-independent (TI) IgM and IgG antibody responses in T cell-deficient mice, but these responses are not generated by immunization with viral proteins or virus like particles. We hypothesized that innate signals contribute to the generation of isotype-switched antiviral antibody responses. We studied the role of complement receptor (CR2) engagement in TI and T cell-dependent (TD) antibody responses to PyV using CR2-deficient mice. Antiviral IgG responses were reduced by 80-40% in CR2-/- mice compared to wild type. Adoptive transfer experiments demonstrated the need for CR2 not only in TD, but also in TI IgG responses to PyV. Transfer of CR2-/- B lymphocytes to SCID mice resulted in TI antiviral IgG responses that corresponded to 10% of that seen in wild-type B cell-reconstituted mice. Thus, our studies revealed a profound dependence of TI and TD antiviral antibody responses on CR2-mediated signals in PyV-infected mice, where the viral antigen is abundant and persistent.

  12. Impaired natural killer cell self-education and "missing-self" responses in Ly49-deficient mice.

    PubMed

    Bélanger, Simon; Tu, Megan M; Rahim, Mir Munir Ahmed; Mahmoud, Ahmad B; Patel, Rajen; Tai, Lee-Hwa; Troke, Angela D; Wilhelm, Brian T; Landry, Josette-Renée; Zhu, Qinzhang; Tung, Kenneth S; Raulet, David H; Makrigiannis, Andrew P

    2012-07-19

    Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)-cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKC(KD)) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKC(KD) NK cells exhibit defective killing of MHC-I-deficient, but otherwise normal, target cells, resulting in defective rejection by NKC(KD) mice of transplants from various types of MHC-I-deficient mice. Self-MHC-I immunosurveillance by NK cells in NKC(KD) mice can be rescued by self-MHC-I-specific Ly49 transgenes. Although NKC(KD) mice display defective recognition of MHC-I-deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity-induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self-MHC-I molecules and that the absence of these receptors leads to loss of MHC-I-dependent "missing-self" immunosurveillance by NK cells.

  13. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse

  14. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  15. Impact of CCL2 and CCR2 Chemokine / Receptor Deficiencies on Macrophage Recruitment and Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Czajkowski, Caroline; Ludzinska, Izabela; Qiao, Yi; Frailey, Jackman; Kreutzer, Donald L.

    2016-01-01

    The accumulation of macrophages (MΦ) at the sensor-tissue interface is thought to be a major player in controlling tissue reactions and sensor performance in vivo. Nevertheless until recently no direct demonstration of the causal relationship between MΦ aggregation and loss of sensor function existed. Using a Continuous Glucose Monitoring (CGM) murine model we previously demonstrated that genetic deficiencies of MΦ or depletion of MΦ decreased MΦ accumulation at sensor implantation sites, which led to significantly enhanced CGM performance, when compared to normal mice. Additional studies in our laboratories have also demonstrated that MΦ can act as “metabolic sinks” by depleting glucose levels at the implanted sensors in vitro and in vivo. In the present study we extended these observations by demonstrating that MΦ chemokine (CCL2) and receptor (CCR2) knockout mice displayed a decrease in inflammation and MΦ recruitment at sensor implantation sites, when compared to normal mice. This decreased MΦ recruitment significantly enhanced CGM performance when compared to control mice. These studies demonstrated the importance of the CCL2 family of chemokines and related receptors in MΦ recruitment and sensor performance and suggest chemokine targets for enhancing CGM in vivo. PMID:27376197

  16. Excitatory amino acid receptors and disease.

    PubMed

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  17. Behavioral characterization of mice lacking histamine H(3) receptors.

    PubMed

    Toyota, Hiroshi; Dugovic, Christine; Koehl, Muriel; Laposky, Aaron D; Weber, China; Ngo, Karen; Wu, Ying; Lee, Doo Hyun; Yanai, Kazuhiko; Sakurai, Eiko; Watanabe, Takehiko; Liu, Changlu; Chen, Jingcai; Barbier, Ann J; Turek, Fred W; Fung-Leung, Wai-Ping; Lovenberg, Timothy W

    2002-08-01

    Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.

  18. Iron deficiency and new insights into therapy.

    PubMed

    Low, Michael Sy; Grigoriadis, George

    2017-07-17

    Iron deficiency and iron deficiency anaemia remain prevalent in Australia. The groups at highest risk are pre-menopausal women, socially disadvantaged people and those of Indigenous background. Diagnosing iron deficiency using a full blood examination and iron studies can be difficult and can be further complicated by concomitant inflammation. Results of iron studies should always be interpreted as an overall picture rather than focusing on individual parameters. In difficult clinical scenarios, soluble transferrin receptor assays can be useful. Management of iron deficiency involves identification and treatment of the cause of iron deficiency, as well as effective iron replacement. Clinicians should always take a detailed history and perform a comprehensive physical examination of a patient with iron deficiency. Patients should be monitored even if a likely cause of iron deficiency is identified. Patients who fail to respond to iron replacement or maintain iron status should be referred for further investigation, including endoscopy to exclude internal bleeding. Both enteral and parenteral iron are effective at replacing iron. For most adult patients, we recommend trialling daily oral iron (30-100 mg of elemental iron) as the first-line therapy. Safety and efficacy of intravenous iron infusions have improved with the availability of a newer formulation, ferric carboxymaltose. Patients who fail to respond to oral iron replacement can be safely managed with intravenous iron. Blood transfusion for iron deficiency anaemia should be reserved for life-threatening situations and should always be followed by appropriate iron replacement.

  19. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  20. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  1. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  2. Submicroscopic deletion involving the fibroblast growth factor receptor 1 gene in a patient with combined pituitary hormone deficiency.

    PubMed

    Fukami, Maki; Iso, Manami; Sato, Naoko; Igarashi, Maki; Seo, Misuzu; Kazukawa, Itsuro; Kinoshita, Eiichi; Dateki, Sumito; Ogata, Tsutomu

    2013-01-01

    Combined pituitary hormone deficiency (CPHD), isolated hypogonadotropic hypogonadism (IHH), Kallmann syndrome (KS), and septo-optic dysplasia (SOD) are genetically related conditions caused by abnormal development of the anterior midline in the forebrain. Although mutations in the fibroblast growth factor receptor 1 (FGFR1) gene have been implicated in the development of IHH, KS, and SOD, the relevance of FGFR1 abnormalities to CPHD remains to be elucidated. Here, we report a Japanese female patient with CPHD and FGFR1 haploinsufficiency. The patient was identified through copy-number analyses and direct sequencing of FGFR1 performed for 69 patients with CPHD. The patient presented with a combined deficiency of GH, LH and FSH, and multiple neurological abnormalities. In addition, normal TSH values along with a low free T4 level indicated the presence of central hypothyroidism. Molecular analyses identified a heterozygous ~ 8.5 Mb deletion involving 56 genes and pseudogenes. None of these genes except FGFR1 have been associated with brain development. No FGFR1 abnormalities were identified in the remaining 68 patients, although two patients carried nucleotide substitutions (p.V102I and p.S107L) that were assessed as benign polymorphism by in vitro functional assays. These results indicate a possible role of FGFR1 in anterior pituitary function and the rarity of FGFR1 abnormalities in patients with CPHD.

  3. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury.

    PubMed

    Saber, Maha; Kokiko-Cochran, Olga; Puntambekar, Shweta S; Lathia, Justin D; Lamb, Bruce T

    2017-01-15

    Traumatic brain injury (TBI) affects 1.7 million persons annually in the United States (Centers for Disease Control and Prevention). There is increasing evidence that persons exposed to TBI have increased risk of the development of multiple neurodegenerative conditions, including Alzheimer disease (AD). TBI triggers a strong neuroinflammatory response characterized by astrogliosis, activation of microglia, and infiltration of peripheral monocytes. Recent evidence suggests that alterations in innate immunity promote neurodegeneration. This includes genetic studies demonstrating that mutations in triggering receptor expressed on myeloid cells 2 (TREM2) is associated with a higher risk for not only AD but also multiple neurodegenerative diseases. To examine whether TREM2 deficiency affects pathological outcomes of TBI, Trem2 knockout (Trem2 -/- ) and C57BL/6J (B6) mice were given a lateral fluid percussion injury (FPI) and sacrificed at 3 and 120 days post-injury (DPI) to look at both acute and chronic consequences of TREM2 deficiency. Notably, at 3 DPI, B6 mice exposed to TBI exhibited increased expression of TREM2 in the brain. Further, Trem2 -/- mice exposed to TBI exhibited enhanced macrophage activation near the lesion, but significantly less macrophage activation away from the lesion when compared with B6 mice exposed to TBI. In addition, at 120 DPI, Trem2 -/- mice exposed to TBI demonstrated reduced hippocampal atrophy and rescue of TBI-induced behavioral changes when compared with B6 mice exposed to TBI. Taken together, this study suggests that TREM2 deficiency influences both acute and chronic responses to TBI, leading to an altered macrophage response at early time points, and improved pathological and functional outcomes at later time points.

  4. Decreased phosphorylation of δ and ε subunits of the acetylcholine receptor coincides with delayed postsynaptic maturation in PKC θ deficient mouse.

    PubMed

    Lanuza, Maria A; Besalduch, Núria; González, Carmen; Santafé, Manel M; Garcia, Neus; Tomàs, Marta; Nelson, Phillip G; Tomàs, Josep

    2010-09-01

    Protein kinase C (PKC) activity is involved in the nicotinic acetylcholine receptor (nAChR) redistribution at the neuromuscular junction in vivo during postnatal maturation. Here we studied, in PKC theta (PKCtheta) deficient mice (KO), how the theta isoform of PKC is involved in the nAChR cluster maturation that is accompanied by the developmental activity-dependent neuromuscular synapse elimination process. We found that axonal elimination and dispersion of nAChR from the postsynaptic plaques and its redistribution to form the mature postsynaptic apparatus were delayed but not totally suppressed in PKCtheta deficient mice. Moreover, the delay in the maturation of the morphology of the nAChR clusters during the early postnatal synapse elimination period in the PKCtheta deficient mice coincides with a reduction in the PKCtheta-mediated phosphorylation on the delta subunit of the nAChR. In addition, we show evidence for PKCtheta regulation of PKA in normally phosphorylating the epsilon subunit of nAChR. We have also found that the theta isoform of PKC is located on the postsynaptic component of the neuromuscular junction but is also expressed by motoneurons in the spinal cord and in the motor nerve terminals. The results allow us to hypothesize that a spatially specific and opposing action of PKCtheta and PKA may result in activity-dependent alterations to synaptic connectivity at both the nerve inputs and the postsynaptic nAChR clusters. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells

    PubMed Central

    1993-01-01

    To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208

  6. N-formyl peptide receptors internalize but do not recycle in the absence of arrestins.

    PubMed

    Vines, Charlotte M; Revankar, Chetana M; Maestas, Diane C; LaRusch, Leah L; Cimino, Daniel F; Kohout, Trudy A; Lefkowitz, Robert J; Prossnitz, Eric R

    2003-10-24

    Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.

  7. Fetal hemorrhage and platelet dysfunction in SLP-76–deficient mice

    PubMed Central

    Clements, James L.; Lee, Jong Ran; Gross, Barbara; Yang, Baoli; Olson, John D.; Sandra, Alexander; Watson, Stephen P.; Lentz, Steven R.; Koretzky, Gary A.

    1999-01-01

    The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor–dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76–deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76–deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-γ2 (PLC-γ2), suggesting that SLP-76 functions upstream of PLC-γ2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76–deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes. PMID:9884330

  8. Dipeptidyl peptidase IV deficiency increases susceptibility to angiotensin-converting enzyme inhibitor-induced peritracheal edema.

    PubMed

    Byrd, James Brian; Shreevatsa, Ajai; Putlur, Pradeep; Foretia, Denis; McAlexander, Laurie; Sinha, Tuhin; Does, Mark D; Brown, Nancy J

    2007-08-01

    Serum dipeptidyl peptidase IV (DPPIV) activity is decreased in some individuals with ACE inhibitor-associated angioedema. ACE and DPPIV degrade substance P, an edema-forming peptide. The contribution of impaired degradation of substance P by DPPIV to the pathogenesis of ACE inhibitor-associated angioedema is unknown. We sought to determine whether DPPIV deficiency results in increased edema formation during ACE inhibition. We also sought to develop an animal model using magnetic resonance imaging to quantify ACE inhibitor-induced edema. The effect of genetic DPPIV deficiency on peritracheal edema was assessed in F344 rats after treatment with saline, captopril (2.5 mg/kg), or captopril plus the neurokinin receptor antagonist spantide (100 mug/kg) by using serial T2-weighted magnetic resonance imaging. Serum dipeptidyl peptidase activity was dramatically decreased in DPPIV-deficient rats (P < .001). The volume of peritracheal edema was significantly greater in captopril-treated DPPIV-deficient rats than in saline-treated DPPIV-deficient rats (P = .001), saline-treated rats of the normal substrain (P < .001), or captopril-treated rats of the normal substrain (P = .001). Cotreatment with spantide attenuated peritracheal edema in captopril-treated DPPIV-deficient rats (P = .005 vs captopril-treated DPPIV-deficient rats and P = .57 vs saline-treated DPPIV-deficient rats). DPPIV deficiency predisposes to peritracheal edema formation when ACE is inhibited through a neurokinin receptor-dependent mechanism. Magnetic resonance imaging is useful for modeling ACE inhibitor-associated angioedema in rats. Genetic or environmental factors that decrease DPPIV activity might increase the risk of ACE inhibitor-associated angioedema.

  9. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system.

    PubMed

    Chiang, Ming-Chang; Chen, Hui-Mei; Lai, Hsing-Lin; Chen, Hsiao-Wen; Chou, Szu-Yi; Chen, Chiung-Mei; Tsai, Fuu-Jen; Chern, Yijuang

    2009-08-15

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.

  10. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  11. Restoring balance to B cells in ADA deficiency.

    PubMed

    Luning Prak, Eline T

    2012-06-01

    It is paradoxical that immunodeficiency disorders are associated with autoimmunity. Adenosine deaminase (ADA) deficiency, a cause of X-linked severe combined immunodeficiency (SCID), is a case in point. In this issue of the JCI, Sauer and colleagues investigate the B cell defects in ADA-deficient patients. They demonstrate that ADA patients receiving enzyme replacement therapy had B cell tolerance checkpoint defects. Remarkably, gene therapy with a retrovirus that expresses ADA resulted in the apparent correction of these defects, with normalization of peripheral B cell autoantibody frequencies. In vitro, agents that either block ADA or overexpress adenosine resulted in altered B cell receptor and TLR signaling. Collectively, these data implicate a B cell-intrinsic mechanism for alterations in B cell tolerance in the setting of partial ADA deficiency that is corrected by gene therapy.

  12. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  13. Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oumeddour, Abdelkader; CNRS, UMR 6293, GReD, F-63171 Aubiere; INSERM, UMR 1103, GReD, F-63171 Aubiere

    Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogenmore » considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are

  14. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells.

    PubMed

    Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu

    2015-03-01

    The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and

  15. Gravity receptor function in mice with graded otoconial deficiencies.

    PubMed

    Jones, Sherri M; Erway, Lawrence C; Johnson, Kenneth R; Yu, Heping; Jones, Timothy A

    2004-05-01

    The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.

  16. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  17. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    PubMed

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  18. Serum transferrin receptor in polycythemia.

    PubMed

    Manteiga, R; Remacha, A F; Sardà, M P; Ubeda, J

    1998-10-01

    We measured serum transferrin receptor (sTfR) levels in 22 patients with polycythemia vera and in 26 cases of secondary polycythemia. In our study, raised sTfR levels in both polycythemia groups were related to iron deficiency.

  19. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice.

    PubMed

    Ma, Xiaojun; Lin, Yuezhen; Lin, Ligen; Qin, Guijun; Pereira, Fred A; Haymond, Morey W; Butte, Nancy F; Sun, Yuxiang

    2012-08-01

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.

  20. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    PubMed

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  1. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Grimaldi, David; Zuber, Benjamin; Sauneuf, Bertrand; Rousseau, Christophe; El Hachem, Carole; Martin, Clémence; Belaïdouni, Nadia; Balloy, Viviane; Mira, Jean-Paul; Chiche, Jean-Daniel

    2012-09-15

    Sepsis is characterized by a dysregulated inflammatory response followed by immunosuppression that favors the development of secondary infections. Toll-like receptors (TLRs) are major regulators of the host's response to infections. How variability in TLR signaling may impact the development of sepsis-induced immune dysfunction has not been established. We sought to establish the role of TLR2, TLR4, and TLR5 in postseptic mice with Pseudomonas aeruginosa pneumonia. We used an experimental model of sublethal polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wild-type, tlr2(-/-), tlr4(-/-), tlr5(-/-), tlr2 4(-/-) mice that underwent CLP were secondarily subjected to P. aeruginosa pulmonary infection. Postseptic wild-type and tlr4(-/-) and tlr5(-/-) mice displayed high susceptibility to P. aeruginosa pneumonia. In contrast, TLR2-deficient mice, either tlr2(-/-)or tlr2 4(-/-), that underwent CLP were resistant to the secondary pulmonary infection. As compared to wild-type mice, tlr2(-/-) mice displayed improvement in bacterial clearance, decreased bacteremic dissemination, and attenuated lung damage. Furthermore, tlr2(-/-) mice exhibited a pulmonary proinflammatory cytokine balance, with increased production of tumor necrosis factor α and decreased release of interleukin 10. In a model of secondary P. aeruginosa pneumonia in postseptic mice, TLR2 deficiency improves survival by promoting efficient bacterial clearance and restoring a proinflammatory cytokine balance in the lung.

  2. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    PubMed

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  3. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats

    PubMed Central

    Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.

    2008-01-01

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692

  4. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.

    PubMed

    Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A

    2008-10-27

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.

  5. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.

    PubMed

    Tramarin, Marco; Rusconi, Laura; Pizzamiglio, Lara; Barbiero, Isabella; Peroni, Diana; Scaramuzza, Linda; Guilliams, Tim; Cavalla, David; Antonucci, Flavia; Kilstrup-Nielsen, Charlotte

    2018-06-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.

  6. The Effect of Low-Dose Proteasome Inhibition on Pre-Existing Atherosclerosis in LDL Receptor-Deficient Mice

    PubMed Central

    Wilck, Nicola; Fechner, Mandy; Dan, Cristian; Stangl, Verena; Stangl, Karl; Ludwig, Antje

    2017-01-01

    Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be specific to certain stages of atherosclerosis development, which has implications for proteasome inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels, and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of stage-dependent effects of proteasome inhibition in atherosclerosis. PMID:28387708

  7. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  8. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.

    PubMed

    Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E

    2009-02-13

    Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.

  10. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  11. Blood and hair lead in children with different extents of iron deficiency in Karachi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ataur Rahman, Muhammad; Rahman, Bushra; Saeed Ahmad, Muhammad

    Childhood iron deficiency has a high incidence in Pakistan. Some but not all studies have shown that dietary iron deficiency may cause increased absorption of lead as both compete for the same transporters in the small intestine. Therefore, children in Pakistan, residing in heavily polluted cities like Karachi may be prone to lead poisoning. This hypothesis was tested by investigating blood and hair lead concentrations in children from Karachi who were divided into four groups of iron status; normal, borderline iron deficiency, iron deficiency and iron deficiency anaemia. A prospective observational study was conducted where 269 children were categorized intomore » four groups of iron status using the World Health Organization criteria and one based on soluble transferrin receptor measurements. Blood iron status was determined using a full blood count, serum iron, ferritin, transferrin saturation and soluble transferrin receptor measurements. Blood lead was determined by graphite atomic absorption spectroscopy, whereas hair lead was assessed using an inductively coupled plasma atomic emission spectroscopy technique. Blood lead concentrations were significantly higher in children with iron deficiency anaemia (mean [95% confidence intervals] were 24.9 [22.6-27.2] {mu}g/dL) compared to those with normal iron status (19.1 [16.8-21.4] {mu}g/dL) using WHO criteria. In contrast, hair lead content was not significantly different in children of different iron status. Our findings reinforce the importance of not only reducing environmental lead pollution but also the development of national health strategies to reduce childhood iron deficiency in Pakistan.« less

  12. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  13. Umbilical Cord Blood Transplantation Corrects Very Early-Onset Inflammatory Bowel Disease in Chinese Patients With IL10RA-Associated Immune Deficiency.

    PubMed

    Peng, Kaiyue; Qian, Xiaowen; Huang, Zhiheng; Lu, Junping; Wang, Yuhuan; Zhou, Ying; Wang, Huijun; Wu, Bingbing; Wang, Ying; Chen, Lingli; Zhai, Xiaowen; Huang, Ying

    2018-05-18

    Hematopoietic stem cell transplantation is considered the only curative therapy for very early-onset inflammatory bowel disease with specific immune defects, such as interleukin-10 receptor deficiency. We performed reduced-intensity conditioning before umbilical cord blood transplantation in patients with interleukin-10 receptor-A deficiency. We enrolled 9 very early-onset inflammatory bowel disease patients with typical manifestations. We diagnosed the patients with interleukin-10 receptor-A deficiency by whole-exome sequencing. Umbilical cord blood transplantation was performed in all 9 patients. Eight patients received the reduced-intensity conditioning regimen, and 1 patient received the myeloablative conditioning regimen. All 9 patients received transplantation between the ages of 6 months to 43 months (average, 16.8 months) with body weights ranging from 3 to 10.4 kg (average, 6.6 kg). The patients displayed complete chimerism at 2-8 weeks after transplantation; 6 patients achieved complete remission without evidence of graft-vs-host disease or infections; 1 patient died of chronic lung graft-vs-host disease at 6 months post-transplantation; and the other 2 patients died of sepsis post-transplantation because of unsuccessful engraftments. Severe malnutrition and growth retardation associated with interleukin-10 receptor-A deficiency were significantly improved post-transplantation. We recommend umbilical cord blood transplantation as a potential treatment for very early-onset inflammatory bowel disease with a defined monogenic immunodeficiency, and we suggest that reduced-intensity conditioning chemotherapy is more suitable than myeloablative conditioning for patients with severe malnutrition and bowel disease. We have demonstrated success with reduced-intensity conditioning for interleukin-10 receptor-A deficiency in pediatric patients with severe clinical conditions. 10.1093/ibd/izy028_video1izy028.video15786489183001.

  14. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.

    PubMed

    Mayeur, Claire; Leyton, Patricio A; Kolodziej, Starsha A; Yu, Binglan; Bloch, Kenneth D

    2014-09-25

    Expression of hepcidin, the hepatic hormone controlling iron homeostasis, is regulated by bone morphogenetic protein (BMP) signaling. We sought to identify which BMP type II receptor expressed in hepatocytes, ActR2a or BMPR2, is responsible for regulating hepcidin gene expression. We studied Bmpr2 heterozygous mice (Bmpr2(+/-)), mice with hepatocyte-specific deficiency of BMPR2, mice with global deficiency of ActR2a, and mice in which hepatocytes lacked both BMPR2 and ActR2a. Hepatic hepcidin messenger RNA (mRNA) levels, serum hepcidin and iron levels, and tissue iron levels did not differ in wild-type mice, Bmpr2(+/-) mice, and mice in which either BMPR2 or ActR2a was deficient. Deficiency of both BMP type II receptors markedly reduced hepatic hepcidin gene expression and serum hepcidin levels leading to severe iron overload. Iron injection increased hepatic hepcidin mRNA levels in mice deficient in either BMPR2 or ActR2a, but not in mice deficient in both BMP type II receptors. In addition, in mouse and human primary hepatocytes, deficiency of both BMPR2 and ActR2a profoundly decreased basal and BMP6-induced hepcidin gene expression. These results suggest that BMP type II receptors, BMPR2 and ActR2a, have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. © 2014 by The American Society of Hematology.

  15. Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods

    USDA-ARS?s Scientific Manuscript database

    The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...

  16. Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes.

    PubMed

    Carta, Sonia; Tassi, Sara; Delfino, Laura; Omenetti, Alessia; Raffa, Salvatore; Torrisi, Maria Rosaria; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2012-09-01

    To determine whether dysregulated production of cytokines downstream of interleukin (IL)-1 participates in the pathophysiology of cryopyrin-associated periodic syndromes (CAPS). Primary monocytes from patients with CAPS, unstimulated or after stimulation with lipopolysaccharide (LPS) and other Toll-like receptor (TLR) agonists, were examined for signs of stress and production of IL-1β, IL-1 receptor antagonist (IL-1Ra) and IL-6 in comparison with monocytes from patients with autoimmune diseases and from healthy donors. Unstimulated CAPS monocytes showed mild signs of stress including elevated levels of reactive oxygen species and fragmented mitochondria. Stress signs were worsened by TLR stimulation and eventually led to protein synthesis inhibition with strong impairment of production of cytokines downstream of IL-1, such as IL-1Ra and IL-6. These defects were not detected in monocytes from autoimmune patients and healthy donors. The stress state of LPS-stimulated CAPS monocytes and the consequent inhibition of translation are likely to be responsible for the impaired production of IL-1Ra and IL-6. The deficient secretion of these cytokines coupled with increased IL-1β release explains the severity of the IL-1-related clinical manifestations and the predominant implication of innate immunity in CAPS.

  17. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  18. Transcriptome profiling of equine vitamin E deficient neuroaxonal dystrophy identifies upregulation of liver X receptor target genes

    PubMed Central

    Finno, Carrie J.; Bordbari, Matthew H.; Valberg, Stephanie J.; Lee, David; Herron, Josi; Hines, Kelly; Monsour, Tamer; Scott, Erica; Bannasch, Danika L.; Mickelson, James; Xu, Libin

    2016-01-01

    Specific spontaneous heritable neurodegenerative diseases have been associated with lower serum and cerebrospinal fluid α-tocopherol (α-TOH) concentrations. Equine neuroaxonal dystrophy (eNAD) has similar histologic lesions to human ataxia with vitamin E deficiency caused by mutations in the α-TOH transfer protein gene (TTPA). Mutations in TTPA are not present with eNAD and the molecular basis remains unknown. Given the neuropathologic phenotypic similarity of the conditions, we assessed the molecular basis of eNAD by global transcriptome sequencing of the cervical spinal cord. Differential gene expression analysis identified 157 significantly (FDR<0.05) dysregulated transcripts within the spinal cord of eNAD-affected horses. Statistical enrichment analysis identified significant downregulation of the ionotropic and metabotropic group III glutamate receptor, synaptic vesicle trafficking and cholesterol biosynthesis pathways. Gene co-expression analysis identified one module of upregulated genes significantly associated with the eNAD phenotype that included the liver X receptor (LXR) targets CYP7A1, APOE, PLTP and ABCA1. Validation of CYP7A1 and APOE dysregulation was performed in an independent biologic group and CYP7A1 was found to be additionally upregulated in the medulla oblongata of eNAD horses. Evidence of LXR activation supports a role for modulation of oxysterol-dependent LXR transcription factor activity by tocopherols. We hypothesize that the protective role of α-TOH in eNAD may reside in its ability to prevent oxysterol accumulation and subsequent activation of the LXR in order to decrease lipid peroxidation associated neurodegeneration. PMID:27751910

  19. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner.

    PubMed

    Wezel, Anouk; van der Velden, Daniël; Maassen, Johanna M; Lagraauw, H Maxime; de Vries, Margreet R; Karper, Jacco C; Kuiper, Johan; Bot, Ilze; Quax, Paul H A

    2015-01-01

    Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background. Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes. We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  1. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone.

    PubMed

    Tan, H Y; Steyn, F J; Huang, L; Cowley, M; Veldhuis, J D; Chen, C

    2016-12-15

    Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a

  2. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone

    PubMed Central

    Tan, H. Y.; Huang, L.; Cowley, M.; Veldhuis, J. D.; Chen, C.

    2016-01-01

    Key points Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth.Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth.We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone–insulin‐like growth factor‐1 (GH–IGF‐1) axis.We propose that hyperinsulinaemia promotes growth while suppressing the GH–IGF‐1 axis.It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Abstract Defects in melanocortin‐4‐receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)‐mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin‐like growth factor‐1 (IGF‐1) production and/or release relative to pubertal growth. We demonstrate early‐onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH–IGF‐1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia‐associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild‐type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair‐fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs

  3. Implications of vitamin D deficiency in lithiasic patient and in general population.

    PubMed

    Millán-Rodríguez, F; Gavrilov, P; Gracia-García, S; Angerri-Feu, O; Sánchez-Martín, F M; Villavicencio-Mavrich, H

    2015-05-01

    Vitamin D deficiency causes problems in mineral metabolism but also overall health. In first place a review of the topic was carried out. Then, in order to contextualize it in lithiasic patient, a study on Vitamin D deficiency and its possible relationship with impaired PTH levels is performed. A review of topics such as metabolism, epidemiology and the relationship of vitamin D deficiency with several pathologies was performed. Besides a multivariate analysis and a correlation study between vitamin D and PTH levels was conducted in 100 lithiasic patients. We present a review of Vitamin D metabolism, receptors and functions, as well as about its valuation methodology and the treatment of its deficiency. Lithiasic patients show a higher vitamin D deficiency than general population. Vitamin D deficiency has been significantly associated with increased PTH levels. In addition, there is enough literature showing a relationship between vitamin D deficiency not only with bone disease, but also with multiple diseases. vitamin D levels should be measured in all lithiasic patients, and those with vitamin D deficiency should be treated. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

    PubMed

    Lorenz, Julia; Seebach, Elisabeth; Hackmayer, Gerit; Greth, Carina; Bauer, Richard J; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  5. Melanocortin 1 Receptor-Signaling Deficiency Results in an Articular Cartilage Phenotype and Accelerates Pathogenesis of Surgically Induced Murine Osteoarthritis

    PubMed Central

    Hackmayer, Gerit; Greth, Carina; Bauer, Richard J.; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT–analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  6. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent.

    PubMed

    Seiffert, Martina; Custodio, Joseph M; Wolf, Ingrid; Harkey, Michael; Liu, Yan; Blattman, Joseph N; Greenberg, Philip D; Rohrschneider, Larry R

    2003-04-01

    Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.

  7. Modulation of type II TGF-β receptor degradation by integrin-linked kinase.

    PubMed

    Vi, Linda; Boo, Stellar; Sayedyahossein, Samar; Singh, Randeep K; McLean, Sarah; Di Guglielmo, Gianni M; Dagnino, Lina

    2015-03-01

    Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.

  8. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  9. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Vikram, E-mail: prasadvm@ucmail.uc.edu; Chirra, Shivani; Kohli, Rohit

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na{sup +}/H{sup +} exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in livermore » that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.« less

  10. Dopamine Receptors and Parkinson's Disease

    PubMed Central

    Hisahara, Shin; Shimohama, Shun

    2011-01-01

    Parkinson's disease (PD) is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS). In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist. PMID:25954517

  11. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  12. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153

  13. Presence of 25(OH)D deficiency and its effect on vitamin D receptor mRNA expression.

    PubMed

    Goswami, R; Mondal, A M; Tomar, N; Ray, D; Chattopadhyay, P; Gupta, N; Sreenivas, V

    2009-03-01

    Vitamin D and its metabolites act through vitamin D receptor (VDR). We hypothesized that subjects with low serum 25(OH)D levels but normal PTH might have increased VDR expression. VDRmRNA expression was assessed by real time PCR in duodenal mucosa and PBMC (peripheral blood mononuclear cells) in 45 subjects with normal duodenoscopy and in PBMC alone in 48 healthy volunteers with hypovitaminosis D. 25(OH)D, PTH and VDRmRNA expression in PBMC was reassessed after 8 weeks of oral cholecalciferol (60 000 IU per week) in a subset (n=23) of healthy volunteers. The VDRmRNA expressions in the duodenum and PBMC were significantly correlated (r=0.42), but the expression was 13 times higher in the former than the latter. The mean VDRmRNA expression was similar in 25(OH)D-deficient subjects with or without PTH elevation, both in the duodenum and PBMC. The PBMC VDRmRNA expression showed no significant change after cholecalciferol supplementation. A weak correlation coefficient between duodenal mucosa and PBMC VDRmRNA suggests that caution needs to be exercised while using the latter as a surrogate for other sites.

  14. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation

    PubMed Central

    Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.

    2003-01-01

    Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639

  15. Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Duse, Marzia; Malvagia, Sabrina; Lippi, Francesca; Funghini, Silvia; Bianchi, Leila; Della Bona, Maria Luisa; Valleriani, Claudia; Ombrone, Daniela; Moriondo, Maria; Villanelli, Fabio; Speckmann, Carsten; Adams, Stuart; Gaspar, Bobby H; Hershfield, Michael; Santisteban, Ines; Fairbanks, Lynette; Ragusa, Giovanni; Resti, Massimo; de Martino, Maurizio; Guerrini, Renzo; Azzari, Chiara

    2013-06-01

    Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 μmol/L (normal value, <1.5 μmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 μmol/L (normal value, <0.07 μmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  17. P-selectin deficiency attenuates tumor growth and metastasis

    PubMed Central

    Kim, Young J.; Borsig, Lubor; Varki, Nissi M.; Varki, Ajit

    1998-01-01

    Selectins are adhesion receptors that normally recognize certain vascular mucin-type glycoproteins bearing the carbohydrate structure sialyl-Lewisx. The clinical prognosis and metastatic progression of many epithelial carcinomas has been correlated independently with production of tumor mucins and with enhanced expression of sialyl-Lewisx. Metastasis is thought to involve the formation of tumor-platelet-leukocyte emboli and their interactions with the endothelium of distant organs. We provide a link between these observations by showing that P-selectin, which normally binds leukocyte ligands, can promote tumor growth and facilitate the metastatic seeding of a mucin-producing carcinoma. P-selectin-deficient mice showed significantly slower growth of subcutaneously implanted human colon carcinoma cells and generated fewer lung metastases from intravenously injected cells. Three potential pathophysiological mechanisms are demonstrated: first, intravenously injected tumor cells home to the lungs of P-selectin deficient mice at a lower rate; second, P-selectin-deficient mouse platelets fail to adhere to tumor cell-surface mucins; and third, tumor cells lodged in lung vasculature after intravenous injection often are decorated with platelet clumps, and these are markedly diminished in P-selectin-deficient animals. PMID:9689079

  18. Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway.

    PubMed

    Moniuszko, Grzegorz; Skoneczny, Marek; Zientara-Rytter, Katarzyna; Wawrzyńska, Anna; Głów, Dawid; Cristescu, Simona M; Harren, Frans J M; Sirko, Agnieszka

    2013-11-01

    Most genes from the plant-specific family encoding Response to Low Sulphur (LSU)-like proteins are strongly induced in sulphur (S)-deficient conditions. The exact role of these proteins remains unclear; however, some data suggest their importance for plants' adjustment to nutrient deficiency and other environmental stresses. This work established that the regulation of ethylene signalling is a part of plants' response to S deficiency and showed the interaction between UP9C, a tobacco LSU family member, and one of the tobacco isoforms of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO2A). Increase in ethylene level induced by S deficiency does not take place in tobacco plants with UP9C expressed in an antisense orientation. Based on transcriptomics data, this work also demonstrated that the majority of tobacco's response to S deficiency is misregulated in plants expressing UP9C-antisense. A link between response to S deficiency, ethylene sensing, and LSU-like proteins was emphasized by changes in expression of the genes encoding ethylene receptors and F-box proteins specific for the ethylene pathway.

  19. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Neointimal Hyperplasia and Suppresses Macrophage Inflammation Through SGK1-AP1/NF-κB Pathways.

    PubMed

    Sun, Jian-Yong; Li, Chao; Shen, Zhu-Xia; Zhang, Wu-Chang; Ai, Tang-Jun; Du, Lin-Juan; Zhang, Yu-Yao; Yao, Gao-Feng; Liu, Yan; Sun, Shuyang; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Peng, Yong; Chen, Mao; Liu, Xiaojing; Tao, Jun; Zhou, Bin; Yu, Ying; Guo, Feifan; Du, Jie; Duan, Sheng-Zhong

    2016-05-01

    Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-β and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.

  1. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  2. Salusin-α attenuates hepatic steatosis and atherosclerosis in high fat diet-fed low density lipoprotein receptor deficient mice.

    PubMed

    Tang, Kun; Wang, Fei; Zeng, Yi; Chen, XueMeng; Xu, XiaoLe

    2018-07-05

    Salusin-α is an endogenous bioactive peptide and likely to prevent atherosclerosis. But its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to determine the potential effects of salusin-α on atherosclerosis and its associated metabolic disorders in high fat diet (HFD)-fed low density lipoprotein receptor deficient (LDLr -/- ) mice, and also explore the possible underlying mechanisms involved. Our data showed that after 12 weeks treatment, salusin-α ameliorated HFD-induced weight gain, hyperlipidemia, and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Salusin-α suppressed HFD-induced hepatic steatosis and regulated gene expression of fatty acid synthase, acetyl coenzyme A carboxylase-α, peroxisome proliferator-activated receptor-α, camitine palmitoyltransferase-1α and CYP7A1 in liver. Salusin-α reduced atherosclerotic plaque area and macrophage foam cell formation. Salusin-α prevented hepatic and aortic inflammation as evidenced by the reduced macrophage recruitment and mRNA expression of IL-6 and TNF-α in both liver and aorta. Salusin-α also reduced hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in liver and suppressing reactive oxygen species generation and protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in both liver and aorta. Our present data suggest that salusin-α could reduce hepatic steatosis and atherosclerosis via its pleiotropic effects, including amelioration of lipid profiles, regulation of some key molecules involved in lipid metabolism in liver, anti-oxidative effect and anti-inflammatory action. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.

    PubMed

    Della Mina, Erika; Borghesi, Alessandro; Zhou, Hao; Bougarn, Salim; Boughorbel, Sabri; Israel, Laura; Meloni, Ilaria; Chrabieh, Maya; Ling, Yun; Itan, Yuval; Renieri, Alessandra; Mazzucchelli, Iolanda; Basso, Sabrina; Pavone, Piero; Falsaperla, Raffaele; Ciccone, Roberto; Cerbo, Rosa Maria; Stronati, Mauro; Picard, Capucine; Zuffardi, Orsetta; Abel, Laurent; Chaussabel, Damien; Marr, Nico; Li, Xiaoxia; Casanova, Jean-Laurent; Puel, Anne

    2017-01-24

    Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except for TLR3 and some TLR4) and IL-1R signaling in both leukocytes and fibroblasts. TLR and IL-1R responses are weak but not abolished in mice lacking IRAK-1, whereas the role of IRAK-1 in humans remains unclear. We describe here a boy with X-linked MECP2 deficiency-related syndrome due to a large de novo Xq28 chromosomal deletion encompassing both MECP2 and IRAK1 Like many boys with MECP2 null mutations, this child died very early, at the age of 7 mo. Unlike most IRAK-4- or MyD88-deficient patients, he did not suffer from invasive bacterial diseases during his short life. The IRAK-1 protein was completely absent from the patient's fibroblasts, which responded very poorly to all TLR2/6 (PAM 2 CSK 4 , LTA, FSL-1), TLR1/2 (PAM 3 CSK 4 ), and TLR4 (LPS, MPLA) agonists tested but had almost unimpaired responses to IL-1β. By contrast, the patient's peripheral blood mononuclear cells responded normally to all TLR1/2, TLR2/6, TLR4, TLR7, and TLR8 (R848) agonists tested, and to IL-1β. The death of this child precluded long-term evaluations of the clinical consequences of inherited IRAK-1 deficiency. However, these findings suggest that human IRAK-1 is essential downstream from TLRs but not IL-1Rs in fibroblasts, whereas it plays a redundant role downstream from both TLRs and IL-1Rs in leukocytes.

  4. [Biological diagnosis of iron deficiency in children].

    PubMed

    Thuret, I

    2017-05-01

    Measurement of serum ferritin (SF) is currently the laboratory test recommended for diagnosing iron deficiency. In the absence of an associated disease, a low SF value is an early and highly specific indicator of iron deficiency. The WHO criteria proposed to define depleted storage iron are 12μg/L for children under 5 years and 15μg/L for those over 5 years. A higher threshold of 30μg/L is used in the presence of infection or inflammation. Iron deficiency anemia, with typical low mean corpuscular volume and mean corpuscular hemoglobin, is only present at the end stage of iron deficiency. Other diagnostic tests for iron deficiency including iron parameters (low serum iron, increased total iron-binding capacity, low transferrin saturation) and erythrocyte traits (low mean corpuscular volume, increased zinc protoporphyrin) provide little additional diagnostic value over SF. In children, serum soluble transferrin receptor (sTfR) has been reported to be a sensitive indicator of iron deficiency and is relatively unaffected by inflammation. On the other hand, sTfR is directly related to extent of erythroid activity and not commonly used in clinical practice. In population surveys, approaches based on combinations of markers have been explored to improve the specificity and sensitivity of diagnostic. In addition to Hb value determination, a combination of parameters (among transferrin saturation, zinc protoporphyrin, mean corpuscular volume or serum ferritin) was generally used to assess iron deficiency. More recently sTfR/ ferritin index were evaluated, sTfR in conjunction with SF allowing to better distinguishing iron deficiency from inflammatory anemia. Also, hepcidin measurements appeared an interesting marker for diagnosing iron deficiency and identifying individuals in need of iron supplementation in populations where inflammatory or infectious diseases are frequently encountered. Reticulocyte Hb content (CHr) determination is an early parameter of iron deficiency

  5. DUSP3 Phosphatase Deficiency or Inhibition Limit Platelet Activation and Arterial Thrombosis

    PubMed Central

    Musumeci, Lucia; Kuijpers, Marijke J; Gilio, Karen; Hego, Alexandre; Théâtre, Emilie; Maurissen, Lisbeth; Vandereyken, Maud; Diogo, Catia V; Lecut, Christelle; Guilmain, William; Bobkova, Ekaterina V; Eble, Johannes A.; Dahl, Russell; Drion, Pierre; Rascon, Justin; Mostofi, Yalda; Yuan, Hongbin; Sergienko, Eduard; Chung, Thomas DY; Thiry, Marc; Senis, Yotis; Moutschen, Michel; Mustelin, Tomas; Lancellotti, Patrizio; Heemskerk, Johan WM; Tautz, Lutz; Oury, Cécile; Rahmouni, Souad

    2015-01-01

    Background A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. Better understanding of the molecular mechanisms leading to platelet activation is of importance for the development of improved therapies. Recently, protein tyrosine phosphatases (PTPs) have emerged as critical regulators of platelet function. Methods and Results This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated through the collagen receptor glycoprotein VI (GPVI) and the C-type lectin-like receptor 2 (CLEC-2). DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism, compared to wild-type mice, and showed severely impaired thrombus formation upon ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of PLCγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen and CLEC-2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. Conclusions DUSP3 plays a selective and essential role in collagen- and CLEC-2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a PTP, implicated in platelet signaling, has been targeted with a small-molecule drug. PMID:25520375

  6. Leptin expression and leptin receptor gene polymorphisms in growth hormone deficiency patients.

    PubMed

    Su, Pen-Hua; Chen, Jia-Yuh; Yu, Ju-Shan; Chen, Suh-Jen; Yang, Shun-Fa

    2011-04-01

    Growth hormone deficiency (GHD) patients have lower weight, height, bone age, insulin-like growth factor 1 (IGF-1) levels, GH levels, fat metabolism and skeletal growth. The association of leptin with GHD characteristics and the effect of gene variants of leptin on GHD are unknown. Our aim was to examine the association of circulating leptin levels and common genetic variants in leptin (LEP) and leptin receptor (LEPR) genes with anthropometric measures, circulating hormone concentrations and GHD. A case control study of 125 GHD cases and 159 control subjects were characterized for bone age, body mass index (BMI), height, weight, leptin, IGF-1, GH and their genotype at the leptin promoter G-2548A, and LEPR variants, K109R and Q223R, at Chung Shan Medical University Hospital. Leptin levels were significantly associated with lower bone age, weight and BMI in GHD patients. Leptin levels were also significantly associated with reduced IGF-1 levels in girls but not boys in both groups. The frequency of LEPR223 [A/G or A/A] genotype was significantly higher than the LEPR223 G/G genotype in the GHD group. The LEPR223 [A/G or A/A] genotype was significantly associated with increased weight and BMI in the control group, but not in the GHD group. In conclusion, the GHD group carried a significantly higher frequency of the LEPR [G/A or A/A] genotype and of the A allele (LEPR223R). The LEPR223R polymorphism affected weight and BMI in control, but not in GHD patients, suggesting that the effect of LEPR223 [A/G or A/A] genotype was counteracted by other factor(s) in GHD patients.

  7. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  8. Serine proteases, inhibitors and receptors in renal fibrosis

    PubMed Central

    Eddy, Allison A.

    2011-01-01

    Summary Chronic kidney disease (CKD) is estimated to affect one in eight adults. Their kidney function progressively deteriorates as inflammatory and fibrotic processes damage nephrons. New therapies to prevent renal functional decline must build on basic research studies that identify critical cellular and molecular mediators. Plasminogen activator inhibitor-1 (PAI-1), a potent fibrosis-promoting glycoprotein, is one promising candidate. Absent from normal kidneys, PAI-1 is frequently expressed in injured kidneys. Studies in genetically engineered mice have demonstrated its potency as a pro-fibrotic molecule. Somewhat surprising, its ability to inhibit serine protease activity does not appear to be its primary pro-fibrotic effect in CKD. Both tissue-type plasminogen activator and plasminogen deficiency significantly reduced renal fibrosis severity after ureteral obstruction, while genetic urokinase (uPA) deficiency had no effect. PAI-1 expression is associated with enhanced recruitment of key cellular effectors of renal fibrosis – interstitial macrophages and myofibroblasts. The ability of PAI-1 to promote cell migration involves interactions with the low-density lipoprotein receptor-associate protein-1 and also complex interactions with uPA bound to its receptor (uPAR) and several leukocyte and matrix integrins that associate with uPAR as co-receptors. uPAR is expressed by several cell types in damaged kidneys, and studies in uPAR-deficient mice have shown that its serves a protective role. uPAR mediates additional anti-fibrotic effects - it interacts with specific co-receptors to degrade PAI-1 and extracellular collagens, and soluble uPAR has leukocyte chemoattractant properties. Molecular pathways activated by serine proteases and their inhibitor, PAI-1, are promising targets for future anti-fibrotic therapeutic agents. PMID:19350108

  9. Prostaglandin E2 is critical for the development of niacin-deficiency-induced photosensitivity via ROS production

    NASA Astrophysics Data System (ADS)

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-10-01

    Pellagra is a photosensitivity syndrome characterized by three ``D's'': diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.

  10. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    PubMed

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  11. Increased anxiety and synaptic plasticity in estrogen receptor -deficient mice

    NASA Astrophysics Data System (ADS)

    Krel, Wojciech; Dupont, Sonia; Krust, Andrée; Chambon, Pierre; Chapman, Paul F.

    2001-10-01

    Estrogens are powerful modulators of neuronal physiology and in humans may affect a broad range of functions, including reproductive, emotional, and cognitive behaviors. We studied the contribution of estrogen receptors (ERs) in modulation of emotional processes and analyzed the effects of deleting ER or ER in mice. Behavior consistent with increased anxiety was observed principally in ER mutant females and was associated with a reduced threshold for the induction of synaptic plasticity in the basolateral amygdala. Local increase of 5-hydroxytryptamine 1a receptor expression inmedial amygdala may contribute to these changes. Our data show that, particularly in females, there is an important role for ERβ-mediated estrogen signaling in the processing of emotional behavior.

  12. Excess adiposity, inflammation, and iron-deficiency in female adolescents.

    PubMed

    Tussing-Humphreys, Lisa M; Liang, Huifang; Nemeth, Elizabeta; Freels, Sally; Braunschweig, Carol A

    2009-02-01

    Iron deficiency is more prevalent in overweight children and adolescents but the mechanisms that underlie this condition remain unclear. The purpose of this cross-sectional study was to assess the relationship between iron status and excess adiposity, inflammation, menarche, diet, physical activity, and poverty status in female adolescents included in the National Health and Nutrition Examination Survey 2003-2004 dataset. Descriptive and simple comparative statistics (t test, chi(2)) were used to assess differences between normal-weight (5th < or = body mass index [BMI] percentile <85th) and heavier-weight girls (< or = 85th percentile for BMI) for demographic, biochemical, dietary, and physical activity variables. In addition, logistic regression analyses predicting iron deficiency and linear regression predicting serum iron levels were performed. Heavier-weight girls had an increased prevalence of iron deficiency compared to those with normal weight. Dietary iron, age of and time since first menarche, poverty status, and physical activity were similar between the two groups and were not independent predictors of iron deficiency or log serum iron levels. Logistic modeling predicting iron deficiency revealed having a BMI > or = 85th percentile and for each 1 mg/dL increase in C-reactive protein the odds ratio for iron deficiency more than doubled. The best-fit linear model to predict serum iron levels included both serum transferrin receptor and C-reactive protein following log-transformation for normalization of these variables. Findings indicate that heavier-weight female adolescents are at greater risk for iron deficiency and that inflammation stemming from excess adipose tissue contributes to this phenomenon. Food and nutrition professionals should consider elevated BMI as an additional risk factor for iron deficiency in female adolescents.

  13. Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    PubMed Central

    Calvo-Pinilla, Eva; Rodríguez-Calvo, Teresa; Anguita, Juan; Sevilla, Noemí; Ortego, Javier

    2009-01-01

    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV. PMID:19357779

  14. Functional Implications of Limited Leptin Receptor and Ghrelin Receptor Coexpression in the Brain

    PubMed Central

    Perello, Mario; Scott, Michael M.; Sakata, Ichiro; Lee, Charlotte E.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A.; Elmquist, Joel K.; Zigman, Jeffrey M.

    2012-01-01

    The hormones leptin and ghrelin act in apposition to one another in the regulation of body weight homeostasis. Interestingly, both leptin receptor expression and ghrelin receptor expression have been observed within many of the same nuclei of the central nervous system (CNS), suggesting that these hormones may act on a common population of neurons to produce changes in food intake and energy expenditure. In the present study we explored the extent of this putative direct leptin and ghrelin interaction in the CNS and addressed the question of whether a loss of ghrelin signaling would affect sensitivity to leptin. Using histological mapping of leptin receptor and ghrelin receptor expression, we found that cells containing both leptin receptors and ghrelin receptors are mainly located in the medial part of the hypothalamic arcuate nucleus. In contrast, coexpression was much less extensive elsewhere in the brain. To assess the functional consequences of this observed receptor distribution, we explored the effect of ghrelin receptor deletion on leptin sensitivity. In particular, the responses of ad libitum-fed, diet-induced obese and fasted mice to the anorectic actions of leptin were examined. Surprisingly, we found that deletion of the ghrelin receptor did not affect the sensitivity to exogenously administrated leptin. Thus, we conclude that ghrelin and leptin act largely on distinct neuronal populations and that ghrelin receptor deficiency does not affect sensitivity to the anorexigenic and body weight-lowering actions of leptin. PMID:21674492

  15. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain.

    PubMed

    Perello, Mario; Scott, Michael M; Sakata, Ichiro; Lee, Charlotte E; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Elmquist, Joel K; Zigman, Jeffrey M

    2012-02-01

    The hormones leptin and ghrelin act in apposition to one another in the regulation of body weight homeostasis. Interestingly, both leptin receptor expression and ghrelin receptor expression have been observed within many of the same nuclei of the central nervous system (CNS), suggesting that these hormones may act on a common population of neurons to produce changes in food intake and energy expenditure. In the present study we explored the extent of this putative direct leptin and ghrelin interaction in the CNS and addressed the question of whether a loss of ghrelin signaling would affect sensitivity to leptin. Using histological mapping of leptin receptor and ghrelin receptor expression, we found that cells containing both leptin receptors and ghrelin receptors are mainly located in the medial part of the hypothalamic arcuate nucleus. In contrast, coexpression was much less extensive elsewhere in the brain. To assess the functional consequences of this observed receptor distribution, we explored the effect of ghrelin receptor deletion on leptin sensitivity. In particular, the responses of ad libitum-fed, diet-induced obese and fasted mice to the anorectic actions of leptin were examined. Surprisingly, we found that deletion of the ghrelin receptor did not affect the sensitivity to exogenously administrated leptin. Thus, we conclude that ghrelin and leptin act largely on distinct neuronal populations and that ghrelin receptor deficiency does not affect sensitivity to the anorexigenic and body weight-lowering actions of leptin. Copyright © 2011 Wiley-Liss, Inc.

  16. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory.

    PubMed

    Erkens, Mirthe; Bakker, Brenda; van Duijn, Lucette M; Hendriks, Wiljan J A J; Van der Zee, Catharina E E M

    2014-05-15

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal cortex but their precise role in these regions remains to be determined. Here, we evaluated phenotypic consequences of loss of PTPRR activity and found that basal smell was normal for Ptprr(-/-) mice. Also, spatial learning and fear-associated contextual learning were unaffected. PTPRR deficiency, however, resulted in impaired novel object recognition and a striking increase in exploratory activity in a new environment. The data corroborate the importance of proper control of MAPK signaling in cerebral functions and put forward PTPRR as a novel target to modulate synaptic processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice.

    PubMed

    Stranahan, Alexis M; Hao, Shuai; Dey, Aditi; Yu, Xiaolin; Baban, Babak

    2016-12-01

    Accumulating evidence indicates that obesity accelerates the onset of cognitive decline. While mechanisms are still being identified, obesity promotes peripheral inflammation and increases blood-brain barrier (BBB) permeability. However, no studies have manipulated vascular permeability in obesity to determine whether BBB breakdown underlies memory deficits. Protein kinase Cβ (PKCβ) activation destabilizes the BBB, and we used a PKCβ inhibitor (Enzastaurin) to block BBB leakiness in leptin receptor-deficient (db/db) mice. Enzastaurin reversed BBB breakdown in db/db mice and normalized hippocampal function without affecting obesity or metabolism. Flow cytometric analysis of forebrain mononuclear cells (FMCs) from db/db mice revealed macrophage infiltration and induction of the activation marker MHCII in microglia and macrophages. Enzastaurin eliminated macrophage infiltration and MHCII induction, and protein array profiling revealed parallel reductions in IL1β, IL6, MCP1, and TNFα. To investigate whether these signals attract peripheral monocytes, FMCs from Wt and db/db mice were plated below migration inserts containing peritoneal macrophages. Peritoneal macrophages from db/db mice exhibit increases in transmigration that were blocked by recombinant IL1RA. These studies indicate that BBB breakdown impairs cognition in obesity and diabetes by allowing macrophage infiltration, with a potential role for IL1β in trafficking of peripheral monocytes into the brain. © The Author(s) 2016.

  18. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  19. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  20. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  1. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  2. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  3. Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-α in diabetic cardiomyopathy.

    PubMed

    Zhao, Yichao; Xu, Longwei; Ding, Song; Lin, Nan; Ji, Qingqi; Gao, Lingchen; Su, Yuanyuan; He, Ben; Pu, Jun

    2017-04-01

    Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential.

    PubMed

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2014-12-30

    We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. © The Author 2015. Published by Oxford University

  5. Melatonin Attenuates Memory Impairment Induced by Klotho Gene Deficiency Via Interactive Signaling Between MT2 Receptor, ERK, and Nrf2-Related Antioxidant Potential

    PubMed Central

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2015-01-01

    Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID

  6. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  7. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  8. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    PubMed

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  9. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  10. Novel and unexpected clearance mechanisms for cold platelets

    PubMed Central

    Rumjantseva, Viktoria; Hoffmeister, Karin M.

    2015-01-01

    Storage at room temperature is limited to 5 days because of the risk of bacterial growth and loss of platelet functionality. Platelet refrigeration remains impossible, because once chilled, platelets are rapidly removed from circulation. Chilling platelets (<4 h) clusters glycoprotein (GP) Ibα receptors, and β2 integrins on hepatic macrophages recognize clustered βGlcNAc residues leading to rapid clearance of acutely chilled platelets. Prolonged refrigeration increases the exposure of galactose residues such that, unexpectedly, hepatocytes remove platelets using their asialoglycoprotein receptors. Here we review current knowledge of the mechanisms of platelet removal, the existing knowledge of refrigerated platelet function, and methods to preserve platelet concentrates long-term for transfusion. PMID:19932055

  11. New insights into iron deficiency and iron deficiency anemia.

    PubMed

    Camaschella, Clara

    2017-07-01

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Marijuana, receptors and immunomodulation.

    PubMed

    Friedman, H; Klein, T W; Newton, C; Daaka, Y

    1995-01-01

    THC, the major psychoactive component of marijuana, has been shown both in humans and experimental animals to have immunomodulatory properties. For example, marijuana smokers may show impaired immunological functions, including deficiency of blood leukocyte blastogenesis to mitogens. Detailed studies with mice have shown that animals given THC can show marked immunomodulation, including suppression of antibody formation, deficient cytokine production, etc. However, recent studies have also shown that lymphoid cells evince enhanced production or release or IL1, but suppression of IL2 and interferon production. Such lymphoid cells treated in vitro with THC also show suppressed blastogenesis to antigens and mitogens, suppressed NK activity, etc. In contrast, it has recently been shown that THC can enhance production or release of pro-inflammatory cytokines. This includes release of these cytokines from macrophages, including augmented release of IL1, TNF alpha, and IL6 activity. Susceptibility of mice to infection with opportunistic organisms such as L. pneumophila has been found and this increased susceptibility can be modulated by THC. A toxic shock-like death to Legionella has been induced by THC treatment given one day before and one day after infection. Receptors to THC have been detected in the brain as well as in peripheral tissues, including lymphoid cells. Thus, immunomodulation induced by THC may be related to receptor effects as well as unrelated to such receptors. It is clear that THC and other cannabinoids are excellent tools for studying the mechanisms of immune modulation, especially altered susceptibility to microbial infection.

  13. A case of succinic semialdehyde dehydrogenase deficiency with status epilepticus and rapid regression.

    PubMed

    Horino, Asako; Kawawaki, Hisashi; Fukuoka, Masataka; Tsuji, Hitomi; Hattori, Yuka; Inoue, Takeshi; Nukui, Megumi; Kuki, Ichiro; Okazaki, Shin; Tomiwa, Kiyotaka; Hirose, Shinichi

    2016-10-01

    Clinical phenotypic expression of SSADH deficiency is highly heterogeneous, and some infants may develop refractory secondary generalized seizures. A 9-month-old boy manifested partial seizures, developing severe status epilepticus, and conventional antiepileptic drugs were ineffective. Use of ketamine contributed to the control of status epilepticus, achieving a reduction in frequency of partial seizures, and improving EEG findings without apparent complications. Diffusion-weighted images showed hyperintensities in the bilateral basal ganglia and fornix, and multiple T2 hyperintensity lesions were detected. (123)I-iomazenil (IMZ) SPECT revealed a decrease in binding of (123)I-iomazenil predominantly in the left temporal region by the 18th day of hospitalization. However, repeated IMZ-SPECT on the 46th day of hospitalization demonstrated almost no accumulation across a broad region, sparing the left temporal region. The patient showed rapid regression, refractory myoclonus, and severe progressive brain atrophy. IMZ-SPECT findings demonstrated reduced benzodiazepine receptor binding and its dynamic changes in an SSADH-deficient patient. Considering the down regulation of the GABAA receptor, ketamine should be included in pharmacotherapeutic strategies for treatment of refractory status epilepticus in SSADH-deficient patients. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  15. The Innate Immune Receptor CD14 Mediates Lymphocyte Migration in EAE.

    PubMed

    Halmer, Ramona; Davies, Laura; Liu, Yang; Fassbender, Klaus; Walter, Silke

    2015-01-01

    Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis. © 2015 The Author(s) Published by S. Karger AG, Basel.

  16. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  17. Phosphorylation state of mu-opioid receptor determines the alternative recycling of receptor via Rab4 or Rab11 pathway.

    PubMed

    Wang, Feifei; Chen, Xiaoqing; Zhang, Xiaoqing; Ma, Lan

    2008-08-01

    Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.

  18. Evaluation of the Efficiency of the Reticulocyte Hemoglobin Content on Diagnosis for Iron Deficiency Anemia in Chinese Adults.

    PubMed

    Cai, Jie; Wu, Meng; Ren, Jie; Du, Yali; Long, Zhangbiao; Li, Guoxun; Han, Bing; Yang, Lichen

    2017-05-02

    Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia) group, the NIDA (non-iron deficiency anemia) group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group ( n = 56) had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor ( p < 0.05) compared with the NIDA group ( n = 38) and control group ( n = 46). Hematocrit, serum ferritin, and unsaturated iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for

  19. Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency.

    PubMed

    Chan, Jean L; Moschos, Stergios J; Bullen, John; Heist, Kathleen; Li, Xian; Kim, Young-Bum; Kahn, Barbara B; Mantzoros, Christos S

    2005-03-01

    Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 +/- 1.4 yr (mean +/- se) due to chronic energy deficit increased soluble TNFalpha receptor levels, indicating activation of the TNFalpha system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.

  20. Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    PubMed Central

    Pasieka, Tracy Jo; Collins, Lynne; O'Connor, Megan A.; Chen, Yufei; Parker, Zachary M.; Berwin, Brent L.; Piwnica-Worms, David R.; Leib, David A.

    2011-01-01

    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons

  1. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    PubMed Central

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  2. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  3. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    PubMed

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. SLAP deficiency decreases dsDNA autoantibody production

    PubMed Central

    Peterson, Lisa K.; Pennington, Luke F.; Shaw, Laura A.; Brown, Meredith; Treacy, Eric C.; Friend, Samantha F.; Hatlevik, Øyvind; Rubtsova, Kira; Rubtsov, Anatoly V.; Dragone, Leonard L.

    2014-01-01

    Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP−/− mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP−/− 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection. PMID:24440645

  5. SLAP deficiency decreases dsDNA autoantibody production.

    PubMed

    Peterson, Lisa K; Pennington, Luke F; Shaw, Laura A; Brown, Meredith; Treacy, Eric C; Friend, Samantha F; Hatlevik, Øyvind; Rubtsova, Kira; Rubtsov, Anatoly V; Dragone, Leonard L

    2014-02-01

    Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP(-/-) mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP(-/-) 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Leptin deficiency: clinical implications and opportunities for therapeutic interventions.

    PubMed

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S

    2009-10-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.

  7. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  8. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    USDA-ARS?s Scientific Manuscript database

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  9. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    PubMed

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  10. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    PubMed Central

    Pichon, Aurélien; Jeton, Florine; El Hasnaoui-Saadani, Raja; Hagström, Luciana; Launay, Thierry; Beaudry, Michèle; Marchant, Dominique; Quidu, Patricia; Macarlupu, Jose-Luis; Favret, Fabrice; Richalet, Jean-Paul; Voituron, Nicolas

    2016-01-01

    Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection. PMID:27800506

  11. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    PubMed

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout.

    PubMed

    Ehlken, H; Krishna-Subramanian, S; Ochoa-Callejero, L; Kondylis, V; Nadi, N E; Straub, B K; Schirmacher, P; Walczak, H; Kollias, G; Pasparakis, M

    2014-11-01

    Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving

  13. Serotonin Receptor 6 Mediates Defective Brain Development in Monoamine Oxidase A-deficient Mouse Embryos

    PubMed Central

    Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph

    2014-01-01

    Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636

  14. Sizes of abdominal organs in adults with severe short stature due to severe, untreated, congenital GH deficiency caused by a homozygous mutation in the GHRH receptor gene

    PubMed Central

    Oliveira, Carla R. P.; Salvatori, Roberto; Nóbrega, Luciana M. A.; Carvalho, Erick O. M.; Menezes, Menilson; Farias, Catarine T.; Britto, Allan V. O.; Pereira, Rossana M. C.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Summary Objective To assess the sizes of intra-abdominal organs of adult subjects with untreated severe congenital isolated GH deficiency (IGHD) due to lack of functional GHRH receptor (GHRH-R), and to verify whether there is proportionality between size of organ and adult stature and body surface area (BSA). Subjects and methods By using ultrasound, we studied the sizes (absolute and corrected by height, weight and BSA) of the intra-abdominal organs of 18 adult subjects with IGHD (eight females, IGHD group) who have never received GH replacement therapy. They were all homozygous for the same null mutation (IVS1 + 1G → A) in the GHRH receptor gene (GHRH-R). They were compared with normal controls from the same region. Results After correction for BSA, subjects lacking a functional GHRH-R have normal prostate and ovaries size, small spleen and uterus, and large liver, pancreas and kidney. Conclusions Size of individual abdominal organs is influenced in different ways by severe and congenital lack of GH due to a GHRH-R mutation. PMID:18034778

  15. Reduced risk for placental malaria in iron deficient women

    PubMed Central

    2011-01-01

    Background Nutritional iron deficiency may limit iron availability to the malaria parasite reducing infection risk, and/or impair host immunity thereby increasing this risk. In pregnant women, there is evidence of an adverse effect with iron supplementation, but the few reported studies are strongly confounded. Methods A case control study in pregnant Malawian women was undertaken in Chikhwawa southern Malawi in order to describe iron status in relation to placental malaria controlling for several confounding factors. Pregnancy characteristics were obtained and a blood sample at delivery. A full blood count was performed and serum ferritin and transferrin receptor quantified by enzyme-linked immunoassay. DNA analysis was used to identify genetic polymorphisms for ABO phenotype, hemoglobin HbS, and glucose -6 phosphate dehydrogenase deficiency. Placental tissue was obtained and malaria histology classified as active, past or no malaria infection. Results 112 cases with placental malaria were identified and 110 women with no evidence of placental infection. Iron deficiency was less frequent in women with placental Plasmodium falciparum infection. In those with acute, chronic or past placental infections the odds ratio for iron deficiency was 0.4, 95% CI 0.2-0.8, p = 0.01; for acute and chronic infections 0.4, 0.2-0.8, p = 0.006; for acute infection 0.3, 0.1-0.7, p = 0.001. The association was greater in multigravidae. Conclusion Women with either acute, or acute and chronic placental malaria were less likely to have iron deficiency than women without placental malaria infection There is a priority to establish if reversing iron deficiency through iron supplementation programs either prior to or during pregnancy enhances malaria risk. PMID:21345193

  16. Proteinase-Activated Receptor 1 (PAR1) Regulates Leukemic Stem Cell Functions

    PubMed Central

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E.

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance. PMID:24740120

  17. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    PubMed

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  18. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice

    PubMed Central

    Kutchukian, Candice; Lo Scrudato, Mirella; Tourneur, Yves; Poulard, Karine; Vignaud, Alban; Berthier, Christine; Allard, Bruno; Lawlor, Michael W.; Buj-Bello, Ana; Jacquemond, Vincent

    2016-01-01

    Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation–contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process. PMID:27911767

  19. Loss of Dlg-1 in the Mouse Lens Impairs Fibroblast Growth Factor Receptor Signaling

    PubMed Central

    Lee, SungKyoung; Griep, Anne E.

    2014-01-01

    Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP. PMID:24824078

  20. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  1. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.

    PubMed

    Newton, K; Dugger, D L; Maltzman, A; Greve, J M; Hedehus, M; Martin-McNulty, B; Carano, R A D; Cao, T C; van Bruggen, N; Bernstein, L; Lee, W P; Wu, X; DeVoss, J; Zhang, J; Jeet, S; Peng, I; McKenzie, B S; Roose-Girma, M; Caplazi, P; Diehl, L; Webster, J D; Vucic, D

    2016-09-01

    Necroptosis is a caspase-independent form of cell death that is triggered by activation of the receptor interacting serine/threonine kinase 3 (RIPK3) and phosphorylation of its pseudokinase substrate mixed lineage kinase-like (MLKL), which then translocates to membranes and promotes cell lysis. Activation of RIPK3 is regulated by the kinase RIPK1. Here we analyze the contribution of RIPK1, RIPK3, or MLKL to several mouse disease models. Loss of RIPK3 had no effect on lipopolysaccharide-induced sepsis, dextran sodium sulfate-induced colitis, cerulein-induced pancreatitis, hypoxia-induced cerebral edema, or the major cerebral artery occlusion stroke model. However, kidney ischemia-reperfusion injury, myocardial infarction, and systemic inflammation associated with A20 deficiency or high-dose tumor necrosis factor (TNF) were ameliorated by RIPK3 deficiency. Catalytically inactive RIPK1 was also beneficial in the kidney ischemia-reperfusion injury model, the high-dose TNF model, and in A20(-/-) mice. Interestingly, MLKL deficiency offered less protection in the kidney ischemia-reperfusion injury model and no benefit in A20(-/-) mice, consistent with necroptosis-independent functions for RIPK1 and RIPK3. Combined loss of RIPK3 (or MLKL) and caspase-8 largely prevented the cytokine storm, hypothermia, and morbidity induced by TNF, suggesting that the triggering event in this model is a combination of apoptosis and necroptosis. Tissue-specific RIPK3 deletion identified intestinal epithelial cells as the major target organ. Together these data emphasize that MLKL deficiency rather than RIPK1 inactivation or RIPK3 deficiency must be examined to implicate a role for necroptosis in disease.

  2. Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP

    PubMed Central

    Wu, Dick; Bacaj, Taulant; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin L.; Xu, Wei; Chen, Lu; Malenka, Robert C.; Südhof, Thomas C.

    2017-01-01

    Strengthening of synaptic connections by NMDA-receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During NMDA-receptor-dependent LTP induction, Ca2+-influx stimulates recruitment of synaptic AMPA-receptors, thereby strengthening synapses. How Ca2+ induces AMPA-receptor recruitment, however, remains unclear. Here we show that, in pyramidal neurons of the hippocampal CA1-region, blocking postsynaptic expression of both synaptotagmin-1 and synaptotagmin-7, but not of synaptotagmin-1 or synaptotagmin-7 alone, abolished LTP. LTP was rescued by wild-type but not by Ca2+-binding-deficient mutant synaptotagmin-7. Blocking postsynaptic synaptotagmin-1/7 expression did not impair basal synaptic transmission, synaptic or extrasynaptic AMPA-receptor levels, or other AMPA-receptor trafficking events. Moreover, expression of dominant-negative mutant synaptotagmin-1 that inhibited Ca2+-dependent presynaptic vesicle exocytosis also blocked Ca2+-dependent postsynaptic AMPA-receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA-receptors during LTP, thus delineating a simple mechanism for the recruitment of AMPA-receptors that mediates LTP. PMID:28355182

  3. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kenta; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588; Hirata, Michiko

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as amore » pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.« less

  4. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

    PubMed Central

    Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo

    2005-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370

  5. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    PubMed

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  6. Nuclear Receptors in Bone Physiology and Diseases

    PubMed Central

    Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826

  7. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  8. HASHIMOTO THYROIDITIS NOT ASSOCIATED WITH VITAMIN D DEFICIENCY.

    PubMed

    Yasmeh, Joseph; Farpour, Farzin; Rizzo, Vincent; Kheradnam, Sharon; Sachmechi, Issac

    2016-07-01

    Vitamin D deficiency is associated with several autoimmune diseases. This study assessed whether vitamin D deficiency is associated with Hashimoto thyroiditis (HT). Two groups of patients were selected for which serum 25-hydroxyvitamin D (25(OH)D) levels had been measured: (1) a study group of patients diagnosed with HT as indicated by thyroid antibodies, and (2) a healthy control group. Each group was separated by sex and then controlled for age and body mass index (BMI). Groups' mean 25(OH)D levels were compared by analysis of variance (ANOVA), and percent frequencies of vitamin D sufficiency, insufficiency, and deficiency were compared with a Z-test. The correlations between 25(OH)D levels and thyroid antibodies and thyroid-stimulating hormone (TSH) levels were also tested. The mean 25(OH)D levels for the HT and control groups were significantly different in females (30.75 vs. 27.56 ng/mL, respectively) but not in males (14.24 vs. 13.26 ng/mL). HT females had a higher rate of vitamin D sufficiency (51.7% vs. 31.1%) and a lower rate of insufficiency (48.3% vs. 68.9%) relative to control females. No such differences were found in the male groups. None of the females were vitamin D deficient, but almost all males were. A significant (P = .016) positive correlation (rs = 0.436) between 25(OH)D and TPOAb was observed in males. HT is not associated with higher rates of vitamin D deficiency relative to a control group. BMI = body mass index HT = Hashimoto thyroiditis 25(OH)D = 25-hydroxyvitamin D TgAb = thyroglobulin antibody TSH = thyroid-stimulating hormone TPOAb = thyroid-peroxidase antibody VDR = Vitamin D receptor.

  9. The Role of Magnesium Deficiency in Cardiovascular and Intestinal Inflammation

    PubMed Central

    Weglicki, William B.; Mak, Iu Tong; Chmielinska, Joanna J.; Tejero-Taldo, Maria Isabel; Komarov, Andrei; Kramer, Jay H.

    2013-01-01

    Hypomagnesemia continues to cause difficult clinical problems, such as significant cardiac arrhythmias where intravenous magnesium therapy can be lifesaving. Nutritional deficiency of magnesium may present with some subtle symptoms such as leg cramps and occasional palpitation. We have investigated dietary-induced magnesium deficiency in rodent models to assess the pathobiology associated with prolonged hypomagnesemia. We found that neuronal sources of the neuropeptide, substance P (SP), contributed to very early prooxidant/proinflammatory changes during Mg deficiency. This neurogenic inflammation is systemic in nature, affecting blood cells, cardiovascular, intestinal, and other tissues, leading to impaired cardiac contractility similar to that seen in patients with heart failure. We have used drugs that block the release of SP from neurons and SP-receptor blockers to prevent some of these pathobiological changes; whereas, blocking SP catabolism enhances inflammation. Our findings emphasize the essential role of this cation in preventing cardiomyopathic changes and intestinal inflammation in a well-studied animal model, and also implicate the need for more appreciation of the potential clinical relevance of optimal magnesium nutrition and therapy. PMID:20971697

  10. Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis

    PubMed Central

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733

  11. Leptin Deficiency: Clinical Implications and Opportunities for Therapeutic Interventions

    PubMed Central

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S.

    2017-01-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials. PMID:19730134

  12. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    PubMed

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  13. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer

    PubMed Central

    Carver, Brett S; Chapinski, Caren; Wongvipat, John; Hieronymus, Haley; Chen, Yu; Chandarlapaty, Sarat; Arora, Vivek K; Le, Carl; Koutcher, Jason; Scher, Howard; Scardino, Peter T; Rosen, Neal; Sawyers, Charles L

    2011-01-01

    Summary Prostate cancer is characterized by its dependence on androgen receptor and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival. Significance The two most frequently activated signaling pathways in prostate cancer are driven by AR and PI3K. Inhibitors of the PI3K pathway are in early clinical trials and AR inhibitors confer clinical responses in most patients. However, these inhibitors rarely induce tumor regression in preclinical models. Here we show that these pathways regulate each other by reciprocal negative feedback, such that inhibition of one activates the other. Therefore, tumor cells can adapt and survive when either single pathway is inhibited pharmacologically. Our demonstration of profound tumor regressions with combined pathway inhibition in preclinical prostate tumor models provides rationale for combination therapy in patients. PMID:21575859

  14. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.

    PubMed

    Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian

    2014-08-21

    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.

  15. Estrogen receptor alpha modulates toll-like receptor signaling in murine lupus

    PubMed Central

    Cunningham, Melissa A.; Naga, Osama S.; Eudaly, Jackie G.; Scott, Jennifer L.; Gilkeson, Gary S.

    2013-01-01

    Systemic lupus erythematosus (SLE) is a disease that disproportionately affects females. Despite significant research effort, the mechanisms underlying the female predominance in this disease are largely unknown. Previously, we showed that estrogen receptor alpha knockout (ERαKO) lupus prone female mice had significantly less pathologic renal disease and proteinuria, and significantly prolonged survival. Since autoantibody levels and number and percentage of B/T cells were not significantly impacted by ERα genotype, we hypothesized that the primary benefit of ERα deficiency in lupus nephritis was via modulation of the innate immune response. Using BMDCs and spleen cells/B cells from female wild-type or ERαKO mice, we found that ERαKO-derived cells have a significantly reduced inflammatory response after stimulation with TLR agonists. Our results indicate that the inflammatory response to TLR ligands is significantly impacted by the presence of ERα despite the absence of estradiol, and may partially explain the protective effect of ERα deficiency in lupus-prone animals. PMID:22659029

  16. [Iron deficiency anaemia: clinical presentation, biological diagnosis and management].

    PubMed

    Espanel, C; Kafando, E; Hérault, B; Petit, A; Herault, O; Binet, C

    2007-05-01

    The iron deficiency is the first cause of anaemia. In healthy young adult, anemia is well tolerated because of its progressive installation. The most common symptoms of anemia are pallor, fatigue and dyspnea. In biological exams, anemia is classically associated with microcytosis and hypochromia. The origins of microcytic anemia are iron deficiency, inflammatory aetiologies, thalassemia and sideroblastic anaemia. The iron-deficiency diagnosis includes two explorations: biological and clinical. The biological exploration is based on interpretation of serum biologics tests as blood iron, ferritin, transferrin with saturation, total iron-binding capacity and its soluble receptors. This interpretation is simple if it is not associated with clinical disorders influencing the internal iron cycle. The clinical exploration must always be followed by a careful assessment of the underlying cause as blood loss. The most common causes in women of reproductive age are gynaecologic. In men and menopausal women, the gastrointestinal tract bleeding is source of anemia. Therapeutic management of anemia is oral iron therapy. Etiological diagnostic of microcytosis is essential before iron therapy. If not, the treatment could be inefficient or it could mask or delay the etiological diagnostic.

  17. Deficiency in EP4 Receptor-Associated Protein Ameliorates Abnormal Anxiety-Like Behavior and Brain Inflammation in a Mouse Model of Alzheimer Disease.

    PubMed

    Fujikawa, Risako; Higuchi, Sei; Nakatsuji, Masato; Yasui, Mika; Ikedo, Taichi; Nagata, Manabu; Hayashi, Kosuke; Yokode, Masayuki; Minami, Manabu

    2017-08-01

    Microglia are thought to play key roles in the progression of Alzheimer disease (AD). Overactivated microglia produce proinflammatory cytokines, such as tumor necrosis factor-α, which appear to contribute to disease progression. Previously, we reported that prostaglandin E 2 type 4 receptor-associated protein (EPRAP) promotes microglial activation. We crossed human amyloid precursor protein transgenic mice from strain J20 +/- onto an EPRAP-deficient background to determine the role of EPRAP in AD. Behavioral tests were performed in 5-month-old male J20 +/- EPRAP +/+ and J20 +/- EPRAP -/- mice. EPRAP deficiency reversed the reduced anxiety of J20 +/- mice but did not affect hyperactivity. No differences in spatial memory were observed between J20 +/- EPRAP +/+ and J20 +/- EPRAP -/- mice. In comparison with J20 +/- EPRAP +/+ , J20 +/- EPRAP -/- mice exhibited less microglial accumulation and reductions in the Cd68 and tumor necrosis factor-α mRNAs in the prefrontal cortex and hippocampus. No significant differences were found between the two types of mice in the amount of amyloid-β 40 or 42 in the cortex and hippocampus. J20 +/- EPRAP -/- mice reversed the reduced anxiety-like behavior and had reduced microglial activation compared with J20 +/- EPRAP +/+ mice. Further research is required to identify the role of EPRAP in AD, but our results indicate that EPRAP may be related to behavioral and psychological symptoms of dementia and inflammation in patients with AD. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  19. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    PubMed

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  20. Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors

    PubMed Central

    Sun, Xinguo; Song, Zhenyuan; McClain, Craig J.; Zhou, Zhanxiang

    2013-01-01

    Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency. PMID:24155903

  1. Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome.

    PubMed

    Ramaekers, V Th; Segers, K; Sequeira, J M; Koenig, M; Van Maldergem, L; Bours, V; Kornak, U; Quadros, E V

    2018-05-01

    Cerebral folate deficiency (CFD) syndromes are defined as neuro-psychiatric conditions with low CSF folate and attributed to different causes such as autoantibodies against the folate receptor-alpha (FR) protein that can block folate transport across the choroid plexus, FOLR1 gene mutations or mitochondrial disorders. High-dose folinic acid treatment restores many neurologic deficits. Among 36 patients from 33 families the infantile-onset CFD syndrome was diagnosed based on typical clinical features and low CSF folate. All parents were healthy. Three families had 2 affected siblings, while parents from 4 families were first cousins. We analysed serum FR autoantibodies and the FOLR1 and FOLR2 genes. Among three consanguineous families homozygosity mapping attempted to identify a monogenetic cause. Whole exome sequencing (WES) was performed in the fourth consanguineous family, where two siblings also suffered from polyneuropathy as an atypical finding. Boys (72%) outnumbered girls (28%). Most patients (89%) had serum FR autoantibodies fluctuating over 5-6 weeks. Two children had a genetic FOLR1 variant without pathological significance. Homozygosity mapping failed to detect a single autosomal recessive gene. WES revealed an autosomal recessive polynucleotide kinase 3´phosphatase (PNKP) gene abnormality in the siblings with polyneuropathy. Infantile-onset CFD was characterized by serum FR autoantibodies as its predominant pathology whereas pathogenic FOLR1 gene mutations were absent. Homozygosity mapping excluded autosomal recessive inheritance of any single responsible gene. WES in one consanguineous family identified a PNKP gene abnormality that explained the polyneuropathy and also its contribution to the infantile CFD syndrome because the PNKP gene plays a dual role in both neurodevelopment and immune-regulatory function. Further research for candidate genes predisposing to FRα-autoimmunity is suggested to include X-chromosomal and non-coding DNA regions

  2. Perinatal n-3 fatty acid deficiency selectively reduces myo-inositol levels in the adult rat PFC: an in vivo (1)H-MRS study.

    PubMed

    McNamara, Robert K; Able, Jessica; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lindquist, Diana M

    2009-03-01

    To investigate the effects of omega-3 fatty acid deficiency on phosphatidylinositol signaling in brain, myo-inositol (mI) concentrations were determined in the prefrontal cortex (PFC) of omega-3 fatty acid deficient rats by in vivo proton magnetic resonance spectroscopy ((1)H-MRS). To generate graded deficits in PFC docosahexaenoic acid (22:6n-3) (DHA) composition, perinatal and postweaning alpha-linolenic acid (18:3n-3) (ALA) deficiency models were used. Adult male rats were scanned in a 7T Bruker Biospec system and a (1)H-MRS spectrum acquired from the bilateral medial PFC. Rats were then challenged with SKF83959, a selective agonist at phosphoinositide (PI)-coupled dopamine D(1) receptors. Postmortem PFC fatty acid composition was determined by gas chromatography. Relative to controls, PFC DHA composition was significantly reduced in adult postweaning (-27%) and perinatal (-65%) ALA-deficiency groups. Basal PFC mI concentrations were significantly reduced in the perinatal deficiency group (-21%, P = 0.001), but not in the postweaning deficiency group (-1%, P = 0.86). Among all rats, DHA composition was positively correlated with mI concentrations and the mI/creatine (Cr) ratio. SKF83959 challenge significantly increased mI concentrations only in the perinatal deficiency group (+16%, P = 0.02). These data demonstrate that perinatal deficits in cortical DHA accrual significantly and selectively reduce mI concentrations and augment receptor-generated mI synthesis.

  3. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2014-01-01

    Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342

  4. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp; Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University; Kaji, Takao

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice.more » Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.« less

  6. Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells1234

    PubMed Central

    Tang, Ying-Sheng; Khan, Rehana A; Xiao, Suhong; Hansen, Deborah K; Stabler, Sally P; Kusumanchi, Praveen; Jayaram, Hiremagalur N; Antony, Aśok C

    2017-01-01

    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded. Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency. Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo. Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5′-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine–triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hn

  7. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  8. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    PubMed Central

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  9. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams.

    PubMed

    Bâ, Abdoulaye

    2013-03-01

    may modulate cAMP/Ca2+ -dependent estradiol-triggered responses which in turn control dopamine synthesis. Consequently, thiamine deficiency induced perinatally triggers pup-killing responses in pregnancy-terminated rats by the following toxic effects: (i) disturbances of estrogen production and/or release affecting dopamine synthesis; (ii) alterations of dopamine inhibition on central oxytocinergic system-related maternal aggressiveness. Likewise, our results indicate also that perinatal thiamine deficiency alone induces spontaneous abortion, reduces litter size, and lowers birth weight, which together suggest changing in the fetoplacental estrogen receptor alpha/progesterone receptor A ratio during gestation, via autocrine/paracrine regulation disturbances. Those hypotheses should be confirmed by further investigations.

  10. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  11. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  12. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.

    PubMed

    Loh, K; Merry, T L; Galic, S; Wu, B J; Watt, M J; Zhang, S; Zhang, Z-Y; Neel, B G; Tiganis, T

    2012-02-01

    Insulin activates insulin receptor protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The insulin receptor can serve as a substrate for the protein tyrosine phosphatase (PTP) 1B and T cell protein tyrosine phosphatase (TCPTP), which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the insulin receptor in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates insulin receptor signalling and gluconeogenesis in the liver. In this study we assessed for the first time the role of TCPTP in the regulation of insulin receptor signalling in muscle. We generated muscle-specific TCPTP-deficient (Mck-Cre;Ptpn2(lox/lox)) mice (Mck, also known as Ckm) and assessed the impact on glucose homeostasis and muscle insulin receptor signalling in chow-fed versus high-fat-fed mice. Blood glucose and insulin levels, insulin and glucose tolerance, and insulin-induced muscle insulin receptor activation and downstream PI3K/Akt signalling remained unaltered in chow-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. In addition, body weight, adiposity, energy expenditure, insulin sensitivity and glucose homeostasis were not altered in high-fat-fed Mck-Cre;Ptpn2(lox/lox) versus Ptpn2(lox/lox) mice. These results indicate that TCPTP deficiency in muscle has no effect on insulin signalling and glucose homeostasis, and does not prevent high-fat diet-induced insulin resistance. Thus, despite their high degree of sequence identity, PTP1B and TCPTP contribute differentially to insulin receptor regulation in muscle. Our results are consistent with the notion that these two highly related PTPs make distinct contributions to insulin receptor regulation in different tissues.

  13. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors.

    PubMed

    Maekawa, Akiko; Kanaoka, Yoshihide; Xing, Wei; Austen, K Frank

    2008-10-28

    The cysteinyl leukotrienes (cys-LTs) are a family of potent lipid mediators of inflammation derived from arachidonic acid. Activation of certain cell types results in the biosynthesis and export of leukotriene (LT) C(4), which then undergoes extracellular metabolism to LTD(4) and LTE(4). LTE(4), the most stable cys-LT, is only a weak agonist for the defined type 1 and type 2 cys-LT receptors (CysLT(1)R and CysLT(2)R, respectively). We had recognized a greater potency for LTE(4) than LTC(4) or LTD(4) in constricting guinea pig trachea in vitro and comparable activity in eliciting a cutaneous wheal and flare response in humans. Thus, we hypothesized that a vascular permeability response to LTE(4) in mice lacking both the CysLT(1)R and CysLT(2)R could establish the existence of a separate LTE(4) receptor. We now report that the intradermal injection of LTE(4) into the ear of mice deficient in both CysLT(1)R and CysLT(2)R elicits a vascular leak that exceeds the response to intradermal injection of LTC(4) or LTD(4), and that this response is inhibited by pretreatment of the mice with pertussis toxin or a Rho kinase inhibitor. LTE(4) is approximately 64-fold more potent in the CysLT(1)R/CysLT(2)R double-deficient mice than in sufficient mice. The administration of a CysLT(1)R antagonist augmented the permeability response of the CysLT(1)R/CysLT(2)R double-deficient mice to LTC(4), LTD(4), and LTE(4). Our findings establish the existence of a third receptor, CysLT(E)R, that responds preferentially to LTE(4), the most abundant cys-LT in biologic fluids, and thus reveal a new target for therapeutic intervention.

  14. Galactosylated streptavidin for improved clearance of biotinylated intact and F(ab')2 fragments of an anti-tumour antibody.

    PubMed

    Marshall, D; Pedley, R B; Melton, R G; Boden, J A; Boden, R; Begent, R H

    1995-01-01

    Persistence of high levels of radiolabelled antibody in the circulation is a major limitation of radioimmunotherapy. Biotinylation of the radiolabelled anti-tumour antibody followed by administration of streptavidin is known to give much improved tumour to blood ratios as the radioantibody is complexed and subsequently cleared via the reticuloendothelial system, although prolonged splenic uptake is a problem. We have investigated the effect on the clearance pattern and tumour localisation of a 125I-labelled biotinylated anti-CEA antibody (A5B7) after administration of a galactosylated form of streptavidin (gal-streptavidin) in nude mice bearing a human colon carcinoma xenograft. Fifteen minutes to 1 h after gal-streptavidin administration the complexes were cleared via the liver alone (as opposed to liver and spleen after native streptavidin). Twenty-four hours after administration of gal-streptavidin, the tumour to blood ratio for biotinylated A5B7 IgG increased from 2.9 to 13.2 and for biotinylated F(ab')2 fragments an increase from 4.9 to 33.2 was achieved. The reduction in tumour accumulation of F(ab')2 24 h after injection of the clearing agent was less than that seen with intact antibody. Injection of asialofetuin inhibited clearance, confirming that removal of the gal-streptavidin-biotinylated antibody complexes from the blood was via the asialoglycoprotein receptor on liver hepatocytes. Therefore, galactosylation of the streptavidin clearing agent allows rapid removal of radiolabelled biotinylated antibodies via the liver asialoglycoprotein receptor, as opposed to the reticuloendothelial system.

  15. Retinal degeneration in cats fed casein. IV. The early receptor potential.

    PubMed

    Berson, E L; Watson, G; Grasse, K L; Szamier, R B

    1981-08-01

    Electroretinographic studies of casein-fed cats with retinal taurine deficiency revealed that the early receptor potential (ERP) was initially normal in amplitude at a time when the a-wave and b-wave of the electroretinogram were substantially reduced or even nondetectable. The preserved ERP's in these taurine-deficient cats could be correlated with the histologic finding that their outer segments were relatively intact over 90% of the retinal area subtended by the test flash. The sequence of electroretinographic changes in these taurine-deficient cats was also consistent with previous biochemical studies on the normal cat retina that have shown a relatively low concentration of taurine at the level of the outer segments and a higher concentration at the level of the inner segments. The responses in early stages from taurine-deficient cats differed from the responses obtained from vitamin A--deficient cats but resembled those from cats that received an intravitreal injection of ouabain. Similarities and a difference between the responses of taurine-deficient cats and those of patients with early retinitis pigmentosa are considered.

  16. Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding.

    PubMed

    Duedal, Troels; Nielsen, Kent A; Olsen, Gunnar; Rasmussen, Charlotte B G; Kongsted, Jacob; Levillain, Eric; Breton, Tony; Miyazaki, Eigo; Takimiya, Kazuo; Bähring, Steffen; Jeppesen, Jan O

    2017-02-17

    The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant K a = 3 × 10 10 M -2 . The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (2 2 ⊂1) as visualized by a readily apparent color change from yellow to brown.

  17. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region

    PubMed Central

    1991-01-01

    The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462

  18. Functional IRF3 deficiency in a patient with herpes simplex encephalitis.

    PubMed

    Andersen, Line Lykke; Mørk, Nanna; Reinert, Line S; Kofod-Olsen, Emil; Narita, Ryo; Jørgensen, Sofie E; Skipper, Kristian A; Höning, Klara; Gad, Hans Henrik; Østergaard, Lars; Ørntoft, Torben F; Hornung, Veit; Paludan, Søren R; Mikkelsen, Jacob Giehm; Fujita, Takashi; Christiansen, Mette; Hartmann, Rune; Mogensen, Trine H

    2015-08-24

    Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans. © 2015 Andersen et al.

  19. PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons.

    PubMed

    Wang, Liheng; Sui, Lina; Panigrahi, Sunil K; Meece, Kana; Xin, Yurong; Kim, Jinrang; Gromada, Jesper; Doege, Claudia A; Wardlaw, Sharon L; Egli, Dieter; Leibel, Rudolph L

    2017-02-14

    We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC) of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH)), and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    PubMed Central

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly

  1. The Nature of Foot Ray Deficiency in Congenital Fibular Deficiency.

    PubMed

    Reyes, Bryan A; Birch, John G; Hootnick, David R; Cherkashin, Alex M; Samchukov, Mikhail L

    Absent lateral osseous structures in congenital fibular deficiency, including the distal femur and fibula, have led some authors to refer to the nature of foot ray deficiency as "lateral" as well. Others have suggested that the ray deficiency is in the central portion of the midfoot and forefoot.We sought to determine whether cuboid preservation and/or cuneiform deficiency in the feet of patients with congenital fibular deficiency implied that the ray deficiency is central rather than lateral in patients with congenital fibular deficiency. We identified all patients with a clinical morphologic diagnosis of congenital fibular deficiency at our institution over a 15-year period. We reviewed the records and radiographs of patients who had radiographs of the feet to allow determination of the number of metatarsals, the presence or absence of a cuboid or calcaneocuboid fusion, the number of cuneiforms present (if possible), and any other osseous abnormalities of the foot. We excluded patients with 5-rayed feet, those who had not had radiographs of the feet, or whose radiographs were not adequate to allow accurate assessment of these radiographic features. We defined the characteristic "lateral (fifth) ray present" if there was a well-developed cuboid or calcaneocuboid coalition with which the lateral-most preserved metatarsal articulated. Twenty-six patients with 28 affected feet met radiographic criteria for inclusion in the study. All affected feet had a well-developed cuboid or calcaneocuboid coalition. The lateral-most ray of 25 patients with 26 affected feet articulated with the cuboid or calcaneocuboid coalition. One patient with bilateral fibular deficiency had bilateral partially deficient cuboids, and the lateral-most metatarsal articulated with the medial remnant of the deformed cuboids. Twenty-one of 28 feet with visible cuneiforms had 2 or 1 cuneiform. Although the embryology and pathogenesis of congenital fibular deficiency remain unknown, based on the

  2. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-).

    PubMed

    Martins, Fabiane Ferreira; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-06-01

    The obesity and its comorbidities, including resistance to leptin, impacts the reproductive function. Testes express leptin receptors in the germ cells and Leydig cells. Then, leptin-deficient animals are obese and infertile. We aimed to evaluate the structure and steroidogenic pathway of the testis of deficient leptin mice. Three months old male C57BL/6 mice (wild-type, WT) and deficient leptin (ob/ob) mice had their testes dissected and prepared for analyses. Compared to the WT group, the ob/ob group showed a greater body mass with smaller testes, and alterations in the germinative epithelium: fewer spermatogonia, spermatocytes, and spermatids. The Sertoli cells and the germ cells showed condensed nuclei and nuclear fragmentation indicating cell death, in agreement with a low expression of the proliferating cell nuclear antigen and a high expression of Caspase3. In the ob/ob group, the sperm was absent in the seminiferous tubules, and the steroidogenic pathway was compromised (low 3Beta hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein). Further, all hormone receptors involved in the testicular function were down expressed (androgen, estrogen, follicle-stimulating, luteinizing, aromatase, and nicotinamide adenine dinucleotide phosphate). In conclusion, the findings indicate significant morphological, hormonal and enzymatic changes in the testis of the ob/ob mice. The shifts in the enzymatic steroidogenic pathway and the enzymes related to spermatic activity support the insights about the failures in the fertility of these animals. The study provides new evidence and contributes to the understanding of how the lack of leptin and obesity might negatively modulate the testicular function leading to infertility. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Cutting Edge: The murine high-affinity IgG receptor FcγRIV is sufficient for autoantibody-induced arthritis.

    PubMed

    Mancardi, David A; Jönsson, Friederike; Iannascoli, Bruno; Khun, Huot; Van Rooijen, Nico; Huerre, Michel; Daëron, Marc; Bruhns, Pierre

    2011-02-15

    K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.

  4. Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice

    PubMed Central

    Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2006-01-01

    Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908

  5. Toll-like receptor 4 deficiency causes pulmonary emphysema

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Jiang, Ge; Cohn, Lauren; Lee, Patty J.

    2006-01-01

    TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema. PMID:17053835

  6. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    PubMed

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  7. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema

    PubMed Central

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C.; Ifedigbo, Emeka; Washko, George R.; Ryter, Stefan W.

    2012-01-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS. PMID:22983353

  8. Role of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors for Herpes Simplex Virus 1 on Primary Murine Dermal Fibroblasts.

    PubMed

    Petermann, Philipp; Rahn, Elena; Thier, Katharina; Hsu, Mei-Ju; Rixon, Frazer J; Kopp, Sarah J; Knebel-Mörsdorf, Dagmar

    2015-09-01

    The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of

  9. Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency.

    PubMed

    Weglicki, William B; Chmielinska, Joanna J; Kramer, Jay H; Mak, I Tong

    2011-08-01

    In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.

  10. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  11. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    PubMed Central

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  12. Iodine Deficiency

    MedlinePlus

    ... public health problem globally. Approximately 40% of the world’s population remains at risk for iodine deficiency. Iodine Deficiency ... common preventable cause of intellectual disabilities in the world. Even mild iodine ... deficiency is seen in an entire population, it is best managed by ensuring that common ...

  13. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.

    PubMed

    Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

    2013-10-01

    Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.

  14. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts.

    PubMed

    Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude

    2008-09-01

    The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.

  15. Low Prevalence of Iron and Vitamin A Deficiency among Cambodian Women of Reproductive Age

    PubMed Central

    Wieringa, Frank T.; Sophonneary, Prak; Whitney, Sophie; Mao, Bunsoth; Berger, Jacques; Conkle, Joel; Dijkhuizen, Marjoleine A.; Laillou, Arnaud

    2016-01-01

    Nearly half of women of reproductive age (WRA) in Cambodia are anemic. To guide interventions, national data on nutritional causes of anemia, including iron deficiency and vitamin A deficiency, are needed. In 2012, a national household survey in WRA on antibodies to routine vaccine-preventable disease immunity was performed. We used serum samples from this survey to estimate the prevalence of iron and vitamin A deficiency in 2112 Cambodian WRA, aged 15 to 39 years. Iron deficiency was classified as low or marginal iron stores (ferritin concentrations corrected for inflammation <15 μg/L and <50 μg/L respectively; Fer), iron deficient erythropoiesis (soluble transferrin receptor concentrations >8.3 mg/L; sTfR), or low total body iron (TBI) derived from Fer and sTfR concentrations (<0 mg/kg). Vitamin A status was classified using retinol binding protein (RBP) concentrations corrected for inflammation as deficient (<0.70 μmol/L) or marginal (<1.05 μmol/L. Overall, the prevalence of low iron stores, low TBI and iron deficient erythropoiesis was 8.1%, 5.0% and 9.3% respectively. Almost 40% of the women had marginal iron stores. Iron status was better in women living in urban areas compared to rural areas (p < 0.05 for TBI and sTfR). The prevalence of vitamin A deficiency was <1%. These findings suggest that the contribution of iron and vitamin A deficiency to the high prevalence of anemia in Cambodian WRA may be limited. The etiology of anemia in Cambodia needs to be elucidated further to guide current policies on anemia. PMID:27043624

  16. Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids.

    PubMed

    Chen, Zhiping; Fukutomi, Tatsuya; Zago, Alexandre C; Ehlers, Raila; Detmers, Patricia A; Wright, Samuel D; Rogers, Campbell; Simon, Daniel I

    2002-07-02

    Statins exert antiinflammatory and antiproliferative actions independent of cholesterol lowering. To determine whether these actions might affect neointimal formation, we investigated the effect of simvastatin on the response to experimental angioplasty in LDL receptor-deficient (LDLR-/-) mice, a model of hypercholesterolemia in which changes in plasma lipids are not observed in response to simvastatin. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDLR-/- mice treated with low-dose (2 mg/kg) or high-dose (20 mg/kg) simvastatin or vehicle subcutaneously 72 hours before and then daily after injury. After 7 and 28 days, intimal and medial sizes were measured and the intima to media area ratio (I:M) was calculated. Total plasma cholesterol and triglyceride levels were similar in simvastatin- and vehicle-treated mice. Intimal thickening and I:M were reduced significantly by low- and high-dose simvastatin compared with vehicle alone. Simvastatin treatment was associated with reduced cellular proliferation (BrdU), leukocyte accumulation (CD45), and platelet-derived growth factor-induced phosphorylation of the survival factor Akt and increased apoptosis after injury. Simvastatin modulates vascular repair after injury in the absence of lipid-lowering effects. Although the mechanisms are not yet established, additional research may lead to new understanding of the actions of statins and novel therapeutic interventions for preventing restenosis.

  17. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  18. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice.

    PubMed

    Sasaki, Keita; Omotuyi, Olaposi Idowu; Ueda, Mutsumi; Shinohara, Kazuyuki; Ueda, Hiroshi

    2015-12-04

    Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.

  19. The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction.

    PubMed

    Cochain, Clément; Auvynet, Constance; Poupel, Lucie; Vilar, José; Dumeau, Edouard; Richart, Adèle; Récalde, Alice; Zouggari, Yasmine; Yin, Kiave Yune Ho Wang; Bruneval, Patrick; Renault, Gilles; Marchiol, Carmen; Bonnin, Philippe; Lévy, Bernard; Bonecchi, Raffaella; Locati, Massimo; Combadière, Christophe; Silvestre, Jean-Sébastien

    2012-09-01

    Leukocyte infiltration in ischemic areas is a hallmark of myocardial infarction, and overwhelming infiltration of innate immune cells has been shown to promote adverse remodeling and cardiac rupture. Recruitment of inflammatory cells in the ischemic heart depends highly on the family of CC-chemokines and their receptors. Here, we hypothesized that the chemokine decoy receptor D6, which specifically binds and scavenges inflammatory CC-chemokines, might limit inflammation and adverse cardiac remodeling after infarction. D6 was expressed in human and murine infarcted myocardium. In a murine model of myocardial infarction, D6 deficiency led to increased chemokine (C-C motif) ligand 2 and chemokine (C-C motif) ligand 3 levels in the ischemic heart. D6-deficient (D6(-/-)) infarcts displayed increased infiltration of pathogenic neutrophils and Ly6Chi monocytes, associated with strong matrix metalloproteinase-9 and matrix metalloproteinase-2 activities in the ischemic heart. D6(-/-) mice were cardiac rupture prone after myocardial infarction, and functional analysis revealed that D6(-/-) hearts had features of adverse remodeling with left ventricle dilation and reduced ejection fraction. Bone marrow chimera experiments showed that leukocyte-borne D6 had no role in this setting, and that leukocyte-specific chemokine (C-C motif) receptor 2 deficiency rescued the adverse phenotype observed in D6(-/-) mice. We show for the first time that the chemokine decoy receptor D6 limits CC-chemokine-dependent pathogenic inflammation and is required for adequate cardiac remodeling after myocardial infarction.

  20. staggerer phenotype in retinoid-related orphan receptor α-deficient mice

    PubMed Central

    Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael

    1998-01-01

    Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475

  1. Neuroactive Steroids: Receptor Interactions and Responses

    PubMed Central

    Tuem, Kald Beshir; Atey, Tesfay Mehari

    2017-01-01

    Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity. PMID:28894435

  2. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  3. Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s)

    PubMed Central

    Ku, Jacqueline M.; Andrews, Zane B.; Barsby, Tom; Reichenbach, Alex; Lemus, Moyra B.; Drummond, Grant R.; Sleeman, Mark W.; Spencer, Sarah J.; Sobey, Christopher G.

    2015-01-01

    The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl−/−) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl−/− vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium. PMID:25322462

  4. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes.

    PubMed

    German, Jonathan P; Wisse, Brent E; Thaler, Joshua P; Oh-I, Shinsuke; Sarruf, David A; Ogimoto, Kayoko; Kaiyala, Karl J; Fischer, Jonathan D; Matsen, Miles E; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2010-07-01

    Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. Adult male Wistar rats remained nondiabetic or were injected with the beta-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 microg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate-phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine disorders in uDM. Treatment of diabetes in humans may

  6. Kupffer cell complement receptor clearance function and host defense.

    PubMed

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  7. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  8. Identification of novel selective V2 receptor non-peptide agonists.

    PubMed

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  9. Urokinase and its Receptors in Chronic Kidney Disease

    PubMed Central

    Zhang, Guoqiang; Eddy, Allison A.

    2011-01-01

    Since the recognition that plasminogen activator inhibitor-1 (PAI-1) is a powerful profibrotic molecule, there has been considerable interest in deciphering the extent to which this effect is mediated by its ability to inhibit serine proteases with downstream effects on fibrogenesis. This review will summarize current knowledge about the serine protease urokinase-type plasminogen activator and its high affinity receptor uPAR/CD87 as it pertains to chronic kidney disease (CKD) progression. An emerging theme is that the effects of PAI-1 and uPAR appear to be organ- and site-specific. Normal kidney tubules produce a large quantity of uPA that is secreted into the urinary space. Activity levels increase during CKD presumably due to new sources of production by macrophages and fibroblasts. By activating hepatocyte growth factor and degrading fibrinogen uPA may have anti-fibrotic effects. However CKD severity after experimental ureteral obstruction is not altered by endogenous uPA deficiency. Beneficial effects of exogenous uPA have been reported in experimental models of fibrosis in the lung and liver but CKD awaits exploration. Absent in normal kidneys uPAR is expressed by both renal parenchymal cells and inflammatory cells in a variety of pathological states. Such expression appears beneficial based on studies performed in uPAR-deficient mice. The uPAR promotes bacterial clearance in infectious diseases. In CKD uPAR expression is associated with high uPA activity but its most important effect appears to be due to scavenging activities and effects on cell recruitment and migration. Although uPAR itself is a non-signaling receptor, it interacts with a variety of co-receptors to modify cellular behavior. Best known are interactions with the low-density lipoprotein receptor-related protein (LRP-1) that lead to PAI-1 endocytosis and degradation, and interactions with several integrins to regulate matrix-dependent cell migration. Contacts with the receptor for the

  10. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  11. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  12. FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.

    PubMed

    Shen, Jiangsheng; Meldrum, Allison; Poole, Keith

    2002-06-01

    Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.

  13. Biology of the TAM receptors.

    PubMed

    Lemke, Greg

    2013-11-01

    The TAM receptors--Tyro3, Axl, and Mer--comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands--Gas6 and Protein S--are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.

  14. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation.

    PubMed

    Deckert-Schlüter, M; Rang, A; Weiner, D; Huang, S; Wiestler, O D; Hof, H; Schlüter, D

    1996-12-01

    Toxoplasma gondii may cause severe infections in immunocompromised patients including fetuses and those with AIDS. Among the factors mediating protection against T. gondii, IFN-gamma has gained special attention. To analyze the role of IFN-gamma in the early phase of toxoplasmosis, IFN-gamma receptor-deficient (IFN-gamma R0/0) mice were orally infected with low-virulent toxoplasms. IFN-gamma R0/0 mice died of the disease up to day 10 postinfection, whereas immunocompetent wild-type (WT) mice developed a chronic toxoplasmosis. Histopathology revealed that in IFN-gamma R0/0 mice, the parasite multiplied unrestrictedly in the small intestine, the intestinal lymphatic tissue, the liver, and the spleen. Ultimately, animals died of a necrotizing hepatitis. In WT mice, the same organs were effected, but multiplication of the parasite was effectively limited. Compared with WT mice, immunohistochemistry and flow cytometry demonstrated that in IFN-gamma R0/0 mice, macrophages were only marginally activated in response to the infection, as evidenced by a reduced expression of major histocompatability complex class II antigens. In addition, immunohistochemistry and RT-PCR showed a reduced production of the macrophage-derived cytokines tumor necrosis factor-alpha, inducible nitric oxide synthase, and IL-1 beta in the liver of IFN-gamma R0/0 mice. In contrast, activation of T cells, recruitment of immune cells to inflammatory foci, and anti-T. gondii IgM antibody production were unaffected by the mutation of the IFN-gamma R. Moreover, induction of IL-2, IL-4, and IL-10 mRNA transcripts in the liver was normal in IFN-gamma R0/0 mice. Adoptive transfer experiments revealed that the immune T cells of WT animals did not protect IFN-gamma R0/0 mice from lethal infection with highly virulent toxoplasms, whereas WT mice were significantly protected by the adoptive transfer. Based on these studies, we conclude that IFN-gamma is absolutely required for an efficient activation of

  15. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome.

    PubMed

    Laron, Zvi; Kauli, Rivka; Lapkina, Lena; Werner, Haim

    Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  17. [Endocrine differences between patients with luteal phase deficiency and inadequate endometrial response].

    PubMed

    Xu, M; Zhang, Z; Jiang, S

    1997-03-01

    To study the difference of endocrine characteristics between patients with luteal phase deficiency (LPD) and inadequate endometrial response (IER). Serum estradiol (E2), progesterone (P), follicle-stimulating hormone, luteinizing hormone and prolactin levels were determined by radioimmunoassay in cycles of LPD, IER and normal controls. Contents of endometrial cytoplasmic estradiol receptors (ERc), nuclear estradiol receptors (ERn), cytoplasmic progesterone receptors (PRc) and nuclear progesterone receptors (PRn) were determined by dextran coated charcoal assay in the same cycle. Serum E2 and P levels in the luteal phase of patients with LPD were significantly lower than those of normal group (P < 0.001), no significant difference of endometrial estrogen receptor and progesterone receptor contents was found between the two groups (P > 0.1). Serum E2 levels in both follicular and luteal phase of IER patients were significantly lower than those of normal groups (P < 0.001), but serum P levels in luteal phase of the two groups showed no difference (P > 0.1). The contents of ERc and PRn in proliferative phase and PRc contents throughout the menstrual cycle were also lower than those of the normal group (P < 0.001, < 0.001 and < 0.05 respectively). These results indicate that LPD and IER are two distinct entities in terms of endocrine characteristics. To distinguish underdeveloped endometrium caused by either LPD or IER is the key to choose appropriate treatment.

  18. Molecular and clinical aspects of GHRH receptor mutations.

    PubMed

    Corazzini, Valentina; Salvatori, Roberto

    2013-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptor family. It binds GHRH resulting in somatotroph cell proliferation and stimulation of GH secretion. Mutations in the gene encoding for GHRHR (GHRHR, OMIM No. 139191) are being reported with increasing frequency in familial isolated GH deficiency. To date, the reported GHRHR mutations include eight missense, seven splice, three microdeletions, and two non-sense mutations. One promoter mutation has also been reported. Most of these mutations show a recessive mode of inheritance. The phenotype includes reduced but not absent serum GH, with abnormal response to a variety of stimuli, and low serum insulin-like growth factor-1 levels, resulting in proportionate growth failure which becomes evident in the first year of life. These patients respond well to GH replacement therapy. Phenotypical observations coming from some unusually large kindreds with untreated GH deficiency due to homozygous GHRHR mutations have allowed the study of the consequences of lifetime lack of GH. This chapter reviews the structure and the role of the GHRHR together with the clinical aspects associated with its mutations. Copyright © 2013 S. Karger AG, Basel.

  19. An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice.

    PubMed

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [(3)H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male "two hit" mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [(3)H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential "two hit" neurodevelopmental mechanisms in schizophrenia.

  20. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less

  1. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia.

    PubMed

    Tong, Chao; Feng, Xiang; Chen, Jun; Qi, Xingchen; Zhou, Liyuan; Shi, Shuming; Kc, Kamana; Stanley, Joanna L; Baker, Philip N; Zhang, Hua

    2016-04-01

    Preeclampsia is known to be associated with reduced circulating levels of estrogen. The effects of estrogen in preeclampsia are normally mediated by the classical estrogen receptors. Intriguingly, a novel estrogen receptor, G protein-coupled receptor 30 (GPR30), has been recently found to play an important role in several estrogenic effects. However, the mechanisms by which GPR30 may mediate the development of preeclampsia remain unknown. We observed that the expression of GPR30 in placental trophoblast cells is lower in preeclamptic placentas compared with normotensive controls. We then investigated the role of GPR30 in trophoblast cell invasion by utilizing placental explants and the immortalized human trophoblast cell line (HTR8/SVneo). The selective GPR30 agonist G1 and a general estrogen receptors agonist 17-β-estradiol (E2) both improved trophoblast cells invasion by upregulating MMP9 expression and the PI3K-Akt signaling pathway. This effect was abolished by a selective GPR30 inhibitor G15, implying that GPR30 may be involved in regulating trophoblast invasion, and that down-regulation of this receptor may result in the development of preeclampsia. The present study suggests that GPR30 is a critical regulator of trophoblast cell invasion, and as such may be a potential therapeutic interventional target for preeclampsia and other pregnancy complications resulting from impaired trophoblast invasion.

  2. Heparan Sulfate Modification of the Transmembrane Receptor CD47 Is Necessary for Inhibition of T Cell Receptor Signaling by Thrombospondin-1*

    PubMed Central

    Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.

    2011-01-01

    Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308

  3. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  4. Alterations in the lipid metabolism of rat aorta: effects of vitamin a deficiency.

    PubMed

    Gatica, Laura V; Vega, Verónica A; Zirulnik, Fanny; Oliveros, Liliana B; Gimenez, María S

    2006-01-01

    Antioxidants are known to reduce cardiovascular disease by reducing the concentration of free radicals in the vessel wall and by preventing the oxidative modification of low-density lipoproteins. The prooxidative effect of a vitamin-A-deficient diet on the aorta has previously been demonstrated by us. In this study, the lipid metabolism in the aorta of rats fed on a vitamin-A-deficient diet was evaluated. Vitamin A deficiency induced a hypolipidemic effect (lower serum triglyceride and cholesterol levels) and a decreased serum paraoxonase 1/arylesterase activity. The concentrations of triglycerides, total cholesterol, free and esterified cholesterol, and phospholipids were increased in the aorta of vitamin-A-deficient rats. The phospholipid compositions showed an increase in phosphatidylcholine (PC), phosphatidylinositol plus phosphatidylserine and phosphatidylethanolamine, a decrease in sphingomyelin, and no change in phosphatidylglycerol. In the aorta, the increase in triglycerides was associated with an increased fatty acid synthesis and mRNA expression of diacylglycerol acyltransferase 1. The increased PC content was attributed to an increased synthesis, as measured by [methyl-(14)C]choline incorporation into PC and high CTP:phosphocholine cytidylyltransferase-alpha mRNA expression. The cholesterol synthesis, evaluated by [1-(14)C]acetate incorporated into cholesterol and mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, did not change. The lipoprotein lipase and lectin-like oxidized low-density lipoprotein receptor 1 mRNA expression levels increased in the aorta of vitamin-A-deficient animals. The incorporation of vitamin A into the diet of vitamin-A-deficient rats reverted all the changes observed. These results indicate that a vitamin-A-deficient diet,in addition to having a prooxidative effect, alters the aorta lipid metabolism.

  5. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ.

    PubMed

    Cabral-Marques, Otavio; Ramos, Rodrigo Nalio; Schimke, Lena F; Khan, Taj Ali; Amaral, Eduardo Pinheiro; Barbosa Bomfim, Caio César; Junior, Osvaldo Reis; França, Tabata Takahashi; Arslanian, Christina; Carola Correia Lima, Joanna Darck; Weber, Cristina Worm; Ferreira, Janaíra Fernandes; Tavares, Fabiola Scancetti; Sun, Jing; D'Imperio Lima, Maria Regina; Seelaender, Marília; Garcia Calich, Vera Lucia; Marzagão Barbuto, José Alexandre; Costa-Carvalho, Beatriz Tavares; Riemekasten, Gabriela; Seminario, Gisela; Bezrodnik, Liliana; Notarangelo, Luigi; Torgerson, Troy R; Ochs, Hans D; Condino-Neto, Antonio

    2017-03-01

    CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency. Copyright © 2016 American Academy of

  6. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice

    PubMed Central

    Sharara-Chami, Rana I.; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A.

    2016-01-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. PMID:22405854

  7. An Ω-3 fatty acid-deficient diet during gestation induces depressive-like behavior in rats: the role of the hypothalamo-pituitary-adrenal (HPA) system.

    PubMed

    Tang, Mimi; Liu, Yiping; Wang, Lu; Li, Huande; Cai, Hualin; Zhang, Min; Dang, Ruili; Xue, Ying; Wu, Yanqin

    2018-06-08

    Low intake of omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) especially docosahexaenoic acid (DHA) is associated with postpartum depression. DHA deficiency is accompanied by impaired attention and cognition, and will precipitate psychiatric symptoms. However, the effects of dietary DHA on postpartum depression remain unclear. We established a normal pregnancy model to evaluate whether an Ω-3 PUFA-deficient diet during gestation could induce depressive-like behavior and aggravate dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in rats. A between-group design was used to assess the effects of Ω-3 PUFA content (deficiency, control and supplementary) and reproductive status (virgin or parous). We assessed depressive-like behavior and measured the fatty acid composition in the liver. The protein expressions of glucocorticoid receptor (GR) and mineralocorticoid receptor (MCR) were also measured to evaluate the HPA activity. Exposure to the Ω-3 PUFA-deficient diet resulted in an increased immobility time in a forced swimming test (FST). Additionally, our results firstly showed the decreased expression of GR in the hippocampus of parous rats that were exposed to Ω-3 PUFA-deficient diets, which may partly facilitate the hyperactivity of the HPA axis and exert detrimental effects. Moreover, the reduction of GR was ameliorated by Ω-3 PUFA supplementation, providing new evidence for Ω-3 PUFAs in the progression of postpartum depression.

  8. The role of lectins and glycans in platelet clearance

    PubMed Central

    Hoffmeister, Karin M.

    2015-01-01

    Summary In recent years, it has become increasingly apparent that the life span of transfused platelets in circulation is regulated, at least in part, by glycan-lectin mediated mechanisms. There is clear evidence that refrigerated platelets are cleared by glycan-lectin mediated clearance mechanisms. Acute platelet cooling clusters glycoprotein (GP) Ibα receptors bearing uncovered N-acetylglucosamine (GlcNAc), and αMβ2 integrins on hepatic macrophages recognise clustered GlcNAc to rapidly clear these platelets from circulation. With prolonged refrigeration GPIbα clustering bearing uncovered galactose increases, which mediates the removal of long-term refrigerated platelets via hepatic Ashwell-Morell receptors (AMR), originally named as asialoglycoprotein receptors. In contrast, little is known about the molecular mechanisms of transfused room temperature platelet clearance. This review examines the role of glycan-lectin mediated clearance of exogenous, i.e. transfused chilled platelet clearance and briefly addresses the current knowledge of stored platelet function, degradation and its relation to platelet clearance. PMID:21781240

  9. Addition of vitamin D reverses the decline in GFR following treatment with ACE inhibitors/angiotensin receptor blockers in patients with chronic kidney disease.

    PubMed

    Soares, Abel Esteves; Maes, Michael; Godeny, Paula; Matsumoto, Andressa Keiko; Barbosa, Décio Sabbatini; da Silva, Taysa Antonia F; Souza, Flávio Henrique M O; Delfino, Vinicius Daher Alvares

    2017-12-15

    Vitamin D has anti-inflammatory, anti-fibrotic effect, and may block the intrarenal renin-angiotensin system. Adequate vitamin D levels in conjunction with the use of Angiotensin-converting Enzyme Inhibitors/Angiotensin Receptor Blockers may help to slow down chronic kidney disease progression. To study a possible beneficial effect of vitamin D supplementation in chronic kidney disease patients using angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on chronic kidney disease progression we performed a clinical study involving vitamin D supplementation in patients with deficiency of this vitamin. This study was conducted in two chronic kidney disease clinics in the city of Londrina, Brazil, from October 2010 to December 2012. It was involved stage 3 and 4 chronic kidney disease (estimated glomerular filtration rate between 60 and 15mL/min/1.73m 2 ) patients with and without vitamin D deficiency. The patients ingested six-month cholecalciferol 50,000IU oral supplementation to chronic kidney disease patients with vitamin D deficiency. We hypothesize changes in estimated glomerular filtration rate over study period. Our data demonstrate reservation of estimated glomerular filtration with cholecalciferol supplementation to chronic kidney disease patients taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. The combination treatment of angiotensin converting enzyme inhibitors/angiotensin receptor blockers with cholecalciferol prevents the decline in estimated glomerular filtration in patients with chronic kidney disease following treatment with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and may represent a valid approach to reduce renal disease progression in chronic kidney disease patients with vitamin D deficiency. This result needs confirmation in prospective controlled clinical trials. Copyright © 2017. Published by Elsevier Inc.

  10. Human IL-21 and IL-21R deficiencies: two novel entities of primary immunodeficiency.

    PubMed

    Kotlarz, Daniel; Ziętara, Natalia; Milner, Joshua D; Klein, Christoph

    2014-12-01

    This review highlights the recent identification of human interleukin-21 (IL-21) and interleukin-21 receptor (IL-21R) deficiencies as novel entities of primary immunodeficiency. We recently described the first patients with IL-21R deficiency who had cryptosporidial infections associated with chronic cholangitis and liver disease. All IL-21R-deficient patients suffered from recurrent respiratory tract infections. Immunological work-up revealed impaired B cell proliferation and immunoglobulin class-switch, reduced T cell effector functions, and variable natural killer cell dysfunctions. Recently, these findings have been extended by the discovery of one patient with a mutation in the IL21 gene. This patient predominantly manifested with very early onset inflammatory bowel disease and recurrent respiratory infections. Laboratory examination showed reduced circulating B cells and impaired B cell class-switch. Human IL-21 and IL-21R deficiencies cause severe, primary immunodeficiency reminiscent of common variable immunodeficiency. Early diagnosis is critical to prevent life-threatening complications, such as secondary liver failure. In view of the critical role of IL-21 in controlling immune homeostasis, early hematopoietic stem cell transplantation might be considered as therapeutic intervention in affected children.

  11. Vitamin Deficiency Anemia

    MedlinePlus

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  12. Overexpression of 15-lipoxygenase in the vascular endothelium is associated with increased thymic apoptosis in LDL receptor-deficient mice.

    PubMed

    Afek, A; Zurgil, N; Bar-Dayan, Y; Polak-Charcon, S; Goldberg, I; Deutsch, M; Kopolovich, J; Keren, G; Harats, D; George, J

    2004-01-01

    15-Lipoxygenase (15-LO) is a nonheme iron-containing enzyme that catalyzes the peroxidation of fatty acids. Herein, we studied the effect of 15-LO overexpression in the vascular endothelium on thymocyte apoptosis by evaluating thymuses from low-density lipoprotein receptor-deficient (LDL-RD) mice and LDL-RD/15-LO mice. Thymuses were evaluated by immunohistochemistry and by TUNEL whereas in vitro studies were carried out by employing freshly isolated thymocytes from the respective mice and evaluation of apoptosis by propidium iodide and annexin V cytometry. The apoptotic index in LDL-RD/15-LO mice was significantly higher than in the LDL-RD mice. In the thymic medulla the difference was smaller, although still significant. Freshly isolated thymus cells from LDL-RD/15-LO mice exhibited a higher rate of spontaneous cell death than controls. Incubation of thymus cells in the presence of the cell-permeable caspase-3 inhibitor DEVD-CMK resulted in a decrease in the frequency of apoptotic cells in LDL-RD/15-LO thymocytes, whereas no effect was evident in control thymocytes. The antioxidant N-acetylcysteine causes the increase in apoptosis in both groups. LDL-RD/15-LO mice exhibit increased thymocyte apoptosis both in vivo and in vitro. These findings may suggest a role for 15-LO in the natural selection of thymocytes.

  13. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency.

    PubMed

    Ouederni, Monia; Sanal, Ozden; Ikinciogullari, Aydan; Tezcan, Ilhan; Dogu, Figen; Sologuren, Ithaisa; Pedraza-Sánchez, Sigifredo; Keser, Melike; Tanir, Gonul; Nieuwhof, Chris; Colino, Elena; Kumararatne, Dinakantha; Levy, Jacov; Kutukculer, Necil; Aytekin, Caner; Herrera-Ramos, Estefanía; Bhatti, Micah; Karaca, Neslihan; Barbouche, Ridha; Broides, Arnon; Goudouris, Ekaterini; Franco, José Luis; Parvaneh, Nima; Reisli, Ismail; Strickler, Alexis; Shcherbina, Anna; Somer, Ayper; Segal, Anthony; Angel-Moreno, Alfonso; Lezana-Fernandez, José Luis; Bejaoui, Mohamed; Bobadilla-Del Valle, Miriam; Kachboura, Salem; Sentongo, Timothy; Ben-Mustapha, Imen; Bustamante, Jacinta; Picard, Capucine; Puel, Anne; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent; Rodríguez-Gallego, Carlos

    2014-01-01

    Interleukin 12Rβ1 (IL-12Rβ1)-deficient patients are prone to clinical disease caused by mycobacteria, Salmonella, and other intramacrophagic pathogens, probably because of impaired interleukin 12-dependent interferon γ production. About 25% of patients also display mucocutaneous candidiasis, probably owing to impaired interleukin 23-dependent interleukin 17 immunity. The clinical features and outcome of candidiasis in these patients have not been described before, to our knowledge. We report here the clinical signs of candidiasis in 35 patients with IL-12Rβ1 deficiency. Most (n = 71) of the 76 episodes of candidiasis were mucocutaneous. Isolated oropharyngeal candidiasis (OPC) was the most common presentation (59 episodes, 34 patients) and was recurrent or persistent in 26 patients. Esophageal candidiasis (n = 7) was associated with proven OPC in 2 episodes, and cutaneous candidiasis (n = 2) with OPC in 1 patient, whereas isolated vulvovaginal candidiasis (VVC; n = 3) was not. Five episodes of proven invasive candidiasis were documented in 4 patients; 1 of these episodes was community acquired in the absence of any other comorbid condition. The first episode of candidiasis occurred earlier in life (median age±standard deviation, 1.5 ± 7.87 years) than infections with environmental mycobacteria (4.29 ± 11.9 years), Mycobacterium tuberculosis (4 ± 3.12 years), or Salmonella species (4.58 ± 4.17 years) or other rare infections (3 ± 11.67 years). Candidiasis was the first documented infection in 19 of the 35 patients, despite the vaccination of 10 of these 19 patients with live bacille Calmette-Guérin. Patients who are deficient in IL-12Rβ1 may have candidiasis, usually mucocutaneous, which is frequently recurrent or persistent. Candidiasis may be the first clinical manifestation in these patients.

  14. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor β1 Deficiency

    PubMed Central

    Ouederni, Monia; Sanal, Ozden; Ikincioğullari, Aydan; Tezcan, Ilhan; Dogu, Figen; Sologuren, Ithaisa; Pedraza-Sánchez, Sigifredo; Keser, Melike; Tanir, Gonul; Nieuwhof, Chris; Colino, Elena; Kumararatne, Dinakantha; Levy, Jacov; Kutukculer, Necil; Aytekin, Caner; Herrera-Ramos, Estefanía; Bhatti, Micah; Karaca, Neslihan; Barbouche, Ridha; Broides, Arnon; Goudouris, Ekaterini; Franco, José Luis; Parvaneh, Nima; Reisli, Ismail; Strickler, Alexis; Shcherbina, Anna; Somer, Ayper; Segal, Anthony; Angel-Moreno, Alfonso; Lezana-Fernandez, José Luis; Bejaoui, Mohamed; Bobadilla-Del Valle, Miriam; Kachboura, Salem; Sentongo, Timothy; Ben-Mustapha, Imen; Bustamante, Jacinta; Picard, Capucine; Puel, Anne; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent; Rodríguez-Gallego, Carlos

    2014-01-01

    Background. Interleukin 12Rβ1 (IL-12Rβ1)–deficient patients are prone to clinical disease caused by mycobacteria, Salmonella, and other intramacrophagic pathogens, probably because of impaired interleukin 12–dependent interferon γ production. About 25% of patients also display mucocutaneous candidiasis, probably owing to impaired interleukin 23–dependent interleukin 17 immunity. The clinical features and outcome of candidiasis in these patients have not been described before, to our knowledge. We report here the clinical signs of candidiasis in 35 patients with IL-12Rβ1 deficiency. Results. Most (n = 71) of the 76 episodes of candidiasis were mucocutaneous. Isolated oropharyngeal candidiasis (OPC) was the most common presentation (59 episodes, 34 patients) and was recurrent or persistent in 26 patients. Esophageal candidiasis (n = 7) was associated with proven OPC in 2 episodes, and cutaneous candidiasis (n = 2) with OPC in 1 patient, whereas isolated vulvovaginal candidiasis (VVC; n = 3) was not. Five episodes of proven invasive candidiasis were documented in 4 patients; 1 of these episodes was community acquired in the absence of any other comorbid condition. The first episode of candidiasis occurred earlier in life (median age±standard deviation, 1.5 ± 7.87 years) than infections with environmental mycobacteria (4.29 ± 11.9 years), Mycobacterium tuberculosis (4 ± 3.12 years), or Salmonella species (4.58 ± 4.17 years) or other rare infections (3 ± 11.67 years). Candidiasis was the first documented infection in 19 of the 35 patients, despite the vaccination of 10 of these 19 patients with live bacille Calmette-Guérin. Conclusions. Patients who are deficient in IL-12Rβ1 may have candidiasis, usually mucocutaneous, which is frequently recurrent or persistent. Candidiasis may be the first clinical manifestation in these patients. PMID:24186907

  15. What Are Rare Clotting Factor Deficiencies?

    MedlinePlus

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  16. Retinoid X receptor suppresses a metastasis-promoting transcriptional program in myeloid cells via a ligand-insensitive mechanism

    PubMed Central

    Kiss, Mate; Czimmerer, Zsolt; Nagy, Gergely; Bieniasz-Krzywiec, Pawel; Ehling, Manuel; Pap, Attila; Poliska, Szilard; Boto, Pal; Tzerpos, Petros; Horvath, Attila; Kolostyak, Zsuzsanna; Daniel, Bence; Szatmari, Istvan; Mazzone, Massimiliano; Nagy, Laszlo

    2017-01-01

    Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression. PMID:28923935

  17. Cloning Expeditions: Risky but Rewarding

    PubMed Central

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  18. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  19. The Major Histocompatibility Complex–related Fc Receptor for IgG (FcRn) Binds Albumin and Prolongs Its Lifespan

    PubMed Central

    Chaudhury, Chaity; Mehnaz, Samina; Robinson, John M.; Hayton, William L.; Pearl, Dennis K.; Roopenian, Derry C.; Anderson, Clark L.

    2003-01-01

    The inverse relationship between serum albumin concentration and its half-life suggested to early workers that albumin would be protected from a catabolic fate by a receptor-mediated mechanism much like that proposed for IgG. We show here that albumin binds FcRn in a pH dependent fashion, that the lifespan of albumin is shortened in FcRn-deficient mice, and that the plasma albumin concentration of FcRn-deficient mice is less than half that of wild-type mice. These results affirm the hypothesis that the major histocompatibility complex–related Fc receptor protects albumin from degradation just as it does IgG, prolonging the half-lives of both. PMID:12566415

  20. Association between oral contraceptive use and markers of iron deficiency in a cross-sectional study of Tanzanian women.

    PubMed

    Haile, Zelalem T; Teweldeberhan, Asli K; Chertok, Ilana R A

    2016-01-01

    To analyze the associations between oral contraceptive (OC) use and markers of iron deficiency, objectively measured using hemoglobin and soluble transferrin receptor. A secondary data analysis was performed of a population-based cross-sectional study using data from the 2010 Tanzania Demographic and Health Survey. Weighted percentages were calculated. Multivariable logistic regression was used to examine the associations between OC use and iron deficiency, anemia, and iron deficiency anemia. Of the 4336 participants, only 7.3% reported a history of OC use. The prevalence rates of iron deficiency, anemia, and iron deficiency anemia were 30.3%, 40.9%, and 15.1%, respectively. Use of OCs was negatively associated with anemia and iron deficiency anemia, independent of potential confounders. Compared with OC nonusers, the multivariable-adjusted odds ratio among OC users was 0.44 (95% confidence interval 0.32-0.59; P<0.001) for anemia and 0.43 (95% confidence interval 0.27-0.68; P<0.001) for iron deficiency anemia. A longer duration of OC use was negatively associated with iron deficiency (P=0.003 for trend), anemia (P<0.001 for trend), and iron deficiency anemia (P<0.001 for trend). The significant association between OC use and iron status has important implications for educating healthcare providers and women about additional nutritional benefits of the use of OCs. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    PubMed

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  2. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    PubMed Central

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  3. BH3-Only Molecule Bim Mediates β-Cell Death in IRS2 Deficiency

    PubMed Central

    Ren, Decheng; Sun, Juan; Mao, Liqun; Ye, Honggang

    2014-01-01

    Irs2-deficient mice develop type 2–like diabetes due to a reduction in β-cell mass and a failure of pancreatic islets to undergo compensatory hyperplasia in response to insulin resistance. In order to define the molecular mechanisms, we knocked down Irs2 gene expression in mouse MIN6 insulinoma cells. Insulin receptor substrate 2 (IRS2) suppression induced apoptotic cell death, which was associated with an increase in expression of the BH3-only molecule Bim. Knockdown (KD) of Bim reduced apoptotic β-cell death induced by IRS2 suppression. In Irs2-deficient mice, Bim ablation restored β-cell mass, decreased the number of TUNEL-positive cells, and restored normal glucose tolerance after glucose challenge. FoxO1 mediates Bim upregulation induced by IRS2 suppression, and FoxO1 KD partially inhibits β-cell death induced by IRS2 suppression. These results suggest that Bim plays an important role in mediating the increase in β-cell apoptosis and the reduction in β-cell mass that occurs in IRS2-deficient diabetes. PMID:24760140

  4. Arrhythmogenic right ventricular cardiomyopathy in Boxer dogs is associated with calstabin2 deficiency

    PubMed Central

    Oyama, Mark A.; Reiken, Steve; Lehnart, Stephan E.; Chittur, Sridar V.; Meurs, Kathryn M.; Stern, Joshua; Marks, Andrew R.

    2010-01-01

    Objective To examine the presence and effect of calstabin2-deficiency in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy (ARVC). Animals Thirteen Boxer dogs with ARVC. Materials and methods Tissue samples were collected for histopathology, oligonucleotide microarray, PCR, immunoelectrophoresis, ryanodine channel immunoprecipitation and single-channel recordings, and calstabin2 DNA sequencing. Results In cardiomyopathic Boxer dogs, myocardial calstabin2 mRNA and protein were significantly decreased as compared to healthy control dogs (calstabin2 protein normalized to tetrameric cardiac ryanodine receptor (RyR2) complex: affected, 0.51 ± 0.04; control, 3.81 ± 0.22; P < 0.0001). Calstabin2 deficiency in diseased dog hearts was associated with a significantly increased open probability of single RyR2 channels indicating intracellular Ca2+ leak. PCR-based sequencing of the promoter, exonic and splice site regions of the canine calstabin2 gene did not identify any causative mutations. Conclusions Calstabin2 deficiency is a potential mechanism of Ca2+ leak-induced ventricular arrhythmias and heart disease in Boxer dogs with ARVC. PMID:18515204

  5. Secretin receptor involvement in prion-infected cells and animals.

    PubMed

    Kimura, Tomohiro; Nishizawa, Keiko; Oguma, Ayumi; Nishimura, Yuki; Sakasegawa, Yuji; Teruya, Kenta; Nishijima, Ichiko; Doh-ura, Katsumi

    2015-07-08

    The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    PubMed

    Pinto, Sérgio M; Almendinger, Johann; Cabello, Juan; Hengartner, Michael O

    2016-01-01

    The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  7. Vasodilator therapy with hydralazine induces angiotensin AT2 receptor-mediated cardiomyocyte growth in mice lacking guanylyl cyclase-A

    PubMed Central

    Li, Y; Saito, Y; Kuwahara, K; Rong, X; Kishimoto, I; Harada, M; Horiuchi, M; Murray, M; Nakao, K

    2010-01-01

    Background and purpose: Recent clinical guidelines advocate the use of the isosorbide dinitrate/hydralazine combination in treatment for heart failure. However, clinical and laboratory evidence suggest that some vasodilators may induce cardiac hypertrophy under uncertain conditions. This study investigated the effects and underlying mechanism of action of the vasodilator hydralazine on cardiac growth. Experimental approach: Wild-type mice and animals deficient in guanylyl cyclase-A (GCA) and/or angiotensin receptors (AT1 and AT2 subtypes) were treated with hydralazine (≈24 mg·kg−1·day−1 in drinking water) for 5 weeks. Cardiac mass and/or cardiomyocyte cross-sectional area, fibrosis (van Giessen-staining) and cardiac gene expression (real-time RT-PCR) were measured. Key results: Hydralazine lowered blood pressure in mice of all genotypes. However, this treatment increased the heart and left ventricular to body weight ratios, as well as cardiomyocyte cross-sectional area, and cardiac expression of atrial natriuretic peptide mRNA in mice lacking GCA. Hydralazine did not affect cardiac hypertrophy in wild-type mice and mice lacking either AT1 or AT2 receptors alone. However, the pro-hypertrophic effect of hydralazine was prevented in mice lacking both GCA and AT2, but not GCA and AT1 receptors. However, hydralazine did decrease cardiac collagen deposition and collagen I mRNA (signs of cardiac fibrosis) in mice that were deficient in GCA, or both GCA and AT2 receptors. Conclusions and implications: The vasodilator hydralazine induced AT2 receptor-mediated cardiomyocyte growth under conditions of GCA deficiency. However, attenuation of cardiac fibrosis by hydralazine could be beneficial in the management of cardiac diseases. PMID:20136844

  8. Aβ mediates Sigma receptor degradation via CaN/NFAT pathway

    PubMed Central

    Fang, Min; Zhang, Pei; Zhao, Yanxin; Jin, Aiping; Liu, Xueyuan

    2016-01-01

    Sigma receptor is an endoplasmic reticulum protein and belongs to non-opioid receptor. Increasing evidence shows that Sigma receptor activation can significantly attenuate AD induced neurological dysfunction and the functional deficiency of Sigma receptor plays an important role in the Aβ induced neuronal loss. This study aimed to investigate the influence of extracellular accumulation of Aβ on the Sigma receptor expression. Our results showed the increase in extracellular Aβ had little influence on the mRNA expression of Sigma receptor, but gradually reduced its protein expression. Co-immunoprecipitation was employed to evaluate the interaction of Sigma receptor with other proteins. Results showed BIP could bind to Sigma receptor to affect the ubiquitination of Sigma receptor. Further investigation showed there was a NFAT binding site at the promoter of BIP. Then, Western blot assay was performed to detect NFAT expression. Results showed extracellular Aβ affected the nuclear translocation of NFAT and the CaN activity of NFAT also increased with the accumulation of extracellular Aβ. In this study, NFAT-BIP luciferase reporter gene system was constructed. Results showed NFAT was able to regulate the transcription of BIP. Thus, we speculate that extracellular Aβ accumulation may activate CaN/NFAT signaling pathway to induce chaperone BIP expression, which results in Sigma receptor ubiquitination and its degradation. PMID:27648137

  9. Measurement of immunofunctional leptin to detect and monitor patients with functional leptin deficiency.

    PubMed

    Wabitsch, Martin; Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram; Kratzsch, Jürgen

    2017-03-01

    Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80-1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48-0.55) being distinct from normal was observed. The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. © 2017 The authors.

  10. Measurement of immunofunctional leptin to detect and monitor patients with functional leptin deficiency

    PubMed Central

    Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram

    2016-01-01

    Context and aims Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. Methods An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. Results In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80–1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48–0.55) being distinct from normal was observed. Conclusions The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. PMID:28007844

  11. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L.; Casey, Carol A.

    2015-01-01

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R. PMID:26607390

  12. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors

    PubMed Central

    Oka, Takakazu; Oka, Kae; Kobayashi, Takuya; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Narumiya, Shuh; Saper, Clifford B

    2003-01-01

    Previous studies have disagreed about whether prostaglandin EP1 or EP3 receptors are critical for producing febrile responses. We therefore injected lipopolysaccharide (LPS) at a variety doses (1 μg kg−1−1 mg kg−1) intraperitoneally (I.P.) into wild-type (WT) mice and mice lacking the EP1 or the EP3 receptors and measured changes in core temperature (Tc) by using telemetry. In WT mice, I.P. injection of LPS at 10 μg kg−1 increased Tc about 1 °C, peaking 2 h after injection. At 100 μg kg−1, LPS increased Tc, peaking 5–8 h after injection. LPS at 1 mg kg−1 decreased Tc, reaching a nadir at 5–8 h after injection. In EP1 receptor knockout (KO) mice injected with 10 μg kg−1 LPS, only the initial (< 40 min) increase in Tc was lacking; with 100 μg kg−1 LPS the mice showed no febrile response. In EP3 receptor KO mice, LPS decreased Tc in a dose- and time-dependent manner. Furthermore, in EP3 receptor KO mice subcutaneous injection of turpentine did not induce fever. Both EP1 and EP3 receptor KO mice showed a normal circadian cycle of Tc and brief hyperthermia following psychological stress (cage-exchange stress and buddy-removal stress). The present study suggests that both the EP1 and the EP3 receptors play a role in fever induced by systemic inflammation but neither EP receptor is involved in the circadian rise in Tc or psychological stress-induced hyperthermia in mice. PMID:12837930

  13. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  14. Haematinic Deficiency and Macrocytosis in Middle-Aged and Older Adults

    PubMed Central

    Harrington, Janas; Cadogan, Sharon; Honari, Bahman; Perera, Kanthi; Fitzgerald, Anthony P.; Perry, Ivan J.; Cahill, Mary R.

    2013-01-01

    Objective To assess the prevalence and determinants of haematinic deficiency (lack of B12 folate or iron) and macrocytosis in blood from a national population-based study of middle-aged and older adults. Methods A cross-sectional study involving 1,207 adults aged ≥45 years, recruited from a sub-study of the Irish National Survey of Lifestyle Attitudes and Nutrition (SLÁN 2007). Participants completed a health and lifestyle questionnaire and a standard food frequency questionnaire. Non-fasting blood samples were obtained for measurement of full blood count and expert morphological assessment, serum ferritin, soluble transferrin receptor assay (sTfR), B12, folate and coeliac antibodies. Blood samples were also assayed for thyroid function (T4, TSH), liver function, aminotransferase (AST) and gamma-glutamyl transferase (GGT). Results The overall prevalence (95% C.I.) of anaemia (Hb <13.5g/dl men and 11.3 g/dl women) was 4.6% (2.9%–6.4%) in men and 1.0% (0.2%–1.9%) in women. Iron deficiency (ferritin <17ng/ml men and <11ng/ml in women) was detected in 6.3% of participants (3.7% in males and 8.7% in females, p<0.001). Based on both low ferritin and raised sTfR (>21nmol/ml) only 2.3% were iron-deficient. 3.0% and 2.7% were found to have low levels of serum folate (<2.3ng/ml) and serum B12 (<120ng/l) respectively. Clinically significant macrocytosis (MCV>99fl) was detected in 8.4% of subjects. Strong, significant and independent associations with macrocytosis were observed for lower social status, current smoking status, moderate to heavy alcohol intake, elevated GGT levels, deficiency of folate and vitamin B12, hypothyroidism and coeliac disease. The population attributable fraction (PAF) for macrocytosis associated with elevated GGT (25.0%) and smoking (24.6%) was higher than for excess alcohol intake (6.3%), folate deficiency (10.5%) or vitamin B12 (3.4%). Conclusions Haematinic deficiency and macrocytosis are common in middle-aged/older adults in Ireland

  15. An investigation into “two hit” effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice

    PubMed Central

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male “two hit” mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential “two hit” neurodevelopmental mechanisms in schizophrenia. PMID:24155701

  16. Schizophrenia, dissociative anaesthesia and near-death experience; three events meeting at the NMDA receptor.

    PubMed

    Bonta, Iván L

    2004-01-01

    The three events, viz. schizophrenia, dissociative anaesthesia and Near-Death Experience, despite their seemingly unrelated manifestation to each other, have nevertheless similar functional basis. All three events are linked to the glutamate sensitive N-methyl-D-aspartate (NMDA) receptor complex, which serves as their common functional denominator. Arguments and speculations are presented in favor of the view that, the three events might be considered as functional models of each other. Antagonism to the recognition NMDA-site of the receptor induces dissociative anaesthesia and precipitates Near-Death Experience. Agonist reinforcement at the modulatory glycine-site of the receptor counteracts negative symptoms of schizophrenia. Both types of challenges towards the receptor are compatible with a glutamate deficiency concept which underlies the meeting of the three events at the NMDA receptor.

  17. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    PubMed

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  18. Role of IGF-1R in ameliorating apoptosis of GNE deficient cells.

    PubMed

    Singh, Reema; Chaudhary, Priyanka; Arya, Ranjana

    2018-05-09

    Sialic acids (SAs) are nine carbon acidic amino sugars, found at the outermost termini of glycoconjugates performing various physiological and pathological functions. SA synthesis is regulated by UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) that catalyzes rate limiting steps. Mutations in GNE result in rare genetic disorders, GNE myopathy and Sialuria. Recent studies indicate an alternate role of GNE in cell apoptosis and adhesion, besides SA biosynthesis. In the present study, using a HEK cell-based model for GNE myopathy, the role of Insulin-like Growth Factor Receptor (IGF-1R) as cell survival receptor protein was studied to counter the apoptotic effect of non-functional GNE. In the absence of functional GNE, IGF-1R was hyposialylated and transduced a downstream signal upon IGF-1 (IGF-1R ligand) treatment. IGF-1 induced activation of IGF-1R led to AKT (Protein Kinase B) phosphorylation that may phosphorylate BAD (BCL2 Associated Death Promoter) and its dissociation from BCL2 to prevent apoptosis. However, reduced ERK (Extracellular signal-regulated kinases) phosphorylation in GNE deficient cells after IGF-1 treatment suggests downregulation of the ERK pathway. A balance between the ERK and AKT pathways may determine the cell fate towards survival or apoptosis. Our study suggests that IGF-1R activation may rescue apoptotic cell death of GNE deficient cell lines and has potential as therapeutic target.

  19. Lassa virus entry requires a trigger-induced receptor switch

    PubMed Central

    Jae, Lucas T.; Raaben, Matthijs; Herbert, Andrew S.; Kuehne, Ana I.; Wirchnianski, Ariel S.; Soh, Timothy; Stubbs, Sarah H.; Janssen, Hans; Damme, Markus; Saftig, Paul; Whelan, Sean P.; Dye, John M.; Brummelkamp, Thijn R.

    2014-01-01

    Lassa virus spreads from rodents to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported to resist infection thirty years ago. We show that Lassa virus readily engaged its cell surface receptor α-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo. PMID:24970085

  20. Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning

    PubMed Central

    Barre, Alexander; Berthoux, Coralie; De Bundel, Dimitri; Valjent, Emmanuel; Bockaert, Joël; Marin, Philippe; Bécamel, Carine

    2016-01-01

    Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions. PMID:26903620

  1. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    PubMed Central

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  2. Leptin receptor deficiency is associated with upregulation of cannabinoid 1 receptors in limbic brain regions.

    PubMed

    Thanos, Panayotis K; Ramalhete, Roberto C; Michaelides, Michael; Piyis, Yianni K; Wang, Gene-Jack; Volkow, Nora D

    2008-09-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB(1)R) in overeating and the effects of food deprivation on CB(1)R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB(1)R (CB(1)R binding levels) were assessed using [(3)H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB(1)R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB(1)R binding levels than Le in most brain regions and food restriction was associated with higher CB(1)R levels in all brain regions in Ob, but not in Le rats. CB(1)R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB(1)R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB(1)R and that leptin interferes with CB(1)R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. Published 2008 Wiley-Liss, Inc.

  3. Kit formulated asialoglycoprotein receptor targeting tracer based on copolymer for liver SPECT imaging.

    PubMed

    Liu, Chang; Guo, Zhide; Zhang, Pu; Song, Manli; Zhao, Zuoquan; Wu, Xiaowei; Zhang, Xianzhong

    2014-08-01

    Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with (99m)Tc by formulated kit for SPECT imaging of hepatic function. p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for (99m)Tc labeling. Radiotracer (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (>99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49±10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1h and 4h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of (99m)Tc-labeling provides great potential for the evaluation of hepatocyte function in clinical application. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis

    PubMed Central

    Zhu, Yan; Li, Guodong; Williams, Jessica A.; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P.

    2016-01-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXRhep−/−) in liver tumor formation. The results showed that FXRhep−/− mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXRhep−/− mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXRhep−/− mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXRhep−/− mice presented with severe liver injury and tumors. Interestingly, FXRhep−/− mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXRhep−/− mice. However, cholic acid feeding reversed these effects in FXRhep−/− mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  5. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling.

    PubMed

    McMillen, T S; Minami, E; Leboeuf, R C

    2013-06-24

    Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

  6. Contribution of human growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to isolated severe growth hormone deficiency (ISGHD) and normal adult height.

    PubMed

    Camats, Núria; Fernández-Cancio, Mónica; Carrascosa, Antonio; Andaluz, Pilar; Albisu, M Ángeles; Clemente, María; Gussinyé, Miquel; Yeste, Diego; Audí, Laura

    2012-10-01

    Molecular causes of isolated severe growth hormone deficiency (ISGHD) in several genes have been established. The aim of this study was to analyse the contribution of growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to GH deficiency in a series of prepubertal ISGHD patients and to normal adult height. A systematic GHRHR gene sequence analysis was performed in 69 ISGHD patients and 60 normal adult height controls (NAHC). Four GHRHR single-nucleotide polymorphisms (SNPs) were genotyped in 248 additional NAHC. An analysis was performed on individual SNPs and combined genotype associations with diagnosis in ISGHD patients and with height-SDS in NAHC. Twenty-one SNPs were found. P3, P13, P15 and P20 had not been previously described. Patients and controls shared 12 SNPs (P1, P2, P4-P11, P16 and P21). Significantly different frequencies of the heterozygous genotype and alternate allele were detected in P9 (exon 4, rs4988498) and P12 (intron 6, rs35609199); P9 heterozygous genotype frequencies were similar in patients and the shortest control group (heights between -2 and -1 SDS) and significantly different in controls (heights between -1 and +2 SDS). GHRHR P9 together with 4 GH1 SNP genotypes contributed to 6·2% of height-SDS variation in the entire 308 NAHC. This study established the GHRHR gene sequence variation map in ISGHD patients and NAHC. No evidence of GHRHR mutation contribution to ISGHD was found in this population, although P9 and P12 SNP frequencies were significantly different between ISGHD and NAHC. Thus, the gene sequence may contribute to normal adult height, as demonstrated in NAHC. © 2012 Blackwell Publishing Ltd.

  7. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.

    PubMed

    Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L

    2016-07-28

    Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.

    PubMed

    Ghysels, Bart; Ochsner, Urs; Möllman, Ute; Heinisch, Lothar; Vasil, Michael; Cornelis, Pierre; Matthijs, Sandra

    2005-05-15

    Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two

  9. Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice

    PubMed Central

    Manzke, Till; Niebert, Marcus; Koch, Uwe R.; Caley, Alex; Vogelgesang, Steffen; Hülsmann, Swen; Ponimaskin, Evgeni; Müller, Ulrike; Smart, Trevor G.; Harvey, Robert J.; Richter, Diethelm W.

    2010-01-01

    Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A–specific (5-HTR1A–specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A–GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A–GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction. PMID:20978350

  10. Infectious diseases and immunological responses in adult subjects with lifetime untreated, congenital GH deficiency.

    PubMed

    Campos, Viviane C; Barrios, Mônica R; Salvatori, Roberto; de Almeida, Roque Pacheco; de Melo, Enaldo V; Nascimento, Ana C S; de Jesus, Amélia Ribeiro; Aguiar-Oliveira, Manuel H

    2016-10-01

    Growth hormone is important for the development and function of the immune system, but there is controversy on whether growth hormone deficiency is associated to immune disorders. A model of isolated growth hormone deficiency may clarify if the lack of growth hormone is associated with increased susceptibility to infections, or with an altered responsiveness of the immune system. We have studied the frequency of infectious diseases and the immune function in adults with congenital, untreated isolated growth hormone deficiency. In a cross-sectional study, 35 adults with isolated growth hormone deficiency due to a homozygous mutation in the growth hormone releasing hormone receptor gene and 31 controls were submitted to a clinical questionnaire, physical examination serology for tripanosomiasis, leishmaniasis, HIV, tetanus, hepatitis B and C, and serum total immunoglobulin G, M, E and A measurement. The immune response was evaluated in a subset of these subjects by skin tests and response to vaccination for hepatitis B, tetanus, and bacillus Calmette-Guérin. There was no difference between the groups in history of infectious diseases and baseline serology. Isolated growth hormone deficiency subjects had lower total IgG, but within normal range. There was no difference in the response to any of the vaccinations or in the positivity to protein Purified Derived, streptokinase or candidin. Adult untreated isolated growth hormone deficiency does not cause an increased frequency of infectious diseases, and does not alter serologic tests, but is associated with lower total IgG levels, without detectable clinical impact.

  11. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  12. A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11β-hydroxysteroid dehydrogenase-1 promoter in pup liver.

    PubMed

    Takaya, Junji; Iharada, Anna; Okihana, Hiroyuki; Kaneko, Kazunari

    2013-11-01

    Prenatal undernutrition affects offspring phenotype via changes in the epigenetic regulation of specific genes. We hypothesized that pregnant females that were fed a calcium (Ca)-deficient diet would have offspring with altered hepatic glucocorticoid-related gene expression and altered epigenetic gene regulation. Female Wistar rats ate either a Ca-deficient or control diet from 3 weeks before conception to 21 days after parturition. Pups were allowed to nurse from their original mothers and then euthanized on day 21. Methylation of individual cytosine-guanine dinucleotides in the phosphoenolpyruvate carboxykinase (Pck1), peroxisome proliferator-activated receptor α (Ppara), glucocorticoid receptor (Nr3c1), 11β-hydroxysteroid dehydrogenase-1 (Hsd11b1), and 11β-hydroxysteroid dehydrogenase-2 (Hsd11b2) promoters was measured in liver tissue using pyrosequencing. For each gene, quantitative real-time polymerase chain reaction was used to assess mRNA levels in liver tissue. Overall Hsd11b1 methylation was lower in the Ca-deficient group than in the control group; however, overall methylation of each other gene did not differ between groups. Serum corticosterone levels in male pups from Ca-deficient dams were higher than those in control pups. Expression of Pck1 and Nr3c1 was lower in the Ca-deficient group than in the control group. A Ca-deficient diet for a dam during gestation and early nursing may alter glucocorticoid metabolism and lead to higher intracellular glucocorticoid concentrations in the hepatic cells of her offspring; moreover, this abnormal glucocorticoid metabolism may induce the metabolic complications that are associated with Ca deficiency. These findings indicated that prenatal nutrition affected glucocorticoid metabolism in offspring in part by affecting the epigenome of offspring. © 2013.

  13. Infusion of oxytocin induces successful delivery in prostanoid FP-receptor-deficient mice.

    PubMed

    Kawamata, Masaki; Yoshida, Masahide; Sugimoto, Yukihiko; Kimura, Tadashi; Tonomura, Yutaka; Takayanagi, Yuki; Yanagisawa, Teruyuki; Nishimori, Katsuhiko

    2008-02-13

    The dramatic increase of oxytocin (OT) receptor (OTR) in the myometrium as well as circulating progesterone withdrawal has been thought to be the most important factor in the induction and accomplishment of parturition since delivery fails in prostaglandin F2alpha receptor (FP) knockout (FP KO) mice. The expression levels of OTR mRNA/protein were not dramatically increased in the near-term uteri of FP KO mice. However, OT-induced myometrial contractions and the concentration-response curves in FP KO in vitro were almost similar to those in wild-type (WT) mice. OT-infusion (0.3 U/day) enabled FP KO mice to experience successful delivery, and furthermore the duration until the onset was hastened by a higher dose of OT (3 U/day). The plasma progesterone levels of FP KO females were maintained at high levels, but decreased during labor by OT-infusion (3 U/day). These results suggest that OT has potentials to induce strong myometrial contractions in uterus with low expression levels of OTR and luteolysis in ovary, which enabled FP KO females to undergo successful delivery.

  14. Anemia and Iron Deficiency in Children With Potential Celiac Disease.

    PubMed

    Repo, Marleena; Lindfors, Katri; Mäki, Markku; Huhtala, Heini; Laurila, Kaija; Lähdeaho, Marja-Leena; Saavalainen, Päivi; Kaukinen, Katri; Kurppa, Kalle

    2017-01-01

    Active screening for celiac disease frequently detects seropositive children with normal villous morphology (potential celiac disease). It remains unclear whether these subjects should be treated. We here investigated the prevalence of anemia and iron deficiency in children with potential and mucosal atrophy celiac disease. The prospective study involved 19 children with potential disease, 67 with partial or subtotal villous atrophy (P/SVA), and 16 with total villous atrophy (TVA). Twenty-three healthy children comprised the control group. The groups were compared for various clinical, histological, and laboratory parameters and hepcidin. The prevalence of abnormal parameters was as follows (controls, potential celiac disease, P/SVA, and TVA, respectively): anemia 0%, 15%, 22%, and 63%; low iron 5%, 0%, 14%, and 50%; increased transferrin receptor 1 5%, 16%, 20%, and 47%; low ferritin 0%, 21%, 35%, and 87%; and low transferrin saturation 10%, 11%, 41%, and 71%. One subject had low folate and none had low vitamin B12. The median values for hemoglobin, total iron, ferritin, and transferrin saturation were significantly lower and transferrin receptor 1 values higher in TVA group compared with other groups. After a median of 7 months on a gluten-free diet hemoglobin, total iron, ferritin, and albumin in children with P/SVA exceeded the baseline values in the potential celiac disease group. The development of anemia and iron deficiency in celiac disease is a continuum and may already be present in children with normal villous morphology, advocating an early diagnosis and possible dietary treatment of these patients.

  15. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  16. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure.

    PubMed

    Amit, Uri; Kain, David; Wagner, Allon; Sahu, Avinash; Nevo-Caspi, Yael; Gonen, Nir; Molotski, Natali; Konfino, Tal; Landa, Natalie; Naftali-Shani, Nili; Blum, Galia; Merquiol, Emmanuelle; Karo-Atar, Danielle; Kanfi, Yariv; Paret, Gidi; Munitz, Ariel; Cohen, Haim Y; Ruppin, Eytan; Hannenhalli, Sridhar; Leor, Jonathan

    2017-05-20

    The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra , is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1 -deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P =0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P =0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    PubMed

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  18. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains.

    PubMed

    Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V

    2009-12-01

    Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors. Copyright 2009 Wiley-Liss, Inc.

  19. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness.

    PubMed

    Gong, X; Yi, J; Carmon, K S; Crumbley, C A; Xiong, W; Thomas, A; Fan, X; Guo, S; An, Z; Chang, J T; Liu, Q J

    2015-09-03

    The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of Keap1-mutated lung adenocarcinomas (ADs). This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohort (median survival of 28 vs 163 months, log-rank test P<0.0001). Knockdown (KD) of RSPO3, LGR4 or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and KD of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung ADs.

  20. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness

    PubMed Central

    Gong, Xing; Yi, Jing; Carmon, Kendra S.; Crumbley, Christine A.; Xiong, Wei; Thomas, Anthony; Fan, Xuejun; Guo, Shan; An, Zhiqiang; Chang, Jeffrey T.; Liu, Qingyun J.

    2015-01-01

    The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of the Keap1-mutated lung adenocarcinomas. This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohorts (median survival of 28 vs. 163 months, logrank test p < 0.0001). Knockdown of RSPO3, LGR4, or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and knockdown of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung adenocarcinomas. PMID:25531322

  1. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation.

    PubMed

    Chisada, Shin-ichi; Kurokawa, Tadahide; Murashita, Koji; Rønnestad, Ivar; Taniguchi, Yoshihito; Toyoda, Atsushi; Sakaki, Yoshiyuki; Takeda, Shunichi; Yoshiura, Yasutoshi

    2014-01-01

    The first studies that identified leptin and its receptor (LepR) in mammals were based on mutant animals that displayed dramatic changes in body-weight and regulation of energy homeostasis. Subsequent studies have shown that a deficiency of leptin or LepR in homoeothermic mammals results in hyperphagia, obesity, infertility and a number of other abnormalities. The physiological roles of leptin-mediated signaling in ectothermic teleosts are still being explored. Here, we produced medaka with homozygous LepR gene mutation using the targeting induced local lesions in a genome method. This knockout mutant had a point mutation of cysteine for stop codon at the 357th amino acid just before the leptin-binding domain. The evidence for loss of function of leptin-mediated signaling in the mutant is based on a lack of response to feeding in the expression of key appetite-related neuropeptides in the diencephalon. The mutant lepr−/− medaka expressed constant up-regulated levels of mRNA for the orexigenic neuropeptide Ya and agouti-related protein and a suppressed level of anorexigenic proopiomelanocortin 1 in the diencephalon independent of feeding, which suggests that the mutant did not possess functional LepR. Phenotypes of the LepR-mutant medaka were analyzed in order to understand the effects on food intake, growth, and fat accumulation in the tissues. The food intake of the mutant medaka was higher in post-juveniles and adult stages than that of wild-type (WT) fish. The hyperphagia led to a high growth rate at the post-juvenile stage, but did not to significant alterations in final adult body size. There was no additional deposition of fat in the liver and muscle in the post-juvenile and adult mutants, or in the blood plasma in the adult mutant. However, adult LepR mutants possessed large deposits of visceral fat, unlike in the WT fish, in which there were none. Our analysis confirms that LepR in medaka exert a powerful influence on the control on food intake. Further

  2. Energy homeostasis in leptin deficient Lepob/ob mice.

    PubMed

    Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A

    2017-01-01

    Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.

  3. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient

  4. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators.

    PubMed

    Duffney, Lara J; Zhong, Ping; Wei, Jing; Matas, Emmanuel; Cheng, Jia; Qin, Luye; Ma, Kaijie; Dietz, David M; Kajiwara, Yuji; Buxbaum, Joseph D; Yan, Zhen

    2015-06-09

    Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance.

    PubMed

    Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R

    2000-01-15

    The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.

  6. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  7. On-demand anakinra treatment is effective in mevalonate kinase deficiency.

    PubMed

    Bodar, E J; Kuijk, L M; Drenth, J P H; van der Meer, J W M; Simon, A; Frenkel, J

    2011-12-01

    Mevalonate kinase deficiency (MKD) is a hereditary autoinflammatory syndrome marked by recurrent attacks of fever and inflammation. Severe enzyme deficiency results in mevalonic aciduria (MA) and milder deficiency in hyperimmunoglobulin D syndrome (HIDS). Treatment remains a challenge. To observe the effect of the recombinant interleukin-1 receptor antagonist anakinra in patients with MKD. A prospective observational study was undertaken. Two patients with MA started continuous treatment with anakinra (1-2 mg/kg/day) and nine patients with HIDS chose between continuous treatment and on-demand treatment (starting at first symptoms of attack, 100 mg/day or 1 mg/kg/day for 5-7 days). Anakinra induced partial remission in one patient with MA but there was no response in the other patient with MA. In one patient with HIDS continuous treatment induced complete remission for 7 months but was stopped because of side effects. Eight patients with HIDS preferred on-demand treatment from the start. This induced a clinical response (≥50% reduction in duration) in 8 of 12 treated attacks without a change in attack frequency. Anakinra prevented fever attacks due to vaccination without inhibiting antibody induction. No major side effects were seen. On-demand treatment with anakinra in HIDS decreases the duration and severity of fever attacks. Because of the burden of daily injections and relatively long asymptomatic intervals of HIDS, all patients with HIDS preferred on-demand treatment.

  8. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  9. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

    PubMed Central

    Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications. PMID:28035084

  10. Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose.

    PubMed

    Gilbert, Marc; Magnan, Christophe; Turban, Sophie; André, Jocelyne; Guerre-Millo, Michèle

    2003-02-01

    It has been established that leptin exerts a negative control on food intake, allowing one to maintain stable caloric intake over time. The aim of the present study was to investigate whether leptin regulates food intake when a supply of calories is provided by the systemic route. Experiments were carried out in leptin receptor-deficient obese fa/fa rats and lean Fa/fa controls. In both groups, 48 h of glucose infusion reduced food intake in proportion to caloric supply, resulting in virtually no change in total caloric intake as compared to before the infusion. This hypophagic response was reproduced without adding systemic calories, but by increasing glucose and insulin concentrations specifically in the brain through carotid artery infusion. Concomitant intracerebroventricular administration of 5-(tetradecyloxy)-2-furoic acid, an acetyl CoA carboxylase inhibitor that precludes malonyl-CoA synthesis, abolished the restriction of feeding in carotid-infused lean and obese rats. These data indicate that a supply of calories via glucose infusion induces a hypophagic response independent of leptin signaling in the rat, and support the hypothesis that a rise in central malonyl-CoA, triggered by increased glucose and insulin concentrations, participates in this adaptation. This process could contribute to the limiting of hyperphagia, primarily when leptin signaling is altered, as in the obese state.

  11. Role of white adipose lipolysis in the development of NASH induced by methionine-and choline-deficient diet

    PubMed Central

    Tanaka, Naoki; Takahashi, Shogo; Fang, Zhong-Ze; Matsubara, Tsutomu; Krausz, Kristopher W.; Qu, Aijuan; Gonzalez, Frank J.

    2014-01-01

    Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for three days and one week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH. PMID:25178843

  12. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    PubMed

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  13. Regulation and signaling of human bombesin receptors and their biological effects.

    PubMed

    Weber, H Christian

    2009-02-01

    This review will highlight recent advances in the understanding of molecular mechanisms by which mammalian bombesin receptors are regulated and which intracellular signaling pathways have been characterized to mediate agonist-dependent receptor biological effects. Mammalian bombesin receptors have been demonstrated to be involved in a larger array of physiological and pathophysiological conditions than previously reported. Pharmacological experiments in vitro and in vivo as well as utilization of animals genetically deficient of the gastrin-releasing peptide receptor demonstrated roles in memory and fear behavior, lung development and injury, small intestinal cell repair, autocrine tumor growth, and mediating signals for pruritus and penile reflexes. Intracellular signaling studies predominantly of the gastrin-releasing peptide receptor owing to its frequent overexpression in some human malignancies showed that PI3 kinase activation is an important mechanism of cell proliferation. Tumor cell treatment including gastrin-releasing peptide receptor antagonists combined with inhibition of epidermal growth factor receptor resulted in an additive effect on blocking cell proliferation. Novel molecular mechanisms of the orphan bombesin receptor subtype-3 and gastrin-releasing peptide receptor gene regulation have been elucidated. Inhibition of gastrin-releasing peptide receptor signaling in human malignancies represents an attractive target for pharmacological treatment. Novel functions of bombesin related peptides have been identified including processes in the central nervous system, lung and intestinal tract.

  14. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor.

    PubMed

    O'Sullivan, J M; Aguila, S; McRae, E; Ward, S E; Rawley, O; Fallon, P G; Brophy, T M; Preston, R J S; Brady, L; Sheils, O; Chion, A; O'Donnell, J S

    2016-12-01

    Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N-linked glycan trimming resulted in increased macrophage-mediated clearance. Click to hear Dr Denis discuss clearance of von Willebrand factor in a free presentation from the ISTH Academy SUMMARY: Background Enhanced von Willebrand factor (VWF) clearance is important in the etiology of both type 1 and type 2 von Willebrand disease (VWD). In addition, previous studies have demonstrated that VWF glycans play a key role in regulating in vivo clearance. However, the molecular mechanisms underlying VWF clearance remain poorly understood. Objective To define the molecular mechanisms through which VWF N-linked glycan structures influence in vivo clearance. Methods By use of a series of exoglycosidases, different plasma-derived VWF (pd-VWF) glycoforms were generated. In vivo clearance of these glycoforms was then assessed in VWF -/- mice in the presence or absence of inhibitors of asialoglycoprotein receptor (ASGPR), or following clodronate-induced macrophage depletion. Results Reduced amounts of N-linked and O-linked sialylation resulted in enhanced pd-VWF clearance modulated via ASGPR. In addition to this role of terminal sialylation, we further observed that progressive N-linked glycan trimming also resulted in markedly enhanced VWF clearance. Furthermore, these additional N-linked glycan effects on clearance were ASGPR-independent, and instead involved enhanced macrophage clearance that was mediated, at least in part, through LDL receptor-related protein 1. Conclusion The carbohydrate determinants expressed on VWF regulate susceptibility to proteolysis by ADAMTS-13. In addition, our findings now further demonstrate that non-sialic acid carbohydrate

  15. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  16. Carnitine Deficiency and Pregnancy

    PubMed Central

    de Bruyn, Anouk; Jacquemyn, Yves; Kinget, Kristof; Eyskens, François

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations. PMID:26113999

  17. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease.

    PubMed

    Vijmasi, Trinka; Chen, Feeling Y T; Chen, Ying Ting; Gallup, Marianne; McNamara, Nancy

    2013-01-01

    Dry eye is commonly associated with autoimmune diseases such as Sjögren's syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often recalcitrant to therapy. We established mice deficient in the autoimmune regulator (Aire) gene as a model for autoimmune-mediated aqueous-deficient dry eye. In Aire-deficient mice, CD4+ T cells represent the main effector cells and local signaling via the interleukin-1 (IL-1/IL-1R1) pathway provides an essential link between autoreactive CD4+ T cells and ocular surface disease. In the current study, we evaluated the efficacy of topical administration of IL-1R1 antagonist (IL-1RA) anakinra in alleviating ocular surface damage resulting from aqueous-deficient dry eye in the setting of autoimmune disease. We compared the effect of commercially available IL-1R1 antagonist, anakinra (50 μg/mL concentration) to that of carboxymethylcellulose (CMC) vehicle control as a treatment for dry eye. Age-matched, Aire-deficient mice were treated three times daily with anakinra or CMC vehicle for 14 days using side-by-side (n = 4 mice/group) and paired-eye (n = 5) comparisons. We assessed (1) ocular surface damage with lissamine green staining; (2) tear secretion with wetting of phenol-red threads; (3) goblet cell (GC) mucin glycosylation with lectin histochemistry; (4) immune cell infiltration using anti-F4/80, CD11c, and CD4 T cell antibodies; and (5) gene expression of cornified envelope protein, Small Proline-Rich Protein-1B (SPRR1B) with real-time quantitative polymerase chain reaction. Aire-deficient mice treated with anakinra experienced significant improvements in ocular surface integrity and tear secretion. After 7 days of treatment, lissamine green staining decreased in eyes treated with anakinra compared to an equivalent increase in staining following treatment with CMC vehicle

  18. Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease

    PubMed Central

    Vijmasi, Trinka; Chen, Feeling YT; Chen, Ying Ting; Gallup, Marianne

    2013-01-01

    Purpose Dry eye is commonly associated with autoimmune diseases such as Sjögren’s syndrome (SS), in which exocrinopathy of the lacrimal gland leads to aqueous tear deficiency and keratoconjunctivitis sicca (KCS). KCS is among the most common and debilitating clinical manifestations of SS that is often recalcitrant to therapy. We established mice deficient in the autoimmune regulator (Aire) gene as a model for autoimmune-mediated aqueous-deficient dry eye. In Aire-deficient mice, CD4+ T cells represent the main effector cells and local signaling via the interleukin-1 (IL-1/IL-1R1) pathway provides an essential link between autoreactive CD4+ T cells and ocular surface disease. In the current study, we evaluated the efficacy of topical administration of IL-1R1 antagonist (IL-1RA) anakinra in alleviating ocular surface damage resulting from aqueous-deficient dry eye in the setting of autoimmune disease. Methods We compared the effect of commercially available IL-1R1 antagonist, anakinra (50 μg/mL concentration) to that of carboxymethylcellulose (CMC) vehicle control as a treatment for dry eye. Age-matched, Aire-deficient mice were treated three times daily with anakinra or CMC vehicle for 14 days using side-by-side (n=4 mice/group) and paired-eye (n=5) comparisons. We assessed (1) ocular surface damage with lissamine green staining; (2) tear secretion with wetting of phenol-red threads; (3) goblet cell (GC) mucin glycosylation with lectin histochemistry; (4) immune cell infiltration using anti-F4/80, CD11c, and CD4 T cell antibodies; and (5) gene expression of cornified envelope protein, Small Proline-Rich Protein-1B (SPRR1B) with real-time quantitative polymerase chain reaction. Results Aire-deficient mice treated with anakinra experienced significant improvements in ocular surface integrity and tear secretion. After 7 days of treatment, lissamine green staining decreased in eyes treated with anakinra compared to an equivalent increase in staining following

  19. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency.

    PubMed

    Collin de l'Hortet, A; Zerrad-Saadi, A; Prip-Buus, C; Fauveau, V; Helmy, N; Ziol, M; Vons, C; Billot, K; Baud, V; Gilgenkrantz, Hélène; Guidotti, Jacques-Emmanuel

    2014-07-01

    GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.

  20. Regulation by CD45 of the tyrosine phosphorylation of high affinity IgE receptor beta- and gamma-chains.

    PubMed

    Adamczewski, M; Numerof, R P; Koretzky, G A; Kinet, J P

    1995-04-01

    Previous studies using tyrosine phosphatase inhibitors have implicated tyrosine phosphatases in the signal transduction pathway initiated by aggregation of Fc epsilon RI, the high affinity receptor for IgE. To define more precisely a role for the tyrosine phosphatase CD45 in Fc epsilon RI-mediated signaling, we have transfected the three subunits of Fc epsilon RI into wild-type Jurkat and a CD45-deficient Jurkat derivative. Here we demonstrate that CD45 is necessary for the initiation of calcium flux through the transfected Fc epsilon RI. In contrast to the effect of phosphatase inhibitors, the tyrosine phosphorylation levels of beta and gamma after aggregation of Fc epsilon RI are surprisingly reduced, relative to wild-type Jurkat, in the CD45-deficient cells. After reconstitution of the CD45-deficient cells with a chimeric molecule containing the cytoplasmic phosphatase domains of CD45, both the base line and activation-induced tyrosine phosphorylation levels are increased. By examining Lck autophosphorylation, we find that Fc epsilon RI aggregation induces an increase in Lck enzymatic activity only in wild-type Jurkat and the CD45-deficient Jurkat reconstituted with chimeric CD45. This regulation of src-family tyrosine kinase activity may be the means by which CD45 controls aggregation-induced receptor phosphorylation.