Sample records for asialoglycoprotein receptor mediates

  1. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    PubMed

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  2. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.

    PubMed Central

    Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F

    1981-01-01

    The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585

  3. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  4. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor

    PubMed Central

    1983-01-01

    Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116

  5. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  6. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  7. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  8. Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells

    PubMed Central

    1987-01-01

    After receptor-mediated uptake, asialoglycoproteins are routed to lysosomes, while transferrin is returned to the medium as apotransferrin. This sorting process was analyzed using 3,3'- diaminobenzidine (DAB) cytochemistry, followed by Percoll density gradient cell fractionation. A conjugate of asialoorosomucoid (ASOR) and horseradish peroxidase (HRP) was used as a ligand for the asialoglycoprotein receptor. Cells were incubated at 0 degree C in the presence of both 131I-transferrin and 125I-ASOR/HRP. Endocytosis of prebound 125I-ASOR/HRP and 131I-transferrin was monitored by cell fractionation on Percoll density gradients. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation gave rise to a density shift of 125I-ASOR/HRP-containing vesicles due to HRP-catalyzed DAB polymerization. An identical change in density for 125I-transferrin and 125I-ASOR/HRP, induced by DAB cytochemistry, is taken as evidence for the concomitant presence of both ligands in the same compartment. At 37 degrees C, sorting of the two ligands occurred with a half-time of approximately 2 min, and was nearly completed within 10 min. The 125I-ASOR/HRP-induced shift of 131I-transferrin was completely dependent on the receptor-mediated uptake of 125I-ASOR/HRP in the same compartment. In the presence of a weak base (0.3 mM primaquine), the recycling of transferrin receptors was blocked. The cell surface transferrin receptor population was decreased within 6 min to 15% of its original size. DAB cytochemistry showed that sorting between endocytosed 131I-transferrin and 125I-ASOR/HRP was also blocked in the presence of primaquine. These results indicate that transferrin and asialoglycoprotein are taken up via the same compartments and that segregation of the transferrin-receptor complex and asialoglycoprotein occurs very efficiently soon after uptake. PMID:3032986

  9. Reconstitution of the Hepatic Asialoglycoprotein Receptor with Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Klausner, Richard D.; Bridges, Kenneth; Tsunoo, Hajime; Blumenthal, Robert; Weinstein, John N.; Ashwell, Gilbert

    1980-09-01

    A solubilized detergent-free preparation of the hepatic binding protein specific for asialoglycoproteins associates spontaneously with small unilamellar lipid vesicles. This process is independent of the phase transition of the lipid and effectively restores the specific binding activity of the receptor protein. The insensitivity of the resulting lipid-protein complex to ionic strength provides evidence for a hydrophobic interaction. There is a perturbation of the lipid phase transition concomitant with addition of the protein. Circular dichroism studies indicate that the protein undergoes a conformational change on association with lipid. Binding of specific ligand produces further physical changes in the receptor as indicated by alterations in the tryptophan fluorescence quenching pattern.

  10. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  11. Functional Consequences of Mannose and Asialoglycoprotein Receptor Ablation*

    PubMed Central

    Mi, Yiling; Coonce, Marcy; Fiete, Dorothy; Steirer, Lindsay; Dveksler, Gabriela; Townsend, R. Reid; Baenziger, Jacques U.

    2016-01-01

    The mannose receptor (ManR, Mrc1) and asialoglycoprotein receptor (ASGR, Asgr1 and Asgr2) are highly abundant endocytic receptors expressed by sinusoidal endothelial cells and parenchymal cells in the liver, respectively. We genetically manipulated either receptor individually or in combination, revealing phenotypic changes in female and male mice associated with changes in circulating levels of many glycoproteins. Both receptors rise and fall in response to progesterone during pregnancy. Thirty percent of Asgr2−/− and 65% of Mrc1−/−Asgr2−/− mice are unable to initiate parturition at the end of pregnancy, whereas Mrc1−/− mice initiate normally. Twenty five percent of Mrc1−/−Asgr2−/− male mice develop priapism when mating due to thrombosis of the penile vein, but neither Mrc1−/− nor Asgr2−/− mice do so. The half-life for luteinizing hormone (LH) clearance increases in Mrc1−/− and Mrc1−/−Asgr2−/− mice but not in Asgr2−/− mice; however, LH and testosterone are elevated in all three knockouts. The ManR clears LH thus regulating testosterone production, whereas the ASGR appears to mediate clearance of an unidentified glycoprotein that increases LH levels. More than 40 circulating glycoproteins are elevated >3.0-fold in pregnant Mrc1−/−Asgr2−/− mice. Pregnancy-specific glycoprotein 23, undetectable in WT mice (<50 ng/ml plasma), reaches levels of 1–10 mg/ml in the plasma of Mrc1−/−Asgr2−/− and Asgr2−/− mice, indicating it is cleared by the ASGR. Elevation of multiple coagulation factors in Mrc1−/−Asgr2−/− mice may account for priapism seen in males. These male and female phenotypic changes underscore the key roles of the ManR and ASGR in controlling circulating levels of numerous glycoproteins critical for regulating reproductive hormones and blood coagulation. PMID:27405760

  12. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments

    PubMed Central

    1985-01-01

    The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191

  13. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins.

    PubMed Central

    McPhaul, M; Berg, P

    1986-01-01

    The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162

  14. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma.

    PubMed

    Pranatharthiharan, Sandhya; Patel, Mitesh D; Malshe, Vinod C; Pujari, Vaishali; Gorakshakar, Ajit; Madkaikar, Manisha; Ghosh, Kanjaksha; Devarajan, Padma V

    2017-11-01

    We report asialoglycoprotein receptor (ASGPR)-targeted doxorubicin hydrochloride (Dox) nanoparticles (NPs) for hepatocellular carcinoma (HCC). Polyethylene sebacate (PES)-Gantrez® AN 119 Dox NPs of average size 220 nm with PDI < 0.62 and ∼20% Dox loading were prepared by modified nanoprecipitation. ASGPR ligands, pullulan (Pul), arabinogalactan (AGn), and the combination (Pul-AGn), were anchored by adsorption. Ligand anchoring enabled high liver uptake with a remarkable hepatocyte:nonparenchymal cell ratio of 85:15. Furthermore, Pul-AGn NPs exhibited an additive effect implying incredibly high hepatocyte accumulation. Galactose-mediated competitive inhibition confirmed ASGPR-mediated uptake of ligand-anchored NPs in HepG2 cell lines. Subacute toxicity in rats confirmed the safety of the NP groups. However, histopathological evaluation suggested mild renal toxicity of AGn. Pul NPs revealed sustained reduction in tumor volume in PLC/PRF/5 liver tumor-bearing Nod/Scid mice up to 46 days. Extensive tumor necrosis, reduced collagen content, reduction in the HCC biomarker serum α-fetoprotein (p < 0.05), a mitotic index of 1.135 (day 46), and tumor treated/tumor control (T/C) values of <0.42 signified superior efficacy of Pul NPs. Furthermore, weight gain in the NP groups, and no histopathological alterations indicated that they were well tolerated by the mice. The high efficacy coupled with greater safety portrayed Pul Dox NPs as a promising nanocarrier for improved therapy of HCC.

  15. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  16. Soluble asialoglycoprotein receptors reflect the apoptosis of hepatocytes.

    PubMed

    Kakegawa, Tetsuji; Ise, Hirohiko; Sugihara, Nobuhiro; Nikaido, Toshio; Negishi, Naoki; Akaike, Toshihiro; Tanaka, Eiji

    2002-01-01

    Cell death is thought to take place through at least two distinct processes: apoptosis and necrosis. There is increasing evidence that dysregulation of the apoptotic program is involved in liver diseases. However, there is no method to simply evaluate apoptosis in the liver tissue at present. It has been reported that the expression of asialoglycoprotein receptors (AGPRs) increases with apoptosis, but there is no report until now that investigates the influence of soluble AGPRs on apoptosis of hepatocytes. Soluble AGPRs have been reported to be present in human serum under physiological conditions. In the present study, in order to investigate the correlation between apoptosis of hepatocytes and soluble AGPR, mouse soluble AGPRs were detected using SDS-PAGE and Western blot analysis was conducted using anti-extracellular mouse hepatic lectin-1 (Ex-MHL-1) antiserum (polyclonal rabbit serum). The mouse soluble AGPRs were present in culture medium and mouse serum when hepatocytes were damaged. The soluble AGPRs increased proportionately, as the number of dead hepatocytes increased. In addition, soluble AGPRs existed more when apoptotic cell death was observed in in vitro and in vivo than when necrotic cell death was observed. The extracellular moiety of MHL-1 exists in the culture medium and mouse serum as a soluble AGPR, but the detailed mechanism of releasing soluble AGPR from hepatocytes has not been revealed yet. We described the first evidence for the relation between quantity of soluble AGPRs with two kinds of cell death: necrosis and apoptosis. Based on the results of our study, soluble AGPRs might become a new marker of apoptosis in the liver tissue and be useful for clinical diagnosis and treatment for liver diseases.

  17. Evidence for an asialoglycoprotein receptor on nonparenchymal cells for O-linked glycoproteins.

    PubMed

    Stefanich, Eric G; Ren, Song; Danilenko, Dimitry M; Lim, Amy; Song, An; Iyer, Suhasini; Fielder, Paul J

    2008-11-01

    B cell-activating factor receptor 3 (BR3)-Fc is an IgG1-receptor dimeric fusion protein that has multiple O-linked glycosylation sites and sialylation levels that can vary in the manufacturing process. Increased sialic acid levels resulted from increased site occupancy with the O-linked N-acetylgalactosamine (GalNAc-Gal), but because the ratio of sialic acid per mole of oligosaccharide remained approximately 1, this led to increased asialo terminal GalNAc. Previous studies have demonstrated an effect of terminal asialo Gal or GalNAc on the clearance of glycoproteins due to uptake and degradation by lectin receptors in the liver. However, the previous studies examined N-linked oligosaccharides, and there are less data regarding O-linked oligosaccharides. The objective of these studies was to determine the effects on the pharmacokinetics and distribution of the asialo terminal GalNAc and varying amounts of sialic acid residues on BR3-Fc. The results of the data presented here suggest that exposed Gal on the desialylated BR3-Fc led to rapid clearance due to uptake and degradation in the liver that was associated with nonparenchymal cells. It is interesting to note that the data indicated a decreased clearance and increased exposure of BR3-Fc as the sialic acid levels increased, even though increased sialic acid was associated with increased asialo GalNAc. Therefore, the exposed GalNAc did not seem to play a role in the clearance of BR3-Fc; although the Gal linked to the hydroxyl group at position 3 may have prevented an interaction. Because we did not see uptake of desialylated BR3-Fc in hepatocytes where the asialoglycoprotein receptor is localized, this nonparenchymal cell lectin may have preference for O-linked glycoproteins.

  18. Constant serum levels of secreted asialoglycoprotein receptor sH2a and decrease with cirrhosis

    PubMed Central

    Benyair, Ron; Kondratyev, Maria; Veselkin, Elena; Tolchinsky, Sandra; Shenkman, Marina; Lurie, Yoav; Lederkremer, Gerardo Z

    2011-01-01

    AIM: To investigate the existence and levels of sH2a, a soluble secreted form of the asialoglycoprotein receptor in human serum. METHODS: Production of recombinant sH2a and development of a monoclonal antibody and an enzyme-linked immunosorbent assay (ELISA). This assay was used to determine the presence and concentration of sH2a in human sera of individuals of both sexes and a wide range of ages. RESULTS: The recombinant protein was produced successfully and a specific ELISA assay was developed. The levels of sH2a in sera from 62 healthy individuals varied minimally (147 ± 19 ng/mL). In contrast, 5 hepatitis C patients with cirrhosis showed much decreased sH2a levels (50 ± 9 ng/mL). CONCLUSION: Constant sH2a levels suggest constitutive secretion from hepatocytes in healthy individuals. This constant level and the decrease with cirrhosis suggest a diagnostic potential. PMID:22219600

  19. Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes.

    PubMed

    Ise, H; Sugihara, N; Negishi, N; Nikaido, T; Akaike, T

    2001-07-13

    Development of a reliable method to isolate highly proliferative potential hepatocytes will provide insight into the molecular mechanisms of liver regeneration, as well as proving crucial for the development of a biohybrid artificial liver. The aim of this study is to isolate highly proliferative, e.g., progenitor-like, hepatocytes. To this end, we fractionated hepatocytes expressing low and high levels of the asialoglycoprotein receptor (ASGP-R) based on the difference in their adhesion to poly[N-p-vinylbenzyl-O-beta-d-galactopyranosyl-(1-->4)-d-gluconamide] (PVLA), and examined the proliferative activity and gene expression of these fractionated hepatocytes. The results showed that approximately 0.5 to 1% of the total number of hepatocytes, which showed low adhesion to PVLA, expressed low levels of the ASGP-R, while the rest of hepatocyte population with high adhesion to PVLA expressed high levels of the ASGP-R. Interestingly hepatocytes with low ASGP-R expression levels had much higher DNA synthesizing activity (i.e., are much more proliferative) than those with high ASGP-R expression levels. Moreover, hepatocytes with low ASGP-R expression levels expressed higher levels of epidermal growth factor receptor (EGF-R), CD29 (beta1 integrin) and CD49f (alpha6 integrin) and lower levels of glutamine synthetase than those with high ASGP-R expression. These findings suggested that hepatocytes with low adhesion to PVLA due to their low ASGP-R expression could be potential candidates for progenitor-like hepatocytes due to their high proliferative capacity; hence, the low expression of the ASGP-R could be a unique marker for progenitor hepatocytes. The isolation of hepatocytes with different functional phenotypes using PVLA may provide a new research tool for a better understanding of the biology of hepatocytes and the mechanisms regulating their proliferation and differentiation in health and disease. Copyright 2001 Academic Press.

  20. Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing.

    PubMed

    Rouet, Romain; Thuma, Benjamin A; Roy, Marc D; Lintner, Nathanael G; Rubitski, David M; Finley, James E; Wisniewska, Hanna M; Mendonsa, Rima; Hirsh, Ariana; de Oñate, Lorena; Compte Barrón, Joan; McLellan, Thomas J; Bellenger, Justin; Feng, Xidong; Varghese, Alison; Chrunyk, Boris A; Borzilleri, Kris; Hesp, Kevin D; Zhou, Kaihong; Ma, Nannan; Tu, Meihua; Dullea, Robert; McClure, Kim F; Wilson, Ross C; Liras, Spiros; Mascitti, Vincent; Doudna, Jennifer A

    2018-05-30

    CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.

  1. Studies on the liver sequestration of lymphocytes bearing membrane-associated galactose-terminal glycoconjugates: reversal with agents that effectively compete for the asialoglycoprotein receptor.

    PubMed

    Samlowski, W E; Spangrude, G J; Daynes, R A

    1984-10-15

    The removal of "effete" glycoproteins from the circulation represents a proposed physiologic role for the hepatocyte asialoglycoprotein receptor. Our experiments support the hypothesis that this receptor may also be directly involved in the removal from the circulation of cells bearing asialoglycoconjugates. We report that the enhanced liver localization of neuraminidase-treated lymphocytes can be competitively inhibited by the coinjection of asialofetuin (ASF). Fetuin itself was without effect. Competitive inhibition of the liver receptor allowed normal localization to lymphoid tissues of the enzyme-treated lymphocytes, a condition which persisted as long as free ASF was present in the circulation. Our studies support the concept that cell surface carbohydrates play an important role in the tissue distribution of circulating lymphocytes. The process of thymocyte maturation, bone marrow transplantation, and the adoptive immunotherapy with continuous T-cell lines represent conditions where recirculation potential may be influenced by the presence of galactose terminal glycoconjugates.

  2. Toxic ligand conjugates as tools in the study of receptor-ligand interactions.

    PubMed

    Herschman, H R; Simpson, D L; Cawley, D B

    1982-01-01

    We have constructed hybrid proteins in which the toxic A chains of ricin or diptheria toxin have been linked to either asialofetuin, fetuin, or epidermal growth factor (EGF). Both ASF-RTA and ASF-DTA are potent toxins on cultured rat hepatocytes, cells that display the asialoglycoprotein receptor. Toxicity of these two compounds is restricted to hepatocytes and can be blocked by asialoglycoproteins but not the native glycoproteins or asialoagalactoglycoprotein derivatives, indicating that the toxicity of the conjugates is mediated by the hepatic asialoglycoprotein receptor. The EGF-RTA conjugate is an extremely potent toxin on cells that can bind the hormone, but is only poorly effective on cells that are unable to bind EGF. The EGF-DTA conjugate, in contrast, is unable to kill 3T3 cells and is at least two orders of magnitude less effective than EGF-RTA on A431 cells, a cell line with 1-2 X 10(6) EGF receptors per cell. However, when EGF-RTA and EGF-DTA were tested on primary liver hepatocyte cultures, which were susceptible to both ASF-RTA and ASF-DTA, both EGF conjugates were potent toxins. Sensitivity of the hepatocyte cultures to ricin toxicity increases slightly during a 52-hr culture period. In contrast, sensitivity to EGF-RTA and ASF-RTA decline dramatically during this period. Receptors for both ligands remain plentiful on the cell surface during this time.

  3. Effective Hepatocyte Transplantation Using Rat Hepatocytes with Low Asialoglycoprotein Receptor Expression

    PubMed Central

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-01-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 × 105 cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied ∼76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for ∼12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes. PMID:15277224

  4. Effective hepatocyte transplantation using rat hepatocytes with low asialoglycoprotein receptor expression.

    PubMed

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-08-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 x 10(5) cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied approximately 76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for approximately 12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes.

  5. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  6. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  7. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  8. A Secreted Form of the Asialoglycoprotein Receptor, sH2a, as a Novel Potential Noninvasive Marker for Liver Fibrosis

    PubMed Central

    Lurie, Yoav; Ron, Efrat; Santo, Moshe; Reif, Shimon; Elashvili, Irma; Bar, Lana; Lederkremer, Gerardo Z.

    2011-01-01

    Background and Aim The human asialoglycoprotein receptor is a membrane heterooligomer expressed exclusively in hepatocytes. A soluble secreted form, sH2a, arises, not by shedding at the cell surface, but by intracellular cleavage of its membrane-bound precursor, which is encoded by an alternatively spliced form of the receptor H2 subunit. Here we determined and report that sH2a, present at constant levels in serum from healthy individuals is altered upon liver fibrosis, reflecting the status of hepatocyte function. Methods We measured sH2a levels in serum using a monoclonal antibody and an ELISA assay that we developed, comparing with routine liver function markers. We compared blindly pretreatment serum samples from a cohort of 44 hepatitis C patients, which had METAVIR-scored biopsies, with 28 healthy individuals. Results sH2a levels varied minimally for the healthy individuals (150±21 ng/ml), whereas the levels deviated from this normal range increasingly in correlation with fibrosis stage. A simple algorithm combining sH2a levels with those of alanine aminotransferase allowed prediction of fibrosis stage, with a very high area under the ROC curve of 0.86. Conclusions sH2a has the potential to be a uniquely sensitive and specific novel marker for liver fibrosis and function. PMID:22096539

  9. The two subunits of the human asialoglycoprotein receptor have different fates when expressed alone in fibroblasts

    PubMed Central

    Shia, Michael A.; Lodish, Harvey F.

    1989-01-01

    Two related polypeptides, H1 and H2, comprise the human asialoglycoprotein receptor (ASGP-R). Stable lines of murine NIH 3T3 fibroblasts expressing H1 alone or H2 alone do not bind or internalize the ligand asialoorosomucoid (ASOR), which contains triantennary oligosaccharides. In contrast, cells expressing H1 and H2 together bind and degrade ASOR with properties indistinguishable from those of the ASPG-R in human hepatoma HepG2 cells. Whether or not H2 is coexpressed, H1 is synthesized as a 40-kDa precursor bearing high-mannose oligosaccharides, processed to its mature 46-kDa form, and transported to the cell surface. In cells expressing only H1, homodimers and -trimers of H1 are formed. In contrast, when expressed in 3T3 cells without H1, H2 is synthesized as its 43-kDa precursor, bearing high-mannose oligosaccharides, but is rapidly degraded. When H1 and H2 are coexpressed in the same cell, the H1 polypeptide “rescues” the H2 polypeptide; H2 is processed to its characteristic 50-kDa mature form and is transported to the surface. We conclude that the human ASGP-R is a multichain heterooligomer, probably a trimer of H1 molecules in noncovalent association with one, two, or three H2 molecules, and that the two polypeptides normally interact early in biosynthesis. Images PMID:2919187

  10. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies.

    PubMed

    Kim, Eun-Mi; Jeong, Hwan-Jeong; Park, In-Kyu; Cho, Chong-Su; Moon, Hyung-Bae; Yu, Dae-Yeul; Bom, Hee-Seung; Sohn, Myung-Hee; Oh, In-Joon

    2005-11-28

    The asialoglycoprotein receptor (ASGP-R) on the hepatocyte membrane is a specific targeting marker for gene and drug delivery. Polyethylenimine (PEI) is a polycationic nonviral vector that is used for gene transfer. We have synthesized galactosylated polyethylenimine-graft-poly(ethylene glycol) (GPP) for performing gene delivery to the hepatocytes. The present study reports on the in vitro and in vivo data that was achieved in hepatoma bearing transgenic mice. The cytotoxicity was decreased with the increasing PEG content. The particle size of the complex was increased with the increasing PEG at an N/P ratio of 3.0, while the zeta potentials were decreased. The (99m)Tc labeled complexes were transfected into HepG2 and HeLa cells, while the GFP reporter genes were mainly expressed in the HepG2 cells. The in vivo data was achieved in ALB/c-Ha-ras transgenic mice. (99m)Tc labeled GPP(50)/DNA was injected into the mice via the tail vein, and the gamma images were acquired at 5, 15 and 30 min. The (99m)Tc labeled complexes were mainly localized in the heart and liver, and they were excreted through the kidneys. The GFP gene was mainly expressed in the proliferating cells at the tumor periphery. This result was confirmed by PCNA staining. The GPP(50)/DNA complexes were bound to ASGP-R of the proliferating hepatocytes in vitro and in vivo. The present results demonstrate the feasibility of nonviral gene transfer using galactosylated PEI-PEG in vivo.

  11. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  12. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  13. Mediator-dependent Nuclear Receptor Functions

    PubMed Central

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  14. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  15. Detection of Circulating Tumor Cells in Hepatocellular Carcinoma Using Antibodies against Asialoglycoprotein Receptor, Carbamoyl Phosphate Synthetase 1 and Pan-Cytokeratin

    PubMed Central

    Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng

    2014-01-01

    Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545

  16. Particle aggregation during receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Kosmrlj, Andrej

    Receptor-mediated endocytosis of particles is driven by large binding energy between ligands on particles and receptors on a membrane, which compensates for the membrane bending energy and for the cost due to the mixing entropy of receptors. While the receptor-mediated endocytosis of individual particle is well understood, much less is known about the joint entry of multiple particles. Here, we demonstrate that the endocytosis of multiple particles leads to a kinetically driven entropic attraction, which may cause the aggregation of particles observed in experiments. During the endocytosis particles absorb nearby receptors and thus produce regions, which are depleted of receptors. When such depleted regions start overlapping, the corresponding particles experience osmotic-like attractive entropic force. If the attractive force between particles is large enough to overcome the repulsive interaction due to membrane bending, then particles tend to aggregate provided that they are sufficiently close, such that they are not completely engulfed before they come in contact. We discuss the necessary conditions for the aggregation of cylindrical particles during receptor-mediated endocytosis and comment on the generalization to spherical particles.

  17. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  18. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.

    PubMed

    Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale

    2016-04-01

    Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of galactosyl compounds for targeted gene delivery.

    PubMed

    Ren, T; Zhang, G; Liu, D

    2001-11-01

    Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.

  20. trans-Golgi retention of a plasma membrane protein: mutations in the cytoplasmic domain of the asialoglycoprotein receptor subunit H1 result in trans-Golgi retention

    PubMed Central

    1995-01-01

    Unlike the wild-type asialoglycoprotein receptor subunit H1 which is transported to the cell surface, endocytosed and recycled, a mutant lacking residues 4-33 of the 40-amino acid cytoplasmic domain was found to be retained intracellularly upon expression in different cell lines. The mutant protein accumulated in the trans-Golgi, as judged from the acquisition of trans-Golgi-specific modifications of the protein and from the immunofluorescence staining pattern. It was localized to juxtanuclear, tubular structures that were also stained by antibodies against galactosyltransferase and gamma-adaptin. The results of further mutagenesis in the cytoplasmic domain indicated that the size rather than the specific sequence of the cytoplasmic domain determines whether H1 is retained in the trans-Golgi or transported to the cell surface. Truncation to less than 17 residues resulted in retention, and extension of a truncated tail by an unrelated sequence restored surface transport. The transmembrane segment of H1 was not sufficient for retention of a reporter molecule and it could be replaced by an artificial apolar sequence without affecting Golgi localization. The cytoplasmic domain thus appears to inhibit interaction(s) of the exoplasmic portion of H1 with trans-Golgi component(s) for example by steric hindrance or by changing the positioning of the protein in the membrane. This mechanism may also be functional in other proteins. PMID:7615632

  1. IgA Fc receptors.

    PubMed

    Monteiro, Renato C; Van De Winkel, Jan G J

    2003-01-01

    The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.

  2. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419

  3. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  4. Dynamic interactions of the asialoglycoprotein receptor subunits with coated pits. Enhanced interactions of H2 following association with H1.

    PubMed

    Katzir, Z; Nardi, N; Geffen, I; Fuhrer, C; Henis, Y I

    1994-08-26

    Lateral mobility studies comparing native and mutated membrane proteins, combined with treatments that alter clathrin lattice structure, can measure membrane protein-coated pit interactions in intact cells (Fire, E., Zwart, D., Roth, M. G., and Henis, Y. I. (1991) J. Cell Biol. 115, 1585-1594). We applied this approach to study the interactions of the H1 and H2 human asialoglycoprotein receptor subunits with coated pits. The lateral mobilities of singly expressed and coexpressed H1 and H2B (the H2 species that reaches the cell surface) were measured by fluorescence photobleaching recovery. They were compared with mutant proteins, H1(5A) (Tyr-5 replaced by Ala) and H2(5A) (Phe-5 replaced by Ala). While the mobile fractions of H1, H2B, and their mutants were similar, the lateral diffusion rate (measured by D, the lateral diffusion coefficient) was significantly slower for H1, whether expressed alone or with H2B. Coexpression with H1 reduced D of H2B to that of H1. Disruption of the clathrin lattices by hypertonic medium elevated D of H1, H1(5A), H2B, and H2(5A) to the same final level, without affecting their mobile fractions. Cytosol acidification, which retains altered clathrin lattices attached to the membrane and prevents coated vesicle formation, immobilized part of the H1 molecules, reflecting stable entrapment in "frozen" coated pits. H1(5A), H2B, and H2(5A) were not affected; however, coexpression of H2B with H1 conferred the sensitivity to cytosol acidification on H2B. Our results suggest that H1 lateral mobility is inhibited by dynamic interactions with coated pits in which Tyr-5 is involved. H2B resembles H1(5A) rather than H1, and its interactions with coated pits are weaker; efficient interaction of H2B with coated pits depends on complex formation with H1.

  5. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications. PMID:28344260

  6. Hepatocyte-mediated cytotoxicity and host defense mechanisms in the alcohol-injured liver.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Tuma, Dean J; Casey, Carol A

    2014-09-01

    The consumption of alcohol is associated with many health issues including alcoholic liver disease (ALD). The natural history of ALD involves the development of steatosis, inflammation (steatohepatitis), fibrosis and cirrhosis. During the stage of steatohepatitis, the combination of inflammation and cellular damage can progress to a severe condition termed alcoholic hepatitis (AH). Unfortunately, the pathogenesis of AH remains uncharacterized. Some modulations have been identified in host defense and liver immunity mechanisms during AH that highlight the role of intrahepatic lymphocyte accumulation and associated inflammatory cytokine responses. Also, it is hypothesized that alcohol-induced injury to liver cells may significantly contribute to the aberrant lymphocytic distribution that is seen in AH. In particular, the regulation of lymphocytes by hepatocytes may be disrupted in the alcoholic liver resulting in altered immunologic homeostasis and perpetuation of disease. In recent studies, it was demonstrated that the direct killing of activated T lymphocytes by hepatocytes is facilitated by the asialoglycoprotein receptor (ASGPR). The ASGPR is a well-characterized glycoprotein receptor that is exclusively expressed by hepatocytes. This hepatic receptor is known for its role in the clearance of desialylated glycoproteins or cells, yet neither its physiological function nor its role in disease states has been determined. Interestingly, alcohol markedly impairs ASGPR function; however, the effect alcohol has on ASGPR-mediated cytotoxicity of lymphocytes remains to be elucidated. This review discusses the contribution of hepatocytes in immunological regulation and, importantly, how pathological effects of ethanol disrupt hepatocellular-mediated defense mechanisms.

  7. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes.

    PubMed

    Arangoa, M A; Düzgüneş, N; Tros de Ilarduya, C

    2003-01-01

    A novel lipidic vector composed of DOTAP/Chol liposomes, asialofetuin (AF), protamine sulfate and DNA has been developed. The resulting protamine-AF-lipoplexes improved significantly the levels of gene expression in cultured cells and in the liver upon i.v. administration. Lipoplexes containing the optimal amount of AF (1 microg/microg DNA) showed a 16-fold higher transfection activity in HepG2 cells than non-targeted (plain) complexes. The uptake by cells having asialoglycoprotein receptors (ASGPr) on their plasma membrane was decreased by the addition of free AF, indicating that AF-lipoplexes were taken up specifically by cells via ASGPr-mediated endocytosis. Results from transfections performed in cells defective in ASGPr, ie HeLa cells, confirmed this mechanism. By addition of the condensing peptide, protamine sulfate, smaller complexes were obtained, which enhanced even more the uptake of AF-complexes in HepG2 cells and in the liver. The optimal amount of protamine was 0.4 microg/mcirog DNA, and gene expression was about 5-fold over that obtained with AF-lipoplexes in the absence of the peptide, and 75-fold higher than that with plain conventional lipoplexes. Protamine-AF-lipoplexes increased by a factor of 12 luciferase gene expression in the liver of mice administered systemically via the tail vein, compared to plain complexes. In summary, our findings extend the scope of previous studies where AF-lipoplexes were used to introduce DNA into hepatocytes. The combination of targeting and protamine condensation obviated the need for partial hepatectomy, commonly required to obtain efficient gene delivery in this organ. Since protamine sulfate has been proven to be non-toxic in humans, the novel liver-specific vector described here may be useful for the delivery of clinically important genes to this organ.

  8. Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

    PubMed

    Vines, Charlotte M; Xue, Mei; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R

    2002-12-15

    One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

  9. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  10. Tachykinin receptors mediating airway marcomolecular secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, S.E.

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absencemore » and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.« less

  11. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase

  12. Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP

    PubMed Central

    Wu, Dick; Bacaj, Taulant; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin L.; Xu, Wei; Chen, Lu; Malenka, Robert C.; Südhof, Thomas C.

    2017-01-01

    Strengthening of synaptic connections by NMDA-receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During NMDA-receptor-dependent LTP induction, Ca2+-influx stimulates recruitment of synaptic AMPA-receptors, thereby strengthening synapses. How Ca2+ induces AMPA-receptor recruitment, however, remains unclear. Here we show that, in pyramidal neurons of the hippocampal CA1-region, blocking postsynaptic expression of both synaptotagmin-1 and synaptotagmin-7, but not of synaptotagmin-1 or synaptotagmin-7 alone, abolished LTP. LTP was rescued by wild-type but not by Ca2+-binding-deficient mutant synaptotagmin-7. Blocking postsynaptic synaptotagmin-1/7 expression did not impair basal synaptic transmission, synaptic or extrasynaptic AMPA-receptor levels, or other AMPA-receptor trafficking events. Moreover, expression of dominant-negative mutant synaptotagmin-1 that inhibited Ca2+-dependent presynaptic vesicle exocytosis also blocked Ca2+-dependent postsynaptic AMPA-receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA-receptors during LTP, thus delineating a simple mechanism for the recruitment of AMPA-receptors that mediates LTP. PMID:28355182

  13. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  14. Ionotropic and metabotropic receptor mediated airway sensory nerve activation.

    PubMed

    Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J

    2004-01-01

    There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.

  15. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  16. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances

    PubMed Central

    Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2012-01-01

    Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636

  17. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER...SUBJECT TERMS Rheumatoid arthritis , inflammation and autoimmunity, macrophages, glucocorticoid receptor, transcriptional regulation, coactivators and

  18. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  19. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    PubMed

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes

    PubMed Central

    Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S

    2011-01-01

    BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177

  1. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  2. Insulin Regulates GABAA Receptor-Mediated Tonic Currents in the Prefrontal Cortex.

    PubMed

    Trujeque-Ramos, Saraí; Castillo-Rolón, Diego; Galarraga, Elvira; Tapia, Dagoberto; Arenas-López, Gabina; Mihailescu, Stefan; Hernández-López, Salvador

    2018-01-01

    Recent studies, have shown that insulin increases extrasynaptic GABA A receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABA A receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABA A -mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABA A receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABA A receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABA A -mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.

  3. Prostanoids and their receptors that modulate dendritic cell-mediated immunity.

    PubMed

    Gualde, Norbert; Harizi, Hedi

    2004-08-01

    Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.

  4. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  5. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    PubMed

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  6. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    PubMed Central

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  7. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.

    PubMed

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-07-14

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.

  8. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  9. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    PubMed

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  10. The role of lectins and glycans in platelet clearance

    PubMed Central

    Hoffmeister, Karin M.

    2015-01-01

    Summary In recent years, it has become increasingly apparent that the life span of transfused platelets in circulation is regulated, at least in part, by glycan-lectin mediated mechanisms. There is clear evidence that refrigerated platelets are cleared by glycan-lectin mediated clearance mechanisms. Acute platelet cooling clusters glycoprotein (GP) Ibα receptors bearing uncovered N-acetylglucosamine (GlcNAc), and αMβ2 integrins on hepatic macrophages recognise clustered GlcNAc to rapidly clear these platelets from circulation. With prolonged refrigeration GPIbα clustering bearing uncovered galactose increases, which mediates the removal of long-term refrigerated platelets via hepatic Ashwell-Morell receptors (AMR), originally named as asialoglycoprotein receptors. In contrast, little is known about the molecular mechanisms of transfused room temperature platelet clearance. This review examines the role of glycan-lectin mediated clearance of exogenous, i.e. transfused chilled platelet clearance and briefly addresses the current knowledge of stored platelet function, degradation and its relation to platelet clearance. PMID:21781240

  11. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  12. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes.

    PubMed

    Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing

    2003-09-01

    Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.

  13. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  14. Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission

    PubMed Central

    Serone, Adrian P; Wright, Christine E; Angus, James A

    1999-01-01

    Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria.In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 μM) or vagally-mediated bradycardia (VB; with propranolol 0.1–1 μM) in response to electrical field stimulation (EFS, 1–4 pulses) were tested 0–30 min after incubation with single concentrations of vehicle, NPY (0.01–10 μM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24–36) (termed N-A[L]NPY(24–36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed.Guinea-pig atria: NPY and N-A[L]NPY(24–36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 μM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 μM) had no effect on VB at any time point, but both NPY and LP caused a transient (∼10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 μM GR231118. N-A[L]NPY(24–36) had no effect on ST. NPY had no effect on the response to β-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species.Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and

  15. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  16. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry.

    PubMed

    Meertens, Laurent; Carnec, Xavier; Lecoin, Manuel Perera; Ramdasi, Rasika; Guivel-Benhassine, Florence; Lew, Erin; Lemke, Greg; Schwartz, Olivier; Amara, Ali

    2012-10-18

    Dengue viruses (DVs) are responsible for the most medically relevant arboviral diseases. However, the molecular interactions mediating DV entry are poorly understood. We determined that TIM and TAM proteins, two receptor families that mediate the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, serve as DV entry factors. Cells poorly susceptible to DV are robustly infected after ectopic expression of TIM or TAM receptors. Conversely, DV infection of susceptible cells is inhibited by anti-TIM or anti-TAM antibodies or knockdown of TIM and TAM expression. TIM receptors facilitate DV entry by directly interacting with virion-associated PtdSer. TAM-mediated infection relies on indirect DV recognition, in which the TAM ligand Gas6 acts as a bridging molecule by binding to PtdSer within the virion. This dual mode of virus recognition by TIM and TAM receptors reveals how DVs usurp the apoptotic cell clearance pathway for infectious entry. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock.

    PubMed

    Van Amersfoort, Edwin S; Van Berkel, Theo J C; Kuiper, Johan

    2003-07-01

    Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.

  18. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  20. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  1. Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-04-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.

  2. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems.

    PubMed

    Yan, Jing-Jun; Liao, Jia-Zhi; Lin, Ju-Sheng; He, Xing-Xing

    2015-01-01

    Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research.

  3. Nuclear receptor-mediated regulation of carboxylesterase expression and activity.

    PubMed

    Staudinger, Jeff L; Xu, Chenshu; Cui, Yue J; Klaassen, Curtis D

    2010-03-01

    Emerging evidence demonstrates that several nuclear receptor (NR) family members regulate drug-inducible expression and activity of several important carboxylesterase (CES) enzymes in mammalian liver and intestine. Numerous clinically prescribed anticancer prodrugs, carbamate and pyrethroid insecticides, environmental toxicants and procarcinogens are substrates for CES enzymes. Moreover, a key strategy used in rational drug design frequently utilizes an ester linkage methodology to selectively target a prodrug, or to improve the water solubility of a novel compound. This review summarizes the current state of knowledge regarding NR-mediated regulation of CES enzymes in mammals and highlights their importance in drug metabolism, drug-drug interactions and toxicology. New knowledge regarding the transcriptional regulation of CES enzymes by NR proteins pregnane x receptor (NR1I2) and constitutive androstane receptor (NR1I3) has recently come to light through the use of knockout and transgenic mouse models. Novel insights regarding the species-specific cross-regulation of glucocorticoid receptor (NR3C1) and PPAR-alpha (NR1C1) signaling and CES gene expression are discussed. Elucidation of the role of NR-mediated regulation of CES enzymes in liver and intestine will have a significant impact on rational drug design and the development of novel prodrugs, especially for patients on combination therapy.

  4. Biological Functionalization of Drug Delivery Carriers to Bypass Size Restrictions of Receptor-Mediated Endocytosis Independently from Receptor Targeting

    PubMed Central

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2014-01-01

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolar-mediated pathways, allows uptake of nano- and micro-carriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and micro-carriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size-restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems. PMID:24237309

  5. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    PubMed

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  6. Glycosylation of immunoglobulin A influences its receptor binding.

    PubMed

    Basset, C; Devauchelle, V; Durand, V; Jamin, C; Pennec, Y L; Youinou, P; Dueymes, M

    1999-12-01

    Immunoglobulin A (IgA), which is heavily glycosylated, interacts with a variety of receptors, e.g. the asialoglycoprotein receptor (ASGP-R), which binds terminal galactose residues, and the Fcalpha receptor (FcalphaRI). It has thus been proposed that elevated serum levels of IgA in primary Sjögren's syndrome (pSS) are caused by its defective clearance. To test this hypothesis, we developed a method (based on sialyl transferases eluted from a hepatoma cell line) to increase the amount of sialic acid (SA) on IgA, and used a battery of IgA1- and IgA2-specific glycosidases to reduce this amount. Binding of IgA1 and IgA2 to ASGP-R and FcalphaRI was found to be sugar dependent because oversialylated IgA bound less than native or desialylated IgA. However, individual sugars did not play a direct role in this binding. Given that IgA are oversialylated in pSS, defective clearance of IgA may indeed be ascribed to an excess of SA in IgA1 and IgA2.

  7. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor

    PubMed Central

    Murphy, Jane E.; Roosterman, Dirk; Cottrell, Graeme S.; Padilla, Benjamin E.; Feld, Micha; Brand, Eva; Cedron, Wendy J.; Steinhoff, Martin

    2011-01-01

    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK1R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK1R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca2+ signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK1R. SP induced association of β-arrestin1 and PP2A with noninternalized NK1R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK1R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK1R with PP2A. Resensitization of NK1R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK1R and mediates resensitization. PP2A interaction with NK1R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK1R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs. PMID:21795521

  8. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    PubMed

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  9. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  10. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis.

    PubMed

    Davey, Jennifer C; Nomikos, Athena P; Wungjiranirun, Manida; Sherman, Jenna R; Ingram, Liam; Batki, Cavus; Lariviere, Jean P; Hamilton, Joshua W

    2008-02-01

    Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01-5 microM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element-luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element-luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1- 4.0 microM As. As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult

  11. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  13. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  14. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  15. SLP-76 is required for high-affinity IgE receptor- and IL-3 receptor-mediated activation of basophils.

    PubMed

    Hidano, Shinya; Kitamura, Daisuke; Kumar, Lalit; Geha, Raif S; Goitsuka, Ryo

    2012-11-01

    Basophils have been reported to play a critical role in allergic inflammation by secreting IL-4 in response to IL-3 or high-affinity IgE receptor (FcεRI)-cross-linking. However, the signaling pathways downstream of FcεRI and the IL-3 receptor in basophils have yet to be determined. In the present study, we used mice deficient in SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76kDa) to demonstrate critical functions of this adaptor molecule in transducing FcεRI- and IL-3 receptor-mediated signals that induce basophil activation. Although SLP-76 was dispensable for in vivo differentiation, as well as IL-3-induced in vitro proliferation of basophils, IL-4 production induced by both stimuli was completely ablated by SLP-76 deficiency. Biochemical analyses revealed that IL-3-induced phosphorylation of phospholipase C (PLC) γ2 and Akt, but not STAT5, was severely reduced in SLP-76-deficient basophils, whereas FcεRI cross-linking phosphorylation of PLCγ2, but not Akt, was abrogated by SLP-76 deficiency, suggesting important differences in the requirement of SLP-76 for Akt activation between FcεRI- and IL-3 receptor-mediated signaling pathways in basophils. Because IL-3-induced IL-4 production was sensitive to calcineurin inhibitors and an intracellular calcium chelator, in addition to PI3K inhibitors, SLP-76 appears to regulate FcεRI- and IL-3 receptor-induced IL-4 production via mediating PLCγ2 activation in basophils. Taken together, these findings indicate that SLP-76 is an essential signaling component for basophil activation downstream of both FcεRI and the IL-3 receptor.

  16. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

    PubMed Central

    Iurlaro, Raffaella; Püschel, Franziska; León-Annicchiarico, Clara Lucía; O'Connor, Hazel; Martin, Seamus J.; Palou-Gramón, Daniel; Lucendo, Estefanía

    2017-01-01

    ABSTRACT Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death. PMID:28242652

  17. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons

    PubMed Central

    Oswald, Manfred J.; Schulz, Jan M.; Kelsch, Wolfgang; Oorschot, Dorothy E.; Reynolds, John N. J.

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg2+-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg2+-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  18. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    PubMed

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

  19. A slow excitatory postsynaptic current mediated by a novel metabotropic glutamate receptor in CA1 pyramidal neurons.

    PubMed

    Sheng, Nengyin; Yang, Jing; Silm, Katlin; Edwards, Robert H; Nicoll, Roger A

    2017-03-15

    Slow excitatory postsynaptic currents (EPSCs) mediated by metabotropic glutamate receptors (mGlu receptors) have been reported in several neuronal subtypes, but their presence in hippocampal pyramidal neurons remains elusive. Here we find that in CA1 pyramidal neurons a slow EPSC is induced by repetitive stimulation while ionotropic glutamate receptors and glutamate-uptake are blocked whereas it is absent in the VGLUT1 knockout mouse in which presynaptic glutamate is lost, suggesting the slow EPSC is mediated by glutamate activating mGlu receptors. However, it is not inhibited by known mGlu receptor antagonists. These findings suggest that this slow EPSC is mediated by a novel mGlu receptor, and that it may be involved in neurological diseases associated with abnormal high-concentration of extracellular glutamate. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modulation of NMDA and AMPA-Mediated Synaptic Transmission by CB1 Receptors in Frontal Cortical Pyramidal Cells

    PubMed Central

    Li, Qiang; Yan, Haidun; Wilson, Wilkie A.; Swartzwelder, H. Scott

    2010-01-01

    Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutmatergic activity by CB1 receptors in the frontal neocortex is mediated by a pre-synaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function. PMID:20420813

  1. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    PubMed

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  2. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus.

    PubMed

    Barak, L S; Oakley, R H; Laporte, S A; Caron, M G

    2001-01-02

    Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin-receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial.

  3. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus

    PubMed Central

    Barak, Larry S.; Oakley, Robert H.; Laporte, Stéphane A.; Caron, Marc G.

    2001-01-01

    Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin–receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial. PMID:11134505

  4. Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses

    NASA Astrophysics Data System (ADS)

    Schmitz, Dietmar; Mellor, Jack; Nicoll, Roger A.

    2001-03-01

    Inhibition of transmitter release by presynaptic receptors is widespread in the central nervous system and is typically mediated via metabotropic receptors. In contrast, very little is known about facilitatory receptors, and synaptic activation of a facilitatory autoreceptor has not been established. Here we show that activation of presynaptic kainate receptors can facilitate transmitter release from hippocampal mossy fiber synapses. Synaptic activation of these presumed ionotropic kainate receptors is very fast (<10 ms) and lasts for seconds. Thus, these presynaptic kainate receptors contribute to the short-term plasticity characteristics of mossy fiber synapses, which were previously thought to be an intrinsic property of the synapse.

  5. The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7).

    PubMed

    Muñoz, Marina C; Giani, Jorge F; Burghi, Valeria; Mayer, Marcos A; Carranza, Andrea; Taira, Carlos A; Dominici, Fernando P

    2012-08-20

    Angiotensin (Ang)-(1-7) stimulates proteins belonging to the insulin signaling pathway and ameliorates the Ang II negative effects at this level. However, up to date, receptors involved and mechanisms behind these observations remain unknown. Accordingly, in the present study, we explored the in vivo effects of antagonism of the Ang-(1-7) specific Mas receptor on insulin signal transduction in rat insulin-target tissues. We evaluated the acute modulation of insulin-stimulated phosphorylation of Akt, GSK-3β (Glycogen synthase kinase-3β) and AS160 (Akt substrate of 160kDa) by Ang-(1-7) and/or Ang II in the presence and absence of the selective Mas receptor antagonist A-779 in insulin-target tissues of normal rats. Also using A-779, we determined whether the Mas receptor mediates the improvement of insulin sensitivity exerted by chronic Ang-(1-7) treatment in fructose-fed rats (FFR), a model of insulin resistance, dyslipidemia and mild hypertension. The two major findings of the present work are as follows; 1) Ang-(1-7) attenuates acute Ang II-mediated inhibition of insulin signaling components in normal rats via a Mas receptor-dependent mechanism; and 2). The Mas receptor appears to be involved in beneficial effects of Ang-(1-7) on the phosphorylation of crucial insulin signaling mediators (Akt, GSK-3β and AS160), in liver, skeletal muscle and adipose tissue of FFR. These results shed light into the mechanism by which Ang-(1-7) exerts its positive physiological modulation of insulin actions in classical metabolic tissues and reinforces the central role of Akt in these effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magno, Aaron L.; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009; Ingley, Evan

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependentmore » stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.« less

  7. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  8. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinicallymore » induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.« less

  9. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation.

    PubMed

    Cáceda, Ricardo; Kinkead, Becky; Owens, Michael J; Nemeroff, Charles B

    2005-12-14

    Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.

  10. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  11. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide

    PubMed Central

    Thomas, Elizabeth A.; Carson, Monica J.; Neal, Michael J.; Sutcliffe, J. Gregor

    1997-01-01

    The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies. PMID:9391162

  12. How Ebola and Marburg Viruses Battle the Immune System

    DTIC Science & Technology

    2007-07-01

    macrophages, neutrophils) Asialoglycoprotein receptor ( hepatocytes ) TLR Other? NP VP35 VP40 GP VP30 VP24 L 3′ 5′ Cell-surface GP Filovirus Matrix... hepatocytes are particularly susceptible, elevated liver enzymes are among the first telling signs of disease and liver damage seems to account for much...of monocytic origin (such as immature DCs) also promotes filoviral entry10. Another C-type lectin, the asialoglycoprotein *US Army Medical Research

  13. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  14. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells.

    PubMed

    Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J

    2013-03-08

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.

  15. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  16. Old dance with a new partner: EGF receptor as the phenobarbital receptor mediating Cyp2B expression.

    PubMed

    Meyer, Sharon A; Jirtle, Randy L

    2013-05-07

    The decades-long quest for the phenobarbital (PhB) receptor that mediates activation of Cyp2B would appear fulfilled with the discovery by Mutoh et al., who found that PhB binds with pharmacological affinity to the epidermal growth factor receptor (EGFR). This finding provides a molecular basis for the suppression of hepatocyte EGFR signaling observed with PhB treatment, as previously noted in the context of tumor promotion. Although the PhB-mediated induction of Cyp2B expression through the association of a canonical nuclear receptor with the 5'-enhancer PBREM of Cyp2B is well known, direct binding of PhB to constitutive active androstane receptor (CAR, also known as NR1I3) typical of other xenobiotic-activated nuclear receptors has eluded detection. One EGF-activated pathway affected by the PhB-EGFR interaction is the loss of tyrosine phosphorylation of the scaffold protein RACK1. Dephosphorylated RACK1 provides the mechanistic link between the binding of PhB to EGFR and its effects on CAR by facilitating the interaction of serine/threonine phosphatase PP2A with inactive phosphorylated CAR. The dephosphorylation of CAR enables its translocation to the nucleus and activation of Cyp2B expression. Because EGFR and transducers RACK1, PP2A, and other partners are highly networked in numerous cellular pathways, this newly discovered partnership will surely reveal new fundamental roles for PhB beyond the regulation of drug metabolism.

  17. Fast Modulation of μ-Opioid Receptor (MOR) Recycling Is Mediated by Receptor Agonists*

    PubMed Central

    Roman-Vendrell, Cristina; Yu, Y. Joy; Yudowski, Guillermo Ariel

    2012-01-01

    The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca2+-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance. PMID:22378794

  18. M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: Findings obtained with muscarinic-receptor knockout mouse.

    PubMed

    Takeuchi, Tadayoshi; Tanaka, Keisuke; Nakajima, Hidemitsu; Matsui, Minoru; Azuma, Yasu-Taka

    2007-01-01

    The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.

  19. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  20. Activation of EGF Receptor Kinase by L1-mediated Homophilic Cell Interactions

    PubMed Central

    Islam, Rafique; Kristiansen, Lars V.; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-01-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo. PMID:14718570

  1. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  2. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling.

    PubMed

    Schellekens, Harriët; van Oeffelen, Wesley E P A; Dinan, Timothy G; Cryan, John F

    2013-01-04

    G protein-coupled receptors (GPCRs), such as the ghrelin receptor (GHS-R1a), the melanocortin 3 receptor (MC(3)), and the serotonin 2C receptor (5-HT(2C)), are well known for their key role in the homeostatic control of food intake and energy balance. Ghrelin is the only known gut peptide exerting an orexigenic effect and has thus received much attention as an anti-obesity drug target. In addition, recent data have revealed a critical role for ghrelin in dopaminergic mesolimbic circuits involved in food reward signaling. This study investigates the downstream signaling consequences and ligand-mediated co-internalization following heterodimerization of the GHS-R1a receptor with the dopamine 1 receptor, as well as that of the GHS-R1a-MC(3) heterodimer. In addition, a novel heterodimer between the GHS-R1a receptor and the 5-HT(2C) receptor was identified. Interestingly, dimerization of the GHS-R1a receptor with the unedited 5-HT(2C)-INI receptor, but not with the partially edited 5-HT(2C)-VSV isoform, significantly reduced GHS-R1a agonist-mediated calcium influx, which was completely restored following pharmacological blockade of the 5-HT(2C) receptor. These results combined suggest a potential novel mechanism for fine-tuning GHS-R1a receptor-mediated activity via promiscuous dimerization of the GHS-R1a receptor with other G protein-coupled receptors involved in appetite regulation and food reward. These findings may uncover novel mechanisms of significant relevance for the future pharmacological targeting of the GHS-R1a receptor in the homeostatic regulation of energy balance and in hedonic appetite signaling, both of which play a significant role in the development of obesity.

  3. AMPA Receptors Mediate Acetylcholine Release from Starburst Amacrine Cells in the Rabbit Retina

    PubMed Central

    FIRTH, SALLY I.; LI, WEI; MASSEY, STEPHEN C.; MARSHAK, DAVID W.

    2012-01-01

    The light response of starburst amacrine cells is initiated by glutamate released from bipolar cells. To identify the receptors that mediate this response, we used a combination of anatomical and physiological techniques. An in vivo, rabbit eyecup was preloaded with [3H]-choline, and the [3H]-acetylcholine (ACh) released into the superfusate was monitored. A photopic, 3 Hz flashing light increased ACh release, and the selective AMPA receptor antagonist, GYKI 53655, blocked this light-evoked response. Nonselective AMPA/kainate agonists increased the release of ACh, but the specific kainate receptor agonist, SYM 2081, did not increase ACh release. Selective AMPA receptor antagonists, GYKI 53655 or GYKI 52466, also blocked the responses to agonists. We conclude that the predominant excitatory input to starburst amacrine cells is mediated by AMPA receptors. We also labeled lightly fixed rabbit retinas with antisera to choline acetyltransferase (ChAT), AMPA receptor subunits GluR1, GluR2/3, or GluR4, and kainate receptor subunits GluR6/7 and KA2. Labeled puncta were observed in the inner plexiform layer with each of these antisera to glutamate receptors, but only GluR2/3-IR puncta and GluR4-IR puncta were found on the ChAT-IR processes. The same was true of starburst cells injected intracellularly with Neurobiotin, and these AMPA receptor subunits were localized to two populations of puncta. The AMPA receptors are expected to desensitize rapidly, enhancing the sensitivity of starburst amacrine cells to moving or other rapidly changing stimuli. PMID:14515241

  4. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    PubMed

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  5. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila.

    PubMed

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan Dt; Garrity, Paul A

    2016-04-29

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.

  6. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  7. Estrous Cycle Regulation of Extrasynaptic δ-Containing GABAA Receptor-Mediated Tonic Inhibition and Limbic Epileptogenesis

    PubMed Central

    Wu, Xin; Gangisetty, Omkaram; Carver, Chase Matthew

    2013-01-01

    The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABAA receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABAA receptors as crucial mediators of the estrous cycle–related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle–related plasticity of neurosteroid-sensitive, δ-containing GABAA receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine. PMID:23667248

  8. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  9. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  10. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.

    PubMed

    Aranda, Juan F; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-09-01

    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking. © 2015. Published by The Company of Biologists Ltd.

  11. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    PubMed

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  12. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  13. Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA

    PubMed Central

    Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E.

    2013-01-01

    Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5 mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588 pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA. PMID:23933156

  14. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding

    PubMed Central

    Nile, Aaron H.; Mukund, Susmith; Stanger, Karen; Wang, Weiru; Hannoush, Rami N.

    2017-01-01

    Frizzled (FZD) receptors mediate Wnt signaling in diverse processes ranging from bone growth to stem cell activity. Moreover, high FZD receptor expression at the cell surface contributes to overactive Wnt signaling in subsets of pancreatic, ovarian, gastric, and colorectal tumors. Despite the progress in biochemical understanding of Wnt–FZD receptor interactions, the molecular basis for recognition of Wnt cis-unsaturated fatty acyl groups by the cysteine-rich domain (CRD) of FZD receptors remains elusive. Here, we determined a crystal structure of human FZD7 CRD unexpectedly bound to a 24-carbon fatty acid. We also report a crystal structure of human FZD5 CRD bound to C16:1 cis-Δ9 unsaturated fatty acid. Both structures reveal a dimeric arrangement of the CRD. The lipid-binding groove exhibits flexibility and spans both monomers, adopting a U-shaped geometry that accommodates the fatty acid. Re-evaluation of the published mouse FZD8 CRD structure reveals that it also shares the same architecture as FZD5 and FZD7 CRDs. Our results define a common molecular mechanism for recognition of the cis-unsaturated fatty acyl group, a necessary posttranslational modification of Wnts, by multiple FZD receptors. The fatty acid bridges two CRD monomers, implying that Wnt binding mediates FZD receptor dimerization. Our data uncover possibilities for the arrangement of Wnt–FZD CRD complexes and shed structural insights that could aide in the identification of pharmacological strategies to modulate FZD receptor function. PMID:28377511

  15. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  16. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    PubMed

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-09-22

    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  18. Inhibition of Na+−H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum

    PubMed Central

    Gekle, Michael; Drumm, Karina; Mildenberger, Sigrid; Freudinger, Ruth; Gaßner, Birgit; Silbernagl, Stefan

    1999-01-01

    Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation. Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only. Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect. Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane. Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange. Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role. Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis. PMID:10545138

  19. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    PubMed Central

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan DT; Garrity, Paul A

    2016-01-01

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI: http://dx.doi.org/10.7554/eLife.13254.001 PMID:27126188

  20. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABAB receptors, but not α2 adrenergic receptors

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G.

    2010-01-01

    GABAB, μ-opioid, and adrenergic α2 receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABAB receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABAB agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. PMID:20726886

  1. Salicylate, an aspirin metabolite, specifically inhibits the current mediated by glycine receptors containing α1-subunits

    PubMed Central

    Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L

    2009-01-01

    Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751

  2. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  3. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  4. Asymmetrical Macromolecular Complex Formation of Lysophosphatidic Acid Receptor 2 (LPA2) Mediates Gradient Sensing in Fibroblasts*

    PubMed Central

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.

    2014-01-01

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  5. Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  6. Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats.

    PubMed

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  7. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  8. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    PubMed

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    USDA-ARS?s Scientific Manuscript database

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  10. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    PubMed

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  11. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  12. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  13. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    PubMed

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  14. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  15. Selective dopamine receptor 4 activation mediates the hippocampal neuronal calcium response via IP3 and ryanodine receptors.

    PubMed

    Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao

    2017-09-01

    Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.

  16. Effects of Chronic Alcohol Exposure on Kainate Receptor-Mediated Neurotransmission in the Hippocampus

    DTIC Science & Technology

    2004-09-01

    hippocampus and hypothalamus. J Neurosci Res 63:200-208. Thorpe GH et al. (1989) Chemiluminescent enzyme immunoassay of alpha - fetoprotein based on an...cells. Proc Natl Acad Sci USA 83:6213-6215. Montpied Pet al. (1991) Prolonged ethanol inhalation decreases gamma-aminobutyric acidA receptor alpha ...potentials mediated via alpha -bungarotoxin-sensitive nico- tinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18:8228- 8235

  17. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro

    2011-04-25

    Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less

  18. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  19. M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.

    PubMed

    Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike

    2013-01-01

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.

  20. Photolysis of Caged Ca2+ But Not Receptor-Mediated Ca2+ Signaling Triggers Astrocytic Glutamate Release

    PubMed Central

    Smith, Nathan A.; Xu, Qiwu; Goldman, Siri; Peng, Weiguo; Huang, Jason H.; Takano, Takahiro; Nedergaard, Maiken

    2013-01-01

    Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca2+. However, it is debated whether astrocytic Ca2+ signals result in release of glutamate. We here compared astrocytic Ca2+ signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express the MrgA1 receptor, we found that receptor-mediated astrocytic Ca2+ signaling consistently triggered neuronal hyperpolarization and decreased the frequency of miniature excitatory postsynaptic currents (EPSCs). In contrast, photolysis of caged Ca2+ (o-nitrophenyl–EGTA) in astrocytes led to neuronal depolarization and increased the frequency of mEPSCs through a metabotropic glutamate receptor-mediated pathway. Analysis of transgenic mice in which astrocytic vesicular release is suppressed (dominant-negative SNARE mice) and pharmacological manipulations suggested that glutamate is primarily released by opening of anion channels rather than exocytosis. Combined, these studies show that photolysis but not by agonists induced astrocytic Ca2+ signaling triggers glutamate release. PMID:24174673

  1. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    PubMed

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  2. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors.

    PubMed

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G

    2010-09-01

    GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.

  3. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  4. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  5. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons.

    PubMed

    Scrogin, K E; Johnson, A K; Schmid, H A

    1998-12-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  6. Copolymers of poly-L-lysine with serine and tryptophan form stable DNA vectors: implications for receptor-mediated gene transfer.

    PubMed

    Gómez-Valadés, A G; Molas, M; Vidal-Alabró, A; Bermúdez, J; Bartrons, R; Perales, J C

    2005-01-20

    Inefficient gene transfer and poor stability in physiological medium are important shortcomings for receptor-mediated gene transfer vectors. Here, we evaluate vectors formulated with random copolymers of L-lysine/L-serine (3:1) and L-lysine/L-tryptophan (4:1), focusing on both their biophysical and functional characterization. By means of dynamic light scattering (DLS) and transmission electron microscopy (TEM), we demonstrate that poly-L-lysine (pK), poly-L-lysine-L-tryptophan (pKW) and poly-L-lysine-L-serine (pKS) are able to form compacted, small particles when mixed with plasmid DNA in the absence of salt. Upon dilution in physiological medium, copolymers of both lys/ser and lys/trp do not aggregate, in contrast with poly-L-lysine DNA complexes as determined by scattering, DLS and TEM measurements. Tight packing, as demonstrated by resistance to heparin, SDS and trypsin treatments, is also featured in tryptophan-containing complexes. Successful receptor-mediated endocytosis gene transfer using galactosylated copolymers into cells expressing the asiagloglycoprotein receptor correlated with lack of aggregation. Particles obtained using galactosylated poly-L-lysine-L-tryptophan (Gal-pKW) copolymer demonstrated specific receptor-mediated gene transfer since reporter gene activity dropped in the presence of an excess ligand in the culture medium during transfection. Although copolymers of galactosylated poly-L-lysine-L-serine (Gal-pKS) do not aggregate in the presence of salt, they are not able to internalize in a specific receptor-mediated endocytosis fashion. The introduction of bulky aromatic/hydrophobic (tryptophan) or hydrophillic (serine) moieties into the positively charged vectors allows the compacted particles to disperse into salt-containing medium avoiding salt-induced aggregation. Moreover, tryptophan-containing particles are able to mediate specific gene transfer via receptor-mediated endocytosis.

  7. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  8. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  9. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development.

    PubMed

    Reissmann, E; Jörnvall, H; Blokzijl, A; Andersson, O; Chang, C; Minchiotti, G; Persico, M G; Ibáñez, C F; Brivanlou, A H

    2001-08-01

    Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.

  10. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    PubMed Central

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  11. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    USDA-ARS?s Scientific Manuscript database

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  12. Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

    PubMed Central

    Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.

    1999-01-01

    Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038

  13. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  14. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

    PubMed Central

    Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo

    2005-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370

  15. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis.

    PubMed Central

    Liu, Y; Levit, M; Lurz, R; Surette, M G; Stock, J B

    1997-01-01

    Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm. PMID:9405352

  16. P2x7 Receptor-NADPH Oxidase-Axis Mediates Protein radical Formation And Kupffer Cell Activation in Carbon Tetrachloride-Mediated Steatohepatitis in Obese Mice

    PubMed Central

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B.; Goldstein, Joyce; Mason, Ronald P.

    2012-01-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl4-treated hepatocytes and generating redoxmediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and post-translational nitration, primarily in Kupffer cells, at 24 h post-CCl4 administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase- and P2X7 receptor-dependent, correlated well with the release of TNF- α and MCP-2 from Kupffer cells. The Kupffer cells in CCl4-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416

  17. Molecular Mechanistic Insights into the Endothelial Receptor Mediated Cytoadherence of Plasmodium falciparum-Infected Erythrocytes

    PubMed Central

    Li, Ang; Lim, Tong Seng; Shi, Hui; Yin, Jing; Tan, Swee Jin; Li, Zhengjun; Low, Boon Chuan; Tan, Kevin Shyong Wei; Lim, Chwee Teck

    2011-01-01

    Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the ‘holder’ for providing stable binding. PMID:21437286

  18. Cigarette Smoke–Induced CXCR3 Receptor Up-Regulation Mediates Endothelial Apoptosis

    PubMed Central

    Green, Linden A.; Petrusca, Daniela; Rajashekhar, Gangaraju; Gianaris, Tom; Schweitzer, Kelly S.; Wang, Liang; Justice, Matthew J.; Petrache, Irina

    2012-01-01

    Endothelial monocyte–activating polypeptide II (EMAP II) and interferon-inducible protein (IP)–10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke–exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke–induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II–induced and IP-10–induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II–induced and IP-10–induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II–induced and IP-10–induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II–induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema. PMID:22936405

  19. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila.

    PubMed

    Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan Dt; Benton, Richard; Garrity, Paul A

    2016-09-22

    Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila . Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.

  20. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

    PubMed Central

    Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun

    2015-01-01

    Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265

  1. Decoy receptor 3 suppresses TLR2-mediated B cell activation by targeting NF-κB.

    PubMed

    Huang, Zi-Ming; Kang, Jhi-Kai; Chen, Chih-Yu; Tseng, Tz-Hau; Chang, Chien-Wen; Chang, Yung-Chi; Tai, Shyh-Kuan; Hsieh, Shie-Liang; Leu, Chuen-Miin

    2012-06-15

    Decoy receptor 3 (DcR3) is a soluble protein in the TNFR superfamily. Its known ligands include Fas ligand, homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, TNF-like molecule 1A, and heparan sulfate proteoglycans. DcR3 has been reported to modulate the functions of T cells, dendritic cells, and macrophages; however, its role in regulating B cell activation is largely unknown. In this study, we found that the DcR3.Fc fusion protein bound to human and mouse B cells and suppressed the activation of B cells. DcR3.Fc attenuated Staphylococcus aureus, IgM-, Pam(3)CSK(4)-, and LPS-mediated B cell proliferation but did not affect cytokine-induced B cell growth. In the presence of these mitogens, DcR3.Fc did not induce B cell apoptosis, suggesting that DcR3 may inhibit the signal(s) important for B cell activation. Because the combination of Fas.Fc, LT-βR.Fc (homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes receptor), and DR3.Fc (TNF-like molecule 1A receptor) did not suppress B cell proliferation and because the biological effect of DcR3.Fc on B cells was not blocked by heparin, we hypothesize that a novel ligand(s) of DcR3 mediates its inhibitory activity on B cells. Moreover, we found that TLR2-stimulated NF-κB p65 activation and NF-κB-driven luciferase activity were attenuated by DcR3.Fc. The TLR2-induced cytokine production by B cells was consistently reduced by DcR3. These results imply that DcR3 may regulate B cell activation by suppressing the activation of NF-κB.

  2. Neuropeptide Y restores non-receptor-mediated vasoconstrictive action in superior mesenteric arteries in portal hypertension.

    PubMed

    Hartl, Johannes; Dietrich, Peter; Moleda, Lukas; Müller-Schilling, Martina; Wiest, Reiner

    2015-12-01

    Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension. © 2015 John Wiley & Sons A

  3. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  4. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR).

    PubMed

    Xiao, Kunhong; Sun, Jinpeng; Kim, Jihee; Rajagopal, Sudarshan; Zhai, Bo; Villén, Judit; Haas, Wilhelm; Kovacs, Jeffrey J; Shukla, Arun K; Hara, Makoto R; Hernandez, Marylens; Lachmann, Alexander; Zhao, Shan; Lin, Yuan; Cheng, Yishan; Mizuno, Kensaku; Ma'ayan, Avi; Gygi, Steven P; Lefkowitz, Robert J

    2010-08-24

    beta-Arrestin-mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the beta-arrestin-biased ligand Sar(1), Ile(4), Ile(8)-angiotensin (SII), a ligand previously found to signal through beta-arrestin-dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of beta-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the beta-arrestin-mediated phosphoproteome including construction of a kinase-substrate network for beta-arrestin-mediated AT1aR signaling. Our analysis demonstrates that beta-arrestin-dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby beta-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of beta-arrestin-mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area

  5. Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation

    PubMed Central

    Bowman, James; Rodgers, Mary A.; Shi, Mude; Amatya, Rina; Hostager, Bruce; Iwai, Kazuhiro; Gao, Shou-Jiang

    2015-01-01

    ABSTRACT Linear ubiquitination is an atypical posttranslational modification catalyzed by the linear-ubiquitin-chain assembly complex (LUBAC), containing HOIP, HOIL-1L, and Sharpin. LUBAC facilitates NF-κB activation and inflammation upon receptor stimulation by ligating linear ubiquitin chains to critical signaling molecules. Indeed, linear-ubiquitination-dependent signaling is essential to prevent pyogenic bacterial infections that can lead to death. While linear ubiquitination is essential for intracellular receptor signaling upon microbial infection, this response must be measured and stopped to avoid tissue damage and autoimmunity. While LUBAC is activated upon bacterial stimulation, the mechanisms regulating LUBAC activity in response to bacterial stimuli have remained elusive. We demonstrate that LUBAC activity itself is downregulated through ubiquitination, specifically, ubiquitination of the catalytic subunit HOIP at the carboxyl-terminal lysine 1056. Ubiquitination of Lys1056 dynamically altered HOIP conformation, resulting in the suppression of its catalytic activity. Consequently, HOIP Lys1056-to-Arg mutation led not only to persistent LUBAC activity but also to prolonged NF-κB activation induced by bacterial lipopolysaccharide-mediated Toll-like receptor 4 (TLR4) stimulation, whereas it showed no effect on NF-κB activation induced by CD40 stimulation. This study describes a novel posttranslational regulation of LUBAC-mediated linear ubiquitination that is critical for specifically directing TLR4-mediated NF-κB activation. PMID:26578682

  6. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  7. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium

    PubMed Central

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N.; Dayam, Roya M.; Abousawan, John; Botelho, Roberto J.; Antonescu, Costin N.

    2017-01-01

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. PMID:28814502

  8. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  9. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1.

    PubMed

    Kloog, Yoel; Mor, Adam

    2014-03-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders.

  10. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    PubMed Central

    Kloog, Yoel

    2014-01-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders. PMID:24396067

  11. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-07-01

    Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors.

    PubMed

    Lu, J; Goula, D; Sousa, N; Almeida, O F X

    2003-01-01

    Glutamate receptors have been proposed to mediate the apoptotic actions of glucocorticoids in hippocampal cells. To further analyze the role of glutamate receptors in this process, we pretreated primary hippocampal cells from neonatal (postnatal day 4) rats with antagonists of ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) antagonists before exposure to the specific glucocorticoid receptor agonist dexamethasone (DEX) at a dose of 1 microM. Dizocilpine (MK801; a general N-methyl-D-aspartic acid [NMDA] receptor antagonist, NMDAR antagonist) and ifenprodil (a specific ligand of the NMDAR 2B subunit, NR2B), were used to block iGluR; (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) and (RS)-alpha-cyclopropyl-4-phosphonophenyl-glycine (CPPG) were employed as I/II (E4CPG) and II/III (CPPG) mGluR antagonists. Blockade of iGluR resulted in a significant attenuation of DEX-induced cell death; the finding that ifenprodil exerted a similar potency to MK801 demonstrates the involvement of NR2B receptors in glucocorticoid-induced cell death. Apoptosis accounted for a significant amount of the cell loss observed, as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling histochemistry for the in situ labeling of DNA breaks; apoptotic cells were distinguished from necrosis on the basis of morphological criteria, including chromatin condensation, membrane blebbing and presence of apoptotic bodies. Treatment with E4CPG and CPPG completely abolished the apoptotic response to DEX, thus showing the additional contribution of mGluR to the phenomenon. Further, dose-response studies with NMDA revealed that whereas high (10 microM) doses of NMDA themselves elicit cytotoxic responses, low (1-5 microM) concentrations of NMDA can effectively oppose DEX-induced cell death. Interestingly, the neuroprotective actions of low dose NMDA stimulation were abolished when either synaptic or extrasynaptic NMDA receptors were blocked with MK801

  13. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila

    PubMed Central

    Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan DT; Benton, Richard; Garrity, Paul A

    2016-01-01

    Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects. DOI: http://dx.doi.org/10.7554/eLife.17879.001 PMID:27656904

  14. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Wong, S.; Zhao, X.

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate,more » drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This

  15. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  16. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  17. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor.

    PubMed

    O'Sullivan, J M; Aguila, S; McRae, E; Ward, S E; Rawley, O; Fallon, P G; Brophy, T M; Preston, R J S; Brady, L; Sheils, O; Chion, A; O'Donnell, J S

    2016-12-01

    Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N-linked glycan trimming resulted in increased macrophage-mediated clearance. Click to hear Dr Denis discuss clearance of von Willebrand factor in a free presentation from the ISTH Academy SUMMARY: Background Enhanced von Willebrand factor (VWF) clearance is important in the etiology of both type 1 and type 2 von Willebrand disease (VWD). In addition, previous studies have demonstrated that VWF glycans play a key role in regulating in vivo clearance. However, the molecular mechanisms underlying VWF clearance remain poorly understood. Objective To define the molecular mechanisms through which VWF N-linked glycan structures influence in vivo clearance. Methods By use of a series of exoglycosidases, different plasma-derived VWF (pd-VWF) glycoforms were generated. In vivo clearance of these glycoforms was then assessed in VWF -/- mice in the presence or absence of inhibitors of asialoglycoprotein receptor (ASGPR), or following clodronate-induced macrophage depletion. Results Reduced amounts of N-linked and O-linked sialylation resulted in enhanced pd-VWF clearance modulated via ASGPR. In addition to this role of terminal sialylation, we further observed that progressive N-linked glycan trimming also resulted in markedly enhanced VWF clearance. Furthermore, these additional N-linked glycan effects on clearance were ASGPR-independent, and instead involved enhanced macrophage clearance that was mediated, at least in part, through LDL receptor-related protein 1. Conclusion The carbohydrate determinants expressed on VWF regulate susceptibility to proteolysis by ADAMTS-13. In addition, our findings now further demonstrate that non-sialic acid carbohydrate

  18. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    USDA-ARS?s Scientific Manuscript database

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  19. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells

    PubMed Central

    Joshi, Mahesh S.; Ferguson, T. Bruce; Johnson, Fruzsina K.; Johnson, Robert A.; Parthasarathy, Sampath; Lancaster, Jack R.

    2007-01-01

    Arginine contains the guanidinium group and thus has structural similarity to ligands of imidazoline and α-2 adrenoceptors (α-2 AR). Therefore, we investigated the possibility that exogenous arginine may act as a ligand for these receptors in human umbilical vein endothelial cells and activate intracellular nitric oxide (NO) synthesis. Idazoxan, a mixed antagonist of imidazoline and α-2 adrenoceptors, partly inhibited l-arginine-initiated NO formation as measured by a Griess reaction. Rauwolscine, a highly specific antagonist of α-2 AR, at very low concentrations completely inhibited NO formation. Like l-arginine, agmatine (decarboxylated arginine) also activated NO synthesis, however, at much lower concentrations. We found that dexmedetomidine, a specific agonist of α-2 AR was very potent in activating cellular NO, thus indicating a possible role for α-2 AR in l-arginine-mediated NO synthesis. d-arginine also activated NO production and could be inhibited by imidazoline and α-2 AR antagonists, thus indicating nonsubstrate actions of arginine. Pertussis toxin, an inhibitor of G proteins, attenuated l-arginine-mediated NO synthesis, thus indicating mediation via G proteins. l-type Ca2+ channel blocker nifedipine and phospholipase C inhibitor U73122 inhibited NO formation and thus implicated participation of a second messenger pathway. Finally, in isolated rat gracilis vessels, rauwolscine completely inhibited the l-arginine-initiated vessel relaxation. Taken together, these data provide evidence for binding of arginine to membrane receptor(s), leading to the activation of endothelial NO synthase (eNOS) NO production through a second messenger pathway. These findings provide a previously unrecognized mechanistic explanation for the beneficial effects of l-arginine in the cardiovascular system and thus provide new potential avenues for therapeutic development. PMID:17535904

  20. Receptor-Mediated and Fluid-Phase Transcytosis of Horseradish Peroxidase across Rat Hepatocytes

    PubMed Central

    Ellinger, Isabella; Fuchs, Renate

    2010-01-01

    Horseradish peroxidase (HRP) is often used as a fluid-phase marker to characterize endocytic and transcytotic processes. Likewise, it has been applied to investigate the mechanisms of biliary secretion of fluid in rat liver hepatocytes. However, HRP contains mannose residues and thus binds to mannose receptors (MRs) on liver cells, including hepatocytes. To study the role of MR-mediated endocytosis of HRP transport in hepatocytes, we determined the influence of the oligosaccharid mannan on HRP biliary secretion in the isolated perfused rat liver. A 1-minute pulse of HRP was applied followed by marker-free perfusion. HRP appeared in bile with biphasic kinetics: a first peak at 7 minutes and a second peak at 15 minutes after labeling. Perfusion with 0.8 mg/mL HRP in the presence of a twofold excess of mannan reduced the first peak by 41% without effect on the second one. Together with recently published data on MR expression in rat hepatocytes this demonstrates two different mechanisms for HRP transcytosis: a rapid, receptor-mediated transport and a slower fluid-phase transport. PMID:20168981

  1. Gefitinib enhances human colon cancer cells to TRAIL-induced apoptosis of via autophagy- and JNK-mediated death receptors upregulation.

    PubMed

    Chen, Lei; Meng, Yue; Guo, Xiaoqing; Sheng, Xiaotong; Tai, Guihua; Zhang, Fenglei; Cheng, Hairong; Zhou, Yifa

    2016-11-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. Here, we report that gefitinib and TRAIL in combination produce a potent synergistic effect on TRAIL-sensitive human colon cancer HCT116 cells and an additive effect on TRAIL-resistant HT-29 cells. Interestingly, gefitinib increases the expression of cell surface receptors DR4 and DR5, possibly explaining the synergistic effect. Knockdown of DR4 and DR5 by siRNA significantly decreases gefitinib- and TRAIL-mediated cell apoptosis, supporting this idea. Because the inhibition of gefitinib-induced autophagy by 3-MA significantly decreases DR4 and DR5 upregulation, as well as reduces gefitinib- and TRAIL-induced apoptosis, we conclude that death receptor upregulation is autophagy mediated. Furthermore, our results indicate that death receptor expression may also be regulated by JNK activation, because pre-treatment of cells with JNK inhibitor SP600125 significantly decreases gefitinib-induced death receptor upregulation. Interestingly, SP600125 also inhibits the expression CHOP, yet CHOP has no impact on death receptor expressions. We also find here that phosphorylation of Akt and ERK might also be required for TRAIL sensitization. In summary, our results indicate that gefitinib effectively enhances TRAIL-induced apoptosis, likely via autophagy and JNK- mediated death receptor expression and phosphorylation of Akt and ERK.

  2. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  3. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  4. Biotin-Tagged Polysaccharide Vesicular Nanocarriers for Receptor-Mediated Anticancer Drug Delivery in Cancer Cells.

    PubMed

    Deshpande, Nilesh Umakant; Jayakannan, Manickam

    2018-06-15

    Biotin-conjugated multi-stimuli-responsive polysaccharide vesicular nanocarriers are designed and developed, for the first time, to accomplish receptor-mediated endocytosis in cancer cells and to deliver anticancer drugs at the intracellular compartments. For this purpose, a new renewable hydrophobic unit was custom designed with redox-degradable disulphide and enzyme-biodegradable aliphatic ester chemical linkages and it was conjugated along with biotin on the dextran backbone. The dextran derivative self-assembled into nanovesicles of < 200 nm in size which were characterized by dynamic and static light scattering, electron and atomic force microscopes. Avidin-HABA assay established the high affinity of biotin-tagged dextran vesicles towards membrane-receptors up to 25 nM concentration. Doxorubicin-hydrochloride (DOX.HCl) loaded dextran vesicles exhibited stable formulation in PBS and FBS. Redox-degradation by glutathione (GSH) showed 60 % drug release whereas lysosomal esterase enzyme enabled > 98 % drug release in 12 h. Confocal microscope and flow cytometry assisted time-dependent cellular uptake studies revealed that the biotin-receptor over expressed cervical cancer cells (HeLa) exhibited larger drug accumulation through receptor-assisted endocytosis process. This process enabled the delivery of higher amount of DOX and significantly enhanced the killing in cancer cells (HeLa) compared to wild-type mouse embryonic fibroblast cells (WT-MEF, normal cells). Control experiments such as biotin pre-treatment in cancer cells and energy-suppressed cellular uptake at 4 C further supported the occurrence of receptor-mediated endocytosis by the biotin-tagged polymer vesicles. This report provides first insights into the targeted polysaccharide vesicle platform, and the proof-of-concept is successfully demonstrated in biotin receptors over expressed cervical cancer cells.

  5. The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.

    PubMed

    Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T

    2016-11-01

    PGE 2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE 2 has not been defined. The aim of this study was to identify the EP receptor by which PGE 2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE 2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP 2 -selective (PF-04852946, PF-04418948) and EP 4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE 2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE 2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP 2 and EP 4 receptors. L-902,688 (EP 4 receptor-selective agonist) was considerably more potent than butaprost (EP 2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP 2 receptor-selective antagonists had marginal effects on the PGE 2 inhibition of TNF-α generation, whereas EP 4 receptor-selective antagonists caused rightward shifts in the PGE 2 concentration-response curves. These studies demonstrate that the EP 4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE 2 on human lung macrophages. This suggests that EP 4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.

  6. The CB1 Receptor as an Important Mediator of Hedonic Reward Processing

    PubMed Central

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-01-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex—the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  7. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  8. Estrogen Receptor-Related Receptor α Mediates Up-Regulation of Aromatase Expression by Prostaglandin E2 in Prostate Stromal Cells

    PubMed Central

    Miao, Lin; Shi, Jiandang; Wang, Chun-Yu; Zhu, Yan; Du, Xiaoling; Jiao, Hongli; Mo, Zengnan; Klocker, Helmut; Lee, Chung; Zhang, Ju

    2010-01-01

    Estrogen receptor-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily of transcription factors. ERRα is highly expressed in the prostate, especially in prostate stromal cells. However, little is known about the regulation and function of ERRα, which may contribute to the progression of prostatic diseases. We previously found that prostaglandin E2 (PGE2) up-regulated the expression of aromatase in prostate stromal cells. Here we show that PGE2 also up-regulates the expression of ERRα, which, as a transcription factor, further mediates the regulatory effects of PGE2 on the expression of aromatase. ERRα expression was up-regulated by PGE2 in prostate stromal cell line WPMY-1, which was mediated mainly through the protein kinase A signaling pathway by PGE2 receptor EP2. Suppression of ERRα activity by chlordane (an antagonist of ERRα) or small interfering RNA knockdown of ERRα blocked the increase of expression and promoter activity of aromatase induced by PGE2. Overexpression of ERRα significantly increased aromatase expression and promoter activity, which were further augmented by PGE2. Chromatin immunoprecipitation assay demonstrated that ERRα directly bound to the aromatase promoter in vivo, and PGE2 enhanced the recruitment of ERRα and promoted transcriptional regulatory effects on aromatase expression in WPMY-1. 17β-Estradiol concentration in WPMY-1 medium was up-regulated by ERRα expression, and that was further increased by PGE2. Our results provided evidence that ERRα contributed to local estrogen production by up-regulating aromatase expression in response to PGE2 and provided further insights into the potential role of ERRα in estrogen-related prostatic diseases. PMID:20351196

  9. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Nuclear Membranes ETB Receptors Mediate ET-1-induced Increase of Nuclear Calcium in Human Left Ventricular Endocardial Endothelial Cells.

    PubMed

    Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle

    2015-07-01

    In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).

  12. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  13. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain.

    PubMed

    Dziedzic, Barbara; Prevot, Vincent; Lomniczi, Alejandro; Jung, Heike; Cornea, Anda; Ojeda, Sergio R

    2003-02-01

    Hypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified. Here we demonstrate that hypothalamic astrocytes contain metabotropic receptors of the metabotropic glutamate receptor 5 subtype and the AMPA receptor subunits glutamate receptor 2 (GluR2) and GluR3. As in excitatory synapses, these receptors are in physical association with their respective interacting/clustering proteins Homer and PICK1. In addition, they are associated with erbB-1 and erbB-4 receptors. Concomitant activation of astroglial metabotropic and AMPA receptors results in the recruitment of erbB tyrosine kinase receptors and their respective ligands to the glial cell membrane, transactivation of erbB receptors via a mechanism requiring metalloproteinase activity, and increased erbB receptor gene expression. By facilitating erbB-dependent signaling and promoting erbB receptor gene expression in astrocytes, a neuron-to-glia glutamatergic pathway may represent a basic cell-cell communication mechanism used by the neuroendocrine brain to coordinate the facilitatory transsynaptic and astroglial input to LHRH neurons during sexual development.

  14. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  15. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  16. Molecular basis for repression of liver X receptor-mediated gene transcription by receptor-interacting protein 140

    PubMed Central

    Jakobsson, Tomas; Osman, Waffa; Gustafsson, Jan-Åke; Zilliacus, Johanna; Wärnmark, Anette

    2007-01-01

    Similarities in physiological roles of LXR (liver X receptors) and co-repressor RIP140 (receptor-interacting protein 140) in regulating energy homoeostasis and lipid and glucose metabolism suggest that the effects of LXR could at least partly be mediated by recruitment of the co-repressor RIP140. In the present study, we have elucidated the molecular basis for regulation of LXR transcriptional activity by RIP140. LXR is evenly localized in the nucleus and neither the N-terminal domain nor the LBD (ligand-binding domain) is necessary for nuclear localization. Both LXR subtypes, LXRα and LXRβ, interact with RIP140 and co-localize in diffuse large nuclear domains. Interaction and co-localization are dependent on the LBD of the receptor. The C-terminal domain of RIP140 is sufficient for full repressive effect. None of the C-terminal NR (nuclear receptor)-boxes is required for the co-repressor activity, whereas the NR-box-like motif as well as additional elements in the C-terminal region are required for full repressive function. The C-terminal NR-box-like motif is necessary for interaction with LXRβ, whereas additional elements are needed for strong interaction with LXRα. In conclusion, our results suggest that co-repression of LXR activity by RIP140 involves an atypical binding mode of RIP140 and a repression element in the RIP140 C-terminus. PMID:17391100

  17. Further evidence that tachykinin-induced contraction of human isolated bronchus is mediated only by NK2-receptors.

    PubMed

    Sheldrick, R L; Rabe, K F; Fischer, A; Magnussen, H; Coleman, R A

    1995-11-01

    The tachykinin-receptors mediating contraction of human bronchus have been characterized using both tachykinin-receptor selective agonists and blocking drugs under conditions where tachykinin metabolism by endogenous peptidases has been controlled, and true equilibrium conditions have been established. The findings that neurokinin A (EC50 = 2 nM) is the most potent agonist, and the NK2-receptor selective agonist, GR64349, is only 3-fold weaker, whereas agonists selective for NK1-receptors, substance P methyl ester, or NK3-receptors, senktide, are inactive, suggest that this effect is mediated exclusively by NK2-receptors. This is supported by observations that GR64349 is antagonised by the selective NK2-receptor blocking drugs, MEN10207 (pA2 = 6.7), R396 (pA2 = 6.1), (+/-)SR48968 (pA2 = 8.4) and GR159897 (pA2 = 8.6), but not by the NK1-receptor blocking drug, GR82334 (pA2 < 5). In approximately half of the preparations, the peptidase inhibitors, phosphoramidon (1 microM) and bestatin (100 microM), caused a marked and well-maintained contraction (approximately 20% of neurokinin A maximum), which may indicate a role for endogenous tachykinins in the regulation of tone in this preparation. This is supported by the finding that neurokinin A-immunoreactive nerve fibres are located around intrinsic neurones of local ganglia and within the smooth muscle layer of this preparation.

  18. Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids.

    PubMed Central

    Alvarez, R; Checa, M; Brun, S; Viñas, O; Mampel, T; Iglesias, R; Giralt, M; Villarroya, F

    2000-01-01

    The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific ¿p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid¿ or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7, 11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRalpha and RXRgamma mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, alpha, beta and gamma, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARalpha and RARbeta as well as RXRalpha are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte. PMID:10600643

  19. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.

    PubMed

    Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael

    2010-10-26

    It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.

  20. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress

    PubMed Central

    Evanson, Nathan K.; Herman, James P.

    2015-01-01

    Glutamate is an important neurotransmitter in regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. PMID:25701594

  1. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

    PubMed Central

    Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens

    2003-01-01

    Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163

  2. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  3. [Electrophysiological characteristics of hippocampal postnatal early development mediated by AMPA receptors in rats].

    PubMed

    Chen, Xue-Yi; Zhang, Ai-Feng; Zhao, Wen; Gao, Yu-Dan; Duan, Hong-Mei; Hao, Peng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-25

    The present study was aimed to investigate the electrophysiological characteristics of hippocampal postnatal early development mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rats. Forty-eight Wistar rats were divided into postnatal 0.5-, 1-, 2- and 3-month groups (n = 12). Spontaneous excitatory postsynaptic currents (sEPSCs) and field excitatory postsynaptic potentials (fEPSPs) mediated by AMPA receptors were recorded to evaluate the changes in the intrinsic membrane properties of hippocampal CA1 pyramidal neurons by using patch-clamp and MED64 planar microelectrode array technique respectively. The results showed that, during the period of postnatal 0.5-3 months, some of the intrinsic membrane properties of hippocampal CA1 pyramidal neurons, such as the membrane capacitance (Cm) and the resting membrane potential (RMP), showed no significant changes, while the membrane input resistance (Rin) and the time constant (τ) of the cells were decreased significantly. The amplitude, frequency and kinetics (both rise and decay times) of sEPSCs were significantly increased during the period of postnatal 0.5-1 month, but they were all decreased during the period of postnatal 1-3 months. In addition, the range of evoked fEPSPs in hippocamal CA1 region was significantly expanded, but the fEPSP amplitudes were decreased significantly during the period of postnatal 0.5-3 months. Furthermore, the evoked fEPSPs could be significantly inhibited by extracellular application of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that AMPA receptor may act as a major type of excitatory receptor to regulate synaptic transmission and connections during the early stage of hippocampal postnatal development, which promotes the development and functional maturation of hippocampus in rats.

  4. Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP ▿

    PubMed Central

    Mita, Paolo; Savas, Jeffrey N.; Djouder, Nabil; Yates, John R.; Ha, Susan; Ruoff, Rachel; Schafler, Eric D.; Nwachukwu, Jerome C.; Tanese, Naoko; Cowan, Nicholas J.; Zavadil, Jiri; Garabedian, Michael J.; Logan, Susan K.

    2011-01-01

    Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes. PMID:21730289

  5. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  6. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor.

    PubMed

    Nagayama, Susumu; Ogawara, Ken-ichi; Minato, Keiko; Fukuoka, Yoshiko; Takakura, Yoshinobu; Hashida, Mitsuru; Higaki, Kazutaka; Kimura, Toshikiro

    2007-02-01

    We tried to evaluate the possible involvement of fetuin in the scavenger receptors (SRs)-mediated hepatic uptake of polystyrene nanospheres with the size of 50 nm (NS-50), which has surface negative charge (zeta potential=-21.8+/-2.3 mV). The liver perfusion studies in rats revealed that the hepatic uptake of NS-50 pre-coated with fetuin (NS-50-fetuin) was significantly inhibited by poly inosinic acid (poly I), a typical inhibitor of SRs, whereas that of plain NS-50 or NS-50 pre-coated with BSA (NS-50-BSA) was not. The uptake of NS-50-fetuin by cultured Kupffer cells was also significantly inhibited by poly I, and anti-class A scavenger receptors (SR-A) antibody, suggesting that fetuin on NS-50 mediated the recognition and internalization of NS-50 by Kupffer cells and at least SR-A would be responsible for the uptake. Taken that Western blot analysis confirmed that fetuin certainly adsorbed on the surface of NS-50 after the incubation of NS-50 with serum, the results obtained in the present study indicate that fetuin would be one of the serum proteins that were substantially involved in the hepatic uptake of NS-50 via SRs.

  7. Mediation by neurotensin-receptors of effects of neurotensin on self-stimulation of the medial prefrontal cortex.

    PubMed Central

    Fernández, R.; Sabater, R.; Sáez, J. A.; Montes, R.; Alba, F.; Ferrer, J. M.

    1996-01-01

    1 Intracortical microinjections of neurotensin (NT) selectively decreased intracranial self-stimulation (ICSS) of the medial prefrontal cortex in the rat. 2 To elucidate whether this effect is mediated by NT receptors or by the formation of NT-dopamine complexes, we investigated the effects on ICSS of intracortical microinjections of neurotensin (1-11), an NT fragment that forms extracellular complexes with dopamine but does not bind to NT receptors. 3 We also studied the effects of the peripheral administration of SR 48692, a selective antagonist of NT receptors, on the inhibition of ICSS produced by the intracortical administration of NT. 4 Unilateral microinjections of neurotensin (1-11) at doses of 10, 20 and 40 nmol into the medial prefrontal cortex did not change the basal ICSS rate of this area. 5 The intraperitoneal administration of SR 48692 at doses of 0.08 and 0.16 mg kg-1 30 min before microinjection of 10 nmol of NT into the medial prefrontal cortex, antagonized the inhibition of ICSS produced by the neuropeptide. 6 These results demonstrate that the inhibitory effect of NT on ICSS is mediated by NT receptors. PMID:8886412

  8. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis.

    PubMed

    Quintas, Clara; Pinho, Diana; Pereira, Clara; Saraiva, Lucília; Gonçalves, Jorge; Queiroz, Glória

    2014-09-03

    During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis. Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining. UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 μM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 μM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 μM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 μM). UDP-mediated NO release induced apoptosis in astrocytes

  9. Specific neurokinin receptors mediate plasma extravasation in the rat knee joint.

    PubMed Central

    Lam, F. Y.; Ferrell, W. R.

    1991-01-01

    1 Plasma extravasation in the rat knee joint was induced by intra-articular injection of neurokinins and specific neurokinin receptor agonists. 2 Pronounced plasma extravasation was produced by substance P (SP, 4-185 microM) and to a lesser extent by neurokinin-B (NKB, 83-413 microM), whereas neurokinin-A (NKA, 88-440 microM) and calcitonin gene-related peptide (CGRP, 26-130 microM) had no significant effect. 3 The specific neurokinin1 receptor agonist [Sar9, Met(O2)11]-substance P (NK1 agonist) in doses of 0.4-70 microM appeared to be more potent than SP in eliciting plasma extravasation. The neurokinin2 receptor agonist [Nle10]-neurokinin A4-10 (NK2 agonist) was not effective at 70 microM but produced a small and significant effect at 330 microM, whereas the neurokinin3 receptor agonist [MePhe7]-neurokinin B (NK3 agonist) was without effect at 40 microM or 400 microM. 4 Injections of SP or NKA into the synovial cavity of the rat knee were equally effective in producing marked plasma extravasation in remote sites such as the forelimb and hindlimb paws. 5 Co-administration experiments showed that the effects of SP were synergistic with NKA or the NK1 receptor agonist, but not with CGRP or the NK2 receptor agonist. 6 The rank order of potency was NK1 agonist greater than or equal to SP greater than NKB greater than NK2 agonist suggesting that NK1 receptors mediate plasma extravasation in the rat knee joint. PMID:1715229

  10. Ligand Receptor-Mediated Regulation of Growth in Plants.

    PubMed

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  11. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less

  12. Oestrogen receptor-mediated expression of Olfactomedin 4 regulates the progression of endometrial adenocarcinoma

    PubMed Central

    Duan, Chao; Liu, Xubin; Liang, Shuang; Yang, Zheng; Xia, Meng; Wang, Liantang; Chen, Shangwu; Yu, Li

    2014-01-01

    Endometrial adenocarcinoma is the most common tumour of the female genital tract in developed countries, and oestrogen receptor (ER) signalling plays a pivotal role in its pathogenesis. When we used bioinformatics tools to search for the genes contributing to gynecological cancers, the expression of Olfactomedin 4 (OLFM4) was found by digital differential display to be associated with differentiation of endometrial adenocarcinoma. Aberrant expression of OLFM4 has been primarily reported in tumours of the digestive system. The mechanism of OLFM4 in tumuorigenesis is elusive. We investigated OLFM4 expression in endometrium, analysed the association of OLFM4 with ER signalling in endometrial adenocarcinoma, and examined the roles of OLFM4 in endometrial adenocarcinoma. Expression of OLFM4 was increased during endometrial carcinogenesis, linked to the differentiation of endometrioid adenocarcinoma, and positively related to the expression of oestrogen receptor-α (ERα) and progesterone receptor. Moreover, ERα-mediated signalling regulated expression of OLFM4, and knockdown of OLFM4 enhanced proliferation, migration and invasion of endometrial carcinoma cells. Down-regulation of OLFM4 was associated with decreased cumulative survival rate of patients with endometrioid adenocarcinoma. Our data suggested that impairment of ERα signal-mediated OLFM4 expression promoted the malignant progression of endometrioid adenocarcinoma, which may have significance for the therapy of this carcinoma. PMID:24495253

  13. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  14. Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance

    PubMed Central

    Reiner, David J.; Mietlicki-Baase, Elizabeth G.; McGrath, Lauren E.; Zimmer, Derek J.; Bence, Kendra K.; Sousa, Gregory L.; Konanur, Vaibhav R.; Krawczyk, Joanna; Burk, David H.; Kanoski, Scott E.; Hermann, Gerlinda E.; Rogers, Richard C.

    2016-01-01

    Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9–39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9–39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that

  15. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor.

    PubMed

    Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C

    2007-02-01

    Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.

  16. Scavenger receptor mediates systemic RNA interference in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.

  17. Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Linggatong Galay, Remil; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks. PMID:22145043

  18. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    PubMed

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  19. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    PubMed

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    PubMed

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  1. GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis.

    PubMed

    Kupenova, Petia; Vitanova, Lily; Popova, Elka

    2010-04-01

    GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.

  2. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    NASA Astrophysics Data System (ADS)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  3. Discoidin Domain Receptor-1 Deficiency Attenuates Atherosclerotic Calcification and Smooth Muscle Cell-Mediated Mineralization

    PubMed Central

    Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.

    2009-01-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047

  4. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization.

    PubMed

    Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P

    2009-12-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.

  5. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  6. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium.

    PubMed

    Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N; Dayam, Roya M; Abousawan, John; Botelho, Roberto J; Antonescu, Costin N

    2017-10-15

    Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca 2+ , or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca 2+ - and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca 2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. © 2017 Delos Santos et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat.

    PubMed

    Sebokova, E; Garg, M L; Clandinin, M T

    1988-06-01

    The effect of feeding diets enriched with 18:2 omega 6, 18:3 omega 3, or saturated fatty acids on lipid composition and receptor-mediated action of luteinizing hormone/human chorionic gonadotropin (LH/hCG) in rat testicular plasma membranes was investigated. Linoleic and alpha-linolenic acid treatments reduced total phospholipid and cholesterol content of the testicular plasma membrane and altered membrane phospholipid composition. Change in phospholipid and cholesterol content after feeding the polyunsaturated fats decreased cholesterol to phospholipid ratios and binding capacity of the LH/hCG receptor in the testicular plasma membrane. LH-stimulated adenylate cyclase activity was decreased in animals fed the linolenic acid-rich diet. NaF-stimulated adenylate cyclase activity was decreased in animals fed diets high in either polyunsaturated fatty acid. Decreased plasma membrane LH/hCG receptor content was associated with decreased testosterone production in Leydig cells in response to LH in the linolenic acid-fed group. It is suggested that change in cholesterol-to-phospholipid ratios alters the physical properties of testicular plasma membranes in a manner that influences accessibility of LH/hCG receptors in testicular tissue.

  8. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    PubMed

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  9. A-kinase anchoring protein 150 mediates transient receptor potential family V type 1 sensitivity to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Jeske, Nathaniel A; Por, Elaine D; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A; Akopian, Armen N; Henry, Michael A; Gomez, Ruben

    2011-06-08

    A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) anchors AKAP150 to the plasma membrane in naive conditions and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP(2) on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP(2) led to significant changes in the association of AKAP150 and TRPV1. Following PIP(2) degradation, increased TRPV1:AKAP150 coimmunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150(-/-) animals indicated that PIP(2)-mediated inhibition of TRPV1 in the whole-cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP(2) to neurons isolated from AKAP150 wild-type mice reduced PKA sensitization of TRPV1 compared with isolated neurons from AKAP150(-/-) mice. These findings suggest that PIP(2) degradation increases AKAP150 association with TRPV1 in the whole-cell environment, leading to sensitization of the receptor to nociceptive stimuli.

  10. Toll-like Receptor-mediated Down-regulation of the Deubiquitinase Cylindromatosis (CYLD) Protects Macrophages from Necroptosis in Wild-derived Mice*

    PubMed Central

    Schworer, Stephen A.; Smirnova, Irina I.; Kurbatova, Irina; Bagina, Uliana; Churova, Maria; Fowler, Trent; Roy, Ananda L.; Degterev, Alexei; Poltorak, Alexander

    2014-01-01

    Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis. PMID:24706750

  11. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    PubMed

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    PubMed Central

    Costantino, Benjamin F. B.; Bricker, Daniel K.; Alexandre, Kelly; Shen, Kate; Merriam, John R.; Antoniewski, Christophe; Callender, Jenna L.; Henrich, Vincent C.; Presente, Asaf; Andres, Andrew J.

    2008-01-01

    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component. PMID:18566664

  13. Ror2 Receptor Mediates Wnt11 Ligand Signaling and Affects Convergence and Extension Movements in Zebrafish*

    PubMed Central

    Bai, Yan; Tan, Xungang; Zhang, Haifeng; Liu, Chengdong; Zhao, Beibei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng

    2014-01-01

    The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish. PMID:24928507

  14. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  15. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  16. An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.

    PubMed

    Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A

    1996-06-01

    Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.

  17. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Protease-activated receptor 2-mediated protection of myocardial ischemia-reperfusion injury: role of transient receptor potential vanilloid receptors

    PubMed Central

    Zhong, Beihua

    2009-01-01

    Activation of the protease-activated receptor 2 (PAR2) or the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in cardiac sensory afferents containing calcitonin gene-related peptide (CGRP) and/or substance P (SP) has been proposed to play a protective role in myocardial ischemia-reperfusion (I/R) injury. However, the interaction between PAR2 and TRPV1 is largely unknown. Using gene-targeted TRPV1-null mutant (TRPV1−/−) or wild-type (WT) mice, we test the hypothesis that TRPV1 contributes to PAR2-mediated cardiac protection via increasing the release of CGRP and SP. Immunofluorescence labeling showed that TRPV1 coexpressed with PAR2, PKC-ε, or PKAc in cardiomyocytes, cardiac blood vessels, and perivascular nerves in WT but not TRPV1−/− hearts. WT or TRPV1−/− hearts were Langendorff perfused with the selective PAR2 agonist, SLIGRL, in the presence or absence of various antagonists, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). The recovery rate of coronary flow, the maximum rate of left ventricular pressure development, left ventricular end-diastolic pressure, and left ventricular developed pressure were evaluated after I/R. SLIGRL improved the recovery of hemodynamic parameters, decreased lactate dehydrogenase release, and reduced the infarct size in both WT and TRPV1−/− hearts (P < 0.05). The protection of SLIGRL was significantly surpassed for WT compared with TRPV1−/− hearts (P < 0.05). CGRP8–37, a selective CGRP receptor antagonist, RP67580, a selective neurokinin-1 receptor antagonist, PKC-ε V1–2, a selective PKC-ε inhibitor, or H-89, a selective PKA inhibitor, abolished SLIGRL protection by inhibiting the recovery of the rate of coronary flow, maximum rate of left ventricular pressure development, and left ventricular developed pressure, and increasing left ventricular end-diastolic pressure in WT but not TRPV1−/− hearts. Radioimmunoassay showed that SLIGRL increased the release

  19. Inhibitory Effects of Polyacetylene Compounds from Panax ginseng on Neurotrophin Receptor-Mediated Hair Growth.

    PubMed

    Suzuki, Aoi; Matsuura, Daisuke; Kanatani, Hirotoshi; Yano, Shingo; Tsunakawa, Mitsuo; Matsuyama, Shigeru; Shigemori, Hideyuki

    2017-01-01

    Neurotrophins play an important role in the control of the hair growth cycle. Therefore, neurotrophin receptor antagonists have therapeutic potential for the treatment of hair growth disorders. In this study, we investigated the inhibitory effect of Panax ginseng, a medicinal plant commonly used to treat alopecia, on the binding of neurotrophins to their receptors. In addition, we isolated and characterized the bioactive compounds of P. ginseng extracts. P. ginseng hexane extracts strongly inhibited brain-derived neurotrophic factor (BDNF)-TrkB and β-nerve growth factor (β-NGF)-p75 neurotrophin receptor (p75NTR) binding. Furthermore, we identified the following 6 polyacetylene compounds as the bioactive components in P. ginseng hexane extract: panaxynol (1), panaxydol (2), panaxydol chlorohydrin (3), 1,8-heptadecadiene-4,6-diyne-3,10-diol (4), panaxytriol (5), and dihydropanaxacol (6). In particular, compounds 4, 5, and 6 significantly inhibited BDNF-TrkB binding in a dose-dependent manner. To identify the structural component mediating the inhibitory effect, we investigated the effects of the hydroxyl moiety in these compounds. We found that the inhibitory effect of panaxytriol (5) was strong, whereas the inhibitory effect of Ac-panaxytriol (7) was relatively weak. Our findings suggest that P. ginseng-derived polyacetylenes with a hydroxyl moiety might provide therapeutic benefits to patients with hair growth disorders such as alopecia by inhibiting the binding of neurotrophins to their receptors. Although saponins have been proposed to be the primary mediators of the effects of P. ginseng on hair growth, this study revealed that polyacetylene compounds exert similar effects.

  20. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation.

    PubMed

    Di, Xiao-Jing; Wang, Ya-Juan; Han, Dong-Yun; Fu, Yan-Lin; Duerfeldt, Adam S; Blagg, Brian S J; Mu, Ting-Wei

    2016-04-29

    Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. FcgammaRIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation.

    PubMed

    Crowley, Jenni E; Stadanlick, Jason E; Cambier, John C; Cancro, Michael P

    2009-02-12

    These studies investigate how interactions between the BCR and FcgammaRIIB affect B lymphocyte stimulator (BLyS) recep-tor expression and signaling. Previous studies showed that BCR ligation up-regulates BLyS binding capacity in mature B cells, reflecting increased BLyS receptor levels. Here we show that FcgammaRIIB coaggregation dampens BCR-induced BLyS receptor up-regulation. This cross-regulation requires BCR and FcgammaRIIB coligation, and optimal action relies on the Src-homology-2 (SH2)-containing inositol 5 phosphase-1 (SHIP1). Subsequent to FcgammaRIIB/BCR coaggregation, the survival promoting actions of BLyS are attenuated, reflecting reduced BLyS receptor signaling capacity in terms of Pim 2 maintenance, noncanonical NF-kappaB activation, and Bcl-xL levels. These findings link the negative regulatory functions of FcgammaRIIB with BLyS-mediated B-cell survival.

  2. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation.

    PubMed

    He, YingYing; Lawlor, Nathan T; Newburg, David S

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2'-fucosyllactose attenuate TLR4 signaling; 3'-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. © 2016 American Society for Nutrition.

  3. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  5. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina.

    PubMed

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-10-20

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs.

  6. Airborne fine particulate matter causes murine bronchial hyperreactivity via MAPK pathway-mediated M3 muscarinic receptor upregulation.

    PubMed

    Wang, Rong; Xiao, Xue; Shen, Zhenxing; Cao, Lei; Cao, Yongxiao

    2017-02-01

    Regarding the human health effects, airborne fine particulate matter 2.5 (PM 2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM 2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM 2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M 3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM 2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M 3 muscarinic receptors in bronchi of PM 2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM 2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM 2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM 2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017. © 2016 Wiley Periodicals, Inc.

  7. An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors

    PubMed Central

    Chen, Xuewei; Zuo, Shimin; Schwessinger, Benjamin; Chern, Mawsheng; Canlas, Patrick E.; Ruan, Deling; Zhou, Xiaogang; Wang, Jing; Daudi, Arsalan; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.

    2014-01-01

    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR. PMID:24482436

  8. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II.

    PubMed

    Hunyady, László; Catt, Kevin J

    2006-05-01

    Angiotensin II (Ang II) activates a wide spectrum of signaling responses via the AT1 receptor (AT1R) that mediate its physiological control of blood pressure, thirst, and sodium balance and its diverse pathological actions in cardiovascular, renal, and other cell types. Ang II-induced AT1R activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol trisphosphate/Ca2+ signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kappaB pathway. The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling pathways, such as beta-arrestin-mediated MAPK activation and the Jak/STAT. Alterations in homo- or heterodimerization of the AT1R may also contribute to its pathophysiological roles. Many of the deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular system. AT1R-mediated overproduction of reactive oxygen species has potent growth-promoting, proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its signaling in cardiovascular cells, leukocytes, and monocytes. In addition to its roles in cardiovascular and renal disease, agonist-induced activation of the AT1R also participates in the development of metabolic diseases and promotes tumor progression and metastasis through its growth-promoting and proangiogenic activities. The recognition of Ang II's pathogenic actions is leading to novel clinical applications of angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their established therapeutic actions in essential hypertension.

  9. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    PubMed

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  10. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines.

    PubMed

    Hussain, Ashiq; Zhang, Mo; Üçpunar, Habibe K; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C

    2016-05-01

    The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly's high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans.

  11. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines

    PubMed Central

    Üçpunar, Habibe K.; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C.

    2016-01-01

    The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly’s high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans. PMID:27145030

  12. Tachykinin NK2 receptors predominantly mediate tachykinin-induced contractions in ovine trachea.

    PubMed

    Reynolds, A M; Reynolds, P; Holmes, M; Scicchitano, R

    1998-01-12

    In vitro studies were conducted to characterize the contractile effects of tachykinins in normal ovine trachea with a view in the future to compare tachykinin contractile responses in allergic tissue. Tracheal smooth muscle strips were prepared for in vitro studies of isometric contraction in response to cumulative addition of carbachol, acetylcholine, histamine, neuropeptide gamma, substance P, neurokinin A, neurokinin B, [Sar9, Met(O2)11]substance P, [Nle10]neurokinin A-(4-10), and [Succinyl-Asp6, Me-Phe8]substance P-(6-11) (senktide). The rank order of potency was neuropeptide gamma > carbachol > neurokinin A > or = [Nle10]neurokinin A-(4-10) > acetylcholine > or = histamine. Phosphoramidon enhanced the contractile response to neurokinin A and substance P, but not to neuropeptide gamma, [Sar9, Met(O2)11]substance P or senktide. Repeated cumulative concentration responses for acetylcholine, substance P, neurokinin A, [Sar9, Met(O2)11]substance P and histamine were also conducted to test for tachyphylaxis. No tachyphylaxis to acetylcholine, substance P, or neurokinin A was observed, however, [Sar9, Met(O2)11]substance P and histamine did exhibit tachyphylaxis. Atropine had no effect on tracheal contractions to neurokinin A and substance P, while [Sar9, Met(O2)11]substance P contractions were atropine sensitive. Pyrilamine did not affect substance P-induced tracheal smooth muscle contractions, indicating that the response to substance P was not mediated by histamine release. These results show that, in vitro, natural tachykinins induce tracheal smooth muscle contraction predominantly by a direct effect mediated by tachykinin NK2 receptors, and a small tachykinin NK1 receptor mediated cholinergic mechanism.

  13. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.

    PubMed

    Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man

    2015-10-01

    Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Single-stranded DNA condensed with poly-L-lysine results in nanometric particles that are significantly smaller, more stable in physiological ionic strength fluids and afford higher efficiency of gene delivery than their double-stranded counterparts.

    PubMed

    Molas, M; Bartrons, R; Perales, J C

    2002-08-15

    Nonviral gene transfer vectors have been actively studied in the past years in order to obtain structural entities with minimum size and defined shape. The final size of a gene transfer vector, which is compacted into unimolecular complexes, is directly proportional to the mass of the nucleic acid to be compacted. Thus, the purpose of this study was to assess the possibility of producing ssDNA vectors and their biophysical and biological characterization. We have obtained ssDNA/poly-L-lysine complexes that are significantly smaller than their double-stranded counterparts. We have also identified a lesser aggregative behavior of compacted single-stranded vs. double-stranded DNA vectors in the presence of physiological NaCl concentrations. Expression of compacted ssDNA is observed in hepatoma cell lines. Moreover, we have successfully delivered galactosylated ssDNA complexes into cells that express the asialoglycoprotein receptor via receptor-mediated endocytosis. The reduced size and biophysical behavior of ssDNA vectors may provide an advantage for transfection of eukaryotic cells.

  15. Selective enhancement of NMDA receptor-mediated locomotor hyperactivity by male sex hormones in mice.

    PubMed

    van den Buuse, Maarten; Low, Jac Kee; Kwek, Perrin; Martin, Sally; Gogos, Andrea

    2017-09-01

    Altered glutamate NMDA receptor function is implicated in schizophrenia, and gender differences have been demonstrated in this illness. This study aimed to investigate the interaction of gonadal hormones with NMDA receptor-mediated locomotor hyperactivity and PPI disruption in mice. The effect of 0.25 mg/kg of MK-801 on locomotor activity was greater in male mice than in female mice. Gonadectomy (by surgical castration) significantly reduced MK-801-induced hyperlocomotion in male mice, but no effect of gonadectomy was seen in female mice or on amphetamine-induced locomotor hyperactivity. The effect of MK-801 on prepulse inhibition of startle (PPI) was similar in intact and castrated male mice and in ovariectomized (OVX) female mice. In contrast, there was no effect of MK-801 on PPI in intact female mice. Forebrain NMDA receptor density, as measured with [ 3 H]MK-801 autoradiography, was significantly higher in male than in female mice but was not significantly altered by either castration or OVX. These results suggest that male sex hormones enhance the effect of NMDA receptor blockade on psychosis-like behaviour. This interaction was not seen in female mice and was independent of NMDA receptor density in the forebrain. Male sex hormones may be involved in psychosis by an interaction with NMDA receptor hypofunction.

  16. Different Classes of Glutamate Receptors Mediate Distinct Behaviors in a Single Brainstem Nucleus

    NASA Astrophysics Data System (ADS)

    Dye, John; Heiligenberg, Walter; Keller, Clifford H.; Kawasaki, Masashi

    1989-11-01

    We have taken advantage of the increasing understanding of glutamate neuropharmacology to probe mechanisms of well-defined vertebrate behaviors. Here we report a set of experiments that suggests distinct roles for two major classes of glutamate receptors in a discrete premotor nucleus of the brainstem. The medullary pacemaker nucleus of weakly electric fish is an endogenous oscillator that controls the electric organ discharge (EOD). Its regular frequency of firing is modulated during several distinct behaviors. The pacemaker nucleus continues firing regularly when isolated in vitro, and modulatory behaviors can be reproduced by stimulating the descending input pathway. Glutamate agonists applied to the pacemaker in vitro produced increases in frequency, while glutamate antagonists selectively blocked stimulus-induced modulations. Experiments with glutamate antagonists in the intact animal resulted in specific effects on two well-characterized behaviors. Our data indicate that these behaviors are separately mediated in the pacemaker by receptors displaying characteristics of the kainate/quisqualate and N-methyl-D-aspartate subtypes of glutamate receptor, respectively.

  17. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity.

    PubMed

    Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji

    2018-05-29

    Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic

  18. A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes

    PubMed Central

    Capra, Valérie; Accomazzo, Maria Rosa; Gardoni, Fabrizio; Barbieri, Silvia; Rovati, G. Enrico

    2010-01-01

    Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage–like U937 cells, extracellular nucleotides heterologously desensitize CysLT1 receptor (CysLT1R)-induced Ca2+ transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating Gi-coupled receptor (FPR1, BLT1) desensitize CysLT1R-induced Ca2+ response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to Gq, cross-desensitizes CysLT1R without the apparent involvement of any kinase. Interestingly, Gs-coupled receptors (β2AR, H1/2R, EP2/4R) are also able to desensitize CysLT1R response through activation of PKA. Heterologous desensitization seems to affect mostly the Gi-mediated signaling of the CysLT1R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals. PMID:19965602

  19. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring.

    PubMed

    Li, Weisheng; Lv, Juanxiu; Wu, Jue; Zhou, Xiuwen; Jiang, Lin; Zhu, Xiaolin; Tu, Qing; Tang, Jiaqi; Liu, Yanping; He, Axin; Zhong, Yuan; Xu, Zhice

    2016-07-01

    High-salt diet (HSD) is associated with cardiovascular diseases. This study aims at ascertaining the influence of maternal HSD on offspring's angiotensin II (ANG II)-mediated vasoconstriction and the underlying mechanisms. In comparison to a normal-salt diet, HSD used in pregnancy in rats changed the ultrastructures of the coronary artery (CA) in 5-month-old male offspring, and increased ANG II-mediated CA contractility. Measurement of [Ca(2+) ]i in CA using fluorescent fura-2, a Ca(2+) indicator, showed that ANG II-mediated increases in [Ca(2+) ]i were the same between HSD and normal-salt diet groups, but the ratio of diameter change/[Ca(2+) ]i induced by ANG II were significantly higher in HSD groups. Angiotensin II receptor type 1, not angiotensin II receptor type 2, caused ANG II-mediated vasoconstriction. Protein kinase C (PKC) inhibitor GF109203X attenuated the ANG II-mediated vasoconstriction, PKC agonist phorbol12,13-dibutyrate produced a greater contraction. There was an increase in PKCβ mRNA and the corresponding protein abundance in the offspring, whereas other PKC subunits PKCα, PKCδ, and PKCε did not change. Moreover, 20 kDa myosin light chain phosphorylation levels were increased in HSD group. Maternal HSD affected the developmental programing for the offspring CA, with increased ANG II-mediated vasoconstrictions. The angiotensin II receptor type 1-PKC-20 kDa myosin light chain phosphorylation pathway was the possible mediated cellular mechanism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  1. Pharmacological profile of the receptors that mediate external carotid vasoconstriction by 5-HT in vagosympathectomized dogs.

    PubMed Central

    Villalón, C. M.; Ramírez-San Juan, E.; Castillo, C.; Castillo, E.; López-Muñoz, F. J.; Terrón, J. A.

    1995-01-01

    1. 5-Hydroxytryptamine (5-HT) can produce vasodilatation or vasoconstriction of the canine external carotid bed depending upon the degree of carotid sympathetic tone. Hence, external carotid vasodilatation to 5-HT in dogs with intact sympathetic tone is primarily mediated by prejunctional 5-HT1-like receptors similar to the 5-HT1D subtype, which inhibit the carotid sympathetic outflow. The present investigation is devoted to the pharmacological analysis of the receptors mediating external carotid vasoconstriction by 5-HT in vagosympathectomized dogs. 2. Intracarotid (i.c.) infusions for 1 min of 5-HT (0.3, 1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent decreases in both external carotid blood flow and the corresponding conductance; both mean arterial blood pressure and heart rate remained unchanged during the infusions of 5-HT. These responses to 5-HT were resistant to blockade by antagonists at 5-HT2 (ritanserin) and 5-HT3/5-HT4 (tropisetron) receptors, but were partly blocked by the 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (0.3 mg kg-1); higher doses of methiothepin (1 and 3 mg kg-1) caused little, if any, further blockade. These methiothepin (3 mg kg-1)-resistant responses to 5-HT were not significantly antagonized by MDL 72222 (0.3 mg kg-1) or tropisetron (3 mg kg-1). 3. The external carotid vasoconstrictor effects of 5-HT were mimicked by the selective 5-HT1-like receptor agonist, sumatriptan (3, 10, 30 and 100 micrograms during 1 min, i.c.), which produced dose-dependent decreases in external carotid blood flow and the corresponding conductance; these effects of sumatriptan were dose-dependently antagonized by methiothepin (0.3, 1 and 3 mg kg-1), but not by 5-HT1D-like receptor blocking doses of metergoline (0.1 mg kg-1). 4. The above vasoconstrictor effects of 5-HT remained unaltered after administration of phentolamine, propranolol, atropine, hexamethonium, brompheniramine, cimetidine and haloperidol, thus excluding the

  2. Chicken adenovirus (CELO virus) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants.

    PubMed Central

    Cotten, M; Wagner, E; Zatloukal, K; Birnstiel, M L

    1993-01-01

    Delivery of genes via receptor-mediated endocytosis is severely limited by the poor exit of endocytosed DNA from the endosome. A large enhancement in delivery efficiency has been obtained by including human adenovirus particles in the delivery system. This enhancement is probably a function of the natural adenovirus entry mechanism, which must include passage through or disruption of the endosomal membrane. In an effort to identify safer virus particles useful in this application, we have tested the chicken adenovirus CELO virus for its ability to augment receptor-mediated gene delivery. We report here that CELO virus possesses pH-dependent, liposome disruption activity similar to that of human adenovirus type 5. Furthermore, the chicken adenovirus can be used to augment receptor-mediated gene delivery to levels comparable to those found for the human adenovirus when it is physically linked to polylysine ligand-condensed DNA particles. The chicken adenovirus has the advantage of being produced inexpensively in embryonated eggs, and the virus is naturally replication defective in mammalian cells, even in the presence of wild-type human adenovirus. Images PMID:8099627

  3. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    PubMed Central

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  4. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  5. GABAB receptor-mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro.

    PubMed

    Ulrich, D; Huguenard, J R

    1996-06-15

    1. Whole-cell voltage-clamp recordings were obtained from GABAergic neurones of rat nucleus reticularis thalami (NRT) in vitro to assess pre- and postsynaptic GABAB receptor-mediated responses. Presynaptic inhibition of GABA release was studied at terminals on local axon collaterals within NRT as well as on projection fibres in the somatosensory relay nuclei. 2. The GABAB receptor agonist (R)-baclofen (10 microM) reduced monosynaptically evoked GABAA-mediated inhibitory postsynaptic currents (IPSCs) in NRT and somatosensory relay cells to 11 and 12% of control, respectively. 3. Action potential-independent miniature IPSCs (mIPSCs) were observed in both cell types. Mean mIPSC amplitude was 20 pA in both NRT and relay cells at a holding potential of 0 mV. The mean mIPSC frequencies were 0.83 and 2.2 Hz in NRT and relay cells, respectively. Baclofen decreased mIPSP frequency by about half in each cell type without affecting amplitude. 4. Paired-burst inhibition of evoked IPSCs was studied in relay and NRT cells by applying pairs of 100 Hz stimulus bursts separated by 600 ms. The mean ratio of second to first peak IPSC amplitudes was 0.77. 5. In NRT cells baclofen induced a linear postsynaptic conductance increase of 0.82 nS with an associated reversal potential of -121 mV. A small (0.14 nS) GABAB component of the evoked IPSC was detected in only a minority of NRT cells (3 of 18). 6. All pre- and postsynaptic effects of baclofen, as well as PBI, were largely reversed by the specific GABAB receptor antagonist CGP 35348 (0.5 mM). 7. We conclude that activation of GABAB receptors in NRT leads to presynaptic autoinhibition of IPSCs in both NRT and relay cells, and to direct activation of a small linear K+ conductance. In addition our experiments suggest that reciprocal connectivity within NRT can be partially mediated by a small GABAB inhibitory event.

  6. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    PubMed

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  7. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaglenova, Julia; Vaithianathan, Thirumalini; Carpenter, Mark; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2007-06-01

    Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.

  9. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  10. Novel time-dependent vascular actions of {delta}{sup 9}-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, Saoirse E.; Tarling, Elizabeth J.; Bennett, Andrew J.

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, {delta}{sup 9}-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPAR{gamma}). In vitro, THC (10 {mu}M) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPAR{gamma} agonist rosiglitazone and was inhibited by the PPAR{gamma} antagonist GW9662 (1 {mu}M), but not the cannabinoid CB{sub 1} receptor antagonist AM251more » (1 {mu}M). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPAR{gamma}, transiently expressed in combination with retinoid X receptor {alpha} and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 {mu}M). In vitro incubation with THC (1 or 10 {mu}M, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPAR{gamma} ligands. The present results provide strong evidence that THC is a PPAR{gamma} ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.« less

  11. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation.

    PubMed

    Gao, Virginia; Suzuki, Akinobu; Magistretti, Pierre J; Lengacher, Sylvain; Pollonini, Gabriella; Steinman, Michael Q; Alberini, Cristina M

    2016-07-26

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long-term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  12. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less

  13. Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse

    PubMed Central

    Penatti, Carlos A A; Davis, Matthew C; Porter, Donna M; Henderson, Leslie P

    2010-01-01

    Gonadotropin–releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS, 17α-methyltestosterone (17αMT), significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSC) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially-localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers. PMID:20463213

  14. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin.

    PubMed

    Sivaraman, Balakrishnan; Latour, Robert A

    2011-08-01

    Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(®) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Regulation of ERRα Gene Expression by Estrogen Receptor Agonists and Antagonists in SKBR3 Breast Cancer Cells: Differential Molecular Mechanisms Mediated by G Protein-Coupled Receptor GPR30/GPER-1

    PubMed Central

    Li, Yin; Birnbaumer, Lutz; Teng, Christina T.

    2010-01-01

    In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987

  16. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway.

    PubMed

    Iatsenko, Igor; Kondo, Shu; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2016-11-15

    Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.

    PubMed

    Ruiz, Arnaud; Sachidhanandam, Shankar; Utvik, Jo Kristian; Coussen, Françoise; Mulle, Christophe

    2005-12-14

    Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout mice, we show that KA2 is essential for the inhibition of I(sAHP) in CA3 pyramidal cells by low nanomolar concentrations of kainate, in addition to GluR6. In GluR6(-/-) mice, both ionotropic synaptic transmission and inhibition of I(sAHP) by endogenous glutamate released from mossy fibers was lost. In contrast, inhibition of I(sAHP) was absent in KA2(-/-) mice despite the preservation of KAR-mediated EPSCs. These data indicate that the metabotropic action of KARs did not rely on the activation of a KAR-mediated inward current. Biochemical analysis of knock-out mice revealed that KA2 was required for the interaction of KARs with Galpha(q/11)-proteins known to be involved in I(sAHP) modulation. Finally, the ionotropic and metabotropic actions of KARs at mossy fiber synapses were differentially sensitive to the competitive glutamate receptor ligands kainate (5 nM) and kynurenate (1 mM). We propose a model in which KARs could operate in two modes at mossy fiber synapses: through a direct ionotropic action of GluR6, and through an indirect G-protein-coupled mechanism requiring the binding of glutamate to KA2.

  18. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina

    PubMed Central

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-01-01

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs. PMID:26438838

  19. Receptor-mediated internalization of [3H]-neurotensin in synaptosomal preparations from rat neostriatum.

    PubMed

    Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain

    2002-06-01

    Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.

  20. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart.

    PubMed

    Liu, G S; Richards, S C; Olsson, R A; Mullane, K; Walsh, R S; Downey, J M

    1994-07-01

    Agonists selective for the A1 adenosine receptor mimic the protective effect of ischaemic preconditioning against infarction in the rabbit heart. Unselective adenosine antagonists block this protection but, paradoxically, the A1 adenosine receptor selective antagonist 8-cyclopentyl- 1,3-dipropylxanthine (DPCPX) does not. The aim of this study was to test the hypothesis that the newly described A3 adenosine receptor, which has an agonist profile similar to the A1 receptor but is insensitive to DPCPX, might mediate preconditioning. Isolated rabbit hearts perfused with Krebs buffer experienced 30 min of regional ischaemia followed by 120 min of reperfusion. Infarct size was measured by tetrazolium staining. In control hearts infarction was 32.2(SEM 1.5)% of the risk zone. Preconditioning by 5 min ischaemia and 10 min reperfusion reduced infarct size to 8.8(2.3)%. Replacing the regional ischaemia with 5 min perfusion with 10 microM adenosine or 65 nM N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA), an adenosine A3 receptor agonist, was equally protective. The unselective antagonist 8-p-sulphophenyl theophylline at 100 microM abolished protection by preconditioning, adenosine, and APNEA, but 200 nM DPCPX did not block protection by any of the interventions. Likewise the potent but unselective A3 receptor antagonist 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine (BW A1433) completely blocked protection from ischaemic preconditioning. Because protection against infarction afforded by ischaemic preconditioning, adenosine, or the A3 receptor agonist APNEA could not be blocked by DPCPX and because the potent A3 receptor antagonist BW A1433 blocked protection from ischaemic preconditioning, these data indicate that the protection of preconditioning is not exclusively mediated by the adenosine A1 receptor in rabbit heart and could involve the A3 receptor.

  1. A CONSTITUTIVELY ACTIVE FORM OF NEUROKININ 1 RECEPTOR AND NEUROKININ 1 RECEPTOR-MEDIATED APOPTOSIS IN GLIOBLASTOMAS

    PubMed Central

    Akazawa, Toshimasa; Kwatra, Shawn G.; Goldsmith, Laura E.; Richardson, Mark D.; Cox, Elizabeth A.; Sampson, John H.; Kwatra, Madan M.

    2009-01-01

    Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P (SP) increases Akt phosphorylation by 2.5-fold, with an EC50 of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with SP reduces apoptosis by 53 ± 1% (P < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 ± 16 % (P < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase (PARP). Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and PI-3-kinase, a partial involvement of epidermal growth factor receptor (EGFR), and no involvement of MEK. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis. PMID:19519779

  2. Prostaglandin E2 Regulates Its Own Inactivating Enzyme, 15-PGDH, by EP2 Receptor-Mediated Cervical Cell-Specific Mechanisms

    PubMed Central

    Kishore, A. Hari; Owens, David

    2014-01-01

    Context: Prostaglandins play important roles in parturition and have been used to induce cervical ripening and labor. Prior to cervical ripening at term, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is highly expressed in the cervix and metabolizes cyclooxygenase-2-mediated increases in active prostaglandin E2 (PGE2) to inactive 15-keto PGE2. At term, 15-PGDH gene expression decreases and PGE2 accumulates, leading to cervical ripening and labor. Previously, we found that the cervical isoform of microphthalmia-associated transcription factor (MiTF-CX) serves as a progestational transcription factor that represses IL-8 and hypoxia-mediated increases in cyclooxygenase-2. Objective: We tested the hypothesis that PGE2 regulates its own inactivation through MiTF-CX. Design: We used human cervical stromal cells to investigate the regulation of 15-PGDH. Setting: This was a laboratory-based study using cells from clinical tissue samples. Main Outcome Measures: We evaluated the mechanisms by which PGE2 regulates 15-PGDH in human cervical stromal cells. Results: PGE2 repressed MiTF-CX and 15-PGDH, whereas ectopic overexpression of MiTF-CX induced 15-PGDH expression levels. Stabilization of HIF-1α by deferoxamine resulted in concomitant down-regulation of MiTF-CX and 15-PGDH. Ectopic overexpression of MiTF-CX abrogated PGE2- and deferoxamine-mediated loss of MiTF-CX and 15-PGDH. PGE2-induced loss of MiTF-CX and 15-PGDH was mediated through prostaglandin E2 receptor (EP2) receptors (PTGER2), but not cAMP. Conclusions: The 15-PGDH gene is a MiTF-CX target gene in cervical stromal cells and is down-regulated by PGE2 through EP2 receptors. The findings suggest that EP2 receptor-specific antagonists may be used as an adjunct to present clinical management for the prevention of preterm cervical ripening and preterm labor. PMID:24471568

  3. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  4. Chronic Neuropathic Pain in Mice Reduces μ-Opioid Receptor-Mediated G-protein Activity in the Thalamus

    PubMed Central

    Hoot, Michelle R.; Sim-Selley, Laura J.; Selley, Dana E.; Scoggins, Krista L.; Dewey, William L.

    2011-01-01

    Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4, Gly5-OH] enkephalin (DAMGO)-stimulated [35S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [35S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC50 values. In PAG, however, DAMGO Emax values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [3H]Naloxone binding in membranes of the thalamus showed no significant differences in Bmax values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain. PMID:21762883

  5. Mononuclear Phagocyte-Mediated Antifungal Immunity: The Role of Chemotactic Receptors and Ligands

    PubMed Central

    Swamydas, Muthulekha; Break, Timothy J.; Lionakis, Michail S.

    2015-01-01

    Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens. PMID:25715741

  6. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis.

    PubMed

    Kimura, Yoshitaka; Inoue, Asuka; Hangai, Sho; Saijo, Shinobu; Negishi, Hideo; Nishio, Junko; Yamasaki, Sho; Iwakura, Yoichiro; Yanai, Hideyuki; Taniguchi, Tadatsugu

    2016-12-06

    Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.

  7. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  8. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis.

    PubMed

    Chen, Song; Yin, Lei; Xu, Zheng; An, Feng-Mao; Liu, Ai-Ran; Wang, Ying; Yao, Wen-Bing; Gao, Xiang-Dong

    2016-01-26

    Our previous study has demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist could protect neurons from advanced glycation end products (AGEs) toxicity in vitro. However, further studies are still needed to clarify the molecular mechanism of this GLP-1 receptor -dependent action. The present study mainly focused on the effect of GLP-1 receptor agonists against the receptor for advanced glycation end products (RAGE) signal pathway and the mechanism underlying this effect of GLP-1. Firstly the data based on the SH-GLP-1R(+) and SH-SY5Y cells confirmed our previous finding that GLP-1 receptor could mediate the protective effect against AGEs. The assays of the protein activity and of the mRNA level revealed that apoptosis-related proteins such as caspase-3, caspase-9, Bax and Bcl-2 were involved. Additionally, we found that both GLP-1 and exendin-4 could reduce AGEs-induced reactive oxygen species (ROS) accumulation by suppressing the activity of nicotinamide adenine dinucleotide phosphate-oxidase. Interestingly, we also found that GLP-1 receptor activation could attenuate the abnormal expression of the RAGE in vitro and in vivo. Furthermore, based on the analysis of the protein expression and translocation level of transcription factor nuclear factor-κB (NF-κB), and the use of GLP-1 receptor antagonist exendin(9-39) and NF-κB inhibitor pyrrolidine dithiocarbamate, we found that the effect mediated by GLP-1 receptor could alleviate the over expression of RAGE induced by ligand via the suppression of NF-κB. In summary, the results indicated that inhibiting RAGE/oxidative stress was involved in the protective effect of GLP-1 on neuron cells against AGEs induced apoptosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor.

    PubMed

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-03-01

    Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. © 2013 The British Pharmacological Society.

  10. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor

    PubMed Central

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-01-01

    BACKGROUND AND PURPOSE Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. PMID:24670149

  11. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons.

    PubMed

    Foley, Lisa S; Fullerton, David A; Mares, Joshua; Sungelo, Mitchell; Weyant, Michael J; Cleveland, Joseph C; Reece, T Brett

    2017-12-01

    Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p < 0.01). Additionally, EPO-mediated neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p < 0.01). EPO attenuates neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  13. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  14. AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase 3.

    PubMed

    Liu, Hsueh-Ning; Giasson, Benoit I; Mushynski, Walter E; Almazan, Guillermina

    2002-07-01

    The molecular mechanisms underlying AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor-mediated excitotoxicity were characterized in rat oligodendrocyte progenitor cultures. Activation of AMPA receptors, in the presence of cyclothiazide to selectively block desensitization, produced a massive Ca(2+) influx and cytotoxicity which were blocked by the antagonists CNQX and GYKI 52466. A role for free radical generation in oligodendrocyte progenitor cell death was deduced from three observations: (i) treatment with AMPA agonists decreased intracellular glutathione; (ii) depletion of intracellular glutathione with buthionine sulfoximine potentiated cell death; and (iii) the antioxidant N -acetylcysteine replenished intracellular glutathione and protected cultures from AMPA receptor-mediated toxicity. Cell death displayed some characteristics of apoptosis, including DNA fragmentation, chromatin condensation and activation of caspase-3 and c-Jun N-terminal kinase (JNK). A substrate of calpain and caspase-3, alpha-spectrin, was cleaved into characteristic products following treatment with AMPA agonists. In contrast, inhibition of either caspase-3 by DEVD-CHO or calpain by PD 150606 protected cells from excitotoxicity. Our results indicate that overactivation of AMPA receptors causes apoptosis in oligodendrocyte progenitors through mechanisms involving Ca(2+) influx, depletion of glutathione, and activation of JNK, calpain, and caspase-3.

  15. Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber-Induced Heterosynaptic Pain Plasticity

    PubMed Central

    Pernía-Andrade, Alejandro J.; Kato, Ako; Witschi, Robert; Nyilas, Rita; Katona, István; Freund, Tamás F.; Watanabe, Masahiko; Filitz, Jörg; Koppert, Wolfgang; Schüttler, Jürgen; Ji, Guangchen; Neugebauer, Volker; Marsicano, Giovanni; Lutz, Beat; Vanegas, Horacio; Zeilhofer, Hanns Ulrich

    2010-01-01

    Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to chronic pain. Pathways, which reduce synaptic inhibition in inflammatory and neuropathic pain states, have been identified, but central hyperalgesia and diminished dorsal horn synaptic inhibition also occur in the absence of inflammation or neuropathy, solely triggered by intense nociceptive (C–fiber) input to the spinal dorsal horn. We found that endocannabinoids produced upon strong nociceptive stimulation activated CB1 receptors on inhibitory dorsal horn neurons to reduce the synaptic release of GABA and glycine and thus rendered nociceptive neurons excitable by non-painful stimuli. Spinal endocannabinoids and CB1 receptors on inhibitory dorsal horn interneurons act as mediators of heterosynaptic pain sensitization and play an unexpected role in dorsal horn pain controlling circuits. PMID:19661434

  16. Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress

    PubMed Central

    Younessi, Parisa; Yoonessi, Ali

    2011-01-01

    Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alzheimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progression of AD. It is also suggested that interaction between an advanced glycation end product (AGE) and its receptor (RAGE) results in glial activation as well as cytokine release and reactive oxygen species release. The use of antioxidants, receptor mediated compounds and reactive oxygen species scavenging enzyme produce an opportunity to intervene with AGE-RAGE signaling pathway, and thereby to slow down the progression of aging-related diseases. PMID:23358382

  17. Citrate Modulates the Regulation by Zn2+ of N-Methyl-D-Aspartate Receptor-Mediated Channel Current and Neurotransmitter Release

    NASA Astrophysics Data System (ADS)

    Westergaard, Niels; Banke, Tue; Wahl, Philip; Sonnewald, Ursula; Schousboe, Arne

    1995-04-01

    The effect of the two metal-ion chelators EDTA and citrate on the action of N-methyl-D-aspartate (NMDA) receptors was investigated by use of cultured mouse cerebellar granule neurons and Xenopus oocytes, respectively, to monitor either NMDA-evoked transmitter release or membrane currents. Transmitter release from the glutamatergic neurons was determined by superfusion of the cells after preloading with the glutamate analogue D-[^3H]aspartate. The oocytes were injected with mRNA isolated from mouse cerebellum and, after incubation to allow translation to occur, currents mediated by NMDA were recorded electrophysiologically by voltage clamp at a holding potential of -80 mV. It was found that citrate as well as EDTA could attenuate the inhibitory action of Zn2+ on NMDA receptor-mediated transmitter release from the neurons and membrane currents in the oocytes. These effects were specifically related to the NMDA receptor, since the NMDA receptor antagonist MK-801 abolished the action and no effects of Zn2+ and its chelators were observed when kainate was used to selectively activate non-NMDA receptors. Since it was additionally demonstrated that citrate (and EDTA) preferentially chelated Zn2+ rather than Ca2+, the present findings strongly suggest that endogenous citrate released specifically from astrocytes into the extracellular space in the brain may function as a modulator of NMDA receptor activity. This is yet another example of astrocytic influence on neuronal activity.

  18. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome.

    PubMed

    Costa, Lara; Spatuzza, Michela; D'Antoni, Simona; Bonaccorso, Carmela M; Trovato, Chiara; Musumeci, Sebastiano A; Leopoldo, Marcello; Lacivita, Enza; Catania, Maria V; Ciranna, Lucia

    2012-12-01

    Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent learning through serotonin 1A (5-HT1A) and serotonin 7 (5-HT7) receptors; the underlying mechanisms are unknown. We used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1 KO mice and immunocytochemistry and biotinylation assay to study related changes of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) glutamate receptor surface expression. Application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY-100635, was abolished by SB-269970 (5-HT7 receptor antagonist), and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased mGluR-mediated reduction of AMPA glutamate receptor 2 (GluR2) subunit surface expression in hippocampal slices and cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1 KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased mGluR-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Serotonin 7 receptor activation reverses metabotropic glutamate receptor-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1 KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal.

    PubMed

    Maeda, A; Kurosaki, M; Ono, M; Takai, T; Kurosaki, T

    1998-04-20

    Paired immunoglobulin-like receptor B (PIR-B) (p91) molecule has been proposed to function as an inhibitory receptor in B cells and myeloid lineage cells. We demonstrate here that the cytoplasmic region of PIR-B is capable of inhibiting B cell activation. Mutational analysis of five cytoplasmic tyrosines indicate that tyrosine 771 in the motif VxYxxL plays the most crucial role in mediating the inhibitory signal. PIR-B-mediated inhibition was markedly reduced in the SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 double-deficient DT40 B cells, whereas this inhibition was unaffected in the inositol polyphosphate 5'-phosphatase SHIP-deficient cells. These data demonstrate that PIR-B can negatively regulate B cell receptor activation and that this PIR-B-mediated inhibition requires redundant functions of SHP-1 and SHP-2.

  20. α Actinin 4 (ACTN4) Regulates Glucocorticoid Receptor-mediated Transactivation and Transrepression in Podocytes*

    PubMed Central

    Zhao, Xuan; Khurana, Simran; Charkraborty, Sharmistha; Tian, Yuqian; Sedor, John R.; Bruggman, Leslie A.; Kao, Hung-Ying

    2017-01-01

    Glucocorticoids are a general class of steroids that possess renoprotective activity in glomeruli through their interaction with the glucocorticoid receptor. However, the mechanisms by which glucocorticoids ameliorate proteinuria and glomerular disease are not well understood. In this study, we demonstrated that α actinin 4 (ACTN4), an actin-cross-linking protein known to coordinate cytoskeletal organization, interacts with the glucocorticoid receptor (GR) in the nucleus of human podocytes (HPCs), a key cell type in the glomerulus critical for kidney filtration function. The GR-ACTN4 complex enhances glucocorticoid response element (GRE)-driven reporter activity. Stable knockdown of ACTN4 by shRNA in HPCs significantly reduces dexamethasone-mediated induction of GR target genes and GRE-driven reporter activity without disrupting dexamethasone-induced nuclear translocation of GR. Synonymous mutations or protein expression losses in ACTN4 are associated with kidney diseases, including focal segmental glomerulosclerosis, characterized by proteinuria and podocyte injury. We found that focal segmental glomerulosclerosis-linked ACTN4 mutants lose their ability to bind liganded GR and support GRE-mediated transcriptional activity. Mechanistically, GR and ACTN4 interact in the nucleus of HPCs. Furthermore, disruption of the LXXLL nuclear receptor-interacting motif present in ACTN4 results in reduced GR interaction and dexamethasone-mediated transactivation of a GRE reporter while still maintaining its actin-binding activity. In contrast, an ACTN4 isoform, ACTN4 (Iso), that loses its actin-binding domain is still capable of potentiating a GRE reporter. Dexamethasone induces the recruitment of ACTN4 and GR to putative GREs in dexamethasone-transactivated promoters, SERPINE1, ANGPLT4, CCL20, and SAA1 as well as the NF-κB (p65) binding sites on GR-transrepressed promoters such as IL-1β, IL-6, and IL-8. Taken together, our data establish ACTN4 as a transcriptional co

  1. ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the glucocorticoid receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; Chen, Linfeng; Liu, Yunde

    2009-12-04

    The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 didmore » not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.« less

  2. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Marceline; Zheng, Yi-Min; Albritton, Lorraine M.

    2011-12-20

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two aminomore » acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.« less

  3. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  4. Neurokinin subtype receptors mediating substance P contraction in immature rabbit airways.

    PubMed

    Kazem, E; John, C; Tanaka, D T

    1996-01-01

    Two-week-old rabbit tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) segments were placed in organ baths, and isometric contractions to substance P (SP) were obtained. In the presence of phosphoramidon (PHOS), a neutral endopeptidase inhibitor, BSM segments were significantly more reactive and sensitive to SP than TSM segments. Neither neostigmine (NEO) nor atropine (ATR) eliminated these regional differences. Airway contractile responses to: 1) Senktide (NK-3 agonist); 2) neurokinin A (NKA, a NK-2 agonist); and 3) Septide (a highly selective NK-1 agonist) were separately obtained. In the presence of PHOS and NEO, Senktide was virtually inactive in both BSM and TSM. In the presence of PHOS, NEO, and ATR, NKA was equipotent in all airway segments; in contrast, the Septide response was significantly more reactive in BSM than in TSM segments. After inhibition of NK-1 activity with GR 82334, a competitive NK-1 receptor antagonist, the regional differences in SP reactivity were greatly diminished. This latter indication of a NK-1 contribution was confirmed using Septide-mediated inactivation of NK-1 receptors whereby the regional differences in airway sensitivity to SP were eliminated. These findings indicate that both endogenous neutral endopeptidase activity as well as NK-1 and NK-2 receptor influences may modulate the contractile responses to SP in immature rabbit airways.

  5. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.

    PubMed

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-09-30

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.

  6. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling

    PubMed Central

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-01-01

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling. PMID:21909076

  7. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferasemore » I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.« less

  8. Niacin activates the G protein estrogen receptor (GPER)-mediated signalling.

    PubMed

    Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Lappano, Rosamaria; Rosano, Camillo; Abonante, Sergio; Maggiolini, Marcello

    2014-07-01

    Nicotinic acid, also known as niacin, is the water soluble vitamin B3 used for decades for the treatment of dyslipidemic diseases. Its action is mainly mediated by the G protein-coupled receptor (GPR) 109A; however, certain regulatory effects on lipid levels occur in a GPR109A-independent manner. The amide form of nicotinic acid, named nicotinamide, acts as a vitamin although neither activates the GPR109A nor exhibits the pharmacological properties of nicotinic acid. In the present study, we demonstrate for the first time that nicotinic acid and nicotinamide bind to and activate the GPER-mediated signalling in breast cancer cells and cancer-associated fibroblasts (CAFs). In particular, we show that both molecules are able to promote the up-regulation of well established GPER target genes through the EGFR/ERK transduction pathway. As a biological counterpart, nicotinic acid and nicotinamide induce proliferative and migratory effects in breast cancer cells and CAFs in a GPER-dependent fashion. Moreover, nicotinic acid prevents the up-regulation of ICAM-1 triggered by the pro-inflammatory cytokine TNF-α and stimulates the formation of endothelial tubes through GPER in HUVECs. Together, our findings concerning the agonist activity for GPER displayed by both nicotinic acid and nicotinamide broaden the mechanisms involved in the biological action of these molecules and further support the potential of a ligand to induce different responses mediated in a promiscuous manner by distinct GPCRs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cross-talk between Carboxypeptidase M and the Kinin B1 Receptor Mediates a New Mode of G Protein-coupled Receptor Signaling*

    PubMed Central

    Zhang, Xianming; Tan, Fulong; Brovkovych, Viktor; Zhang, Yongkang; Skidgel, Randal A.

    2011-01-01

    G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys9-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase. PMID:21454694

  10. Synthesis and biological evaluation of (99m)Tc-DMP-NGA as a novel hepatic asialoglycoprotein receptor imaging agent.

    PubMed

    Yang, Wenjiang; Mou, Tiantian; Zhang, Xianzhong; Wang, Xuebin

    2010-01-01

    A novel bifunctional coupling agents-biomolecular compound DMP-NGA was prepared by coupling the SATP with galactosyl-neoglycoalbumin (NGA). The DMP-NGA was labeled with technetium-99m, and the radiochemical purity in excess of 98% after purified with HPLC. In vivo biodistribution showed that (99m)Tc-DMP-NGA had very high initial liver uptake with good retention. The liver accumulated 99.35+/-9.77%, 74.25+/-3.03%, 52.47+/-7.58% of the injected dose per gram at 5, 30 and 120min after injection, respectively. It had relative higher initial liver uptake and much lower blood uptake than that of (99m)Tc-GSA. The liver/blood ratio reached 83.4 at 30min post-injection, while the ratio of liver/kidney was 14.4. The uptakes in other organs in the abdomen were also slightly low. In addition, the hepatic uptake of (99m)Tc-DMP-NGA was blocked by preinjecting free GSA as blocking agent. The result indicates that (99m)Tc-DMP-NGA has specific binding to ASGP receptor. Images acquired with Kodak In-Vivo Imaging System FX Pro showed significant difference before and after inhibition. The promising biological properties of (99m)Tc-DMP-NGA afford potential applications in liver receptor imaging for assessment of hepatocyte function.

  11. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  12. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  13. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  14. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol.

    PubMed

    Eaton, Megan M; Germann, Allison L; Arora, Ruby; Cao, Lily Q; Gao, Xiaoyi; Shin, Daniel J; Wu, Albert; Chiara, David C; Cohen, Jonathan B; Steinbach, Joe Henry; Evers, Alex S; Akk, Gustav

    2016-01-01

    Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the &quot;+&quot; of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the &quot;-&quot; side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. We used two-electrode voltage clamp to determine the functional effects of mutations to the "+" and "-" sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.

  15. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol

    PubMed Central

    Eaton, Megan M.; Germann, Allison L.; Arora, Ruby; Cao, Lily Q.; Gao, Xiaoyi; Shin, Daniel J.; Wu, Albert; Chiara, David C.; Cohen, Jonathan B.; Steinbach, Joe Henry; Evers, Alex S.; Akk, Gustav

    2016-01-01

    Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the 
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol. PMID:26830963

  16. Role of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors for Herpes Simplex Virus 1 on Primary Murine Dermal Fibroblasts.

    PubMed

    Petermann, Philipp; Rahn, Elena; Thier, Katharina; Hsu, Mei-Ju; Rixon, Frazer J; Kopp, Sarah J; Knebel-Mörsdorf, Dagmar

    2015-09-01

    The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of

  17. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    PubMed

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  18. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    PubMed Central

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  19. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    PubMed Central

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  20. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions.

    PubMed

    Wang, Yue; Shang, Yuan; Li, Jianchao; Chen, Weidi; Li, Gang; Wan, Jun; Liu, Wei; Zhang, Mingjie

    2018-05-11

    The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases. © 2018, Wang et al.

  1. Pharmacological characterization of the 5-HT receptor-mediated contraction in the mouse isolated ileum

    PubMed Central

    Tuladhar, B R; Womack, M D; Naylor, R J

    2000-01-01

    The pharmacological characterization of a 5-HT receptor-mediated contractile response in the mouse isolated ileum is described. In the presence of methysergide (1 μM), 5-hydroxytryptamine (5-HT, 0.3–100 μM) produced phasic concentration-dependent contractions of segments of the mouse isolated ileum with a pEC50 value of 5.47±0.09. The 5-HT3 receptor selective agonists m-chlorophenylbiguanide (0.3–100 μM, pEC50 5.81±0.04), 1-phenylbiguanide (3–100 μM, pEC50 5.05±0.06) and 2-methyl-5-HT (3–100 μM, pEC50 5.00±0.07) acted as full agonists to induce contractile responses. 5-methoxytryptamine (0.1–100 μM), RS 67506 (0.1–100 μM) and α-methyl-5-HT (0.1–100 μM) failed to mimic the 5-HT responses. The contractile response to 5-HT was not antagonized by either 5-HT2 receptor antagonists ritanserin (0.1 μM) or ketanserin (1 μM) nor the 5-HT4 receptor antagonist SB 204070 (0.1 μM). The 5-HT3 receptor selective antagonists granisetron (0.3–1 nM), tropisetron (1–10 nM), ondansetron (10 nM–1 μM) and MDL 72222 (10 nM–1 μM) caused rightward displacement of the concentration-response curves to 5-HT. The lower concentrations of the antagonists caused approximate parallel rightward shifts of the concentration-response curves to 5-HT with apparent pKB values for granisetron (9.70±0.39), tropisetron (9.18±0.20), ondansetron (8.84±0.24) and MDL 72222 (8.65±0.35). But higher concentrations of antagonists resulted in a progressive reduction in the maximum responses. The contractile response to 5-HT was abolished by tetrodotoxin (0.3 μM); atropine (0.1 and 1 μM) decreased the maximum response of the 5-HT concentration-response curve by approximately 65%. It is concluded that a neuronally located 5-HT3 receptor mediates a contractile response to 5-HT in the mouse ileum. The 5-HT3 receptor in the mouse ileum has a different pharmacological profile to that reported for the guinea-pig ileum. PMID:11139451

  2. Somatostatin sst2 receptor-mediated inhibition of parietal cell function in rat isolated gastric mucosa.

    PubMed Central

    Wyatt, M. A.; Jarvie, E.; Feniuk, W.; Humphrey, P. P.

    1996-01-01

    1. The aim of this study was to determine the location and functional characteristics of the somatostatin (SRIF) receptor type(s) which mediate inhibition of acid secretion in rat isolated gastric mucosa. 2. Gastrin (1 nM-1 microM), dimaprit (10 microM-300 microM) and isobutyl methylxanthine (IBMX, 1 microM-100 microM) all caused concentration-dependent increases in acid output. Responses to gastrin were almost completely inhibited by ranitidine (10 microM) at a concentration which abolished the secretory response to dimaprit. In contrast, responses to IBMX were not changed by ranitidine suggesting that IBMX acts directly on the parietal cell and not indirectly by releasing histamine from enterochromaffin-like (ECL) cells. 3. SRIF-14 (1 nM-1 microM) had no effect on basal acid output, but inhibited acid output produced by gastrin, dimaprit and IBMX in a concentration-dependent manner with respective EC50 values of 46, 54 and 167 nM. The peptidase inhibitors, amastatin (10 microM) and phosphoramidon (1 microM), had no effect on SRIF-induced inhibition of dimaprit stimulated gastric acid secretion. 4. The inhibitory effect of a range of SRIF analogues on gastrin-, dimaprit- and IBMX-induced acid secretion was also studied. Irrespective of the secretagogue used to increase acid output, the rank order of potencies was similar (BIM-23027 = seglitide = octreotide > SRIF-14 = SRIF-28 > L-362,855). The linear peptide BIM-23056 was devoid of agonist or antagonist activity in concentrations up to 1 microM. 5. The sst2 receptor selective peptides, BIM-23027, seglitide and octreotide were the most potent inhibitors of gastrin-, dimaprit- and IBMX-induced acid secretion suggesting that SRIF receptors resembling the recombinant sst2 receptors are involved. Furthermore, since dimaprit and IBMX stimulate gastric acid secretion independently of histamine release, sst2 receptor-mediated inhibition must occur at the level of the parietal cell itself. PMID:8922739

  3. Somatostatin sst2 receptor-mediated inhibition of parietal cell function in rat isolated gastric mucosa.

    PubMed

    Wyatt, M A; Jarvie, E; Feniuk, W; Humphrey, P P

    1996-11-01

    1. The aim of this study was to determine the location and functional characteristics of the somatostatin (SRIF) receptor type(s) which mediate inhibition of acid secretion in rat isolated gastric mucosa. 2. Gastrin (1 nM-1 microM), dimaprit (10 microM-300 microM) and isobutyl methylxanthine (IBMX, 1 microM-100 microM) all caused concentration-dependent increases in acid output. Responses to gastrin were almost completely inhibited by ranitidine (10 microM) at a concentration which abolished the secretory response to dimaprit. In contrast, responses to IBMX were not changed by ranitidine suggesting that IBMX acts directly on the parietal cell and not indirectly by releasing histamine from enterochromaffin-like (ECL) cells. 3. SRIF-14 (1 nM-1 microM) had no effect on basal acid output, but inhibited acid output produced by gastrin, dimaprit and IBMX in a concentration-dependent manner with respective EC50 values of 46, 54 and 167 nM. The peptidase inhibitors, amastatin (10 microM) and phosphoramidon (1 microM), had no effect on SRIF-induced inhibition of dimaprit stimulated gastric acid secretion. 4. The inhibitory effect of a range of SRIF analogues on gastrin-, dimaprit- and IBMX-induced acid secretion was also studied. Irrespective of the secretagogue used to increase acid output, the rank order of potencies was similar (BIM-23027 = seglitide = octreotide > SRIF-14 = SRIF-28 > L-362,855). The linear peptide BIM-23056 was devoid of agonist or antagonist activity in concentrations up to 1 microM. 5. The sst2 receptor selective peptides, BIM-23027, seglitide and octreotide were the most potent inhibitors of gastrin-, dimaprit- and IBMX-induced acid secretion suggesting that SRIF receptors resembling the recombinant sst2 receptors are involved. Furthermore, since dimaprit and IBMX stimulate gastric acid secretion independently of histamine release, sst2 receptor-mediated inhibition must occur at the level of the parietal cell itself.

  4. Release inhibitory receptors activation favours the A2A-adenosine receptor-mediated facilitation of noradrenaline release in isolated rat tail artery

    PubMed Central

    Fresco, Paula; Diniz, Carmen; Queiroz, Glória; Gonçalves, Jorge

    2002-01-01

    Interactions between A2A-adenosine receptors and α2-, A1- and P2- release-inhibitory receptors, on the modulation of noradrenaline release were studied in isolated rat tail artery. Preparations were labelled with [3H]-noradrenaline, superfused with desipramine-containing medium, and stimulated electrically (100 pulses at 5 Hz or 20 pulses at 50 Hz).Blockade of α2-autoreceptors with yohimbine (1 μM) increased tritium overflow elicited by 100 pulses at 5 Hz but not by 20 pulses at 50 Hz.The selective A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680; 1 – 100 nM) enhanced tritium overflow elicited by 100 pulses at 5 Hz. Yohimbine prevented the effect of CGS 21680, which was restored by the A1-receptor agonist N6-cyclopentyladenosine (CPA; 100 nM) or by the P2-receptor agonist 2-methylthioadenosine triphosphate (2-MeSATP; 80 μM).CGS 21680 (100 nM) failed to increase tritium overflow elicited by 20 pulses at 50 Hz. The α2-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304; 30 nM), the A1-receptor agonist CPA (100 nM) or the P2-receptor agonist 2-MeSATP (80 μM) reduced tritium overflow. In the presence of these agonists CGS 21680 elicited a facilitation of tritium overflow.Blockade of potassium channels with tetraethylammonium (TEA; 5 mM) increased tritium overflow elicited by 100 pulses at 5 Hz to values similar to those obtained in the presence of yohimbine but did not prevent the effect of CGS 21680 (100 nM) on tritium overflow.It is concluded that, in isolated rat tail artery, the facilitation of noradrenaline release mediated by A2A-adenosine receptors is favoured by activation of release inhibitory receptors. PMID:12010771

  5. A novel immunization method to induce cytotoxic T-lymphocyte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D.

    PubMed

    Cruz, P E; Khalil, P L; Dryden, T D; Chiou, H C; Fink, P S; Berberich, S J; Bigley, N J

    1999-03-05

    DNA molecules complexed with an asialoglycoprotein-polycation conjugate, consisting of asialoorosomucoid (ASOR) coupled to poly-L-lysine, can enter hepatocytes which bear receptors for ASOR. We used this receptor-mediated DNA delivery system to deliver plasmid DNA encoding glycoprotein D (gD) of herpes simplex virus type 1 to ASOR-positive cells. Maximum expression of gD protein was seen at 3 days after injection of this preparation in approximately 13% of cells from BALB/c mice [hepatocytes from mice injected intravenously (i.v.) or peritoneal exudate cells from mice injected intraperitoneally (i.p.)]. In comparison with mice injected with either the plasmid vector alone or the gD-containing plasmid uncomplexed to ASOR, mice immunized with gD-containing plasmid complexed with ASOR-poly-L-lysine induced marked antigen-specific CTL responses. BALB/c mice immunized with gD-DNA developed a T-cell-mediated CTL response against target cells expressing gD and MHC class II glycoproteins, but not against cells expressing only gD and MHC class I molecules. In C3H mice, gD-DNA induced a T-cell-mediated CTL response against target cells expressing gD and class I MHC molecules. Serum anti-gD antibody in low titers were produced in both strains of mice. DNA complexed with ASOR-poly-L-lysine induced CTL responses in mice.

  6. Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors.

    PubMed

    Kuzmin, Vladislav S; Pustovit, Ksenia B; Abramochkin, Denis V

    2016-06-27

    Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10-100 μM NAD+ produced two opposite effects in LA and RA - quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + -induced alterations of electrical activity. P2X receptors may be responsible for NAD + -induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.

  7. Loop III region of platelet-derived growth factor (PDGF) B-chain mediates binding to PDGF receptors and heparin.

    PubMed Central

    Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M

    1998-01-01

    Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323

  8. Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity

    PubMed Central

    Padmanabhan, Meenu S.; Ma, Shisong; Burch-Smith, Tessa M.; Czymmek, Kirk; Huijser, Peter; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5. PMID:23516366

  9. Angiotensin IV Receptors Mediate the Cognitive and Cerebrovascular Benefits of Losartan in a Mouse Model of Alzheimer's Disease.

    PubMed

    Royea, Jessika; Zhang, Luqing; Tong, Xin-Kang; Hamel, Edith

    2017-05-31

    The use of angiotensin receptor blockers (ARBs) correlates with reduced onset and progression of Alzheimer's disease (AD). The mechanism depicting how ARBs such as losartan restore cerebrovascular and cognitive deficits in AD is unknown. Here, we propose a mechanism underlying losartan's benefits by selectively blocking the effects of angiotensin IV (AngIV) at its receptor (AT4R) with divalinal in mice overexpressing the AD-related Swedish and Indiana mutations of the human amyloid precursor protein (APP mice) and WT mice. Young (3-month-old) mice were treated with losartan (∼10 mg/kg/d, 4 months), followed by intracerebroventricular administration of vehicle or divalinal in the final month of treatment. Spatial learning and memory were assessed using Morris water mazes at 3 and 4 months of losartan treatment. Cerebrovascular reactivity and whisker-evoked neurovascular coupling responses were measured at end point (∼7 months of age), together with biomarkers related to neuronal and vascular oxidative stress (superoxide dismutase-2), neuroinflammation (astroglial and microglial activation), neurogenesis (BrdU-labeled newborn cells), and amyloidosis [soluble amyloid-β (Aβ) species and Aβ plaque load]. Divalinal countered losartan's capacity to rescue spatial learning and memory and blocked losartan's benefits on dilatory function and baseline nitric oxide bioavailability. Divalinal reverted losartan's anti-inflammatory effects, but failed to modify losartan-mediated reductions in oxidative stress. Neither losartan nor divalinal affected arterial blood pressure or significantly altered the amyloid pathology in APP mice. Our findings identify activation of the AngIV/AT4R cascade as the underlying mechanism in losartan's benefits and a target that could restore Aβ-related cognitive and cerebrovascular deficits in AD. SIGNIFICANCE STATEMENT Antihypertensive medications that target the renin angiotensin system, such as angiotensin receptor blockers (ARBs), have

  10. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    PubMed

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  11. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.

    PubMed

    Urbanucci, Alfonso; Barfeld, Stefan J; Kytölä, Ville; Itkonen, Harri M; Coleman, Ilsa M; Vodák, Daniel; Sjöblom, Liisa; Sheng, Xia; Tolonen, Teemu; Minner, Sarah; Burdelski, Christoph; Kivinummi, Kati K; Kohvakka, Annika; Kregel, Steven; Takhar, Mandeep; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Lloyd, Paul; Karnes, R Jeffrey; Ross, Ashley E; Schaeffer, Edward M; Vander Griend, Donald J; Knapp, Stefan; Corey, Eva; Feng, Felix Y; Nelson, Peter S; Saatcioglu, Fahri; Knudsen, Karen E; Tammela, Teuvo L J; Sauter, Guido; Schlomm, Thorsten; Nykter, Matti; Visakorpi, Tapio; Mills, Ian G

    2017-06-06

    Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  13. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    PubMed Central

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  14. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    PubMed

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  15. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings.

    PubMed

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue; Frølund, Bente; Schroeder, Olaf H U; Jensen, Anders A

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical

  16. Rapid Steroid Hormone Actions Initiated at the Cell Surface and the Receptors that Mediate Them with an Emphasis on Recent Progress in Fish Models

    PubMed Central

    Thomas, Peter

    2011-01-01

    In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified. PMID:22154643

  17. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation.

    PubMed

    van Spriel, A B; Leusen, J H; van Egmond, M; Dijkman, H B; Assmann, K J; Mayadas, T N; van de Winkel, J G

    2001-04-15

    Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.

  18. GABAB receptor-mediated frequency-dependent and circadian changes in synaptic plasticity modulate retinal input to the suprachiasmatic nucleus

    PubMed Central

    Moldavan, Mykhaylo G; Allen, Charles N

    2013-01-01

    Light is the most important environmental signal that entrains the circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The retinohypothalamic tract (RHT) was stimulated to simulate the light intensity-dependent discharges of intrinsically photosensitive retinal ganglion cells projecting axons to the hypothalamus. EPSCs were evoked by paired-pulse stimulation or by application of stimulus trains, and recorded from SCN neurons in rat brain slices. Initial release probability (Pr) and synaptic plasticity changes depended on the strength of GABAB receptor (GABABR)-mediated presynaptic inhibition and could be different at the same GABABR agonist concentration. Facilitation caused by frequency-dependent relief of GABABR-mediated inhibition was observed when the initial Pr was decreased to less than 15% of control during strong activation of presynaptic GABAB receptors by (±)baclofen (10 μm), GABA (≥2 mm) or by GABA uptake inhibitor nipecotic acid (≥5 mm). In contrast, short-term synaptic depression appeared during baclofen (10 μm) application when initial Pr was greater than 30% of control. Block of 4-aminopyridine-sensitive K+ currents increased the amplitude and time constant of decay of evoked EPSCs (eEPSCs), and decreased the GABABR-mediated presynaptic inhibition. The GABAB receptor antagonist CGP55845 (3 μm) increased the eEPSCs amplitude 30% throughout the light−dark cycle. During light and dark phases the RHT inputs to 55% and 33% of recorded neurons, respectively, were under GABAB inhibitory control indicating that the tonic inhibition induced by local changes of endogenous GABA concentration contributes to the circadian variation of RHT transmitter release. We conclude that GABABR-mediated presynaptic inhibition decreased with increasing frequency and broadening of presynaptic action potentials, and depended on the sensitivity of RHT terminals to GABABR agonists, and diurnal changes of the extracellular GABA concentration around

  19. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  20. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    PubMed

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  2. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    PubMed

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  3. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity

    PubMed Central

    Izzo, Nicholas J.; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J.; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A.; Arancio, Ottavio; Mach, Robert H.; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L.; Catalano, Susan M.

    2014-01-01

    Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  4. Ionotropic crustacean olfactory receptors.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  5. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-08

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

  6. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway.

    PubMed

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-11-15

    Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport--the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. © 2015. Published by The Company of Biologists Ltd.

  7. A Regulatory Role for Src Homology 2 Domain–Containing Inositol 5′-Phosphatase (Ship) in Phagocytosis Mediated by Fcγ Receptors and Complement Receptor 3 (αMβ2; Cd11b/Cd18)

    PubMed Central

    Cox, Dianne; Dale, Benjamin M.; Kashiwada, Masaki; Helgason, Cheryl D.; Greenberg, Steven

    2001-01-01

    The Src homology 2 domain–containing inositol 5′-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)–containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)–dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase–dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis mediated by receptors for the Fc portion of IgG (FcγRs). In contrast, macrophages expressing catalytically inactive SHIP or lacking SHIP expression demonstrated enhanced phagocytosis. To determine whether SHIP regulates phagocytosis mediated by receptors that are not known to recruit ITIMs, we determined the effect of SHIP expression on complement receptor 3 (CR3; CD11b/CD18; αMβ2)–dependent phagocytosis. Macrophages overexpressing SHIP demonstrated impaired CR3-mediated phagocytosis, whereas macrophages expressing catalytically inactive SHIP demonstrated enhanced phagocytosis. CR3-mediated phagocytosis in macrophages derived from SHIP−/− mice was up to 2.5 times as efficient as that observed in macrophages derived from littermate controls. SHIP was localized to FcγR- and CR3-containing phagocytic cups and was recruited to the cytoskeleton upon clustering of CR3. In a transfected COS cell model of activation-independent CR3-mediated phagocytosis, catalytically active but not inactive SHIP also inhibited phagocytosis. We conclude that PI 3-kinase(s) and SHIP regulate multiple forms of phagocytosis and that endogenous SHIP plays a role in modulating β2 integrin outside-in signaling. PMID:11136821

  8. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  9. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor

    PubMed Central

    Choi, Jiho; Jeon, Changhoon; Jang, Jo Ung; Quan, Fu Shi; Lee, Kyungjin; Kim, Woojin

    2017-01-01

    Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor. PMID:29088102

  10. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  11. β-Arrestins: Regulatory Role and Therapeutic Potential in Opioid and Cannabinoid Receptor-Mediated Analgesia

    PubMed Central

    Bohn, Laura M.

    2016-01-01

    Pain is a complex disorder with neurochemical and psychological components contributing to the severity, the persistence, and the difficulty in adequately treating the condition. Opioid and cannabinoids are two classes of analgesics that have been used to treat pain for centuries and are arguably the oldest of “pharmacological” interventions used by man. Unfortunately, they also produce several adverse side effects that can complicate pain management. Opioids and cannabinoids act at G protein-coupled receptors (GPCRs), and much of their effects are mediated by the mu-opioid receptor (MOR) and cannabinoid CB1 receptor (CB1R), respectively. These receptors couple to intracellular second messengers and regulatory proteins to impart their biological effects. In this chapter, we review the role of the intracellular regulatory proteins, β-arrestins, in modulating MOR and CB1R and how they influence the analgesic and side-effect profiles of opioid and cannabinoid drugs in vivo. This review of the literature suggests that the development of opioid and cannabinoid agonists that bias MOR and CB1R toward G protein signaling cascades and away from β-arrestin interactions may provide a novel mechanism by which to produce analgesia with less severe adverse effects. PMID:24292843

  12. Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro.

    PubMed

    Chen, A; Hu, W W; Jiang, X L; Potegal, M; Li, H

    2017-02-01

    The roles of group I metabotropic glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) and mGluR5, in regulating synaptic plasticity and metaplasticity in the basolateral amygdala (BLA) remain unclear. The present study examined mGluR1- and mGluR5-mediated synaptic plasticity in the BLA and their respective signaling mechanisms. Bath application of the group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG) (20 μM), directly suppressed basal fEPSPs (84.5 ± 6.3% of the baseline). The suppressive effect persisted for at least 30 min after washout; it was abolished by the mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) but was unaffected by the mGluR5 antagonist 2-methyl-6- (phenylethynyl)-pyridine (MPEP). Interestingly, application of DHPG (at both 2 and 20 μM), regardless of the presence of CPCCOEt, could transform single theta burst stimulation (TBS)-induced short-term synaptic potentiation into a long-term potentiation (LTP). Such a facilitating effect could be blocked by the mGluR5 antagonist MPEP. Blockade of phospholipase C (PLC), the downstream enzyme of group I mGluR, with U73122, prevented both mGluR1- and mGluR5-mediated effects on synaptic plasticity. Nevertheless, blockade of protein kinase C (PKC), the downstream enzyme of PLC, with chelerythrine (5 μM) only prevented the transforming effect of DHPG on TBS-induced LTP and did not affect DHPG-induced long-term depression (LTD). These results suggest that mGluR1 activation induced LTD via a PLC-dependent and PKC-independent mechanism, while the priming action of mGluR5 receptor on the BLA LTP is both PLC and PKC dependent. The BLA metaplasticity mediated by mGluR1 and mGluR5 may provide signal switching mechanisms mediating learning and memory with emotional significance.

  13. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    PubMed Central

    Garzón, Javier; de la Torre-Madrid, Elena; Rodríguez-Muñoz, María; Vicente-Sánchez, Ana; Sánchez-Blázquez, Pilar

    2009-01-01

    Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also

  14. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior.

    PubMed

    Schneider, Miriam; Kasanetz, Fernando; Lynch, Diane L; Friemel, Chris M; Lassalle, Olivier; Hurst, Dow P; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H; Manzoni, Olivier J; Spanagel, Rainer

    2015-10-14

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with

  15. Receptor-mediated gene transfer vectors: progress towards genetic pharmaceuticals.

    PubMed

    Molas, M; Gómez-Valadés, A G; Vidal-Alabró, A; Miguel-Turu, M; Bermudez, J; Bartrons, R; Perales, J C

    2003-10-01

    Although specific delivery to tissues and unique cell types in vivo has been demonstrated for many non-viral vectors, current methods are still inadequate for human applications, mainly because of limitations on their efficiencies. All the steps required for an efficient receptor-mediated gene transfer process may in principle be exploited to enhance targeted gene delivery. These steps are: DNA/vector binding, internalization, subcellular trafficking, vesicular escape, nuclear import, and unpacking either for transcription or other functions (i.e., antisense, RNA interference, etc.). The large variety of vector designs that are currently available, usually aimed at improving the efficiency of these steps, has complicated the evaluation of data obtained from specific derivatives of such vectors. The importance of the structure of the final vector and the consequences of design decisions at specific steps on the overall efficiency of the vector will be discussed in detail. We emphasize in this review that stability in serum and thus, proper bioavailability of vectors to their specific receptors may be the single greatest limiting factor on the overall gene transfer efficiency in vivo. We discuss current approaches to overcome the intrinsic instability of synthetic vectors in the blood. In this regard, a summary of the structural features of the vectors obtained from current protocols will be presented and their functional characteristics evaluated. Dissecting information on molecular conjugates obtained by such methodologies, when carefully evaluated, should provide important guidelines for the creation of effective, targeted and safe DNA therapeutics.

  16. Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms.

    PubMed

    Zwart, Ruud; Reed, Hannah; Sher, Emanuele

    2018-01-01

    Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Targeted transplantation of mitochondria to hepatocytes

    PubMed Central

    Gupta, Nidhi; Wu, Catherine H; Wu, George Y

    2016-01-01

    Background Mitochondrial defects in hepatocytes can result in liver dysfunction and death. Hepatocytes have cell-surface asialoglycoprotein receptors (AsGRs) which internalize AsGs within endosomes. The aim of this study was to determine whether mitochondria could be targeted to hepatocytes by AsGR-mediated endocytosis. Materials and methods An AsG, AsOR, was linked to polylysine to create a conjugate, AsOR-PL, and complexed with healthy and functional mitochondria (defined by normal morphology, cytochrome c assays, and oxygen-consumption rates). Huh7 (AsGR+) and SK Hep1 (AsGR−) cells were treated with a mitochondrial toxin to form Huh7-Mito− and SK Hep1-Mito− cells, lacking detectable mitochondrial DNA. An endosomolytic peptide, LLO, was coupled to AsOR to form AsOR-LLO. A lysosomal inhibitor, amantadine, was used in mitochondria-uptake studies as a control for nonspecific endosomal release. Results Coincubation of complexed mitochondria and AsOR-LLO with Huh7-Mito− cells increased mitochondrial DNA to >9,700-fold over control at 7 days (P<0.001), and increased mitochondrial oxygen-consumption rates to >90% of control by 10 days. Conclusion Rescue of mitochondria-damaged hepatocytes can be achieved by targeted uptake of normal mitochondria through receptor-mediated endocytosis. PMID:27942238

  18. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    PubMed

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  19. The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal.

    PubMed

    Contarino, Angelo; Papaleo, Francesco

    2005-12-20

    The negative affective symptoms of opiate withdrawal powerfully motivate drug-seeking behavior and may trigger relapse to heroin abuse. To date, no medications exist that effectively relieve the negative affective symptoms of opiate withdrawal. The corticotropin-releasing factor (CRF) system has been hypothesized to mediate the motivational effects of drug dependence. The CRF signal is transmitted by two distinct receptors named CRF receptor-1 (CRF1) and CRF2. Here we report that genetic disruption of CRF1 receptor pathways in mice eliminates the negative affective states of opiate withdrawal. In particular, neither CRF1 receptor heterozygous (CRF1+/-) nor homozygous (CRF1-/-) null mutant mice avoided environmental cues repeatedly paired with the early phase of opiate withdrawal. These results were not due to altered associative learning processes because CRF1+/- and CRF1-/- mice displayed reliable, conditioned place aversions to environmental cues paired with the kappa-opioid receptor agonist U-50,488H. We also examined the impact of CRF1 receptor-deficiency upon opiate withdrawal-induced dynorphin activity in the nucleus accumbens, a brain molecular mechanism thought to underlie the negative affective states of drug withdrawal. Consistent with the behavioral indices, we found that, during the early phase of opiate withdrawal, neither CRF1+/- nor CRF1-/- showed increased dynorphin mRNA levels in the nucleus accumbens. This study reveals a cardinal role for CRF/CRF1 receptor pathways in the negative affective states of opiate withdrawal and suggests therapeutic strategies for the treatment of opiate addiction.

  20. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  1. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    PubMed

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  2. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    PubMed

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  3. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations.

    PubMed

    Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi

    2007-06-01

    We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these

  4. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice.

    PubMed

    Sclafani, Anthony; Glass, Damien S; Margolskee, Robert F; Glendinning, John I

    2010-12-01

    Most mammals prefer the sweet taste of sugars, which is mediated by the heterodimeric T1R2+T1R3 taste receptor. Sugar appetite is also enhanced by the post-oral reinforcing actions of the nutrient in the gut. Here, we examined the contribution of gut T1R3 (either alone or as part of the T1R3+T1R3 receptor) to post-oral sugar reinforcement using a flavor-conditioning paradigm. We trained mice to associate consumption of a flavored solution (CS+) with intragastric (IG) infusions of a sweetener, and a different flavored solution (CS-) with IG infusions of water (23 h/day); then, we measured preference in a CS+ vs. CS- choice test. In experiment 1, we predicted that if activation of gut T1R3 mediates sugar reinforcement, then IG infusions of a nutritive (sucrose) or nonnutritive (sucralose) ligand for this receptor should condition a preference for the CS+ in B6 wild-type (WT) mice. While the mice that received IG sucrose infusions developed a strong preference for the CS+, those that received IG sucralose infusions developed a weak avoidance of the CS+. In experiment 2, we used T1R3 knockout (KO) mice to examine the necessity of gut T1R2+T1R3 receptors for conditioned flavor preferences. If intact gut T1R3 (or T1R2+T1R3) receptors are necessary for flavor-sugar conditioning, then T1R3 KO mice should not develop a sugar-conditioned flavor preference. We found that T1R3 KO mice, like WT mice, acquired a strong preference for the CS+ paired with IG sucrose infusions. The KO mice were also like WT mice in avoiding a CS+ flavor paired with IG sucralose infusions These findings provide clear evidence that gut T1R3 receptors are not necessary for sugar-conditioned flavor preferences or sucralose-induced flavor avoidance in mice.

  5. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.

    PubMed

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C

    2011-02-11

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  6. Surfactant Protein A (SP-A)-mediated Clearance of Staphylococcus aureus Involves Binding of SP-A to the Staphylococcal Adhesin Eap and the Macrophage Receptors SP-A Receptor 210 and Scavenger Receptor Class A*

    PubMed Central

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.

    2011-01-01

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169

  7. Protein/oligonucleotide conjugates as a cell specific PNA carrier.

    PubMed

    Obara, K; Ishihara, T; Akaike, T; Maruyama, A

    2001-01-01

    We have focused on proteineus ligand conjugate with oligonucleotides (ODNs) as a cell-specific delivery vector for peptide nucleic acids (PNAs). Asialofetuin (AF), a hepatocyte-specific proteineus ligand, was conjugated with ODNs that served as binding sites for PNAs. Succinimidyl-transe-4(N-maleimidylmethyl)-cyclohexane-1-carboxylate (SMCC) modified AF was coupled with 5'-thiolated oligodeoxynucleotide (HS-ODN). The resulting conjugate held PNAs with sequence-specific manner. The PNA/DNA conjugate complex has resistance against nucleases in serum. The efficient release of PNA from the complex was observed when the complex was made in contact with a target nucleotide. PNA uptake to hepatocytes was greatly enhanced when hepatocytes was incubated with PNA/conjugate complex. Free AF thoroughly inhibited PNA uptake with the conjugate, evidencing asialoglycoprotein receptor (ASGP-R) mediated endocytosis to be a major-route for the cellular uptake.

  8. Serotonin₂A/C receptors mediate the aggressive phenotype of TLX gene knockout mice.

    PubMed

    Juárez, Pablo; Valdovinos, Maria G; May, Michael E; Lloyd, Blair P; Couppis, Maria H; Kennedy, Craig H

    2013-11-01

    Deleting the tailless (TLX) gene in mice produces a highly aggressive phenotype yet to be characterized in terms of heterozygous animals or neurotransmitter mechanisms. We sought to establish pharmacological control over aggression and study the role of serotonin (5-HT)(2A/C) receptors in mediating changes in aggression. We analyzed aggression in mice heterozygous (+/-) or homozygous (-/-) for the TLX gene and wild-types (+/+) using a resident-intruder paradigm. No +/+ mice were aggressive, 36% of +/- TLX and 100% of -/- TLX mice showed aggression. Dose-effect functions were established for clozapine (0.1-1.5mg/kg, ip), ketanserin (0.3-1.25 mg/kg, ip), and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] (0.5-2.0 mg/kg, ip). Injecting clozapine decreased the frequency and duration of attacks for +/- TLX and -/- TLX mice. Clozapine did not decrease grooming in either +/- TLX or -/- TLX mice but may have increased locomotion for -/- TLX mice. Injecting ketanserin, a 5-HT(2A/C) receptor antagonist, produced differential decreases in frequency and latency to aggression between genotypes and corresponding increases in locomotor behavior. Injecting (±)DOI, a 5-HT(2A/C) receptor agonist, increased the frequency and duration of attacks, decreased the latency to attacks, and decreased locomotion in +/- and -/- TLX mice. Results of the current study suggest aggression displayed by TLX null and heterozygous mice involves 5-HT(2A/C) receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  10. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    PubMed

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  11. The Role of Constitutive Androstane Receptor in Oxazaphosphorine-mediated Induction of Drug-metabolizing Enzymes in Human Hepatocytes

    PubMed Central

    Wang, Duan; Li, Linhao; Fuhrman, Jennifer; Ferguson, Stephen; Wang, Hongbing

    2013-01-01

    Purpose The objective of this study was to investigate the roles of the constitutive androstane receptor (CAR) in cyclophosphamide (CPA)- and ifosfamide (IFO)-mediated induction of hepatic drug-metabolizing enzymes (DME). Methods Induction of DMEs was evaluated using real-time RT-PCR and Western blotting analysis in human primary hepatocyte (HPH) cultures. Activation of CAR, pregnane X receptor (PXR), and aryl hydrocarbon receptor by CPA and IFO was assessed in cell-based reporter assays in HepG2 cells and/or nuclear translocation assays in HPHs. Results CYP2B6 reporter activity was significantly enhanced by CPA and IFO in HepG2 cells co-transfected with CYP2B6 reporter plasmid and a chemical-responsive human CAR variant (CAR1+A) construct. Real-time RT-PCR and Western blotting analysis in HPHs showed that both CPA and IFO induced the expressions of CYP2B6 and CYP3A4. Notably, treatment of HPHs with CPA but not IFO resulted in significant nuclear accumulation of CAR, which represents the initial step of CAR activation. Further studies in HPHs demonstrated that selective inhibition of PXR by sulforaphane preferentially repressed IFO- over CPA-mediated induction of CYP2B6. Conclusion These results provide novel insights into the differential roles of CAR in the regulation of CPA- and IFO-induced DME expression and potential drug-drug interactions. PMID:21487929

  12. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus.

    PubMed

    Etherton, Mark R; Tabuchi, Katsuhiko; Sharma, Manu; Ko, Jaewon; Südhof, Thomas C

    2011-06-03

    Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.

  13. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway.

    PubMed

    Schwarz, Lindsay A; Hall, Benjamin J; Patrick, Gentry N

    2010-12-08

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.

  14. The Innate Immune Receptor CD14 Mediates Lymphocyte Migration in EAE.

    PubMed

    Halmer, Ramona; Davies, Laura; Liu, Yang; Fassbender, Klaus; Walter, Silke

    2015-01-01

    Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis. © 2015 The Author(s) Published by S. Karger AG, Basel.

  15. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  16. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  17. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  18. THE AP-2 CLATHRIN ADAPTOR MEDIATES ENDOCYTOSIS OF AN INHIBITORY KILLER CELL Ig-LIKE RECEPTOR (KIR) IN HUMAN NK CELLS1

    PubMed Central

    Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.

    2014-01-01

    Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the μ2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/μ2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of μ2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755

  19. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    PubMed Central

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  20. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins aremore » known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.« less

  1. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    PubMed

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  2. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types.

    PubMed Central

    Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y

    1993-01-01

    A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells

  3. HSV-1 infection of human corneal epithelial cells: receptor-mediated entry and trends of re-infection.

    PubMed

    Shah, Arpeet; Farooq, Asim V; Tiwari, Vaibhav; Kim, Min-Jung; Shukla, Deepak

    2010-11-20

    The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors--nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression.

  4. ROLES OF OPIOID RECEPTOR SUBTYPES IN MEDIATING ALCOHOL SEEKING INDUCED BY DISCRETE CUES AND CONTEXT

    PubMed Central

    Marinelli, Peter W.; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A.D.

    2009-01-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu opioid (MOP) receptors on alcohol seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0 – 15-mg/kg, IP) or the MOP receptor antagonist CTOP (0 – 3-µg/kg ICV). In a separate set of experiments, reinstatement was tested with the presentation of a discrete light+tone cue previously associated with alcohol delivery, following extinction without the cue. In Experiment 2, the effects of naltrindole (0 – 5-mg/kg, IP) or CTOP (0 – 3-µg/kg µg ICV) were assessed. For context-induced renewal, 7.5-mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete cue-induced reinstatement, 1 and 5-mg/kg naltrindole attenuated responding, but CTOP had no effect. We conclude that while DOP receptors mediate alcohol seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol seeking, and support a more prominent role for DOP receptors. PMID:19686472

  5. Regulation of glutamate receptor internalization by the spine cytoskeleton is mediated by its PKA-dependent association with CPG2

    PubMed Central

    Loebrich, Sven; Djukic, Biljana; Tong, Zachary J.; Cottrell, Jeffrey R.; Turrigiano, Gina G.; Nedivi, Elly

    2013-01-01

    A key neuronal mechanism for adjusting excitatory synaptic strength is clathrin-mediated endocytosis of postsynaptic glutamate receptors (GluRs). The actin cytoskeleton is critical for clathrin-mediated endocytosis, yet we lack a mechanistic understanding of its interaction with the endocytic process and how it may be regulated. Here we show that F-actin in dendritic spines physically binds the synaptic nuclear envelope 1 gene product candidate plasticity gene 2 (CPG2) in a PKA-dependent manner, and that this association is required for synaptic GluR internalization. Mutating two PKA sites on CPG2 disrupts its cytoskeletal association, attenuating GluR endocytosis and affecting the efficacy of synaptic transmission in vivo. These results identify CPG2 as an F-actin binding partner that functionally mediates interaction of the spine cytoskeleton with postsynaptic endocytosis. Further, the regulation of CPG2/F-actin association by PKA provides a gateway for cellular control of synaptic receptor internalization through second messenger signaling pathways. Recent identification of human synaptic nuclear envelope 1 as a risk locus for bipolar disorder suggests that CPG2 could play a role in synaptic dysfunction underlying neuropsychiatric disease. PMID:24191017

  6. Methods for recording and measuring tonic GABAA receptor-mediated inhibition

    PubMed Central

    Bright, Damian P.; Smart, Trevor G.

    2013-01-01

    Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current. PMID:24367296

  7. Glutamate receptor activation in the kindled dentate gyrus.

    PubMed

    Behr, J; Heinemann, U; Mody, I

    2000-01-01

    The contribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate receptor activation to the enhanced seizure susceptibility of the dentate gyrus was investigated in an experimental model of temporal lobe epilepsy. Using the specific NMDA and AMPA receptor antagonists D-APV and SYM 2206, we examined alterations in glutamate receptor-dependent synaptic currents 48 hours and 28 days after kindling in field-potential and voltage-clamp recordings. Forty-eight hours after kindling, the fractions of AMPA and NMDA receptor-mediated excitatory postsynaptic current components shifted dramatically in favor of the NMDA receptor-mediated response. Four weeks after kindling, however, AMPA and NMDA receptor-mediated excitatory postsynaptic currents reverted to control-like values. Neither single nor repetitive perforant path stimuli evoked kainate receptor-mediated excitatory postsynaptic currents in dentate gyrus granule cells of control or kindled rats. The enhanced excitability of the kindled dentate gyrus 48 hours after the last seizure most likely results from transiently enhanced NMDA receptor activation. The NMDA receptor seems to play a critical role in the induction of the kindled state rather than in the persistence of the enhanced seizure susceptibility.

  8. A novel estrogen receptor GPER mediates proliferation induced by 17β-estradiol and selective GPER agonist G-1 in estrogen receptor α (ERα)-negative ovarian cancer cells.

    PubMed

    Liu, Huidi; Yan, Yan; Wen, Haixia; Jiang, Xueli; Cao, Xuefeng; Zhang, Guangmei; Liu, Guoyi

    2014-05-01

    G protein-coupled estrogen receptor (GPER) is recently identified as a membrane-associated estrogen receptor that mediates non-genomic effects of estrogen. Our previous immunohistochemistry study found an association between GPER and the proliferation of epithelial ovarian cancer. However, the contributions and mechanisms of GPER in the proliferation of ovarian cancers are not clear. We have examined the role of GPER in estrogen receptor α (ERα)-negative/GPER positive OVCAR5 ovarian cancer cell line. MTT assay was used to detect cell proliferation. BrdU incorporation assay was used to measure the cells in S-phase. Protein expression of marker genes of proliferation, cell cycle and apoptosis were examined by Western blot. The results showed that 17β-estradiol and selective GPER agonist G-1 stimulated the proliferation of OVCAR5 cells and increased the cells in S-phase. Both ligands upregulated the protein levels of c-fos and cyclin D1. Small interfering RNA targeting GPER or G protein inhibitor pertussin toxin (PTX) inhibited basal cell proliferation and attenuated 17β-estradiol- or G-1-induced cell proliferation. GPER mediated cell growth was also associated with the apoptosis of OVCAR5 cells. These findings suggest that GPER has an important function in the proliferation of ovarian cancer cells lacking ERα. GPER might be a promising therapeutic target in ovarian cancer. © 2014 International Federation for Cell Biology.

  9. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor.

    PubMed

    Puxty, Drew J; Ramaekers, Johannes G; de la Torre, Rafael; Farré, Magí; Pizarro, Neus; Pujadas, Mitona; Kuypers, Kim P C

    2017-01-01

    Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT 2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol), which are elevated by MDMA. In order to investigate the role of the 5-HT 2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg), combined with placebo or a single oral dose of the 5-HT 2 receptor blocker ketanserin (40 mg). Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS) 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations). Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT 2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  10. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    PubMed Central

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  11. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle.

    PubMed

    Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong

    2010-10-01

    It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

  12. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  13. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    PubMed

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  15. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction

    PubMed Central

    Keefer, Sara E.; Cole, Sindy; Petrovich, Gorica D.

    2016-01-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  16. The TM2 6′ Position of GABAA Receptors Mediates Alcohol Inhibition

    PubMed Central

    Howard, Rebecca J.; Trudell, James R.; Harris, R. Adron

    2012-01-01

    Ionotropic GABAA receptors (GABAARs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABAARs. We used Xenopus laevis oocytes to investigate the 6′ position in the second transmembrane region of GABAARs as a site influencing alcohol inhibition. We asked whether modification of the 6′ position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6′ position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6′ position. We verified a role for the 6′ position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABAARs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABAAR homolog, revealing that the 6′ position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6′ positions in both α2 and β2 GABAAR subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels. PMID:22072732

  17. Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior.

    PubMed

    Wang, Jun; Ben Hamida, Sami; Darcq, Emmanuel; Zhu, Wenheng; Gibb, Stuart L; Lanfranco, Maria Fe; Carnicella, Sebastien; Ron, Dorit

    2012-10-24

    We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.

  18. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  19. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  20. The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates Pollen Germination and Tube Growth

    USDA-ARS?s Scientific Manuscript database

    In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato, LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here w...

  1. Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats.

    PubMed

    Da Silva, Luis F; Desantana, Josimari M; Sluka, Kathleen A

    2010-04-01

    Repeated injections of acidic saline into the gastrocnemius muscle induce both muscle and cutaneous hypersensitivity. We have previously shown that microinjection of local anesthetic into either the rostral ventromedial medulla (RVM) or the nucleus reticularis gigantocellularis (NGC) reverses this muscle and cutaneous hypersensitivity. Although prior studies show that NMDA receptors in the RVM play a clear role in mediating visceral and inflammatory hypersensitivity, the role of NMDA receptors in the NGC or in noninflammatory muscle pain is unclear. Therefore, the present study evaluated involvement of the NMDA receptors in the RVM and NGC in muscle and cutaneous hypersensitivity induced by repeated intramuscular injections of acidic saline. Repeated intramuscular injections of acidic saline, 5 days apart, resulted in a bilateral decrease in the withdrawal thresholds of the paw and muscle in all groups 24 hours after the second injection. Microinjection of NMDA receptor antagonists into the RVM reversed both the muscle and cutaneous hypersensitivity. However, microinjection of NMDA receptor antagonists into the NGC only reversed cutaneous but not muscle hypersensitivity. These results suggest that NMDA receptors in the RVM mediate both muscle and cutaneous hypersensitivity, but those in the NGC mediate only cutaneous hypersensitivity after muscle insult. The current study shows that NMDA receptors in supraspinal facilitatory sites maintain noninflammatory muscle pain. Clinical studies in people with chronic widespread, noninflammatory pain, similarly, show alterations in central excitability. Thus, understanding mechanisms in an animal model could lead to improved treatment for patients with chronic muscle pain. Copyright 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhenlong; Gorfe, Alemayehu A.

    2014-12-01

    Lipid-polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle-membrane engagement, followed by a slow growth in the number of ligand-receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand-receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle-membrane interactions to occur even when the ligand density is low. The LPH-membrane avidity is enhanced by the increased stability of each receptor-ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle-cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest.

  3. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  4. Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes.

    PubMed

    Biessen, Erik A L; Sliedregt-Bol, Karen; 'T Hoen, Peter A Chr; Prince, Perry; Van der Bilt, Erica; Valentijn, A Rob P M; Meeuwenoord, Nico J; Princen, Hans; Bijsterbosch, Martin K; Van der Marel, Gijs A; Van Boom, Jacques H; Van Berkel, Theo J C

    2002-01-01

    In this study, we present the design and synthesis of an antisense peptide nucleic acid (asPNA) prodrug, which displays an improved biodistribution profile and an equally improved capacity to reduce the levels of target mRNA. The prodrug, K(GalNAc)(2)-asPNA, comprised of a 14-mer sequence complementary to the human microsomal triglyceride transfer protein (huMTP) gene, conjugated to a high-affinity tag for the hepatic asialoglycoprotein receptor (K(GalNAc)(2)). The prodrug was avidly bound and rapidly internalized by HepG2s. After iv injection into mice, K(GalNAc)(2)-asPNA accumulated in the parenchymal liver cells to a much greater extent than nonconjugated PNA (46% +/- 1% vs 3.1% +/- 0.5% of the injected dose, respectively). The prodrug was able to reduce MTP mRNA levels in HepG2 cells by 35-40% (P < 0.02) at 100 nM in an asialoglycoprotein receptor- and sequence-dependent fashion. In conclusion, hepatocyte-targeted PNA prodrugs combine a greatly improved tropism with an enhanced local intracellular availability and activity, making them attractive therapeutics to lower the expression level of hepatic target genes such as MTP.

  5. Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients.

    PubMed

    Suman, Matteo; Sharpe, Jenny A; Bentham, Robert B; Kotiadis, Vassilios N; Menegollo, Michela; Pignataro, Viviana; Molgó, Jordi; Muntoni, Francesco; Duchen, Michael R; Pegoraro, Elena; Szabadkai, Gyorgy

    2018-07-01

    Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.

  6. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    PubMed

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  7. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor

    PubMed Central

    Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.

    2008-01-01

    The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853

  8. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    PubMed

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    PubMed Central

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  10. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy.

    PubMed

    Qiao, Yuhui; Zhu, Baoling; Tian, Aiju; Li, Zijian

    2017-01-01

    Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β 1 -AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).

  11. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    PubMed Central

    Costa, Lara; Sardone, Lara M.; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  12. Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling.

    PubMed

    Chong, Cherish; Hamid, Anis; Yao, Tham; Garza, Amanda E; Pojoga, Luminita H; Adler, Gail K; Romero, Jose R; Williams, Gordon H

    2017-03-01

    We posit the existence of a paracrine/autocrine negative feedback loop, mediated by the mineralocorticoid receptor (MR), regulating aldosterone secretion. To assess this hypothesis, we asked whether altering MR activity in zona glomerulosa (ZG) cells affects aldosterone production. To this end, we studied ex vivo ZG cells isolated from male Wistar rats fed chow containing either high (1.6% Na + (HS)) or low (0.03% Na + (LS)) amount of sodium. Western blot analyses demonstrated that MR was present in both the ZG and zona fasciculata/zona reticularis (ZF/ZR/ZR). In ZG cells isolated from rats on LS chow, MR activation by fludrocortisone produced a 20% and 60% reduction in aldosterone secretion basally and in response to angiotensin II (ANGII) stimulation, respectively. Corticosterone secretion was increased in these cells suggesting that aldosterone synthase activity was being reduced by fludrocortisone. In contrast, canrenoic acid, an MR antagonist, enhanced aldosterone production by up to 30% both basally and in response to ANGII. Similar responses were observed in ZG cells from rats fed HS. Modulating glucocorticoid receptor (GR) activity did not alter aldosterone production by ZG cells; however, altering GR activity did modify corticosterone production from ZF/ZR/ZR cells both basally and in response to adrenocorticotropic hormone (ACTH). Additionally, activating the MR in ZF/ZR/ZR cells strikingly reduced corticosterone secretion. In summary, these data support the hypothesis that negative ultra-short feedback loops regulate adrenal steroidogenesis. In the ZG, aldosterone secretion is regulated by the MR, but not the GR, an effect that appears to be secondary to a change in aldosterone synthase activity. © 2017 Society for Endocrinology.

  13. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways

    PubMed Central

    Doyle, Alexander; Zhang, Guohua; Abdel Fattah, Elmoataz A.; Eissa, N. Tony; Li, Yi-Ping

    2011-01-01

    Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.—Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., Li, Y.-P. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. PMID:20826541

  14. Current Research on Opioid Receptor Function

    PubMed Central

    Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying

    2012-01-01

    The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article

  15. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. PMID:24434437

  16. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway.

    PubMed

    Bülbül, Mehmet; Sinen, Osman; Birsen, İlknur; Nimet İzgüt-Uysal, V

    2017-06-01

    Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK 1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK 1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK 1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor

  18. Receptor-mediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes.

    PubMed

    Hara, T; Aramaki, Y; Takada, S; Koike, K; Tsuchiya, S

    1995-12-01

    Asialofetuin-labeled liposomes (AF-liposomes) were developed as a nonviral vector having high transfection activity for receptor-mediated gene transfer to hepatocytes by systemic administration. Initially, the majority of pSV2CAT, a chloramphenicol acetyltransferase (CAT) gene expression plasmid, was associated with AF-liposomes (AF-liposome-pSV2CAT), and they were injected into the portal vein of an adult mouse. Significantly high CAT activity was observed in the liver. The CAT activity in the liver was further increased two-fold by using AF-liposomes completely encapsulating pSV2CAT. Nonlabeled control liposomes, on the other hand, showed lower CAT activity in the liver than in the spleen or lung. The level of CAT mRNA reflected the CAT activity obtained by each liposome preparation in each tissue. Immunohistochemical staining showed that CAT was produced in a large number of parenchymal cells localizing in the periportal area. The plasmid encapsulated in the internal aqueous layer of the liposomes was effectively protected from environmental degradation. Thus, by administration into the blood circulation, AF-liposomes would be successfully incorporated into hepatocytes through receptor-mediated endocytosis, and the encapsulated plasmid would be transferred to the intracellular pathway.

  19. [Programmed necrosis mediated by receptor-interacting protein 3: a new target for liver disease research].

    PubMed

    Zhang, J; Jing, Y; Li, Y N; Zhou, L; Wang, B M

    2016-09-20

    Hepatocyte death mainly includes apoptosis and necrosis and is a critical process in the pathophysiological mechanism of liver injury caused by various reasons. Recent studies have shown that key regulatory molecules in the inhibition of apoptosis such as caspase cannot be used as targets for inhibiting disease progression in clinical practice. In recent years, programmed necrosis mediated by receptor-interacting protein 3(RIP3)becomes a new hot research topic. It not only plays an important role in inducing inflammatory response, but also is closely regulated by intracellular signal factors, and it is a type of active cell death which can be interfered with. Compared with apoptosis, programmed necrosis is accompanied by the release of various inflammatory factors, which significantly affects local immune microenvironment. RIP3-mediated programmed necrosis has been taken seriously in many diseases. Although its mechanism of action in liver disease remains unclear, the results of recent studies confirmed its important role in the development of liver disease. This article reviews the research advances in the role of RIP3-mediated programmed necrosis signaling pathway in liver disease of various causes and investigates the possibility of RIP3-mediated programmed necrosis as a new target in the treatment of liver disease.

  20. Synthesis and Evaluation of Vitamin D Receptor-Mediated Activities of Cholesterol and Vitamin D Metabolites

    PubMed Central

    Teske, Kelly A.; Bogart, Jonathan W.; Sanchez, Luis M.; Yu, Olivia B.; Preston, Joshua V.; Cook, James M.; Silvaggi, Nicholas R.; Bikle, Daniel D.; Arnold, Leggy A.

    2016-01-01

    A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer. PMID:26774929

  1. CCKB/gastrin receptors mediate changes in sodium and potassium absorption in the isolated perfused rat kidney.

    PubMed

    von Schrenck, T; Ahrens, M; de Weerth, A; Bobrowski, C; Wolf, G; Jonas, L; Jocks, T; Schulz, M; Bläker, M; Neumaier, M; Stahl, R A

    2000-09-01

    To evaluate the function of cholecystokinin B (CCKB)/gastrin receptors in the rat kidney, we identified the receptors by Northern blot and localized the receptors by immunohistochemistry. The functional effects of gastrin were studied under standardized in vitro conditions using the isolated perfused kidney. Rat kidneys were mounted in an organ bath by attaching the renal artery to a perfusion system. A catheter was inserted into the renal vein and the ureter to collect samples that were analyzed for the concentrations of electrolytes. After a preperfusion period, gastrin-17-I was given via the renal artery (10-8 to 10-6 mol/L). Subsequently, hemodynamic parameters (for example, perfusate flow) and changes in sodium and potassium absorption were determined. All data were subjected to a nonparametric analysis of variance and, in case of significant results, to subsequent paired comparisons by the a posteriori Wilcoxon test. Northern blot analysis detected CCKB receptor transcripts in total RNA isolated from kidneys. Immunohistochemistry localized CCKB receptors on tubules and collecting duct cells. Compared with controls, gastrin (10-6 mol/L) caused a decrease in the fractional sodium reabsorption (basal 80%, 10 minutes after application of gastrin 71%, after 20 minutes 62%, P < 0.05). This effect was inhibited by the CCKB receptor antagonist L-365,260. Gastrin decreased urinary potassium excretion at 10-8 and 10-6 mol/L [maximal decrease at 10-6 mol/L from baseline values (100%) to 49% after 10 minutes and to 69% after 20 minutes, P < 0.05, N = 6]. This effect was also abolished by the CCKB receptor antagonist L-365,260. Gastrin (10-6 mol/L) reduced perfusate flow by 31% (P < 0.05). CCKB receptors are expressed in the rat kidney on tubules and collecting ducts. These receptors mediate changes in renal potassium and sodium absorption. In addition, gastrin causes a decrease in perfusate flow, indicating that CCKB receptors might also modulate vascular resistance in

  2. Dopamine D1 Receptors Are Not Critical for Opiate Reward but Can Mediate Opiate Memory Retrieval in a State-Dependent Manner

    PubMed Central

    Vargas-Perez, Hector; George, Susan R.; van der Kooy, Derek

    2013-01-01

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing — which acts as a potent discriminative stimulus — may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. PMID:23538064

  3. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in

  4. Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5.

    PubMed

    Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela

    2014-03-26

    In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.

  5. Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction.

    PubMed

    Wang, Qingtong; Liu, Yongming; Fu, Qin; Xu, Bing; Zhang, Yuan; Kim, Sungjin; Tan, Ruensern; Barbagallo, Federica; West, Toni; Anderson, Ethan; Wei, Wei; Abel, E Dale; Xiang, Yang K

    2017-01-03

    Type 2 diabetes mellitus (DM) and obesity independently increase the risk of heart failure by incompletely understood mechanisms. We propose that hyperinsulinemia might promote adverse consequences in the hearts of subjects with type-2 DM and obesity. High-fat diet feeding was used to induce obesity and DM in wild-type mice or mice lacking β 2 -adrenergic receptor (β 2 AR) or β-arrestin2. Wild-type mice fed with high-fat diet were treated with a β-blocker carvedilol or a GRK2 (G-protein-coupled receptor kinase 2) inhibitor. We examined signaling and cardiac contractile function. High-fat diet feeding selectively increases the expression of phosphodiesterase 4D (PDE4D) in mouse hearts, in concert with reduced protein kinase A phosphorylation of phospholamban, which contributes to systolic and diastolic dysfunction. The expression of PDE4D is also elevated in human hearts with DM. The induction of PDE4D expression is mediated by an insulin receptor, insulin receptor substrate, and GRK2 and β-arrestin2-dependent transactivation of a β 2 AR-extracellular regulated protein kinase signaling cascade. Thus, pharmacological inhibition of β 2 AR or GRK2, or genetic deletion of β 2 AR or β-arrestin2, all significantly attenuate insulin-induced phosphorylation of extracellular regulated protein kinase and PDE4D induction to prevent DM-related contractile dysfunction. These studies elucidate a novel mechanism by which hyperinsulinemia contributes to heart failure by increasing PDE4D expression and identify β 2 AR or GRK2 as plausible therapeutic targets for preventing or treating heart failure in subjects with type 2 DM. © 2016 American Heart Association, Inc.

  6. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    PubMed Central

    Puxty, Drew J.; Ramaekers, Johannes G.; de la Torre, Rafael; Farré, Magí; Pizarro, Neus; Pujadas, Mitona; Kuypers, Kim P. C.

    2017-01-01

    Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol), which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg), combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg). Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS) 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations). Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA. PMID:28744219

  7. Reduction of Decoy Receptor 3 Enhances TRAIL-Mediated Apoptosis in Pancreatic Cancer

    PubMed Central

    Wang, Wei; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong

    2013-01-01

    Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy. PMID:24204567

  8. Reduction of decoy receptor 3 enhances TRAIL-mediated apoptosis in pancreatic cancer.

    PubMed

    Wang, Wei; Zhang, Mei; Sun, Weimin; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong

    2013-01-01

    Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy.

  9. Angiotensin II type 1 receptor blockers prevent tumor necrosis factor-alpha-mediated endothelial nitric oxide synthase reduction and superoxide production in human umbilical vein endothelial cells.

    PubMed

    Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki

    2010-06-25

    Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.

  10. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    PubMed

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  11. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    PubMed Central

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  12. Bombesin-like peptides stimulate growth hormone secretion mediated by the gastrin-releasing peptide receptor in cattle.

    PubMed

    Zhao, Hongqiong; Matsuda, Seinosuke; Thanthan, Sint; Yannaing, Swe; Kuwayama, Hideto

    2012-10-01

    This study was designed to determine the effects of bombesin-like peptides (BLPs) on the secretion of growth hormone (GH) and to characterize the receptor subtypes mediating these effects in cattle. Four experiments were conducted: (1) six steers were randomly assigned to receive intravenous (IV) bolus injections of 0, 0.2, 1.0, 12.5 and 50.0 μg/kg neuromedin C (NMC); (2) seven pre-weaned calves were IV injected with 1.0 μg/kg NMC; (3) six steers were IV injected with 2.5μg/kg bovine gastrin-releasing peptide (GRP), 1.0 μg/kg NMC combined with 20.0 μg/kg [d-Lys(3)]-GHRP-6 (an antagonist for the GH secretagogue receptor type 1a [GHS-R1a]), 1.0 μg/kg NMC combined with 20.0 μg/kg N-acetyl-GRP(20-26)-OCH(2)CH(3) (N-GRP-EE, an antagonist for the GRP receptor), 20.0 μg/kg N-GRP-EE alone, 1.0 μg/kg neuromedin B (NMB); and (4) four rats were IV injected 1.0 μg/kg NMC. A serial blood sample was collected before and after injection. Plasma GH levels dose-dependently increased at 5 min after NMC injection and the minimal effective dose was 1.0 μg/kg. Plasma GH level was elevated by GRP, but not by NMB. The NMC-induced elevation of GH was completely blocked by N-GRP-EE. The administration of NMC elevated GH level in pre-weaned calves but not in rats. Ghrelin level was unaffected by any treatments; and [d-Lys(3)]-GHRP-6 did not block the NMC-induced elevation of GH. The results indicate BLP-induced elevation of GH levels is mediated by the GRP receptor but not through a ghrelin/GHS-R1a pathway in cattle. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.

    PubMed

    Foster, Daniel J; Wilson, Jermaine M; Remke, Daniel H; Mahmood, M Suhaib; Uddin, M Jashim; Wess, Jürgen; Patel, Sachin; Marnett, Lawrence J; Niswender, Colleen M; Jones, Carrie K; Xiang, Zixiu; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2016-09-21

    Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    PubMed

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  16. Interleukin-1 receptor (IL-1R) mediates epilepsy-induced sleep disruption.

    PubMed

    Huang, Tzu-Rung; Jou, Shuo-Bin; Chou, Yu-Ju; Yi, Pei-Lu; Chen, Chun-Jen; Chang, Fang-Chia

    2016-11-22

    Sleep disruptions are common in epilepsy patients. Our previous study demonstrates that homeostatic factors and circadian rhythm may mediate epilepsy-induced sleep disturbances when epilepsy occurs at different zeitgeber hours. The proinflammatory cytokine, interleukin-1 (IL-1), is a somnogenic cytokine and may also be involved in epileptogenesis; however, few studies emphasize the effect of IL-1 in epilepsy-induced sleep disruption. We herein hypothesized that IL-1 receptor type 1 (IL-1R1) mediates the pathogenesis of epilepsy and epilepsy-induced sleep disturbances. We determined the role of IL-1R1 by using IL-1R1 knockout (IL-1R1 -/- KO) mice. Our results elucidated the decrease of non-rapid eye movement (NREM) sleep during the light period in IL-1R -/- mice and confirmed the somnogenic role of IL-1R1. Rapid electrical amygdala kindling was performed to induce epilepsy at the particular zeitgeber time (ZT) point, ZT13. Our results demonstrated that seizure thresholds induced by kindling stimuli, such as the after-discharge threshold and successful kindling rates, were not altered in IL-1R -/- mice when compared to those obtained from the wildtype mice (IL-1R +/+ mice). This result suggests that IL-1R1 is not involved in kindling-induced epileptogenesis. During sleep, ZT13 kindling stimulation significantly enhanced NREM sleep during the subsequent 6 h (ZT13-18) in wildtype mice, and sleep returned to the baseline the following day. However, the kindling-induced sleep alteration was absent in the IL-1R -/- KO mice. These results indicate that the IL-1 signal mediates epilepsy-induced sleep disturbance, but dose not participate in kindling-induced epileptogenesis.

  17. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  18. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    PubMed

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  20. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  2. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    NASA Astrophysics Data System (ADS)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  3. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse

  4. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    PubMed

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  5. The contractile effect of anandamide in the guinea-pig small intestine is mediated by prostanoids but not TRPV1 receptors or capsaicin-sensitive nerves.

    PubMed

    Dékány, András; Benko, Rita; Szombati, Veronika; Bartho, Lorand

    2013-05-01

    Although exogenous and endogenous cannabinoid receptor agonists have well-documented inhibitory effects on gastrointestinal motility, a TRPV1 receptor-mediated excitatory action of anandamide (arachidonoyl ethanolamide, AEA) in the guinea-pig ileum strip has also been described. We used in vitro capsaicin desensitization for assessing the possible participation of sensory neurons in the contractile effect of anandamide on the guinea-pig whole ileum, as well as autonomic drugs and a cyclooxygenase inhibitor for characterizing this response. Isolated organ experiments were used with isotonic recording. Contractions induced by anandamide (1 or 10 μM) were strongly inhibited by tetrodotoxin, indomethacin or atropine plus a tachykinin NK(1) receptor antagonist, but weakly to moderately reduced by atropine alone and partly diminished by the fatty acid amide hydrolase inhibitor URB 597. Neither capsaicin pre-treatment nor the TRPV1 receptor antagonist BCTC, the ganglionic blocking drug hexamethonium or cannabinoid (CB1 or CB2 ) receptor antagonists, influenced the effect of anandamide. It is concluded that the capsaicin-insensitive, neuronal excitatory effect of anandamide in the intestine is most probably mediated by cyclooxygenase products. Such a mechanism may also play a role at other sites in the mammalian body. © 2012 Nordic Pharmacological Society. Published by Blackwell Publishing Ltd.

  6. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  7. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  8. Synaptic excitation mediated by AMPA receptors in rat cerebellar slices is selectively enhanced by aniracetam and cyclothiazide.

    PubMed

    Boxall, A R; Garthwaite, J

    1995-05-01

    AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 microM-5 mM) and cyclothiazide (1 microM-500 microM) both enhanced the depolarising action of AMPA (1 microM) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.

  9. The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors.

    PubMed

    da Cruz, Kellen Rosa; Turones, Larissa Córdova; Camargo-Silva, Gabriel; Gomes, Karina Pereira; Mendonça, Michelle Mendanha; Galdino, Pablinny; Rodrigues-Silva, Christielly; Santos, Robson Augusto Souza; Costa, Elson Alves; Ghedini, Paulo Cesar; Ianzer, Danielle; Xavier, Carlos Henrique

    2017-12-01

    LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin β-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  11. Receptor mediated endocytosis of vicilin in Callosobruchus maculatus (Coleoptera: Chrysomelidae) larval midgut epithelial cells.

    PubMed

    Kunz, Daniele; Oliveira, Gabriel B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Silva, Carlos P

    2017-08-01

    The transport of proteins across the intestinal epithelium of insects is still not well understood. There is evidence that vicilin, a major storage protein of cowpea seeds (Vigna unguiculata), is internalized in larvae of the seed-beetle Callosobruchus maculatus. It has been reported that this vicilin interacts with proteins present in the microvillar membranes of columnar cells along the digestive tract of the larvae. In the present work, we studied the cellular pathway involved in endocytosis of vicilin in larval C. maculatus by employing ex vivo experiments. In the ex vivo approach, we incubated FITC-labelled vicilin with isolated midgut wholemounts in the absence or in the presence of endocytosis inhibitors. The fate of labelled or non-labelled globulins was monitored by confocal microscopy and fluorescence measurement. Our results suggest that the internalization of vicilins is due to receptor-mediated endocytosis. Here we report the identity of a microvillar vicilin-binding protein that was purified using affinity chromatography on a vicilin-sepharose column. The putative vicilin receptor showed high homology to proteins with the CRAL-TRIO domain, specifically the Sec14 superfamily member α-tocopherol transfer protein. The precise mechanism involved in vicilin internalization was defined through the use of specific inhibitors of the endocytosis pathway. The inhibitors filipin III and nystatin significantly inhibited the endocytosis of vicilin, while chlorpromazine and phenylarsine oxide had a much lower effect on endocytosis, suggesting that the endocytic pathway is predominantly mediated by caveolin. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury

    PubMed Central

    Pu, Jun; Yuan, Ancai; Shan, Peiren; Gao, Erhe; Wang, Xiaoliang; Wang, Yajing; Lau, Wayne Bond; Koch, Walter; Ma, Xin-Liang; He, Ben

    2013-01-01

    Aims Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR. Methods and results Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0–53.4%, decreased infarct size by 23.4–49.7%, and improved cardiac function in ischaemic/reperfused myocardium. Conclusion These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury. PMID:22307460

  13. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin

    PubMed Central

    Sarlos, Stella; Rizkalla, Bishoy; Moravski, Christina J.; Cao, Zemin; Cooper, Mark E.; Wilkinson-Berka, Jennifer L.

    2003-01-01

    There is evidence that angiotensin II, vascular endothelial growth factor (VEGF), angiopoietins, and their cognate receptors participate in retinal angiogenesis. We investigated whether angiotensin type 2-receptor blockade (AT2-RB) reduces retinal angiogenesis and alters the expression of VEGF/VEGF-R2 and angiopoietin-Tie2. Retinopathy of prematurity (ROP) was induced in Sprague Dawley (SD) rats by exposure to 80% oxygen from postnatal (P) days 0 to 11, followed by 7 days in room air. ROP shams were in room air from P0–18. A group of ROP rats received the AT2-RB, PD123319, by mini-osmotic pump (5 mg/kg/day) from P11–18 (angiogenesis period). Evaluation of the retinal status of the AT2 receptor indicated that this receptor, as assessed by real-time PCR, immunohistochemistry, and in vitro autoradiography, was present in the retina, was more abundant than the AT1 receptor in the neonatal retina, and was increased in the ROP model. AT2-RB reduced retinal angiogenesis. VEGF and VEGF-R2 mRNA were increased in ROP and localized to blood vessels, ganglion cells, and the inner nuclear layer, and were decreased by PD123319. Angiopoietin2 and Tie2, but not angiopoietin1 mRNA were increased with ROP, and angiopoietin2 was reduced with PD123319. This study has identified a potential retinoprotective role for AT2-RB possibly mediated via interactions with VEGF- and angiopoietin-dependent pathways. PMID:12937129

  14. Role of sodium ferulate in the nociceptive sensory facilitation of neuropathic pain injury mediated by P2X(3) receptor.

    PubMed

    Zhang, Aixia; Xu, Changshui; Liang, Shangdong; Gao, Yun; Li, Guilin; Wei, Jie; Wan, Fang; Liu, Shuangmei; Lin, Jiari

    2008-12-01

    Neuropathic pain usually is persistent and no effective treatment. ATP plays an important role in the initiation of pain. P2X(3) receptors are localized in the dorsal root ganglion (DRG) neurons and activated by extracellular ATP. Sodium ferulate (SF) is an active principle from Chinese herbal medicine and has anti-inflammatory activities. This study observed the effects of SF on the nociceptive facilitation of the primary sensory afferent after chronic constriction injury (CCI) mediated by P2X(3) receptor. In this study, the content of ATP in DRG neurons was measured by high-performance liquid chromatography (HPLC). P2X(3) agonist-activated currents in DRG neurons was recorded by the whole-cell patch-clamp skill. The expression of P2X(3) mRNA in DRG neurons was analyzed by in situ hybridization. The ATP content of DRG was increased after CCI. In CCI rats treated with SF, the content of ATP in DRG neurons was reduced. SF decreased the increment of P2X(3) agonist-activated currents and P2X(3) mRNA expression in DRG neurons during CCI. SF may inhibit the initiation of pain and primary afferent sensitization mediated by P2X(3) receptor during CCI.

  15. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    PubMed

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Contribution of Central μ-Receptors to Switching Pulmonary C-Fibers-Mediated Rapid Shallow Breathing into An Apnea by Fentanyl in Anesthetized Rats

    PubMed Central

    Zhang, Zhenxiong; Zhang, Cancan; Zhuang, Jianguo; Xu, Fadi

    2012-01-01

    Our previous study has shown that activating peripheral μ-receptors is necessary for switching the bronchopulmonary C-fibers (PCFs)-mediated rapid shallow breathing (RSB) into an apnea by systemic administration of fentanyl. The brainstem nuclei, such as the medial nucleus tractus solitarius (mNTS) and the Pre-Botzinger Complex (PBC), are required for completing the PCF-mediated respiratory reflexes. Moreover, these areas contain abundant μ-receptors and their activation prolongs expiratory duration (TE). Thus, we asked if central μ-receptors, especially those in the mNTS and PBC, are involved in fully expressing this RSB-apnea switch by fentanyl. In anesthetized rats, the cardiorespiratory responses to right atrial injection of phenylbiguanide (PBG, 3–6 μg/kg) were repeated after: 1) fentanyl (iv), a μ-receptor agonist, alone (8 μg/kg, iv); 2) fentanyl following microinjection of naloxone methiodide (NXM, an opioid receptor antagonist) into the cisterna magna (10 μg/4 μl); 3) the bilateral mNTS (10 mM, 20 nl); or 4) PBC (10 mM, 20 nl). Our results showed that PBG shortened TE by 37 ± 6 % (RSB, from 0.41 ± 0.05 to 0.26 ± 0.03 s, P < 0.01), but it markedly prolonged TE by 5.8-fold (an apnea, from 0.50 ± 0.04 s to 2.9 ± 0.57 s, P < 0.01) after fentanyl (iv). Pretreatment with NXM injected into the cisterna magna or the PBC, but not the mNTS, prevented the fentanyl-induced switch. This study, along with our previous results mentioned above, suggests that although peripheral μ-receptors are essential for triggering the fentanyl-induced switch, central μ-receptors, especially those in the PBC, are required to fully exhibit such switch. PMID:22759907

  17. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver.

    PubMed

    Miller, Colton M; Tanowitz, Michael; Donner, Aaron J; Prakash, Thazha P; Swayze, Eric E; Harris, Edward N; Seth, Punit P

    2018-06-01

    Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize our knowledge on receptor-mediated uptake of PS antisense oligonucleotides (ASOs) within different cell types of the liver-a privileged organ for the discovery of oligonucleotide-based therapeutics.

  18. Evidence for the putative cannabinoid receptor, GPR55, mediated inhibitory effects on intestinal contractility in mice

    PubMed Central

    Ross, Gracious R; Lichtman, Aron; Dewey, William L; Akbarali, Hamid I

    2012-01-01

    Background Cannabinoids inhibit intestinal motility via presynaptic cannabinoid receptor type I(CB1) in enteric neurons while cannabinoid receptor type II (CB2) receptors are located mainly in immune cells. The recently deorphanized G-protein-coupled receptor, GPR55, has been proposed to be the “third” cannabinoid receptor. Although gene expression of GPR55 is evident in the gut, functional evidence for GPR55 in the gut is unknown. In this study, we tested the hypothesis that GPR55 activation inhibits neurogenic contractions in the gut. Methods We assessed the inhibitory effect of the atypical cannabinoid O-1602, a GPR55 agonist, in mouse colon. Isometric tension recordings in colonic tissue strips were used from either wild type, GPR55−/− or CB1−/−/CB2−/−knock-out mice. Results O-1602 inhibited the electrical field-induced contractions in the colon strips from wild type and CB1−/−/CB2−/− in a concentration–dependent manner, suggesting a non-CB1/CB2-receptor mediated prejunctional effect. The concentration–dependent response of O-1602 was significantly inhibited in GPR55−/− mice. O-1602 did not relax colonic strips pre-contracted with high K+ (80 mmol/l), indicating no involvement of Ca2+ channel blockade in O-1602–induced relaxation. However, 10 μmol/l O-1602 partially inhibited the exogenous acetylcholine (10 μmol/l) –induced contractions. Moreover, we also assessed the inhibitory effects of JWH 015, a CB2/GPR55 agonist on neurogenic contractions of mouse ileum. Surprisingly, the effects of JWH015 were independent of the known cannabinoid receptors. Conclusion These findings taken together suggest that activation of GPR55 leads to inhibition of neurogenic contractions in the gut, and are predominantly prejunctional. PMID:22759743

  19. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  20. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    PubMed

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24 h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    PubMed

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  2. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects

    PubMed Central

    Johns, D G; Behm, D J; Walker, D J; Ao, Z; Shapland, E M; Daniels, D A; Riddick, M; Dowell, S; Staton, P C; Green, P; Shabon, U; Bao, W; Aiyar, N; Yue, T-L; Brown, A J; Morrison, A D; Douglas, S A

    2007-01-01

    Background and purpose: Atypical cannabinoids are thought to cause vasodilatation through an as-yet unidentified ‘CBx' receptor. Recent reports suggest GPR55 is an atypical cannabinoid receptor, making it a candidate for the vasodilator ‘CBx' receptor. The purpose of the present study was to test the hypothesis that human recombinant GPR55 is activated by atypical cannabinoids and mediates vasodilator responses to these agents. Experimental approach: Human recombinant GPR55 was expressed in HEK293T cells and specific GTPγS activity was monitored as an index of receptor activation. In GPR55-deficient and wild-type littermate control mice, in vivo blood pressure measurement and isolated resistance artery myography were used to determine GPR55 dependence of atypical cannabinoid-induced haemodynamic and vasodilator responses. Key results: Atypical cannabinoids O-1602 and abnormal cannabidiol both stimulated GPR55-dependent GTPγS activity (EC50 approximately 2 nM), whereas the CB1 and CB2-selective agonist WIN 55,212-2 showed no effect in GPR55-expressing HEK293T cell membranes. Baseline mean arterial pressure and heart rate were not different between WT and GPR55 KO mice. The blood pressure-lowering response to abnormal cannabidiol was not different between WT and KO mice (WT 20±2%, KO 26±5% change from baseline), nor was the vasodilator response to abnormal cannabidiol in isolated mesenteric arteries (IC50 approximately 3 μ M for WT and KO). The abnormal cannabidiol vasodilator response was antagonized equivalently by O-1918 in both strains. Conclusions: These results demonstrate that while GPR55 is activated by atypical cannabinoids, it does not appear to mediate the vasodilator effects of these agents. PMID:17704827

  3. Intrarenal Mas and AT1 receptors play a role in mediating the excretory actions of renal interstitial angiotensin-(1-7) infusion in anaesthetized rats.

    PubMed

    O'Neill, Julie; Healy, Vincent; Johns, Edward J

    2017-12-01

    What is the central question of this study? Dietary sodium manipulation alters the magnitude of angiotensin-(1-7) [Ang-(1-7)]-induced natriuresis. The present study sought to determine whether this was related to relative changes in the activity of intrarenal Mas and/or AT 1 receptors. What is the main finding and its importance? Angiotensin-(1-7)-induced diuresis and natriuresis is mediated by intrarenal Mas receptors. However, intrarenal AT 1 receptor blockade also had an inhibitory effect on Ang-(1-7)-induced natriuresis and diuresis. Thus, Ang-(1-7)-induced increases in sodium and water excretion are dependent upon functional Mas and AT 1 receptors. We investigated whether angiotensin-(1-7) [Ang-(1-7)]-induced renal haemodynamic and excretory actions were solely dependent upon intrarenal Mas receptor activation or required functional angiotensin II type 1 (AT 1 ) receptors. The renin-angiotensin system was enhanced in anaesthetized rats by prior manipulation of dietary sodium intake. Angiotensin-(1-7) and AT 1 and Mas receptor antagonists were infused into the kidney at the corticomedullary border. Mas receptor expression was measured in the kidney. Mean arterial pressure, urine flow and fractional sodium excretion were 93 ± 4 mmHg, 46.1 ± 15.7 μl min -1  kg -1 and 1.4 ± 0.3%, respectively, in the normal-sodium group and 91 ± 2 mmHg, 19.1 ± 3.3 μl min -1  kg -1 and 0.7 ± 0.2%, respectively, in the low-sodium group. Angiotensin-(1-7) infusion had no effect on mean arterial pressure in rats receiving a normal-sodium diet but decreased it by 4 ± 5% in rats receiving a low-sodium diet (P < 0.05). Interstitial Ang-(1-7) infusion increased urine flow twofold and fractional sodium excretion threefold (P < 0.05) in rats receiving a normal-sodium diet and to a greater extent, approximately three- and fourfold, respectively, in rats receiving the low-sodium diet (both P < 0.05). Angiotensin-(1-7)-induced increases in urine flow and

  4. Dihydroartemisinin Enhances Apo2L/TRAIL-Mediated Apoptosis in Pancreatic Cancer Cells via ROS-Mediated Up-Regulation of Death Receptor 5

    PubMed Central

    Cheng, Zhuo-xin; Wang, Yong-wei; Mu, Ming; Wang, Shuang-jia; Pan, Shang-ha; Gao, Yue; Jiang, Hong-chi; Dong, De-li; Sun, Bei

    2012-01-01

    Background Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has recently shown antitumor activity in various cancer cells. Apo2 ligand or tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is regarded as a promising anticancer agent, but chemoresistance affects its efficacy as a treatment strategy. Apoptosis induced by the combination of DHA and Apo2L/TRAIL has not been well documented, and the mechanisms involved remain unclear. Methodology/Principal Findings Here, we report that DHA enhances the efficacy of Apo2L/TRAIL for the treatment of pancreatic cancer. We found that combined therapy using DHA and Apo2L/TRAIL significantly enhanced apoptosis in BxPC-3 and PANC-1 cells compared with single-agent treatment in vitro. The effect of DHA was mediated through the generation of reactive oxygen species, the induction of death receptor 5 (DR5) and the modulation of apoptosis-related proteins. However, N-acetyl cysteine significantly reduced the enhanced apoptosis observed with the combination of DHA and Apo2L/TRAIL. In addition, knockdown of DR5 by small interfering RNA also significantly reduced the amount of apoptosis induced by DHA and Apo2L/TRAIL. Conclusions/Significance These results suggest that DHA enhances Apo2L/TRAIL-mediated apoptosis in human pancreatic cancer cells through reactive oxygen species-mediated up-regulation of DR5. PMID:22666346

  5. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3

    PubMed Central

    Hilberath, Jan N.; Carlo, Troy; Pfeffer, Michael A.; Croze, Roxanne H.; Hastrup, Frantz; Levy, Bruce D.

    2011-01-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4Lps-d/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (Ri); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×103 vs. (control) 13×103 cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.—Hilberath, J N., Carlo, T., Pfeffer, M. A., Croze, R. H., Hastrup, F., Levy, B. D. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. PMID:21321188

  6. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    PubMed

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  7. Intracellular signals mediating the food intake suppressive effects of hindbrain glucagon-like-peptide-1 receptor activation

    PubMed Central

    Hayes, Matthew R.; Leichner, Theresa M.; Zhao, Shiru; Lee, Grace S.; Chowansky, Amy; Zimmer, Derek; De Jonghe, Bart C.; Kanoski, Scott E.; Grill, Harvey J.; Bence, Kendra K.

    2011-01-01

    Summary Glucagon-like-peptide-1 receptor (GLP-1R) activation within the nucleus tractus solitarius (NTS) suppresses food intake and body weight (BW), but the intracellular signals mediating these effects are unknown. Here, hindbrain (4th icv) GLP-1R activation by Exendin-4 increased PKA and MAPK activity and decreased phosphorylation of AMPK in NTS. PKA and MAPK signaling contribute to food intake and BW suppression by Exendin-4, as inhibitors RpcAMP and U0126 (4th icv), respectively, attenuated Exendin-4's effects. Hindbrain GLP-1R activation inhibited feeding by reducing meal number, not meal size. This effect was attenuated with stimulation of AMPK activity by AICAR (4th icv). The PKA, MAPK and AMPK signaling responses by Ex-4 were present in immortalized GLP-1R-expressing neurons (GT1-7). In conclusion, hindbrain GLP-1R activation suppresses food intake and BW through coordinated PKA-mediated suppression of AMPK and activation of MAPK. Pharmacotherapies targeting these signaling pathways, which mediate intake-suppressive effects of CNS GLP-1R activation, may prove efficacious in treating obesity. PMID:21356521

  8. Dopamine D1 receptors are not critical for opiate reward but can mediate opiate memory retrieval in a state-dependent manner.

    PubMed

    Ting-A-Kee, Ryan; Mercuriano, Laura E; Vargas-Perez, Hector; George, Susan R; van der Kooy, Derek

    2013-06-15

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing - which acts as a potent discriminative stimulus - may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    PubMed

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells.

    PubMed Central

    Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C

    2000-01-01

    Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway

  11. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio

    2013-09-01

    We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre

  12. AN IP3 RECEPTOR-SENSITIVE CALCIUM STORE MEDIATES DISTURBANCES IN INTRACELLULAR CALCIUM UPON EXPOSURE TO AROCLOR 1254 AND ORTHO-SUBSTITUTED PCBS.

    EPA Science Inventory

    An IP3 Receptor-Sensitive Ca2+ Store Mediates Disturbances In Intracellular Ca2+ Upon Exposure To Aroclor 1254 And Ortho-Substituted PCBs JR Inglefield, WR Mundy, and TJ Shafer. Neurotoxicol. Div., NHEERL, US EPA, RTP, NC. Sponsor: L Birnbaum

    Polychlorinated biphenyls (...

  13. Control of synaptic function by endocannabinoid-mediated retrograde signaling.

    PubMed

    Kano, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.

  14. Control of synaptic function by endocannabinoid-mediated retrograde signaling

    PubMed Central

    KANO, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670

  15. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  16. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current.

    PubMed

    Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Nam, Joo Hyun; Moon, Il Soo

    2014-01-01

    Neurotrophic factors are essential for the differentiation and maturation of developing neurons as well as providing survival support to the mature neurons. Moreover, therapeutically neurotrophic factors are promising to reconstruct partially damaged neuronal networks in neurodegenerative diseases. In the previous study, we reported that the ethanol extract of an edible marine alga, Gelidium amansii (GAE) had shown promising effects in the development and maturation of both axon and dendrites of hippocampal neurons. Here, we demonstrate that in primary culture of hippocampal neurons (1) GAE promotes a significant increase in the number of filopodia and dendritic spines; (2) promotes synaptogenesis; (3) enhances N-methyl-D-aspartic acid (NMDA) receptor recruitment; and (4) modulates NMDA-receptor-mediated postsynaptic current. Taken together these findings that GAE might be involved in both morphological and functional maturation of neurons suggest the possibility that GAE may constitute a promising candidate for novel compounds for the prevention and treatment of neurodegenerative diseases.

  17. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  18. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  19. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  20. Receptor Complex Mediated Regulation of Symplastic Traffic.

    PubMed

    Stahl, Yvonne; Faulkner, Christine

    2016-05-01

    Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic. Copyright © 2015 Elsevier Ltd. All rights reserved.