Science.gov

Sample records for asme fluids engineering

  1. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  2. 75 FR 24323 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... by reference into the regulations in a final rule dated September 10, 2008 (73 FR 52730), as corrected on October 2, 2008 (73 FR 57235), incorporating Section III of the 2004 Edition of the ASME B&PV..., 2008 (73 FR 52729). The NRC follows a three-step process to determine acceptability of new...

  3. 77 FR 3073 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Register on June 21, 2011 (76 FR 36232). The final rule amended the NRC's regulations to incorporate by... INFORMATION: The NRC published a final rule in the Federal Register on June 21, 2011 (76 FR 36232), amending... Addenda of the ASME OM Code to address the underlying issues which led the NRC to impose the conditions...

  4. Atmospheric fluid bed cogeneration air heater experiment. Task 1.3, ASME Code certification testing

    SciTech Connect

    Bynum, J.E.; Ellis, F.V.; Roberts, B.W.

    1990-02-28

    The AFB Cogeneration Air Heater Experiment is a testing program under contract with the Department of Energy through Westinghouse Electric Corporation to obtain data for designing a coal-fired circulating fluidized bed cogeneration plant producing steam, electricity, and hot air for an applicable industrial customer. The hot air portion of the system involves a fluid bed heat exchanger which gives up heat to air cooled tubes. Clean compressed air enters the tubes at 520F and is heated to 1500F. The proposed material for the heat exchanger tubes is Type 304H Stainless Steel. The AFB unit will be designed by the rules specified in Section I or Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code which includes tables of maximum allowable stresses for various materials as a function of temperature. For Type 304H Stainless Steel, the allowable stress values in the Code are only given to a maximum temperature of 1500F. To heat air inside the heat exchanger tubes to 1500F, the outside metal temperature will obviously exceed that level. Therefore, the purpose of this subtask is to obtain data required to apply for Code certification of TP 304H SS at metal temperatures up to 1650F. A series of tensile and creep-rupture tests were conducted on Type 304H Stainless Steel bar with the objective of extending the allowable stress tables in the ASME Boiler and Pressure Vessel Code for this material from 1500F to 1650F. Material representing five heats of 3/4-inch diameter bar was procured for which three heats were selected for the test program. Final heat selection was based on chemical analysis, metallographic structure, room-temperature tensile properties, and short-term creep-rupture screening tests.

  5. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Siginer, Dennis A. (editor); Weislogel, Mark M. (editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  6. Review and Application of ASME NOG-1 and ASME NUM-1-2000

    NASA Technical Reports Server (NTRS)

    Lytle, Bradford P.; Delgado, H. (Technical Monitor)

    2002-01-01

    The intent of the workshop is to review the application of the ASME Nuclear Crane Standards ASME NOG-1 and ASME NUM-1-2000. The ASME Nuclear Crane standards provide a basis for purchasing overhead handling equipment with enhanced safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities.

  7. DESIGN OF ENGINE INTAKE SYSTEMS USING COMPUTER SIMULATIONS ASME PAPER ICEF2002-523

    EPA Science Inventory

    A computational study of a direct injection engine intake system was conducted to determine if adding scrouds to the intake valves would improve the swirl performance in the engine. The results show that higher swril was generated with a single port and a shrouded valve.

  8. Stirling engine with air working fluid

    DOEpatents

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  9. Engineering fluid flow using sequenced microstructures.

    PubMed

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A; Di Carlo, Dino

    2013-01-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation. PMID:23652014

  10. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  11. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  12. 78 FR 37848 - ASME Code Cases Not Approved for Use

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... COMMISSION ASME Code Cases Not Approved for Use AGENCY: Nuclear Regulatory Commission. ACTION: Draft... public comment draft regulatory guide (DG), DG-1233, ``ASME Code Cases not Approved for Use.'' This regulatory guide lists the American Society of Mechanical Engineers (ASME) Code Cases that the NRC...

  13. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  14. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  15. ASME Code Efforts Supporting HTGRs

    SciTech Connect

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  16. Globalization of ASME Nuclear Codes and Standards

    SciTech Connect

    Swayne, Rick; Erler, Bryan A.

    2006-07-01

    With the globalization of the nuclear industry, it is clear that the reactor suppliers are based in many countries around the world (such as United States, France, Japan, Canada, South Korea, South Africa) and they will be marketing their reactors to many countries around the world (such as US, China, South Korea, France, Canada, Finland, Taiwan). They will also be fabricating their components in many different countries around the world. With this situation, it is clear that the requirements of ASME Nuclear Codes and Standards need to be adjusted to accommodate the regulations, fabricating processes, and technology of various countries around the world. It is also very important for the American Society of Mechanical Engineers (ASME) to be able to assure that products meeting the applicable ASME Code requirements will provide the same level of safety and quality assurance as those products currently fabricated under the ASME accreditation process. To do this, many countries are in the process of establishing or changing their regulations, and it is important for ASME to interface with the appropriate organizations in those countries, in order to ensure there is effective use of ASME Codes and standards around the world. (authors)

  17. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.

  18. Index to place of publication of ASME Papers, 1978--1988

    SciTech Connect

    Youngen, G.K.

    1990-06-01

    This index is a list of American Society of Mechanical Engineers (ASME) Papers that are reprinted in the ASME Transactions series of journals. ASME Papers are often cited only by their paper number, making it difficult to determine if the article has ever appeared in print in the journal literature. This index will be useful for tracking down those papers published as journal articles by the ASME. It will also serve as a guide for retention for subscribers to the ASME Papers and Transaction Series. Paper numbers that appear in the journals may be weeded from the collection of ASME Papers.

  19. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  20. Fluid design studies of integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  1. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  2. Stirling engine performance optimization with different working fluids

    SciTech Connect

    Daley, J.G.; Marr, W.W.; Heames, T.J.

    1986-01-01

    The design flexibility of Stirling cycle devices is evident from the wide variety of mechanical configurations that have been developed as well as the many differing applications that have been shown to be technically feasible. The choice of working fluid is one option that strongly influences engine design. Hydrogen permits the most compact engine (for a given power output and efficiency) of any gaseous working fluid investigated and has therefore been the choice in Stirling development programs directed at the automotive application where engine size is a major concern. Systems using helium or air are presently under development for applications where size is not as important a consideration. This paper describes calculated characteristics of engines optimized for four working fluids (hydrogen, helium, air and methane). A comparison is given between engines whose exterior dimensions are minimized and with lower rpm, lower pressure engine designs calculated by maximizing the dimensionless parameter known as the Beale number. Design point power and efficiency are the same in the resulting eight conceptual designs but great variation is shown in engine characteristics due both to working fluid differences and to the two different design objectives. 5 refs., 7 figs., 5 tabs.

  3. An example of a component replacement when applying ASME N509 and ASME N510 to older ventilation systems

    SciTech Connect

    Arndt, T.E.

    1994-06-01

    This paper presents an example of a component replacement (electric heater) when installed in an older ventilation system that was constructed before the issuance of ASME N509 and N510. Many of the existing ventilation systems at the Hanford Site were designed, fabricated, and installed before the issuance of ASME N509 and N510. Requiring the application of these codes to existing ventilation systems presents challenges to the engineer when design changes are needed. Although it may seem that the application of ASME N509 or N510 may be a hindrance at times, this does not need to occur. Proper preparation at the start of project or design modifications can minimize frustration to the engineer when it is judged that portions of ASME N509 and N510 do not apply in a particular application.

  4. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  5. Control system for cheng dual-fluid cycle engine system

    SciTech Connect

    Cheng, D.Y.

    1987-07-21

    A dual-fluid heat engine is described which is operated to produce co-generated process steam having: a chamber; compressor means for introducing a first gaseous working fluid comprising air into the chamber, the compressor means having a predetermined pressure ratio (CPR); means for introducing a second liquid-vapor working fluid comprising water in the form of a vapor within the chamber at a defined water/air working fluid ratio (XMIX); means for heating the water vapor and air in the chamber at a defined specific heat input rate (SHIR); turbine means responsive to the mixture of the first and second working fluids for converting the energy associated with the mixture to mechanical energy, the temperature of the mixture entering the turbine means defining the turbine inlet temperature (TIT) and having a design maximum turbine inlet temperature (TITmax); counterflow heat exchanger means for transferring residual thermal energy from the exhausted mixture of first and second working fluids to the incoming working fluid water to thereby preheat the same to water vapor prior to its introduction within the chamber; means for diverting water vapor from the chamber, if desired, for co-generated process steam; and wherein the improvement comprises: means for operating the engine under partial load conditions such that when substantially no co-generated process steam is required. The engine control path follows a locus of peak efficiency points resulting in declining TIT as the load decreases, and such that XMIX and SHIR are selected so that for a given value of TIT, XMIX is at or near XMIX peak, where XMIX peak occurs when conditions are met simultaneously.

  6. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest. PMID:23445061

  7. Fluid geochemistry applications in reservoir engineering (vapour-dominated systems)

    SciTech Connect

    D'Amore, F.; Celati, R.; Calore, C.

    1982-01-01

    Fluid geochemistry has proved to be a valid tool for analyzing the processes occurring in geothermal reservoirs. The major effort is now invested in developing conceptual and quantitative models for chemical and physical processes that could produce the observed variations in fluid composition. These models are an effective complement to the classical methods of reservoir engineering in field development and exploitation. The fields in which the geochemical methods seem to be most effective are listed. Previous work in the field, as well as current development of research conducted on gas composition, is discussed and reviewed.

  8. Circulating fluid bed technology within Combustion Engineering Inc.

    SciTech Connect

    Treff, P.J.; Maitland, J.E.

    1995-12-31

    As the worldwide trend for more flexible, cost-effective CFB technology continues as an alternative to pulverized coal and combined cycle steam generation, Combustion Engineering Inc. has drawn on original scientific work and the operating history of numerous BFBs and CFBs worldwide as reported in publicly available literature to introduce many product enhancements for its next generation of circulating fluid bed boilers. The issues of in-furnace surface versus external fluid bed heat exchanger applicability, cyclone and loop seal design, refractory system design and operating requirements, and the suitability of regenerative air heaters for CFB applications will be among the topics discussed in this paper as Combustion Engineering Inc. answers the challenge to continuously advance CFB steam generation.

  9. ASME Nuclear Crane Standards for Enhanced Crane Safety and Increased Profit

    NASA Astrophysics Data System (ADS)

    Parkhurst, Stephen N.

    2000-01-01

    The ASME NOG-1 standard, 'Rules for Construction of Overhead and Gantry Cranes', covers top running cranes for nuclear facilities; with the ASME NUM-1 standard, 'Rules for Construction of Cranes, Monorails, and Hoists', covering the single girder, underhung, wall and jib cranes, as well as the monorails and hoists. These two ASME nuclear crane standards provide criteria for designing, inspecting and testing overhead handling equipment with enhanced safety to meet the 'defense-in-depth' approach of the United States Nuclear Regulatory Commission (USNRC) documents NUREG 0554 and NUREG 0612. In addition to providing designs for enhanced safety, the ASME nuclear crane standards provide a basis for purchasing overhead handling equipment with standard safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities. The ASME NOG-1 and ASME NUM-1 standards not only provide enhanced safety for handling a critical load, but also increase profit by minimizing the possibility of load drops, by reducing cumbersome operating restrictions, and by providing the foundation for a sound licensing position. The ASME nuclear crane standards can also increase profit by providing the designs and information to help ensure that the right standard equipment is purchased. Additionally, the ASME nuclear crane standards can increase profit by providing designs and information to help address current issues, such as the qualification of nuclear plant cranes for making 'planned engineered lifts' for steam generator replacement and decommissioning.

  10. ASME Code requirements for multi-canister overpack design and fabrication

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified.

  11. Risk based ASME Code requirements

    SciTech Connect

    Gore, B.F.; Vo, T.V.; Balkey, K.R.

    1992-09-01

    The objective of this ASME Research Task Force is to develop and to apply a methodology for incorporating quantitative risk analysis techniques into the definition of in-service inspection (ISI) programs for a wide range of industrial applications. An additional objective, directed towards the field of nuclear power generation, is ultimately to develop a recommendation for comprehensive revisions to the ISI requirements of Section XI of the ASME Boiler and Pressure Vessel Code. This will require development of a firm technical basis for such requirements, which does not presently exist. Several years of additional research will be required before this can be accomplished. A general methodology suitable for application to any industry has been defined and published. It has recently been refined and further developed during application to the field of nuclear power generation. In the nuclear application probabilistic risk assessment (PRA) techniques and information have been incorporated. With additional analysis, PRA information is used to determine the consequence of a component rupture (increased reactor core damage probability). A procedure has also been recommended for using the resulting quantified risk estimates to determine target component rupture probability values to be maintained by inspection activities. Structural risk and reliability analysis (SRRA) calculations are then used to determine characteristics which an inspection strategy must posess in order to maintain component rupture probabilities below target values. The methodology, results of example applications, and plans for future work are discussed.

  12. Reliability Engineering and Robust Design: New Methods for Thermal/Fluid Engineering

    NASA Astrophysics Data System (ADS)

    Cullimore, Brent A.; Tsuyuki, Glenn T.

    2002-07-01

    Recent years have witnessed more improvement to the SINDA/FLUINT thermohydraulic analyzer than at any other time in its long history. These improvements have included not only expansions in analytic power, but also the additions of high-level modules that offer revolutions in thermal/fluid engineering itself. One such high-level module, "Reliability Engineering," is described in this paper. Reliability Engineering means considering tolerances in design parameters, uncertainties in environments, uncertainties in application (e.g. usage scenarios), and variations in manufacturing as the stochastic phenomena that they are. Using this approach, the probability that a design will achieve its required performance (i.e., the reliability) is calculated, providing an assessment of risk or confidence in the design, and quantifying the amount of over- or under-design present. The design to be evaluated for reliability will likely have been produced using traditional methods. Possibly, the design was generated using the Solver optimizer, another high-level module available in SINDA/FLUINT. Using design optimization, the user quantifies the goals that make one design better than another (mass, efficiency, etc.), and specifies the thresholds or requirements which render a given design viable or useless (exceeding a performance limit, etc.). SINDA/FLUINT then automatically searches for an optimal design. Robust Design means factoring reliability into the development of the design itself: designing for a target reliability and thereby avoiding either costly over-design or dangerous under-design in the first place. Such an approach eliminates a deterministic stack-up of tolerances, worst-case scenarios, safety factors, and margins that have been the traditional approaches for treating uncertainties. In any real system or product, heat transfer and fluid flow play a limited role: there are many other aspects to a successful design than the realm of thermal/fluids that is encompassed by SINDA/FLUINT. Therefore, this paper concludes with brief descriptions of methods for performing interdisciplinary design tasks.

  13. 46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of PVG-1 through PVG-12 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1) except as noted otherwise in this section. (b) The application and end use of... (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer...

  14. 46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements of PVG-1 through PVG-12 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1) except as noted otherwise in this section. (b) The application and end use of... (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer...

  15. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference; see 46 CFR 52.01-1), as limited, modified, or replaced by specific requirements in... 46 Shipping 2 2012-10-01 2012-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME...

  16. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 52.01-1), as limited, modified, or replaced by specific requirements in... 46 Shipping 2 2013-10-01 2013-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME...

  17. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference; see 46 CFR 52.01-1), as limited, modified, or replaced by specific requirements in... 46 Shipping 2 2011-10-01 2011-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME...

  18. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 52.01-1), as limited, modified, or replaced by specific requirements in... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME...

  19. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference; see 46 CFR 52.01-1), as limited, modified, or replaced by specific requirements in... 46 Shipping 2 2014-10-01 2014-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME...

  20. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or replaced... subchapter. See 46 CFR 56.60-1(b) for the other adopted commercial standards applicable to piping systems... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping,...

  1. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or replaced... subchapter. See 46 CFR 56.60-1(b) for the other adopted commercial standards applicable to piping systems... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping,...

  2. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or replaced... subchapter. See 46 CFR 56.60-1(b) for the other adopted commercial standards applicable to piping systems... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping,...

  3. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or replaced... subchapter. See 46 CFR 56.60-1(b) for the other adopted commercial standards applicable to piping systems... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping,...

  4. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or replaced... subchapter. See 46 CFR 56.60-1(b) for the other adopted commercial standards applicable to piping systems... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping,...

  5. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  6. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  7. ASM Conference on Prokaryotic Development

    SciTech Connect

    Kaplan, H. B.

    2005-07-13

    Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations by leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.

  8. The low temperature differential Stirling engine with working fluid operated on critical condition

    SciTech Connect

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

  9. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,

  10. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  11. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...

  12. Bone tissue engineering: the role of interstitial fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1994-01-01

    It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.

  13. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    SciTech Connect

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. The role of computational fluid dynamics in aeronautical engineering

    NASA Astrophysics Data System (ADS)

    Kishimoto, Takuji; Uchida, Takashi

    1988-12-01

    Numerical analyses by solving Euler/Navier-Stokes Equations has been used in practical aeronautical engineerings. Here, the results of two dimensional Navier-Stokes analyses of a multiple slotted flap, and a three dimensional wing design problem using Euler analyses are shown.

  15. Improvement of ASME NH for Grade 91

    SciTech Connect

    Bernard Riou

    2007-10-09

    This report has been prepared in the context of Task 3 of the ASME/DOE Gen IV material project. It has been identified that creep-fatigue evaluation procedures presently available in ASME (1) and RCC-MR (2) have been mainly developed for austenitic stainless steels and may not be suitable for cyclic softening materials such as mod 9 Cr 1 Mo steel (grade 91). The aim of this document is, starting from experimental test results, to perform a review of the procedures and, if necessary, provide recommendations for their improvements.

  16. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  17. Proceedings: 2002 ASME/EPRI Radwaste Workshop

    SciTech Connect

    2002-11-01

    Nuclear utilities are continually evaluating methods to improve operations and reduce costs associated with radioactive waste management. The 25th Annual ASME/EPRI Workshop facilitates this effort by communicating technology and management improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail.

  18. Proceedings: 2003 ASME/EPRI Radwaste Workshop

    SciTech Connect

    2004-05-01

    Nuclear utilities are continually evaluating methods to improve operations and reduce costs associated with radioactive waste management. The 26th Annual ASME/EPRI Workshop facilitates this effort by communicating technology and management improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail.

  19. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  20. Performance characteristics of prototype MR engine mounts containing LORD glycol MR fluids

    NASA Astrophysics Data System (ADS)

    Barber, Daniel E.; Carlson, J. David

    2009-02-01

    LORD Corporation has recently developed glycol-based MR fluids for use in applications such as engine mounts and bushing, in which the MR fluid will contact rubber and other oil-sensitive elastomers. To demonstrate the performance characteristics of these fluids, prototype MR engine mounts were designed and their dynamic stiffness and damping were tested. In one configuration, the MR mount contained a simple MR valve and was filled with a glycol fluid containing 22% iron by volume. This mount had low dynamic stiffness and frequency-dependent damping in the off-state and higher dynamic stiffness with little damping in the on-state. The low-frequency stiffness and damping could be varied by adjusting the applied magnetic field. In a second mount configuration, the mount contained both an MR valve and an inertia track. Two such mounts were evaluated with MR fluids containing 22% and 36% iron, respectively. In the off-state, both mounts displayed low stiffness and damping as fluid flowed through the MR valve. In the on-state, the MR valve was closed and the inertia track was activated, giving characteristic frequency-dependent stiffness and damping that could be tuned by varying the strength of the magnetic field. These behaviors were observed at both low and high displacements of the mount.

  1. Computational fluid dynamics applied to flows in an internal combustion engine

    NASA Technical Reports Server (NTRS)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  2. The development of a transparent cylinder engine for piston engine fluid mechanics research

    SciTech Connect

    Richman, R.M.; Reynolds, W.C.

    1984-01-01

    The development of a unique flow visualization engine is discussed. The new research engine, called the Flow Diagnostics Engine (FDE), is a singlecylinder engine with a transparent cylinder made from single-crystal sapphire. In contrast to previous efforts, the FDE has an internal geometry very similar to that of production engines. A computer-controlled valveactuation system is used on the FDE. The valve actuators are fast electro-hydraulic devices which, with a minicomputer, provide complete control over the valve motion. To visualize the flows in the engine cylinder, a special Schlieren system was developed and demonstrated. In the new visualization system, a holographic optical element is used to correct system abberations. To demonstrate the feasibility and usefulness of the FDE system, flows in both conventional and swirl engine geometries were visualized and recorded with high-speed cinematography. The visualization provides qualitative information about the flow and allows observation of: the development and motions of large recirculation zones during the intake event; the appearance of small-scale turbulence and the changes in scale caused by compression and expansion; the expansion of ring crevice gases into the cylinder during the beginning of the event; and the large-scale motions associated with intake swirl. The FDE system is very versatile and can accommodate a wide variety of engine geometries, operating conditions, and optical diagnostics.

  3. High-pressure rocket engine turnaround duct computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Cox, G. B., Jr.

    1984-10-01

    Current and projected high-pressure, staged-combustion rocket engine designs, such as the XLR129 and space shuttle main engine (SSME), introduced a type of turnaround duct flowpath wherein the turnaround is accompanied by an increase in mean radius and a decrease in fluid velocity through a subsequent diffuser. This turnaround duct flowpath is needed in the rocket engine to conduct high-pressure turbopump turbine discharge gases toward the main injector while maintaining a compact turbomachinery and powerhead flowpath. Current experience in the SSME shows that this type of turnaround duct can experience flow separation with an attendant increase in flow turbulence levels. Advances in computational fluid dynamics techniques over the last decade produced a number of codes which are applicable to the analysis and prediction of flow field behavior within such ducts. A version of the TEACH code developed at Pratt & Whitney Engineering Division was used to analyze three representative turnaround duct configurations. The study included the effects of fluid properties, inlet velocity flowfields, solution grid mesh size, and numerical solution algorithm upon calculated flow. Results include flow streamline comparisons, velocity profiles, and calculated total pressure losses. The results showed that turnaround ducts of the type studied can exhibit separation but that appropriately designed turnaround ducts can be made to function without suffering from internal flow separation.

  4. Controlling health risks from workplace exposure to metalworking fluids in the United Kingdom engineering industry.

    PubMed

    Stear, Martin A

    2003-11-01

    On October 15, 2002, the United Kingdom (UK) Health and Safety Executive (HSE) launched new guidance for the engineering industry, aimed at reducing health risks from metalworking fluids (MWFs). This guidance was the culmination of many years of work on this subject. In the early 1990s, the UK occupational exposure standards (OES) for oil mist were 5 mg/m(-3) 8-hour time-weighted average (TWA), and 10 mg/m(-3) short-term exposure limit (STEL). This was only applicable to highly refined mineral oil mists and there was no exposure limit for water-mix MWFs (emulsions, semi-synthetics, and synthetics). HSE therefore undertook to review the existing exposure limit for neat mineral oil mists (neat oils are fluids that contain highly refined mineral oils and additives, and are used neat without mixing with water) and consider developing one for water-mix MWFs. This led to the development of new air-sampling methods, a comprehensive survey, and the development of new good practice guidance in the place of statutory exposure limits. This new good practice guidance has been endorsed and launched with the help of relevant industry supplier, employer, and employee associations. The guidance builds on the philosophy of tackling health risks as a holistic approach; for example, not just tackling mist control through the use of ventilation, but also fluid selection, fluid delivery, and fluid management (fluid management means to effectively manage all aspects of the fluid, from storage and stock preparation to sump cleaning and fluid disposal, etc.). Tools, such as laminated task sheets, are provided to make it user friendly. It also demonstrates the business benefits from this approach, that managing your MWFs effectively can reduce the incidence of ill health, reduce fluid and disposal costs, increase tool life, and improve machining performance. PMID:14555440

  5. Proceedings: 2001 ASME/EPRI Radwaste Workshop

    SciTech Connect

    2001-12-01

    Nuclear utilities continually evaluate methods to improve operations and reduce costs associated with radioactive waste management. The continuing deregulation process has increased the emphasis on this activity. The Annual ASME/EPRI Workshop facilitates this effort by communicating technology and management improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail.

  6. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering.

    PubMed

    Morris, H L; Reed, C I; Haycock, J W; Reilly, G C

    2010-12-01

    Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-kappaB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-kappaB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-kappaB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering. PMID:21287834

  7. Optimization of new magnetorheological fluid mount for vibration control of start/stop engine mode

    NASA Astrophysics Data System (ADS)

    Chung, Jye Ung; Phu, Do Xuan; Choi, Seung-Bok

    2015-04-01

    The technologies related to saving energy/or green vehicles are actively researched. In this tendency, the problem for reducing exhausted gas is in development with various ways. Those efforts are directly related to the operation of engine which emits exhausted gas. The auto start/stop of vehicle engine when a vehicle stop at road is currently as a main stream of vehicle industry resulting in reducing exhausted gas. However, this technology automatically turns on and off engine frequently. This motion induces vehicle engine to transmit vibration of engine which has large displacement, and torsional impact to chassis. These vibrations causing uncomfortable feeling to passengers are transmitted through the steering wheel and the gear knob. In this work, in order to resolve this vibration issue, a new proposed magnetorheological (MR) fluid based engine mount (MR mount in short) is presented. The proposed MR mount is designed to satisfy large damping force in various frequency ranges. It is shown that the proposed mount can have large damping force and large force ratio which is enough to control unwanted vibrations of engine start/stop mode.

  8. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton; Turner, Larry D. (Technical Monitor)

    2001-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, a C-SiC composite heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on-going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and therma models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  9. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton

    2002-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  10. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".

    PubMed

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-01-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838

  11. Power enhancement of heat engines via correlated thermalization in a three-level working fluid

    NASA Astrophysics Data System (ADS)

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-09-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose working fluid is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

  12. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  13. Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.

    2014-02-01

    Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.

  14. PROCEEDINGS OF THE ASME/EPA (AMERICAN SOCIETY OF MECHANICAL ENGINEERS/ENVIRONMENTAL PROTECTION AGENCY) HAZARDOUS WASTE INCINERATION CONFERENCE HELD AT WILLIAMSBURG, VIRGINIA ON MAY 27-29, 1981

    EPA Science Inventory

    This report is a proceedings of a 3-day conference among industry, government, professional engineers and scientists, and the general public concerning hazardous waste incineration which came at a time when EPA interim final rule incineration regulations had just been made public...

  15. ASME code and ratcheting in piping components. Final technical report

    SciTech Connect

    Hassan, T.; Matzen, V.C.

    1999-05-14

    The main objective of this research is to develop an analysis program which can accurately simulate ratcheting in piping components subjected to seismic or other cyclic loads. Ratcheting is defined as the accumulation of deformation in structures and materials with cycles. This phenomenon has been demonstrated to cause failure to piping components (known as ratcheting-fatigue failure) and is yet to be understood clearly. The design and analysis methods in the ASME Boiler and Pressure Vessel Code for ratcheting of piping components are not well accepted by the practicing engineering community. This research project attempts to understand the ratcheting-fatigue failure mechanisms and improve analysis methods for ratcheting predictions. In the first step a state-of-the-art testing facility is developed for quasi-static cyclic and seismic testing of straight and elbow piping components. A systematic testing program to study ratcheting is developed. Some tests have already been performed an d the rest will be completed by summer'99. Significant progress has been made in the area of constitutive modeling. A number of sophisticated constitutive models have been evaluated in terms of their simulations for a broad class of ratcheting responses. From the knowledge gained from this evaluation study two improved models are developed. These models are demonstrated to have promise in simulating ratcheting responses in piping components. Hence, implementation of these improved models in widely used finite element programs, ANSYS and/or ABAQUS, is in progress. Upon achieving improved finite element programs for simulation of ratcheting, the ASME Code provisions for ratcheting of piping components will be reviewed and more rational methods will be suggested. Also, simplified analysis methods will be developed for operability studies of piping components and systems. Some of the future works will be performed under the auspices of the Center for Nuclear Power Plant Structures, Equipment and Piping. Proposals for future funding also will be submitted to different organizations and industries to speed up the progress of the research.

  16. A method for certification of FRP piping fabricators for ASME B31.3 systems

    SciTech Connect

    Andersen, K.D.

    1996-07-01

    Cost-effective FRP piping is often the material of choice for transport of corrosive chemicals. Plant Managers and Engineers have great concern about the integrity of FRP piping joints and the safety of these systems. A specification requirement, in the bid documents, that all fabricators be Certified by the FRP piping manufacturer is a method to promote successful fabrication. A method is proposed, which is in accordance with ASME B31.3 Piping Code, to train and certify fabricators.

  17. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection 25.1182 Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle...

  18. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection 25.1182 Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle...

  19. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection 25.1182 Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle...

  20. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection 25.1182 Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle...

  1. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection 25.1182 Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle...

  2. Movement of geothermal fluid in the Cerro Prieto field as determined from well log and reservoir engineering data

    SciTech Connect

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.

    1982-01-01

    A hydrogeologic model of the Cerro Prieto geothermal field in its undisturbed state, developed on the basis of well log and reservoir engineering data, is discussed. According to this model, geothermal fluid enters the field from the east through a deep (>10,000 ft) sandstone aquifer which is overlain by a thick shale unit which locally prevents the upward migration of the fluid. As it flows westward, the fluid gradually rises through faults and sandy gaps in the shale unit. Eventually, some of the fluid leaks to the surface in the western part of the field, while the rest mixes with surrounding colder waters.

  3. Toward improved durability in advanced aircraft engine hot sections; Proceedings of the Thirty-third ASME International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, Netherlands, June 5-9, 1988

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (editor)

    1988-01-01

    The present conference on durability improvement methods for advanced aircraft gas turbine hot-section components discusses NASA's 'HOST' project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  4. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2014-10-01

    This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.

  5. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  6. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reference; see 46 CFR 53.01-1) as limited, modified, or replaced by specific requirements in this part. The... 46 Shipping 2 2014-10-01 2014-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the...

  7. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reference; see 46 CFR 53.01-1) as limited, modified, or replaced by specific requirements in this part. The... 46 Shipping 2 2012-10-01 2012-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the...

  8. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reference; see 46 CFR 53.01-1) as limited, modified, or replaced by specific requirements in this part. The... 46 Shipping 2 2011-10-01 2011-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the...

  9. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reference; see 46 CFR 53.01-1) as limited, modified, or replaced by specific requirements in this part. The... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the...

  10. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reference; see 46 CFR 53.01-1) as limited, modified, or replaced by specific requirements in this part. The... 46 Shipping 2 2013-10-01 2013-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the...

  11. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  12. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  13. Atomization and dense-fluid breakup regimes in liquid rocket engines

    SciTech Connect

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model, regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.

  14. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGESBeta

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  15. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid density, spark gap distance, electrode angles, electrode materials and polarity. The research added to the fundamental knowledge of spark development in rocket ignition applications by determining the parameters that most influence breakdown voltage. Some improvements to the research should include better temperature measurements near the spark gap, additional testing with oxygen and testing with fuels of interest such as hydrogen and methane.

  16. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  17. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  18. The ASME handbook on water technology for thermal power systems

    SciTech Connect

    Cohen, P.

    1989-01-01

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  19. The First ASME Code Stamped Cryomodule at SNS

    SciTech Connect

    Howell, M P; Crofford, M T; Douglas, D L; Kim, S -H; Steward, S T; Strong, W H; Afanador, R; Hannah, B S; Saunders, J

    2012-07-01

    The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying the pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.

  20. ASME code considerations for the compact heat exchanger

    SciTech Connect

    Nestell, James; Sham, Sam

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a working fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.

  1. Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues

    PubMed Central

    Han, Bumsoo; Teo, Ka Yaw; Ghosh, Soham; Dutton, J. Craig; Grinnell, Frederick

    2012-01-01

    Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs. PMID:23246556

  2. Nupack, the new ASME code for radioactive material transportation packaging containments

    SciTech Connect

    Turula, P.

    1998-07-01

    The American Society of Mechanical Engineers (ASME) has added a new division to the nuclear construction section of its Boiler and Pressure Vessel Code (B and PVC). This Division, commonly referred to as Nupack, has been written to provide a consistent set of technical requirements for containment vessels of transportation packagings for high-level radioactive materials. This paper provides an introduction to Nupack, discusses some of its technical provisions, and describes how it can be used for the design and construction of packaging components. Nupack`s general provisions and design requirements are emphasized, while treatment of materials, fabrication and inspection is left for another paper.

  3. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect

    Mings, W.J. ); Koploy, M.A. )

    1992-01-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  4. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect

    Mings, W.J.; Koploy, M.A.

    1992-08-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  5. Engineered diamond nanopillars as mobile probes for high sensitivity metrology in fluid

    NASA Astrophysics Data System (ADS)

    Andrich, P.; de Las Casas, C. F.; Heremans, F. J.; Awschalom, D. D.; Aleman, B. J.; Ohno, K.; Lee, J. C.; Hu, E. L.

    2015-03-01

    The nitrogen-vacancy (NV) center`s optical addressability and exceptional spin coherence properties at room temperature, along with diamond`s biocompatibility, has put this defect at the frontier of metrology applications in biological environments. To push the spatial resolution to the nanoscale, extensive research efforts focus on using NV centers embedded in nanodiamonds (NDs). However, this approach has been hindered by degraded spin coherence properties in NDs and the lack of a platform for spatial control of the nanoparticles in fluid. In this work, we combine the use of high quality diamond membranes with a top-down patterning technique to fabricate diamond nanoparticles with engineered and highly reproducible shape, size, and NV center density. We obtain NDs, easily releasable from the substrate into a water suspension, which contain single NV centers exhibiting consistently long spin coherence times (up to 700 ?s). Additionally, we demonstrate highly stable, three-dimensional optical trapping of the nanoparticles within a microfluidic circuit. This level of control enables a bulk-like DC magnetic sensitivity and gives access to dynamical decoupling techniques on contactless, miniaturized diamond probes. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  6. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  7. Comparison between ASME and ISO standards on surface texture

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Jiang, Xiangqian; Liu, Xiaojun; Xu, Zhengao

    2006-11-01

    Surface texture is generally a significant technique requirement of high-tech products. Surface quality information can usually play an increasing role in achieving interoperability among existing products, create order in markets, simplify production and ensure safety. As the most authoritative standard organizations, ASME and ISO services are used throughout the world, their codes and standards influence global manufacturers and consumers. ASME B46.1 is one of many vital tools to promote surface measurement techniques, while ISO has a set standard system for surface measurement, analysis and evaluation. This paper compares the ASME B46.1 (2002) standard (Surface texture: surface roughness, waviness, and lay) with ISO 3274 (1997) standard on methods of surface profiles filtering. It preformed the present research in order to show the latest developments of the ASME B46.1 (2002) in the regime of contact profiling techniques where the degree of measurement control is highly advanced, and a large range of other techniques that present valid and useful descriptions of surface texture. Also, this paper shows the differences of terms, definitions and surface texture parameters between ASME B46.1 (2002) and ISO 4287 (1998). The different evaluation results have been calculated based on above two standards for the same surface data. Obviously, it is necessary to consider the divergence above to develop China's standards (GB) on surface texture.

  8. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  9. Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling

    SciTech Connect

    Tew, R.C. Jr.

    1988-02-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  10. System and method for improving performance of a fluid sensor for an internal combustion engine

    DOEpatents

    Kubinski, David; Zawacki, Garry

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  11. Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Lu, Zhen-Hua

    2004-08-01

    Hydraulic engine mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter (LP) model is a traditional model for modelling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, a fluid-structure interaction (FSI) finite element analysis (FEA) method and a non-linear FEA technology are used to determine the system parameters, and a fully coupled FSI model is developed for modelling the static and lower-frequency performance of an HEM. A FSI FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and the decoupler of an HEM. A non-linear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the FSI model and the LP model along with the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the model, such as the pressure in the upper chamber, the displacement of the free decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate the working mechanism of the HEM. The pressure distribution calculated with the FSI model in the chambers of the HEM validates the assumption that the pressure distribution in the upper and lower chamber is uniform in the LP model. The work conducted in the paper demonstrates that the methods for estimating the system parameters in the LP model and the FSI model for modelling HEM are effective, with which the dynamic characteristic analysis and design optimization of an HEM can be performed before its prototype development, and this can ensure its low cost and high quality for development.

  12. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (?S) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The ?13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were Proteobacteria and closely related to known or expected aerobes including: Thiobacillus, Siderooxidans, Leptothrix, Hydrogenophaga, Pseaudomonas, Methylomonas and Thiothrix, consistent with possible mine water or air contamination. Conversely, Deltaproteobacteria and Firmicute clones, often very closely related to others detected from deep mine or sediment habitats, suggests a deep subsurface component as well. Archaeal clones from 4100L were dominated by a deeply-branching clade with no cultivated representatives; whereas, those from 4850 were mostly related to known methanogens (e.g. Methanolobus). Collectively, this dataset suggests mixed end-member or deeply-sourced water partially overprinted by mine-related artifacts. However, until more is known concerning the deep hydrogeology of this system, it will be difficult to ascertain indigenous from impacted microbial communities in DUSEL.

  13. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  14. Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering

    NASA Astrophysics Data System (ADS)

    Alehossein, H.; Qin, Z.

    2013-10-01

    The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.

  15. The Engineering Societies & Continuing Education.

    ERIC Educational Resources Information Center

    Professional Engineer, 1979

    1979-01-01

    Gives a description of what the major engineering societies (ASCE, ASME, AICHE, and IEEE) are doing in the area of continuing education. The description includes the short courses, their costs, duration, type and scope of the content. (GA)

  16. ASME B31.3: Recent changes and future developments

    SciTech Connect

    Koves, W.J.; Frikken, D.

    1996-12-01

    ASME B31.3 has undergone significant changes in recent years to better serve the industries that it supports. The Code has changed in response to changing technology, inquiries to the committee, technical needs, clarification of requirements and editorial considerations. This paper discusses those significant changes and planned future developments.

  17. Adoption of ASME Code Section XI for ISI to Research Reactors

    SciTech Connect

    Tawfik, Y.E.; El-sesy, I.A.; Shaban, H.I.; Ibrahim, M.M

    2002-07-01

    ETRR-2 (Second Egyptian thermal research reactor) is a multi-purpose, pool- type reactor with an open water surface and variable core arrangement. The core power is 22 MWth, cooled and moderated by light water and with beryllium reflectors. It contains plate- type fuel elements (MTR type, 19.7% enriched uranium) with aluminum clad. The ETRR-2 reactor consist of 57 systems and around 200 subsystems. These systems contain many mechanical components such as tanks, pipes, valves, pumps, heat exchangers, cooling tower, air compressors, and supports. In this present work, a trial was made to adopt the general requirements of ASME code, section XI to ETRR-2 research reactor. ASME (American Society of Mechanical Engineers) boiler and pressure vessel Code, section XI, provides requirements for in-service inspection (ISI) and in-service testing (IST) of components and systems, and repair/replacement activities in a nuclear power plant. Also, IAEA (International Atomic Energy Authority) has published some recommendations for ISI for research reactors similar to that rules and requirements specified in ASME. The complete ISI program requires several steps that have to be performed in sequence. These steps are described in many logic flow charts (LFC's). These logic flow charts include; the general LFC's for all steps required to complete ISI program, the LFC's for examination requirements, the LFC's for flaw evaluation modules, and the LFC's for acceptability of welds for class 1 components. This program includes, also, the inspection program for welded parts of the reactor components during its lifetime. This inspection program is applied for each system and subsystem of ETRR-2 reactor. It includes the examination area type, the component type, the part to be examined, the weld type, the examination method, the inspection program schedule, and the detailed figures of the welded components. (authors)

  18. WERITAS: weighted ensemble of regional image textures for ASM segmentation

    NASA Astrophysics Data System (ADS)

    Toth, Robert; Doyle, Scott; Rosen, Mark; Kalyanpur, Arjun; Pungavkar, Sona; Bloch, B. Nicolas; Genega, Elizabeth; Rofsky, Neil; Lenkinski, Robert; Madabhushi, Anant

    2009-02-01

    In this paper we present WERITAS, which is based in part on the traditional Active Shape Model (ASM) segmentation system. WERITAS generates multiple statistical texture features, and finds the optimal weighted average of those texture features by maximizing the correlation between the Euclidean distance to the ground truth and the Mahalanobis distance to the training data. The weighted average is used a multi-resolution segmentation system to more accurately detect the object border. A rigorous evaluation was performed on over 200 clinical images comprising of prostate images and breast images from 1.5 Tesla and 3 Tesla MRI machines via 6 distinct metrics. WERITAS was tested against a traditional multi-resolution ASM in addition to an ASM system which uses a plethora of random features to determine if the selection of features is improving the results rather than simply the use of multiple features. The results indicate that WERITAS outperforms all other methods to a high degree of statistical significance. For 1.5T prostate MRI images, the overlap from WERITAS is 83%, the overlap from the random features is 81%, and the overlap from the traditional ASM is only 66%. In addition, using 3T prostate MRI images, the overlap from WERITAS is 77%, the overlap from the random features is 54%, and the overlap from the traditional ASM is 59%, suggesting the usefulness of WERITAS. The only metrics in which WERITAS was outperformed did not hold any degree of statistical significance. WERITAS is a robust, efficient, and accurate segmentation system with a wide range of applications.

  19. Fluid and mass transport modelling to drive the design of cell-packed hollow fibre bioreactors for tissue engineering applications.

    PubMed

    Shipley, Rebecca J; Waters, Sarah L

    2012-12-01

    A model for fluid and mass transport in a single module of a tissue engineering hollow fibre bioreactor (HFB) is developed. Cells are seeded in alginate throughout the extra-capillary space (ECS), and fluid is pumped through a central lumen to feed the cells and remove waste products. Fluid transport is described using Navier-Stokes or Darcy equations as appropriate; this is overlaid with models of mass transport in the form of advection-diffusion-reaction equations that describe the distribution and uptake/production of nutrients/waste products. The small aspect ratio of a module is exploited and the option of opening an ECS port is explored. By proceeding analytically, operating equations are determined that enable a tissue engineer to prescribe the geometry and operation of the HFB by ensuring the nutrient and waste product concentrations are consistent with a functional cell population. Finally, results for chondrocyte and cardiomyocyte cell populations are presented, typifying two extremes of oxygen uptake rates. PMID:22076984

  20. Technical basis for the extension of ASME Code Case N-494 for assessment of austenitic piping

    SciTech Connect

    Bloom, J.M.

    1996-11-01

    In 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating flaws in light water reactor (LWR) ferritic piping. The approach is an alternate to Appendix H of the ASME Code and allows the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code case is an implementation of the methodology of the deformation plasticity failure assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. The modified DPFAD approach, coined piecewise failure assessment diagram (PWFAD), extended an approximate engineering approach proposed by Ainsworth in order to consider materials whose stress-strain behavior cannot be fit to the R-O model. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials.

  1. Radiation-induced temperature shift of thhe ASME K/sub Ic/ curve

    SciTech Connect

    Nanstad, R.K.; Haggag, F.M.; Iskander, S.K.

    1989-01-01

    The objective of this study was to determine the effects of neutron irradiation on the temperature shift and shape of the K/sub Ic/ curve described in Sect. XI of the ASME Boiler and pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 215-mm-thick plate. Charpy impact, tensile, dropweight, and compact specimens up to 203.2 mm thick were fabricated and tested to provide a large data for unirradiated material. Similar specimens with compacts up to 101.6 mm thick, irradiated at about 288/degree/C to a mean fluence of about 1.6 /times/ 10/sup 19/ neutrons/cm/sup 2/ in the Oak Ridge Research Reactor, were tested to provide a similarly large data base with which to evaluate the temperature shift and shape of the ASME K/sub Ic/ curves. Testing was performed by both Oak Ridge National Laboratory and Materials Engineering Associates. Both linear-elastic and elastic-plastic fracture mechanics techniques were used to analyze test results. 3 refs., 4 figs., 1 tab.

  2. TOPICAL REVIEW: Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Raabe, D.

    2004-11-01

    The article gives an overview of the lattice Boltzmann method as a powerful technique for the simulation of single and multi-phase flows in complex geometries. Owing to its excellent numerical stability and constitutive versatility it can play an essential role as a simulation tool for understanding advanced materials and processes. Unlike conventional Navier-Stokes solvers, lattice Boltzmann methods consider flows to be composed of a collection of pseudo-particles that are represented by a velocity distribution function. These fluid portions reside and interact on the nodes of a grid. System dynamics and complexity emerge by the repeated application of local rules for the motion, collision and redistribution of these coarse-grained droplets. The lattice Boltzmann method, therefore, is an ideal approach for mesoscale and scale-bridging simulations. It is capable to tackling particularly those problems which are ubiquitous characteristics of flows in the world of materials science and engineering, namely, flows under complicated geometrical boundary conditions, multi-scale flow phenomena, phase transformation in flows, complex solid-liquid interfaces, surface reactions in fluids, liquid-solid flows of colloidal suspensions and turbulence. Since the basic structure of the method is that of a synchronous automaton it is also an ideal platform for realizing combinations with related simulation techniques such as cellular automata or Potts models for crystal growth in a fluid or gas environment. This overview consists of two parts. The first one reviews the philosophy and the formal concepts behind the lattice Boltzmann approach and presents also related pseudo-particle approaches. The second one gives concrete examples in the area of computational materials science and process engineering, such as the prediction of lubrication dynamics in metal forming, dendritic crystal growth under the influence of fluid convection, simulation of metal foam processing, flow percolation in confined geometries, liquid crystal hydrodynamics and processing of polymer blends.

  3. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect

    Witze, P.O.

    1981-10-01

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  4. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    NASA Technical Reports Server (NTRS)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  5. Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations

    SciTech Connect

    Reuss, D.L.; Kuo, T.W.; Khalighi, B.; Haworth, D.; Rosalik, M.

    1995-12-31

    Two-dimensional in-cylinder velocity distributions measured with Particle Image Velocimetry were compared with computed results from Computational Fluid Dynamics codes. A high-swirl, two-valve, four-stroke transparent-combustion-chamber research engine was used. Comparisons were made of mean-flow velocity distributions, swirl-ratio evolution during the intake and compression strokes, and turbulence distributions at top-dead-center compression. This comparison with the measured flows led to more accurate calculations by identifying code improvements including swirl in the residual gas, modeling of the gas exchange during the valve overlap, and improved numerical accuracy. 14 refs., 14 figs.

  6. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  7. Method for optimizing the mechanical output of a fluid pressure free piston engine

    SciTech Connect

    Dibrell, E.W.; Schaich, W.A.

    1988-07-05

    The method is described for minimizing rotational speed variations of a centrifugal piston expander engine comprising the steps of: (1) supplying a pressured gas to a centrifugal piston expander engine having a rotatable output element and a discharge conduit for cooled exhaust gas; (2) expanding and cooling the pressured gas in the centrifugal piston expander engine to produce cyclically varying oppositely directed, positive and negative torques on the rotatable output shaft; (3) driving a rotary load in the positive torque direction by the rotatable output element through one rotatable element of a unidirectional clutch having two rotating elements relatively movable in only the negative torque direction; and (4) connecting a battery operated motor-generator unit to the rotatable output shaft to supplement the rotary speed of the output shaft during periods of negative torque output by the centrifugal piston expander engine and to recharge the battery during periods of maximum positive torque output of the centrifugal expander engine.

  8. Recent changes to ASME B31.3

    SciTech Connect

    Becht, C. IV; Frikken, D.R.; Bane, E.J.

    1996-07-01

    The code for process piping, ASME B31.3 Chemical Plant and Petroleum Refinery Piping, has undergone significant changes and additions in recent years. This includes many aspects of design, materials, and fabrication. Included are substantial changes to material impact testing requirements, qualification procedures for unlisted components, coverage of bellows expansion joints, and safety relief set pressure requirements. This paper provides an update on some of these recent changes to the Code together with some background on reasons for the changes.

  9. ASME code post weld heat treatment requirements: Current issues

    SciTech Connect

    McEnerney, J.W.

    1995-12-31

    An understanding of current ASME Code PWHT issues requires consideration of various governing factors. These include: historical perspective regarding rule development and needs for PWHT, design criteria dictating the purpose, potential adverse effects, validity of existing and/or need for additional global PWHT parameters, and fundamental questions and/or inadequate current requirements regarding local PWHT. Various activities to address the current issues are in progress at different code task groups and organizations.

  10. Computational thermo-fluid dynamics contributions to advanced gas turbine engine design

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.

    1984-01-01

    The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.

  11. Computational thermo-fluid dynamics contributions to advanced gas turbine engine design

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.

    1985-01-01

    The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.

  12. Positron emission tomography: A new technique for observing fluid behavior in engineering systems

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.; Rogers, J. D.; Skelton, R. T.; Salter, P.; Allen, M.; Parker, R.; Davis, P.; Fowles, P.; Hawkesworth, M. R.; Odwyer, M. A.

    1988-09-01

    Positron emission tomography for flow tracing and measurement within metal structures in general and operating engines in particular is introduced. The principles involved are outlined, and a mobile positron camera system is described. Examples of the camera's capability drawn from its use to study annular oil volumes simulated by positron line sources in a power turbine shaft and in a small helicopter engine are presented.

  13. Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.

    ERIC Educational Resources Information Center

    Gosman, A. D.; And Others

    1979-01-01

    Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)

  14. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  15. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  16. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... last incorporated by reference into the regulations in a final rule dated September 10, 2008 (73 FR 52730), as corrected on October 2, 2008 (73 FR 57235), incorporating Section III of the 2004 Edition of... on May 4, 2010 (75 FR 24324). The public comment period for the proposed rule closed on July 19,...

  17. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  18. Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: coupling molecular mechanics with classical engineering design

    NASA Astrophysics Data System (ADS)

    Solares, Santiago D.; Blanco, Mario; Goddard, William A., III

    2004-11-01

    Process engineering design relies on a host of mechanical devices that enable transport phenomena to take place under controlled conditions. These devices include pipes, valves, pumps, chemical reactors, heat exchangers, packed columns, etc. Mass, energy, and momentum transfer will also be essential phenomena in nanoprocess engineering, particularly at the interface between micro- and nanodevices. Control valves are one of the most fundamental components. In this paper we explore the design of a silicon cantilever valve for fluid transport control at the molecular level (34.5-70 nm in length). We utilize design elements that can be synthesized with existing or emerging chemical and solid state fabrication methods. Thus, the valve is constructed with functionalized silicon surfaces, single-wall carbon nanotubes, and organic monolayers. While molecular mechanics design limitations were overcome with help from classical engineering approximations, nonlinear effects, such as nanotube crimping (for an in-line valve design), are accounted for through full-physics atomistic simulations. Optimal design geometries and operating deflection ranges have been estimated for a device containing over 75 000 atoms.

  19. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students

  20. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  1. Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials

    SciTech Connect

    Cole, David R; Mamontov, Eugene; Rother, Gernot

    2009-01-01

    The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surface interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).

  2. Structure and Dynamics of Fluids in Microporous and Mesoporous Earth and Engineered Materials

    NASA Astrophysics Data System (ADS)

    Cole, David R.; Mamontov, Eugene; Rother, Gernot

    The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometrical confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dynamical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 to 50 nm—the micro- and mesoporous regimes. Important factors influencing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surface interaction. While confinement of liquids in hydrophobic matrices, such as carbon nanotubes, or near the surfaces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and materials sciences usually contain oxide structural units and thus are hydrophilic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesoporous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered systems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Although studied less frequently, matrices such as artificial opals and chrysotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for comparing the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques that assess both structural modification and dynamical behavior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of better substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).

  3. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  4. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  5. Analysis of enclosed internal-combustion-engine operation with water as the working fluid. Technical note

    SciTech Connect

    Rein, C.R.

    1983-09-01

    It is desirable to develop a totally enclosed system that contains an internal combustion engine and all the accessories required to produce at least 480 hp-hr of work. The system must perform underwater without external support and must release nothing but heat to the water. Most prior development has dealt with systems very similar to air breathing engines. Fuel, oxygen and a diluent gas such as nitrogen are ingested through the same kinds of intake devices used in the atmosphere. The intent is to imitate open air operation as much as possible in order to reduce hardware development. The exhaust gases are cleansed primarily of the water and carbon dioxide products of combustion and perhaps secondarily of other components such as unburned hydrocarbons, carbon monoxide, and compounds produced by reactions involving the diluent.

  6. Reciprocating seals: Lubrication and wear resistance. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning theoretical and practical analyses of reciprocating seal wear and lubrication. Topics include behavior, friction coefficient, cylinder wear, lubrication film thickness, friction forces, design innovations, lubricating oil viscosity, and wear modeling relative to reciprocating seal frictional wear and lifetime optimization. Applications in piston ring lubrication, internal combustion engines, and vehicle suspension systems are considered. (Contains 250 citations and includes a subject term index and title list.)

  7. ASME reports on combustion excursions from rotary kiln incinerators

    SciTech Connect

    Not Available

    1989-07-01

    According to a study by the ASME Research Committee in Industrial and Municipal Waste, rotary kilns are a proven technology for thermal treatment of a wide variety of combustible waste materials ranging from consumer products to organic chemicals. Because products to organic chemicals. Because discrete units of waste of irregular size are charged to rotary kilns, occasional combustion excursions can occur when combustible material volatilize too rapidly and creates an organic vapor cloud which cannot be thoroughly mixed with oxygen in the combustions changer, and under extreme conditions creates oxygen demand which exceeds the supply.

  8. A new cascade-less engine operated from subsonic to hypersonic conditions: designed by computational fluid dynamics of compressible turbulence with chemical reactions

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken; Nakamura, Kazushi; Emoto, Takehiro

    2010-12-01

    By using our computational fluid dynamic models, a new type of single engine capable of operating over a wide range of Mach numbers from subsonic to hypersonic regimes is proposed for airplanes, whereas traditional piston engines, turbojet engines, and scram engines work only under a narrower range of operating conditions. The new engine has no compressors or turbines such as those used in conventional turbojet engines. An important point is its system of super multijets that collide to compress gas for the transonic regime. Computational fluid dynamics is applied to clarify the potential of this engine. The peak pressure at the combustion center is over 2.5 MPa, while that just before ignition is over 1.0 MPa. The maximum power of this engine will be sufficient for actual use. Under the conditions of higher Mach numbers, the main intake passage located in front of the super multijet nozzles, takes in air more. That results in a ram or scramjet engine for supersonic and hypersonic conditions.

  9. An engineering approach to characterizing synthetic-based drilling fluids for deepwater and extended reach drilling applications

    SciTech Connect

    Dye, W.M.; Robinson, G.; Mullen, G.A.

    1998-12-31

    Rheological techniques currently employed to characterize drilling fluids are based upon models and instrumentation that were in existence over forty years ago. A great deal of literature exists that questions the degree to which these techniques address the requirements placed on drilling muds in today`s drilling environment. The solution to many of the problems facing companies operating in deepwater requires an in-depth understanding of the rheological properties of synthetic-based drilling muds. These problems include lost circulation, hole cleaning and barite sag. This paper discusses the application of sophisticated rheological instrumentation and techniques that specifically address the needs of deepwater drilling operations. Focus has been placed on studying the gel structure of synthetics, particularly at low temperatures, in order to provide engineered solutions to get strength-related problems encountered in deepwater.

  10. Transcytosis in the bloodcerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    PubMed Central

    Mndez-Gmez, Hctor R; Galera-Prat, Albert; Meyers, Craig; Chen, Weijun; Singh, Jasbir; Carrin-Vzquez, Mariano; Muzyczka, Nicholas

    2015-01-01

    Crossing the bloodbrain and the bloodcerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side. PMID:26491705

  11. [Ca2+]i oscillations in ASM: relationship with persistent airflow obstruction in asthma.

    PubMed

    Sweeney, David; Hollins, Fay; Gomez, Edith; Saunders, Ruth; Challiss, R A John; Brightling, Christopher E

    2014-07-01

    The cause of airway smooth muscle (ASM) hypercontractility in asthma is not fully understood. The relationship of spontaneous intracellular calcium oscillation frequency in ASM to asthma severity was investigated. Oscillations were increased in subjects with impaired lung function abolished by extracellular calcium removal, attenuated by caffeine and unaffected by verapamil or nitrendipine. Whether modulation of increased spontaneous intracellular calcium oscillations in ASM from patients with impaired lung function represents a therapeutic target warrants further investigation. PMID:24850215

  12. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin.

    PubMed

    Piotrowski-Daspit, Alexandra S; Tien, Joe; Nelson, Celeste M

    2016-03-14

    Many solid tumors exhibit elevated interstitial fluid pressure (IFP). This elevated pressure within the core of the tumor results in outward flow of interstitial fluid to the tumor periphery. We previously found that the directionality of IFP gradients modulates collective invasion from the surface of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. Here, we used this 3D engineered tumor model to investigate the molecular mechanisms underlying IFP-induced changes in invasive phenotype. We found that IFP alters the expression of genes associated with epithelial-mesenchymal transition (EMT). Specifically, the levels of Snail, vimentin, and E-cadherin were increased under pressure conditions that promoted collective invasion. These changes in gene expression were sufficient to direct collective invasion in response to IFP. Furthermore, we found that IFP modulates the motility and persistence of individual cells within the aggregates, which are also influenced by the expression levels of EMT markers. Together, these data provide insight into the molecular mechanisms that guide collective invasion from primary tumors in response to IFP. PMID:26853861

  13. Quantitative, single shot, two-dimensional spontaneous Raman measurements for fluid mechanics and engine applications

    NASA Astrophysics Data System (ADS)

    Kyritsis, Dimitrios Constantinou

    Spontaneous Raman Scattering was used for quantitative, two-dimensional, single-shot measurements of species concentration in optically accessible confinements and in an experimental single-cylinder internal combustion engine. The study comprised three parts. In the first part, the technique was used for methane concentration measurements in a laminar jet issuing into compressed nitrogen (10 bar, 293 K). The injection Reynolds number was 550. Initial results showed unexpected structures in the acquired concentration profiles. Thus, the steadiness of the laminar flow was confirmed with high speed shadowgraph movies and laser induced fluorescence measurements. Eventually, it was proven that the structures were due to characteristics of the camera system. A technique was then devised for the proper acquisition and processing of data and spatial resolution of 500 mum was achieved. Methane number density equal to 12% of the number density of pure methane (0.247E+26 molecules/msp3) was then measured with a signal-to-noise ratio of approximately 3. The measurements were compared with the results of direct numerical simulation of the flow field. In the second part, measurements in a laminar hydrogen jet were taken. Because of the reduced Raman signal of hydrogen, the incident laser power was increased by installing the pressurized chamber within the laser cavity. This yielded an increase in power by a factor of 2.5. For the measurement of the laser sheet intensity in the laser cavity, insertion of a fluorescent dye cell and Rayleigh scattering were used and evaluated comparatively. The precise location of the waist of the laser sheet was determined by trial and error. The spatial resolution of the measurements was 650 mum and a number density of 0.371E+26 hydrogen molecules/msp3 was measured with a signal-to-noise ratio of 3. The measurements were again compared with results of direct numerical simulation. In the third part, the feasibility of two-dimensional single-shot Spontaneous Raman measurements in an engine cylinder was established. Measurements of methane concentration after direct injection in the cylinder of an experimental single-cylinder engine were taken. The engine was not fired to avoid laser induced incandescence interference. The spatial resolution was limited to 800 mum by the thickness of the laser sheet. Fast mixing of the methane jet was documented but a precise evaluation of the equivalence ratio was beyond the resolution of this first attempt. Finally, existing hardware for data acquisition and algorithms for two dimensional data reduction were reviewed and recommendations were made for the extraction of quantitative information from two-dimensional, single-shot Spontaneous Raman signals which are weak and noisy.

  14. ASM Based Synthesis of Handwritten Arabic Text Pages.

    PubMed

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-Etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available. PMID:26295059

  15. ASM Based Synthesis of Handwritten Arabic Text Pages

    PubMed Central

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available. PMID:26295059

  16. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  17. Seals/Secondary Fluid Flows Workshop 1997; Volume II: HSR Engine Special Session

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The High Speed Civil Transport (HSCT) will be the largest engine ever built and operated at maximum conditions for long periods of time. It is being developed collaboratively with NASA, FAA, Boeing-McDonnell Douglas, Pratt & Whitney, and General Electric. This document provides an initial step toward defining high speed research (HSR) sealing needs. The overview for HSR seals includes defining objectives, summarizing sealing and material requirements, presenting relevant seal cross-sections, and identifying technology needs. Overview presentations are given for the inlet, turbomachinery, combustor and nozzle. The HSCT and HSR seal issues center on durability and efficiency of rotating equipment seals, structural seals and high speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements challenge component designers.

  18. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells.

    PubMed

    Weber, Benedikt; Kehl, Debora; Bleul, Ulrich; Behr, Luc; Sammut, Sbastien; Frese, Laura; Ksiazek, Agnieszka; Achermann, Josef; Stranzinger, Gerald; Robert, Jrme; Sanders, Bart; Sidler, Michele; Brokopp, Chad E; Proulx, Steven T; Frauenfelder, Thomas; Schoenauer, Roman; Emmert, Maximilian Y; Falk, Volkmar; Hoerstrup, Simon P

    2016-01-01

    Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n?=?9) and from explanted uteri post mortem at different gestational ages (n?=?91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n?=?10) and cardiovascular patches (n?=?34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright 2013 John Wiley & Sons, Ltd. PMID:23881794

  19. A Design-Oriented Approach to the Integration of Thermodynamics, Fluid Mechanics, and Heat Transfer in the Undergraduate Mechanical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Whale, MacMurray D.; Cravalho, Ernest G.

    This paper describes two parallel efforts that attempt to implement a new approach to the teaching of thermal fluids engineering. In one setting, at the Massachusetts Institute of Technology (MIT), the subject matter is integrated into a single year-long subject at the introductory level. In the second setting, at Victoria (British Columbia,

  20. Modeling In Vivo Interactions of Engineered Nanoparticles in the Pulmonary Alveolar Lining Fluid

    PubMed Central

    Mukherjee, Dwaipayan; Porter, Alexandra; Ryan, Mary; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa; Zhang, Junfeng; Georgopoulos, Panos

    2015-01-01

    Increasing use of engineered nanomaterials (ENMs) in consumer products may result in widespread human inhalation exposures. Due to their high surface area per unit mass, inhaled ENMs interact with multiple components of the pulmonary system, and these interactions affect their ultimate fate in the body. Modeling of ENM transport and clearance in vivo has traditionally treated tissues as well-mixed compartments, without consideration of nanoscale interaction and transformation mechanisms. ENM agglomeration, dissolution and transport, along with adsorption of biomolecules, such as surfactant lipids and proteins, cause irreversible changes to ENM morphology and surface properties. The model presented in this article quantifies ENM transformation and transport in the alveolar air to liquid interface and estimates eventual alveolar cell dosimetry. This formulation brings together established concepts from colloidal and surface science, physics, and biochemistry to provide a stochastic framework capable of capturing essential in vivo processes in the pulmonary alveolar lining layer. The model has been implemented for in vitro solutions with parameters estimated from relevant published in vitro measurements and has been extended here to in vivo systems simulating human inhalation exposures. Applications are presented for four different ENMs, and relevant kinetic rates are estimated, demonstrating an approach for improving human in vivo pulmonary dosimetry. PMID:26240755

  1. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues

    PubMed Central

    Teo, Ka Yaw; DeHoyos, Tenok O.; Dutton, J. Craig; Grinnell, Frederick; Han, Bumsoo

    2011-01-01

    The two most significant challenges for successful cryopreservation of engineered tissues (ETs) are preserving tissue functionality and controlling highly tissue-type dependent preservation outcomes. In order to address these challenges, freezing-induced cell-fluid-matrix interactions should be understood, which determine the post-thaw cell viability and extracellular matrix (ECM) microstructure. However, the current understanding of this tissue-level biophysical interaction is still limited. In this study, freezing-induced cell-fluid-matrix interactions and their impact on the cells and ECM microstructure of ETs were investigated using dermal equivalents as a model ET. The dermal equivalents were constructed by seeding human dermal fibroblasts in type I collagen matrices with varying cell seeding density and collagen concentration. While these dermal equivalents underwent an identical freeze/thaw condition, their spatiotemporal deformation during freezing, post-thaw ECM microstructure, and cellular level cryoresponse were characterized. The results showed that the extent and characteristics of freezing-induced deformation were significantly different among the experimental groups, and the ETs with denser ECM microstructure experienced a larger deformation. The magnitude of the deformation was well correlated to the post-thaw ECM structure, suggesting that the freezing-induced deformation is a good indicator of post-thaw ECM structure. A significant difference in the extent of cellular injury was also noted among the experimental groups, and it depended on the extent of freezing-induced deformation of the ETs and the initial cytoskeleton organization. These results suggest that the cells have been subjected to mechanical insult due to the freezing-induced deformation as well as thermal insult. These findings provide insight on tissue-type dependent cryopreservation outcomes, and can help to design and modify cryopreservation protocols for new types of tissues from a pre-developed cryopreservation protocol. PMID:21549425

  2. A Review & Assessment of Current Operating Conditions Allowable Stresses in ASME Section III Subsection NH

    SciTech Connect

    R. W. Swindeman

    2009-12-14

    The current operating condition allowable stresses provided in ASME Section III, Subsection NH were reviewed for consistency with the criteria used to establish the stress allowables and with the allowable stresses provided in ASME Section II, Part D. It was found that the S{sub o} values in ASME III-NH were consistent with the S values in ASME IID for the five materials of interest. However, it was found that 0.80 S{sub r} was less than S{sub o} for some temperatures for four of the materials. Only values for alloy 800H appeared to be consistent with the criteria on which S{sub o} values are established. With the intent of undertaking a more detailed evaluation of issues related to the allowable stresses in ASME III-NH, the availabilities of databases for the five materials were reviewed and augmented databases were assembled.

  3. Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum.

    PubMed

    Li, Shanren; Lu, Chunhua; Chang, Xiaoyan; Shen, Yuemao

    2016-03-01

    Ansamitocins isolated from Actinosynnema pretiosum, potent antitumor compounds, belong to the family of maytansinoids, and the antibody-maytansinoid conjugates are currently under different phases of clinical trials. The clinical applications of ansamitocins have stimulated extensive studies to improve their production yields. In this study, we investigated the function of a pathway-specific S treptomyces antibiotic regulatory protein (SARP) family regulator, Asm18, and observed that ectopic overexpression of the asm18 gene increased the production of N-demethyl-4,5-desepoxy-maytansinol (2) to 50 mg/L in the HGF052 + pJTU824-asm18 strain, an increase by 4.7-fold compared to that of the control strain HGF052 + pJTU824. Real-time PCR analysis showed that the overexpression of the asm18 gene selectively increased the transcription levels of the genes involved in the biosynthesis of the starter unit (asm43), polyketide assembly (asmA), post-PKS modification (asm21), as well as the transcription levels of the regulatory gene (asm8), which is a specific LAL-type activator in ansamitocin biosynthesis. With the increase of fermentation titre, seven ansamitocin analogs (1-7) including three new ones (1, 5, and 6) and maytansinol (7) were isolated from the HGF052 + pJTU824-asm18 strain. Our results not only pave the way for further improving the production of ansamitocin analogs but also indicate that the post-PKS modifications of ansamitocin biosynthesis are flexible, which brings a potential of producing maytansinol, the most fascinating intermediate for the synthesis of antibody-maytansinoid conjugates, by optimizing the HGF052 and/or HGF052 + pJTU824-asm18 strains. PMID:26572523

  4. Computational fluid dynamics analysis of Space Shuttle main engine multiple plume flows at high-altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Holt, J. B.; Liu, B. L.; Johnson, S. L.

    1992-01-01

    Computational fluid dynamics (CFD) analysis is providing verification of Space Shuttle flight performance details and is being applied to Space Shuttle Main Engine Multiple plume interaction flow field definition. Advancements in real-gas CFD methodology that are described have allowed definition of exhaust plume flow details at Mach 3.5 and 107,000 ft. The specific objective includes the estimate of flow properties at oblique shocks between plumes and plume recirculation into the Space Shuttle Orbiter base so that base heating and base pressure can be modeled accurately. The approach utilizes the Rockwell USA Real Gas 3-D Navier-Stokes (USARG3D) Code for the analysis. The code has multi-zonal capability to detail the geometry of the plumes based region and utilizes finite-rate chemistry to compute the plume expansion angle and relevant flow properties at altitude correctly. Through an improved definition of the base recirculation flow properties, heating, and aerodynamic design environments of the Space Shuttle Vehicle can be further updated.

  5. Investigation of Respiratory and Dermal Symptoms Associated with Metal Working Fluids at an Aircraft Engine Manufacturing Facility

    PubMed Central

    Meza, Francisco; Chen, Lilia; Hudson, Naomi

    2015-01-01

    Background Each year, 1.2 million metalworkers are exposed to metalworking fluids (MWFs), which can cause dermal and respiratory disease. The National Institute for Occupational Safety and Health (NIOSH) conducted a health hazard evaluation of MWF exposures at an aircraft engine manufacturing facility. The objectives were to determine employee exposures to endotoxin and MWFs in the air, characterize symptoms experienced by employees working with MWFs, compare them to symptoms of employees unexposed to MWFs, and make recommendations for reducing exposures based on results. Methods 407 workers were categorized as MWF exposed or MWF unexposed and completed questionnaires. Estimated prevalence ratios (PR) of dermatitis, asthma, and work-related asthma (WRA) symptoms were calculated. Airborne concentrations of MWF and endotoxin were measured, and work practices observed. Results MWF exposed workers had a significantly higher prevalence of dermatitis on wrists/forearms (PR 2.59; 95% CI 1.22, 5.46), asthma symptoms (PR 1.49; 95% CI 1.05, 2.13) and WRA symptoms (PR 2.10; 95% CI 1.22, 3.30) than unexposed workers. Airborne concentrations of MWF were below the NIOSH recommended exposure limit (REL) for MWF aerosols (thoracic particulate mass). Conclusions Despite MWF exposures below the NIOSH REL, exposed workers had a higher prevalence of asthma, WRA, and dermatitis symptoms than unexposed workers. Recommendations to reduce exposure included configuring mist collectors to automatically turn on when the machine is in use, and enforcing enclosure use. PMID:24122918

  6. Bare carbon steel electrodes and fluxes for submerged arc welding (ASME SFA-5. 17 with additional requirements)

    SciTech Connect

    Not Available

    1982-08-01

    This standard covers bare carbon steel electrodes and fluxes for submerged arc welding in nuclear and associated applications. Material shall conform to the requirements of ASME SFA-5.17; to the requirements of the ASME Boiler and Pressure Vessel Code (ASME Code), Section III, Article NB-2000; and to the additional requirements of this standard.

  7. Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs

    PubMed Central

    Li, Pin-Lan; Nguyen, Thaison; Li, Xiang; Zhang, Yang

    2016-01-01

    Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca2+ release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca2+ release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1−/−) CASMCs compared to that in Smpd1+/+ CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca2+ release and autophagosome trafficking in Smpd1−/− CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca2+ signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation. PMID:26709800

  8. Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs.

    PubMed

    Xu, Ming; Zhang, Qiufang; Li, Pin-Lan; Nguyen, Thaison; Li, Xiang; Zhang, Yang

    2016-01-01

    Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca(2+) release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca(2+) release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1(-/-)) CASMCs compared to that in Smpd1(+/+) CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca(2+) release and autophagosome trafficking in Smpd1-/- CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca(2+) signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation. PMID:26709800

  9. Field Observations of Fluid Transport in a Complex Heterogeneous Vadose Zone at the Idaho National Engineering and Environmental Laboratory (INEEL)

    NASA Astrophysics Data System (ADS)

    Baker, K.; Hull, L.; Mattson, E.; McLing, T.

    2003-12-01

    Predicting fluid and contaminant transport in the vadose zone near the Idaho Nuclear Technology and Engineering Center (INTEC) at the INEEL has been problematic due to the complex geology underlying the site. In an attempt to better understand the controlling mechanism of subsurface fluid transport, a system of monitoring instruments were installed in boreholes around the perimeter of newly constructed percolation ponds, consisting of 2 cells each approximately 160,000 ft2 in area. The instrumented region surrounding the ponds has been designated as the Vadose Zone Research Park (VZRP). Continuous discharge to the south cell began in October 2002 at an average flux rate of 1.5 million gallons per day and continued until July 2003 at which time the discharge was switched to the north cell. Hydraulic data were collected nearly continuously, monitoring hydraulic responses to discharge events to both cells. Discharge to the south cell resulted in rapid vertical percolation until reaching the surficial gravel/basalt interface (at about 60 ft below ground surface) at which time rapid lateral transport was observed in a southern direction. A near steady state of water levels was reached during this 10-month period. Switching discharge location only 100 feet to the north cell drastically altered hydrological conditions and flow paths within the subsurface. Recharge was observed in several new locations, while some locations ceased receiving water from the ponds entirely. Other locations temporarily drained, then received "new water" from alternate flow paths a few days later. Prior to switching discharge locations, 3 wells were installed in the north cell at depths of 7 ft, 12 ft, and 19 ft below ground surface. The wells were instrumented with electrical conductivity probes to monitor discharge from the INTEC facility, which receives a high conductivity spike every 12 hours from water softener regeneration. Field observations show that water reached the 7 ft well within a couple hours after the switch, while the other 2 wells remain dry even after one month. Based on these data, it appears that discharge to the north cell percolates vertically to a depth of approximately 10 ft before reaching a low permeability zone, which diverts flow laterally in a northern direction. Field observations of hydrological data indicate that initial water arrival times and locations appear to be controlled by low permeability zones and fast pathways. Arrival progression was neither vertically nor laterally sequential. Importantly, field observations indicate that minor transients in discharge flux and/or location resulted in extreme changes in fluid transport behavior. Based on these observations, it is apparent that our original steady-state conceptual model needs to be modified to incorporate not only lithologic complexities, but also temporal changes in discharge location and flux. Continued field monitoring combined with ongoing tracer testing at the VZRP is aimed at providing the information needed to improve predictive models designed specifically for complex heterogeneous subsurface environments.

  10. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  11. D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler

    SciTech Connect

    Kuwazaki, Andrew; Leicht, Todd; /Fermilab

    1995-10-04

    Included in this engineering note are three separate calculation divisions. The first calculations are the determination of the required thickness of the LN{sub 2} subcooler flat head according to ASME code. This section includes Appendix A-C. The minimum plate thickness determined was 0.563 in. The actual thickness chosen in fabrication was a 3/4-inch plate milled to 0.594-inch at the bolt circle. Along with the plate thickness, this section calculates the required reinforcement area at the top plate penetrations. It was found that a 1/4-inch fillet weld at each penetration was adequate. The next set of calculations were done to prove that the subcooler internal pressure will always be less than 15 psig and therefore will not be classified as a pressure vessel. The subcooler is always open to a vent pipe. Appendix D calculations show that the vent pipe has a capacity of 1042 lbs/hr if 15 psig is present at the subcooler. It goes on to show that the inlet piping would at that flow rate, see a pressure drop of 104 psig. The maximum supply pressure of the LN{sub 2} storage dewar is 50 psig. Appendix E addresses required flow rates for steady state, loss of vacuum, or fire conditions. Page E9 shows a summary which states the maximum pressure would be 1.50 psig at fire conditions and internal pressure.

  12. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  13. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  14. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  15. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  16. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  17. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    SciTech Connect

    Ware, A.G.

    1995-12-31

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses from the test data are about 15 to 20% greater than the ASME Code yield stress values (the stainless steel S{sub m} values are based on the yield stress). The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in probabilistic risk assessments of nuclear piping.

  18. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    SciTech Connect

    Ware, A.G.

    1995-11-01

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses (on which the stainless steel S{sub m} values are based) from the test data are about 15 to 20% greater than the ASME Code yield stress values. The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in the probabilistic risk assessments of nuclear piping.

  19. 115-year-old society knows how to reach young scientists: ASM Young Ambassador Program.

    PubMed

    Karczewska-Golec, Joanna

    2015-12-25

    With around 40,000 members in more than 150 countries, American Society for Microbiology (ASM) faces the challenge of meeting very diverse needs of its increasingly international members base. The newly launched ASM Young Ambassador Program seeks to aid the Society in this effort. Equipped with ASM conceptual support and financing, Young Ambassadors (YAs) design and pursue country-tailored approaches to strengthen the Society's ties with local microbiological communities. In a trans-national setting, the active presence of YAs at important scientific events, such as 16th European Congress on Biotechnology, forges new interactions between ASM and sister societies. The paper presents an overview of the Young Ambassadors-driven initiatives at both global and country levels, and explores the topic of how early-career scientists can contribute to science diplomacy and international relations. PMID:25449541

  20. Enhancing the Connection to Undergraduate Engineering Students: A Hands-On and Team-Based Approach to Fluid Mechanics

    ERIC Educational Resources Information Center

    Wei, Tie; Ford, Julie

    2015-01-01

    This article provides information about the integration of innovative hands-on activities within a sophomore-level Fluid Mechanics course at New Mexico Tech. The course introduces students to the fundamentals of fluid mechanics with emphasis on teaching key equations and methods of analysis for solving real-world problems. Strategies and examples

  1. Enhancing the Connection to Undergraduate Engineering Students: A Hands-On and Team-Based Approach to Fluid Mechanics

    ERIC Educational Resources Information Center

    Wei, Tie; Ford, Julie

    2015-01-01

    This article provides information about the integration of innovative hands-on activities within a sophomore-level Fluid Mechanics course at New Mexico Tech. The course introduces students to the fundamentals of fluid mechanics with emphasis on teaching key equations and methods of analysis for solving real-world problems. Strategies and examples…

  2. An investigation of fluid flow during induction stroke of a water analog model of an IC engine using an innovative optical velocimetry concept: LIPA

    NASA Technical Reports Server (NTRS)

    Stier, Bernd; Falco, R. E.

    1994-01-01

    Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.

  3. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Alavi, Abass; Torigian, Drew A.

    2013-01-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF < 0.6% can be achieved via GC-ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm. PMID:23585712

  4. Relationship between IEEE Std. 7-4.3.2-1993 and ASME NQA-1, parts I and II revisions and the impact on nuclear power generating stations

    SciTech Connect

    Blauw, R.J.

    1996-12-31

    Clear understanding of software related design control requirements is key to growth in the use of computers in nuclear power generating stations. Inconsistent terminology within the nuclear and software standards arena has impacted the ability of both nuclear station system engineers (i.e., the domain expert) to clearly communicate with the software/computer hardware experts. In order for computer development to occur both groups need to have a common terminology basis. Without this commonality, inappropriate application of requirements could result. This paper will present a overview of ongoing efforts within the Institute of Electrical and Electronics Engineers Nuclear Power Engineering Committee (IEEE NPEC) and the American Society of Mechanical Engineers Nuclear Quality Assurance (ASME NQA) Committee to develop this commonality.

  5. Sloshing, fluid-structure interaction and structural response due to shock and impact loads 1994. PVP-Vol. 272

    SciTech Connect

    Ma, D.C. ); Shin, Y.S.; Brochard, D.; Fujita, K.

    1994-01-01

    This volume is comprised of papers presented in two symposia at the 1994 ASME Pressure Vessels and Piping Conference. These sessions, sponsored by the Fluid-Structure Interaction and Seismic Engineering Technical Committees, provided a forum for the discussion of recent advances in sloshing, fluid-structure interaction, and structural dynamics produced by high energy excitations. The papers presented at the four technical sessions on Sloshing and Fluid-Structure Interaction represent a broad spectrum of fluid-structure systems: sloshing, fluid-structure interaction, and dynamic and seismic response of various fluid-structure systems such as reactor components, liquid storage tanks, submerged structures and piping systems, etc. The paper presented at the session on Structural Dynamics Produced by High-Energy Excitations cover underwater explosion effects on submerged structures, bubble loading phenomena, finite element mesh refinements on failure predictions, penetration and impact problems, and dynamic design of blast containment vessels. Also included are numerical analysis, design, and testing to understand difficult transient response phenomena. Separate abstracts were prepared for 24 papers in this volume.

  6. Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine

    NASA Astrophysics Data System (ADS)

    Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.

    2004-06-01

    A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.

  7. Report on the activities of the ASME-NQA Committee Working Group on Quality Assurance Requirements for Research and Development, April 1990 to August 1991

    SciTech Connect

    Dronkers, J.J.

    1991-09-01

    This report transmits to the public eye the activities of the American Society of Mechanical Engineers-Nuclear Quality Assurance (ASME-NQA) Committee Working Group on Quality Assurance Requirements for Research and Development. The appendix lists the members of this group as of August 1991. The report covers a period of 17 months. The working group met eight times in this period, and much intellectual ground was traversed. There was seldom agreement on the nature of the task, but there was no doubt as to its urgency. The task was how to adapt the nuclear quality assurance standard, the NQA-1, to research and development work. 1 fig., 7 tabs.

  8. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  9. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.

  10. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  11. A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Huang, Pao S.; Paschal, William A.; Cavatorta, Enrico

    1992-01-01

    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself.

  12. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    SciTech Connect

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2014-09-01

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.

  13. Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Miller, D. R.

    1980-01-01

    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.

  14. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  15. Proceedings of the 1999 ASME energy sources technology conference

    SciTech Connect

    Not Available

    1999-01-01

    These proceedings have 116 papers arranged under the following topical sections (subsections): (1) Computers in engineering (Applied computing; Virtual reality); (2) Drilling technology (Deepwater drilling; Drillstring and dynamics; Scientific drilling; Drilling research methodologies); (3) Emerging energy technology (Flammability and flames; Jets and sprays; Combustion and engines); (4) Materials design and analysis (Analytical, numerical and experimental methods in composites; Analytical and numerical methods; Material technology and design methodology; Impact on laminated composite materials; Analytical and numerical methods in composites); (5) Manufacturing and services (Global manufacturing and construction management; Patents and intellectual property; Rapid prototyping with welding; Drilling equipment); (6) Offshore engineering and operations (Manufacturing technology for offshore operations); (7) Pipeline engineering and operations (Pipeline integrity); (8) Plant and facilities mechanical integrity (Mechanical integrity assessment; Plant engineering); (9) Petroleum production technology (Multiphase modeling; Separation behavior; Joint production/drilling; Heat transfer; Artificial lift; Flow assurance; Well control; Leak detection); (10) Structural dynamics and vibration (Dynamics); (11) Tribology (Manufacturing, friction and wear; Design/tribo-physics). Papers within scope have been processed separately for inclusion on the database.

  16. EXPERIMENTAL AND ENGINEERING SUPPORT FOR THE CAFB (CHEMICALLY ACTIVE FLUID-BED) DEMONSTRATION: RESIDUE DISPOSAL/UTILIZATION

    EPA Science Inventory

    The report gives results of an investigation of the disposal and utilization of spent sulfur sorbent from the Chemically Active Fluid-bed (CAFB) process. Lignite ash with a minimum of 10% CaO can be used as a replacement for sand or medium aggregate or as a partial replacement fo...

  17. Weak statement solution for ASME thermal cavity benchmark

    SciTech Connect

    Roy, S.; Schaub, E.G.; Baker, A.J.

    1995-12-31

    Validation is performed on the problem of a buoyancy driven flow in a square cavity with a temperature dependent, variable viscosity fluid. A weak statement CFD theory is applied to the incompressible Navier-Stokes equation system resulting in a finite element semi-discrete code. The steady solution is used to determine boundary fluxes using a system matrix manipulation. Documented solutions are on 21x21, 41x41, and 81x81 node meshes.

  18. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

  19. The ASM Curriculum Guidelines for Undergraduate Microbiology: A Case Study of the Advocacy Role of Societies in Reform Efforts

    PubMed Central

    Horak, Rachel E. A.; Merkel, Susan; Chang, Amy

    2015-01-01

    A number of national reports, including Vision and Change in Undergraduate Biology Education: A Call to Action, have called for drastic changes in how undergraduate biology is taught. To that end, the American Society for Microbiology (ASM) has developed new Curriculum Guidelines for undergraduate microbiology that outline a comprehensive curriculum for any undergraduate introductory microbiology course or program of study. Designed to foster enduring understanding of core microbiology concepts, the Guidelines work synergistically with backwards course design to focus teaching on student-centered goals and priorities. In order to qualitatively assess how the ASM Curriculum Guidelines are used by educators and learn more about the needs of microbiology educators, the ASM Education Board distributed two surveys to the ASM education community. In this report, we discuss the results of these surveys (353 responses). We found that the ASM Curriculum Guidelines are being implemented in many different types of courses at all undergraduate levels. Educators indicated that the ASM Curriculum Guidelines were very helpful when planning courses and assessments. We discuss some specific ways in which the ASM Curriculum Guidelines have been used in undergraduate classrooms. The survey identified some barriers that microbiology educators faced when trying to adopt the ASM Curriculum Guidelines, including lack of time, lack of financial resources, and lack of supporting resources. Given the self-reported challenges to implementing the ASM Curriculum Guidelines in undergraduate classrooms, we identify here some activities related to the ASM Curriculum Guidelines that the ASM Education Board has initiated to assist educators in the implementation process. PMID:25949769

  20. ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).

    PubMed

    Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita

    2010-01-01

    The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID). Successful activities of ASM LabCap have occurred throughout Africa, Asia, Central America and the Caribbean. In addition, ASM LabCap coordinates efforts with international agencies such as the WHO in order to maximize resources and ensure a unified response, with the intended goal to help build integrated disease surveillance and response capabilities worldwide in compliance with HR(2005)'s requirements. PMID:21143829

  1. Proceedings of the 1998 ASME energy sources technology conference (ETCE`98)

    SciTech Connect

    1998-12-31

    The approximately 160 papers in these proceedings have been arranged under the following topical sections: (1) Computers in engineering -- Technical databases and applied computing; Workgroup computing; Software process models; Internet computing; (2) Drilling technology -- Coiled tubing technology; Drilling dynamics and drilling systems; Advances in drill bits; Advances in percussion drilling; Testing field and laboratory; Novel/scientific drilling; Advances in drilling fluids; (3) Emerging energy technology -- Spray and combustion; Fuel cells; Flammability and flames; Fuels and engines; Miscellaneous combustion topics; (4) Composite materials design and analysis -- Interaction of cracks, notched strength, and free edge effects in laminated composites; Stress analysis of composites; Material response identification, property alteration, damage detection, and environmental effects; Wave propagation in elastic medium, numerical methods for composites; Process and property characterization of advanced materials; Fatigue degradation, viscoplasticity in composites, and numerical simulation of reinforced concrete structures; Aging, creep, plastic anisotropy, joining of different materials, and time history analysis; Shock fronts in compressible medium; Numerical simulation of propagating fronts and shocks in compressible medium; Computational methods and numerical simulation; Analysis and modeling techniques; (5) Manufacturing and services -- Drilling equipment; Process equipment; Patents and intellectual property; Computational methods in manufacturing; (6) Non-destructive evaluation engineering -- NDE applications: Visual inspections; Material property determination/flaw sizing; (7) Offshore engineering and operations -- Environmental and safety issues in offshore operations; Floating production system; Offshore topside facilities; Offshore facility infrastructure; Offshore structures and pipelines; (8) Pipeline engineering and operations -- Pipeline risk management; Pipeline integrity; Evaluation and rehabilitation; Multiphase flow; Pipeline simulation; Pipeline design and operations; New technology; Erosion and corrosion; (9) Plant engineering and reliability -- Reliability methods; Reliability techniques; (10) Petroleum production technology -- Pipeline risk management; Multiphase flow; Multiphase flow equipment; Drilling fluids and completions; Erosion and corrosion; Multiphase pumping; (11) Tribology -- Manufacturing processes; Land-based gas turbine research; Lubrication, tribo-physics and tribo-chemistry. Papers within scope have been processed separately for inclusion on the database.

  2. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of

  3. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    SciTech Connect

    Ren, Weiju; Lin, Lianshan

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  4. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. PMID:26439861

  5. Status of ASME Section III Task Group on Graphite Support Core Structures

    SciTech Connect

    Robert L. Bratton; Tim D. Burchell

    2005-08-01

    This report outlines the roadmap that the ASME Project Team on Graphite Core Supports is pursuing to establish design codes for unirradiated and irradiated graphite core components during its first year of operation. It discusses the deficiencies in the proposed Section III, Division 2, Subsection CE graphite design code and the different approaches the Project Team has taken to address those deficiencies.

  6. Proceedings of the 43rd ASMS conference on mass spectrometry and allied topics

    SciTech Connect

    1995-12-31

    The annual national meeting of the ASMS serves to present and document the state-of-the-art of mass spectrometry. The focus of the meeting is analysis ranging from solving problems in any area where mass spectrometry might apply (such as petroleum analysis) to design of new instrumentation.

  7. Evaluation of ASME Section XI Reference Level Sensitivity for Initiation of Ultrasonic Inspection Examination

    SciTech Connect

    Taylor, T. T.; Selby, G. P.

    1981-04-01

    This report evaluates the change in inspection sensitivity resulting in major changes of ASME Boiler and Pressure Vessel Code Section XI between 1974 and 1977 Editions. It was found that the inspection sensitivity resulting from requirements of the 1977 Edition of Section XI were not adequate to detect minimum flaws referenced by same Code.

  8. Three-dimensional lithostratigraphic model at Yucca Mountain, Nevada: A framework for fluid transport modeling and engineering design

    SciTech Connect

    Buesch, D.C.; Spengler, R.W.; Nelson, J.E.; Dickerson, R.P.

    1993-12-31

    A three-dimensional lithostratigraphic model of the central block of Yucca MounEain. Nevada, illustrates how some activities can serve both site characterization and dcsign and construction of the Exploratory Studies Facility (ESF). Site-characterization activities supported bv this model include characterizing the three-dimensional geometry of lithologic units and faults, and providing boundary conditions for geostatistical models and site-scale fluid flow modeling. The model supports the conceptual design as construction efforts for the proposed ramps of the ESF and potential high-level nuclear waste repository.

  9. Fundamentals of fluid lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  10. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  11. Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering.

    PubMed

    Cruel, Magali; Bensidhoum, Morad; Nouguier-Lehon, Cécile; Dessombz, Olivier; Becquart, Pierre; Petite, Hervé; Hoc, Thierry

    2015-09-01

    Controlling the mechanical environment in bioreactors represents a key element in the reactors' optimization. Positive effects of fluid flow in three-dimensional bioreactors have been observed, but local stresses at cell scale remain unknown. These effects led to the development of numerical tools to assess the micromechanical environment of cells in bioreactors. Recently, new possible scaffold geometry has emerged: granular packings. In the present study, the primary goal was to compare the efficiency of such a scaffold to the other ones from literature in terms of wall shear stress levels and distributions. To that aim, three different types of granular packings were generated through discrete element method, and computational fluid dynamics was used to simulate the flow within these packings. Shear stress levels and distributions were determined. A linear relationship between shear stress and inlet velocity was observed, and its slope was similar to published data. The distributions of normalized stress were independent of the inlet velocity and were highly comparable to those of widely used porous scaffolds. Granular packings present similar features to more classical porous scaffolds and have the advantage of being easy to manipulate and seed. The methods of this work are generalizable to the study of other granular packing configurations. PMID:25634115

  12. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  13. Magnetically stimulated fluid flow patterns

    SciTech Connect

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  14. Report on task assignment No. 3 for the Waste Package Project; Parts A & B, ASME pressure vessel codes review for waste package application; Part C, Library search for reliability/failure rates data on low temperature low pressure piping, containers, and casks with long design lives

    SciTech Connect

    Trabia, M.B.; Kiley, M.; Cardle, J.; Joseph, M.

    1991-07-01

    The Waste Package Project Research Team, at UNLV, has four general required tasks. Task one is the management, quality assurance, and overview of the research that is performed under the cooperative agreement. Task two is the structural analysis of spent fuel and high level waste. Task three is an American Society of Mechanical Engineers (ASME) Pressure Vessel Code review for waste package application. Finally, task four is waste package labeling. This report includes preliminary information about task three (ASME Pressure Vessel Code review for Waste package Application). The first objective is to compile a list of the ASME Pressure Vessel Code that can be applied to waste package containers design and manufacturing processes. The second objective is to explore the use of these applicable codes to the preliminary waste package container designs. The final objective is to perform a library search for reliability and/or failure rates data on low pressure, low temperature, containers and casks with long design lives.

  15. ASM specialty handbook{reg_sign}: Heat-resistant materials

    SciTech Connect

    Davis, J.R.

    1997-12-31

    This latest handbook brings together in one volume a comprehensive reference source of information on engineering metallic and nonmetallic heat-resistant materials. The volume covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials-selection guidelines for industrial applications and life-assessment methods. Materials covered include carbon, alloy and stainless steels; alloy cast irons; high-alloy cast steels; superalloys; titanium and titanium alloys; refractory metals and alloys; nickel-chromium and nickel-thoria alloys; structural intermetallics; structural ceramics, cermets, and cemented carbides; and carbon-carbon composites. Also included is information on property comparisons that allows ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion resistant coatings for superalloys, life-assessment methodology and design guidelines for applications involving creep and/or oxidation.

  16. Evaluation of feasibility of measuring EHD film thickness associated with cryogenic fluids. [for space shuttle main engine bearings

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Merriman, T. L.; Stockwell, R. D.; Dufrane, K. F.

    1983-01-01

    The feasibility of measuring elastohydrodynamic (EHD) films as formed with a cryogenic (LN2) fluid is evaluated. Modifications were made to an existing twin disk EHD apparatus to allow for disk lubrication with liquid nitrogen. This disk apparatus is equipped with an X-ray system for measuring the thickness of any lubricant film that is formed between the disks. Several film thickness experiments were conducted with the apparatus which indicate that good lubrication films are filmed with LN2. In addition to the film thickness studies, failure analyses of three bearings were conducted. The HPOTP turbine end bearings had experienced axial loads of 36,000 to 44,000 N (8,000 to 10,000 lb). High continuous radial loads were also experienced, which were most likely caused by thermal growth of the inner race. The resulting high internal loads caused race spalling and ball wear to occur.

  17. Investigation of the aerodynamic noise generating region of a jet engine by means of the simple source fluid dilatation model

    NASA Technical Reports Server (NTRS)

    Hurdle, P. M.; Meecham, W. C.; Hodder, B. K.

    1974-01-01

    An experiment was conducted on a full-scale jet engine to investigate the aerodynamic noise generating regions in the free jet. Cross-correlation measurements were made between the static pressure fluctuations and the farfield radiated sound. These measurements were made for two different static pressure probe positions and a large number of farfield positions (at various angles). In addition, each test geometry was run for four different jet exit velocities. The measured, normalized cross-correlation functions varied between 0.004 and 0.155. A new Q-function, based on the above normalized cross correlation is defined and plotted. This function represents the source strength per unit volume within the jet region. This Q-function shows dependence on the probe position, the angular position of the farfield microphone, and the jet exit Mach number. Third-octave analyses of both the probe signal and the farfield radiated sound were made. The results show that cross-correlation techniques are a valuable tool in the investigation of the aerodynamic noise generating regions of an actual jet engine.

  18. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  19. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  20. RXTE-ASM detects the start of a possible state transition in Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Rushton, A.; Dhawan, V.; Fender, R.; Garrett, M.; Maccarone, T.; Miller-Jones, James; Paragi, Z.; Pooley, G.; Spencer, R.; Tudose, V.

    2010-07-01

    Recent data from the All Sky Monitor (ASM) onboard the RXTE satellite has detected an increase in X-rays within the 2-12 keV band. The ASM measured an increase in X-rays starting around 23 June 2010 (MJD 55370) and peaking on 1 July 2010 (MJD 55377.8) with a brightness of 51.92 c/s (688 mCrab) and HR2 = 1.088. In-addition, monitoring with the SWIFT-BAT (15-150 keV) has shown no significant increase, but radio observations with the AMI radio interferometer (15 GHz), have not yet shown any significant radio flaring either.

  1. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    SciTech Connect

    Stillo, Andrew; Ricketts, Craig I.

    2013-07-01

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacity of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME AG-1 Code sections FC and FK[1]. (authors)

  2. A 2015 Igrf Candidate Model Based on Swarm's Experimental ASM Vector Mode Data

    NASA Astrophysics Data System (ADS)

    Vigneron, P.; Hulot, G.; Olsen, N.; Leger, J. M.; Jager, T.; Brocco, L.; Sirol, O.; Coisson, P.; Lalanne, X.; Chulliat, A.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Alpha, Bravo and Charlie satellites of the ESA Swarm mission carries an Absolute Scalar Magnetometer (CNES customer furnished ASM instrument designed by CEA-Lti) that provides the nominal 1 Hz scalar data of the mission, but also delivers 1 Hz experimental vector data. Tests during the commissioning and calibration/validation phase have shown that these data and the rigidity of the boom mechanically linking the ASM to the star imager (STR) on Alpha and Bravo were of such good quality that an IGRF candidate geomagnetic field model could possibly be produced from such ASM-only data (without having to resort to any of the nominal vector field magnetometer (VFM) data of the mission). In this presentation, we will report on our efforts to build such an IGRF candidate, which intends to provide an image of the January 1, 2015 Geomagnetic Field, alternative to the images provided by IGRF candidate models based on Swarm nominal L1b data, or other data.

  3. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a factor of approximately 3-4 from the hard state to the soft one, which supports models of the state transition based on a change of the accretion rate.

  4. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect

    Berry, Jan; Ferrada, Juan J; Curd, Warren; Dell Orco, Dr. Giovanni; Barabash, Vladimir; Kim, Seokho H

    2011-01-01

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  5. Measurement and mitigation of corrosion on self-contained fluid filled (SCFF) submarine circuits for New York Power Authority: Volume 1 -- Engineering evaluation for potential corrosion. Final report

    SciTech Connect

    1998-10-01

    In 1987, the New York Power Authority (NYPA) installed a 345-kV submarine cable circuit across Long Island Sound between substations at Davenport Neck and Hempstead Harbor. During design and installation of the cable circuit, utility and cable manufacturers engineers identified corrosion as a possible problem for the cable system. They considered such effects in the cable design and discussed preliminary requirements for a cathodic protection system on Long Island Sound circuit. EPRI cosponsored this review of the corrosion effects with NYPA and Empire State Electric Energy Research Corp. (ESEERCO). Volume 1 of this report discusses the results from an in-depth evaluation of the self-contained fluid-filled (SCFF) cable construction materials and their susceptibility to corrosion. Volume 2 provides extended stray current field measurements and a preliminary design for a cathodic protection system to ensure cable service reliability. This study provides a blueprint for East or West Coast utilities evaluating site-specific corrosion processes and cable circuit protection methods suitable for underwater environments.

  6. Critical-fluid extraction of organics from water. Volume I. Engineering analysis. Final report, 1 October 1979-30 November 1983

    SciTech Connect

    Moses, J.M.; de Filippi, R.P.

    1984-06-01

    Critical-fluid extraction of several organic solutes from water was investigated analytically and experimentally to determine the energy conservation potential of the technology relative to distillation. This Volume gives the results of an engineering analysis. The process uses condensed or supercritical carbon dioxide as an extracting solvent to separate aqueous solutions of common organics such as ethanol, isopropanol and sec-butanol. Energy input to the systems is electric power to drive compressors. A detailed process analysis included evaluation and correlation of thermophysical properties and phase equilibria for the two- and three-component systems involved. The analysis showed that a plant fed with 10 weight percent ethanol feed would consume 0.65 kilowatt-hours (kwh) of power for compression energy per gallon of alcohol. This energy consumption would be 5300 Btu of steam-equivalent, or 6500 Btu of fossil-fuel-equivalent energy. The extraction product, however, would require additional energy to produce high-purity alcohol. Doubling the ethanol feed concentration to 20 weight percent would reduce the energy required to about 0.30 kwh per gallon. Halving the ethanol feed concentration to 5 weight percent would increase the energy required to about 1.35 kwh per gallon. For the same feed composition, isopropanol can be separated with 48% of the energy required for ethanol. The same separation of sec-butanol can be done with 25% of the ethanol energy requirement.

  7. Electrorheological fluids and methods

    DOEpatents

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  8. Applied fluid dynamics handbook

    NASA Astrophysics Data System (ADS)

    Blevins, R. D.

    The fundamental principles of fluid dynamics and its applications in engineering, design, atmospheric science, and oceanography are discussed; computation techniques are explained; and numerical data from analytical and experimental studies are compiled in tables, graphs, diagrams, and maps. Topics covered include dimensional analysis; conservation equations; pipe and duct flow nozzles, diffusers, and Venturis; open-channel flow; jets, plumes, wakes, and shear layers; fluid-dynamic drag; wind and atmospheric processes; ocean waves and coastal processes; porous media, fluid bearings, and fluid seals; and the properties of gases and liquids. The Navier-Stokes and boundary-layer equations, Reynolds stress and turbulence measurements, and potential flow are treated in appendices.

  9. Applied Fluid Mechanics. Lecture Notes.

    ERIC Educational Resources Information Center

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids

  10. Engine having multiple pumps driven by a single shaft

    DOEpatents

    Blass, James R.

    2001-01-01

    An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.

  11. Case study of the propagation of a small flaw under PWR loading conditions and comparison with the ASME code design life. Comparison of ASME Code Sections III and XI

    SciTech Connect

    Yahr, G.T.; Gwaltney, R.C.; Richardson, A.K.; Server, W.L.

    1986-01-01

    A cooperative study was performed by EG and G Idaho, Inc., and Oak Ridge National Laboratory to investigate the degree of conservatism and consistency in the ASME Boiler and Pressure Vessel Code Section III fatigue evaluation procedure and Section XI flaw acceptance standards. A single, realistic, sample problem was analyzed to determine the significance of certain points of criticism made of an earlier parametric study by staff members of the Division of Engineering Standards of the Nuclear Regulatory Commission. The problem was based on a semielliptical flaw located on the inside surface of the hot-leg piping at the reactor vessel safe-end weld for the Zion 1 pressurized-water reactor (PWR). Two main criteria were used in selecting the problem; first, it should be a straight pipe to minimize the computational expense; second, it should exhibit as high a cumulative usage factor as possible. Although the problem selected has one of the highest cumulative usage factors of any straight pipe in the primary system of PWRs, it is still very low. The Code Section III fatigue usage factor was only 0.00046, assuming it was in the as-welded condition, and fatigue crack-growth analyses predicted negligible crack growth during the 40-year design life. When the analyses were extended past the design life, the usage factor was less than 1.0 when the flaw had propagated to failure. The current study shows that the criticism of the earlier report should not detract from the conclusion that if a component experiences a high level of cyclic stress corresponding to a fatigue usage factor near 1.0, very small cracks can propagate to unacceptable sizes.

  12. Evaluation of flaws in ferritic piping: ASME Code Appendix J, Deformation Plasticity Failure Assessment Diagram (DPFAD)

    SciTech Connect

    Bloom, J.M. )

    1991-08-01

    This report summarizes the methods and bases used by an ASME Code procedure for the evaluation of flaws in ferritic piping. The procedure is currently under consideration by the ASME Boiler and Pressure Vessel Code Committee of Section 11. The procedure was initially proposed in 1985 for the evaluation of the acceptability of flaws detected in piping during in-service inspection for certain materials, identified in Article IWB-3640 of the ASME Boiler and Pressure Vessel Code Section 11 Rules for In-service Inspection of Nuclear Power Plant Components.'' for which the fracture toughness is not sufficiently high to justify acceptance based solely on the plastic limit load evaluation methodology of Appendix C and IWB-3641. The procedure, referred to as Appendix J, originally included two approaches: a J-integral based tearing instability (J-T) analysis and the deformation plasticity failure assessment diagram (DPFAD) methodology. In Appendix J, a general DPFAD approach was simplified for application to part-through wall flows in ferritic piping through the use of a single DPFAD curve for circumferential flaws. Axial flaws are handled using two DPFAD curves where the ratio of flaw depth to wall thickness is used to determine the appropriate DPFAD curve. Flaws are evaluated in Appendix J by comparing the actual pipe applied stress with the allowable stress with the appropriate safety factors for the flaw size at the end of the evaluation period. Assessment points for circumferential and axial flaws are plotted on the appropriate failure assessment diagram. In addition, this report summarizes the experimental test predictions of the results of the Battelle Columbus Laboratory experiments, the Eiber experiments, and the JAERI tests using the Appendix J DPFAD methodology. Lastly, this report also provides guidelines for handling residual stresses in the evaluation procedure. 22 refs., 13 figs., 5 tabs.

  13. INTEGRAL and RXTE/ASM Observations on IGR J17098-3628

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Peng; Zhang, Shu; Schurch, Nick; Wang, Jian-Min; Collmar, Werner; Li, Ti-Pei; Qu, Jin-Lu; Zhang, Cheng-Min

    2008-10-01

    To further probe the possible nature of the unidentified source IGR J17098-3628, we have carried out a detailed analysis of its long-term time variability, as monitored by Rossi X-ray Timing Explorer/All Sky Monitor (RXTE/ASM), and of its hard X-ray properties, as observed by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). INTEGRAL has monitored this sky region for years, and significantly detected IGR J17098-3628 only when the source was in its dubbed active state. In particular, at ?20keV, Imager on Board of the INTEGRAL Satellite/INTEGRAL Soft Gamma-Ray Imager (IBIS/ISGRI) caught an outburst in 2005 March, lasting for 5 d with a detection significance of 73? (20--40 keV) and with emission at <200 keV. ASM observations have revealed that the outburst of the soft X-ray lightcurve is similar to that detected by INTEGRAL; however the peak of the soft X-ray lightcurve lags behind, or is preceded by, the hard X-ray (>20 keV) outburst by 2 d. This resembles the behavior of X-ray novae like XN 1124-683, and hence further suggests a Low-Mass X-ray Binary (LMXB) nature for IGR J17098-3628. While the quality of the ASM data prevents us from drawing any definite conclusions, these discoveries are important clues that, coupled with future observations, will help us to resolve the nature of IGR J17098-3628 that is unknown so far.

  14. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    SciTech Connect

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.

    2005-07-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and occupational radiation exposures.

  15. History of the internal combustion engine

    SciTech Connect

    Somerscales, E.F.C. ); Zagotta, A.A. )

    1989-01-01

    The study of engineering history by the practioners of engineering is not well-developed. This is unfortunate, because if nothing else, it is the culture of our profession, but even more importantly, it provides us with a proper understanding of current and future engineering. Without an adequate historical background the engineer could, for example, respond incorrectly to problems that might arise in some device or make inappropriate changes in the design. History can also suggest the path that might be followed by a new product, and thereby guide the development and marketing. Because of the fuller appreciation of the art and science of engineering that is provided by an awareness of engineering history, it seems appropriate for the ASME to recognize the role in our profession. The papers in this volume, which deal and various aspects of the history of the internal combustion engine, were presented in a session at the Fall Technical Conference of the ASME Internal Combustion Engine Division held in Dearborn, Michigan on October 17, 1989. The session was jointly sponsored and arranged by the Internal Combustion Engine Division and by the History and Heritage Committee of ASME. It is the first in what the latter hopes will be a regular series of sessions at various Society meetings jointly sponsored with the different divisions of the Society. It is hoped in this way to raise the consciousness of the engineering community to its history and to encourage in particular the preparation of historical papers by engineer-historians, who are involved in the practice of engineering. An approximate chronological order has been chosen for the arrangement of the papers, with the first, by H.O. Hardenberg, being on the gunpowder engines, which were experimented with from the sixteenth century to the middle of the nineteenth century.

  16. Materials and design bases issues in ASME Code Case N-47

    SciTech Connect

    Huddleston, R.L.; Swindeman, R.W.

    1993-04-01

    A preliminary evaluation of the design bases (principally ASME Code Case N-47) was conducted for design and operation of reactors at elevated temperatures where the time-dependent effects of creep, creep-fatigue, and creep ratcheting are significant. Areas where Code rules or regulatory guides may be lacking or inadequate to ensure the operation over the expected life cycles for the next-generation advanced high-temperature reactor systems, with designs to be certified by the US Nuclear Regulatory Commission, have been identified as unresolved issues. Twenty-two unresolved issues were identified and brief scoping plans developed for resolving these issues.

  17. Overview of the new ASME Performance Test Code for wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1986-01-01

    The principal technical features of the ASME Performance Test Code for wind turbines are presented and such issues as what sizes and types of wind turbines should be included, what the principal measure of performance should be, and how wind speed should be measured are discussed. It is concluded that the present test code is applicable to wind turbine systems of all sizes. The principal measure of performance as defined by this code is net energy output and the primary performance parameter is the 'test energy ratio' which is based on a comparison between the measured and predicted energy output for the test period.

  18. ASME N510 test results for Savannah River Site AACS filter compartments

    SciTech Connect

    Paul, J.D.; Punch, T.M.

    1994-07-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-1, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design, Basis Accident earthquake, provide 2 in. adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  19. Results from Evaluation of Representative ASME AG-1 Section FK Radial Flow Dimple Pleated HEPA Filters Under Elevated Conditions - 12002

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.; Waggoner, Charles A.

    2012-07-01

    The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)has evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)

  20. Code cases for implementing risk-based inservice testing in the ASME OM code

    SciTech Connect

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  1. Evaluation of conservatisms and environmental effects in ASME Code, Section III, Class 1 fatigue analysis

    SciTech Connect

    Deardorff, A.F.; Smith, J.K.

    1994-08-01

    This report documents the results of a study regarding the conservatisms in ASME Code Section 3, Class 1 component fatigue evaluations and the effects of Light Water Reactor (LWR) water environments on fatigue margins. After review of numerous Class 1 stress reports, it is apparent that there is a substantial amount of conservatism present in many existing component fatigue evaluations. With little effort, existing evaluations could be modified to reduce the overall predicted fatigue usage. Areas of conservatism include design transients considerably more severe than those experienced during service, conservative grouping of transients, conservatisms that have been removed in later editions of Section 3, bounding heat transfer and stress analysis, and use of the ``elastic-plastic penalty factor`` (K{sub 3}). Environmental effects were evaluated for two typical components that experience severe transient thermal cycling during service, based on both design transients and actual plant data. For all reasonable values of actual operating parameters, environmental effects reduced predicted margins, but fatigue usage was still bounded by the ASME Section 3 fatigue design curves. It was concluded that the potential increase in predicted fatigue usage due to environmental effects should be more than offset by decreases in predicted fatigue usage if re-analysis were conducted to reduce the conservatisms that are present in existing component fatigue evaluations.

  2. Migration from hierarchal storage management to ASM storage server: a case study.

    PubMed

    Baune, D; Bookman, G

    1999-05-01

    The Department of Radiology at the University of Utah Hospitals and Clinics had to make a change from its current hierarchical storage management (HSM) system. The HSM software is the heart of any near-line data storage system and any change in this software affects all near-line and on-line data storage. In this case, over a terabyte of data had been migrated in more than 2 million files. The traditional method of reading in the old data and then writing it out to the new system was calculated to take more than 60 years. Here, we will examine the reasons for making such a radical change in the HSM used. We will also discuss why ASM (the new HSM software) was selected, and the performance improvements seen. A second, less difficult transition was made a few months later, of upgrading to a newer faster tape technology. The two types of tapes were incompatible, but the storage software and robotics used allowed for a peaceful coexistence during the transition. The transition from HSM to ASM was not a trivial task. It required a reasonable implementation/migration plan, which involved finding the correct resources and thinking outside the norm for solutions. All sites that have any amount of data stored in near-line devices will face similar conversions. This presentation should help in the event that a data conversion plan is not already in place. PMID:10342172

  3. Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063

    SciTech Connect

    Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A.

    2013-07-01

    High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikes and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)

  4. Methods for incorporating effects of LWR coolant environment into ASME code fatigue evaluations.

    SciTech Connect

    Chopra, O. K.

    1999-04-15

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Appendix I to Section HI of the Code specifies design fatigue curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data illustrate potentially significant effects of LWR environments on the fatigue resistance of carbon and low-alloy steels and austenitic stainless steels (SSs). Under certain loading and environmental conditions, fatigue lives of carbon and low-alloy steels can be a factor of {approx}70 lower in an LWR environment than in air. These results raise the issue of whether the design fatigue curves in Section III are appropriate for the intended purpose. This paper presents the two methods that have been proposed for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations. The mechanisms of fatigue crack initiation in carbon and low-alloy steels and austenitic SSs in LWR environments are discussed.

  5. ASME PTC47.4 -- IGCC performance testing issues for the power block

    SciTech Connect

    Anand, A.K.; Parmar, J.

    1999-07-01

    Integrated Gasification Combined Cycle (IGCC) plants that utilize solid and unconventional liquid fuels have now reached commercialization stage as evidenced by their worldwide construction and new orders. The complex nature or integration between the power generating and the fuel gas generating gasification units of an IGCC has created a need to provide guidance and procedures on how to conduct the performance test for the users and owners of these power plants. ASME Performance Test Code 47 (PTC47) and the associated subsets (PTC47.1, PTC47.2, PTC47.3 and PTC47.4) are being written to define the significant performance factors and provide recommendations how these factors should be applied on test measurements to evaluate the deviation from the IGCC equipment guarantees. This paper reports the progress and issues pertaining to the PTC 47.4 for the IGCC Power Block and how it differs from ASME PTC 46 test code. The paper also discusses the creation of a thermodynamic Power Block model of Wabash River Repowering IGCC plant using a proprietary software. Correction curves derived from the model, which define the performance at design and off design from site conditions are also presented.

  6. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    SciTech Connect

    Chen, Xinjian; Bagci, Ulas

    2011-08-15

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s. Conclusions: The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min.

  7. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  8. Fluid imbalance

    MedlinePLUS

    ... sodium ( hyponatremia , hypernatremia), potassium ( hypokalemia , hyperkalemia ), and other chemicals that help regulate body fluids. Medicines can also affect fluid balance. The most common are water pills (diuretics) to ...

  9. Fluid Overload.

    PubMed

    O'Connor, Michael E; Prowle, John R

    2015-10-01

    Most critically ill patients experience external or internal fluid shifts and hemodynamic instability. In response to these changes, intravenous fluids are frequently administered. However, rapid losses of administered fluids from circulation and the indirect link between the short-lived plasma volume expansion and end points frequently result in transient responses to fluid therapy. Therefore, fluid overload is a common finding in intensive care units. The authors consider the evidence of harm associated with fluid overload and the physiologic processes that lead to fluid accumulation in critical illness. The authors then consider methods to prevent fluid accumulation and/or manage its resolution. PMID:26410146

  10. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  11. 78 FR 37721 - Approval of American Society of Mechanical Engineers' Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 RIN 3150-AI72 Approval of American Society of Mechanical... acceptable voluntary alternative to the mandatory American Society of Mechanical Engineers (ASME) Boiler and... rulemaking, ``Approval of American Society of Mechanical Engineers' Code Cases'' (RIN 3150-AI72;...

  12. New proposal for standardization and nomenclature for a Stirling engine report

    NASA Astrophysics Data System (ADS)

    Naso, Vincenzo; Lista, Paolo

    The absence of a consistent and univocal form of data report, by means of standards and nomenclature, has been pointed out by the Stirling Technical Committee of the American Society of Mechanical Engineers (ASME/STC) since 1988. ASME/STC undertook a preliminary effort to codify a set of standards and nomenclature. and submitted it to the analysis of the scientific community. A proposal of improvement, dealing with the first part of the codification proposed by ASME/STC and limited to the Stirling engine (motor, prime mover), was first presented by the authors at the 5th International Stirling Engine Conference in 1991. A new version, completed with the second part of the codification, including the definitions of power temperature and efficiency terms, is presented.

  13. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca2+ regulation in airway smooth muscle (ASM)1

    PubMed Central

    Delmotte, Philippe; Sieck, Gary C.

    2015-01-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  14. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  15. Harmonic engine

    DOEpatents

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  16. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  17. The Impact of ASME Section XI Appendix L Inspections on Piping Reliability

    SciTech Connect

    Simonen, Fredric A.; Gosselin, Stephen R.

    2001-12-31

    Appendix L of the ASME Section XI code sets standards for augmented inspections of piping components that have experienced high levels of fatigue usage, and provides a basis for continued operation of components beyond their original design life. This paper describes probabilistic fracture mechanics calculations that estimate the reductions in piping failure probabilities associated with the Appendix L inspections. The improvements in piping reliability are a function of the frequency of the inspections and the quality of the ultrasonic examination methods (probability of flaw detection). Both preexisting fabrication flaws and flaws initiated by fatigue cycling are included in the probabilistic calculations. The calculations show that a program of Appendix L inspections can maintain piping failure rates during a period of extended operation at levels that are at or below the failure frequencies that are estimated for the original period of the design life.

  18. Crack growth in ASME SA-105 grade 2 steel in hydrogen at ambient temperature

    NASA Technical Reports Server (NTRS)

    Walter, R. J.

    1975-01-01

    Cyclic-load crack growth measurements were performed on ASME SA-105 Grade 2 steel specimens exposed to 10,000- and 15,000-psi hydrogen and to 5000-psi helium, all at ambient temperatures. The cyclic-load crack growth rate was found to be faster in high-pressure hydrogen than in helium. Cyclic-load crack growth rates in this steel were not reduced by preloading in air to a stress intensity of 1.5 times the cyclic K sub max in hydrogen. There are indications that holding under load in hydrogen, and loading and unloading in helium retards hydrogen-accelerated cyclic-load crack growth. Cyclic frequency and R (ratio of K sub min/k sub max) were important variables determining crack growth rate. The crack growth rate increased as a logarithm of the cycle duration and decreased with increasing R.

  19. ASM conference report: genetics and molecular biology of industrial microorganisms 1984

    SciTech Connect

    Not Available

    1985-01-01

    The ASM Conference on Genetics and Molecular Biology of Industrial Microorganisms was held Sept. 30 to Oct. 3, 1984 in Bloomington, Indiana. The meetings reflected the progress in applying molecular techniques to the genetic analysis of industrial microorganisms. Topics of discussion included; gene expression in yeasts; the cloning of an Aspergillus sp. gene for glucomylase into S. cerevisiae; the construction of a yeast acentric ring plasmid (YARpl); the cloning of hygromycin resistant genes into Cephalosporium; optimization of gene expression in E. coli; a model for the initiation of translation in E. coli based on experiments with T4rIIb mutants; the role of proteases in protein turnover; evidence indicating which segments on RNAs are needed for the initiation of DNA synthesis; the application of various gene expression systems for the production of vaccines; the sporulation genes of Bacillus; the inducible chloramphenicol resistance found in Bacillus; gene expression in Streptomyces; enzyme activities in Streptomyces; and cloning of genes involved in antibiotic biosynthesis.

  20. Technical basis for the extension of ASME Code Case N-494 for assessment of austenitic piping

    SciTech Connect

    Bloom, J.M.

    1995-11-01

    In 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating laws in Light Water Reactor alterative procedure for evaluating flaws in Light Water Reactor (LWR) ferritic piping. The approach is an alternative to Appendix H of the ASME Code and alloys the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code Case is an implementation of the methodology of the Deformation Plasticity Failure Assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials. A lower bound stress-strain curve was used to generate a PWFAD curve for the geometry of a part-through wall circumferential flaw in a cylinder under tension. Earlier work demonstrated that a cylinder under axial tension with a 50% flaw depth, 90 degrees in circumference, and radius to thickness of 10, produced a lower bound FAD curve. Validation of the new proposed Code Case procedure for austenitic piping was performed using actual pipe test data. Using the lower bound PWFAD curve, pipe test results were conservatively predicted. The resultant development of ht PWFAD curve for austenitic piping led to a revision of Code Case N-494 to include a procedure for assessment of flaws in austenitic piping.

  1. Impact of the A18.1 ASME Standard on Platform Lifts and Stairway Chairlifts on Accessibility and Usability

    ERIC Educational Resources Information Center

    Balmer, David C.

    2010-01-01

    This article summarizes the effect of the ASME A18.1 Standard concerning accessibility and usability of Platform Lifts and their remaining technological challenges. While elevators are currently the most effective means of vertical transportation related to speed, capacity, rise and usability, their major drawbacks for accessibility are cost and…

  2. Materials Reliability Program: Risk-Informed Revision of ASME Section XI Appendix G - Proof of Concept (MRP-143)

    SciTech Connect

    B. Bishop; et al

    2005-03-30

    This study indicates that risk-informed methods can be used to significantly relax the current ASME and NRC Appendix G requirements while still maintaining satisfactory levels of reactor vessel structural integrity. This relaxation in Appendix G requirements directly translates into significant improvements in operational flexibility.

  3. 76 FR 11191 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... the ANPRM published on December 23, 2010 (ANPRM; 75 FR 80765). The ASME Boiler and Pressure Vessel... April 11, 2000 (65 FR 19477) or you may visit http://www.regulations.gov . SUPPLEMENTARY INFORMATION: I. Background On December 23, 2010, PHMSA published an advance notice of proposed rulemaking (ANPRM; 75 FR...

  4. Impact of the A18.1 ASME Standard on Platform Lifts and Stairway Chairlifts on Accessibility and Usability

    ERIC Educational Resources Information Center

    Balmer, David C.

    2010-01-01

    This article summarizes the effect of the ASME A18.1 Standard concerning accessibility and usability of Platform Lifts and their remaining technological challenges. While elevators are currently the most effective means of vertical transportation related to speed, capacity, rise and usability, their major drawbacks for accessibility are cost and

  5. 78 FR 79363 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... DOT's complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477... the 1999 Addenda,'' Walter J. Sperko, P.E., available at: http://freepdfz.com/pdf/reduction-of-asme...\\ See ``A Practical Methods for the Rational Design of Ship Structures; Hughes, Mistree and...

  6. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  7. The Variety of Fluid Dynamics.

    ERIC Educational Resources Information Center

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  8. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    SciTech Connect

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  9. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  10. Computational fluid dynamics: Complex flows requiring supercomputers. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning computational fluid dynamics (CFD), a new technology in computational science for complex flow simulations using supercomputers. Citations discuss the design, analysis, and performance evaluation of aircraft, rockets and missiles, and automobiles. References to supercomputers, array processes, parallel processes, and computational software packages are included. (Contains 250 citations and includes a subject term index and title list.)

  11. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  12. Practical exergy analysis of centrifugal compressor performance using ASME-PTC-10 data

    SciTech Connect

    Carranti, F.J.

    1997-07-01

    It has been shown that measures of performance currently in use for industrial and process compressors do not give a true measure of energy utilization, and that the required assumptions of isentropic or adiabatic behavior are now always valid. A better indication of machine or process performance can be achieved using exergetic (second law) efficiencies and by employing the second law of thermodynamics to indicate the nature of irreversibilities and entropy generation in the compression process. In this type of analysis, performance is related to an environmental equilibrium condition, or dead state. Often, the differences between avoidable and unavoidable irreversibilities ca be interpreted from these results. A general overview of the techniques involved in exergy analysis as applied to compressors and blowers is presented. A practical method to allow the calculation of exergetic efficiencies by manufacturers and end users is demonstrated using data from ASME Power Test Code input. These data are often readily available from compressor manufacturers for both design and off-design conditions, or can sometimes be obtained from field measurements. The calculations involved are simple and straightforward, and can demonstrate the energy usage situation for a variety of conditions. Here off-design is taken to mean at different rates of flow, as well as at different environmental states. The techniques presented are also applicable to many other equipment and process types.

  13. Analysis of systematic errors of the ASM/RXTE monitor and GT-48 ?-ray telescope

    NASA Astrophysics Data System (ADS)

    Fidelis, V. V.

    2011-06-01

    The observational data concerning variations of light curves of supernovae remnantsthe Crab Nebula, Cassiopeia A, Tycho Brahe, and pulsar Velaover 14 days scale that may be attributed to systematic errors of the ASM/RXTE monitor are presented. The experimental systematic errors of the GT-48 ?-ray telescope in the mono mode of operation were also determined. For this the observational data of TeV J2032 + 4130 (Cyg ?-2, according to the Crimean version) were used and the stationary nature of its ?-ray emission was confirmed by long-term observations performed with HEGRA and MAGIC. The results of research allow us to draw the following conclusions: (1) light curves of supernovae remnants averaged for long observing periods have false statistically significant flux variations, (2) the level of systematic errors is proportional to the registered flux and decreases with increasing temporal scale of averaging, (3) the light curves of sources may be modulated by the year period, and (4) the systematic errors of the GT-48 ?-ray telescope, in the amount caused by observations in the mono mode and data processing with the stereo-algorithm come to 0.12 min-1.

  14. Full-scale application of the IAWQ ASM No. 2d model.

    PubMed

    Carrette, R; Bixio, D; Thoeye, C; Ockier, P

    2001-01-01

    In the framework of the EU-funded TTP-UPM project (Technology Transfer Project--Urban Pollution Management) the waste water treatment plant (WWTP) of Tielt was modelled with the recently issued IAWQ ASM No. 2d model. Up to 41 % of the total COD load is originating from a textile industry. A measurement campaign was conducted during a period with industrial discharge and a period with only domestic sewage. The stop of the industrial discharge resulted in a highly dynamic response of the system. Based on an expert-approach the calibration was obtained changing only four parameters (anaerobic hydrolysis reduction factor etafe, reduction factor for denitrification etaNO3, the decay rate of autotrophs bAUT and the decay rate of the bio-P organism building blocks bPAO, bPHA, bPP). Influent fractionation remains a critical step within the model calibration. A proven procedure to characterise the influent determinants by standard physical chemical analysis failed to assess the influent COD fractions when the textile waste water is discharged to the WWTP. Selected bench-scale experiments, instead, succeeded in providing the adequate influent characterisation accuracy. For characterising the readily biodegradable COD fraction respirometry is to be preferred. PMID:11547980

  15. Modelling waste stabilisation ponds with an extended version of ASM3.

    PubMed

    Gehring, T; Silva, J D; Kehl, O; Castilhos, A B; Costa, R H R; Uhlenhut, F; Alex, J; Horn, H; Wichern, M

    2010-01-01

    In this paper an extended version of IWA's Activated Sludge Model No 3 (ASM3) was developed to simulate processes in waste stabilisation ponds (WSP). The model modifications included the integration of algae biomass and gas transfer processes for oxygen, carbon dioxide and ammonia depending on wind velocity and a simple ionic equilibrium. The model was applied to a pilot-scale WSP system operated in the city of Florianpolis (Brazil). The system was used to treat leachate from a municipal waste landfill. Mean influent concentrations to the facultative pond of 1,456 g(COD)/m(3) and 505 g(NH4-N)/m(3) were measured. Experimental results indicated an ammonia nitrogen removal of 89.5% with negligible rates of nitrification but intensive ammonia stripping to the atmosphere. Measured data was used in the simulations to consider the impact of wind velocity on oxygen input of 11.1 to 14.4 g(O2)/(m(2) d) and sun radiation on photosynthesis. Good results for pH and ammonia removal were achieved with mean stripping rates of 18.2 and 4.5 g(N)/(m(2) d) for the facultative and maturation pond respectively. Based on measured chlorophyll a concentrations and depending on light intensity and TSS concentration it was possible to model algae concentrations. PMID:20150708

  16. Unsteady Simulation of an ASME Venturi Flow in a Cross Flow

    NASA Astrophysics Data System (ADS)

    Bonifacio, Jeremy; Rahai, Hamid

    2010-11-01

    Unsteady numerical simulations of an ASME venturi flow into a cross flow were performed. The velocity ratios between the venturi flow and the free stream were 25, 50, and 75%. Two cases of the venturi with and without a tube extension have been investigated. The tube extension length was approximately 4D (here D is the inner diameter of the venturi's outlet), connecting the venturi to the bottom surface of the numerical wind tunnel. A finite volume approach with the Wilcox K-? turbulence model were used. Results that include contours of the mean velocity, velocity vector, turbulent kinetic energy, pressure and vortices within the venturi as well as downstream in the interaction region indicate that when the venturi is flushed with the surface, there is evidence of flow separation within the venturi, near the outlet. However, when the tube extension was added, the pressure recovery was sustained and flow separation within the venturi was not present and the characteristics of the flow in the interaction region were similar to the corresponding characteristics of a pipe jet in a cross flow.

  17. Creep Effects on Design below the Temperature Limits of ASME Section III Subsection NB

    SciTech Connect

    Sham, Sam; Jetter, Robert I; Eno, D.R.

    2010-01-01

    Some recent studies of material response have identified an issue that crosses over and blurs the boundary between ASME Boiler and Pressure Vessel Code Section III Subsection NB and Subsection NH. For very long design lives, the effects of creep show up at lower and lower temperature as the design life increases. Although true for the temperature at which the allowable stress is governed by creep properties, the effect is more apparent, e.g. creep effects show up sooner, at local structural discontinuities and peak thermal stress locations. This is because creep is a function of time, temperature and stress and the higher the localized stress, the lower in temperature creep begins to cause damage. If the threshold is below the Subsection NB to NH temperature boundary, 700 F for ferritic steels and 800 F for austenitic materials, then this potential failure mode will not be considered. Unfortunately, there is no experience base with very long lives at temperatures close to but under the Subsection NB to NH boundary to draw upon. This issue is of particular interest in the application of Subsection NB rules of construction to some High Temperature Gas Reactor (HTGR) concepts. The purpose of this paper is, thus, twofold; one part is about statistical treatment and extrapolation of sparse data for a specific material of interest, A533B; the other part is about how these results could impact current design procedures in Subsection NB.

  18. Creep Effects on Design below the Temperature Limits of ASME Section III Subsection NB

    SciTech Connect

    Sham, Sam; Jetter, Robert I; Eno, D.R.

    2008-01-01

    Some recent studies of material response have identified an issue that crosses over and blurs the boundary between ASME Boiler and Pressure Vessel Code Section III Subsection NB and Subsection NH. For very long design lives, the effects of creep show up at lower and lower temperature as the design life increases. Although true for the temperature at which the allowable stress is governed by creep properties, the effect is more apparent, e.g. creep effects show up sooner, at local structural discontinuities and peak thermal stress locations. This is because creep is a function of time, temperature and stress and the higher the localized stress, the lower in temperature creep begins to cause damage. If the threshold is below the Subsection NB to NH temperature boundary, 700 F for ferritic steels and 800 F for austenitic materials, then this potential failure mode will not be considered. Unfortunately, there is no experience base with very long lives at temperatures close to but under the Subsection NB to NH boundary to draw upon. This issue is of particular interest in the application of Subsection NB rules of construction to some High Temperature Gas Reactor (HTGR) concepts. The purpose of this paper is, thus, twofold; one part is about statistical treatment and extrapolation of sparse data for a specific material of interest, A533B; the other part is about how these results could impact current design procedures in Subsection NB.

  19. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  20. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  1. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  2. Cyclic-load crack growth in ASME SA-105 grade II steel in high-pressure hydrogen at ambient temperature

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1976-01-01

    ASME SA-105 Grade II steel, which is used in high-pressure hydrogen compressor systems, is similar to steels used or considered for use in high-pressure hydrogen storage vessels and pipelines. This paper summarizes the results of a program conducted to provide cyclic-load crack growth rate (da/dN) data for a fracture mechanics analysis of a 15,000 psi hydrogen compressor facility which contains pulse quieter and after-cooler separator vessels constructed of the ASME SA-105 Grade II steel. Included in the program were tests performed to assist in establishing operating procedures that could minimize the effect of hydrogen on crack growth rates during operation.

  3. Spacer fluids

    SciTech Connect

    Wilson, W.N.; Bradshaw, R.D.; Wilton, B.S.; Carpenter, R.B.

    1992-05-19

    This patent describes a method for cementing a wellbore penetrating an earth formation into which a conduit extends, the wellbore having a space occupied by a drilling fluid. It comprises displacing the drilling fluid from the space with a spacer fluid comprising: sulfonated styrene-maleic anhydride copolymer, bentonite, welan gum, surfactant and a weighting agent; and displacing the spacer composition and filling the wellbore space with a settable cement composition.

  4. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    NASA Astrophysics Data System (ADS)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  5. Stochastic interpenetration of fluids

    SciTech Connect

    Steinkamp, M.J.; Clark, T.T.; Harlow, F.H.

    1995-11-01

    We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  6. Fluid management

    NASA Technical Reports Server (NTRS)

    Fester, D.

    1984-01-01

    The Fluid Management Panel's assessment of the technology is summarized. Since a baseline space station was not defined as a reference guide and the results of the eight contracted space station studies were not available as input, the assessment focused on technology and not programmatics. The ground rules that were key to the deliberations and guided the assessment are: (1) The space station will be operational in 1991, and (2) A space-based OTV will be operational in 1992. Thus, the capability to transport, transfer, and resupply all fluids, including those for the OTV, is required in the initial space station. The only evolutionary aspect is the refinement of capability. Fluid management includes fluid transport to orbit, liquid storage/supply, fluid transfer/resupply, and integral thermal control.

  7. Computational fluid dynamics: Complex flows requiring supercomputers. (Latest citations from the iINSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets and missiles, and automobiles; heat transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid generation techniques required to apply CFD numerical solutions. (Contains 250 citations and includes a subject term index and title list.)

  8. Compressor bleed cooling fluid feed system

    SciTech Connect

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  9. Development of a Consensus Standard for Verification and Validation of Nuclear System Thermal-Fluids Software

    SciTech Connect

    Edwin A. Harvego; Richard R. Schultz; Ryan L. Crane

    2011-12-01

    With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal-hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the jurisdiction of the V&V Standards Committee, to develop a consensus standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. In this framework, the Standard should conform to Nuclear Regulatory Commission (NRC) and other regulatory practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, 'Transient and Accident Analysis Methods' and NUREG-0800, 'NRC Standard Review Plan'. In addition, the Standard should be consistent with applicable sections of ASME NQA-1-2008 'Quality Assurance Requirements for Nuclear Facility Applications (QA)'. This paper describes the general requirements for the proposed V&V 30 Standard, which includes; (a) applicable NRC and other regulatory requirements for defining the operational and accident domain of a nuclear system that must be considered if the system is to be licensed, (b) the corresponding calculation domain of the software that should encompass the nuclear operational and accident domain to be used to study the system behavior for licensing purposes, (c) the definition of the scaled experimental data set required to provide the basis for validating the software, (d) the ensemble of experimental data sets required to populate the validation matrix for the software in question, and (e) the practices and procedures to be used when applying a validation standard. Although this initial effort will focus on software for licensing of High-Temperature Gas-Cooled Reactors, it is anticipated that the practices and procedures developed for this Standard can eventually be extended to other nuclear and non-nuclear applications.

  10. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  11. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  12. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome.

  13. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS meet the servicing requirements for ISS and could also provide the automated fluid and power interface system needed for on orbit consumable resupply of spacecraft into the new century.

  14. Effect of thin condensate films of a metal working fluid of an electric propulsion engine on the integral optical coefficients of a spacecraft's thermal control coating

    NASA Astrophysics Data System (ADS)

    Chirov, A. A.

    2014-05-01

    Materials on experimental studies to determine the effect of thin condensate films of cesium (used as a model working medium for electric propulsion engines and some spacecraft power sources) on integral optical coefficients of spacecraft thermal control coatings are presented. A technique modified by the author and employing the regular thermal regime of a thin metal plate is used. Measurement results demonstrate that films with thicknesses of 100-1000 can seriously degrade the integral optical coefficients of thermal control coatings and thus disturb the heat balance of some spacecraft systems.

  15. Amniotic Fluid

    PubMed Central

    Smith, Heather C.; Muglia, Louis J.; Morrow, Ardythe L.

    2014-01-01

    Our aim was to review the use of high-dimensional biology techniques, specifically transcriptomics, proteomics, and metabolomics, in amniotic fluid to elucidate the mechanisms behind preterm birth or assessment of fetal development. We performed a comprehensive MEDLINE literature search on the use of transcriptomic, proteomic, and metabolomic technologies for amniotic fluid analysis. All abstracts were reviewed for pertinence to preterm birth or fetal maturation in human subjects. Nineteen articles qualified for inclusion. Most articles described the discovery of biomarker candidates, but few larger, multicenter replication or validation studies have been done. We conclude that the use of high-dimensional systems biology techniques to analyze amniotic fluid has significant potential to elucidate the mechanisms of preterm birth and fetal maturation. However, further multicenter collaborative efforts are needed to replicate and validate candidate biomarkers before they can become useful tools for clinical practice. Ideally, amniotic fluid biomarkers should be translated to a noninvasive test performed in maternal serum or urine. PMID:23599373

  16. Amniotic fluid

    MedlinePLUS

    ... occur with multiple pregnancies (twins or triplets), congenital anomalies (problems that exist when the baby is born), ... late pregnancies, ruptured membranes, placental dysfunction , or fetal abnormalities. Abnormal amounts of amniotic fluid may cause the ...

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Hargens, Alan R.; Dulchavsky, Scott A.; Ebert, Douglas J.; Lee, Stuart M. C.; Laurie, Steven S.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Martin, David S.; Liu, John; Macias, Brandon R.; Arbeille, Philippe; Danielson, Richard; Chang, Douglas; Gunga, Hanns-Christian; Johnston, Smith L.; Westby, Christian M.; Ploutz-Snyder, Robert J.; Smith, Scott M.

    2016-01-01

    We hypothesize that microgravity-induced cephalad fluid shifts elevate intracranial pressure (ICP) and contribute to VIIP. We will test this hypothesis and a possible countermeasure in ISS astronauts.

  18. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.

  19. Fluid power

    SciTech Connect

    Sullivan, J.

    1989-01-01

    Illustrations and analysis are combined in this book that show the design and function of components and circuits in fluid power and pneumatic systems. Explanations are given for ASTM standards and conventional tests and step-by-step troubleshooting guidelines are provided. Other topics of discussion include friction losses in hydraulic systems, hydraulic fluids, pumps, hydraulic cylinders and cushioning devices, hydraulic motors, valves, seals and packing, system components, hydraulic circuit configurations, and controls.

  20. Effects of ASM-024, a modulator of acetylcholine receptor function, on airway responsiveness and allergen-induced responses in patients with mild asthma

    PubMed Central

    Boulet, Louis-Philippe; Gauvreau, Gail M; Cockcroft, Donald W; Davis, Beth; Vachon, Luc; Cormier, Yvon; OByrne, Paul M

    2015-01-01

    OBJECTIVES: To evaluate the safety, tolerability and clinical activity of ASM-024, a new cholinergic compound with dual nicotinic and muscarinic activity, in mild allergic asthma. METHODS: The present study involved 24 stable, mild allergic asthmatic subjects. In a cross-over design, ASM-024 (50 mg or 200 mg) or placebo were administered once daily by nebulization over three periods of nine consecutive days separated by a three-week washout. The effect of each treatment on the forced expiratory volume in 1 s (FEV1), provocative concentration of methacholine causing a 20% decline in FEV1 (PC20), early and late asthmatic responses, and allergen-induced inflammation were measured. RESULTS: Seventeen subjects completed the study. During treatment with ASM-024 at 50 mg or 200 mg, the PC20 value increased respectively from a mean ( SD) 2.563.86 mg/mL to 4.11 mg/mL (P=0.007), and from 3.124.37 mg/mL to 5.23 mg/mL (P=0.005) (no change with placebo). On day 7 (day preceding allergen challenge), postdosing FEV1 increased by 2.0% with 50 mg (P=0.005) and 1.9% with 200 mg (P=0.008) (placebo ?1.1%). ASM-24 had no inhibitory effect on early and late asthmatic responses, nor on sputum eosinophil or neutrophil levels. ASM-024 induced no serious adverse events, but caused cough in 22% and 48% of the subjects with 50 mg and 200 mg, respectively, compared with 10% who were on placebo. CONCLUSIONS: ASM-024 did not inhibit allergen-induced asthmatic response and related airway inflammation, but reduced methacholine airway responsiveness and slightly improved lung function. The mechanism by which ASM-024 improves these outcomes requires further study. PMID:26252534

  1. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  2. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  3. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  4. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  5. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  6. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  7. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. This study has been selected for flight implementation and is one of the candidate investigations being considered for the one year mission.

  8. Fluid dynamic problems in space systems

    NASA Astrophysics Data System (ADS)

    Slachmuylders, E.; Berry, W.; Soo, D. N.; Savage, C.

    1986-08-01

    Applications of fluid systems on spacecraft for propulsion, thermal control, and nutation damping are reviewed. Design problems posed by the high vacuum, microgravity environment of space and the dynamic interaction effects between the fluid systems and the spacecraft dynamic motion are discussed. Propellant management and tankage technology for operation in microgravity; liquid (propellants and cryogenic helium and hydrogen coolants) slosh interactions on spacecraft attitude control; control system rocket engine exhaust plume impingement effects; active thermal control systems using fluids; passive nutation damping using fluids; leak detection techniques for pressurized fluid systems operating in high vacuum; propellant contents gaging in microgravity; refuelling in orbit; and aerodynamic drag effects in low Earth orbits are considered.

  9. Impact of the A18.1 ASME Standard on platform lifts and stairway chairlifts on accessibility and usability.

    PubMed

    Balmer, David C

    2010-01-01

    ABSTRACT This article summarizes the effect of the ASME A18.1 Standard concerning accessibility and usability of Platform Lifts and their remaining technological challenges. While elevators are currently the most effective means of vertical transportation related to speed, capacity, rise and usability, their major drawbacks for accessibility are cost and space. Platform lifts and stairway chairlifts remain the "devices of choice" for small elevation changes in existing buildings. ADAAG limits them to very specific circumstances in new construction. The ASME A18.1 Standard addresses the safety requirements of inclined stairway chairlifts (which are not ADA compliant) and inclined and vertical platform lifts (which are ADA Compliant). Chairlifts do not provide access for wheeled mobility devices. Restricting access by means of keys is eliminated, inclined platform lift designs that do not interfere with stairway traffic, promoting new ideas for the design of vertical lifts, increasing the allowable vertical travel of a lift and strengthening lift ramps to improve their safety. Despite design advances inherent in the A18.1, significant platform lift usability issues continue to exist. Increased sizes and weights of powered mobility devices indicate that the permitted lift platform area be modified and that permitted weight capacities be codified as minimums instead of maximums. PMID:20402046

  10. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    SciTech Connect

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  11. Magnetic fluids

    NASA Astrophysics Data System (ADS)

    Rosensweig, R. E.

    1982-10-01

    An overview of studies done on ferrofluids is presented, and recently discovered technological uses for such a fluid are examined. By interacting magnetization and pressure, a ferrofluid plug, held in place by a focused magnetic field imposed from the outside, serves as an airtight seal in rotating machinery. A 160 stage rotary seal has withstood a pressure differential of 66 atmospheres. The fluid has also proved useful in the design of loudspeakers, as it does not drip out of the gap in the cylindrical permanent magnet which allows the voice coil to move, thus serving as a coolant for the system. Finally, the fluid can be used to separate materials according to density, as the magnetic-levitation forces that can be established in the fluid are strong enough to float materials of any density. Other applications are being explored, such as an induced convection that can be much more vigorous than simple gravity convection when a gradient magnetic field is applied to a heated ferrofluid.

  12. Push fluids!

    PubMed

    Bates, Jane

    2016-03-01

    'Push fluids!' Back in the day, that was a constant refrain on the wards. We would be up to our eyes in trouble if those in our care were not offered drinks on a frequent and regular basis - and we kept charts as evidence. PMID:26932628

  13. Fluid dynamics: Turbulence spreads like wildfire

    NASA Astrophysics Data System (ADS)

    Graham, Michael D.

    2015-10-01

    A simple model captures the key features of the transition from smooth to turbulent flow for a fluid in a pipe. The findings pave the way for more-complex models and may have engineering ramifications. See Letter p.550

  14. Flowmeter for Clear and Translucent Fluids

    NASA Technical Reports Server (NTRS)

    White, P. R.

    1985-01-01

    Transducer with only three moving parts senses flow of clear or translucent fluid. Displacement of diaphragm by force of flow detected electrooptically and displayed by panel meter or other device. Transducer used to measure flow of gasoline to automobile engine.

  15. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine compartment... leak must be covered or treated to prevent the absorption of hazardous quantities of fluids....

  16. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine compartment... leak must be covered or treated to prevent the absorption of hazardous quantities of fluids....

  17. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine compartment... leak must be covered or treated to prevent the absorption of hazardous quantities of fluids....

  18. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine compartment... leak must be covered or treated to prevent the absorption of hazardous quantities of fluids....

  19. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine compartment... leak must be covered or treated to prevent the absorption of hazardous quantities of fluids....

  20. ASME proceedings of the 31. national heat transfer conference: Volume 4. HTD-Volume 326

    SciTech Connect

    Witte, L.; Singer, R.M.; Peterson, P.F.

    1996-12-31

    This volume is divided into three sections. The papers in the first section represent the wide diversity of studies that are being undertaken relating to behavior at interfaces between liquid and vapor, and between solids and liquids. The second section covers boiling heat transfer. The papers in the third section emphasize various aspects of technology development in heat transfer and fluid mechanics as applied to the design of advanced reactors. Separate abstracts were prepared for most papers in this volume.

  1. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    SciTech Connect

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  2. TECHNICAL BASIS AND APPLICATION OF NEW RULES ON FRACTURE CONTROL OF HIGH PRESSURE HYDROGEN VESSEL IN ASME SECTION VIII, DIVISION 3 CODE

    SciTech Connect

    Rawls, G

    2007-04-30

    As a part of an ongoing activity to develop ASME Code rules for the hydrogen infrastructure, the ASME Boiler and Pressure Vessel Code Committee approved new fracture control rules for Section VIII, Division 3 vessels in 2006. These rules have been incorporated into new Article KD-10 in Division 3. The new rules require determining fatigue crack growth rate and fracture resistance properties of materials in high pressure hydrogen gas. Test methods have been specified to measure these fracture properties, which are required to be used in establishing the vessel fatigue life. An example has been given to demonstrate the application of these new rules.

  3. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be...

  4. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be...

  5. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be...

  6. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be...

  7. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 57.02-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... qualifications for all types of welders and brazers, the qualification of welding procedures, and the production tests for all types of manual and machine arc and gas welding and brazing processes shall be...

  8. Proceedings of the 1988 joint ASME-ANS nuclear power conference

    SciTech Connect

    Miller, R.E.

    1988-01-01

    These proceedings collect papers on nuclear engineering. Topics include: Breeders; PWR and BWR reactors; fast reactors; water, gas, and liquid metal cooled reactors; fuel assemblies; fuel consolidation; dry cask storage; reactor core restraints; cooling systems; risk assessment; inherently safe reactors; and seismic effects on nuclear plants.

  9. Magnetic Fluids Deliver Better Speaker Sound Quality

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1960s, Glenn Research Center developed a magnetized fluid to draw rocket fuel into spacecraft engines while in space. Sony has incorporated the technology into its line of slim speakers by using the fluid as a liquid stand-in for the speaker's dampers, which prevent the speaker from blowing out while adding stability. The fluid helps to deliver more volume and hi-fidelity sound while reducing distortion.

  10. Atmospheric fluid bed cogeneration air heater experiment

    SciTech Connect

    Bynum, J.E.; Ellis, F.V.; Roberts, B.W. . Metallurgical and Materials Lab.)

    1990-02-28

    The AFB Cogeneration Air Heater Experiment is a testing program under contract with the Department of Energy through Westinghouse Electric Corporation to obtain data for designing a coal-fired circulating fluidized bed cogeneration plant producing steam, electricity, and hot air for an applicable industrial customer. The hot air portion of the system involves a fluid bed heat exchanger which gives up heat to air cooled tubes. Clean compressed air enters the tubes at 520F and is heated to 1500F. The proposed material for the heat exchanger tubes is Type 304H Stainless Steel. The AFB unit will be designed by the rules specified in Section I or Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code which includes tables of maximum allowable stresses for various materials as a function of temperature. For Type 304H Stainless Steel, the allowable stress values in the Code are only given to a maximum temperature of 1500F. To heat air inside the heat exchanger tubes to 1500F, the outside metal temperature will obviously exceed that level. Therefore, the purpose of this subtask is to obtain data required to apply for Code certification of TP 304H SS at metal temperatures up to 1650F. A series of tensile and creep-rupture tests were conducted on Type 304H Stainless Steel bar with the objective of extending the allowable stress tables in the ASME Boiler and Pressure Vessel Code for this material from 1500F to 1650F. Material representing five heats of 3/4-inch diameter bar was procured for which three heats were selected for the test program. Final heat selection was based on chemical analysis, metallographic structure, room-temperature tensile properties, and short-term creep-rupture screening tests.

  11. Development of a Standard for Verification and Validation of Software Used to Calculate Nuclear System Thermal Fluids Behavior

    SciTech Connect

    Richard R. Schultz; Edwin A. Harvego; Ryan L. Crane

    2010-05-01

    With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal-hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the responsibility of the V&V Standards Committee, to develop a consensus Standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. In this framework, the standard should conform to Nuclear Regulatory Commission (NRC) practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, “Transient and Accident Analysis Methods” and NUREG-0800, “NRC Standard Review Plan”. In addition, the standard should be consistent with applicable sections of ASME Standard NQA-1 (“Quality Assurance Requirements for Nuclear Facility Applications (QA)”). This paper describes the general requirements for the V&V Standard, which includes; (a) the definition of the operational and accident domain of a nuclear system that must be considered if the system is to licensed, (b) the corresponding calculational domain of the software that should encompass the nuclear operational and accident domain to be used to study the system behavior for licensing purposes, (c) the definition of the scaled experimental data set required to provide the basis for validating the software, (d) the ensemble of experimental data sets required to populate the validation matrix for the software in question, and (e) the practices and procedures to be used when applying a validation standard. Although this initial effort will focus on software for licensing of High-Temperature Gas Reactors, it is anticipated that the practices and procedures developed for this standard can eventually be extended to other nuclear and non-nuclear applications.

  12. Fundamental Issues of Nano-fluid Behavior

    SciTech Connect

    Williams, Wesley C.

    2006-07-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  13. Fluid extraction

    DOEpatents

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Computational experiments; Proceedings of the ASME/JSME Pressure Vessels and Piping Conference, Honolulu, HI, July 23-27, 1989

    NASA Astrophysics Data System (ADS)

    Liu, W. K.; Smolinski, P.; Ohayon, R.; Navickas, J.; Gvildys, J.

    1989-06-01

    Papers applying FEM to engineering problems are presented, covering topics such as a numerical approach to software development for thermoforming simulations, flow three-dimensional analysis of pressure responses in an enclosed launching system, comparing flow three-dimensional calculations with very large amplitude slosh data, and the computational analysis of stress concentrations in pressure vessel cascades. Other topics include FEM studies of flow past an array of plates, stochastic finite elements for automotive impact, numerical simulation in the deployment of space structures, axial buckling of a thin cylindrical shell, applying FEM to the prediction of vibrations of liquid propelled launch vehicles, analysis of a large bore piping system supported with viscodampers, stochastic simulation of lubricant depletion on a magnetic storage disk, and two-dimensional crak inclusion interaction effects. Additional topics include analyzing damage mechanisms using the energy release rate, the suspension of solid particles in an aerospace plane's slush hydrogen tanks, modal methods for the analysis of vibrations of structures coupled with fluids, the elastic-plastic behavior of fibrous metal matrix composites, and stochastic finite element analysis of nonlinear media.

  15. Comparisons of ANS, ASME, AWS, and NFPA standards cited in the NRC standard review plan, NUREG-0800, and related documents

    SciTech Connect

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Spiesman, J.B.

    1995-11-01

    This report provides the results of comparisons of the cited and latest versions of ANS, ASME, AWS and NFPA standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC`s Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review.

  16. Asm-Triggered too Observations of Z Sources and the Four Brightest Atoll Sources at Low Accretion Rate

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission of accepted Cycles 1-7 (Z source) and 3-7 (atoll) proposal. We propose pointed observations if the ASM shows that a Z source or bright atoll source has entered a low (accretion) state, providing a unique opportunity to detect millisecond pulsations. At sufficiently low accretion rate critical tests could be made of both the magnetospheric beat-frequency model and the sonic point beat- frequency model in Z sources. We expect the bright atoll sources to display kHz QPO, more regular X-ray bursts, a "lower banana" or "islands" in the X-ray color-color diagram and a band-limited noise component in the power spectra. Failing to see this would challenge some well established ideas about LMXBs.

  17. Asm-Triggered too Observations of Z Sources and the Four Brightest Atoll Sources at Low Accretion Rate

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission of accepted Cycles 1-5 (Z source) and 3-5 (atoll) proposal. We propose pointed observations if the ASM shows that a Z source or bright atoll source has entered a low (accretion) state, providing a unique opportunity to detect millisecond pulsations. At sufficiently low accretion rate critical tests could be made of both the magnetospheric beat-frequency model and the sonic point beat- frequency model in Z sources. We expect the bright atoll sources to display kHz QPO, more regular X-ray bursts, a "lower banana" or "islands" in the X-ray color-color diagram and a band-limited noise component in the power spectra. Failing to see this would challenge some well established ideas about LMXBs.

  18. Asm-Triggered too Observations of Z Sources and the Four Brightest Atoll Sources at Low Accretion Rate

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission of accepted Cycles 1-8 (Z source) and 3-8 (atoll) proposal. We propose pointed observations if the ASM shows that a Z source or bright atoll source has entered a low (accretion) state, providing a unique opportunity to detect millisecond pulsations. At sufficiently low accretion rate critical tests could be made of both the magnetospheric beat-frequency model and the sonic point beat- frequency model in Z sources. We expect the bright atoll sources to display kHz QPO, more regular X-ray bursts, a "lower banana" or "islands" in the X-ray color-color diagram and a band-limited noise component in the power spectra. Failing to see this would challenge some well established ideas about LMXBs.

  19. Evaluation of the capacity of welded attachments to elbows as compared to the methodology of ASME Code Case N-318

    NASA Astrophysics Data System (ADS)

    Rawls, G. B.; Wais, E. A.; Rodabaugh, E. C.

    This paper presents the results of a series of tests conducted to assess the capacity of various configurations of integral welded attachments. These tests are unique in that the attachments are welded to the outer radius of pipe elbows. The lug configurations tested include both rectangular and cross (cruciform) shapes. Both limit load and fatigue tests are performed on the lug-elbow configurations. The results of the limit load tests are presented as limit moments. The results of the fatigue tests are cycles-to-failure. Markl's equation is then used, with the fatigue results, to determine stress intensification factors. The limit moments and stress intensification factors are then compared to those developed using the methodology of ASME Code Case N-318. The level of conservatism in the Code Case methodology is then compared to the test results.

  20. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  1. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  2. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  3. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  4. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Code (incorporated by reference, see 46 CFR 54.01-1), as limited, modified, or replaced by specific... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall...

  5. Structural diversity in gallium(III) complexes of the tripodal triarsine MeC(CH2AsMe2)3.

    PubMed

    Cheng, Fei; Hector, Andrew L; Levason, William; Reid, Gillian; Webster, Michael; Zhang, Wenjian

    2007-06-01

    The preparation and crystal structures of the first examples of gallium halide complexes with the tripodal arsine, MeC(CH(2)AsMe(2))3, reveal three distinctly different coordination modes for the ligand; the neutral [{micro(3)-MeC(CH(2)AsMe(2))3-kappaAs:kappaAs':kappaAs''}(GaI(3))3] with the triarsine coordinating to three GaI(3) units, [{Me(2)AsCH(2)C(Me)(CH(2)AsMe(2))2-kappa(2)AsAs'}GaCl(2)][GaCl(4)] involving bidentate chelation to a GaCl2+ cationic unit with the third As donor atom uncoordinated, and [{MeC(CH(2)AsMe(2))3-kappaAs:kappa(2)As'As''}(GaCl3)(GaCl2)][GaCl4] in which the triarsine forms a bidentate chelate to the GaCl2+ unit and the third As donor atom binds to a further GaCl3 unit. PMID:17514342

  6. The transformation of heat in an engine

    NASA Technical Reports Server (NTRS)

    Neumann, Kurt

    1929-01-01

    This report presents a thermodynamic basis for rating heat engines. The production of work by a heat engine rests on the operation of supplying heat, under favorable conditions, to a working fluid and then taking it away.

  7. Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV

    SciTech Connect

    William J. ODonnell; Donald S. Griffin

    2007-05-07

    The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

  8. TRAIL-Death Receptor 4 Signaling via Lysosome Fusion and Membrane Raft Clustering In Coronary Arterial Endothelial Cells: Evidence from ASM Knockout Mice

    PubMed Central

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M.; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2012-01-01

    Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptor death receptor 4 (DR4) have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation and leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MRs) clustering and formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and its co-localization with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1+/+) mice. Further, TRAIL triggered ASM translocation, ceramide production and NADPH oxidase aggregation in MR clusters in Smpd1+/+ CAECs, whereas these observations were not found in Smpd1?/? CAECs. Moreover, ASM deficiency reduced TRAIL-induced O2? production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer (FRET), we found that Lamp-1 (lysosome membrane marker protein) and ganglioside GM1 (MR marker) were trafficking together in Smpd1+/+ CAECs, which was absent in Smpd1?/? CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1?/? CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking and fusion with membrane and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequent endothelial dysfunction. PMID:23108456

  9. Engine construction

    SciTech Connect

    Dillon, C.L.

    1984-03-06

    An engine has at least two piston-cylinder assemblies each comprising a cylinder formed in an engine block with a cylinder head and a piston therein in sliding relationship toward and away from the head, a piston rod operatively connected to the piston and to a crankshaft, motion producing member of shape-memory material, e.g. Nitinol, having a transformation temperature range, secured to the cylinder head and the side of the piston opposite from the connecting rod, the motion producing member having a heat treated high temperature extended shape memory position and a low temperature low energy compressed position, the Nitinol member being of hollow tubular form and having pressure and return hoses connected thereto for supplying and removing cooling fluid into and from the Nitinol member, an electrical heating device connected to the Nitinol member, whereby the Nitinol member is easily compressed with relatively little force from the extended shape memory position to the compressed position when cooling fluid is supplied thereto to reduce the temperature of the Nitinol member to or below the lower limit of the transformation temperature range and the Nitinol member is automatically extended with relatively great force from the compressed position to the shape memory position when heated by the heating device to or above the upper limit of the transformation temperature range.

  10. Fluid behavior in microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  11. Three-Dimensional Computational Fluid Dynamics

    SciTech Connect

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  12. Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering has the objectives of supporting in Canada the following activities: improvement of vehicles, propulsion systems, and transportation-related facilities and services; improvements in the design and operation of maritime engineering works; protection of the environment; enhancement of energy flexibility; advancement of firms engaged in manufacturing and resource extraction; and related programs of other government departments and agencies. In 1990-91 the Institute, which had changed its name that year from the Division of Mechanical Engineering, consolidated its research activities from nine laboratories to six programs. Activities in these six programs are described: Advanced Manufacturing Technology, Coastal Zone Engineering, Cold Regions Engineering, Combustion and Fluids Engineering, Ground Transportation Technology, and Machinery and Engine Technology.

  13. 46 CFR 58.30-30 - Fluid power cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems 58.30-30 Fluid power cylinders. (a)...

  14. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  15. 46 CFR 58.30-30 - Fluid power cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems 58.30-30 Fluid power cylinders. (a) The requirements of this section are applicable...

  16. Engineered Multifunctional Surfaces for Fluid Handling

    NASA Technical Reports Server (NTRS)

    Thomas, Chris; Ma, Yonghui; Weislogel, Mark

    2012-01-01

    Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.

  17. Gyroelastic fluids

    SciTech Connect

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  18. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  19. Integrated gas turbine engine-nacelle

    NASA Technical Reports Server (NTRS)

    Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (inventors)

    1977-01-01

    A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.

  20. Advanced working fluids: Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  1. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  2. Acoustic energy-driven fluid pump and method

    SciTech Connect

    Janus, Michael C.; Richards, George A.; Robey, Edward H.

    1997-12-01

    Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.

  3. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  4. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R. (Espanola, NM); Johnston, Roger G. (Las Alamos, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  5. Joint fluid Gram stain

    MedlinePLUS

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  6. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket ignition.

  7. DEVELOPMENT OF ASME SECTION X CODE RULES FOR HIGH PRESSURE COMPOSITE HYDROGEN PRESSURE VESSELS WITH NON-LOAD SHARING LINERS

    SciTech Connect

    Rawls, G.; Newhouse, N.; Rana, M.; Shelley, B.; Gorman, M.

    2010-04-13

    The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.

  8. Pre-mixing apparatus for a turbine engine

    DOEpatents

    Lacy, Benjamin Paul (Greer, SC); Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Melton, Patrick Benedict (Horse Shoe, NC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC); Felling, David Kenton (Greenville, SC); Uhm, Jong Ho (Simpsonville, SC)

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  9. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incorporated by reference; see 46 CFR 56.01-2) ASME B16.1 1998 Cast Iron Pipe Flanges and Flanged Fittings...; see 46 CFR 56.01-2). (2) Materials used in piping systems must be selected from the specifications that appear in Table 56.60-1(a) of this section or 46 CFR 56.60-2, Table 56.60-2(a), or they may...

  10. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incorporated by reference; see 46 CFR 56.01-2) ASME B16.1 1998 Cast Iron Pipe Flanges and Flanged Fittings...; see 46 CFR 56.01-2). (2) Materials used in piping systems must be selected from the specifications that appear in Table 56.60-1(a) of this section or 46 CFR 56.60-2, Table 56.60-2(a), or they may...

  11. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incorporated by reference; see 46 CFR 56.01-2) ASME B16.1 1998 Cast Iron Pipe Flanges and Flanged Fittings...; see 46 CFR 56.01-2). (2) Materials used in piping systems must be selected from the specifications that appear in Table 56.60-1(a) of this section or 46 CFR 56.60-2, Table 56.60-2(a), or they may...

  12. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incorporated by reference; see 46 CFR 56.01-2) ASME B16.1 1998 Cast Iron Pipe Flanges and Flanged Fittings...; see 46 CFR 56.01-2). (2) Materials used in piping systems must be selected from the specifications that appear in Table 56.60-1(a) of this section or 46 CFR 56.60-2, Table 56.60-2(a), or they may...

  13. 46 CFR 56.60-1 - Acceptable materials and specifications (replaces 123 and Table 126.1 in ASME B31.1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incorporated by reference; see 46 CFR 56.01-2) ASME B16.1 1998 Cast Iron Pipe Flanges and Flanged Fittings...; see 46 CFR 56.01-2). (2) Materials used in piping systems must be selected from the specifications that appear in Table 56.60-1(a) of this section or 46 CFR 56.60-2, Table 56.60-2(a), or they may...

  14. Cerebrospinal fluid leak (image)

    MedlinePLUS

    Cerebrospinal fluid is the fluid found in and around the central nervous system (CNS) organs, the brain and ... blows or other trauma. Inside the skull the cerebrospinal fluid is contained by the dura which covers the ...

  15. Flowmeter for Clear Fluids

    NASA Technical Reports Server (NTRS)

    White, P. R.; Mcintosh, W. R.

    1986-01-01

    Electronic flowmeter measures flow rate of clear or translucent fluids. Instrument produces electrical signal proportional to volume of fluid flowing through it per unit time. Optoelectronic instrument generates electrical signal proportional to fluid-flow rate.

  16. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  17. Synovial fluid analysis

    MedlinePLUS

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  18. A Retrospective Look at 20 Years of ASM Education Programs (1990–2010) and a Prospective Look at the Next 20 Years (2011–2030)

    PubMed Central

    Chang, Amy

    2011-01-01

    Professional societies provide visibility and legitimacy to the work of their post secondary educator members, advocate best practices in courses and sponsored student research, and establish deep networks and communities that catalyze members to collectively engage in undergraduate teaching and learning scholarship. Within the American Society for Microbiology (ASM), the Education Board, established in the mid-1970s, assumes this role. I have been fortunate enough to watch several pivotal programs support our growth and change the status quo by providing opportunities for biology educators to flourish. In this retrospective review, the background and details I offer about each initiative help explain ASM Education offerings, how our growth has been supported and how the status quo has changed. In this prospective look, I offer my vision of the future in post secondary education where classroom learning is student-centered and focused on global problems affecting our health and environment. For the profession to proliferate, the ASM must provide members as many opportunities in learning biology as they do with advancing biology to new frontiers. PMID:23653733

  19. Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182

    SciTech Connect

    Sullivan, Edmund J.; Anderson, Michael T.

    2012-09-17

    In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1, with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigated butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.

  20. Fluid valve with wide temperature range

    NASA Technical Reports Server (NTRS)

    Kast, Howard Berdolt (Inventor)

    1976-01-01

    A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.

  1. Clean engine parts continuously

    SciTech Connect

    Braaten, T.A.

    1982-01-01

    An on-line auxiliary cleaning system can make diesel engines/gas turbines safely self-cleaning, while boosting availability and enhancing efficiency. The cleaning fluid, such as a mixture of biodegradable, surface-active agents dipersed in highly purified water, is injected into the air intake on gas turbines or diesel engines through a set of atomizing nozzles. The optimum location of these nozzles is determined by the cleaning-system supplier in conjunction with the turbine or engine manufacturer. Generally, the nozzles are placed so that treatment is intensified where heavy deposits are known to form.

  2. Engine combustion system

    SciTech Connect

    Lawrence, K.E.; Shyu, T.P.

    1993-08-24

    An engine combustion system having a plurality of combustion chambers is described, each combustion chamber having an intake valve, an exhaust valve and a fuel injector, the improvement comprising: a plurality of discrete, separate control modules each being connectable to a respective one of the intake valve, exhaust valve, and fuel injector of a respective engine cylinder and connectable to one another in fluid communication, each of the control modules having a housing having three actuator cavities, three valve cavities, a high pressure major passageway, a low pressure major passageway, three high pressure intake passageways, three high pressure delivery passageways, three low pressure intake passageways and three low pressure discharge passageways; each of the actuator cavities being adapted to receive a actuator in fluid communication with the respective valve cavity; each of the valve cavities adapted to receive an on-off'' value; each of the high pressure intake passageways being in fluid communication with the high pressure major passageway and a respective valve cavity; each of the high pressure delivery passageways being in fluid communication with a respective valve cavity and, in the installed position, a respective one of the intake valve, exhaust valve and fuel injector; each of the low pressure intake passageways being in fluid communication with a respective one of the intake valve, exhaust valve, and fuel injector and with a respective valve cavity; and each of the low pressure discharge passageways being in fluid communication with a respective valve cavity and the low pressure major passageway.

  3. Enhancing thermal conductivity of fluids with nanoparticles

    SciTech Connect

    Choi, S.U.S.; Eastman, J.A.

    1995-10-01

    Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

  4. Integrated gas turbine engine-nacelle

    NASA Technical Reports Server (NTRS)

    Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (inventors)

    1979-01-01

    A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine.

  5. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  6. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  7. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  8. Engineering approach for elastic-plastic fracture analysis

    SciTech Connect

    Kumar, V; German, M D; Shih, C F

    1981-07-01

    This report for RP1237-1 presents formulas, charts, and background material that allow calculation of safety margins in ductile structures containing flaws. It is intended as a reference book for engineers who are concerned with design and analysis of flawed structures. The work extends the analysis procedures already available for brittle elastic materials to the tough and ductile steels used in the construction of pressure-boundary components. These new elastic-plastic methods more accurately describe the behavior of ductile materials and show more tolerance to flaws than the elastic methods contained in the ASME Boiler and Pressure Vessel Code and the Code of Federal Regulations.

  9. Fluid transport container

    DOEpatents

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  10. Fluid velocity measuring device

    NASA Technical Reports Server (NTRS)

    Thomas, D. F., Jr.; Williams, L. A., Jr. (inventors)

    1978-01-01

    A fluid velocity measuring device is described which, when placed in a freestream fluid flow, causes vortices to be formed at a frequency proportional to the flow rate of the fluid. Sensors on the device generate electric signals with frequency proportional to the rate of vortex creation and with relative mean amplitudes indicative of fluid flow direction. Electric circuitry translates the electric signals into indications of fluid speed and direction.

  11. Double-reed exhaust valve engine

    DOEpatents

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  12. A heat engine with unique characteristics

    SciTech Connect

    Baranescu, G.S.

    1996-12-31

    A heat engine which operates with one heat reservoir is described. The engine transforms the heat input completely into work by using a compressed fluid from a resource of the environment. For this reason the engine is not a perpetual motion machine of the second kind. The characteristics of the engine are analyzed, and the ways for achieving the most economic use of the compressed fluid are described. The principle of operation of the engine shows that the concepts of phenomenological thermodynamics regarding heat and its transformation in other forms of energy are not true.

  13. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  14. Fluid Flow in Cell Printing

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Cheng, Eric; Ahmadi, Ali; Cheung, Karen; Stoeber, Boris

    2013-11-01

    Inkjet drop-on-demand (DOD) dispensing of cells has numerous applications including cell-based assays and tissue engineering. In our experiments, using a transparent inkjet nozzle, high speed camera, and a shadowgraphy technique, we have observed three different characteristic cell behaviors during droplet ejection: 1) traveling toward the nozzle tip, 2) ejection from the nozzle, and 3) reflection away from the nozzle tip, where the reflection is an unwanted effect which contributes to the unpredictability of current cell printing systems. To understand the reflection mechanisms, we use numerical simulation to resolve the fluid motion inside the nozzle in presence of a cell during drop formation. For this purpose an adaptive finite volume method is employed. To track the interfaces (cell-liquid, gas-liquid) a volume of fluid (VOF) method is used, where the cell is modeled as an immiscible fluid droplet with different physical properties from the suspending fluid. It is shown that after a short period of time, a recirculation zone close to the nozzle tip is generated due to droplet pinch-off. This causes a reverse flow (velocity away from the nozzle) in the center of the nozzle. This dynamic flow field inside the nozzle causes a cell to show one of the three behaviors described above depending on its initial position. Moreover, it is shown that, depending on the size, deformability, and location of the cell, the drop formation process may be influenced.

  15. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  16. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect

    Al-Awami, A.A.; Poore, J.W.; Sizer, J.P.

    1995-11-01

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  17. Computational fluid dynamics: complex flows requiring supercomputers. January 1975-July 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-July 1988

    SciTech Connect

    Not Available

    1988-08-01

    This bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets, and missiles, and automobiles; heat-transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid-generation techniques required to apply CFD numerical solutions. Numerical methods for fluid dynamics, not requiring supercomputers, are found in a separate published search. (Contains 83 citations fully indexed and including a title list.)

  18. Computational fluid dynamics: Complex flows requiring supercomputers. January 1975-December 1989 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-December 1989

    SciTech Connect

    Not Available

    1990-01-01

    This bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets and missiles, and automobiles; heat-transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid-generation techniques required to apply CFD numerical solutions. Numerical methods for fluid dynamics, not requiring supercomputers, are found in a separate Published Search. (This updated bibliography contains 132 citations, 49 of which are new entries to the previous edition.)

  19. Algorithmic trends in computational fluid dynamics; The Institute for Computer Applications in Science and Engineering (ICASE)/LaRC Workshop, NASA Langley Research Center, Hampton, VA, US, Sep. 15-17, 1991

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)

    1993-01-01

    The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.

  20. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  1. Computer assistant test and consultive system for aircraft fluid element

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Ru

    The fluid bearing elements of an aircraft's control system are discussed in the context of aviation maintenance engineering. This paper explores the development of an artificially intelligent assistant to aid in the maintenance of hydraulic control systems.

  2. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  3. Postoperative fluid management

    PubMed Central

    Kayilioglu, Selami Ilgaz; Dinc, Tolga; Sozen, Isa; Bostanoglu, Akin; Cete, Mukerrem; Coskun, Faruk

    2015-01-01

    Postoperative care units are run by an anesthesiologist or a surgeon, or a team formed of both. Management of postoperative fluid therapy should be done considering both patients’ status and intraoperative events. Types of the fluids, amount of the fluid given and timing of the administration are the main topics that determine the fluid management strategy. The main goal of fluid resuscitation is to provide adequate tissue perfusion without harming the patient. The endothelial glycocalyx dysfunction and fluid shift to extracellular compartment should be considered wisely. Fluid management must be done based on patient’s body fluid status. Patients who are responsive to fluids can benefit from fluid resuscitation, whereas patients who are not fluid responsive are more likely to suffer complications of over-hydration. Therefore, common use of central venous pressure measurement, which is proved to be inefficient to predict fluid responsiveness, should be avoided. Goal directed strategy is the most rational approach to assess the patient and maintain optimum fluid balance. However, accessible and applicable monitoring tools for determining patient’s actual fluid need should be further studied and universalized. The debate around colloids and crystalloids should also be considered with goal directed therapies. Advantages and disadvantages of each solution must be evaluated with the patient’s specific condition. PMID:26261771

  4. Fiber bundle model under fluid pressure

    NASA Astrophysics Data System (ADS)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  5. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  6. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  7. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2000-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  8. Rocket propellant reorientation and fluid management used in space commercialization

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Shyu, K. L.

    1990-01-01

    In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellant transfer. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior main engine restart possess a microgravity fluid behavior problem. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellant resettling have been carried out.

  9. Developments on ASME Code Cases to Risk-Informed Repair/Replacement Activities in Support of Risk-Informed Regulation Initiatives

    SciTech Connect

    Balkey, Kenneth R.; Holston, William C.

    2002-07-01

    ASME Code Case N-658, 'Risk-Informed Safety Classification for Use in Risk-Informed Repair/Replacement Activities' and Code Case N-660, 'Alternative Repair/Replacement Requirements For Items Classified In Accordance With Risk-Informed Processes' are being completed to expand the breadth of risk-informed requirements for pressure-retaining items. This initiative, which is built from prior ASME Section XI risk-informed inservice inspection developments over the past decade, has been undertaken in conjunction with U.S. risk-informed regulation efforts. The U.S. Nuclear Regulatory Commission (NRC) is working with the industry on risk informing Title 10 Code of Federal Regulations Part 50 (10CFR50). The Nuclear Regulatory Commission's basic proposal is to allow modification of some of the special treatment requirements of 10CFR50. Their effort is proceeding via an Advanced Notice of Public Rulemaking, March 3, 2000, and an announcement of Availability of Draft Rule Wording, November 29, 2001, to add 10 CFR 50.69, 'Risk-Informed Treatment of Structures, Systems and Components'. A parallel task by the Nuclear Energy Institute (NEI) to develop a guideline on how to implement the results of the rulemaking is also well underway via NEI 00-04 (Draft Revision B), 'Option 2 Implementation Guideline', May 2001. This paper summarizes the content and status of approval of the proposed ASME Code Cases, including how they relate to the above NRC and NEI efforts. Some initial results from trial application of the Code Cases will also be cited. (authors)

  10. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  11. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  12. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... accordance with subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Fluid... Class I piping systems. (ii) Nonstandard fluid-conditioner fittings that have an internal...

  13. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... accordance with subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Fluid... Class I piping systems. (ii) Nonstandard fluid-conditioner fittings that have an internal...

  14. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... accordance with subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Fluid... Class I piping systems. (ii) Nonstandard fluid-conditioner fittings that have an internal...

  15. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... accordance with subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Fluid... Class I piping systems. (ii) Nonstandard fluid-conditioner fittings that have an internal...

  16. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... accordance with subpart 50.25 of this subchapter are acceptable for use in piping systems. (b) Fluid... Class I piping systems. (ii) Nonstandard fluid-conditioner fittings that have an internal...

  17. Introduction to Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Date, Anil W.

    2005-08-01

    This is a textbook for advanced undergraduate and first-year graduate students in mechanical, aerospace, and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practicing engineers will find this particularly useful for reference and for continuing education.

  18. Selected topics of fluid mechanics

    USGS Publications Warehouse

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.

  19. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  20. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  1. Pleural fluid smear

    MedlinePLUS

    ... the fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  2. Pleural fluid analysis

    MedlinePLUS

    ... of fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  3. Peritoneal fluid analysis

    MedlinePLUS

    ... at fluid that has built up in the space in the abdomen around the internal organs. This area is called the peritoneal space. ... sample of fluid is removed from the peritoneal space using a needle and syringe. Your health care ...

  4. Fluid sampling tool

    DOEpatents

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  5. Electric fluid pump

    SciTech Connect

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  6. Peritoneal fluid culture

    MedlinePLUS

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... based on more than just the peritoneal fluid culture (which may be negative even if you have ...

  7. Amniotic fluid (image)

    MedlinePLUS

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  8. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F. (Orland Park, IL)

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  9. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  10. Peritoneal Fluid Analysis

    MedlinePLUS

    ... on exudate fluid may include: Peritoneal fluid glucose, amylase, tumor markers Microscopic examination – may be performed if ... blood glucose levels ; may be lower with infection. Amylase —increased with pancreatitis Tumor markers—to identify type ...

  11. Amniotic Fluid Analysis

    MedlinePLUS

    ... Home Visit Global Sites Search Help? Amniotic Fluid Analysis Share this page: Was this page helpful? Also ... Fetal Lung Maturity Tests Formal name: Amniotic Fluid Analysis Related tests: Second Trimester Maternal Serum Screening ; Blood ...

  12. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  13. XYLITOL ACTIVATED INNATE IMMUNITY SUPPRESSES PULMONARY MANNHEIMIA HAEMOLYTICA INFECTIONS IN SHEEP (POSTER PRESENTATION FOR THE 2003 ASM MEETING)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmolytes with low transepithelial permeability administered to mucosal surfaces, (e.g., the respiratory tract) during experimental challenge may lower the ionic strength of the interstitial fluids and increase the activity of endogenous antimicrobial proteins and peptides. To test this hypothesis,...

  14. Adaptive and active materials: selected papers from the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 13) (Snowbird, UT, USA, 16-18 September 2013)

    NASA Astrophysics Data System (ADS)

    Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy

    2014-10-01

    The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.

  15. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A. (Warrenville, IL)

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  16. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  17. On the fluid mechanics of fires

    SciTech Connect

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  18. Resonator coiling in thermoacoustic engines

    SciTech Connect

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  19. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  20. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  1. WATER MIST IMPINGEMENT ONTO A HEATED SURFACE. PROCEEDING OF THE ASME/JSME JOINT THERMAL ENGINEERING CONFERENCE (5TH) 1999, HELD IN SAN DIEGO, CALIFORNIA.

    EPA Science Inventory

    An experimental study on the interaction of a water mist with a heated surface is described. The long term objective is to produce experimental data that can be used to validate submodels for four key physical phenomena involved in the interaction of sprays with burning surfaces:...

  2. Fluid Movement and Creativity

    ERIC Educational Resources Information Center

    Slepian, Michael L.; Ambady, Nalini

    2012-01-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation,

  3. Advanced engineering analysis

    NASA Astrophysics Data System (ADS)

    Freeman, W. R.; Lee, M. D.; Mahoney, J. F.; Schrank, M. G.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link I-DEAS to DYNA3D is provided.

  4. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    SciTech Connect

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.

  5. Magnelok technology: a complement to magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Carlson, J. David

    2004-07-01

    Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.

  6. A study of outburst ephemeris and burst properties of blackhole candidate 4U 1630-47 with ASM, MAXI and Suzaku data

    NASA Astrophysics Data System (ADS)

    Abraham, Lalitha; Agrawal, V. K.

    4U 1630-47 is a soft X-ray transient which is thought to be a blackhole candidate. This source exhibits quasi-periodic outbursts on time scales of 500-700 days. In addition to the normal outbursts which usually last for a few months, the source displays superoutbursts, lasting for one to two years, seen to recur in every 10-12 years. The outburst ephemeris has been studied previously upto 1996 outbursts. In this work we present the updated ephemeris using 16 years data obtained from All Sky Monitor (ASM) onboard RXTE and one years data from MAXI satellite. The data covers 7 outbursts seen from ASM and one outburst seen by MAXI. We study morphology of each of these outbursts. We find that most of the bursts can be classified in basic three categories: flat top, FRED (Fast Rise Exponential Decay) and triangular. We also investigate relation between burst properties with quiescent flux level using Suzaku data, a study which has not been done previously.

  7. Comparing Swarm's Nominal Level1b Magnetic Data and ASM Vector Field Experimental Data: a Convenient Tool for Understanding Data Quality Issues.

    NASA Astrophysics Data System (ADS)

    Brocco, L.; Hulot, G.; Vigneron, P.; Lesur, V.; Leger, J. M.; Jager, T.; Bertrand, F.; Sirol, O.; Lalanne, X.; Boness, A.; Cattin, V.; Fratter, I.

    2014-12-01

    Swarm's Absolute Magnetometers (ASM) provide scalar measurements of the geomagnetic field with high accuracy and stability on the three satellites of the mission. These measurements are used to produce the (nominal 1 Hz) Level1b scalar data and calibrate the (nominal 1 Hz) Level1b vector data provided by the Vector Field Magnetometer (VFM, located some distance away along the boom on which both instruments are installed). The very same ASM instruments, however, can also provide independent vector field measurements, which can next be used for comparison with the nominal Level1b vector data for quality crosschecks, possible detection of undesired satellite signals, and assessment of the stability of the mechanical link between both instruments on each satellite. Here, we report on the lessons learnt from such comparisons, focusing on the issues raised by systematic time-varying differences observed in the nominal L1b data between the modulus of the vector data and the scalar data, testifying for some local perturbations of the field measured.

  8. Practical approach to parameter estimation for ASM3+ bio-P module applied to five-stage step-feed EBPR process.

    PubMed

    Lee, S H; Ko, J H; Poo, K M; Lee, T H; Woo, H J; Kim, C W

    2006-01-01

    Various parameter optimization approaches to a five-stage step-feed EBPR process modeled using the ASM3+bio-P module were examined. Five stoichiometric (Y(STO,NO), Y(H,O2, Y(H,NO,) Y(PAO,O2), Y(PO4)) and seven kinetic parameters (k(STO), eta(NO), b(H), mu(max),PAO, q(PHA), q(PP), mu(max),A) were estimated. The optimization approaches could be classified based on the data sources (batch experiments or CSTR operation data) and the number of target variables used in calculating the objective function. Optimized parameter values obtained by each approach were validated with CSTR operation data that were not used for parameter optimization. The results showed that the parameter optimization only with batch experimental results could not be directly applied to CSTR operation data. ASM3 + bio-P module parameters could be finely optimized only with CSTR operation data when sufficient target variables for objective function calculation were applied. When the number of target variables was increased, prediction performance was significantly improved. Once optimized, the model was able to predict the characteristic features of the five-stage step-feed process; namely, a high PAO yield, fast PAO growth, fast X(pp) storage, slow X(STO) and X(PHA) storage. PMID:16532744

  9. Selective Guide to Literature on Chemical Engineering. Engineering Literature Guides, Number 9.

    ERIC Educational Resources Information Center

    Rousseau, Rosemary, Comp.

    The material in this guide covers areas important to the chemical industries. Topics such as heat and mass transfer, plastics, polymers, fluid flow, and process engineering are included. This document is a survey of information sources in chemical engineering and is intended to identify those core resources which can help engineers and librarians

  10. Selective Guide to Literature on Chemical Engineering. Engineering Literature Guides, Number 9.

    ERIC Educational Resources Information Center

    Rousseau, Rosemary, Comp.

    The material in this guide covers areas important to the chemical industries. Topics such as heat and mass transfer, plastics, polymers, fluid flow, and process engineering are included. This document is a survey of information sources in chemical engineering and is intended to identify those core resources which can help engineers and librarians…

  11. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G., Jr.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  12. Thermal fluids in low temperature systems. Part 2

    SciTech Connect

    Lynde, P.G.; Yonkers, E.D.

    1996-02-01

    This article focuses on the lifeblood of these systems, the thermal transfer fluid itself. Low-temperature heat-transfer fluids are used to condition engine fluids, test chambers, cooling fluids, or a combination of these in environmental test facilities. To meet the specific test criteria, these fluids may be required to maintain pumpability and function with thermal efficiency at temperatures as low as {minus}120 F. This article presents information related to heat-transfer fluids used in low-temperature cooling applications. Three general groups of fluids are discussed: water-based antifreezes (ethylene and propylene glycol solutions); chlorinated solvents (methylene chloride and trichloroethylene); organic and synthetic coolants (diethylbenzene, two forms of dimethylpolysiloxane, heavy naphtha hydrotreated, and citrus terpene).

  13. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when...

  14. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when...

  15. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when...

  16. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when...

  17. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  18. Fluid cooled electrical assembly

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  19. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  20. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sensea program's failure to satisfy a given formal specificationthere is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering. Yet after forty years of currency the phrase software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  1. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  2. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  3. 75 FR 80765 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...PHMSA is considering amending the Hazardous Materials Regulations (HMR) to incorporate the most recent edition of the American Society of Mechanical Engineers' Boiler and Pressure Vessel Code, Section XII for the design, construction, and certification of cargo tank motor vehicles, cryogenic portable tanks and multi-unit-tank car tanks (ton tanks). PHMSA is also considering incorporating by......

  4. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  5. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA Paper #01-1893 has been accepted for the AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, 24-27 April 2001, Kyoto, Japan. The AIAA Paper #01 -3204 has been accepted for presentation at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, being held on 08-11 July, in Salt Lake City, UT; (2) A U.S. patent #6,082,635 was granted on July 4, 2000; (3) Grants and proposals: The H U/ FM&AL was awarded the NASA grant NAG-3-2495 in October 2000 and the laboratory is a primary U.S. research team in a joint project under the CRDF award granted to the NASA GRC and IM/MSU (Russia) in July 2000; (4) Theory and numerical simulations: Analytical theory, numerical simulation, comparison of theoretical with experimental results, and modification of theoretical approaches, models, grids, etc., have been conducted for several complicated 2D and 3D nozzle and inlet designs using NASA, ICASE, and IM/MSU codes based on full Euler and Navier-Stokes solvers: CFL3D, FLUENT, and GODUNOV, and others; (5) Experimental Tests: (a) A new course: "Advanced Aerodynamics and Aircraft Performance" presented in spring semester, 2001; training and experimental test research using the HU LSWT. (b) Small-scale M6bius-shaped screws were tested in different conditions and their application has shown essential benefits by comparison with traditional designs; (6) Installation in the FM&AL computer system: second software TECPLOT 8.0 for the UNIX SGI workstation and free TECPLOT 7.5 for the PC Dell computer, and 2D and 3D GRIDGEN (version 9) for the UNIX SGI as well as installation of two free NASA codes, 3D MAG and VULCAN; (7) Student Research Activity: Involvement of two undergraduate students as research assistants in the current research project.

  6. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  7. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  8. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  9. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  10. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  11. Fluid Dynamic Verification Experiments on STS-70

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.

    1996-01-01

    Fluid dynamic experiments were flown on STS-70 as phase two of the engineering evaluation of the first bioreactor Engineering Development Unit (EDU#1). The phase one experiments were comparative cell cultures in identical units on earth and onboard STS-70. In phase two, two types of fluid dynamic experiments were performed. Qualitative comparisons of the basic flow patterns were evaluated with the use of 'dye' streaklines formed from alternate injections of either a mild acid or base solution into the external flow loop that was then perfused into the vessel. The presence of Bromothymol Blue in the fluid then caused color changes from yellow to blue or vice versa, indicating the basic fluid motions. This reversible change could be repeated as desired. In the absence of significant density differences in the fluid, the flow patterns in space should be the same as on earth. Video tape records of the flow patterns for a wide range of operating conditions were obtained. The second type of fluid dynamic experiment was the quantitative evaluation of the trajectories of solid beads of various densities and sizes. The beads were introduced into the vessel and the paths recorded on video tape, with the vessel operated at various rotation rates and flow perfusion rates. Because of space limitations, the video camera was placed as close as possible to the vessel, resulting in significant optical distortion. This report describes the analysis methods to obtain comparisons between the in-flight fluid dynamics and numerical models of the flow field. The methods include optical corrections to the video images and calculation of the bead trajectories for given operating conditions and initial bead locations.

  12. Fullerol ionic fluids.

    PubMed

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B; Georgakilas, Vasilios; Giannelis, Emmanuel P

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (liquid-like) and the control (solid-like). PMID:20820694

  13. Fullerol ionic fluids

    NASA Astrophysics Data System (ADS)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (liquid-like) and the control (solid-like).

  14. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  15. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael (Livermore, CA)

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  16. Fluid movement and creativity.

    PubMed

    Slepian, Michael L; Ambady, Nalini

    2012-11-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation, cognitive flexibility, and remote associations. Alternative mechanisms such as enhanced mood and motivation were also examined. These results suggest that creativity can be influenced by certain types of physical movement. PMID:22352395

  17. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made on the development and delivery of noncorrosive fluid subsystems is reported. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. At least 100 gallons of each type of fluid recommended by the contractor will be delivered under the contract. The performance testing of a number of fluids is described.

  18. Metalworking and machining fluids

    SciTech Connect

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  19. Superradiant Quantum Heat Engine

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-08-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  20. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali C; Mstecapl?o?lu, zgr E

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  1. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  2. Superradiant Quantum Heat Engine

    PubMed Central

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  3. Spiral fluid separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (inventor)

    1993-01-01

    A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

  4. Hot-surface ignition tests of aircraft fluids. Final report, May 1987-May 1988

    SciTech Connect

    Johnson, A.M.; Roth, A.J.; Moussa, N.A.

    1988-11-01

    Five fluids commonly found in aircraft-engine components, JP-4 and JP-8 fuels, Mil-H-5606 and Mil-H-83282 hydraulic fluids and Mil-L-7808 lubricating oil, were tested in the Aircraft Engine Nacelle Fire Test simulator (AENFTS) to define their Minimum Hot Surface Ignition Temperature (MHSIT's) when introduced as a spray or stream onto a hot engine bleed duct. The test employed a simple, uncluttered test section and a realistically simulated portion of the F-16 engine compartment. MHSIT's for all but Mil-H-83282 were consistently found to be higher than the fluids autoignition temperature.

  5. Nanoscale Fluid Mechanics and Energy Conversion

    SciTech Connect

    Chen, X; Xu, BX; Liu, L

    2014-05-29

    Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultra-large surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.

  6. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions. Revised

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris; Pinkus, Oscar

    2002-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof. O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial, and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic bearings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  7. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  8. Computational Fluid Dynamics Technology for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  9. A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

    NASA Astrophysics Data System (ADS)

    Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman

    2014-12-01

    Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 104 K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10-4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

  10. Review of ASME code criteria for control of primary loads on nuclear piping system branch connections and recommendations for additional development work

    SciTech Connect

    Rodabaugh, E.C.; Gwaltney, R.C.; Moore, S.E.

    1993-11-01

    This report collects and uses available data to reexamine the criteria for controlling primary loads in nuclear piping branch connections as expressed in Section III of the ASME Boiler and Pressure Vessel Code. In particular, the primary load stress indices given in NB-3650 and NB-3683 are reexamined. The report concludes that the present usage of the stress indices in the criteria equations should be continued. However, the complex treatment of combined branch and run moments is not supported by available information. Therefore, it is recommended that this combined loading evaluation procedure be replaced for primary loads by the separate leg evaluation procedure specified in NC/ND-3653.3(c) and NC/ND-3653.3(d). No recommendation is made for fatigue or secondary load evaluations for Class 1 piping. Further work should be done on the development of better criteria for treatment of combined branch and run moment effects.

  11. Sensitivity analyses and simulations of a full-scale experimental membrane bioreactor system using the activated sludge model No. 3 (ASM3).

    PubMed

    Ruiz, L M; Rodelas, P; Prez, J I; Gmez, M A

    2015-01-01

    An ASM3-based model was implemented in the numerical software MATHEMATICA where sensitivity analyses and simulations of a membrane bioreactor (MBR) system were carried out. These results were compared with those obtained using the commercial simulator WEST. Predicted values did not show significant variations between both software and simulations showed that the most influential operational conditions were influent flow rate and concentrations and bioreactor volumes. On the other hand, sensitivity analyses were carried out with both software programs for the same five outputs: COD, ammonium and nitrate concentrations in the effluent, total suspended solids concentration and oxygen uptake rate in the aerobic bioreactor. Similar results were in general obtained in both cases and according to these analyses, the most significant inputs over the model predictions were growth and storage heterotrophic biomass yields and decay coefficient. Other parameters related to the hydrolysis process or to the autotrophic biomass also significantly influenced model outputs. PMID:25594125

  12. First-principles study of energetic and electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlore

    SciTech Connect

    Xiao, H. Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-10-01

    First-principles calculations have been carried out to study the electronic properties of A2Ti2O7 (A=Sm, Gd, Er) pyrochlores. It was found that f electrons have negligible effect on the structural and energetic properties, but have significant effect on the electronic properties. Density of state analysis shows that A-site 4f electrons do take part in the chemical bonding. Also, we found that bond is less covalent than and bonds, while bond in Gd2Ti2O7 is more covalent. It was proposed that for A2Ti2O7 (A = Sm, Gd, Er) pyrochlores, bonds may play more significant role in determining their radiation resistance to amorphization.

  13. Some connections between fluid mechanics and the solving of industrial and environmental fluid-flow problems

    NASA Astrophysics Data System (ADS)

    Hunt, J. C. R.

    1981-05-01

    The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.

  14. Fluids and Combustion Facility: Fluids Integrated Rack

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Winsa, Edward A.

    1998-01-01

    The Fluids Integrated Rack (FIR) is a modular, multi-user facility to accommodate a wide variety of microgravity fluid physics science experiments on-board the US Laboratory Module of the International Space Station (ISS). The FIR is one of three racks comprising the Fluids and Combustion Facility (FCF). The FCF is being designed to increase the amount and quality of scientific data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. The unique, long-term, microgravity environment and long operational times on the ISS will offer experimenters the opportunity to modify experiment parameters based on their findings similar to what can be accomplished in ground laboratories. The FIR concept has evolved over time to provide a flexible, 'optics bench' approach to meet the wide variety of anticipated research needs. The FIR's system architecture presented is designed to meet the needs of the fluid physics community while operating within the constraints of the available ISS resources.

  15. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji; Pottschmidt, Katja

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, the predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85^{+0.04}_{-0.05} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.

  16. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    NASA Technical Reports Server (NTRS)

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji; Pottschmidt, Katja

    2014-01-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 +/- 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, the predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index gamma = 1.85(+0.04/-0.05) and a high-energy cutoff at 5.5 +/- 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI K alpha, Fe K alpha, Fe XXV K alpha, and Fe XXVI K alpha were observed in the Suzaku spectra. Out of eclipse, the Fe K alpha line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.

  17. Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    SciTech Connect

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji; Pottschmidt, Katja

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, the predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index ? = 1.85{sub ?0.05}{sup +0.04} and a high-energy cutoff at 5.5 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI K?, Fe K?, Fe XXV K?, and Fe XXVI K? were observed in the Suzaku spectra. Out of eclipse, the Fe K? line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.

  18. Material transport of a magnetizable fluid by surface perturbation

    NASA Astrophysics Data System (ADS)

    Böhm, V.; Naletova, V. A.; Popp, J.; Zeidis, I.; Zimmermann, K.

    2015-12-01

    Within the research for apedal, contour variable locomotion systems, the influence of an alternating magnetic field on the shape of the free surface of a magnetizable fluid (magnetic fluid) is studied. In the framework of the Stokes approximation, for the case where the amplitude of the alternating component of the applied magnetic field is much less than the magnitude of the permanent component, it is shown analytically that a periodical traveling applied magnetic field can generate a transport of the fluid in a prescribed direction. Numerical computations are performed to calculate and analyze the flow rate of the fluid as a function of the parameters of the field and the fluid. This effect can be used in fluid transporting engineering mini- and microsystems.

  19. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development and delivery of noncorrosive fluid subsystems are reported that are compatible with closed-loop solar heating or combined heating and hot water systems. They are also compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  20. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the development and delivery of noncorrosive fluid subsystems is discussed. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.