Science.gov

Sample records for aspartate mediates dopamine

  1. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  2. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  3. Galanin: A Role in Mesolimbic Dopamine-Mediated Instrumental Behavior?

    PubMed Central

    Robinson, John K.; Brewer, Ariel

    2008-01-01

    ROBINSON, J.K. and Brewer, A. Galanin: A Role in Mesolimbic-Dopamine Mediated Instrumental Behavior? NEUROSCI BIOBEHAV REV XX(X) XXX-XXX, 2008. The involvement of the neuropeptide galanin in the consumption of the primary “commodities” of food and water is well established. However, the present review describes anatomical and behavioral evidence that suggests that galanin may also modulate ascending mesolimbic dopamine function and thereby play an inhibitory role in the systems by which instrumental behavior is energized toward acquiring primary commodities. General anatomical frameworks for this interaction are presented and future studies that could evaluate it are discussed. PMID:18632153

  4. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase.

    PubMed

    Neve, K A; Cox, B A; Henningsen, R A; Spanoyannis, A; Neve, R L

    1991-06-01

    An aspartate residue corresponding to aspartate-80 of dopamine D2 receptors is strictly conserved among receptors that couple to guanine nucleotide-binding proteins. Mutation of this residue alters the function of several classes of neurotransmitter receptors. Dopamine D2 receptors couple to the guanine nucleotide-binding protein Gi to inhibit adenylyl cyclase (ATP-pyrophosphate-lyase, cyclizing; EC 4.6.1.1). Like other Gi-coupled receptors, the binding of agonists and some antagonists to D2 receptors is sensitive to pH and sodium. In the present report, we demonstrate that substitution of an alanine or glutamate residue for aspartate-80 severely impairs inhibition of adenylyl cyclase by D2 receptors and also abolishes or decreases the regulation of the affinity of D2 receptors for agonists and substituted benzamide antagonists by sodium and pH. Our data support the hypothesis that the conformation of D2 receptors is maintained by interactions of monovalent cations with aspartate-80. The regulation of D2 receptors by this interaction has important consequences for the affinity of D2 receptors for ligands and for signal transduction by D2 receptors. PMID:1828858

  5. A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization.

    PubMed

    Park, Joo Min; Hu, Jia-Hua; Milshteyn, Aleksandr; Zhang, Ping-Wu; Moore, Chester G; Park, Sungjin; Datko, Michael C; Domingo, Racquel D; Reyes, Cindy M; Wang, Xiaodong J; Etzkorn, Felicia A; Xiao, Bo; Szumlinski, Karen K; Kern, Dorothee; Linden, David J; Worley, Paul F

    2013-08-01

    Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction. PMID:23911326

  6. PSD-93 MEDIATES TYROSINE-PHOSPHORYLATION OF THE N-METHYL-D-ASPARTATE RECEPTORS

    PubMed Central

    Sato, Yuko; Tao, Yuan-Xiang; Su, Qingning; Johns, Roger A

    2009-01-01

    Src family protein kinases (SFKs)-mediated tyrosine-phosphorylation regulates N-methyl-D-aspartate (NMDA) receptor synaptic function. Some members of the membrane-associated guanylate kinase (MAGUK) family of proteins bind to both SFKs and NMDA receptors, but it is unclear whether the MAGUK family of proteins is required for SFKs-mediated tyrosine-phosphorylation of the NMDA receptors. Here, we showed by co-immunoprecipitation that PSD-93, a member of the MAGUK family of proteins, interacts with the NMDA receptor subunits NR2A and NR2B as well as with Fyn, a member of the SFKs, in mouse cerebral cortex. Using a biochemical fractionation approach to isolate subcellular compartments revealed that the expression of Fyn, but not of other members of the SFKs (Lyn, Src, and Yes), was significantly decreased in synaptosomal membrane fractions derived from the cerebral cortex of PSD-93 knockout mice. Interestingly, we found that PSD-93 disruption causes reduction of tyrosine-phosphorylated NR2A and NR2B in the same fraction. Moreover, PSD-93 deletion markedly blocked the SFKs-mediated increase in tyrosine-phosphorylated NR2A and NR2B through the protein kinase C pathway after induction with 4β-PMA in cultured cortical neurons. Our findings indicate that PSD-93 appears to mediate tyrosine-phosphorylation of the NMDA receptors and synaptic localization of Fyn. PMID:18423999

  7. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  8. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.

    PubMed

    Brier, Matthew R; Day, Gregory S; Snyder, Abraham Z; Tanenbaum, Aaron B; Ances, Beau M

    2016-06-01

    Spontaneous brain activity is required for the development and maintenance of normal brain function. Many disease processes disrupt the organization of intrinsic brain activity, but few pervasively reduce the amplitude of resting state blood oxygen level dependent (BOLD) fMRI fluctuations. We report the case of a female with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, longitudinally studied during the course of her illness to determine the contribution of NMDAR signaling to spontaneous brain activity. Resting state BOLD fMRI was measured at the height of her illness and 18 weeks following discharge from hospital. Conventional resting state networks were defined using established methods. Correlation and covariance matrices were calculated by extracting the BOLD time series from regions of interest and calculating either the correlation or covariance quantity. The intrinsic activity was compared between visits, and to expected activity from 45 similarly aged healthy individuals. Near the height of the illness, the patient exhibited profound loss of consciousness, high-amplitude slowing of the electroencephalogram, and a severe reduction in the amplitude of spontaneous BOLD fMRI fluctuations. The patient's neurological status and measures of intrinsic activity improved following treatment. We conclude that NMDAR-mediated signaling plays a critical role in the mechanisms that give rise to organized spontaneous brain activity. Loss of intrinsic activity is associated with profound disruptions of consciousness and cognition. PMID:27025853

  9. Electrophysiological evidence that intrastriatally administered N-methyl-D-aspartate augments striatal dopamine tone in the rat.

    PubMed

    Overton, P; Clark, D

    1992-01-01

    The firing rate and terminal excitability of identified nigrostriatal dopamine (DA) neurons was determined before, and over a 10-15 min period following, direct intrastriatal administration of the glutamate (GLU) agonist NMDA, or saline. NMDA (0.025 and 0.075 mumol) produced a short latency increase in DA cell firing rate. In 7/8 cases, this increase in firing rate was accompanied by a profound reduction in terminal excitability. The decrease in excitability usually outlasted the increase in firing rate (sometimes by more than 8 min), and was superseded at a later stage by a marked increase in excitability. None of these effects were seen with saline (n = 5), and they could all be blocked by preadministration of the competitive NMDA antagonist AP-7 (0.025 mumol; n = 6). The sequence of events leading to the observed results is argued to be as follows; NMDA initially excites striatal efferents to the DA cell, which through disinhibition and direct stimulation increase DA cell firing rate. Increased firing rate leads to enhanced striatal DA release. Dopamine's inhibitory influence pre-empts any effect NMDA itself may have on the terminals of nigrostriatal neurons, and counteracts NMDA's stimulatory effect on striatal output cells. Furthermore, the marked reduction in terminal excitability suggests that DA becomes the dominant influence in the striatum for a time. Hence, the net outcome of the injection is augmented striatal DA tone. Later, the effect of residual NMDA becomes predominant once more. PMID:1540303

  10. Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase.

    PubMed

    Allen, J W; Mutkus, L A; Aschner, M

    2001-05-25

    Astrocytes are essential for removal of glutamate from the extracellular space in the central nervous system. The neurotoxic heavy metal methylmercury potently and specifically inhibits the transport of glutamate in cultured astrocytes by an unknown mechanism. Glutamate transport in astrocytes is also inhibited by reactive oxygen species. A glutamate-induced transporter current is inhibited both by reactive oxygen species and thiol oxidizing agents. These observations suggest that oxidation of the transporter might mediate methylmercury-induced inhibition of glutamate transport. In the present study, we examined the ability of thiol reducing or oxidizing agents to inhibit transport of 3H-D-aspartate, a glutamate analog, in primary cultures of neonatal rat astrocytes. To assess if methylmercury-mediated inhibition of 3H-aspartate transport was due to overproduction of reactive oxygen species, we tested the ability of Trolox, alpha-phenyl-tert-butyl nitrone (PBN), or catalase to attenuate the methylmercury-induced inhibition of aspartate uptake. Neither the thiol reducing agent dithiothreitol (DTT), nor the thiol oxidizing agent 5,5'-dithio-bis(2-nitrobenzoic) acid (DTNB) had any effect on 3H-aspartate transport suggesting that the thiol redox state does not alter transporter function. In contrast, the antioxidant catalase (1000 U/ml) significantly attenuated methylmercury-induced inhibition of 3H-aspartate uptake, suggesting that excess reactive oxygen species, specifically H2O2, inhibit the function of an astrocytic excitatory amino acid transporter (EAAT1). Prolonged exposure (6 h) to inhibitors of glutamate transport significantly decreased EAAT1 mRNA levels suggesting that transporter expression is related to function. This study suggests that methylmercury-induced overproduction of H2O2 is a mechanism for inhibition of glutamate transport and transporter expression in cultured astrocytes. PMID:11376598

  11. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.

    PubMed

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei

    2016-08-22

    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide. PMID:27444333

  12. Estrogen mediated inhibition of dopamine transport in the striatum: regulation by G alpha i/o.

    PubMed

    Thompson, Tina L; Certain, Matthew E

    2005-03-28

    In the current study, the interaction between estrogen priming and dopamine D2 receptor activation on dopamine uptake in the striatum of ovariectomized female rats was investigated. Basal ADP-[(32)P(i)]ribosylation of G(i/o) was examined in synaptosomal membranes prepared from ovariectomized, estrogen primed or N-p-(isothiocyanatophenethyl) spiperone (NIPS) treated rats. [(32)P(i)]-incorporation was significantly increased (141%) in tissue from NIPS treated animals but attenuated (57%) in tissue from estrogen primed animals. Dopamine uptake kinetics were measured in vivo following manipulation of the heterotrimeric G-protein by pertussis toxin (0.5 microg, 48 h). Pertussis toxin significantly inhibited dopamine uptake at all concentrations of dopamine examined. Co-treatment with estrogen and pertussis toxin resulted in a further attenuation of dopamine transport at high but not low dopamine concentrations. These data are consistent with an estrogen mediated alteration of G-protein activity and support the hypothesis that estrogen may alter transporter activity through a modulation of dopamine D2 autoreceptor/G alpha(i/o) protein coupling. PMID:15792779

  13. Taste pathways that mediate accumbens dopamine release by sapid sucrose.

    PubMed

    Hajnal, Andras; Norgren, Ralph

    2005-03-16

    Although it has been associated with the release of dopamine in the forebrain, reward remains a conundrum in neuroscience. Sucrose is inherently rewarding and its sensory message reaches the brain via the gustatory system. In rodents, the central gustatory system bifurcates in the pontine parabrachial nuclei, one arm forming a standard thalamocortical axis, the other distributing widely in the limbic forebrain. We report here that lesions of the gustatory thalamus fail to affect dopamine overflow during sucrose licking (149+/-5% vs. 149+/-4% for controls). Similar damage to the parabrachial nuclei, which severs the limbic taste projection, substantially reduces dopamine release from the nucleus accumbens (121+/-4% vs. 168+/-9% for sham operated controls; p<0.02). This represents the first demonstration that the affective character of a sensory stimulus might separate from the thalamocortical system as early as the second central synapse. PMID:15763573

  14. Effect of Reactor Turbulence on the Binding-Protein-Mediated Aspartate Transport System in Thin Wastewater Biofilms

    PubMed Central

    Eighmy, T. Taylor; Bishop, P. L.

    1985-01-01

    This research documents an effect of reactor turbulence on the ability of gram-negative wastewater biofilm bacteria to actively transport l-aspartate via a binding-protein-mediated transport system. Biofilms which were not preadapted to turbulence and which possessed two separate and distinct aspartate transport systems (systems 1 and 2) were subjected to a turbulent flow condition in a hydrodynamically defined closed-loop reactor system. A shear stress treatment of 3.1 N · m−2 for 10 min at a turbulent Reynolds number (Re = 11,297) inactivated the low-affinity, high-capacity binding-protein-mediated transport system (system 2) and resolved the high-affinity, low-capacity membrane-bound proton symport system (system 1). The Kt and Vmax values for the resolved system were statistically similar to Kt and Vmax values for system 1 when system 2 was inactivated either by osmotic shock or arsenate, two treatments which are known to inactivate binding-protein-mediated transport systems. We hypothesize that shear stress disrupts system 2 by deforming the outer membranes of the firmly adhered gram-negative bacteria. PMID:16346830

  15. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  16. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  17. Electrophysiological actions of phenytoin on N-methyl-D-aspartate receptor-mediated responses in rat hippocampus in vitro.

    PubMed Central

    Laffling, A. J.; Scherr, P.; McGivern, J. G.; Patmore, L.; Sheridan, R. D.

    1995-01-01

    1. The effects of the anticonvulsant, phenytoin, have been examined on N-methyl-D-aspartate (NMDA) receptor-mediated population spikes in the CA1 region of the rat hippocampus in vitro. 2. The 'conventional' (AMPA receptor-mediated) CA1 population spike, evoked by electrical stimulation of the Schaffer collateral/commissural pathway, was abolished by 5 min treatment with 5 x 10(-6) M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), after which superfusion with a nominally Mg(2+)-free Krebs solution (containing 5 x 10(-6) M CNQX) led to the appearance of an epileptiform population spike which was fully developed by 30-40 min. 3. The epileptiform population spike was abolished by the non-competitive NMDA antagonist, dizocilpine (1 x 10(-6) M, 20-30 min) and inhibited by the competitive NMDA receptor antagonist, D-CPP (IC50 for reducing the amplitude of the first spike in the train = 8.3 x 10(-7) M), demonstrating that the response was mediated by activation of NMDA receptors and validating its use as an assay for antagonists acting at the NMDA receptor/channel complex. 4. Phenytoin (0.1, 0.3 and 1 x 10(-4) M applied cumulatively for 30 min at each concentration) failed to inhibit the NMDA receptor-mediated epileptiform population response (n = 7 slices).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647985

  18. Dopamine D1 receptors within the basolateral amygdala mediate heroin-induced conditioned immunomodulation.

    PubMed

    Szczytkowski, Jennifer L; Lysle, Donald T

    2010-09-14

    This study investigates the role of basolateral amygdala (BLA) dopamine in heroin-induced conditioned immunomodulation. Animals underwent conditioning in which heroin administration was repeatedly paired with placement into a conditioning chamber. Six days after the final conditioning session animals were returned to the chamber and received intra-BLA microinfusions of dopamine, D(1) or D(2), antagonist. Antagonism of D(1), but not D(2), receptors within the BLA blocked the suppressive effect of heroin-associated environmental stimuli on iNOS, TNF-α and IL-1β. This study is the first to demonstrate that the expression of heroin's conditioned effects on proinflammatory mediators require dopamine D(1) receptors within the BLA. PMID:20605224

  19. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine.

    PubMed

    Wheeler, David S; Underhill, Suzanne M; Stolz, Donna B; Murdoch, Geoffrey H; Thiels, Edda; Romero, Guillermo; Amara, Susan G

    2015-12-22

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH's effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  20. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  1. Sleep Facilitates Memory by Blocking Dopamine Neuron-Mediated Forgetting.

    PubMed

    Berry, Jacob A; Cervantes-Sandoval, Isaac; Chakraborty, Molee; Davis, Ronald L

    2015-06-18

    Early studies from psychology suggest that sleep facilitates memory retention by stopping ongoing retroactive interference caused by mental activity or external sensory stimuli. Neuroscience research with animal models, on the other hand, suggests that sleep facilitates retention by enhancing memory consolidation. Recently, in Drosophila, the ongoing activity of specific dopamine neurons was shown to regulate the forgetting of olfactory memories. Here, we show this ongoing dopaminergic activity is modulated with behavioral state, increasing robustly with locomotor activity and decreasing with rest. Increasing sleep-drive, with either the sleep-promoting agent Gaboxadol or by genetic stimulation of the neural circuit for sleep, decreases ongoing dopaminergic activity, while enhancing memory retention. Conversely, increasing arousal stimulates ongoing dopaminergic activity and accelerates dopaminergic-based forgetting. Therefore, forgetting is regulated by the behavioral state modulation of dopaminergic-based plasticity. Our findings integrate psychological and neuroscience research on sleep and forgetting. PMID:26073942

  2. The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum.

    PubMed

    Bosse, Kelly E; Jutkiewicz, Emily M; Gnegy, Margaret E; Traynor, John R

    2008-10-01

    The highly selective delta opioid agonist, SNC80, elicits dopamine-related behaviors including locomotor stimulation and conditioned place-preference. In contrast, it has been reported that SNC80 fails to promote dopamine efflux from the striatum of freely moving rats. However, SNC80 does enhance behavioral responses to the stimulants, amphetamine and cocaine, suggesting an interaction between delta opioids and psychostimulants. Since the increase in locomotor activity elicited by amphetamine and related stimulants acting at the dopamine transporter is associated with increases in extracellular concentrations of dopamine within the striatum, we hypothesized that SNC80 enhances this activity by potentiating the overflow of dopamine through the transporter. To test this hypothesis, striatal preparations from Sprague Dawley rats were assayed for dopamine efflux in response to amphetamine challenge. SNC80 was given either in vivo or in vitro directly to rat striatal tissue, prior to in vitro amphetamine challenge. Both in vivo and in vitro administration of SNC80 enhanced amphetamine-mediated dopamine efflux in a concentration- and time-dependent manner. However, SNC80 in either treatment paradigm produced no stimulation of dopamine efflux in the absence of amphetamine. The effect of SNC80 on amphetamine-mediated dopamine overflow, but not the effect of amphetamine alone, was blocked by the delta selective antagonist, naltrindole and was also observed with other delta agonists. The results of this study demonstrate that even though SNC80 does not stimulate dopamine efflux alone, it is able to augment amphetamine-mediated dopamine efflux through a delta opioid receptor mediated action locally in the striatum. PMID:18602932

  3. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  4. N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats.

    PubMed

    Bagetta, G; Iannone, M; Palma, E; Nisticò, G; Dolly, J O

    1996-04-01

    The epileptogenic and neurodegenerative effects of dendrotoxin K, from Dendroaspis polylepis, a specific blocker of a non-inactivating, voltage-sensitive K+ channel, were studied after focal injection into one dorsal hippocampus in rats. Administration of 35 pmol dendrotoxin K elicited motor seizures and bilateral electrocortical discharges after a latent period (5.3 +/- 2.1 min), in all of the treated animals (n = 6). At 24 h, histological examination of brain (n = 5) coronal sections (10 microns; n = 6 per brain) detected bilateral damage to the hippocampal formation which extended 300 microns rostral and caudal to the injection tract. Quantitation of the damage revealed significant bilateral neuronal cell loss in the CA1 and CA4 pyramidal cell layer relative to the corresponding brain regions of rats (n = 3) injected with bovine serum albumin (105 pmol), which per se was ineffective in all respects. Dendrotoxin K (35 pmol) also caused a significant loss of CA3 pyramidal neurons and dentate gyrus granule cells ipsilateral to the site of toxin injection. In one out of six rats, a lower dose (3.5 pmol) of dendrotoxin K produced convulsive behaviour and electrocortical seizures but after a longer latency and these were accompanied by significant neuronal loss in the CA1, CA3 and CA4 pyramidal cell layer ipsilateral to the injected side. The lowest dose (0.35 pmol; n = 6 rats) of dendrotoxin K used failed to induce seizures and did not cause hippocampal damage (n = 6 rats). Systemic (i.p.) treatment with dizocilpine maleate (3 mg/kg) or LY 274614 (5 mg/kg i.p.), two N-methyl-D-aspartate receptor antagonists (given 15 min beforehand), prevented dendrotoxin K (35 pmol)-induced motor seizures and electrocortical epileptogenic discharges in 100% of the animals (n = 6 per group) treated. Similarly, these antagonists minimized the damage typically produced in the rat hippocampus, with no significant neuronal loss being observed. By contrast, NBQX (30 mg/kg, i.p. given 15

  5. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Min; Salter, Michael W.

    1999-07-01

    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  6. Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons

    PubMed Central

    Piccart, Elisabeth; Courtney, Nicholas A.; Branch, Sarah Y.; Ford, Christopher P.

    2015-01-01

    Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed patch-clamp electrophysiology and fast-scan cyclic voltammetry in mouse brain slices to determine the effects of NT on dopamine autoreceptor-mediated neurotransmission. Application of the active peptide fragment NT8–13 produced synaptic depression that exhibited short- and long-term components. Sustained depression of D2 autoreceptor signaling required activation of the type 2 NT receptor and the protein phosphatase calcineurin. NT application increased paired-pulse ratios and decreased extracellular levels of somatodendritic dopamine, consistent with a decrease in presynaptic dopamine release. Surprisingly, we observed that electrically induced long-term depression of dopaminergic neurotransmission that we reported previously was also dependent on type 2 NT receptors and calcineurin. Because electrically induced depression, but not NT-induced depression, was blocked by postsynaptic calcium chelation, our findings suggest that endogenous NT may act through a local circuit to decrease presynaptic dopamine release. The current research provides a mechanism through which augmented NT release can produce a long-lasting increase in membrane excitability of midbrain dopamine neurons. SIGNIFICANCE STATEMENT Whereas plasticity of glutamate synapses in the brain has been studied extensively, demonstrations of plasticity at dopaminergic synapses have been more elusive. By quantifying inhibitory neurotransmission between midbrain dopaminergic neurons in brain slices from mice we have

  7. Methamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons

    PubMed Central

    Sharpe, Amanda L.; Varela, Erika; Bettinger, Lynne

    2015-01-01

    Background: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Methods: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. Results: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015–0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Conclusions: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. PMID:25522412

  8. c-Fos expression mediated by N-methyl-D-aspartate receptors following anodal polarization in the rat brain.

    PubMed

    Islam, N; Moriwaki, A; Hattori, Y; Hayashi, Y; Lu, Y F; Hori, Y

    1995-05-01

    c-Fos protein-like immunoreactivity (IR) was investigated in the rat brain following an application of weak anodal direct current to the surface of the unilateral sensorimotor cortex in an attempt to elucidate the cellular and molecular bases of central plasticity. Anodal polarization resulted in a massive increase in c-Fos protein-like IR in neurons of the cingulate, piriform, frontoparietal cortices, and hippocampus ipsilateral to the polarization. The effects were dependent upon the duration and intensity of currents applied. The time-dependent induction of c-Fos protein-like IR was maximal at 1 h, became weaker by 6 h, and almost returned to the baseline within 24 h following polarization. When MK-801 [(+)-5-methyl-10,11-di-hydro-5H- dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate], a noncompetitive antagonist for N-methyl-D-aspartate (NMDA) receptors, was injected intraperitoneally, the induction of this nuclear protein was reduced or completely blocked in both hemispheres, except around the polarized point itself, as a function of the time and dosage. These results suggest that the proto-oncogene c-fos is rapidly and transiently activated in the brain following anodal polarization and this activation is mediated by NMDA receptors. PMID:7601260

  9. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  10. N-Methyl-d-Aspartate Receptor and Neuronal Nitric Oxide Synthase Activation Mediate Bilirubin-Induced Neurotoxicity

    PubMed Central

    Brito, Maria A; Vaz, Ana R; Silva, Sandra L; Falcão, Ana S; Fernandes, Adelaide; Silva, Rui FM; Brites, Dora

    2010-01-01

    Hyperbilirubinemia may lead to neurotoxicity and neuronal death. Although the mechanisms of nerve cell damage by unconjugated bilirubin (UCB) appear to involve a disruption of the redox status and excitotoxicity, the contribution of nitric oxide (NO·) and of N-methyl-d-aspartate (NMDA) glutamate receptors is unclear. We investigated the role of NO· and NMDA glutamate receptors in the pathways of nerve cell demise by UCB. Neurons were incubated with 100 μmol/L UCB, in the presence of 100 μmol/L human serum albumin for 4 h at 37ºC, alone or in combination with N-ω-nitro-l-arginine methyl ester (l-NAME) (an inhibitor of neuronal nitric oxide synthase [nNOS]), hemoglobin (an NO· scavenger) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (an NMDA-receptor antagonist). Exposure to UCB led to increased expression of nNOS and production of both NO· and cyclic guanosine 3′,5′-monophosphate (cGMP), along with protein oxidation and depletion of glutathione. These events concurred for cell dysfunction and death and were counteracted by l-NAME. Moreover, the UCB-induced loss of neuronal viability was abolished by hemoglobin, whereas the activation of nNOS and production of both NO· and cGMP were counteracted by MK-801, resulting in significant protection from cell dysfunction and death. These results reinforce the involvement of oxidative stress by showing that nerve cell damage by UCB is mediated by NO· and therefore is counteracted by NO· inhibitors or scavengers. Our findings strongly suggest that the activation of nNOS and neurotoxicity occur through the engagement of NMDA receptors. These data reveal a role for overstimulation of glutamate receptors in mediating oxidative damage by UCB. PMID:20593111

  11. Thromboresistant and endothelialization effects of dopamine-mediated heparin coating on a stent material surface.

    PubMed

    Bae, In-Ho; Park, In-Kyu; Park, Dae Sung; Lee, Haeshin; Jeong, Myung Ho

    2012-05-01

    Heparinization of surfaces has proven a successful strategy to prevent thrombus formation. Inspired by the composition of adhesive proteins in mussels, the authors used dopamine to immobilize heparin on a stent surface. This study aimed to assess the thromboresistant and endothelialization effects of dopamine-mediated heparin (HPM) coating on a stent material surface. The HPM was synthesized by bonding dopamine and heparin chemically. Cobalt-chromium (Co-Cr) alloy disks were first placed in the HPM solution and applied to surface stability then underwent thromboresistant tests and human umbilical vein endothelial cells (HUVEC) cytotoxicity assays. The results showed not only thromboresistant activity and a stable state of heparin on the surfaces after investigation with toluidine blue and thrombin activation assay but also proliferation of HUVEC in vitro. Studies on animals showed that the HPM-coated stent has no obvious inflammation response and increasing of restenosis rate compared to the bare metal stent (BMS) indicating good biocompatibility as well as safety in its in vivo application. Moreover, improving the endothelial cell (EC) proliferation resulted in a higher strut-covering rate (i.e., endothelialization) with shuttle-shaped EC in the HPM-coated stent group compared to that of the BMS group. These results suggest that this facile coating approach could significantly promote endothelialization and offer greater safety than the BMS for its much improved thromboresistant property. Moreover, it may offer a platform for conjugating secondary drugs such as anti-proliferative drugs. PMID:22389099

  12. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  13. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    PubMed Central

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  14. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    SciTech Connect

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  15. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    PubMed Central

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  16. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.

    PubMed

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  17. Anti-N-Methyl-D-Aspartate Receptor Antibody Mediated Neurologic Relapse Post Herpes Simplex Encephalitis: A Case Series.

    PubMed

    Geoghegan, Sarah; Walsh, Aoibhinn; King, Mary D; Lynch, Bryan; Webb, David; Twomey, Eilish; Ronan Leahy, T; Butler, Karina; Gavin, Patrick

    2016-08-01

    Despite the advent of antiviral therapy, herpes simplex encephalitis (HSE) remains a devastating condition with significant morbidity and mortality. Neurologic relapse after initial improvement is generally attributed to herpes simplex virus reactivation. In 2013, inflammation caused by anti-N-methyl-D-aspartate receptor antibodies was reported in association with cases of neurologic relapse after herpes simplex encephalitis. We present 3 such cases and discuss diagnostic and management dilemmas. PMID:27171680

  18. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  19. Dopamine-Mediated Oxidation of Methionine 127 in α-Synuclein Causes Cytotoxicity and Oligomerization of α-Synuclein

    PubMed Central

    Nakaso, Kazuhiro; Tajima, Naoko; Ito, Satoru; Teraoka, Mari; Yamashita, Atsushi; Horikoshi, Yosuke; Kikuchi, Daisuke; Mochida, Shinsuke; Nakashima, Kenji; Matsura, Tatsuya

    2013-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn) and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn). Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O)) was detected in PC12-TetOFF-α-syn. Met(O) was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O). Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  20. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.

    PubMed

    Nakaso, Kazuhiro; Tajima, Naoko; Ito, Satoru; Teraoka, Mari; Yamashita, Atsushi; Horikoshi, Yosuke; Kikuchi, Daisuke; Mochida, Shinsuke; Nakashima, Kenji; Matsura, Tatsuya

    2013-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn) and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn). Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O)) was detected in PC12-TetOFF-α-syn. Met(O) was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O). Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  1. Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1

    PubMed Central

    Dong, Zhizhong; Ferger, Boris; Paterna, Jean-Charles; Vogel, Denise; Furler, Sven; Osinde, Maribel; Feldon, Joram; Büeler, Hansruedi

    2003-01-01

    Mutations in the parkin gene are linked to autosomal-recessive juvenile parkinsonism (AR-JP). Parkin functions as a ubiquitin protein ligase in the degradation of several proteins, including the neuron-specific septin CDCrel-1. AR-JP-associated parkin mutations inhibit ubiquitination and degradation of CDCrel-1 and other parkin target proteins. Here we show that recombinant adeno-associated virus-mediated CDCrel-1 gene transfer to the substantia nigra of rats results in a rapid onset (6-10 days) of nigral and striatal CDCrel-1 expression that is followed by a progressive loss of nigral dopaminergic neurons and a decline of the striatal dopamine levels. In contrast, neurons of the globus pallidus are spared from CDCrel-1 toxicity. Furthermore, CDCrel-1 inhibits the release of dopamine from stably-transfected PC12 cells, and pharmacological inhibition of tyrosine hydroxylase and dopamine synthesis in rats prevents CDCrel-1-induced nigral neurodegeneration. These results show that CDCrel-1 overexpression exerts dopamine-dependent neurotoxicity and suggest that inhibition of dopamine secretion by CDCrel-1 may contribute to the development of AR-JP. PMID:14530399

  2. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones.

    PubMed

    Bengtson, C Peter; Tozzi, Alessandro; Bernardi, Giorgio; Mercuri, Nicola B

    2004-03-01

    Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current-voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 +/- 35 pA peak amplitude, 381 +/- 25 ms latency, holding potential (V(h)) =-73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABA(A), GABA(B), muscarinic and glycine receptors. CPCCOEt (100 microM), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near -10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs. PMID:14724196

  3. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity.

    PubMed

    Izumi, Yasuhiko; Sawada, Hideyuki; Yamamoto, Noriyuki; Kume, Toshiaki; Katsuki, Hiroshi; Shimohama, Shun; Akaike, Akinori

    2007-02-28

    Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation. PMID:17161393

  4. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    PubMed

    Wigmore, M A; Lacey, M G

    1998-02-01

    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  5. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    1998-01-01

    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) was reversed by the group III preferring mGlu receptor antagonist, α-methyl-4-phosphonophenylglycine (MPPG; 250 μM). The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3–30 μM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 μM) was reversed by (+)-α-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3±15.7%, 4 cells) by MPPG (250 μM). The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 μM), decreased e.p.s.p. amplitude by 27.1±8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1′R,2′R,3′R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 μM) by 26.7±4.3% (5 cells). DHPG (10–100 μM) caused a depolarization of the recorded cell, as did ACPD (3–30 μM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID:9517386

  6. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii.

    PubMed

    Chang, Zhong-Wen; Ke, Zhi-Han; Chang, Chin-Chyuan

    2016-02-01

    Dopamine (DA) was found to influence the immunological responses and resistance to pathogen infection in invertebrates. To clarify the possible modulation of DA through dopamine receptors (DAR) against acute environmental stress, the levels of DA, glucose and lactate in the haemolymph of Macrobrachium rosenbergii under hypo- and hyperthermal stresses were measured. The changes in immune parameters such as total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and phagocytic activity (PA) were evaluated in prawns which received DAR antagonists (SCH23390, SCH, D1 antagonist; domperidone, DOM, D2 antagonist; chlorpromazine, CH, D1+2 antagonist) followed by hypo- (15 °C) and hyperthermal (34 °C) stresses. In addition, pharmacological analysis of the effect DA modulation was studied in haemocytes incubated with DA and DAR antagonists. The results revealed a significant increase in haemolymph DA accompanied with upregulated levels of glucose and lactate in prawns exposed to both hypo- and hyperthermal stresses in 2 h. In addition, a significant decrease in RBs per haemocyte was noted in prawns which received DAR antagonists when they exposed to hyperthermal stress for 30 min. In in vitro test, antagonism on RBs, SOD and GPx activity of haemocytes were further evidenced through D1, D1, D1+D2 DARs, respectively, in the meantime, no significant difference in PO activity and PA was observed among the treatment groups. These results suggest that the upregulation of DA, glucose and lactate in haemolymph might be the response to acute thermal stress for the demand of energy, and the DAR occupied by its antagonistic action impart no effect on immunological responses except RBs in vivo even though the modulation mediated through D1 DAR was further evidenced in RBs, SOD and GPx activities in vitro. It is therefore concluded that thermal

  7. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    PubMed

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  8. PKA-mediated responses in females' estrous cycle affect cocaine-induced responses in dopamine-mediated intracellular cascades.

    PubMed

    Weiner, J; Sun, W Lun; Zhou, L; Kreiter, C M; Jenab, S; Quiñones-Jenab, V

    2009-07-01

    An extensive body of literature provides evidence for both sexual dimorphism and menstrual cycle effects in drug abuse patterns and behavioral responses. However, the cellular mechanisms underlying sexually dimorphic responses to and hormonal effects on cocaine use remain unclear. We hypothesized that endogenous hormonal fluctuations during the estrous cycle of rats modulate cocaine's effects on dopamine- and PKA-mediated intracellular responses. To test this hypothesis, intact female rats at different stages of their cycle received a single injection of saline or cocaine (20 mg/kg) and were sacrificed after 15 or 60 min. The nucleus accumbens (NAc) and caudate putamen (CPu) were dissected and analyzed via Western blot for total and phosphorylated (p-thr34) dopamine- and 3'-5'-cyclic AMP-regulated phosphoprotein with molecular weight 32 kDa (DARPP-32), PP1, PP2B (CNA1 and CNB1 subunits), PKA, CREB, cFOS, and Delta-FosB. Our results show that saline-treated rats had estrous cycle-related differences in protein levels of pCREB, DARPP-32, p-thr34-DARPP-32, PP1, and CNA1. Saline-treated female rats in the estrus stage had higher levels of pCREB in the NAc, but cocaine-treatment lowered pCREB levels. The estrous cycle also significantly affected the magnitude of change for p-thr34-DARPP-32 protein levels in both the NAc and CPu. Sixty minutes of cocaine administration increased p-thr34-DARPP-32 levels in the NAc of rats during estrus and proestrus and in the CPu of rats in diestrus. Furthermore, cocaine-induced changes in PP1 protein levels in the NAc were also affected by the stage of the cycle; 60 min of cocaine administration increased PP1 levels in the NAc of rats during diestrus, whereas PP-1 levels decreased in rats during estrus. Taken together, these novel findings suggest that hormonal fluctuations during the estrous cycle may contribute to the previously reported sex differences in the PKA pathway and in behavioral responses to cocaine. PMID:19348873

  9. Oxytocin-Dopamine Interactions Mediate Variations in Maternal Behavior in the Rat

    PubMed Central

    Shahrokh, Dara K.; Zhang, Tie-Yuan; Diorio, Josie; Gratton, Alain; Meaney, Michael J.

    2010-01-01

    Variations in maternal behavior among lactating rats associate with differences in estrogen-oxytocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and increased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on dopamine release within the mesocorticolimbic dopamine system and are consistent with previous reports of oxytocin-dopamine interactions in the establishment and maintenance of social bonds. PMID:20228171

  10. Reversal of endogenous dopamine receptor silencing in pituitary cells augments receptor-mediated apoptosis.

    PubMed

    Al-Azzawi, Haneen; Yacqub-Usman, Kiren; Richardson, Alan; Hofland, Leo J; Clayton, Richard N; Farrell, William E

    2011-02-01

    Dopamine (DA)-agonist targeting of the DA D(2) receptor (D2R) in prolactinomas is the first-line treatment choice for suppression of prolactin and induction of tumor shrinkage. Resistance to DA agonists seems to be related to receptor number. Using the MMQ and GH3 pituitary cell lines, that either do or do not express D2R, respectively, we explored the epigenetic profile associated with the presence or absence of D2R in these cells lines. These studies led us to explore pharmacological strategies designed to restore receptor expression and thereby potentially augment DA agonist-mediated apoptosis. We show in GH3 cells that the D2R harbors increased CpG island-associated methylation and enrichment for histone H3K27me3. Conversely, MMQ cells and normal pituitaries show enrichment for H3K9Ac and barely detectable H3K27me3. Coculture of GH3 cells with the demethylating agent zebularine and the histone deacetylase inhibitor trichostatin A was responsible for a decrease in CpG island methylation and enrichment for the histone H3K9Ac mark. In addition, challenge of GH3 cells with zebularine alone or coculture with both agents led to expression of endogenous D2R in these cells. Induced expression D2R in GH3 cells was associated with a significant increase in apoptosis indices to challenge with either DA or bromocriptine. Specificity of a receptor-mediated response was established in coincubations with specific D2R antagonist and siRNA approaches in GH3 cell and D2R expressing MMQ cell lines. These studies point to the potential efficacy of combined treatment with epigenetic drugs and DA agonists for the medical management of different pituitary tumor subtypes, resistant to conventional therapies. PMID:21177832

  11. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    SciTech Connect

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  12. The Timing of Dopamine- and Noradrenaline-Mediated Transmission Reflects Underlying Differences in the Extent of Spillover and Pooling

    PubMed Central

    Courtney, Nicholas A.

    2014-01-01

    Metabotropic transmission typically occurs through the spillover activation of extrasynaptic receptors. This study examined the mechanisms underlying somatodendritic dopamine and noradrenaline transmission and found that the extent of spillover and pooling varied dramatically between these two transmitters. In the mouse ventral tegmental area, the time course of D2-receptor-mediated IPSCs (D2-IPSCs) was consistent between cells and was unaffected by altering stimulation intensity, probability of release, or the extent of diffusion. Blocking dopamine reuptake with cocaine extended the time course of D2-IPSCs and suggested that transporters strongly limited spillover. As a result, individual release sites contributed independently to the duration of D2-IPSCs. In contrast, increasing the release of noradrenaline in the rat locus ceruleus prolonged the duration of α2-receptor-mediated IPSCs even when reuptake was intact. Spillover and subsequent pooling of noradrenaline activated distal α2-receptors, which prolonged the duration of α2-IPSCs when multiple release sites were activated synchronously. By using the rapid application of agonists onto large macropatches, we determined the concentration profile of agonists underlying the two IPSCs. Incorporating the results into a model simulating extracellular diffusion predicted that the functional range of noradrenaline diffusion was nearly fivefold greater in the locus ceruleus than dopamine in the midbrain. This study demonstrates that catecholamine synapses differentially regulate the extent of spillover and pooling to control the timing of local inhibition and suggests diversity in the roles of uptake and diffusion in governing metabotropic transmission. PMID:24872568

  13. Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  14. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    PubMed Central

    Zhang, Fengjuan; Peng, Donghai; Cheng, Chunsheng; Zhou, Wei; Ju, Shouyong; Wan, Danfeng; Yu, Ziquan; Shi, Jianwei; Deng, Yaoyao; Wang, Fenshan; Ye, Xiaobo; Hu, Zhenfei; Lin, Jian; Ruan, Lifang; Sun, Ming

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. PMID:26795495

  15. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    PubMed

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  16. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    PubMed Central

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  17. Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic 'binge' cocaine administration.

    PubMed

    Bailey, A; Yoo, J H; Racz, I; Zimmer, A; Kitchen, I

    2007-09-01

    Evidence suggests that the kappa-opioid receptor (KOP-r) system plays an important role in cocaine addiction. Indeed, cocaine induces endogenous KOP activity, which is a mechanism that opposes alterations in behaviour and brain function resulting from repeated cocaine use. In this study, we have examined the influence of deletion of preprodynorphin (ppDYN) on cocaine-induced behavioural effects and on hypothalamic-pituitary-adrenal axis activity. Furthermore, we have measured mu-opioid receptor (MOP-r) agonist-stimulated [(35)S]GTPgammaS, dopamine D(1), D(2) receptor and dopamine transporter (DAT) binding. Male wild-type (WT) and ppDYN knockout (KO) mice were injected with saline or cocaine (45 mg/kg/day) in a 'binge' administration paradigm for 14 days. Chronic cocaine produced an enhancement of locomotor sensitisation in KO. No genotype effect was found on stereotypy behaviour. Cocaine-enhanced MOP-r activation in WT but not in KO. There was an overall decrease in D(2) receptor binding in cocaine-treated KO but not in WT mice. No changes were observed in D(1) and DAT binding. Cocaine increased plasma corticosterone levels in WT but not in KO. The data confirms that the endogenous KOP system inhibits dopamine neurotransmission and that ppDYN may mediate the enhancement of MOP-r activity and the activation of the hypothalamic-pituitary-adrenal axis after chronic cocaine treatment. PMID:17532787

  18. N-methyl-D-aspartate receptor antibody-mediated neurological disease: results of a UK-based surveillance study in children

    PubMed Central

    Wright, Sukhvir; Hacohen, Yael; Jacobson, Leslie; Agrawal, Shakti; Gupta, Rajat; Philip, Sunny; Smith, Martin; Lim, Ming; Wassmer, Evangeline; Vincent, Angela

    2015-01-01

    Objective N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis is a well-recognised clinico-immunological syndrome that presents with neuropsychiatric symptoms cognitive decline, movement disorder and seizures. This study reports the clinical features, management and neurological outcomes of paediatric NMDAR-Ab-mediated neurological disease in the UK. Design A prospective surveillance study. Children with NMDAR-Ab-mediated neurological diseases were voluntarily reported to the British Neurological Surveillance Unit (BPNSU) from November 2010 to December 2011. Initial and follow-up questionnaires were sent out to physicians. Results Thirty-one children fulfilled the criteria for the study. Eight presented during the study period giving an incidence of 0.85 per million children per year (95% CI 0.64 to 1.06); 23 cases were historical. Behavioural change and neuropsychiatric features were present in 90% of patients, and seizures and movement disorders both in 67%. Typical NMDAR-Ab encephalitis was reported in 24 children and partial phenotype without encephalopathy in seven, including predominantly psychiatric (four) and movement disorder (three). All patients received steroids, 22 (71%) received intravenous immunoglobulin, 9 (29%) received plasma exchange,and 10 (32%) received second-line immunotherapy. Of the 23 patients who were diagnosed early, 18 (78%) made a full recovery compared with only 1 of 8 (13%) of the late diagnosed patients (p=0.002, Fisher's exact test). Seven patients relapsed, with four needing additional second-line immunotherapy. Conclusions Paediatric NMDAR-Ab-mediated neurological disease appears to be similar to adult NMDAR-Ab encephalitis, but some presented with a partial phenotype. Early treatment was associated with a quick and often full recovery. PMID:25637141

  19. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass.

    PubMed

    Sakano, Daisuke; Choi, Sungik; Kataoka, Masateru; Shiraki, Nobuaki; Uesugi, Motonari; Kume, Kazuhiko; Kume, Shoen

    2016-07-12

    Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD), a dopamine D2 receptor (DRD2) antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5'-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling. PMID:27373926

  20. Distinct dopamine neurons mediate reward signals for short- and long-term memories

    PubMed Central

    Yamagata, Nobuhiro; Ichinose, Toshiharu; Aso, Yoshinori; Plaçais, Pierre-Yves; Friedrich, Anja B.; Sima, Richard J.; Preat, Thomas; Rubin, Gerald M.; Tanimoto, Hiromu

    2015-01-01

    Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons. PMID:25548178

  1. Distinct dopamine neurons mediate reward signals for short- and long-term memories.

    PubMed

    Yamagata, Nobuhiro; Ichinose, Toshiharu; Aso, Yoshinori; Plaçais, Pierre-Yves; Friedrich, Anja B; Sima, Richard J; Preat, Thomas; Rubin, Gerald M; Tanimoto, Hiromu

    2015-01-13

    Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons. PMID:25548178

  2. Dopamine D-2 receptor mediation of response suppression learning of young rats.

    PubMed

    McDougall, S A; Nonneman, A J

    1989-04-01

    In three experiments, the effects of augmenting or blocking dopamine (DA) D-2 receptor activity on the ontogeny of response suppression learning of preweanling rat pups were determined. In the initial experiment, rat pups were trained to traverse a straight alley for nipple attachment to an anesthetized dam. When footshock (0.2 mA, 0.5 sec) was made contingent on responding, younger (11- and 13-day-olds) rat pups were deficient to older (17- and 19-day-olds) pups at withholding punished responding. In the subsequent experiments, response suppression learning was assessed after injecting 11- and 17-day-old rat pups with the specific DA D-2 agonist, LY 171555 (0.005-, 0.01-, and 0.1-mg/kg, i.p.), or the specific DA D-2 antagonist, sulpiride (5.0-, 15.0-, and 50.0-mg/kg, i.p.). LY 171555 enhanced the punished responding of both the 11- and 17-day-old rat pups; whereas, sulpiride increased the punished responding of the 17-, but not the 11-day-olds. In four additional experiments, the effects of LY 171555 and sulpiride on the locomotor activity, nociception, and reinforcement processes of 17-day-old rat pups was assessed. Rat pups given LY 171555 (0.01 mg/kg, i.p.) exhibited enhanced locomotor activity and a trend towards hyperanalgesia using a hot plate task. Sulpiride (15.0 mg/kg, i.p.) completely antagonized LY 171555's activity enhancing effects and had hyperalgesic properties. In two experiments, sulpiride did not affect the nonpunished appetitive responding of the 17-day-olds; whereas, haloperidol-treated pups responded on fewer reinforced trials than did saline-treated pups. Therefore, these results indicate that the response suppression learning of 17-day-old rat pups is mediated, at least partially, by a DAD-2 receptor system, and that D-2 receptors are also involved in the locomotor activity and nociceptive responses of young rat pups. PMID:2523325

  3. Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes.

    PubMed

    Vaughan, R A; Huff, R A; Uhl, G R; Kuhar, M J

    1997-06-13

    Dopamine transporters (DATs) are members of a family of Na+- and Cl--dependent neurotransmitter transporters responsible for the rapid clearance of dopamine from synaptic clefts. The predicted primary sequence of DAT contains numerous consensus phosphorylation sites. In this report we demonstrate that DATs undergo endogenous phosphorylation in striatal synaptosomes that is regulated by activators of protein kinase C. Rat striatal synaptosomes were metabolically labeled with [32P]orthophosphate, and solubilized homogenates were subjected to immunoprecipitation with an antiserum specific for DAT. Basal phosphorylation occurred in the absence of exogenous treatments, and the phosphorylation level was rapidly increased when synaptosomes were treated with the phosphatase inhibitors okadaic acid or calyculin. Treatment of synaptosomes with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also increased the level of phosphate incorporation. This occurred within 10 min and was dosedependent between 0.1 and 1 microM PMA. DAT phosphorylation was also significantly increased by two other protein kinase C activators, (-)-indolactam V and 1-oleoyl-2-acetyl-sn-glycerol. The inactive phorbol ester 4alpha-phorbol 12,13-didecanoate at 10 microM was without effect, and PMA-induced phosphorylation was blocked by treatment of synaptosomes with the protein kinase C inhibitors staurosporine and bisindoylmaleimide. These results indicate that DATs undergo rapid in vivo phosphorylation in response to protein kinase C activation and that a robust mechanism exists in synaptosomes for DAT dephosphorylation. Dopamine transport activity in synaptosomes was reduced by all treatments that promoted DAT phosphorylation, with comparable dose, time, and inhibitor characteristics. The change in transport activity was produced by a reduction in Vmax with no significant effect on the Km for dopamine. These results suggest that synaptosomal dopamine transport activity is regulated by

  4. Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold.

    PubMed

    Foschi, Giulia; Leonardi, Francesca; Scala, Angela; Biscarini, Fabio; Kovtun, Alessandro; Liscio, Andrea; Mazzaglia, Antonino; Casalini, Stefano

    2015-12-21

    Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution. PMID:26565988

  5. Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold

    NASA Astrophysics Data System (ADS)

    Foschi, Giulia; Leonardi, Francesca; Scala, Angela; Biscarini, Fabio; Kovtun, Alessandro; Liscio, Andrea; Mazzaglia, Antonino; Casalini, Stefano

    2015-11-01

    Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution.Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution. Electronic supplementary information (ESI) available: Kelvin probe, AFM and electrochemical data are reported. Furthermore, the chemical backbone of both types of cyclodextrins are shown. See DOI: 10.1039/c5nr05405b

  6. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.

    PubMed

    Urushitani, M; Nakamizo, T; Inoue, R; Sawada, H; Kihara, T; Honda, K; Akaike, A; Shimohama, S

    2001-03-01

    Mitochondrial uptake of Ca(2+) has recently been found to play an important role in glutamate-induced neurotoxicity (GNT) as well as in the activation of Ca(2+)-dependent molecules, such as calmodulin and neuronal nitric oxide synthase (nNOS), in the cytoplasm. Prolonged exposure to glutamate injures motor neurons predominantly through the activation of Ca(2+)/calmodulin-nNOS, as previously reported, and is, in part, associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). In the present study, we investigated how mitochondrial uptake of Ca(2+) is involved in GNT in spinal motor neurons. Acute excitotoxicity induced by exposure to 0.5 mM glutamate for 5 min was found in both motor and nonmotor neurons in cultured spinal cords from rat embryos and was dependent on extracellular Ca(2+) and on N-methyl-D-aspartate (NMDA) receptor activation. Mitochondrial uncouplers markedly blocked acute excitotoxicity, and membrane-permeable superoxide dismutase mimics attenuated acute excitotoxicity induced by glutamate and NMDA but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or kainate. Fluorimetric analysis showed that mitochondrial Ca(2+) was elevated promptly with subsequent accumulation of reactive oxygen species (ROS) in the mitochondria. An NMDA receptor antagonist and a mitochondrial uncoupler eliminated the increase in fluorescence of mitochondrial Ca(2+) and ROS indicators. These data indicate that acute excitotoxicity in spinal neurons is mediated by mitochondrial Ca(2+) overload and ROS generation through the activation of NMDA receptors. This mechanism is different from that of chronic GNT. PMID:11223912

  7. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  8. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  9. Dopamine D3 Receptor Mediates Preadolescent Stress-Induced Adult Psychiatric Disorders

    PubMed Central

    Seo, Joon H.; Kuzhikandathil, Eldo V.

    2015-01-01

    Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood. PMID:26619275

  10. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements

    PubMed Central

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-01-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions. PMID:26443442

  11. Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain.

    PubMed

    Lazenka, Matthew F; Tomarchio, Aaron J; Lichtman, Aron H; Greengard, Paul; Flajolet, Marc; Selley, Dana E; Sim-Selley, Laura J

    2015-09-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex. PMID:26099530

  12. Opioid-mediated regulation of A11 diencephalospinal dopamine neurons: pharmacological evidence of activation by morphine

    PubMed Central

    Pappas, Samuel S.; Kennedy, Tom; Goudreau, John L.; Lookingland, Keith J.

    2011-01-01

    Dopamine (DA) neurons of the A11 diencephalospinal system represent the sole source of DA innervation to the spinal cord in mice, serving neuromodulatory roles in the processing of nociceptive input and movement. These neurons originate in the dorsocaudal diencephalon and project axons unilaterally throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. The density of A11 DA axon terminals in the lumbar region is greater in males compared to females, while in both sexes the activity of neurons terminating in the thoracic spinal cord is greater than those terminating in the lumbar region. The present study was designed to test the hypothesis that A11 DA neurons are activated by opioids. To test this hypothesis, male and female mice were systemically treated with agonists or antagonists acting at the μ-opioid receptor, and spinal cord concentrations of DA and its metabolite DOPAC were determined in the thoracic and lumbar spinal cord using high performance liquid chromatography coupled with electrochemical detection. Systemic administration of the μ-opioid agonist morphine led to a dose- and time-dependent increase in spinal cord DOPAC/DA ratio (an estimate of DA neuronal activity) in both male and female mice, with greater changes occurring in the lumbar segment. Blockade of opioid receptors with the opioid antagonist naloxone reversed the stimulatory effects of morphine on A11 DA neurons in both male and female mice, but had little to no effect on the activity of these neurons when administered alone. Present findings are consistent with the conclusion that spinal cord- projecting axon terminals of A11 DA neurons are activated by opioids in both male and female mice, most likely through a disinhibitory mechanism. PMID:21605572

  13. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    PubMed

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan

    2016-07-22

    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. PMID:27126557

  14. The N-Terminal Residues 43 to 60 Form the Interface for Dopamine Mediated α-Synuclein Dimerisation

    PubMed Central

    Leong, Su Ling; Hinds, Mark G.; Connor, Andrea R.; Smith, David P.; Illes-Toth, Eva; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2015-01-01

    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson’s disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43–140) and C-terminally (1–95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1–95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43–140 protein, we analysed the structural characteristics of the DA:α-syn 43–140 dimer and α-syn 43–140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers. PMID:25679387

  15. Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease

    PubMed Central

    Koprich, James B; Reske-Nielsen, Casper; Mithal, Prabhakar; Isacson, Ole

    2008-01-01

    Background The etiology of Parkinson's disease (PD) remains elusive despite identification of several genetic mutations. It is more likely that multiple factors converge to give rise to PD than any single cause. Here we report that inflammation can trigger degeneration of dopamine (DA) neurons in an animal model of Parkinson's disease. Methods We examined the effects of inflammation on the progressive 6-OHDA rat model of Parkinson's disease using immunohistochemistry, multiplex ELISA, and cell counting stereology. Results We show that a non-toxic dose of lipopolysaccharide (LPS) induced secretion of cytokines and predisposed DA neurons to be more vulnerable to a subsequent low dose of 6-hydroxydopamine. Alterations in cytokines, prominently an increase in interleukin-1beta (IL-1β), were identified as being potential mediators of this effect that was associated with activation of microglia. Administration of an interleukin-1 receptor antagonist resulted in significant reductions in tumor necrosis factor-α and interferon-γ and attenuated the augmented loss of DA neurons caused by the LPS-induced sensitization to dopaminergic degeneration. Conclusion These data provide insight into the etiology of PD and support a role for inflammation as a risk factor for the development of neurodegenerative disease. PMID:18304357

  16. D1 Dopamine Receptor-Mediated LTP at GABA Synapses Encodes Motivation to Self-Administer Cocaine in Rats

    PubMed Central

    Krawczyk, Michal; Mason, Xenos; DeBacker, Julian; Sharma, Robyn; Normandeau, Catherine P.; Hawken, Emily R.; Di Prospero, Cynthia; Chiang, Cindy; Martinez, Audrey; Jones, Andrea A.; Doudnikoff, Évelyne; Caille, Stephanie; Bézard, Erwan; Georges, François; Dumont, Éric C.

    2014-01-01

    Enhanced motivation to take drugs is a central characteristic of addiction, yet the neural underpinning of this maladaptive behavior is still largely unknown. Here, we report a D1-like dopamine receptor (DRD1)-mediated long-term potentiation of GABAA-IPSCs (D1-LTPGABA) in the oval bed nucleus of the stria terminalis that was positively correlated with motivation to self-administer cocaine in rats. Likewise, in vivo intra-oval bed nucleus of the stria terminalis DRD1 pharmacological blockade reduced lever pressing for cocaine more effectively in rats showing enhanced motivation toward cocaine. D1-LTPGABA resulted from enhanced function and expression of G-protein-independent DRD1 coupled to c-Src tyrosine kinases and required local release of neurotensin. There was no D1-LTPGABA in rats that self-administered sucrose, in those with limited cocaine self-administration experience, or in those that received cocaine passively (yoked). Therefore, our study reveals a novel neurophysiological mechanism contributing to individual motivation to self-administer cocaine, a critical psychobiological element of compulsive drug use and addiction. PMID:23864683

  17. D1 dopamine receptor-mediated LTP at GABA synapses encodes motivation to self-administer cocaine in rats.

    PubMed

    Krawczyk, Michal; Mason, Xenos; DeBacker, Julian; Sharma, Robyn; Normandeau, Catherine P; Hawken, Emily R; Di Prospero, Cynthia; Chiang, Cindy; Martinez, Audrey; Jones, Andrea A; Doudnikoff, Évelyne; Caille, Stephanie; Bézard, Erwan; Georges, François; Dumont, Éric C

    2013-07-17

    Enhanced motivation to take drugs is a central characteristic of addiction, yet the neural underpinning of this maladaptive behavior is still largely unknown. Here, we report a D1-like dopamine receptor (DRD1)-mediated long-term potentiation of GABAA-IPSCs (D1-LTPGABA) in the oval bed nucleus of the stria terminalis that was positively correlated with motivation to self-administer cocaine in rats. Likewise, in vivo intra-oval bed nucleus of the stria terminalis DRD1 pharmacological blockade reduced lever pressing for cocaine more effectively in rats showing enhanced motivation toward cocaine. D1-LTPGABA resulted from enhanced function and expression of G-protein-independent DRD1 coupled to c-Src tyrosine kinases and required local release of neurotensin. There was no D1-LTPGABA in rats that self-administered sucrose, in those with limited cocaine self-administration experience, or in those that received cocaine passively (yoked). Therefore, our study reveals a novel neurophysiological mechanism contributing to individual motivation to self-administer cocaine, a critical psychobiological element of compulsive drug use and addiction. PMID:23864683

  18. Estrogen protects against dopamine neuron toxicity in primary mesencephalic cultures through an indirect P13K/Akt mediated astrocyte pathway.

    PubMed

    Bains, Mona; Roberts, James L

    2016-01-01

    Astrocytes regulate neuronal homeostasis and have been implicated in affecting the viability and functioning of surrounding neurons under stressed and injured conditions. Previous data from our lab suggests indirect actions of estrogen through ERα in neighboring astroglia to protect dopamine neurons against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in mouse mesencephalic cultures. We further evaluate estrogen signaling in astrocytes and the mechanism of estrogen's indirect neuroprotective effects on dopamine neurons. Primary mesencephalic cultures pre-treated with 17β-estradiol and the membrane impermeable estrogen, E2-BSA, were both neuroprotective against MPP(+) -induced dopamine neuron toxicity, suggesting membrane-initiated neuroprotection. ERα was found in the plasma membrane of astrocyte cultures and colocalized with the lipid raft marker, flotillin-1. A 17β-estradiol time course revealed a significant increase in Akt, which was inhibited by the PI3 kinase inhibitor, LY294004. Estrogen conditioned media collected from pure astrocyte cultures rescued glial deficient mesencephalic cultures from MPP(+). This indirect estrogen-mediated neuroprotective effect in mesencephalic cultures was significantly reduced when PI3 kinase signaling in astrocytes was blocked prior to collecting estrogen-conditioned media using the irreversible PI3 kinase inhibitor, Wortmannin. Estrogen signaling via astrocytes is rapidly initiated at the membrane level and requires PI3 kinase signaling in order to protect primary mesencephalic dopamine neurons from MPP(+) neurotoxicity. PMID:26520464

  19. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D/sub 2/ receptor

    SciTech Connect

    Borgundvaag, B.; George, S.R.

    1985-07-29

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of (/sup 3/H)-ATP to (/sup 3/H)-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC/sub 50/ values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC/sub 50/ values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D/sub 2/ dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table.

  20. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    PubMed

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells. PMID:27183640

  1. Nitrite-Mediated Antagonism of Cyanide Inhibition of Cytochrome c Oxidase in Dopamine Neurons

    PubMed Central

    Leavesley, Heather B.; Li, Li; Mukhopadhyay, Soma; Borowitz, Joseph L.; Isom, Gary E.

    2010-01-01

    Cyanide inhibits aerobic metabolism by binding to the binuclear heme center of cytochrome c oxidase (CcOX). Amyl nitrite and sodium nitrite (NaNO2) antagonize cyanide toxicity in part by oxidizing hemoglobin to methemoglobin (mHb), which then scavenges cyanide. mHb generation is thought to be a primary mechanism by which the NO2− ion antagonizes cyanide. On the other hand, NO2− can undergo biotransformation to generate nitric oxide (NO), which may then directly antagonize cyanide inhibition of CcOX. In this study, nitrite-mediated antagonism of cyanide inhibition of oxidative phosphorylation was examined in rat dopaminergic N27 cells. NaNO2 produced a time- and concentration-dependent increase in whole-cell and mitochondrial levels of NO. The NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxy 3-oxide (PTIO) reversed this increase in cellular and mitochondrial NO. NO generated from NaNO2 decreased cellular oxygen consumption and inhibited CcOX activity. PTIO reversed the NO-mediated inhibition, thus providing strong evidence that NO mediates the action of NaNO2. Under similar conditions, KCN (20μM) inhibited cellular state-3 oxygen consumption and CcOX activity. Pretreatment with NaNO2 reversed KCN-mediated inhibition of both oxygen consumption and CcOX activity. The NaNO2 antagonism of cyanide was blocked by pretreatment with the NO scavenger PTIO. It was concluded that NaNO2 antagonizes cyanide inhibition of CcOX by generating of NO, which then interacts directly with the binding of KCN × CcOX to reverse the toxicity. In vivo antagonism of cyanide by NO2− appears to be due to both generation of mHb and direct displacement of cyanide from CcOX by NO. PMID:20335280

  2. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  3. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  4. Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice.

    PubMed

    Collins, Gregory T; Truccone, Andrew; Haji-Abdi, Faiza; Newman, Amy Hauck; Grundt, Peter; Rice, Kenner C; Husbands, Stephen M; Greedy, Benjamin M; Enguehard-Gueiffier, Cecile; Gueiffier, Alain; Chen, Jianyong; Wang, Shaomeng; Katz, Jonathan L; Grandy, David K; Sunahara, Roger K; Woods, James H

    2009-04-01

    Dopamine D(2)-like agonists induce penile erection (PE) and yawning in a variety of species, effects that have been suggested recently to be specifically mediated by the D(4) and D(3) receptors, respectively. The current studies were aimed at characterizing a series of D(2), D(3), and D(4) agonists with respect to their capacity to induce PE and yawning in the rat and the proerectile effects of apomorphine [(R)-(-)-5,6,6a,7-tetrahydro-6-methyl-4H-dibenzo-[de,g]quinoline-10,11-diol hydrochloride] in wild-type and D(4) receptor (R) knockout (KO) mice. All D(3) agonists induced dose-dependent increases in PE and yawning over a similar range of doses, whereas significant increases in PE or yawning were not observed with any of the D(4) agonists. Likewise, D(2), D(3), and D(4) antagonists were assessed for their capacity to alter apomorphine- and pramipexole (N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride)-induced PE and yawning. The D(3) antagonist, PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride], inhibited the induction of PE and yawning, whereas the D(2) antagonist, L-741,626 [3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole], reversed the inhibition of PE and yawning observed at higher doses. The D(4) antagonist, L-745,870 [3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride], did not alter apomorphine- or pramipexole-induced PE or yawning. A role for the D(3) receptor was further supported because apomorphine was equipotent at inducing PE in wild-type and D(4)RKO mice, effects that were inhibited by the D(3) antagonist, PG01037, in both wild-type and D(4)R KO mice. Together, these studies provide strong support that D(2)-like agonist-induced PE and yawning are differentially mediated by the D(3) (induction) and D(2) (inhibition) receptors. These studies fail to support a role for the D(4) receptor in the regulation of PE or

  5. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite.

    PubMed

    Anderson, David G; Florang, Virginia R; Schamp, Josephine H; Buettner, Garry R; Doorn, Jonathan A

    2016-07-18

    3,4-Dihydroxyphenylacetaldehyde (DOPAL) is an endogenously produced toxic aldehyde. It is a bifunctional electrophile implicated in the loss of dopaminergic cells concomitant with Parkinson's disease and neurodegeneration. DOPAL is known to react with proteins and amino acids such as N-acetyl lysine (NAL); oxidation of the catechol moiety to the quinone of DOPAL increases this reactivity. Here, we demonstrate the ability of the antioxidants N-acetylcysteine, glutathione, and ascorbic acid to mitigate the reactivity of DOPAL with proteins and amino acids in a dose-dependent fashion. Conversely, Trolox did not lessen the observed reactivity with proteins. Interestingly, use of tricine, a buffer and reducing agent, in these systems also decreased the reactivity of DOPAL with amines, yielding tricine-derived free radical species. Modification of amines with aldehydes typically involves Schiff base chemistry; however, the observance of free radicals suggests that an oxidative step is involved in the reaction of DOPAL with lysine. Furthermore, while Schiff base formation is usually optimal at pH 5, the reaction rate of DOPAL with NAL is negligible at pH 5 and is enhanced under basic conditions (e.g., pH 9). Conditions of high pH are also favorable for catechol auto-oxidation, known to occur for DOPAL. The antioxidant-mediated protection demonstrated here suggests that oxidative stress may impart cellular vulnerability to protein modification by DOPAL. Therefore, depleted antioxidants and increased levels of lipid peroxidation products, known to prevent the detoxifying metabolism of DOPAL, may present a survival challenge to dopaminergic cells targeted in Parkinson's disease. PMID:27268734

  6. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  7. Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing.

    PubMed

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells. PMID:27571359

  8. Visual Attention in Flies—Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing

    PubMed Central

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells. PMID:27571359

  9. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N.

    PubMed

    Binda, Alicia V; Kabbani, Nadine; Lin, Ridwan; Levenson, Robert

    2002-09-01

    We identified protein 4.1N as a D2-like dopamine receptor-interacting protein in a yeast two-hybrid screen. Protein 4.1N is a neuronally enriched member of the 4.1 family of cytoskeletal proteins, which also includes protein 4.1R of erythrocytes and the 4.1G and 4.1B isoforms. The interaction of protein 4.1N was specific for the D2 and D3 dopamine receptors and was independently confirmed in pulldown and coimmunoprecipitation assays. Deletion mapping localized the site of dopamine receptor/protein 4.1N interaction to the N-terminal segment of the third intracellular domain of D2 and D3 receptors and the carboxyl-terminal domain of protein 4.1N. D2 and D3 receptors were also found to interact with the highly conserved carboxyl-terminal domain of proteins 4.1R, 4.1G, and 4.1B. Immunofluorescence studies show that protein 4.1N and D2 and D3 dopamine receptors are expressed at the plasma membrane of transfected human embryonic kidney 293 and mouse neuroblastoma Neuro2A cells. However, expression of D2 or D3 receptors with a protein 4.1N truncation fragment reduces the level of D2 and D3 receptor expression at the plasma membrane. These results suggest that protein 4.1N/dopamine receptor interaction is required for localization or stability of dopamine receptors at the neuronal plasma membrane. PMID:12181426

  10. Dopamine receptors - IUPHAR Review 13.

    PubMed

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  11. Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum

    PubMed Central

    Tong, Huaxia; Gibb, Alasdair J

    2008-01-01

    NMDA receptors are of particular importance in the control of synaptic strength and integration of synaptic activity. Dopamine receptor modulation of NMDA receptors in neonatal striatum may influence the efficacy of synaptic transmission in the cortico-striatal pathway and if so, this modulation will affect the behaviour of the basal ganglia network. Here, we show that in acute brain slices of neonatal (P7) rat striatum the dopamine D1 receptor agonist SKF-82958 significantly decreases NMDA receptor currents in patch-clamp whole-cell recordings. This inhibition is not abolished by application of a G protein inhibitor (GDP-β-S) or irreversible G protein activator (GTP-γ-S) suggesting a G protein-independent mechanism. In addition, intracellular application of protein tyrosine kinase inhibitors (lavendustin A or PP2) abolished D1 inhibition of NMDA currents. In contrast, in older animals (P28) D1 receptor activation produces a potentiation of the NMDA response which suggests there is a developmental switch in D1 modulation of striatal NMDA receptors. Single-channel recordings show that direct D1 receptor inhibition of NMDA receptors cannot be observed in isolated membrane patches. We hypothesize that D1 inhibition in whole-cell recordings from neonatal rats may be mediated by a change in NMDA receptor trafficking. Consistent with this hypothesis, intracellular application of a dynamin inhibitory peptide (QVPSRPNRAP) abolished D1 inhibition of NMDA receptor currents. We therefore conclude that a tyrosine kinase-dependent alteration of NMDA receptor trafficking underlies D1 dopamine receptor-mediated down-regulation of NMDA receptor currents in medium spiny neurons of neonatal rat striatum. PMID:18703578

  12. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    PubMed

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  13. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    PubMed Central

    Feng, Zhen; Du, Qing

    2016-01-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  14. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation.

    PubMed

    Feng, Zhen; Du, Qing

    2016-06-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  15. D2-like dopamine receptor mediation of social-emotional reactivity in a mouse model of anxiety: strain and experience effects.

    PubMed

    Gendreau, P L; Petitto, J M; Gariépy, J L; Lewis, M H

    1998-03-01

    We examined the effects of the D2-like dopamine receptor agonist quinpirole on social-emotional reactivity in two inbred mouse strains. An important objective of this study was to determine whether these effects could be modulated by differential housing conditions (i.e., isolation versus group housing). Moreover, as motor activity is an important control for the assessment of drug effects on emotional behavior, the effects of quinpirole were tested in two inbred mouse strains (A/J and C57BL/6J) low and high in motor activity, respectively. Levels of emotional reactivity were assessed in response to mild social stimulation provided by a nonaggressive conspecific. Quinpirole increased stationary forms of reactivity (i.e., startle, kicking, defensive posture, vocalization) in both isolated and group-housed A/J mice. This effect was more pronounced and observed at lower doses in isolated than in group-housed A/J mice. Quinpirole also induced jump behavior in isolated but not group-housed A/J mice. The shift to the left in the dose-response curve of quinpirole in isolated A/J mice indicated that D2-like dopamine receptor functions can be altered by social experience. Quinpirole only marginally increased stationary and locomotor reactivity (i.e., jump) in isolated C57BL/6J mice, whereas it markedly reduced motor activity in group-housed mice of this strain. The investigation of emotional reactivity within a social context and using strains that differ in motor activity permitted the effects of drugs on emotional reactivity to be dissociated from the effects on motor activity. Given that social-emotional reactivity was elicited by what typically should have been mild and nonthreatening stimuli, this model may be highly relevant to understanding the neurobiology of anxiety. Finally, these data support an important role for dopamine in the mediation of social-emotional reactivity. PMID:9471118

  16. Ring Substituents on Substituted Benzamide Ligands Indirectly Mediate Interactions with Position 7.39 of Transmembrane Helix 7 of the D4 Dopamine Receptor

    PubMed Central

    Ericksen, Spencer S.; Cummings, David F.; Teer, Michael E.; Amdani, Shahnawaz

    2012-01-01

    In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship. PMID:22588261

  17. Ghrelin receptor activity amplifies hippocampal N-methyl-d-aspartate receptor-mediated postsynaptic currents and increases phosphorylation of the GluN1 subunit at Ser896 and Ser897.

    PubMed

    Muniz, Brandon G; Isokawa, Masako

    2015-12-01

    Although ghrelin and its cognate receptor growth hormone secretagogue receptor (GHSR1a) are highly localized in the hypothalamic nuclei for the regulation of metabolic states and feeding, GHSR1a is also highly localized in the hippocampus, suggesting its involvement in extra-hypothalamic functions. Indeed, exogenous application of ghrelin has been reported to improve hippocampal learning and memory. However, the underlying mechanism of ghrelin regulation of hippocampal functions is poorly understood. Here, we report ghrelin-promoted phosphorylation of GluN1 and amplified N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents in the CA1 pyramidal cells of the hippocampus in slice preparations. The ghrelin-induced responses were sensitive to a GHSR1a antagonist and inverse agonist, and were absent in GHSR1a homozygous knock-out mice. These results indicated that activation of GHSR1a was critical in the ghrelin-induced enhancement of the NMDAR function. Interestingly, heterozygous mouse hippocampi were also insensitive to ghrelin treatment, suggesting that a slight reduction in the availability of GHSR1a may be sufficient to negate the effect of ghrelin on GluN1 phosphorylation and NMDAR channel activities. In addition, NMDAR-mediated spike currents, which are of dendritic origin, were blocked by the GHSR1a antagonist, suggesting the presence of GHSR1a on the pyramidal cell dendrites in physical proximity to NMDAR. Together with our findings on the localization of GHSR1a in the CA1 region of the hippocampus, which was shown by fluorescent ghrelin binding, immunoreactivity, and enhanced green fluorescent protein reporter gene expression, we conclude that the activation of GHSR1a favours rapid modulation of the NMDAR-mediated glutamatergic synaptic transmission by phosphorylating GluN1 in the hippocampus. PMID:26490687

  18. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons.

    PubMed

    Yoon, Dong-Hoon; Yoon, Sehyoun; Kim, Donghoon; Kim, Hyun; Baik, Ja-Hyun

    2015-01-23

    Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability. PMID:25483619

  19. Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice.

    PubMed

    Ebada, Mohamed Elsaed; Kendall, David A; Pardon, Marie-Christine

    2016-09-15

    Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice. PMID:27233827

  20. Influence of sildenafil on copulatory behaviour in sluggish or normal ejaculator male rats: a central dopamine mediated effect?

    PubMed

    Giuliani, D; Ottani, A; Ferrari, F

    2002-03-01

    The present study investigates the effects induced by sildenafil (1 mg/kg, p.o.) and the dopamine agonist, SND 919 (0.1 mg/kg, i.p.) on copulatory behaviour of male rats, categorized, on the basis of seven consecutive mating pre-tests, as sluggish and normal ejaculators (SE and NE, respectively). The data obtained show that sildenafil modifies both sexual arousal and ejaculatory mechanisms of copulation. It appears that, although it induced a facilitatory effect on ejaculation of all rats, similarly to SND 919, the lowering of ejaculatory threshold was achieved by means of a reduction of mount frequency and intromission frequency in SE and NE groups, respectively. Differently from SND 919, sildenafil increased sexual arousal, diminishing post ejaculatory interval in SE animals and inter-intromission interval in both SE and NE rats. As the dopamine antagonist, (-)eticlopride (0.02 mg/kg, s.c.), significantly inhibited sildenafil-induced enhancement of sexual arousal in SE rats, it is suggested that the drug acts both peripherally and centrally. PMID:11955526

  1. Exposure and characterization of the action of noradrenaline at dopamine receptors mediating endothelium-independent relaxation of rat isolated small mesenteric arteries.

    PubMed Central

    Van der Graaf, P. H.; Saxena, P. R.; Shankley, N. P.; Black, J. W.

    1995-01-01

    1. Previously, we reported that noradrenaline (NA), in addition to its alpha 1-adrenoceptor-mediated contractile effect, may relax the rat small mesenteric artery (SMA) in order to account for steep Schild plots obtained with compounds classified as alpha 1-adrenoceptor antagonists. In this study, a relaxant action of NA has been exposed in the rat isolated, endothelium-denuded SMA precontracted by the thromboxane A2-mimetic, U46619. 2. NA, but not the selective alpha 2-adrenoceptor agonist, UK14304, produced concentration-dependent contraction of the SMA (pEC50 = 5.7 +/- 0.1). After precontraction with 0.1 microM U46619, 10 nM-30 microM NA produced a further contraction (pEC50 = 6.1 +/- 0.2), while higher concentrations of NA produced small, but significant, relaxant responses. 3. In the presence of 1 microM prazosin, 0.1-30 microM NA produced concentration dependent relaxation (pIC50 = 5.9 +/- 0.1) after precontraction with 0.1 microM U46619. The NA relaxation concentration-effect curve was completely inhibited by 1 microM of the beta 1/beta 2-adrenoceptor antagonist, timolol. However, when the concentration of prazosin was increased by 10 fold (10 microM), NA once again produced concentration-dependent relaxation (pIC50 = 4.5 +/- 0.2). This relaxation concentration-effect curve was not blocked by a 10 fold higher concentration of timolol (10 microM), nor by the presence of idazoxan (10 microM), cyanopindolol (10 microM), NG-nitro-L-arginine methyl ester (L-NAME, 100 microM), indomethacin (10 microM) or sulpiride (1 microM). However, haloperidol (10 microM) and (+/-)-SCH-23390 (10 nM) produced significant inhibition of the relaxation, suggesting the involvement of dopamine D1 receptors. 4. Dopamine also produced concentration-dependent relaxation following U46619 precontraction (pIC50 = 5.4 +/- 0.1) which was significantly inhibited by haloperidol and (+)-SCH-23390. Pretreatment with 10 microM phenoxybenzamine for 60 min produced a significant inhibition of the

  2. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  3. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  4. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    PubMed

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. PMID:27233824

  5. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells

    PubMed Central

    Sun, Jenny J.

    2016-01-01

    CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES) cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH) gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6–8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD). Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone. PMID:27441631

  6. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex. PMID:12423245

  7. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    PubMed

    Sun, Jenny J; Ray, Russell

    2016-01-01

    CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES) cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH) gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD). Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone. PMID:27441631

  8. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect

    PubMed Central

    Abrieux, Antoine; Duportets, Line; Debernard, Stéphane; Gadenne, Christophe; Anton, Sylvia

    2014-01-01

    Olfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex (MGC) of the primary olfactory center, the antennal lobe (AL) is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines. We recently showed that a G-protein-coupled receptor (GPCR), AipsDopEcR, with its homologue known in Drosophila for its double affinity to the main insect steroid hormone 20-hydroxyecdysone (20E), and dopamine (DA), present in the ALs, is involved in the behavioral response to pheromone in the moth, Agrotis ipsilon. Here we tested the role of AipsDopEcR as compared to nuclear 20E receptors in central pheromone processing combining receptor inhibition with intracellular recordings of AL neurons. We show that the sensitivity of AL neurons for the pheromone in males decreases strongly after AipsDopEcR-dsRNA injection but also after inhibition of nuclear 20E receptors. Moreover we tested the involvement of 20E and DA in the receptor-mediated behavioral modulation in wind tunnel experiments, using ligand applications and receptor inhibition treatments. We show that both ligands are necessary and act on AipsDopEcR-mediated behavior. Altogether these results indicate that the GPCR membrane receptor, AipsDopEcR, controls sex pheromone perception through the action of both 20E and DA in the central nervous system, probably in concert with 20E action through nuclear receptors. PMID:25309365

  9. Interactions of MK-801 with glutamate-, glutamine- and methamphetamine-evoked release of ( sup 3 H)dopamine from striatal slices

    SciTech Connect

    Bowyer, J.F.; Scallet, A.C.; Holson, R.R.; Lipe, G.W.; Slikker, W. Jr.; Ali, S.F. )

    1991-04-01

    The interactions of MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine), glutamate and glutamine with methamphetamine (METH)-evoked release of ({sup 3}H)dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg{sup 2}{sup +} present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated ({sup 3}H)dopamine and ({sup 3}H)metabolite (tritium) release of 3 to 6 and 12 to 16% of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg{sup 2}{sup +} present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg{sup 2}{sup +} present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg{sup 2}{sup +} present, 1 mM glutamine increased glutamate release and induced the release of ({sup 3}H)dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.

  10. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  11. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. PMID:27060487

  12. [Interactions between dopamine receptor and NMDA/type A γ-aminobutyric acid receptors].

    PubMed

    Chen, Hui-Ying; Wei, Ting-Jia; Weng, Jing-Jin; Qin, Jiang-Yuan; Huang, Xi; Su, Ji-Ping

    2016-04-25

    Type A γ-aminobutyric acid receptors (GABAAR) and N-methyl-D-aspartate receptors (NMDAR) are the major inhibitory and excitatory receptors in the central nervous system, respectively. Co-expression of the receptors in the synapse may lead to functional influence between receptors, namely receptor interaction. The interactions between GABAAR and NMDAR can be either positive or negative. However, the mechanisms of interaction between the two receptors remain poorly understood, and potential mechanisms include (1) through a second messenger; (2) by receptors trafficking; (3) by direct interaction; (4) by a third receptor-mediation. Dopamine is the most abundant catecholamine neurotransmitter in the brain, and its receptors, dopamine receptors (DR) can activate multiple signaling pathways. Earlier studies on the interaction between DR and GABAAR/NMDAR have shown some underlying mechanisms, suggesting that DR could mediate the interaction between GABAAR and NMDAR. This paper summarized some recent progresses in the studies of the interaction between DR and NMDAR/GABAAR, providing a further understanding on the interaction between NMDAR and GABAAR mediated by DR. PMID:27108906

  13. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter.

    PubMed

    Clarke, P B; Reuben, M

    1995-01-01

    1. The NMDA-type glutamate receptor antagonist, dizocilpine (MK-801) can protect against neurotoxicity associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its principal metabolite, the 1-methyl-4-phenylpyridinium ion (MPP+). It has been suggested that these neurotoxic effects may be mediated by release of excitatory amino acids, but possible alternative mechanisms have been little investigated. 2. MPTP and MPP+ (0.1-1000 microM) were tested in superfused rat striatal synaptosomes preloaded with [3H]-dopamine. Both MPTP (10 microM and higher) and MPP+ (1 microM and higher) evoked an immediate and concentration-dependent release of [3H]-dopamine. The maximal effect exceeded that achievable with nicotine. For subsequent experiments, submaximal concentrations of MPTP (50 microM) and MPP+ (10 microM) were tested. 3. MK-801 (0.1-100 microM) inhibited responses to MPTP (50 microM) and MPP+ (10 microM) in a concentration-dependent manner. However, further tests of NMDA-type glutamate receptor involvement proved negative. Responses to MPTP or MPP+ were unaffected by the omission of Mg2+ or Ca2+ and were not reduced by the NMDA receptor antagonists, AP-7 (200 microM) and kynurenic acid (300 microM). In this assay, N-methyl-D-aspartate (even in the absence of Mg2+ and with added glycine and strychnine) did not evoked [3H]-dopamine release. 4. In crude membrane preparations of rat cerebral cortex, MPTP and MPP+ inhibited high-affinity [3H]-nicotine binding to nicotinic cholinoceptors (IC50 1.8 microM and 26 microM, respectively). 5. [3H]-dopamine release evoked by nicotine (1 microM) was blocked by the nicotinic antagonists,mecamylamine and chlorisondamine, and by MK-801 (all at 100 micro M); K+-evoked release was not affected. Release evoked by MPTP and MPP+ was significantly attenuated by MK-801 but not by mecamylamine or chlorisondamine.6. At a high concentration (1O I1M), the selective dopamine uptake inhibitor, nomifensine, completely blocked [3HJ-dopamine

  14. Unifying mechanism for addiction and toxicity of abused drugs with application to dopamine and glutamate mediators: electron transfer and reactive oxygen species.

    PubMed

    Kovacic, Peter

    2005-01-01

    There are many unknown aspects concerning the mode of action of abused drugs. Recently, a unifying theme for toxicity and addiction was reported based on electron transfer (ET), reactive oxygen species (ROS), and oxidative stress (OS). The main drugs involved are nicotine, cocaine, alcohol, phencyclidine, ecstasy, amphetamines, morphine-heroin, tetrahydrocannabinol, and therapeutic drugs (benzodiazepines, phenytoin, phenobarbital, aspirin, and acetaminophen). A major source of ROS is ET functionalities, of which the main ones found in abused drug metabolites are quinones and imines (or iminiums). Minor types are the nitroxide metabolite from cocaine, and alpha-dicarbonyl from alcohol. The theoretical approach enjoys support from reports on formation of ET metabolites, generation of ROS, protection by antioxidants (AOs), electrochemical studies, and cell signaling. Dopamine (DA) mediation of drug abuse has been the focus of much attention during the past decades. Recently, a similar role for glutamate (Glu) has come under study. Superficially, from a mechanistic vantage point, these findings might be regarded as in conflict with the ET-ROS-OS scheme. Many investigators believe that each drug or mediator operates by its own distinct mechanism. The present report provides evidence that a commonality in mode of action exists for both abused drugs and the DA-Glu operators. In the case of DA, oxidative metabolism yields o-quinones and semiquinones which can redox cycle with oxygen to provide various ROS. Electrochemical studies support the possibility of ET transformations by these quinones in the biological domain. In relation to cell signaling, DA is involved in formation of cAMP followed by a cascade of other events. A similar scenario exists in the case of Glu, in which an iminocarboxylic acid metabolite is hypothesized to play an ET role. The various phenomena are rationalized within the context of ET-ROS-OS, as was done earlier for abused drugs. Thus, a common mode

  15. Food restriction alters N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole)-induced yawning, hypothermia, and locomotor activity in rats: evidence for sensitization of dopamine D2 receptor-mediated effects.

    PubMed

    Collins, Gregory T; Calinski, Diane M; Newman, Amy Hauck; Grundt, Peter; Woods, James H

    2008-05-01

    Food restriction enhances sensitivity to the reinforcing effects of a variety of drugs of abuse including opiates, nicotine, and psychostimulants. Food restriction has also been shown to alter a variety of behavioral and pharmacological responses to dopaminergic agonists, including an increased sensitivity to the locomotor stimulatory effects of direct- and indirect-dopamine agonists, elevated extracellular dopamine levels in responses to psychostimulants, as well as suppression of agonist-induced yawning. Behavioral and molecular studies suggest that augmented dopaminergic responses observed in food-restricted animals result from a sensitization of the dopamine D2 receptor; however, little is known about how food restriction affects dopamine D3 receptor function. The current studies were aimed at better defining the effects of food restriction on D2 and D3 receptor function by assessing the capacity of N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole) to induce yawning, penile erection (PE), hypothermia, and locomotor activity in free-fed and food-restricted rats. Food restriction resulted in a suppression of pramipexole-induced yawning, a sensitized hypothermic response, and an enhanced locomotor response to pramipexole, effects that are suggestive of an enhanced D2 receptor activity; no effect on pramipexole-induced PE was observed. Antagonist studies further supported a food restriction-induced enhancement of the D2 receptor activity because the D2 antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) recovered pramipexole-induced yawning to free-fed levels, whereas yawning and PE were suppressed following pretreatment with the D3 antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride (PG01037). The results of the current studies suggest that food restriction sensitized rats to the D2-mediated effects of pramipexole while having no effect

  16. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease

    PubMed Central

    Chung, Young C; Shin, Won-Ho; Baek, Jeong Y; Cho, Eun J; Baik, Hyung H; Kim, Sang R; Won, So-Yoon; Jin, Byung K

    2016-01-01

    The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. However, the mechanisms underlying CB2 receptor-mediated neuroprotection in MPTP mice have not been elucidated. The mechanisms underlying CB2 receptor-mediated neuroprotection of dopamine neurons in the substantia nigra (SN) were evaluated in the MPTP mouse model of Parkinson's disease (PD) by immunohistochemical staining (tyrosine hydroxylase, macrophage Ag complex-1, glial fibrillary acidic protein, myeloperoxidase (MPO), and CD3 and CD68), real-time PCR and a fluorescein isothiocyanate-labeled albumin assay. Treatment with the selective CB2 receptor agonist JWH-133 (10 μg kg−1, intraperitoneal (i.p.)) prevented MPTP-induced degeneration of dopamine neurons in the SN and of their fibers in the striatum. This JWH-133-mediated neuroprotection was associated with the suppression of blood–brain barrier (BBB) damage, astroglial MPO expression, infiltration of peripheral immune cells and production of inducible nitric oxide synthase, proinflammatory cytokines and chemokines by activated microglia. The effects of JWH-133 were mimicked by the non-selective cannabinoid receptor WIN55,212 (10 μg kg−1, i.p.). The observed neuroprotection and inhibition of glial-mediated neurotoxic events were reversed upon treatment with the selective CB2 receptor antagonist AM630, confirming the involvement of the CB2 receptor. Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.

  17. Inhibition of A9 and A10 dopamine cells by the cholecystokinin-B antagonist LY262691: mediation through feedback pathways from forebrain sites.

    PubMed

    Rasmussen, K; Howbert, J J; Stockton, M E

    1993-10-01

    The diphenylpyrazolidinone cholecystokinin-B (CCK-B) antagonist LY262691 has been shown to decrease the number of spontaneously active dopamine (DA) cells in the ventral tegmental area (A10) and substantia nigra (A9) of the anesthetized rat. In the present study, we examined the localization of the receptors mediating these effects of LY262691 on A9 and A10 DA cells. In one group of anesthetized rats, the effects of systemic administration of LY262691 on the number of spontaneously active A9 or A10 DA cells was determined using extracellular, single-unit recordings after radio frequency lesions were placed in the nucleus accumbens, caudate-putamen, or medial prefrontal cortex. Lesions of the caudate-putamen blocked the effects of systemically administered LY262691 on the number of spontaneously active A9, but not A10, DA cells. Conversely, lesions of the n. accumbens blocked the effects of systemically administered LY262691 on A10, but not A9, DA cells. Lesions of the medial prefrontal cortex blocked the effects of systemically administered LY262691 on both A9 and A10 DA cells. In a separate group of anesthetized rats, the number of spontaneously active A9 or A10 DA cells was determined after LY262691 was microinjected into the n. accumbens, caudate-putamen, or medial prefrontal cortex. Microinjection of LY262691 into the caudate-putamen led to a significant decrease in the number of spontaneously active A9, but not A10, DA cells. Conversely, microinjection of LY262691 into the n. accumbens or medial prefrontal cortex led to a significant decrease in the number of spontaneously active A10, but not A9, DA cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8259526

  18. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  19. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  20. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  1. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  2. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  3. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  4. Cav 1.3 L-type Ca ( 2+) channels mediate long-term adaptation in dopamine D2L-mediated GluA1 trafficking in the dorsal striatum following cocaine exposure.

    PubMed

    Schierberl, Kathryn; Giordano, Thomas; Satpute, Shirish; Hao, Jin; Kaur, Gagandeep; Hofmann, Franz; Moosmang, Sven; Striessnig, Joerg; Rajadhyaksha, Anjali

    2012-01-01

    AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav 1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R's, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes. PMID:22419037

  5. Effect of dopamine-related drugs on duodenal ulcer induced by cysteamine or propionitrile: prevention and aggravation may not be mediated by gastrointestinal secretory changes in the rat

    SciTech Connect

    Gallagher, G.; Brown, A.; Szabo, S.

    1987-03-01

    Dose- and time-response studies have been performed with dopamine agonists and antagonists using the cysteamine and propionitrile duodenal ulcer models in the rat. The experiments demonstrate that the chemically induced duodenal ulcer is prevented by bromocriptine, lergotrile and reduced by apomorphine or L-dopa. Aggravation of cysteamine-induced duodenal ulcer was seen especially after (-)-butaclamol, (-)-sulpiride, haloperidol and, less effectively, after other dopaminergic antagonists. The duodenal antiulcerogenic action of dopamine agonists was more prominent after chronic administration than after a single dose, whereas the opposite was found concerning the proulcerogenic effect of dopamine antagonists. In the chronic gastric fistula rat, both the antiulcerogens bromocriptine or lergotrile and the proulcerogens haloperidol, pimozide or (-)-N-(2-chlorethyl)-norapomorphine decreased the cysteamine- or propionitrile-induced gastric secretion. No correlation was apparent between the influence of these drugs on duodenal ulcer development and gastric and duodenal (pancreatic/biliary) secretions. In the chronic duodenal fistula rat, decreased acid content was measured in the proximal duodenum after haloperidol, and diminished duodenal pepsin exposure was recorded after bromocriptine. Furthermore, the aggravation by dopamine antagonists of experimental duodenal ulcer probably involves a peripheral component. The site of dopamine receptors and physiologic effects which modulate experimental duodenal ulcer remain to be identified, but their elucidation may prove to be an important element in the pathogenesis and treatment of duodenal ulcer.

  6. AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons

    PubMed Central

    Elsworth, JD; Redmond, DE; Leranth, C; Bjugstad, KB; Sladek, JR; Collier, TJ; Foti, SB; Samulski, RJ; Vives, KP; Roth, RH

    2009-01-01

    Neural transplantation offers the potential of treating Parkinson’s disease by grafting fetal dopamine neurons to depleted regions of the brain. However, clinical studies of neural grafting in Parkinson’s disease have produced only modest improvements. One of the main reasons for this is the low survival rate of transplanted neurons. The inadequate supply of critical neurotrophic factors in the adult brain is likely to be a major cause of early cell death and restricted outgrowth of fetal grafts placed into the mature striatum. Glial derived neurotrophic factor (GDNF) is a potent neurotrophic factor that is crucial to the survival, outgrowth and maintenance of dopamine neurons, and so is a candidate for protecting grafted fetal dopamine neurons in the adult brain. We found that implantation of adeno-associated virus type 2 encoding GDNF (AAV2-GDNF) in the normal monkey caudate nucleus induced over-expression of GDNF that persisted for at least 6 months after injection. In a 6-month within-animal controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with control grafts in the other caudate nucleus. Thus, the addition of GDNF gene therapy to neural transplantation may be a useful strategy to improve treatment for Parkinson’s disease. PMID:18346734

  7. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  8. The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons

    PubMed Central

    Chen, Li

    2013-01-01

    Anatomic studies have demonstrated that the mesolimbic dopamine system receives a substantial afferent input from a variety of regions ranging from the prefrontal cortex through to the brain stem. However, how these afferents regulate dopamine neuron activity is still largely unknown. The mesopontine tegmentum provides a significant input to ventral tegmental area (VTA) dopamine neurons, and it has been demonstrated that discrete subdivisions within this region differentially alter dopamine neuron activity. Thus the laterodorsal tegmental nucleus provides a tonic input essential for maintaining burst firing of dopamine neurons, whereas the pedunculopontine tegmental (PPTg) nucleus regulates a transition from single-spike firing to burst firing. In contrast, the recently identified rostromedial tegmental nucleus provides an inhibitory input to the VTA and decreases spontaneous dopamine neuron activity. Here, we demonstrate that an area adjacent to the PPTg regulates both population activity as well as burst firing of VTA dopamine neurons. Specifically, N-methyl-d-aspartic acid (NMDA) activation of the lateral mesopontine tegmentum produces an increase in the number of spontaneously active dopamine neurons and an increase in the average percentage of burst firing of dopamine neurons. This increase in neuronal activity was correlated with extracellular dopamine efflux in the nucleus accumbens, as measured by in vivo microdialysis. Taken together, we provide further evidence that the mesopontine tegmentum regulates discrete dopamine neuron activity states that are relevant for the understanding of dopamine system function in both normal and disease states. PMID:24004527

  9. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  10. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    PubMed

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  11. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  12. Direct dopamine D2-receptor-mediated modulation of arachidonic acid release in transfected CHO cells without the concomitant administration of a Ca2+-mobilizing agent

    PubMed Central

    Nilsson, Christer L; Hellstrand, Monika; Ekman, Agneta; Eriksson, Elias

    1998-01-01

    In CHO cells transfected with the rat dopamine D2 receptor (long isoform), administration of dopamine per se elicited a concentration-dependent increase in arachidonic acid (AA) release. The maximal effect was 197% of controls (EC50=25 nM). The partial D2 receptor agonist, (−)-(3-hydroxyphenyl)-N-n-propylpiperidine [(−)-3-PPP], also induced AA release, but with somewhat lower efficacy (maximal effect: 165%; EC50=91 nM). The AA-releasing effect of dopamine was counteracted by pertussis toxin, by the inhibitor of intracellular Ca2+ release, 8-(N N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), by excluding calcium from the medium, by the phospholipase A2 (PLA2) inhibitor, quinacrine, and by long-term pretreatment with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, it was antagonized by the D2 antagonists, raclopride and (−)-sulpiride–but not by (+)-sulpiride–and absent in sham-transfected CHO cells devoid of D2 receptors. The results obtained contrast to the previous notion that dopamine and other D2 receptor agonists require the concomitant administration of calcium-mobilizing agents such as ATP, ionophore A-23187 (calcimycin), thrombin, and TRH, to influence AA release from various cell lines. PMID:9756380

  13. Dopamine autoreceptors and the effects of drugs on locomotion and dopamine synthesis.

    PubMed Central

    Brown, F.; Campbell, W.; Mitchell, P. J.; Randall, K.

    1985-01-01

    Criteria for distinguishing dopamine autoreceptor agonism from other mechanisms of inhibiting locomotion were examined, together with the relationship between inhibition of locomotion and dopamine synthesis. ED50 potencies to inhibit locomotion of mice were established for drugs from a number of categories. Spiperone 0.02 mg kg-1 significantly (P less than 0.05) reversed inhibition of locomotion by known dopamine agonists but not that by the other types of drug. Idazoxan antagonized inhibition of locomotion due to alpha 2-agonists but not dopamine agonists. RU 24926 (N-propyl-N,N-di[2-(3-hydroxyphenyl)ethyl]amine) was antagonized by both spiperone and idazoxan. Only for dopamine agonists was there good correlation (r = 0.97) between potencies to inhibit locomotion in mice and L-dihydroxyphenylalanine (L-DOPA) accumulation in the nucleus accumbens of rats treated with gamma-butyrolactone and 3-hydroxybenzylhydrazine. The specific dopamine D1-agonist, SK&F 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine), was inactive in both tests at doses up to 10 mg kg-1. The mixed dopamine agonist/antagonist, (-)-3-(3-hydroxyphenyl)-N-propylpiperidine, commonly known as (-)-3-PPP, acted as a dopamine agonist in both tests but inhibited locomotion more potently than L-DOPA accumulation. The inhibitory effects of dopamine agonists on locomotion were not prevented by alpha-methyl-p-tyrosine pretreatment. The data suggest that spiperone-reversible inhibition of locomotion in mice is a good criterion for dopamine autoreceptor agonists. The receptors involved are affected by low doses of both dopamine agonists and antagonists and seem similar to those involved in the autoreceptor mediated inhibition of dopamine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4005487

  14. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase

    PubMed Central

    Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.

    2006-01-01

    The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-­aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784

  15. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  16. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area.

    PubMed Central

    Bowery, B.; Rothwell, L. A.; Seabrook, G. R.

    1994-01-01

    1. Electrophysiological recordings were made from presumed dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area of rat brain slices. The ability of selective dopamine receptor agonists to hyperpolarize neurones and inhibit cell firing, as well as the ability of dopamine receptor antagonists to block responses to quinpirole were compared. 2. Six dopamine receptor agonists were examined for their ability to hyperpolarize neurones within the substantia nigra pars compacta. Of these, the most potent ligand tested was naxagolide with an EC50 value of 20 nM and estimated maximum of 10 mV. The rank order of agonist potency was naxagolide > quinpirole > apomorphine > dopamine. 3. Quinpirole was more potent at inhibiting cell firing in the substantia nigra pars compacta (pIC50 = 7.65 +/ 0.06, n = 35) than in the ventral tegmental area (pIC50 = 7.24 +/- 0.06, n = 32; P < 0.01, Student's t test). 7-Hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), a putative D3 selective agonist, had a comparable potency to quinpirole in both the ventral tegmental area (pIC50 = 7.39 +/- 0.26, n = 4), and substantia nigra pars compacta (pIC50 = 7.71 +/- 0.20; n = 4). 4. The inhibition of cell firing by quinpirole was antagonized by haloperidol, S(-)-sulpiride, clozapine, and ritanserin. S(-)-sulpiride and haloperidol had the highest estimated affinities in the substantia nigra, with pA2 values of 8.97 (slope = 0.85) and 8.20 (slope = 2.09) respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921615

  17. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. PMID:24862644

  18. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  19. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  20. MicroRNA-9 and MicroRNA-326 Regulate Human Dopamine D2 Receptor Expression, and the MicroRNA-mediated Expression Regulation Is Altered by a Genetic Variant*

    PubMed Central

    Shi, Sandra; Leites, Catherine; He, Deli; Schwartz, Daniel; Moy, Winton; Shi, Jianxin; Duan, Jubao

    2014-01-01

    The human dopamine receptor D2 (DRD2) has been implicated in the pathophysiology of schizophrenia and other neuropsychiatric disorders. Most antipsychotic drugs influence dopaminergic transmission through blocking dopamine receptors, primarily DRD2. We report here the post-transcriptional regulation of DRD2 expression by two brain-expressed microRNAs (miRs), miR-326 and miR-9, in an ex vivo mode, and show the relevance of miR-mediated DRD2 expression regulation in human dopaminergic neurons and in developing human brains. Both miRs targeted the 3′-UTR (untranslated region) of DRD2 in NT2 (neuron-committed teratocarcinoma, which endogenously expresses DRD2) and CHO (Chinese hamster ovary) cell lines, decreasing luciferase activity measured by a luciferase reporter gene assay. miR-326 overexpression reduced DRD2 mRNA and DRD2 receptor synthesis. Both antisense miR-326 and antisense miR-9 increased DRD2 protein abundance, suggesting an endogenous repression of DRD2 expression by both miRs. Furthermore, a genetic variant (rs1130354) within the DRD2 3′-UTR miR-targeting site interferes with miR-326-mediated repression of DRD2 expression. Finally, co-expression analysis identified an inverse correlation of DRD2 expression with both miR-326 and miR-9 in differentiating dopaminergic neurons derived from human induced pluripotent stem cells (iPSCs) and in developing human brain regions implicated in schizophrenia. Our study provides empirical evidence suggesting that miR-326 and miR-9 may regulate dopaminergic signaling, and miR-326 and miR-9 may be considered as potential drug targets for the treatment of disorders involving abnormal DRD2 function, such as schizophrenia. PMID:24675081

  1. Nitrification of Aspartate by Aspergillus flavus

    PubMed Central

    Hatcher, H. J.; Schmidt, E. L.

    1971-01-01

    Heterotrophic conversion of l-aspartic acid to nitrification products by Aspergillus flavus was studied in a replacement incubation system. Numerous amino acids supported nitrification; aspartate and glutamate were about equivalent as the best sources of nitrate. Addition of sodium bicarbonate to the incubation system substantially enhanced nitrate formation for all nitrifiable amino acids except aspartic acid, but the basis for the bicarbonate effect is obscure. The yield of nitrate from l-aspartate was not approached by forms of aspartic acid resulting from substitution on the beta carbon, the amino nitrogen, or the gamma carboxyl group or by aspartate presented as the d-configuration. There was no relationship between nitrate formation and the occurrence of such possible intermediates as nitrite, bound hydroxylamine, ammonia, aspergillic acid, and beta-nitropropionic acid. Uniformly labeled 14C-l-aspartate that was nitrified in replacement incubation led to no accumulation of label in possible nitrification products in the culture filtrate. Label was found in components of the mycelium after acid hydrolysis, with heaviest accumulation in what appeared to be glucosamine and an unidentified compound, possibly acetylglucosamine. Detectable label was redistributed into serine, glycine, and threonine. Images PMID:5549699

  2. Responses of in vivo renal microvessels to dopamine.

    PubMed

    Steinhausen, M; Weis, S; Fleming, J; Dussel, R; Parekh, N

    1986-09-01

    The split hydronephrotic kidney preparation was used to directly observe the effects of locally applied dopamine on the in vivo diameters of renal vessels. Dopamine (1 X 10(-6) to 3 X 10(-5) M) produced a concentration-dependent dilation of the arcuate and interlobular arteries and afferent arterioles. Efferent arterioles near the glomeruli also dilated to dopamine but the dilation was less than that of the preglomerular vessels. Higher dopamine concentrations (3 X 10(-4) and 1 X 10(-3) M) produced more variable effects, with a tendency for the arcuate and interlobular arteries and the afferent and efferent arterioles away from the glomeruli to decrease in diameter. After pretreatment with haloperidol, dopamine (1 X 10(-6) to 1 X 10(-4) M) did not dilate any pre- or postglomerular vascular segment, but the tendency for pre- and postglomerular constrictions with higher dopamine concentrations were not abolished. Pretreatment with phentolamine and propranolol enhanced the dilator response of the pre- and postglomerular vessels (except the afferent arterioles near glomeruli and efferent arterioles near welling points) to dopamine (3 X 10(-5) and 1 X 10(-4) M), and abolished the reductions in diameter produced by the high dopamine levels. These data indicate that the dilator effect of dopamine is mediated by interactions with specific dopaminergic receptors, while alpha and beta adrenergic receptors appear to mediate a constrictor influence observed with high dopamine concentrations. The overall effect of dopamine on the renal vessel diameters thus appears to depend on the balance of dilator and constrictor stimuli mediated by multiple receptors. PMID:3023735

  3. Dopamine: the rewarding years

    PubMed Central

    Marsden, Charles A

    2006-01-01

    Dopamine has moved from being an insignificant intermediary in the formation of noradrenaline in 1957 to its present-day position as a major neurotransmitter in the brain. This neurotransmitter is involved in the control of movement and Parkinson's disease, the neurobiology and symptoms of schizophrenia and attention deficit hyperactivity disorder. It is also considered an essential element in the brain reward system and in the action of many drugs of abuse. This evolution reflects the ability of several famous names in neuropharmacology, neurology and psychiatry to apply new techniques to ask and answer the right questions. There is now excellent knowledge about the metabolism of dopamine, dopamine receptor systems and the structural organisation of dopamine pathways in the brain. Less is known about the function of the different receptors and how the various dopamine pathways are organised to produce normal behaviour, which exhibits disruption in the disease states mentioned. In particular, we have very limited information as to why and how the dopamine system dies or becomes abnormal in Parkinson's disease or a neurodevelopmental disorder such as schizophrenia. Dopamine neurones account for less than 1% of the total neuronal population of the brain, but have a profound effect on function. The future challenge is to understand how dopamine is involved in the integration of information to produce a relevant response rather than to study dopamine in isolation from other transmission systems. This integrated approach should lead to greater understanding and improved treatment of diseases involving dopamine. PMID:16402097

  4. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... it is colored, cloudy, thickened, or contains solid particles. If you are using insulin aspart suspension, the ...

  5. Dopamine-oxytocin interactions in penile erection.

    PubMed

    Baskerville, T A; Allard, J; Wayman, C; Douglas, A J

    2009-12-01

    Dopamine and oxytocin have established roles in the central regulation of penile erection in rats; however, the neural circuitries involved in a specific erectile context and the interaction between dopamine and oxytocin mechanisms remain to be elucidated. The medial preoptic area (MPOA), supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus may serve as candidate sites because they contain oxytocin cells, receive dopaminergic inputs and have been implicated in mediating masculine sexual behavior. Double immunofluorescence revealed that substantial numbers of oxytocin cells in the MPOA, SON and PVN possess dopamine D(2), D(3) and D(4) receptors. In anaesthetized rats, using intracavernous pressure as a physiological indicator of erection, blockade of lumbosacral oxytocin receptors (UK, 427843) reduced erectile responses to a nonselective dopamine agonist (apomorphine), suggesting that dopamine recruits a paraventriculospinal oxytocin pathway. In conscious males in the absence of a female, penile erection elicited by a D(2)/D(3) (Quinelorane) but not D(4) (PD168077) agonist was associated with activation of medial parvocellular PVN oxytocin cells. In another experiment where males were given full access to a receptive female, a D(4) (L-745870) but not D(2) or D(3) antagonist (L-741626; nafadotride) inhibited penile erection (intromission), and this was correlated with SON magnocellular oxytocin neuron activation. Together, the data suggest dopamine's effects on hypothalamic oxytocin cells during penile erection are context-specific. Dopamine may act via different parvocellular and magnocellular oxytocin subpopulations to elicit erectile responses, depending upon whether intromission is performed. This study demonstrates the potential existence of interaction between central dopamine and oxytocin pathways during penile erection, with the SON and PVN serving as integrative sites. PMID:20128851

  6. Differential Roles for Dopamine D1-Like and D2-Like Receptors in Mediating the Reinforcing Effects of Cocaine: Convergent Evidence from Pharmacological and Genetic Studies

    PubMed Central

    Hiranita, Takato; Collins, Gregory T

    2016-01-01

    A series of studies by Drs. Barak Caine, James Woods, Gregory Collins, Jonathan Katz and Takato Hiranita demonstrated a novel and unique reinforcing effect using dopamine (DA) D2-like receptor [D2-like R: D2, D3, and D4 receptor subtypes (respectively, D2R, D3R, and D4R)] agonists in rats and genetically modified mice. In order to understand how important their findings are, a comparison was made regarding the reinforcing effects of DA D2-like R full agonists with those of DA uptake inhibitors and of a DA D1-like receptor [D1-like R, D1 and D5 receptor subtypes (D1R and D5R)] full agonist (±)-SKF 82958. PMID:27390753

  7. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

    PubMed Central

    Wang, Jian-Da; Cao, Yu-Lan; Li, Qian; Yang, Ya-Ping; Jin, Mengmeng; Chen, Dong; Wang, Fen; Wang, Guang-Hui; Qin, Zheng-Hong; Hu, Li-Fang; Liu, Chun-Feng

    2015-01-01

    Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD. PMID:26649942

  8. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  9. Central actions of a novel and selective dopamine antagonist

    SciTech Connect

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D/sub 1/ class, which is linked to the stimulation of adenylate cyclase-activity, and the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D/sub 1/ class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of (/sup 3/H)-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D/sub 1/ receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for (/sup 3/H)-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D/sub 1/ receptors and (/sup 3/H)-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D/sub 1/ dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated.

  10. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila.

    PubMed

    Ueno, Taro; Tomita, Jun; Tanimoto, Hiromu; Endo, Keita; Ito, Kei; Kume, Shoen; Kume, Kazuhiko

    2012-11-01

    Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep. PMID:23064381

  11. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain.

    PubMed

    Burrone, Lavinia; Santillo, Alessandra; Pinelli, Claudia; Baccari, Gabriella Chieffi; Di Fiore, Maria Maddalena

    2012-10-15

    D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis. PMID:22771744

  12. Acute and Long-Term Response of Dopamine Nigrostriatal Synapses to a Single Low Dose Episode of 3-Nitropropionic Acid-Mediated Chemical Hypoxia

    PubMed Central

    Crawford, Cynthia A.; Akopian, Garnik; Ring, Justin; Jakowec, Michael W.; Petzinger, Giselle M.; Andersen, Julie K.; Vittozzi-Wong, Philip; Wang, Kristie; Farley, Cristal M.; Charntikov, Sergios; Mitroi, Danut; Beal, M. Flint; Chow, Robert; Walsh, John P.

    2010-01-01

    The goal of the present investigation was to determine the persistence of striatal dopaminergic dysfunction after a mild chemically-induced hypoxic event in Fisher 344 rats. To this end, we gave a single injection of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP; 16.5 mg/kg, i.p.) to 2 month old male F344 rats and measured various indices of striatal dopaminergic functioning and lipid peroxidation over a 3 month span. Separate groups of rats were used to measure rod walking, evoked dopamine (DA) release, DA content, MDA accumulation, DA receptor binding, and tyrosine hydroxylase activity. The results showed that 3-NP exposure reduced most measures of DA functioning including motoric ability, DA release, and D2 receptor densities for 1 to 3 months post drug administration. Interestingly, DA content was reduced 1 week after 3-NP exposure, but rose to 147% of control values 1 month after 3-NP treatment. MDA accumulation, a measure of lipid peroxidation activity, was increased 24 hr and 1 month after 3-NP treatment. 3-NP did not affect tyrosine hydroxylase activity, suggesting that alterations in DA functioning were not the result of nigrostriatal terminal loss. These data demonstrate that a brief mild hypoxic episode caused by 3-NP exposure has long-term detrimental effects on the functioning of the nigrostriatal DA system. PMID:20730800

  13. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice.

    PubMed

    Di Liberto, Valentina; Mäkelä, Johanna; Korhonen, Laura; Olivieri, Melania; Tselykh, Timofey; Mälkiä, Annika; Do Thi, Hai; Belluardo, Natale; Lindholm, Dan; Mudò, Giuseppa

    2012-02-01

    Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERβ antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. PMID:22041555

  14. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  15. Stimulants as Specific Inducers of Dopamine-Independent σ Agonist Self-Administration in Rats

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi; Kopajtic, Theresa A.

    2013-01-01

    A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01–0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001–0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032–1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032–1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032–10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1–3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32–10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0–10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10–100 μg/kg) nor by the opioid antagonist (−)-naltrexone (1.0–10 mg/kg), whereas these antagonists were active

  16. The Role of De Novo Catecholamine Synthesis in Mediating Methylmercury-Induced Vesicular Dopamine Release From Rat Pheochromocytoma (PC12) Cells

    PubMed Central

    Atchison, William D.

    2013-01-01

    The purpose of this study was to characterize methylmercury (MeHg)–induced dopamine (DA) release from undifferentiated pheochromocytoma (PC12) cells and to examine the potential role for DA synthesis in this process. MeHg caused a significant increase in DA release that was both concentration- and time-dependent. DA release was significantly increased by 2µM MeHg at 60min and by 5µM MeHg at 30min; 1µM MeHg was without effect. Because DA release induced by 5µM MeHg was associated with a significant percentage of cell death at 60 and 120min, 2µM MeHg was chosen for further characterization of release mechanisms. MeHg-induced DA release was attenuated but not abolished in the absence of extracellular calcium, whereas the vesicular content depleting drug reserpine (50nM) abolished release. Thus, MeHg-induced DA release requires vesicular exocytosis but not extracellular calcium. MeHg also increased intracellular DA and the rate of DA storage utilization, suggesting a role for DA synthesis in MeHg-induced DA release. The tyrosine hydroxylase inhibitor α-methyltyrosine (300µM, 24h) completely abolished MeHg-induced DA release. MeHg significantly increased DA precursor accumulation in cells treated with 3-hydroxybenzylhydrazine (10µM), revealing that MeHg increases tyrosine hydroxylase activity. Overall, these data demonstrate that MeHg facilitates DA synthesis, increases intracellular DA, and augments vesicular exocytosis. PMID:23425605

  17. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism.

    PubMed

    Koizumi, Miwako; Sakoori, Kazuto; Midorikawa, Naoko; Murphy, Niall P

    2004-09-01

    1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route. PMID:15289286

  18. Catecholamines up Integrates Dopamine Synthesis and Synaptic Trafficking

    PubMed Central

    Wang, Zhe; Ferdousy, Faiza; Lawal, Hakeem; Huang, Zhinong; Daigle, J. Gavin; Izevbaye, Iyare; Doherty, Olugbenga; Thomas, Jerrad; Stathakis, Dean G; O’Donnell, Janis M.

    2011-01-01

    The highly reactive nature of dopamine renders dopaminergic neurons vulnerable to oxidative damage. We recently demonstrated that loss-of-function mutations in the Drosophila gene Catecholamines up (Catsup) elevate dopamine pools but, paradoxically, also confer resistance to paraquat, an herbicide that induces oxidative stress-mediated toxicity in dopaminergic neurons. We now report a novel association of the membrane protein, Catsup, with GTP cyclohydrolase rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis and tyrosine hydroxylase, rate-limiting enzyme for dopamine biosynthesis, which requires BH4 as a cofactor. Loss-of-function Catsup mutations cause dominant hyperactivation of both enzymes. Elevated dopamine levels in Catsup mutants coincide with several distinct characteristics, including hypermobility, minimal basal levels of 3,4-Dihydroxy-Phenylacetic Acid, an oxidative metabolite of dopamine, and resistance to the Vesicular Monoamine Transporter inhibitor, reserpine, suggesting that excess dopamine is synaptically active and that Catsup functions in the regulation of synaptic vesicle loading and release of dopamine. We conclude that Catsup regulates and links the dopamine synthesis and transport networks. PMID:21985068

  19. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  20. Action of aspartate on the /sup 32/Pi incorporation into phospholipids of cerebral cortex

    SciTech Connect

    de Scarnati, O.C.; Sato, M.; De Robertis, E.

    1982-02-01

    The effect of L-aspartate on the /sup 32/Pi incorporation of phospholipids, was studied on slices of rat cerebral cortex. This amino acid produced an inhibitory effect in concentrations 0.01-10 mM, which was more evident at 120 min. This effect was not stereospecific and did not imply a change in Pi uptake and in nucleotides approximating P precursors. The inhibition was present in PS, PC, PE and to a lesser extent in Pi. On liver slices 1 mM L-aspartate had the opposite effect, stimulating the incorporation of /sup 32/Pi into total phospholipids. Our results suggest that the effect of L-aspartate is by a non-specific mechanism, probably not mediated by a receptor.

  1. Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans.

    PubMed

    Schumacher, Fabian; Chakraborty, Sudipta; Kleuser, Burkhard; Gulbins, Erich; Schwerdtle, Tanja; Aschner, Michael; Bornhorst, Julia

    2015-11-01

    Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C. elegans to the monoamine oxidase B (MAO-B) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C. elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and

  2. RalA employs GRK2 and β-arrestins for the filamin A-mediated regulation of trafficking and signaling of dopamine D2 and D3 receptor.

    PubMed

    Zheng, Mei; Zhang, Xiaohan; Sun, NingNing; Min, Chengchun; Zhang, Xiaowei; Kim, Kyeong-Man

    2016-08-01

    Filamin A (FLNA) is known to act as platform for the signaling and intracellular trafficking of various GPCRs including dopamine D2 and D3 receptors (D2R, D3R). To understand molecular mechanisms involved in the FLNA-mediated regulation of D2R and D3R, comparative studies were conducted on the signaling and intracellular trafficking of the D2R and D3R in FLNA-knockdown cells, with a specific focus on the roles of the proteins that interact with FLNA and the D2R and D3R. Lowering the level of cellular FLNA caused an elevation in RalA activity and resulted in selective interference with the normal intracellular trafficking and signaling of the D2R and D3R, through GRK2 and β-arrestins, respectively. Knockdown of FLNA or coexpression of active RalA interfered with the recycling of the internalized D2R and resulted in the development of receptor tolerance. Active RalA was found to interact with GRK2 to sequester it from D2R. Knockdown of FLNA or coexpression of active RalA prevented D3R from coupling with G protein. The selective involvement of GRK2- and β-arrestins in the RalA-mediated cellular processes of the D2R and D3R was achieved via their different modes of interactions with the receptor and their distinct functional roles in receptor regulation. Our results show that FLNA is a multi-functional protein that acts as a platform on which D2R and D3R can interact with various proteins, through which selective regulation of these receptors occurs in combination with GRK2 and β-arrestins. PMID:27188791

  3. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing.

    PubMed

    Xie, Jian; Owen, Timothy; Xia, Ke; Callahan, Brian; Wang, Chunyu

    2016-08-31

    Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation. PMID:27529645

  4. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  5. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms. PMID:25509166

  6. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation. PMID:11487132

  7. Dopamine agonists rescue Aβ-induced LTP impairment by Src-family tyrosine kinases.

    PubMed

    Yuan Xiang, PingAn; Janc, Oliwia; Grochowska, Katarzyna M; Kreutz, Michael R; Reymann, Klaus G

    2016-04-01

    Soluble forms of oligomeric amyloid beta (AβO) are involved in the loss of synaptic plasticity and memory, especially in early phases of Alzheimer's disease. Stimulation of dopamine D1/D5 receptors (D1R/D5R) is known to increase surface expression of synaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate subtype glutamate and N-methyl-D-aspartate subtype glutamate receptors and facilitates the induction of the late phase of long-term potentiation (LTP), probably via a related mechanism. In this study, we show that the D1/D5R agonist SKF38393 protects LTP of hippocampal CA1 synapses from the deleterious action of oligomeric amyloid beta. Unexpectedly, the D1R/D5R-mediated recovery of LTP is independent of protein kinase A or phospholipase C pathways. Instead, we found that the inhibition of Src-family tyrosine kinases completely abolished the protective effects of D1R/D5R stimulation in a cellular model of learning and memory. PMID:26973108

  8. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

    PubMed Central

    Stacey, David; Bilbao, Ainhoa; Maroteaux, Matthieu; Jia, Tianye; Easton, Alanna C.; Longueville, Sophie; Nymberg, Charlotte; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Carvalho, Fabiana; Conrod, Patricia J.; Desrivières, Sylvane; Fauth-Bühler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Bokde, Arun L. W.; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Lourdusamy, Anbarasu; Mann, Karl F.; Martinot, Jean-Luc; Nees, Frauke; Palkovits, Miklós; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Ruggeri, Barbara; Santos, Eugenio; Smolka, Michael N.; Staehlin, Oliver; Jarvelin, Marjo-Riitta; Elliott, Paul; Sommer, Wolfgang H.; Mameli, Manuel; Müller, Christian P.; Spanagel, Rainer; Girault, Jean-Antoine; Schumann, Gunter

    2012-01-01

    The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse. PMID:23223532

  9. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release.

    PubMed

    Stacey, David; Bilbao, Ainhoa; Maroteaux, Matthieu; Jia, Tianye; Easton, Alanna C; Longueville, Sophie; Nymberg, Charlotte; Banaschewski, Tobias; Barker, Gareth J; Büchel, Christian; Carvalho, Fabiana; Conrod, Patricia J; Desrivières, Sylvane; Fauth-Bühler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Bokde, Arun L W; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Lourdusamy, Anbarasu; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Palkovits, Miklós; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Ruggeri, Barbara; Santos, Eugenio; Smolka, Michael N; Staehlin, Oliver; Jarvelin, Marjo-Riitta; Elliott, Paul; Sommer, Wolfgang H; Mameli, Manuel; Müller, Christian P; Spanagel, Rainer; Girault, Jean-Antoine; Schumann, Gunter

    2012-12-18

    The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca(2+)-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2(-/-) mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2(-/-) mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I(A) potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive-delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse. PMID:23223532

  10. Antidepressant activity of aspartic acid derivatives.

    PubMed

    Petrov, V I; Sergeev, V S; Onishchenko, N V; Piotrovskii, L B

    2001-04-01

    Antidepressant activity of N-phenyl(benzyl)amino derivatives of aspartic acid was studied on various experimental models of depression. IEM-1770 (30 mg/kg) and IEM-1944 (20 mg/kg) exhibited antidepressant activity after single injection in the forced swimming and tail suspension tests. Antidepressant effect of 14-day administration of these compounds and reference drugs maprotiline (10 mg/kg) and citalopram (10 mg/kg) was confirmed on the model of learned helplessness. PMID:11550022

  11. Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) and dopamine DA1 agonist-sensitive Na+,K+-ATPase in renal tubule cells.

    PubMed Central

    Meister, B; Fryckstedt, J; Schalling, M; Cortés, R; Hökfelt, T; Aperia, A; Hemmings, H C; Nairn, A C; Ehrlich, M; Greengard, P

    1989-01-01

    The cellular localization of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 that appears to mediate certain actions of dopamine in the mammalian brain by acting as an inhibitor of protein phosphatase 1, was studied in the kidney of several species. DARPP-32 mRNA and DARPP-32-like immunoreactivity were found in the cytoplasm of cells in the thick ascending limb of the loop of Henle. The specific dopamine DA1 agonist SKF 82526 caused a dose-dependent inhibition of Na+,K+-ATPase activity, which could be blocked by SCH 23390, a specific DA1 antagonist, and by PKI-(5-24) amide, a specific inhibitor of cAMP-dependent protein kinase. The results indicate that DA1 dopamine receptors and DARPP-32, an intracellular third messenger for dopamine, are part of the signal-transduction process for dopamine acting on renal tubule cells. Images PMID:2573060

  12. Discriminative stimulus properties of 1.25mg/kg clozapine in rats: Mediation by serotonin 5-HT2 and dopamine D4 receptors.

    PubMed

    Prus, Adam J; Wise, Laura E; Pehrson, Alan L; Philibin, Scott D; Bang-Andersen, Benny; Arnt, Jørn; Porter, Joseph H

    2016-10-01

    The atypical antipsychotic drug clozapine remains one of most effective treatments for schizophrenia, given a lack of extrapyramidal side effects, improvements in negative symptoms, cognitive impairment, and in symptoms in treatment-resistant schizophrenia. The adverse effects of clozapine, including agranulocytosis, make finding a safe clozapine-like a drug a goal for drug developers. The drug discrimination paradigm is a model of interoceptive stimulus that has been used in an effort to screen experimental drugs for clozapine-like atypical antipsychotic effects. The present study was conducted to elucidate the receptor-mediated stimulus properties that form this clozapine discriminative cue by testing selective receptor ligands in rats trained to discriminate a 1.25mg/kg dose of clozapine from vehicle in a two choice drug discrimination task. Full substitution occurred with the 5-HT2A inverse agonist M100907 and the two preferential D4/5-HT2/α1 receptor antagonists Lu 37-114 ((S)-1-(3-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)indolin-1-yl)ethan-1-one) and Lu 37-254 (1-(3-(4-(1H-indol-5-yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one). Partial substitution occurred with the D4 receptor antagonist Lu 38-012 and the α1 adrenoceptor antagonist prazosin. Drugs selective for 5-HT2C, 5-HT6 muscarinic, histamine H1, and benzodiazepine receptors did not substitute for clozapine. The present findings suggest that 5-HT2A inverse agonism and D4 receptor antagonism mediate the discriminative stimulus properties of 1.25mg/kg clozapine in rats, and further confirm that clozapine produces a complex compound discriminative stimulus. PMID:27502027

  13. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. PMID:25308843

  14. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  15. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    PubMed Central

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  16. Moderate Alcohol Exposure during the Rat Equivalent to the Third Trimester of Human Pregnancy Alters Regulation of GABAA Receptor-Mediated Synaptic Transmission by Dopamine in the Basolateral Amygdala.

    PubMed

    Diaz, Marvin Rafael; Jotty, Karick; Locke, Jason L; Jones, Sara R; Valenzuela, Carlos Fernando

    2014-01-01

    Fetal ethanol (EtOH) exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA) plays a critical role in modulating emotional processing, in part, via dopamine (DA) regulation of GABA transmission. This BLA modulatory system is acquired during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the third trimester-equivalent [postnatal days (P) 2-12] alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs) was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine) but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum disorders. PMID

  17. VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease

    PubMed Central

    Tang, Fu-Lei; Erion, Joanna R.; Tian, Yun; Liu, Wei; Yin, Dong-Min; Ye, Jian; Tang, Baisha; Mei, Lin

    2015-01-01

    Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)—regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. SIGNIFICANCE STATEMENT VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through

  18. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  19. Regulation of bat echolocation pulse acoustics by striatal dopamine

    PubMed Central

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-01-01

    SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471

  20. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  1. Differential effects of dopamine-directed treatments on cognition

    PubMed Central

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. PMID:26251602

  2. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27132995

  3. Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate.

    PubMed

    Jasuja, R; Keyoung, J; Reid, G P; Trentham, D R; Khan, S

    1999-03-01

    Computer-assisted motion analysis coupled to flash photolysis of caged chemoeffectors provides a means for time-resolved analysis of bacterial chemotaxis. Escherichia coli taxis toward the amino acid attractant L-aspartate is mediated by the Tar receptor. The physiology of this response, as well as Tar structure and biochemistry, has been studied extensively. The beta-2, 6-dinitrobenzyl ester of L-aspartic acid and the 1-(2-nitrophenyl)ethyl ether of 8-hydroxypyrene-1,3,6-tris-sulfonic acid were synthesized. These compounds liberated L-aspartate and the fluorophore 8-hydroxypyrene 1,3,6-tris-sulfonic acid (pyranine) upon irradiation with near-UV light. Photorelease of the fluorophore was used to define the amplitude and temporal stability of the aspartate jumps employed in chemotaxis experiments. The dependence of chemotactic adaptation times on aspartate concentration, determined in mixing experiments, was best fit by two Tar aspartate-binding sites. Signal processing (excitation) times, amplitudes, and adaptive recovery of responses elicited by aspartate jumps producing less than 20% change in receptor occupancy were characterized in photorelease assays. Aspartate concentration jumps in the nanomolar range elicited measurable responses. The response threshold and sensitivity of swimming bacteria matched those of bacteria tethered to glass by a single flagellum. Stimuli of similar magnitude, delivered either by rapid mixing or photorelease, evoked responses of similar strength, as assessed by recovery time measurements. These times remained proportional to change in receptor occupancy close to threshold, irrespective of prior occupancy. Motor excitation responses decayed exponentially with time. Rates of excitation responses near threshold ranged from 2 to 7 s-1. These values are consistent with control of excitation signaling by decay of phosphorylated pools of the response regulator protein, CheY. Excitation response rates increased slightly with stimulus size

  4. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.

    PubMed

    Daberkow, D P; Brown, H D; Bunner, K D; Kraniotis, S A; Doellman, M A; Ragozzino, M E; Garris, P A; Roitman, M F

    2013-01-01

    Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  5. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?

    PubMed

    Berridge, K C; Robinson, T E

    1998-12-01

    What roles do mesolimbic and neostriatal dopamine systems play in reward? Do they mediate the hedonic impact of rewarding stimuli? Do they mediate hedonic reward learning and associative prediction? Our review of the literature, together with results of a new study of residual reward capacity after dopamine depletion, indicates the answer to both questions is 'no'. Rather, dopamine systems may mediate the incentive salience of rewards, modulating their motivational value in a manner separable from hedonia and reward learning. In a study of the consequences of dopamine loss, rats were depleted of dopamine in the nucleus accumbens and neostriatum by up to 99% using 6-hydroxydopamine. In a series of experiments, we applied the 'taste reactivity' measure of affective reactions (gapes, etc.) to assess the capacity of dopamine-depleted rats for: 1) normal affect (hedonic and aversive reactions), 2) modulation of hedonic affect by associative learning (taste aversion conditioning), and 3) hedonic enhancement of affect by non-dopaminergic pharmacological manipulation of palatability (benzodiazepine administration). We found normal hedonic reaction patterns to sucrose vs. quinine, normal learning of new hedonic stimulus values (a change in palatability based on predictive relations), and normal pharmacological hedonic enhancement of palatability. We discuss these results in the context of hypotheses and data concerning the role of dopamine in reward. We review neurochemical, electrophysiological, and other behavioral evidence. We conclude that dopamine systems are not needed either to mediate the hedonic pleasure of reinforcers or to mediate predictive associations involved in hedonic reward learning. We conclude instead that dopamine may be more important to incentive salience attributions to the neural representations of reward-related stimuli. Incentive salience, we suggest, is a distinct component of motivation and reward. In other words, dopamine systems are necessary

  6. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    PubMed

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  7. Nicotine increases dopamine transporter function in rat striatum through a trafficking-independent mechanism

    PubMed Central

    Middleton, Lisa S.; Apparsundaram, Subbu; King-Pospisil, Kelley A.; Dwoskin, Linda P.

    2007-01-01

    In previous in vivo voltammetry studies, acute nicotine administration increased striatal dopamine clearance. The current study aimed to determine whether nicotine also increases [3H]dopamine uptake across the time course of the previous voltammetry studies and whether dopamine transporter trafficking to the cell surface mediates the nicotine-induced augmentation of dopamine clearance in striatum. Rats were administered nicotine (0.32 mg/kg, s.c.); striatal synaptosomes were obtained 5, 10, 40 or 60 min later. Nicotine increased (25%) the Vmax of [3H]dopamine uptake at 10 and 40 min. To determine whether the increase in Vmax was due to an increase in dopamine transporter density, [3H]GBR 12935 (1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) binding was performed using rat striatal membranes; no differences were found between nicotine and saline control groups at 5, 10 or 40 min post-injection, indicating that nicotine did not increase striatal dopamine transporter density; however, [3H]GBR 12935 binding assays determine both cell surface and intracellular dopamine transporter. Changes in cellular dopamine transporter localization in striatum were determined using biotinylation and subfractionation approaches; no differences between nicotine and saline control groups were observed at 10 and 40 min post-injection. These results suggest that the nicotine-induced increase in dopamine uptake and clearance in striatum may occur via a trafficking-independent mechanism. PMID:17141211

  8. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. PMID:26608248

  9. Effects of N-methyl-D-aspartate (NMDA) receptor blockade on breathing pattern in newborn cat.

    PubMed

    Schweitzer, P; Pierrefiche, O; Foutz, A S; Denavit-Saubié, M

    1990-11-01

    We gave newborn kittens the N-methyl-D-aspartate (NMDA) receptor blocker MK-801 systemically while recording their breathing patterns by the barometric method. Unlike pentobarbital, MK-801 at an anaesthetic dose increased the relative length of inspiration within the respiratory cycle. The section of both vagus nerves under MK-801 produced apneustic breathing, whereas vagotomy under pentobarbital had no such effect. We conclude that the central inspiratory-termination mechanism mediated through NMDA receptors and the vagally-mediated mechanism that independently 'switches off' inspiration are both functional at birth. PMID:2148125

  10. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  11. Dopamine and binge eating behaviors

    PubMed Central

    Bello, Nicholas T.; Hajnal, Andras

    2010-01-01

    Central dopaminergic mechanisms are involved in the motivational aspects of eating and food choices. This review focuses on human and animal data examining the importance of dopamine on binge eating behaviors. Early works examining dopamine metabolites in the cerebrospinal fluid and plasma of bulimic individuals suggested decreased dopamine turnover during the active phase of the illness. While neuroimaging studies of dopamine mechanisms in bulimia nervosa (BN) and binge eating disorder (BED) are limited, genetic studies in humans have implicated an increased frequency of dopamine transporter and associated D2 receptor polymorphisms with binge pathology. Recent examinations of rodent models of dietary-induced binge eating (DIBE) have investigated plausible dopamine mechanisms involved in sustaining binge eating behaviors. In DIBE models, highly palatable foods (fats, sugars and their combination), as well as restricted access conditions appear to promote ingestive responses and result in sustained dopamine stimulation within the nucleus accumbens. Taken together with studies examining the comorbidity of illicit drug use and eating disorders, the data reviewed here support a role for dopamine in perpetuating the compulsive feeding patterns of BN and BED. As such, we propose that sustained stimulation of the dopamine systems by bingeing promoted by preexisting conditions (e.g., genetic traits, dietary restraint, stress, etc.) results in progressive impairments of dopamine signaling. To disrupt this vicious cycle, novel research-based treatment options aiming at the neural substrates of compulsive eating patterns are necessary. PMID:20417658

  12. Dual role of medial A10 dopamine neurons in affective encoding.

    PubMed

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-11-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D(2) dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli. PMID:18256592

  13. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  14. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  15. Dopamine Function and the Efficiency of Human Movement

    PubMed Central

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2016-01-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit “motor motivational” signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine. PMID:24144250

  16. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  17. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  18. Dopamine and food addiction: lexicon badly needed.

    PubMed

    Salamone, John D; Correa, Mercè

    2013-05-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term addiction to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates reward, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present article provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors and a consideration of how these could be altered in pathological conditions. PMID:23177385

  19. Linking unfounded beliefs to genetic dopamine availability

    PubMed Central

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  20. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney

    PubMed Central

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-01-01

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H+/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [3H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na+ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [3H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [3H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na+ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity. PMID:27483254

  1. Submicromolar Phosphinic Inhibitors of E. coli Aspartate Transcarbamoylase

    PubMed Central

    Coudray, Laëtitia; Kantrowitz, Evan R.; Montchamp, Jean-Luc

    2009-01-01

    The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-phosphonacetyl-L-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic catalysis. PMID:19097895

  2. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  3. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  4. Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms.

    PubMed

    Ramirez, Andres D; Wong, Stephen K-F; Menniti, Frank S

    2003-08-15

    The role of dopamine D3 receptors was investigated in mediating the neuroprotective effect of the dopamine D2/D3 receptor agonist (S)-2-amino-4,5,6,7-tetrahydro-6-propylamine-benzothiazole (pramipexole) in vivo. Pramipexole retained the ability to inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion in mice in which the dopamine D3 receptor had been deleted. However, the neuroprotective efficacy was reduced in the dopamine D3 receptor-deleted mice compared to that in littermates expressing the wildtype receptor. Furthermore, the dopamine D3 receptor selective antagonist 2-(3-[4-(2-tert-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio)-4-pyrimidinol (A-437203) partially inhibited the neuroprotective effect of pramipexole in dopamine D3 receptor expressing mice but not in receptor-deleted mice. These results indicate that pramipexole protects dopamine neurons from MPTP-induced toxicity by mechanisms that are both dependent and independent of an interaction with dopamine D3 receptors. PMID:12954356

  5. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA.

    PubMed

    Gantz, Stephanie C; Levitt, Erica S; Llamosas, Nerea; Neve, Kim A; Williams, John T

    2015-08-11

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission. PMID:26235617

  6. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  7. Requirement of Dopamine Signaling in the Amygdala and Striatum for Learning and Maintenance of a Conditioned Avoidance Response

    ERIC Educational Resources Information Center

    Darvas, Martin; Fadok, Jonathan P.; Palmiter, Richard D.

    2011-01-01

    Two-way active avoidance (2WAA) involves learning Pavlovian (association of a sound cue with a foot shock) and instrumental (shock avoidance) contingencies. To identify regions where dopamine (DA) is involved in mediating 2WAA, we restored DA signaling in specific brain areas of dopamine-deficient (DD) mice by local reactivation of conditionally…

  8. Secreted Aspartic Proteinase Family of Candida tropicalis

    PubMed Central

    Zaugg, Christophe; Borg-von Zepelin, Margarete; Reichard, Utz; Sanglard, Dominique; Monod, Michel

    2001-01-01

    Medically important yeasts of the genus Candida secrete aspartic proteinases (Saps), which are of particular interest as virulence factors. Like Candida albicans, Candida tropicalis secretes in vitro one dominant Sap (Sapt1p) in a medium containing bovine serum albumin (BSA) as the sole source of nitrogen. Using the gene SAPT1 as a probe and under low-stringency hybridization conditions, three new closely related gene sequences, SAPT2 to SAPT4, encoding secreted proteinases were cloned from a C. tropicalis λEMBL3 genomic library. All bands identified by Southern blotting of EcoRI-digested C. tropicalis genomic DNA with SAPT1 could be assigned to a specific SAP gene. Therefore, the SAPT gene family of C. tropicalis is likely to contain only four members. Interestingly, the SAPT2 and SAPT3 gene products, Sapt2p and Sapt3p, which have not yet been detected in C. tropicalis cultures in vitro, were produced as active recombinant enzymes with the methylotrophic yeast Pichia pastoris as an expression system. As expected, reverse transcriptase PCR experiments revealed a strong SAPT1 signal with RNA extracted from cells grown in BSA medium. However, a weak signal was obtained with all other SAPT genes under several conditions tested, showing that these SAPT genes could be expressed at a basic level. Together, these experiments suggest that the gene products Sapt2p, Sapt3p, and Sapt4p could be produced under conditions yet to be described in vitro or during infection. PMID:11119531

  9. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  10. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  11. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    PubMed

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  12. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  13. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  14. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats. PMID:25825926

  15. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K

    2010-04-01

    In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity. PMID:20080957

  16. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm. PMID:177206

  17. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    PubMed

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a

  18. Complexity of dopamine metabolism

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability. In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD. PMID:23683503

  19. Neurosteroid Agonist at GABAA Receptor Induces Persistent Neuroplasticity in VTA Dopamine Neurons

    PubMed Central

    Vashchinkina, Elena; Manner, Aino K; Vekovischeva, Olga; Hollander, Bjørnar den; Uusi-Oukari, Mikko; Aitta-aho, Teemu; Korpi, Esa R

    2014-01-01

    The main fast-acting inhibitory receptors in the mammalian brain are γ-aminobutyric acid type-A (GABAA) receptors for which neurosteroids, a subclass of steroids synthesized de novo in the brain, constitute a group of endogenous ligands with the most potent positive modulatory actions known. Neurosteroids can act on all subtypes of GABAA receptors, with a preference for δ-subunit-containing receptors that mediate extrasynaptic tonic inhibition. Pathological conditions characterized by emotional and motivational disturbances are often associated with perturbation in the levels of endogenous neurosteroids. We studied the effects of ganaxolone (GAN)—a synthetic analog of endogenous allopregnanolone that lacks activity on nuclear steroid receptors—on the mesolimbic dopamine (DA) system involved in emotions and motivation. A single dose of GAN in young mice induced a dose-dependent, long-lasting neuroplasticity of glutamate synapses of DA neurons ex vivo in the ventral tegmental area (VTA). Increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/N-methyl-D-aspartate ratio and rectification of AMPA receptor responses even at 6 days after GAN administration suggested persistent synaptic targeting of GluA2-lacking AMPA receptors. This glutamate neuroplasticity was not observed in GABAA receptor δ-subunit-knockout (δ-KO) mice. GAN (500 nM) applied locally to VTA selectively increased tonic inhibition of GABA interneurons and triggered potentiation of DA neurons within 4 h in vitro. Place-conditioning experiments in adult wild-type C57BL/6J and δ-KO mice revealed aversive properties of repeated GAN administration that were dependent on the δ-subunits. Prolonged neuroadaptation to neurosteroids in the VTA might contribute to both the physiology and pathophysiology underlying processes and changes in motivation, mood, cognition, and drug addiction. PMID:24077066

  20. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  1. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293 K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29 Å, and diffracted to 2.6 Å resolution. Structure determination is under way. PMID:26249691

  2. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    PubMed Central

    Swapna, Immani; Bondy, Brian; Morikawa, Hitoshi

    2016-01-01

    SUMMARY Dopamine action in the nucleus accumbens (NAc) is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs) of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR)-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3) plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ~2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations. PMID:27068462

  3. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.

    PubMed

    Salamone, J D

    1994-04-18

    In recent years, considerable emphasis has been placed upon the putative role of nucleus accumbens dopamine systems in appetitive motivation and positive reinforcement. However, considerable evidence indicates that brain dopamine in general, and nucleus accumbens dopamine in particular, is involved in aspects of aversive motivation. Administration of dopamine antagonists or localized interference with nucleus accumbens dopamine systems has been shown to disrupt active avoidance behavior. In addition, accumbens dopamine release and metabolism is activated by a wide variety of stressful conditions. A review of the literature indicates that there are substantial similarities between the characteristics of dopaminergic involvement in appetitive and aversive motivation. There is conflicting evidence about the role of dopamine in emotion, and little evidence to suggest that the profound and consistent changes in instrumental behavior produced by interference with DA systems are due to direct dopaminergic mediation of positive affective responses such as hedonia. It is suggested that nucleus accumbens dopamine is involved in aspects of sensorimotor functions that are involved in both appetitive and aversive motivation. PMID:8037860

  4. Coexpressed D1- and D2-Like Dopamine Receptors Antagonistically Modulate Acetylcholine Release in Caenorhabditis elegans

    PubMed Central

    Allen, Andrew T.; Maher, Kathryn N.; Wani, Khursheed A.; Betts, Katherine E.; Chase, Daniel L.

    2011-01-01

    Dopamine acts through two classes of G protein-coupled receptor (D1-like and D2-like) to modulate neuron activity in the brain. While subtypes of D1- and D2-like receptors are coexpressed in many neurons of the mammalian brain, it is unclear how signaling by these coexpressed receptors interacts to modulate the activity of the neuron in which they are expressed. D1- and D2-like dopamine receptors are also coexpressed in the cholinergic ventral-cord motor neurons of Caenorhabditis elegans. To begin to understand how coexpressed dopamine receptors interact to modulate neuron activity, we performed a genetic screen in C. elegans and isolated mutants defective in dopamine response. These mutants were also defective in behaviors mediated by endogenous dopamine signaling, including basal slowing and swimming-induced paralysis. We used transgene rescue experiments to show that defects in these dopamine-specific behaviors were caused by abnormal signaling in the cholinergic motor neurons. To investigate the interaction between the D1- and D2-like receptors specifically in these cholinergic motor neurons, we measured the sensitivity of dopamine-signaling mutants and transgenic animals to the acetylcholinesterase inhibitor aldicarb. We found that D2 signaling inhibited acetylcholine release from the cholinergic motor neurons while D1 signaling stimulated release from these same cells. Thus, coexpressed D1- and D2-like dopamine receptors act antagonistically in vivo to modulate acetylcholine release from the cholinergic motor neurons of C. elegans. PMID:21515580

  5. Characterization of D/sub 1/ dopamine receptors in the central nervous system

    SciTech Connect

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D/sub 1/ dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D/sub 1/ dopamine receptor antagonists, SCH23390. (/sup 3/H)SCH23390 represents a superior radioligand for labeling the two-state striatal D/sub 1/ dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D/sub 1/ dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D/sub 1/ dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity.

  6. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    PubMed

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies. PMID:26876136

  7. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  8. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    PubMed

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  9. Neuropharmacology of dopamine receptors:

    PubMed Central

    Tarazi, Frank I.

    2001-01-01

    There has been an extraordinary recent accumulation of information concerning the neurobiology and neuropharmacology of dopamine (DA) receptors in the mammalian central nervous system. Many new DA molecular entities have been cloned, their gene, peptide sequences and structures have been identified, their anatomical distributions in the mammalian brain described, and their pharmacology characterized. Progress has been made toward developing selective ligands and drug-candidates for different DA receptors. The new discoveries have greatly stimulated preclinical and clinical studies to explore the neuropharmacology of DA receptors and their implications in the neuropathophysiology of different neuropsychiatric diseases including schizophrenia, Parkinson’s disease and attention-deficit hyperactivity disorder. Accordingly, it seems timely to review the salient aspects of this specialized area of preclinical neuropharmacology and its relevance to clinical neuropsychiatry. PMID:24019715

  10. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  11. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  12. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    PubMed

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. PMID:26871628

  13. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  14. Dopamine-dependent responses to morphine depend on glucocorticoid receptors

    PubMed Central

    Marinelli, Michela; Aouizerate, Bruno; Barrot, Michel; Le Moal, Michel; Piazza, Pier Vincenzo

    1998-01-01

    Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction. PMID:9636221

  15. Mesolimbic dopamine signals the value of work.

    PubMed

    Hamid, Arif A; Pettibone, Jeffrey R; Mabrouk, Omar S; Hetrick, Vaughn L; Schmidt, Robert; Vander Weele, Caitlin M; Kennedy, Robert T; Aragona, Brandon J; Berke, Joshua D

    2016-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the available reward for investment of effort, which is employed for both learning and motivational functions. PMID:26595651

  16. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  17. In situ properties of Helicobacter pylori aspartate carbamoyltransferase.

    PubMed

    Burns, B P; Mendz, G L; Hazell, S L

    1997-11-01

    The kinetic and regulatory properties of aspartate carbamoyltransferase (ACTase) of the human pathogen Helicobacter pylori were studied in situ in cell-free extracts. The presence of enzyme activity was established by identifying the end product as carbamoylaspartate using nuclear magnetic resonance spectroscopy. Activity was measured in all strains studied, including recent clinical isolates. Substrate saturation curves determined employing radioactive tracer analysis or a microtiter colorimetric assay were hyperbolic for both carbamoyl phosphate and aspartate, and there was no evidence for substrate inhibition at higher concentrations of either substrate. The apparent Km were 0.6 and 11.6 mm for carbamoyl phosphate and aspartate, respectively. Optimal pH and temperature were determined as 8.0 and 45 degrees C. Activity was observed with the l- but not the d-isomer of aspartate. Succinate and maleate inhibited enzyme activity competitively with respect to aspartate. The carbamoyl phosphate analogues acetyl phosphate and phosphonoacetic acid inhibited activity in a competitive manner with respect to carbamoyl phosphate. With limiting carbamoyl phosphate purine and pyrimidine nucleotides, tripolyphosphate, pyrophosphate, and orthophosphate inhibited competitively at millimolar concentrations. Ribose and ribose 5-phosphate at 10 mm concentration showed 20 and 35% inhibition of enzyme activity, respectively. N-Phosphonoacetyl-l-aspartate (PALA) was the most potent inhibitor studied, with 50% inhibition of enzyme activity observed at 0.1 microM concentration. Inhibition by PALA was competitive with carbamoyl phosphate (Ki = 0.245 microM) and noncompetitive with aspartate. The kinetic and regulatory data on the activity of the H. pylori enzyme suggest it is a Class A ACTase, but with some interesting characteristics distinct from this class. PMID:9344472

  18. Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy

    PubMed Central

    Walker, Q. David; Johnson, Misha L.; Van Swearingen, Amanda E.D.; Arrant, Andrew E.; Caster, Joseph M.; Kuhn, Cynthia M.

    2012-01-01

    Ovarian hormones modulate the pharmacological effects of psychostimulants and may enhance vulnerability to drug addiction. Female rats have more midbrain dopamine neurons than males and greater dopamine uptake and release rates. Cocaine stimulates motor behavior and dopamine efflux more in female than male rats, but the mediating mechanisms are unknown. This study investigated individual differences in anatomic, neurochemical, and behavioral measures in female rats to understand how ovarian hormones affect the relatedness of these endpoints. Ovarian hormone effects were assessed by comparing individual responses in ovariectomized (OVX) and sham adult female rats. Locomotion was determined before and following 10 mg/kg cocaine. Electrically-stimulated dopamine efflux was assessed using fast cyclic voltammetry in vivo. Dopamine neuron number and density in substantia nigra (SN) and ventral tegmental area (VTA) were determined in the same animals using tyrosine-hydroxylase immunohistochemistry and unbiased stereology. Locomotor behavior and dopamine efflux did not differ at baseline but were greater in sham than OVX following cocaine. Cocaine increased dopamine release rates in both groups but uptake inhibition (Km) was greater in sham than OVX. Dopamine neuron number and density in SN and VTA were greater in shams. Sham females with the largest uterine weights exhibited the highest density of dopamine neurons in the SN, and the most cocaine-stimulated behavior and dopamine efflux. Ovariectomy eliminated these relationships. We postulate that SN density could link ovarian hormones and high-psychostimulant responses in females. Similar mechanisms may be involved in individual differences in the addiction vulnerability of women. PMID:22342988

  19. Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus

    SciTech Connect

    Kemel, M.L.; Desban, M.; Glowinski, J.; Gauchy, C. )

    1989-11-01

    By use of a sensitive in vitro microsuperfusion method, the cholinergic presynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of ({sup 3}H)dopamine continuously synthesized from ({sup 3}H)tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of ({sup 3}H)dopamine were calcium-dependent in both compartments. With 10{sup {minus}6} M tetrodotoxin, 5 {times} 10{sup {minus}5} M acetylcholine stimulated ({sup 3}H)dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine, thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) in contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10{sup {minus}6} M atropine completely abolished the cholinergic stimulatory effect on ({sup 3}H)dopamine release in striosomal area, delayed and prolonged stimulation of ({sup 3}H) dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine. Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on ({sup 3}H)dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of ({sup 3}H)dopamine release mediated by muscarinic and nicotinic receptors, respectively.

  20. Effects of dopamine D2-like receptor agonists in mice trained to discriminate cocaine from saline: influence of feeding condition

    PubMed Central

    Collins, Gregory T.; Jackson, Jonathan A.; Koek, Wouter; France, Charles P.

    2014-01-01

    In rats, the discriminative stimulus effects of direct- and indirect-acting dopamine receptor agonists are mediated by multiple dopamine receptor subtypes and the relative contribution of dopamine D2 and D3 receptors to these effects varies as a function of feeding condition. In these studies, free-fed and food-restricted mice were trained to discriminate 10.0 mg/kg cocaine using a two-lever discrimination procedure in which responding was maintained by food. Both groups of mice acquired the discrimination; however, free-fed mice responded at lower rates than food-restricted mice. Dopamine D3 receptor agonists, pramipexole and quinpirole, increased cocaine-appropriate responding (>85%) in food-restricted, but not in free-fed mice. The dopamine D2 receptor agonist, sumanirole, and the nonselective dopamine receptor agonist, apomorphine, failed to increase cocaine-appropriate responding in either group. Free-fed mice were more sensitive than food-restricted mice to the rate-decreasing effects of dopamine receptor agonists and these effects could not be overcome by increasing the magnitude of reinforcement. Because feeding condition did not alter quinpirole-induced hypothermia, it is unlikely that differences in the discriminative stimulus or rate-decreasing effects of dopamine D2-like receptor agonists were due to differences in the pharmacokinetic properties of the drugs. Although these results suggest that the discriminative stimulus effects of cocaine are mediated by both dopamine D2 and D3 receptors in food-restricted mice, the increased sensitivity of free-fed mice to the rate-decreasing effects of dopamine D2-like receptor agonists limited conclusions about the impact of feeding conditions on the relative contribution of dopamine D2 and D3 receptors to the discriminative stimulus effects of cocaine. PMID:24561049

  1. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II

    PubMed Central

    Benchoua, Alexandra; Trioulier, Yaël; Diguet, Elsa; Malgorn, Carole; Gaillard, Marie-Claude; Dufour, Noelle; Elalouf, Jean-Marc; Krajewski, Stan; Hantraye, Philippe; Déglon, Nicole; Brouillet, Emmanuel

    2008-01-01

    In neurodegenerative disorders associated with primary or secondary mitochondrial defects such as Huntington's disease (HD), cells of the striatum are particularly vulnerable to cell death, although the mechanisms by which this cell death is induced are unclear. Dopamine, found in high concentrations in the striatum, may play a role in striatal cell death. We show that in primary striatal cultures, dopamine increases the toxicity of an N-terminal fragment of mutated huntingtin (Htt-171-82Q). Mitochondrial complex II protein (mCII) levels are reduced in HD striatum, indicating that this protein may be important for dopamine-mediated striatal cell death. We found that dopamine enhances the toxicity of the selective mCII inhibitor, 3-nitropropionic acid. We also demonstrated that dopamine doses that are insufficient to produce cell loss regulate mCII expression at the mRNA, protein and catalytic activity level. We also show that dopamine-induced down-regulation of mCII levels can be blocked by several dopamine D2 receptor antagonists. Sustained overexpression of mCII subunits using lentiviral vectors abrogated the effects of dopamine, both by high dopamine concentrations alone and neuronal death induced by low dopamine concentrations together with Htt-171-82Q. This novel pathway links dopamine signaling and regulation of mCII activity and could play a key role in oxidative energy metabolism and explain the vulnerability of the striatum in neurodegenerative diseases. PMID:18267960

  2. Noradrenergic mediation of the positive reinforcing properties of ethanol: II. Extinction of ethanol-drinking behavior in laboratory rats by inhibition of dopamine-beta-hydroxylase. Implications for treatment procedures in human alcoholics.

    PubMed

    Brown, Z W; Amit, Z; Levitan, D E; Ogren, S O; Sutherland, E A

    1977-11-01

    Following stabilization of consumption of a 15% (v/v) ethanol solution in a free-choice with water, rats were presented with a forced-choice of ethanol for 10 consecutive alternate days. Prior to each forced-choice presentation experimental animals were injected with the non-toxic dopamine-beta-hydroxylase inhibitor FLA-57 (30 mg/kg i.p.) while control animals received only vehicle injections. At the termination of the injection phase when ethanol was again made available in a free-choice with water, ethanol consumption for the FLA-57 treated animals was markedly suppressed. These data are interpreted in terms of extinction resulting from the procedure whereby performance of the ethanol drinking response was perpetuated by force with the pharmacological reinforcing properties being blocked by FLA-57-induced depletions of norepinephrine. Applications of these procedures in the treatment of human alcoholics are discussed. PMID:603311

  3. D1 dopamine receptor activity of anti-parkinsonian drugs.

    PubMed

    Fici, G J; Wu, H; VonVoigtlander, P F; Sethy, V H

    1997-01-01

    Clinical and preclinical investigations suggest that stimulation of D1 dopamine receptors may be responsible for dyskinesias induced by dopamine agonist treatment of Parkinson's Disease (PD), and that these dyskinesias may be decreased by treatment with a D1 antagonist (clozapine). Therefore, the effects of dopamine agonists and antagonists have been investigated in a primary cerebellar granule cell model of cAMP formation that seems to be highly responsive to the D1 receptors. SKF 38393, lisuride, apomorphine, pergolide, dopamine, bromocriptine and 7-OH-DPAT showed concentration-dependent increases in cAMP formation, with EC50s (in microM) of 0.013, 0.053, 0.25, 1.04, 2.18, 50.9 and 54.4, respectively. SKF 38393, apomorphine, dopamine and pergolide had similar intrinsic activity (100%), while the intrinsic activities of 7-OH-DPAT, bromocriptine and lisuride were 28.0%, 20.7% and 17.2%, respectively. SCH 23390, a selective D1 dopamine receptor antagonist, blocked an increase in cAMP formation produced by EC50 concentrations of all of the dopamine agonists investigated in this study. Clozapine concentration-dependently blocked pergolide-induced increases in cAMP and was approximately 1700-fold less potent than SCH 23390 (IC50: 0.97 microM and 0.56 nM, respectively). U-95666A (1-1000 microM), selective for the D2 receptors, showed no significant effect on cAMP, while pramipexole (0.1-100 microM), a D3 preferring agonist, did not elevate cAMP. These data suggest that primary cerebellar granule cell cultures are an excellent model for measuring D1 dopamine receptor-mediated changes in cellular cAMP. The results are discussed with reference to the relationship between the D1 receptor-stimulated increase in cAMP formation and the induction of dyskinesia in humans by these anti-parkinsonian drugs. PMID:9126882

  4. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  5. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  6. An updated view on the role of dopamine in myopia.

    PubMed

    Feldkaemper, Marita; Schaeffel, Frank

    2013-09-01

    A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in

  7. Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity.

    PubMed

    Sesia, Thibaut; Bizup, Brandon; Grace, Anthony A

    2013-07-01

    Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing. These results were then compared with their relative impact on the state of activity of the mesolimbic dopaminergic system using extracellular recoding of spontaneously active dopamine neurons in the ventral tegmental area (VTA). The clomipramine model failed to exacerbate compulsive lever pressing and VTA dopamine neurons in clomipramine-treated rats had mildly diminished bursting activity. In contrast, quinpirole-treated animals showed significant increases in compulsive lever pressing, which was concurrent with a substantial diminution of bursting activity of VTA dopamine neurons. Therefore, VTA dopamine activity correlated with the behavioural response in these models. Taken together, these data support the view that compulsive behaviours likely reflect, at least in part, a disruption of the dopaminergic system, more specifically by a decrease in baseline phasic dopamine signalling mediated by burst firing of dopamine neurons. PMID:23360787

  8. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

    PubMed Central

    Lohr, Kelly M.; Bernstein, Alison I.; Stout, Kristen A.; Dunn, Amy R.; Lazo, Carlos R.; Alter, Shawn P.; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J.; Yi, Hong; Vecchio, Laura M.; Goldstein, David S.; Guillot, Thomas S.; Salahpour, Ali; Miller, Gary W.

    2014-01-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  9. BMI Modulates Calorie-Dependent Dopamine Changes in Accumbens from Glucose Intake

    PubMed Central

    Wang, Gene-Jack; Tomasi, Dardo; Convit, Antonio; Logan, Jean; Wong, Christopher T.; Shumay, Elena; Fowler, Joanna S.; Volkow, Nora D.

    2014-01-01

    Objective Dopamine mediates the rewarding effects of food that can lead to overeating and obesity, which then trigger metabolic neuroadaptations that further perpetuate excessive food consumption. We tested the hypothesis that the dopamine response to calorie intake (independent of palatability) in striatal brain regions is attenuated with increases in weight. Method We used positron emission tomography with [11C]raclopride to measure dopamine changes triggered by calorie intake by contrasting the effects of an artificial sweetener (sucralose) devoid of calories to that of glucose to assess their association with body mass index (BMI) in nineteen healthy participants (BMI range 21–35). Results Neither the measured blood glucose concentrations prior to the sucralose and the glucose challenge days, nor the glucose concentrations following the glucose challenge vary as a function of BMI. In contrast the dopamine changes in ventral striatum (assessed as changes in non-displaceable binding potential of [11C]raclopride) triggered by calorie intake (contrast glucose – sucralose) were significantly correlated with BMI (r = 0.68) indicating opposite responses in lean than in obese individuals. Specifically whereas in normal weight individuals (BMI <25) consumption of calories was associated with increases in dopamine in the ventral striatum in obese individuals it was associated with decreases in dopamine. Conclusion These findings show reduced dopamine release in ventral striatum with calorie consumption in obese subjects, which might contribute to their excessive food intake to compensate for the deficit between the expected and the actual response to food consumption. PMID:25000285

  10. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    PubMed Central

    Walaas, Sven Ivar; Hemmings, Hugh Caroll; Greengard, Paul; Nairn, Angus Clark

    2011-01-01

    Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways. PMID:21904525

  11. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo.

    PubMed

    Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A; Dunn, Amy R; Lazo, Carlos R; Alter, Shawn P; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J; Yi, Hong; Vecchio, Laura M; Goldstein, David S; Guillot, Thomas S; Salahpour, Ali; Miller, Gary W

    2014-07-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  12. Stress responses and the mesolimbic dopamine system: social contexts and sex differences

    PubMed Central

    Trainor, Brian C.

    2011-01-01

    Organisms react to threats with a variety of behavioral, hormonal, and neurobiological responses. The study of biological responses to stress has historically focused on the hypothalamic-pituitary-adrenal axis, but other systems such as the mesolimbic dopamine system are involved. Behavioral neuroendocrinologists have long recognized the importance of the mesolimbic dopamine system in mediating the effects of hormones on species specific behavior, especially aspects of reproductive behavior. There has been less focus on the role of this system in the context of stress, perhaps due to extensive data outlining its importance in reward or approach-based contexts. However, there is steadily growing evidence that the mesolimbic dopamine neurons have critical effects on behavioral responses to stress. Most of these data have been collected from experiments using a small number of animal model species under a limited set of contexts. This approach has led to important discoveries, but evidence is accumulating that mesolimbic dopamine responses are context dependent. Thus, focusing on a limited number of species under a narrow set of controlled conditions constrains our understanding of how the mesolimbic dopamine system regulates behavior in response to stress. Both affiliative and antagonistic social interactions have important effects on mesolimbic dopamine function, and there is preliminary evidence for sex differences as well. This review will highlight the benefits of expanding this approach, and focus on how social contexts and sex differences can impact mesolimbic dopamine stress responses. PMID:21907202

  13. A systematic and mechanistic evaluation of aspartic acid as filler for directly compressed tablets containing trimethoprim and trimethoprim aspartate.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2013-04-01

    The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients. PMID:23207325

  14. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  15. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth. PMID:26921458

  16. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  17. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    SciTech Connect

    Wu Xuan; Tian Feng; Okagaki, Peter; Marini, Ann M. . E-mail: amarini@usuhs.mil

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role. Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.

  18. Dopamine Release Dynamics Change during Adolescence and after Voluntary Alcohol Intake

    PubMed Central

    Palm, Sara; Nylander, Ingrid

    2014-01-01

    Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum. PMID:24788731

  19. Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia.

    PubMed

    Purohit, Vishnudutt; Rapaka, Rao; Shurtleff, David

    2011-08-01

    Although the incidence of HIV-associated dementia (HAD) has declined, HIV-associated neurocognitive disorders (HAND) remain a significant health problem despite use of highly active antiretroviral therapy. In addition, the incidence and/or severity of HAND/HAD are increased with concomitant use of drugs of abuse, such as cocaine, marijuana, and methamphetamine. Furthermore, exposure to most drugs of abuse increases brain levels of dopamine, which has been implicated in the pathogenesis of HIV. This review evaluates the potential role of dopamine in the potentiation of HAND/HAD by drugs of abuse. In the brain, multiplication of HIV in infected macrophages/microglia could result in the release of HIV proteins such as gp120 and Tat, which can bind to and impair dopamine transporter (DAT) functions, leading to elevated levels of dopamine in the dopaminergic synapses in the early asymptomatic stage of HIV infection. Exposure of HIV-infected patients to drugs of abuse, especially cocaine and methamphetamine, can further increase synaptic levels of dopamine via binding to and subsequently impairing the function of DAT. This accumulated synaptic dopamine can diffuse out and activate adjacent microglia through binding to dopamine receptors. The activation of microglia may result in increased HIV replication as well as increased production of inflammatory mediators such as tumor necrosis factor (TNF)-alpha and chemokines. Increased HIV replication can lead to increased brain viral load and increased shedding of HIV proteins, gp120 and Tat. These proteins, as well as TNF-alpha, can induce cell death of adjacent dopaminergic neurons via apoptosis. Autoxidation and metabolism of accumulated synaptic dopamine can lead to generation of reactive oxygen species (hydrogen peroxide), quinones, and semiquinones, which can also induce apoptosis of neurons. Increased cell death of dopaminergic neurons can eventually lead to dopamine deficit that may exacerbate the severity and

  20. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  1. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-01

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains. PMID:26442590

  2. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    SciTech Connect

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120 min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.

  3. Functional dopamine D2 receptors on rat vagal afferent neurones.

    PubMed Central

    Lawrence, A J; Krstew, E; Jarrott, B

    1995-01-01

    1. In the present study in vitro electrophysiology and receptor autoradiography were used to determine whether rat vagal afferent neurones possess dopamine D2 receptors. 2. Dopamine (10-300 microM) elicited a temperature- and concentration-dependent depolarization of the rat isolated nodose ganglion preparation. When applied to the tissue 15 min prior to agonist, raclopride (10 microM), clozapine (10 microM) or a mixture of raclopride and clozapine (10 microM each) all produced a threefold parallel shift to the right of the dopamine concentration-response curve. In contrast, SCH 23390 (100 nM), phentolamine and propranolol (1 microM each) failed to antagonize the dopamine-mediated depolarization. 3. [125I]-NCQ 298 (0.5 nM), a D2 selective radioligand, bound topographically to sections of rat brainstem. Densitometric quantification of autoradiograms revealed 93.8 +/- 0.5% specific binding of this salicylamide radioligand, as determined by raclopride (10 microM, n = 10 animals). Binding was highest in the nucleus tractus solitarius (NTS), particularly the medial and gelatinous subnuclei. In addition, specific binding was also observed in the interpolar spinal trigeminal nucleus and the inferior olive. 4. Unilateral nodose ganglionectomy caused a 36.6 +/- 3.0% reduction in specific binding in the denervated NTS compared to the contralateral NTS. Furthermore, the loss of binding was confined to the dorsal aspect of the medial subnucleus of the NTS. Sham surgery had no effect on the binding of [125I]-NCQ 298 in rat brainstem. 5. The present data provide evidence for the presence of functionally relevant dopamine D2 receptors on both the soma and central terminals of rat vagal afferent neurones.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 3 PMID:7606337

  4. Urinary Dopamine as a Potential Index of the Transport Activity of Multidrug and Toxin Extrusion in the Kidney.

    PubMed

    Kajiwara, Moto; Ban, Tsuyoshi; Matsubara, Kazuo; Nakanishi, Yoichi; Masuda, Satohiro

    2016-01-01

    Dopamine is a cationic natriuretic catecholamine synthesized in proximal tubular cells (PTCs) of the kidney before secretion into the lumen, a key site of its action. However, the molecular mechanisms underlying dopamine secretion into the lumen remain unclear. Multidrug and toxin extrusion (MATE) is a H⁺/organic cation antiporter that is highly expressed in the brush border membrane of PTCs and mediates the efflux of organic cations, including metformin and cisplatin, from the epithelial cells into the urine. Therefore, we hypothesized that MATE mediates dopamine secretion, a cationic catecholamine, into the tubule lumen, thereby regulating natriuresis. Here, we show that [³H]dopamine uptake in human (h) MATE1-, hMATE-2K- and mouse (m) MATE-expressing cells exhibited saturable kinetics. Fluid retention and decreased urinary excretion of dopamine and Na⁺ were observed in Mate1-knockout mice compared to that in wild-type mice. Imatinib, a MATE inhibitor, inhibited [³H]dopamine uptake by hMATE1-, hMATE2-K- and mMATE1-expressing cells in a concentration-dependent manner. At clinically-relevant concentrations, imatinib inhibited [³H]dopamine uptake by hMATE1- and hMATE2-K-expressing cells. The urinary excretion of dopamine and Na⁺ decreased and fluid retention occurred in imatinib-treated mice. In conclusion, MATE transporters secrete renally-synthesized dopamine, and therefore, urinary dopamine has the potential to be an index of the MATE transporter activity. PMID:27483254

  5. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    PubMed

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway. PMID:26189884

  6. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY.

    PubMed Central

    Bourret, R B; Hess, J F; Simon, M I

    1990-01-01

    The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior. Images PMID:2404281

  7. DOPAMINE DEPLETION SLOWS RETINAL TRANSMISSION

    EPA Science Inventory

    In male hooded rats, depletion of norepinephrine and dopamine by a-methyl-paratyrosine (AMT) significantly increased the latencies of early peaks in flash-evoked potentials recorded from the visual cortex, lateral geniculate nucleus, and optic tract. These effects were not produc...

  8. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis

    PubMed Central

    Kim, Donghun; Urban, Joshua; Boyle, Daniel L.; Park, Yoonseong

    2016-01-01

    Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 μmol l−1), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 μmol l−1, ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct. PMID:26861075

  9. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters.

    PubMed

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S S; Wainer, Irving W; Cheer, Joseph F; Frost, Douglas O; Huang, Xi-Ping; Gould, Todd D

    2016-10-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513

  10. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  11. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  12. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  13. Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia.

    PubMed

    Jarraya, Béchir; Boulet, Sabrina; Ralph, G Scott; Jan, Caroline; Bonvento, Gilles; Azzouz, Mimoun; Miskin, James E; Shin, Masahiro; Delzescaux, Thierry; Drouot, Xavier; Hérard, Anne-Sophie; Day, Denise M; Brouillet, Emmanuel; Kingsman, Susan M; Hantraye, Philippe; Mitrophanous, Kyriacos A; Mazarakis, Nicholas D; Palfi, Stéphane

    2009-10-14

    In Parkinson's disease, degeneration of specific neurons in the midbrain can cause severe motor deficits, including tremors and the inability to initiate movement. The standard treatment is administration of pharmacological agents that transiently increase concentrations of brain dopamine and thereby discontinuously modulate neuronal activity in the striatum, the primary target of dopaminergic neurons. The resulting intermittent dopamine alleviates parkinsonian symptoms but is also thought to cause abnormal involuntary movements, called dyskinesias. To investigate gene therapy for Parkinson's disease, we simulated the disease in macaque monkeys by treating them with the complex I mitochondrial inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which induces selective degeneration of dopamine-producing neurons. In this model, we demonstrated that injection of a tricistronic lentiviral vector encoding the critical genes for dopamine synthesis (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and guanosine 5'-triphosphate cyclohydrolase 1) into the striatum safely restored extracellular concentrations of dopamine and corrected the motor deficits for 12 months without associated dyskinesias. Gene therapy-mediated dopamine replacement may be able to correct Parkinsonism in patients without the complications of dyskinesias. PMID:20368163

  14. Increased brain dopamine and dopamine receptors in schizophrenia

    SciTech Connect

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-09-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients.

  15. Opposite Actions of Dopamine on Aversive and Appetitive Memories in the Crab

    ERIC Educational Resources Information Center

    Klappenbach, Martin; Maldonado, Hector; Locatelli, Fernando; Kaczer, Laura

    2012-01-01

    The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive…

  16. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  17. Inhibitory effect of taurine on veratridine-evoked D-[3H]aspartate release from murine corticostriatal slices: involvement of chloride channels and mitochondria.

    PubMed

    Molchanova, Svetlana M; Oja, Simo S; Saransaari, Pirjo

    2007-01-26

    We have previously shown that the inhibitory neuromodulator taurine attenuates the release of preloaded D-[3H]aspartate from murine corticostriatal slices evoked by ischemic conditions or by application of the sodium channel agonist veratridine. The release of D-[3H]aspartate (a non-metabolized analog of glutamate) was used as an index of glutamate release. The aim of the present study was to reveal the molecular mechanisms responsible for this inhibitory effect of taurine. It was shown that 10 mM taurine suppresses D-[3H]aspartate release evoked by 0.1 mM veratridine, but does not affect the high-K+ -(50 mM) or ouabain- (0.1 mM) evoked release. Taurine had no effect in Ca2+ -free medium when the synaptic exocytosis of D-[3H]aspartate was inhibited. Nor did it suppress the release from slices preloaded with the competitive glutamate uptake blocker DL-threo-beta-hydroxyaspartate (THBA), which inhibits D-[3H]aspartate release mediated by the reverse action of glutamate transporters. Omission of Cl- from the incubation medium reduced the effect of taurine, signifying the involvement of a Cl- channel. The glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline did not block the taurine effect, although picrotoxin, a less specific blocker of agonist-gated chloride channels, completely prevented the effect of taurine on veratridine-induced D-[3H]aspartate release. The respiratory chain blocker rotenone or mitochondrial protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP) in combination with the mitochondrial ATPase inhibitor oligomycin, which inhibits the mitochondrial Ca2+ uniporter, also reduced the effect of taurine. The results obtained in the present study show that taurine acts specifically on the release of preloaded D-[3H]aspartate evoked by veratridine, but not on that evoked by other depolarizing agents, and affects the release mediated both by synaptic exocytosis and the reverse action of glutamate transporter. Taurine

  18. Dopamine D1 receptor modulation of calcium channel currents in horizontal cells of mouse retina.

    PubMed

    Liu, Xue; Grove, James C R; Hirano, Arlene A; Brecha, Nicholas C; Barnes, Steven

    2016-08-01

    Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 μM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 μM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 μM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 μM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gβγ-blocking peptide suggested involvement of Gβγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gβγ proteins in horizontal cells. PMID:27193322

  19. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    PubMed

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. PMID:25449845

  20. Endothelin (ET)-1-induced inhibition of ATP release from PC-12 cells is mediated by the ETB receptor: differential response to ET-1 on ATP, neuropeptide Y, and dopamine levels.

    PubMed

    Gardner, A; Westfall, T C; Macarthur, H

    2005-06-01

    During sympathetic neurotransmitter release, there is evidence for differential modulation of cotransmitter release by endothelin (ET)-1. Using nerve growth factor (NGF)-differentiated PC12 cells, the effects of ET-1 on K(+)-stimulated release of ATP, dopamine (DA), and neuropeptide Y (NPY) were quantified using high-pressure liquid chromatography or radioimmunoassay. ET-1, in a concentration-dependent manner, inhibited the release of ATP, but not DA and NPY. Preincubation with the ET(A/B) antagonist, PD 142893 (N-acetyl-beta-phenyl-D-Phe-Leu-Asp-Ile-Ile-Trp), reversed the inhibitory effect of ET-1 on ATP release, which remained unaffected in the presence of the ET(A)-specific antagonist BQ123 [cyclo(D-Asp-Pro-D-Val-Leu-D-Trp)]. The ET(B) agonists, sarafotoxin 6c (Cys-Thr-Cys-Asn-Asp-Met-Thr-Asp-Glu-Glu-Cys-Leu-Asn-Phe-Cys-His-Gln-Asp-Val-Ile-Trp), BQ 3020 (N-acetyl-[Ala(11,15)]-endothelin 1 fragment 6-21Ac-Leu-Met-Asp-Lys-Glu-Ala-Val-Tyr-Phe-Ala-His-Leu-Asp-IIe-IIe-Trp), and IRL 1620 (N-succinyl-[Glu(9), Ala(11,15)]-endothelin 1 fragment 8-21Suc-Asp-Glu-Glu-Ala-Val-Tyr-Phe-Ala-His-Leu-Asp-Ile-Ile-Trp), decreased K(+)-stimulated release of ATP in a dose-dependent manner, and this effect was reversed by the ET(B) antagonists RES 701-1 [cyclic (Gly1-Asp9) (Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-Phe-Phe-Asn-Tyr-Tyr-Trp)] and BQ 788 (N-[N-[N-[(2,6-dimethyl-1-piperidinyl)carbonyl]-4-methyl-l-leucyl]-1-(methoxycarbonyl)-D-tryptophyl]-D-norleucine sodium salt). Preincubation of PC12 cells with pertussis toxin reversed the ET-1-induced inhibition of the K(+)-evoked ATP release. Real-time intracellular calcium level recordings were performed on PC-12 cell suspensions, and ET-1 induced a dose-dependent decrease in the K(+)-evoked calcium levels. Nifedipine, the L-type voltage-dependent Ca(2+) channel antagonist, caused inhibition of the K(+)-stimulated ATP release, but the N-type Ca(2+) channel antagonist, omega-conotoxin GVIA, did not reverse the effect on ATP release

  1. Inhibition of potassium-stimulated dopamine release by the nitric oxide generator isosorbide dinitrate.

    PubMed

    Sun, P; Kanthasamy, A; Yim, G K; Isom, G E

    1995-02-01

    In PC12 cells, isosorbide dinitrate (ISDN) and S-nitrosol-acetyl-penicillamine (SNAP), both nitric oxide (NO) generators, attenuated K+ (56 mM)-stimulated release of dopamine. The attenuation was not observed with isosorbide, an ISDN analog lacking NO generating capacity. In this model, A23187 (Ca2+ ionophore), Bay K8644 (Ca2+ slow channel agonist) and veratridine (Na+ channel agonist) stimulated dopamine release. Treatment with ISDN enhanced Bay K8644 and veratridine-evoked dopamine release, while ISDN had no significant effect on the A23187 response. Incubation with 8-bromo-cGMP (membrane permeable cGMP analog) had no effect on basal or stimulated dopamine release in these cells, suggesting NO's response was not mediated by cGMP. In additional studies, K+ (56 mM), Bay K8644 and veratridine elevated cytosolic free calcium levels ([Ca2+]i). ISDN reduced K(+)-stimulated increase in [Ca2+]i, but enhanced the increases of [Ca2+]i induced by Bay K8644 or veratridine. These results suggest NO interacts with K(+)-induced membrane depolarization (possibly by inhibiting membrane conductance to K+) to attenuate Ca2+ influx and Ca(2+)-mediated dopamine secretion stimulated by K+. PMID:7542370

  2. Interactions between glutamate, dopamine, and the neuronal signature of response inhibition in the human striatum.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Buchert, Ralph; Schlagenhauf, Florian; Kühn, Simone; Gallinat, Jürgen

    2015-10-01

    Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition. PMID:26177932

  3. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  4. Pharmacological evidence that dopamine inhibits the cardioaccelerator sympathetic outflow via D2-like receptors in pithed rats.

    PubMed

    Alcántara-Vázquez, Oscar; Villamil-Hernández, Ma Trinidad; Sánchez-López, Araceli; Centurión, David

    2013-01-01

    It has been suggested that N,N-di-n-propyl-dopamine (dopamine analogue) decreased heart rate in rats through stimulation of dopamine receptors. Nevertheless, the role of prejunctional dopamine D1/2-like receptors or even α2-adrenoceptors to mediate cardiac sympatho-inhibition induced by dopamine remains unclear. Hence, this study identified the pharmacological profile of the cardiac sympatho-inhibition to dopamine in pithed rats. Male Wistar rats were pithed and prepared to stimulate the cardiac sympathetic outflow or to receive i.v. bolus of exogenous noradrenaline. I.v. continuous infusions of dopamine (endogenous ligand) or quinpirole (D2-like agonist) dose-dependently inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline. In contrast, SKF-38393 (100 μg/kg∙min, D1-like agonist) failed to modify both of these responses. The sympatho-inhibition to dopamine (1.8 μg/kg∙min) or quinpirole (100 μg/kg∙min): i) remained unaltered after saline or the antagonists SCH-23390 (D1-like, 300 μg/kg) and rauwolscine (α2-adrenoceptors, 300 μg/kg); and ii) was significantly antagonized by raclopride (D2-like, 300 μg/kg). These antagonists, at the above doses, failed to modify the sympathetically-induced tachycardic responses. The above results suggest that the inhibition of the cardiac sympathetic outflow to dopamine and quinpirole is primarily mediated by prejunctional D2-like receptors but not D1-like receptors or α2-adrenoceptors. PMID:24225403

  5. Discriminative stimulus effects of magnesium chloride: substitution studies with monoamine uptake inhibitors and N-methyl-D-aspartate antagonists.

    PubMed

    Kantak, K M; Edwards, M A; Wilcox, K M; Kitchel, E

    1997-10-01

    Previous studies suggest that magnesium chloride may have discriminative stimulus effects that partially overlap with those of noncompetitive N-methyl-D-aspartate antagonists as well as certain monoamine uptake inhibitors. In our study, rats were trained to discriminate 100 mg/kg magnesium chloride from saline and its discriminative stimulus effects were characterized with respect to N-methyl-D-aspartate receptor and monoamine transporter functions in substitution tests. The discriminative stimulus effects of magnesium chloride were acquired within a moderate number of training sessions and showed dose-related substitution after either subcutaneous (3-300 mg/kg) or intracerebroventricular (0.3-300 microg) administration. The intracerebroventricular administration of magnesium chloride was over 4000 times more potent than its s.c. administration. The monoamine uptake inhibitors cocaine, GBR 12909, talsupram and citalopram fully substituted (> or =90% magnesium-appropriate responses) for magnesium chloride in the majority of subjects tested and the group averages reached a maximum of 72 to 82% responses on the magnesium-appropriate lever. Based on relative potency analysis, the rank order of potency of these four drugs for producing magnesium-appropriate responses was talsupram = cocaine > citalopram = GBR 12909. The N-methyl-D-aspartate receptor antagonists dizocilpine, phencyclidine and NPC 17742 engendered maximum group averages of 49 to 65% responses on the magnesium-appropriate lever. The results suggest that the centrally mediated discriminative stimulus effects of magnesium chloride may be more directly related to interactions with monoamine neurotransmitter functions than to N-methyl-D-aspartate receptor blockade. PMID:9336325

  6. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry. PMID:25170437

  7. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  8. Human striatal dopamine receptors are organized in compartments

    SciTech Connect

    Joyce, J.N.; Sapp, D.W.; Marshall, J.F.

    1986-10-01

    Dopamine (D2) receptors visualized in postmortem human striatum by quantitative autoradiography of (/sup 3/H)spiroperidol binding are organized into circumscribed zones of low receptor density separated from other such zones by regions of higher D2 density. The D2-rich zones of the caudate nucleus and putamen contain twice the binding of D2-poor zones. The Hill coefficient, obtained from saturation analysis of (/sup 3/H)spiroperidol binding to thin sections of human striatum, gave a value near unity, indicating the binding was occurring to a single type of site. The patchiness of (/sup 3/H)spiroperidol binding was unaltered by postincubation removal of lipid from the tissue sections, indicating that a differential absorption of tritium in white and grey matter does not account for the heterogeneous distribution. The D2-rich and D2-poor regions appear to form labyrinths oriented in the anterior-posterior axis and are typically aligned with, respectively, acetylcholinesterase-rich and -poor compartments as visualized on stained adjacent sections. Thus, the distribution of dopamine D2 receptors conforms to the striosomal organization of the human caudate-putamen, a finding that suggests that this receptor subtype may mediate the influence of dopamine on distinct neurochemical compartments within the structure.

  9. Occurrence of Free d-Amino Acids and Aspartate Racemases in Hyperthermophilic Archaea

    PubMed Central

    Matsumoto, Megumi; Homma, Hiroshi; Long, Zhiqun; Imai, Kazuhiro; Iida, Toshii; Maruyama, Tadashi; Aikawa, Yuko; Endo, Isao; Yohda, Masafumi

    1999-01-01

    The occurrence of free d-amino acids and aspartate racemases in several hyperthermophilic archaea was investigated. Aspartic acid in all the hyperthermophilic archaea was highly racemized. The ratio of d-aspartic acid to total aspartic acid was in the range of 43.0 to 49.1%. The crude extracts of the hyperthermophiles exhibited aspartate racemase activity at 70°C, and aspartate racemase homologous genes in them were identified by PCR. d-Enantiomers of other amino acids (alanine, leucine, phenylalanine, and lysine) in Thermococcus strains were also detected. Some of them might be by-products of aspartate racemase. It is proven that d-amino acids are produced in some hyperthermophilic archaea, although their function is unknown. PMID:10515953

  10. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  11. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-01

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease. PMID:19853009

  12. Imaging dopamine transmission parameters in cannabis dependence.

    PubMed

    Ghazzaoui, Rassil; Abi-Dargham, Anissa

    2014-07-01

    Low striatal dopamine D2/3 receptor (D2/3) availability and low ventrostriatal dopamine release have been observed in alcoholism, cocaine and heroin dependence. Multiple studies to date have examined D2 availability in cannabis dependence and have consistently failed to demonstrate alterations. In addition, the response of the dopamine system to an amphetamine challenge and to a stress challenge has also been examined, and did not show alterations. We review these studies here and conclude that cannabis dependence is an exception among commonly abused drugs in that it is not associated with blunting of the dopamine system. PMID:24513022

  13. A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    PubMed Central

    Kong, Eric C.; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R.; Heberlein, Ulrike; Bainton, Roland J.; Hirsh, Jay; Wolf, Fred W.

    2010-01-01

    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol. PMID:20376353

  14. Alteration of dopamine receptor sensitivity by opiates and the subsequent effect of this alteration on opiate tolerance and dependence

    SciTech Connect

    Martin, J.R.

    1985-01-01

    The present study was undertaken to determine whether there is an alteration of dopamine receptor sensitivity following opiate administration, and whether this alteration has any influence on the development of opiate tolerance and dependence. Behavioral hypersensitivity to direct-acting dopamine agonists was observed in mice following acute or chronic morphine administration. Acute levorphanol administration also resulted in potentiation of dopamine agonist-induced behaviors. An increase in density of dopamine receptors, as measured by (/sup 3/H)butyrophenone binding accompanied the development of behavioral hypersensitivity. This increase was localized to the striatum, an area important in the mediation of dopamine-agonist induced behaviors. Naloxone or LiCl coadministered with the opiates prevented the development of hypersensitivity and the increase in density of dopamine receptors. Coadministration of lithium enhanced the development of acute and chronic tolerance. Lithium enhanced the development of dependence as determined by naloxone-induced hypothermia in chronically morphine-treated mice. Apomorphine enhanced naloxone-induced withdrawal in acutely dependent mice. This enhancement was blocked by coadministration of lithium with the opiates. These results suggest that dopamine receptor supersensitivity influences the degree of tolerance and dependence.

  15. Aging Decreases L-Type Calcium Channel Currents and Pacemaker Firing Fidelity in Substantia Nigra Dopamine Neurons

    PubMed Central

    Branch, Sarah Y.; Sharma, Ramaswamy

    2014-01-01

    Substantia nigra dopamine neurons are involved in behavioral processes that include cognition, reward learning, and voluntary movement. Selective deterioration of these neurons is responsible for the motor deficits associated with Parkinson's disease (PD). Aging is the leading risk factor for PD, suggesting that adaptations occurring in dopamine neurons during normal aging may predispose individuals to the development of PD. Previous studies suggest that the unique set of ion conductances that drive spontaneous, rhythmic firing of action potentials could predispose substantia nigra dopamine neurons to selective neurodegeneration. Here we show, using patch-clamp electrophysiological recordings in brain slices, that substantia nigra dopamine neurons from mice 25–30 months of age (old) have comparable membrane capacitance and input resistance to neurons from mice 2–7 months of age (young). However, neurons from old mice exhibit slower firing rates, narrower spike widths, and more variable interspike intervals compared with neurons from young mice. Dopamine neurons from old mice also exhibit smaller L-type calcium channel currents, providing a plausible mechanism that likely contributes to the changes in impulse activity. Age-related decrements in the physiological function of dopamine neurons could contribute to the decrease in voluntary movement and other dopamine-mediated behaviors observed in aging populations. Furthermore, as pharmacological antagonism of L-type calcium channels has been proposed as a potential treatment for the early stages of PD, our results could point to a limited temporal window of opportunity for this therapeutic intervention. PMID:25009264

  16. The role of the nucleus accumbens shell in the mediation of the reinforcing properties of a safety signal in free-operant avoidance: dopamine-dependent inhibitory effects of d-amphetamine.

    PubMed

    Fernando, Anushka B P; Urcelay, Gonzalo P; Mar, Adam C; Dickinson, Tony A; Robbins, Trevor W

    2014-05-01

    Safety signals (SSs) have been shown to reinforce instrumental avoidance behavior due to their ability to signal the absence of an aversive event; however, little is known of their neural mediation. This study investigated whether infusions of d-amphetamine in the nucleus accumbens (Nac), previously shown to potentiate responding for appetitive conditioned reinforcers (CRfs), also regulate avoidance responding for a SS. Rats were trained on a free-operant task in which lever-press responses avoided shock and were reinforced with an auditory SS. Rats were then cannulated in the Nac core (NacC) or shell (NacS) and infused with d-amphetamine and, in separate NacS groups, other drugs, before extinction sessions with the SS present or absent following responding. Selective effects of d-amphetamine were found in the NacS, but not in the NacC, when the SS was present in the session. A significant increase in response rate during the presentation of the SS reflected a disruption of its fear-inhibiting properties. In parallel, a decrease in avoidance response rate reflected the reduced influence of the SS as a CRf. Inactivation of the NacS reduced avoidance responding only when the SS was present in the session, whereas the D1-D2 DA receptor antagonist α-flupenthixol reduced responding both before and during the SS regardless of the presence of the SS. Atomoxetine (ATO), a selective noradrenaline reuptake inhibitor, had no effect on responding. These results indicate a role for the NacS in the mediation of the conditioned reinforcing properties of a SS. These effects appear to be modulated by dopaminergic mechanisms but seem distinct from those previously reported with food-related CRfs. PMID:24336447

  17. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    PubMed

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described. PMID:27380369

  18. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase.

    PubMed

    Athauda, Senarath B P; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-11-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  19. "Is dopamine involved in Alzheimer's disease?".

    PubMed

    Martorana, Alessandro; Koch, Giacomo

    2014-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and dementia. Recent advances indicate that AD pathogenesis appears more complex than its mere neuropathology. Changes in synaptic plasticity, neuronal disarray and cell death are pathways commonly recognized as pathogenic mechanisms of AD. It is thought that the altered metabolism of certain membrane proteins may lead to the production of amyloid (Aβ) oligomers that are characterized by an highly toxic effect on neurotransmission pathways, such as those mediated by Acetylcholine. The interaction of Aβ oligomers with these neurotansmitters systems would in turn induce cell dysfunction, neurotransmitters signaling imbalance and finally lead to the appearance of neurological signs. In this perspective, it is still debated how and if these mechanisms may also engage the dopaminergic system in AD. Recent experimental work revealed that the dopaminergic system may well be involved in the occurrence of cognitive decline, often being predictive of rapidly progressive forms of AD. However, a clear idea on the role of the dopamine system in AD is still missing. Here we review the more recent evidences supporting the notion that the dopaminergic dysfunction has a pathogenic role in cognitive decline symptoms of AD. PMID:25309431

  20. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  1. Pediatric anti-N methyl D aspartate receptor encephalitis.

    PubMed

    Suri, Vinit; Sharma, Sushma; Gupta, Rohan; Sogani, S K; Mediratta, Sunit; Jadhao, Nilesh

    2013-05-01

    Anti-N Methyl D Aspartate Receptor encephalitis (anti-NMDARE) is a recently defined disease, which is probably more under-recognized than rare. We report a case of anti-NMDARE in a 13-years-old girl, who presented with intractable seizures. To the best of our knowledge, this is the second case of pediatric anti-NMDARE being reported from India. The need for a greater awareness of this disease and the subtle differences in clinical presentation between pediatric and adult patients are highlighted. PMID:24082929

  2. Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus.

    PubMed

    Aihara, Takayuki; Ito, Toshiya; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Sekine, Masae; Homma, Hiroshi; Yohda, Masafumi

    2016-07-01

    Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus. PMID:27094682

  3. In vitro binding assays using (3)H nisoxetine and (3)H WIN 35,428 reveal selective effects of gonadectomy and hormone replacement in adult male rats on norepinephrine but not dopamine transporter sites in the cerebral cortex.

    PubMed

    Meyers, B; Kritzer, M F

    2009-03-01

    The prefrontal cortices mediate cognitive functions that critically depend on local dopamine levels. In male rats, many prefrontal tasks where performance is disrupted by changes in dopamine signaling are also impaired by gonadectomy, a manipulation that increases cortical dopamine concentration, prefrontal dopamine axon density and possibly extracellular prefrontal dopamine levels as well. Because these actions could be responsible for the impairing effects of gonadectomy on prefrontal function, the question of how they might arise comes to the fore. Accordingly, the present studies asked whether dopamine levels might be increased via a hormone sensitivity of transporter-mediated dopamine uptake. Specifically, (3)H WIN 35,428 and (3)H nisoxetine, ligands selective for the dopamine (DAT)- and norepinephrine transporter (NET) respectively, were used in in vitro binding assays to ask whether gonadectomy altered transporter affinity (Kd) and/or binding site number (Bmax) in prefrontal cortex, sensorimotor cortex and/or caudate. Assays performed on tissues dissected from sham-operated, gonadectomized and gonadectomized rats supplemented with testosterone propionate or estradiol for 4 or 28 days revealed no significant group differences or obvious trends in Kd or Bmax for DAT binding or in measures of Bmax for NET binding. However, affinity constants for (3)H nisoxetine were found to be significantly higher in sensorimotor and/or prefrontal cortex of rats gonadectomized and gonadectomized and supplemented with estradiol for 4 or 28 days but similar to control in gonadectomized rats given testosterone. Because the NET contributes substantially to extracellular prefrontal dopamine clearance, these androgen-mediated effects could influence prefrontal dopamine levels and might thus be relevant for observed effects of gonadectomy on dopamine-dependent prefrontal behaviors. A hormone sensitivity of the NET could also have bearing on the prefrontal dopamine dysfunction seen in

  4. Effects of the abused solvent toluene on recombinant N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors expressed in Xenopus oocytes.

    PubMed

    Cruz, S L; Mirshahi, T; Thomas, B; Balster, R L; Woodward, J J

    1998-07-01

    Previous studies have shown that toluene, which is commonly abused, depresses neuronal activity and causes behavioral effects in both animals and man similar to those observed for ethanol. In this study, the oocyte expression system was used to test the hypothesis that toluene, like ethanol, inhibits the function of ionotropic glutamate receptors. Oocytes were injected with mRNA for specific N-methyl-D-aspartate (NMDA) or non-NMDA subunits and currents were recorded using conventional two-electrode voltage clamp. To enhance the low water solubility of toluene, drug solutions were prepared by mixing toluene with alkamuls (ethoxylated castor oil) at a 1:1 ratio (v:v) and diluting this mixture to the appropriate concentration with barium-containing normal frog Ringer solution. Alkamuls, up to 0.1%, had no significant effects on membrane leak currents or on NMDA-induced currents. Toluene, up to approximately 9 mM, had only minor effects on membrane leak currents but dose-dependently inhibited NMDA-mediated currents in oocytes. The inhibition of NMDA receptor currents by toluene was rapid, reversible and the potency for toluene's effects was subunit dependent. The NR1/2B subunit combination was the most sensitive with an IC50 value for toluene-induced inhibition of 0.17 mM. The NR1/2A and NR1/2C receptors were 6- and 12-fold less sensitive with IC50 values of 1.4 and 2.1 mM, respectively. In contrast, toluene up to approximately 9 mM did not inhibit kainate-induced currents in oocytes expressing GluR1, GluR1(+)R2 or GluR6 subunits. These results suggest that some of the effects of toluene on neuronal activity and behavior may be mediated by inhibition of NMDA receptors. PMID:9655877

  5. Dopamine: burning the candle at both ends.

    PubMed

    Pearson, John M; Platt, Michael L

    2013-09-01

    Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention. PMID:24011998

  6. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-D-Aspartate Receptor.

    PubMed

    Chang, Eric H; Volpe, Bruce T; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S; Huerta, Patricio T; Diamond, Betty

    2015-07-01

    Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205

  7. Regulation of dopamine system responsivity and its adaptive and pathological response to stress

    PubMed Central

    Belujon, Pauline; Grace, Anthony A.

    2015-01-01

    Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiatric disorders. It is hypothesized that, even though the dopamine (DA) system forms the basis for a number of psychiatric disorders, the pathology is likely to originate in the afferent structures that are inducing dysregulation of the DA system. This review explores the current knowledge of afferent modulation of the stress/DA circuitry, and presents recent data focusing on the effect of stress on the DA system and its relevance to psychiatric disorders. PMID:25788601

  8. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF.

    PubMed

    Nam, Jin H; Park, Eun S; Won, So-Yoon; Lee, Yu A; Kim, Kyoung I; Jeong, Jae Y; Baek, Jeong Y; Cho, Eun J; Jin, Minyoung; Chung, Young C; Lee, Byoung D; Kim, Sung Hyun; Kim, Eung-Gook; Byun, Kyunghee; Lee, Bonghee; Woo, Dong Ho; Lee, C Justin; Kim, Sang R; Bok, Eugene; Kim, Yoon-Seong; Ahn, Tae-Beom; Ko, Hyuk Wan; Brahmachari, Saurav; Pletinkova, Olga; Troconso, Juan C; Dawson, Valina L; Dawson, Ted M; Jin, Byung K

    2015-12-01

    Currently there is no neuroprotective or neurorestorative therapy for Parkinson's disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP(+)-lesioned or adeno-associated virus α-synuclein rat models of Parkinson's disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson's disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson's disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson's disease. PMID:26490328

  9. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    PubMed

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. PMID:26957228

  10. Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT

    PubMed Central

    Yousif, Nada; Fu, Richard Z.; Abou-El-Ela Bourquin, Bilal; Bhrugubanda, Vamsee; Schultz, Simon R.

    2016-01-01

    When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex

  11. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway

    PubMed Central

    Xiao, Jianchun; Li, Ye; Prandovszky, Emese; Karuppagounder, Senthilkumar S.; Talbot, C. Conover; Dawson, Valina L.; Dawson, Ted M.; Yolken, Robert H.

    2014-01-01

    Congenital toxoplasmosis and toxoplasmic encephalitis can be associated with severe neuropsychiatric symptoms. However, which host cell processes are regulated and how Toxoplasma gondii affects these changes remain unclear. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of over 1000 miRNAs in human neuroepithelioma cells in response to infection with Toxoplasma. MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA, was the only miRNA that was substantially upregulated by all three prototype Toxoplasma strains. The increased expression of miR-132 was also documented in mice following infection with Toxoplasma. To identify cellular pathways regulated by miR-132, we performed target prediction followed by pathway enrichment analysis in the transcriptome of Toxoplasma-infected mice. This led us to identify 20 genes and dopamine receptor signaling was their strongest associated pathway. We then examined myriad aspects of the dopamine pathway in the striatum of Toxoplasma infected mice 5 days after infection. Here we report decreased expression of D1-like dopamine receptors (DRD1, DRD5), metabolizing enzyme (MAOA) and intracellular proteins associated with the transduction of dopamine-mediated signaling (DARPP-32 phosphorylation at Thr34 and Ser97). Increased concentrations of dopamine and its metabolites, serotonin and 5-hydroxyindoleacetic acid were documented by HPLC analysis; however, the metabolism of dopamine was decreased and serotonin metabolism was unchanged. Our data show that miR-132 is upregulated following infection with Toxoplasma and is associated with changes in dopamine receptor signaling. Our findings provide a possible mechanism for how the parasite contributes to the neuropathology of infection. PMID:24657774

  12. The effect of central and peripheral dopamine-agonists on ventilation in the mouse.

    PubMed

    Olson, L G; Saunders, N A

    1985-09-01

    This study was designed to investigate the role of central dopaminergic pathways in ventilatory control in unanaesthetised, chemoreceptor intact mice. Dopamine does not cross the blood-brain barrier and was used to selectively affect peripheral arterial chemoreceptors. Levodopa, the immediate precursor of dopamine, was given alone when it is converted to dopamine mainly in the periphery, and together with carbidopa, which prevents the peripheral conversion of levodopa to dopamine, and enhances central generation of dopamine from levodopa. Dopamine (60-240 mg X kg-1), levodopa (50-300 mg X kg-1), and levodopa with carbidopa in a constant ratio of 10:1 (33/3.3-100/10 mg X kg-1) were given by intraperitoneal injection. Ventilation was measured in 10% O2 and in 7.5% CO2 by a plethysmographic method. Levodopa with carbidopa stimulated ventilation in both 10% O2 and 7.5% CO2. Ventilation in 10% O2 increased from 55.1 +/- 1.43 ml X min-1 (mean +/- SE) to 93.8 +/- 4.75 ml X min-1 with levodopa 100 mg X kg-1/carbidopa 10 mg X kg-1 (P less than 0.01). Ventilation in 7.5% CO2 increased from 101.8 +/- 3.42 ml X min-1 to 138.5 +/- 4.94 ml X min-1 with levodopa 100 mg X kg-1/carbidopa 10 mg X kg-1 (P less than 0.05). In contrast, very high doses of dopamine alone (240 mg X kg-1) and levodopa alone (300 mg X kg-1) depressed hypoxic but not hypercapnic ventilation. Carbidopa alone had no effect of ventilation. It is concluded that dopaminergic transmission within the brain mediates pathways leading to increased ventilation. PMID:4059691

  13. Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy.

    PubMed

    Caldwell, Brittany; Ustione, Alessandro; Piston, David W

    2016-08-01

    Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release. PMID:27508444

  14. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  15. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  16. Elevated dopamine in the medial prefrontal cortex suppresses cocaine seeking via D1 receptor overstimulation.

    PubMed

    Devoto, Paola; Fattore, Liana; Antinori, Silvia; Saba, Pierluigi; Frau, Roberto; Fratta, Walter; Gessa, Gian Luigi

    2016-01-01

    Previous investigations indicate that the dopamine-β-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation. PMID:25135633

  17. Amphetamine in adolescence disrupts the development of medial prefrontal cortex dopamine connectivity in a DCC-dependent manner.

    PubMed

    Reynolds, Lauren M; Makowski, Carolina S; Yogendran, Sandra V; Kiessling, Silke; Cermakian, Nicolas; Flores, Cecilia

    2015-04-01

    Initiation of drug use during adolescence is a strong predictor of both the incidence and severity of addiction throughout the lifetime. Intriguingly, adolescence is a period of dynamic refinement in the organization of neuronal connectivity, in particular medial prefrontal cortex (mPFC) dopamine circuitry. The guidance cue receptor, DCC (deleted in colorectal cancer), is highly expressed by dopamine neurons and orchestrates their innervation to the mPFC during adolescence. Furthermore, we have shown that amphetamine in adolescence regulates DCC expression in dopamine neurons. Drugs in adolescence may therefore induce their enduring behavioral effects via DCC-mediated disruption in mPFC dopamine development. In this study, we investigated the impact of repeated exposure to amphetamine during adolescence on both the development of mPFC dopamine connectivity and on salience attribution to drug context in adulthood. We compare these effects to those induced by adult exposure to an identical amphetamine regimen. Finally, we determine whether DCC signaling within dopamine neurons is necessary for these events. Exposure to amphetamine in adolescence, but not in adulthood, leads to an increase in the span of dopamine innervation to the mPFC, but a reduction of presynaptic sites present on these axons. Amphetamine treatment in adolescence, but not in adulthood, also produces an increase in salience attribution to a previously drug-paired context in adulthood. Remarkably, DCC signaling within dopamine neurons is required for both of these effects. Drugs of abuse in adolescence may therefore induce their detrimental behavioral consequences by disrupting mesocortical dopamine development through alterations in the DCC signaling cascade. PMID:25336209

  18. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry. PMID:15236611

  19. Dopamine-glutamate interactions in the basal ganglia.

    PubMed

    Schmidt, W J

    1998-01-01

    In an attempt to formulate a working hypothesis of basal-ganglia functions, arguments are considered suggesting that the basal ganglia are involved in a process of response selection i.e. in the facilitation of "wanted" and in the suppression of "unwanted" behaviour. The meso-accumbal dopamine-system is considered to mediate natural and drug-induced reward and sensitization. The meso-striatal dopamine-system seems to fulfill similar functions: It may mediate reinforcement which strengthens a given behaviour when elicited subsequently, but which is not experienced as reward or hedonia. Glutamate as the transmitter of the corticofugal projections to the basal ganglia nuclei and of the subthalamic neurons is critically involved in basal ganglia functions and dysfunctions; for example Parkinson's disease can be considered to be a secondary hyperglutamatergic disease. Additionally, glutamate is an essential factor in the plasticity response of the basal-ganglia. However, opposite to previous suggestions, the NMDA-receptor blocker MK-801 does not prevent psychostimulant- nor morphine-induced day to day increase (sensitization) of locomotion. Also the day to day increase of haloperidol-induced catalepsy was not prevented by MK-801. PMID:9871434

  20. The Modulatory Role of Dopamine in Anxiety-like Behavior.

    PubMed

    Zarrindast, Mohammad-Reza; Khakpai, Fatemeh

    2015-09-01

    Anxiety is an unpleasant physiological state in which an overreaction to a situation occurs. It has been suggested that different brain regions are involved in the modulation and expression of anxiety, including the amygdala, hippocampus, and frontal cortex. Dysfunction of neurotransmitters and their receptors can lead to many mood disorders like anxiety. There are evidences that dopamine plays an important role in anxiety modulation in different parts of the brain. Some evidence has shown that the mesolimbic, mesocortical and nigrostriatal dopaminergic system are involved in anxiety. Both dopamine D1 and D2 receptor mechanisms are important in mediating anxiety. The activity of dopaminergic system is modulated by several neurotransmitters, including glutamatergic neurons from the medial prefrontal cortex (mPFC), GABAergic fibers from the nucleus accumbens (NAc) as well as the ventral pallidum and cholinergic fibers from the pedunculopontine nucleus and the laterodorsal tegmental nucleus. Thus, changes in the glutamatergic, and GABAergic, as well as mediated transmission in the mesolimbic, mesocortical and nigrostriatal dopaminergic system may influence anxiety-like behavior. PMID:26317601

  1. Cellular localization of dopamine D2 receptor messenger RNA in the rat trigeminal ganglion.

    PubMed

    Peterfreund, R A; Kosofsky, B E; Fink, J S

    1995-12-01

    The actions of dopamine are mediated by specific, high-affinity, G protein-coupled receptors. Multiple subtypes of dopamine receptors have been characterized, including the D2 subtype (D2R). Cells within the dorsal root and petrosal ganglia of the rat express D2R messenger RNA (mRNA) consistent with D2R expression by primary sensory neurons. We hypothesized that neurons of the trigeminal ganglion express D2R mRNA. Total cellular RNA from rat trigeminal ganglia was analyzed on Northern blots under high stringency conditions. Hybridization of trigeminal ganglion RNA resulted in a signal which comigrated with striatal, pituitary, and hypothalamic D2R mRNA. To determine the distribution of D2R expressing cells in the trigeminal ganglion, cryostat sections were analyzed by in situ hybridization followed by emulsion autoradiography. We identified a population of clustered cells labeled with dense grain concentrations over their cytoplasms. These findings demonstrate the expression of D2 dopamine receptor mRNA in discrete subpopulations of neurons in the rat trigeminal ganglion. Our observations suggest that drugs active at dopamine receptors of the D2 subtype are potential modulators of sensory activity of neurons whose cell bodies reside in the trigeminal ganglion. D2 dopamine receptors may thus have a role in clinical pain syndromes involving the head and neck. PMID:7486101

  2. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  3. Identification of D/sub 1/-like dopamine receptors on human blood platelets

    SciTech Connect

    De Keyser, J.; De Waele, M.; Convents, A.; Ebinger, G.; Vauquelin, G.

    1988-01-01

    Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study the authors report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D/sub 1/ dopamine receptor antagonist (/sup 3/H)SCH 23390. (/sup 3/H)SCH 23390 appeared to label a single class of binding sites with a B/sub max/ of 18.6 +- 1.6 fmolmg protein and a K/sub D/ of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (/sup 3/H)SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D/sub 1/ receptors, e.g. those in striatum, the D/sub 1/ receptor sites on platelets appeared no to be coupled to the adenylate cyclase system, hence the term D/sub 1/-like. The D/sub 1/ agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D/sub 1/-like receptors

  4. The mesolimbic dopamine system as a target for rapid antidepressant action.

    PubMed

    Willner, P

    1997-07-01

    Chronic treatment with antidepressant drugs produces a variety of changes in dopaminergic neurotransmission, most notably a sensitization of behavioural responses to agonists acting at dopamine D2/D3 receptors within the nucleus accumbens. Evidence from animal models of depression (the forced swim test and the chronic mild stress procedure) indicates that these effects are crucial for the therapeutic effect of antidepressants in these models. Antidepressant-like effects in animal models are also seen with drugs that act directly on the dopaminergic system. Because of its prolonged time-course, the chronic mild stress procedure can be used to examine onset latencies. Some dopamine-active drugs (e.g. the catechol-O-methyltransferase inhibitor tolcapone; D2/D3 agonists administered intermittently) are active in this procedure but have a time-course comparable to that of conventional antidepressants. Other dopamine-active drugs may have a more rapid onset; the evidence to date suggests this possibility for the D2/D3 agonist pramipexole and the preferential presynaptic antagonist amisulpride. In clinical studies, rapid-onset latencies have been claimed for the D2/D3 agonist roxindole, the preferential presynaptic antagonist sulpiride and the relatively selective dopamine-uptake inhibitor amineptine. The mechanisms that might give rise to a rapid onset of dopamine-mediated antidepressant effects are discussed. PMID:9347387

  5. Accumbens dopamine-acetylcholine balance in approach and avoidance.

    PubMed

    Hoebel, Bartley G; Avena, Nicole M; Rada, Pedro

    2007-12-01

    Understanding systems for approach and avoidance is basic for behavioral neuroscience. Research on the neural organization and functions of the dorsal striatum in movement disorders, such as Huntington's and Parkinson's Disease, can inform the study of the nucleus accumbens (NAc) in motivational disorders, such as addiction and depression. We propose opposing roles for dopamine (DA) and acetylcholine (ACh) in the NAc in the control of GABA output systems for approach and avoidance. Contrary to DA, which fosters approach, ACh release is a correlate or cause of meal satiation, conditioned taste aversion and aversive brain stimulation. ACh may also counteract excessive DA-mediated approach behavior as revealed during withdrawal from drugs of abuse or sugar when the animal enters an ACh-mediated state of anxiety and behavioral depression. This review summarizes evidence that ACh is important in the inhibition of behavior when extracellular DA is high and the generation of an anxious or depressed state when DA is relatively low. PMID:18023617

  6. Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion.

    PubMed

    Ball, S G; Oats, N S; Lee, M R

    1978-08-01

    1. Plasma and urine free dopamine (3,4-dihydroxyphenethylamine) were measured in six normal male volunteer subjects and the urinary clearance of dopamine was calculated for each subject. 2. The excretion rates for free dopamine in man were greater than could be explained by simple renal clearance. It was concluded that free dopamine must, therefore, be formed in the kidney. 3. Changes in urinary dopamine excretion were studied in four groups of rats initially maintained on low sodium diet and then given equimolar dietary supplements of NaCl, NaHCO3, KCl or NH4Cl, to study the specificity of the previously observed increase in dopamine excretion after increased dietary NaCl. 4. The mean dopamine excretion increased significantly in rats given NaCl, KCl and NH4Cl, whereas dopamine excretion decreased in those given NaHCO3. 5. The failure of dopamine excretion to rise in response to loading with NaHCO3 was unexpected, and argues against a simple effect of volume expansion by the sodium ion. The increase in dopamine excretion with KCl and NH4Cl showed that this response was not specific to the sodium ion. PMID:28196

  7. Pramipexole, a dopamine D2 autoreceptor agonist, decreases the extracellular concentration of dopamine in vivo.

    PubMed

    Carter, A J; Müller, R E

    1991-07-23

    Pramipexole (SND 919) is a dopamine D2 autoreceptor agonist which is structurally related to talipexole (B-HT 920), a potential antipsychotic agent. The aim of this study was to investigate the effects of pramipexole on the extracellular concentration of dopamine in vivo. Dopamine and its metabolites, 3,4-dihydrophenylacetic acid and homovanillic acid, were measured in the anterior striatum of freely moving rats by microdialysis and high-performance liquid chromatography with electrochemical detection. Pramipexole (30 and 100 micrograms/kg) caused long-lasting decreases in the extracellular concentrations of dopamine and its metabolites. Talipexole (30 micrograms/kg) produced similar effects. Sulpiride (5 mg/kg), a selective dopamine D2 antagonist, caused a transient increase in the concentration of dopamine and long-lasting increases in the concentrations of its metabolites; it also reversed the effects of pramipexole. SCH-23390 (100 micrograms/kg), a selective dopamine D1 receptor antagonist, caused a transient increase in the concentration of dopamine but did not affect the concentrations of the metabolites. SCH-23390 failed to reverse the effects of pramipexole. These results indicate that pramipexole reduces the extracellular concentrations of dopamine and its metabolites in vivo through a reversible interaction with the dopamine D2 receptor. PMID:1685123

  8. Dopamine beta-hydroxylase deficiency

    PubMed Central

    Senard, Jean-Michel; Rouet, Philippe

    2006-01-01

    Dopamine beta-hydroxylase (DβH) deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS). Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance. PMID:16722595

  9. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  10. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water. PMID:26870876

  11. Dopamine receptor heteromeric complexes and their emerging functions.

    PubMed

    George, Susan R; Kern, Andras; Smith, Roy G; Franco, Rafael

    2014-01-01

    Dopamine neurotransmission is traditionally accepted as occurring through the five dopamine receptors that transduce its signal. Recent evidence has demonstrated that the range of physiologically relevant dopamine signaling complexes is greatly expanded by the ability of dopamine receptors to interact with other dopamine receptors and with receptors of other endogenous signaling ligands. These novel heteromeric complexes have functional properties distinct from the component receptors or are able to modulate the canonical signaling and function of the cognate receptors. These dopamine receptor heteromers provide new insight into physiological mechanisms and pathophysiological processes involving dopamine. PMID:24968781

  12. Biosynthesis of D-aspartate in mammals: the rat and human homologs of mouse aspartate racemase are not responsible for the biosynthesis of D-aspartate.

    PubMed

    Matsuda, Satsuki; Katane, Masumi; Maeda, Kazuhiro; Kaneko, Yuusuke; Saitoh, Yasuaki; Miyamoto, Tetsuya; Sekine, Masae; Homma, Hiroshi

    2015-05-01

    D-Aspartate (D-Asp) has important physiological functions, and recent studies have shown that substantial amounts of free D-Asp are present in a wide variety of mammalian tissues and cells. Biosynthesis of D-Asp has been observed in several cultured rat cell lines, and a murine gene (glutamate-oxaloacetate transaminase 1-like 1, Got1l1) that encodes Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, was proposed recently. The product of this gene is homologous to mammalian glutamate-oxaloacetate transaminase (GOT). Here, we tested the hypothesis that rat and human homologs of mouse GOT1L1 are involved in Asp synthesis. The following two approaches were applied, since the numbers of attempts were unsuccessful to prepare soluble GOT1L1 recombinant proteins. First, the relationship between the D-Asp content and the expression levels of the mRNAs encoding GOT1L1 and D-Asp oxidase, a primary degradative enzyme of D-Asp, was examined in several rat and human cell lines. Second, the effect of knockdown of the Got1l1 gene on D-Asp biosynthesis during culture of the cells was determined. The results presented here suggest that the rat and human homologs of mouse GOT1L1 are not involved in D-Asp biosynthesis. Therefore, D-Asp biosynthetic pathway in mammals is still an urgent issue to be resolved. PMID:25646960

  13. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  14. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    PubMed

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  15. History of Childhood Adversity is Positively Associated with Ventral Striatal Dopamine Responses to Amphetamine

    PubMed Central

    Oswald, Lynn M.; Wand, Gary S.; Kuwabara, Hiroto; Wong, Dean F.; Zhu, Shijun; Brasic, James R.

    2014-01-01

    Childhood exposure to severe or chronic trauma is an important risk factor for the later development of adult mental health problems, such as substance abuse. Even in nonclinical samples of healthy adults, persons with a history of significant childhood adversity seem to experience greater psychological distress than those without this history. Evidence from rodent studies suggests that early life stress may impair dopamine function in ways that increase risks for drug abuse. However, the degree to which these findings translate to other species remains unclear. This study was conducted to examine associations between childhood adversity and dopamine and subjective responses to amphetamine in humans. Following intake assessment, 28 healthy male and female adults, ages 18–29 years, underwent two consecutive 90-minute positron emission tomography (PET) studies with high specific activity [11C]raclopride. The first scan was preceded by intravenous saline; the second by amphetamine (AMPH 0.3 mg/kg). Consistent with prior literature, findings showed positive associations between childhood trauma and current levels of perceived stress. Moreover, greater number of traumatic events and higher levels of perceived stress were each associated with higher ventral striatal dopamine responses to AMPH. Findings of mediation analyses further showed that a portion of the relationship between childhood trauma and dopamine release may be mediated by perceived stress. Overall, results are consistent with preclinical findings suggesting that early trauma may lead to enhanced sensitivity to psychostimulants and that this mechanism may underlie increased vulnerability for drug abuse. PMID:24448898

  16. Occurrence of D-aspartic acid and N-methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release.

    PubMed

    D'Aniello, A; Di Fiore, M M; Fisher, G H; Milone, A; Seleni, A; D'Aniello, S; Perna, A F; Ingrosso, D

    2000-04-01

    Using two specific and sensitive fluorometric/HPLC methods and a GC-MS method, alone and in combination with D-aspartate oxidase, we have demonstrated for the first time that N-methyl-D-aspartate (NMDA), in addition to D-aspartate (D-Asp), is endogenously present as a natural molecule in rat nervous system and endocrine glands. Both of these amino acids are mostly concentrated at nmol/g levels in the adenohypophysis, hypothalamus, brain, and testis. The adenohypophysis maximally showed the ability to accumulate D-Asp when the latter is exogenously administered. In vivo experiments, consisting of the i.p. injection of D-Asp, showed that D-Asp induced both growth hormone and luteinizing hormone (LH) release. However, in vitro experiments showed that D-Asp was able to induce LH release from adenohypophysis only when this gland was co-incubated with the hypothalamus. This is because D-Asp also induces the release of GnRH from the hypothalamus, which in turn is directly responsible for the D-Asp-induced LH secretion from the pituitary gland. Compared to D-Asp, NMDA elicits its hormone release action at concentrations approximately 100-fold lower than D-Asp. D-AP5, a specific NMDA receptor antagonist, inhibited D-Asp and NMDA hormonal activity, demonstrating that these actions are mediated by NMDA receptors. NMDA is biosynthesized from D-Asp by an S-adenosylmethionine-dependent enzyme, which we tentatively denominated as NMDA synthase. PMID:10744627

  17. Effect of disrupting N-methyl-d-aspartate receptor/postsynaptic density protein -95 interactions on the threshold for halothane anesthesia in mice

    PubMed Central

    Tao, Feng; Johns, Roger A.

    2008-01-01

    Background Our previous studies have shown that clinically relevant concentrations of inhalational anesthetics dose-dependently and specifically inhibit the PSD-95, Dlg, and ZO-1 (PDZ) domain-mediated protein interactions between postsynaptic density protein-95 (PSD-95) and N-methyl-d-aspartate receptors, and that the knockdown of spinal PSD-95 by intrathecal injection of PSD-95 antisense oligodeoxynucleotide significantly reduces the minimum alveolar anesthetic concentration for isoflurane in rats. Methods We constructed a fusion peptide Tat-PSD-95 PDZ2 comprising the second PDZ domain of PSD-95, which can specifically disrupt PSD-95 PDZ2-mediated protein interactions by binding to interaction partner. By intraperitoneal injection of this fusion peptide into mice, we investigated the effect of disrupting the PSD-95 PDZ2-mediated protein interactions on the threshold for halothane anesthesia. Results Systemically injected fusion peptide Tat-PSD-95 PDZ2 was delivered into the central nervous system, disrupted the protein-protein interactions between N-methyl-d-aspartate receptor NR2 subunits and PSD-95, and significantly reduced the minimum alveolar anesthetic concentration and righting reflex EC50 for halothane. Conclusions By disrupting PSD-95 PDZ2 domain-mediated protein interactions, intraperitoneal injection of cell-permeant fusion peptide Tat-PSD-95 PDZ2 dose-dependently reduces the threshold for halothane anesthesia. These results suggest that PDZ domain-mediated protein interactions at synapses in the central nervous system might play an important role in the molecular mechanisms of halothane anesthesia. PMID:18431124

  18. D-2 dopamine receptor activation reduces free ( sup 3 H)arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    SciTech Connect

    Canonico, P.L. )

    1989-09-01

    Dopamine reduces the stimulation of intracellular ({sup 3}H)arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited ({sup 3}H)arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular ({sup 3}H)arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels.

  19. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  20. Phasic dopamine release in appetitive behaviors and drug abuse

    PubMed Central

    Wanat, Matthew J.; Willuhn, Ingo; Clark, Jeremy J.; Phillips, Paul E. M.

    2010-01-01

    Short phasic bursts of neuronal activity in dopamine neurons produce rapid and transient increases in extracellular dopamine concentrations throughout the mesocorticolimbic system, which are associated with the initiation of goal-directed behaviors. It is well established that acute exposure to many addictive drugs produce increases in tonic dopamine levels that occur on the order of minutes. However, recent studies suggest that abused drugs similarly enhance phasic dopamine release events that occur on a subsecond time scale. Furthermore, drug experience modulates the synaptic and intrinsic properties of dopamine neurons, which could affect dopamine burst firing and phasic dopamine release. This review will provide a general introduction to the mesolimbic dopamine system, as well as the primary methods used to detect dopamine neurons and dopamine release. We present the role of phasic dopamine release in appetitive behaviors in the context of contemporary theories regarding the function of dopamine. Next we discuss the known drug-induced changes to dopamine neurons and phasic release in both in vitro and in vivo preparations. Finally, we offer a simple model that chronic drug experience attenuates tonic/basal dopamine levels but promotes phasic dopamine release, which may result in aberrant goal-directed behaviors contributing to the development of addiction. PMID:19630749

  1. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.

    PubMed

    Wales, M E; Madison, L L; Glaser, S S; Wild, J R

    1999-12-17

    The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity

  2. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells.

    PubMed

    Patel, Deven; Menon, Deepak; Bernfeld, Elyssa; Mroz, Victoria; Kalan, Sampada; Loayza, Diego; Foster, David A

    2016-04-22

    During G1-phase of the cell cycle, normal cells respond first to growth factors that indicate that it is appropriate to divide and then later in G1 to the presence of nutrients that indicate sufficient raw material to generate two daughter cells. Dividing cells rely on the "conditionally essential" amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates and as a nitrogen source for nucleotide biosynthesis. We previously reported that while non-transformed cells arrest in the latter portion of G1 upon Q deprivation, mutant KRas-driven cancer cells bypass the G1 checkpoint, and instead, arrest in S-phase. In this study, we report that the arrest of KRas-driven cancer cells in S-phase upon Q deprivation is due to the lack of deoxynucleotides needed for DNA synthesis. The lack of deoxynucleotides causes replicative stress leading to activation of the ataxia telangiectasia and Rad3-related protein (ATR)-mediated DNA damage pathway, which arrests cells in S-phase. The key metabolite generated from Q utilization was aspartate, which is generated from a transaminase reaction whereby Q-derived glutamate is converted to α-ketoglutarate with the concomitant conversion of oxaloacetate to aspartate. Aspartate is a critical metabolite for both purine and pyrimidine nucleotide biosynthesis. This study identifies the molecular basis for the S-phase arrest caused by Q deprivation in KRas-driven cancer cells that arrest in S-phase in response to Q deprivation. Given that arresting cells in S-phase sensitizes cells to apoptotic insult, this study suggests novel therapeutic approaches to KRas-driven cancers. PMID:26921316

  3. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  4. Increased extracellular dopamine in the nucleus accumbens of the rat during associative learning of neutral stimuli.

    PubMed

    Young, A M; Ahier, R G; Upton, R L; Joseph, M H; Gray, J A

    1998-04-01

    . Hypotheses of the behavioural function of the mesolimbic dopamine system centre on its role in mediating the effects of biological reinforcers, both rewarding and aversive, conditioned and unconditioned. The present results, showing increases in extracellular dopamine in the nucleus accumbens when an association is formed between two stimuli of which neither is a biological reinforcer nor, prior to formation of the association, affects dopamine levels, suggest a role for accumbal dopamine in the modulation of associative learning in general, not only that involving reinforcement. PMID:9502256

  5. Regulation of dopamine D2 receptors in a novel cell line (SUP1)

    SciTech Connect

    Ivins, K.J.; Luedtke, R.R.; Artymyshyn, R.P.; Molinoff, P.B. )

    1991-04-01

    A prolactin-secreting cell line, SUP1, has been established from rat pituitary tumor 7315a. In radioligand binding experiments, the D2 receptor antagonist (S)-(-)-3-{sup 125}I iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2- pyrrolidinyl)methyl)benzamide ({sup 125}I IBZM) labeled a single class of sites in homogenates of SUP1 cells (Kd = 0.6 nM; Bmax = 45 fmol/mg of protein). The sites displayed a pharmacological profile consistent with that of D2 receptors. Inhibition of the binding of {sup 125}I IBZM by dopamine was sensitive to GTP, suggesting that D2 receptors in SUP1 cells are coupled to guanine nucleotide-binding protein(s). In the presence of isobutylmethylxanthine, dopamine decreased the level of cAMP accumulation in SUP1 cells. Dopamine also inhibited prolactin secretion from SUP1 cells. Both the inhibition of cAMP accumulation and the inhibition of prolactin secretion were blocked by D2 receptor antagonists, suggesting that these effects of dopamine were mediated by an interaction with D2 receptors. The regulation of D2 receptors in SUP1 cells by D2 receptor agonists was investigated. Exposure of SUP1 cells to dopamine or to the D2 receptor agonist N-propylnorapomorphine led to increased expression of D2 receptors, with no change in the affinity of the receptors for {sup 125}I IBZM. An increase in the density of D2 receptors in SUP1 cells was evident within 7 hr of exposure to dopamine. Spiroperidol, a D2 receptor antagonist, blocked the effect of dopamine on receptor density. These results suggest that exposure of D2 receptors in SUP1 cells to agonists leads to an up-regulation of D2 receptors. Dopamine retained the ability to inhibit cAMP accumulation in SUP1 cells exposed to dopamine for 24 hr, suggesting that D2 receptors in SUP1 cells are not desensitized by prolonged exposure to agonist.

  6. Diagnosing dopamine-responsive dystonias.

    PubMed

    Malek, N; Fletcher, N; Newman, E

    2015-10-01

    The clinical spectrum of dopamine-responsive dystonias (DRDs) has expanded over the last decade to comprise several distinct disorders. At the milder end of the clinical spectrum is the autosomal-dominant guanosine triphosphate cyclohydrolase deficiency syndrome (GTPCH-DRD), and at the more severe end is the much less common autosomal recessive tyrosine hydroxylase deficiency syndrome (TH-DRD), with intermediate forms in between. Understanding the pathophysiology of DRDs can help in their optimal diagnosis and management. These are conditions with the potential to be either underdiagnosed when not considered or overdiagnosed if there is an equivocal L-dopa (levo-3,4-dihydroxyphenylalanine) response. In this article, we discuss the clinical phenotypes of these disorders, and we outline how investigations can help in confirming the diagnosis. PMID:26045581

  7. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  8. Involvement of the dorsal hippocampal dopamine D2 receptors in histamine-induced anxiogenic-like effects in mice.

    PubMed

    Piri, Morteza; Ayazi, Elham; Zarrindast, Mohammad Reza

    2013-08-29

    Anxiety-related behaviors increase histamine and dopamine release in the brain. On the other hand, central histamine counteracts reward and reinforcement processes mediated by the mesolimbic dopamine system. We investigated the effects of the histaminergic system and dopamine D2 receptors agents and their interactions on anxiety-related behaviors using the elevated plus-maze (EPM). The intra-hippocampal (Intra-CA1) microinjection of histamine (10 μg/mouse) decreased the percentage of open arm time (%OAT) and open arm entries (%OAE) but not the locomotor activity, indicating an anxiogenic-like response. Quinpirole (0.5 and 2 μg/mouse) or sulpiride (0.3 and 1 μg/mouse) when injected into the dorsal hippocampus also induced anxiety-like behavior, however, the drugs reversed the anxiogenic response induced by the effective dose of histamine (10 μg/mouse). Taken together and under the present experimental design, our results indicate that activation of the dorsal hippocampal histaminergic receptors causes anxiety-like behaviors altered by dopamine D2 receptor agonist and antagonist. Histamine can decrease dopaminergic tone in the dorsal hippocampus through decreasing the endogenous dopamine release, whereas quinpirole does the same via the postsynaptic DA receptors' activation. Sulpiride however renders the same effect through autoreceptors' blockade and potentiated dopamine transmission. Thus, quinpirole and sulpiride seem to compensate the effects of the intra-CA1 injection of exogenous histamine, and tend to exert anxiolytic effects in the presence of histamine. PMID:23872092

  9. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  10. Detection of Dopamine Dynamics in the Brain.

    ERIC Educational Resources Information Center

    Wightman, R. Mark; And Others

    1988-01-01

    Explores neurochemical events in the extra cellular space of the brain by use of in vivo voltammetric microelectrodes. Reports dopamine concentrations and pathways, and discusses techniques used for analysis. Recognizes current problems and future directions for research. (ML)

  11. Reinforcement in an in Vitro Analog of Appetitive Classical Conditioning of Feeding Behavior in "Aplysia": Blockade by a Dopamine Antagonist

    ERIC Educational Resources Information Center

    Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.

    2005-01-01

    In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…

  12. Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?

    PubMed Central

    Melis, M; Pistis, P

    2007-01-01

    Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. However, endocannabinoids have a dual role: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson’s disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial. The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration. PMID:19305743

  13. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-01

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid. PMID:27258673

  14. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria.

    PubMed

    Palmieri, L; Pardo, B; Lasorsa, F M; del Arco, A; Kobayashi, K; Iijima, M; Runswick, M J; Walker, J E; Saheki, T; Satrústegui, J; Palmieri, F

    2001-09-17

    The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle. PMID:11566871

  15. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  16. Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human alpha(2)-adrenergic and dopaminergic receptors.

    PubMed

    Alachkar, Amal; Brotchie, Jonathan M; Jones, Owen T

    2010-07-01

    The ability of l-3,4-dihydroxyphenylalanine (l-DOPA), l-DOPA-methyl ester and their major metabolites, dopamine, dihydroxyphenylacetic acid (DOPAC), homovanillic (HVA), 3-O-methyldopa and 3-methoxytyramine (3-MT) to bind to alpha(2) adrenergic and D1 and D2 dopamine receptors was assessed by radioligand binding to cloned human receptors expressed in cell lines. As anticipated, dopamine bound with high affinity to D1 (IC(50) 1.1 + or - 0.16 microM) and D2 (IC(50) 0.7 + or - 0.3 microM) dopamine receptors. However, dopamine also bound with high affinity to alpha(2A) (IC(50) was 2.6 + or - 0.5 microM), alpha(2C) (IC(50) 3.2 + or - 0.7 microM). 3-MT bound to alpha(2A) with high affinity (IC(50), 3.6 + or - 0.2 microM) though moderate affinity to alpha(2)c, D1 and D2 receptors (values of IC(50) were 55 + or - 14, 121 + or - 43, 36 + or - 14 microM, respectively). l-DOPA-methyl ester bound with high affinity to alpha(2) (IC(50) 17-36 microM) but not dopamine receptors (IC(50) 0.9-2.5 mM). l-DOPA, 3-O-methyldopa and DOPAC had no observable effect on binding to any of the receptors tested. These data suggest that the effects of l-DOPA in Parkinson's disease may result from actions of its metabolites dopamine and 3-MT on both dopaminergic and non-dopaminergic receptors. These findings may provide explanations for the differences between l-DOPA and dopamine receptor agonists in mediating anti-parkinsonian effects and propensity to be associated with dyskinesia and motor complications such as wearing-off and on-off. PMID:20302892

  17. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes. PMID:27418545

  18. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia.

    PubMed

    Tikka, T M; Koistinaho, J E

    2001-06-15

    Glutamate excitotoxicity to a large extent is mediated through activation of the N-methyl-D-aspartate (NMDA)-gated ion channels in several neurodegenerative diseases and ischemic stroke. Minocycline, a tetracycline derivative with antiinflammatory effects, inhibits IL-1beta-converting enzyme and inducible nitric oxide synthase up-regulation in animal models of ischemic stroke and Huntington's disease and is therapeutic in these disease animal models. Here we report that nanomolar concentrations of minocycline protect neurons in mixed spinal cord cultures against NMDA excitotoxicity. NMDA treatment alone induced microglial proliferation, which preceded neuronal death, and administration of extra microglial cells on top of these cultures enhanced the NMDA neurotoxicity. Minocycline inhibited all these responses to NMDA. Minocycline also prevented the NMDA-induced proliferation of microglial cells and the increased release of IL-1beta and nitric oxide in pure microglia cultures. Finally, minocycline inhibited the NMDA-induced activation of p38 mitogen-activated protein kinase (MAPK) in microglial cells, and a specific p38 MAPK inhibitor, but not a p44/42 MAPK inhibitor, reduced the NMDA toxicity. Together, these results suggest that microglial activation contributes to NMDA excitotoxicity and that minocycline, a tetracycline derivative, represents a potential therapeutic agent for brain diseases. PMID:11390507

  19. Aspartate-assisted immune stimulation: its importance in antitumor and antiviral protection.

    PubMed

    Chany, C; Cerutti, I

    1986-08-15

    Immune stimulators such as Corynebacterium parvum (CP) are useful for antitumoral and antiviral therapy. However, the immune trigger cannot be reactivated without adversely affecting the disease. We have tried to amplify the results yielded by a single injection of CP by using either interleukin-2 (IL2) or aspartate salts (ASP). In the present report, we show that IL2 has no detectable clinical effect. In contrast, the addition of an ASP salt increases the antiviral and antitumoral protection afforded by the CP-induced trigger. Moreover, treatment using only ASP slightly protects against tumor development and significantly increases antiviral resistance during experimental encephalomyocarditis (EMC) infection. This ASP-assisted CP immune stimulation improves antitumoral resistance even when ascitic tumors have already developed. In the latter case, tumor regression can even be detected. Since ASP increases T-cell cytotoxicity in vitro and aggravates spontaneous T-cell lymphomas in AKR mice, the involvement of T-cell-mediated immunity may explain antitumoral and antiviral effects. We propose the use of this therapeutic model for human cancer therapy, and possibly for treating AIDS. PMID:2426209

  20. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  1. Liposome reconstitution and modulation of recombinant N-methyl-d-aspartate receptor channels by membrane stretch

    PubMed Central

    Kloda, Anna; Lua, Linda; Hall, Rhonda; Adams, David J.; Martinac, Boris

    2007-01-01

    In this study, the heteromeric N-methyl-d-aspartate (NMDA) receptor channels composed of NR1a and NR2A subunits were expressed, purified, reconstituted into liposomes, and characterized by using the patch clamp technique. The protein exhibited the expected electrophysiological profile of activation by glutamate and glycine and internal Mg2+ blockade. We demonstrated that the mechanical energy transmitted to membrane-bound NMDA receptor channels can be exerted directly by tension developed in the lipid bilayer. Membrane stretch and application of arachidonic acid potentiated currents through NMDA receptor channels in the presence of intracellular Mg2+. The correlation of membrane tension induced by either mechanical or chemical stimuli with the physiological Mg2+ block of the channel suggests that the synaptic transmission can be altered if NMDA receptor complexes experience local changes in bilayer thickness caused by dynamic targeting to lipid microdomains, electrocompression, or chemical modification of the cell membranes. The ability to study gating properties of NMDA receptor channels in artificial bilayers should prove useful in further study of structure–function relationships and facilitate discoveries of new therapeutic agents for treatment of glutamate-mediated excitotoxicity or analgesic therapies. PMID:17242368

  2. Sigma-1 and N-Methyl-d-Aspartate Receptors: A Partnership with Beneficial Outcomes

    PubMed Central

    Pabba, Mohan; Sibille, Etienne

    2015-01-01

    Sigma-1 receptors (σ-1R) are interorganelle signaling molecules, which have been implicated in synaptic plasticity, primarily by enhancing the function of N-methyl-d-aspartate receptors (NMDARs). On the other hand, excessive influx of calcium via activated NMDAR can cause excitotoxicity. Yet, despite their NMDAR-enhancing role, multiple lines of evidence suggest that σ-1Rs are involved in neuroprotection. The mechanism underlying these intriguing opposing effects is not known. Recent studies now suggest the possibility that σ-1Rs could exert neuroprotective effects via targeted disruption of protein-protein interactions between NMDARs and their associated intracellular signaling machinery, specifically the neuronal nitric oxide synthase (nNOS). This targeted disruption of protein-protein interactions between NMDARs and nNOS results in lower levels of nitric oxide generation, thus having a neuroprotective effect. Here, we briefly summarize aspects of σ-1R-mediated enhancement of NMDAR function and possible neuroprotection. In-depth mechanistic understanding of σ-1R modulation of NMDAR function, which preserves Ca2+ homoeostasis while limiting excitotoxicity would provide valuable information for designing novel as well as improving prevailing therapeutic strategies.

  3. A Novel Aspartic Proteinase-Like Gene Expressed in Stratified Epithelia and Squamous Cell Carcinoma of the Skin

    PubMed Central

    Rhiemeier, Verena; Breitenbach, Ute; Richter, Karl Hartmut; Gebhardt, Christoffer; Vogt, Ingeborg; Hartenstein, Bettina; Fürstenberger, Gerhard; Mauch, Cornelia; Hess, Jochen; Angel, Peter

    2006-01-01

    Homeostasis of stratified epithelia, such as the epidermis of the skin, is a sophisticated process that represents a tightly controlled balance between proliferation and differentiation. Alterations of this balance are associated with common human diseases including cancer. Here, we report the cloning of a novel cDNA sequence, from mouse back skin, that is induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and codes for a hitherto unknown aspartic proteinase-like protein (Taps). Taps represents a potential AP-1 target gene because TPA-induced expression in epidermal keratinocytes critically depends on c-Fos, and co-treatment with dexamethasone, a potent inhibitor of AP-1-mediated gene regulation, resulted in impaired activation of Taps expression. Taps mRNA and protein are restricted to stratified epithelia in mouse embryos and adult tissues, implicating a crucial role for this aspartic proteinase-like gene in differentiation and homeostasis of multilayered epithelia. During chemically induced carcinogenesis, transient elevation of Taps mRNA and protein levels was detected in benign skin tumors. However, its expression is negatively associated with dedifferentiation and malignant progression in squamous cell carcinomas of the skin. Similar expression was observed in squamous skin tumors of patients, suggesting that detection of Taps levels represents a novel strategy to discriminate the progression state of squamous skin cancers. PMID:16565508

  4. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.

    PubMed Central

    Anis, N. A.; Berry, S. C.; Burton, N. R.; Lodge, D.

    1983-01-01

    The interaction of two dissociative anaesthetics, ketamine and phencyclidine, with the responses of spinal neurones to the electrophoretic administration of amino acids and acetylcholine was studied in decerebrate or pentobarbitone-anaesthetized cats and rats. Both ketamine and phencyclidine selectively blocked excitation by N-methyl-aspartate (NMA) with little effect on excitation by quisqualate and kainate. Ketamine reduced responses to L-aspartate somewhat more than those of L-glutamate; the sensitivity of responses to these two putative transmitters was between that to NMA on one hand and that to quisqualate or kainate on the other. On Renshaw cells, ketamine and phencyclidine reduced responses to acetylcholine less than those to NMA but more than those to quisqualate or kainate. Dorsal root-evoked synaptic excitation of Renshaw cells was reduced to a greater extent than that following ventral root excitation. Intravenous ketamine, 2.5-20 mg/kg, and phencyclidine, 0.2-0.5 mg/kg, also selectively blocked excitation of neurones by NMA. Ketamine showed no consistent or selective effect on inhibition of spinal neurones by electrophoretically administered glycine or gamma-aminobutyricacid (GABA). The results suggest that reduction of synaptic excitation mediated via NMA receptors contributes to the anaesthetic/analgesic properties of these two dissociative anaesthetics. PMID:6317114

  5. Protection against ionising radiation and synergism with thiols by zinc aspartate.

    PubMed

    Floersheim, G L; Floersheim, P

    1986-06-01

    Pre-treatment with zinc aspartate protected mice against the lethal effects of radiation and raised the LD50 from 8 Gy to 12.2 Gy. Zinc chloride and zinc sulphate were clearly less active. The radioprotective effect of zinc aspartate was equivalent to cysteamine and slightly inferior to S,2-aminoethylisothiourea (AET). Zinc aspartate displayed a similar therapeutic index to the thiols but could be applied at an earlier time before irradiation. Synergistic effects occurred with the combined administration of zinc aspartate and thiols. By giving zinc aspartate with cysteamine, the LD50 was increased to 13.25 Gy and, by combining it in the optimal protocol with AET, to 17.3 Gy. The radioprotection by zinc and its synergism with thiols is explained by the stabilisation of thiols through the formation of zinc complexes. PMID:3518853

  6. Tonic Dopamine Modulates Exploitation of Reward Learning

    PubMed Central

    Beeler, Jeff A.; Daw, Nathaniel; Frazier, Cristianne R. M.; Zhuang, Xiaoxi

    2010-01-01

    The impact of dopamine on adaptive behavior in a naturalistic environment is largely unexamined. Experimental work suggests that phasic dopamine is central to reinforcement learning whereas tonic dopamine may modulate performance without altering learning per se; however, this idea has not been developed formally or integrated with computational models of dopamine function. We quantitatively evaluate the role of tonic dopamine in these functions by studying the behavior of hyperdopaminergic DAT knockdown mice in an instrumental task in a semi-naturalistic homecage environment. In this “closed economy” paradigm, subjects earn all of their food by pressing either of two levers, but the relative cost for food on each lever shifts frequently. Compared to wild-type mice, hyperdopaminergic mice allocate more lever presses on high-cost levers, thus working harder to earn a given amount of food and maintain their body weight. However, both groups show a similarly quick reaction to shifts in lever cost, suggesting that the hyperdominergic mice are not slower at detecting changes, as with a learning deficit. We fit the lever choice data using reinforcement learning models to assess the distinction between acquisition and expression the models formalize. In these analyses, hyperdopaminergic mice displayed normal learning from recent reward history but diminished capacity to exploit this learning: a reduced coupling between choice and reward history. These data suggest that dopamine modulates the degree to which prior learning biases action selection and consequently alters the expression of learned, motivated behavior. PMID:21120145

  7. Pharmacology of Signaling Induced by Dopamine D1-Like Receptor Activation

    PubMed Central

    Undieh, Ashiwel S.

    2010-01-01

    Dopamine D1-like receptors consisting of D1 and D5 subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D1-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D1-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D1-like receptor agonists is reliably associated with the D1 subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D5 receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D5 coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D5 versus D1 subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D1 or D5 interactions with D2-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway. PMID:20547182

  8. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics

    NASA Astrophysics Data System (ADS)

    Sokoloff, Pierre; Giros, Bruno; Martres, Marie-Pascale; Bouthenet, Marie-Louise; Schwartz, Jean-Charles

    1990-09-01

    A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor. The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions. It seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease, that were previously thought to interact only with D2 receptors.

  9. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice

    PubMed Central

    Zhang, Hai-Ying; Gao, Ming; Liu, Qing-Rong; Bi, Guo-Hua; Li, Xia; Yang, Hong-Ju; Gardner, Eliot L.; Wu, Jie

    2014-01-01

    Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors. PMID:25368177

  10. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  11. Two dopamine receptors play different roles in phase change of the migratory locust

    PubMed Central

    Guo, Xiaojiao; Ma, Zongyuan; Kang, Le

    2015-01-01

    The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA) and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust phase change have not been fully explored. In the present study, DA concentration in the brain increased during crowding and decreased during isolation. The expression level of dopamine receptor 1 (Dop1) increased from 1 to 4 h of crowding, but remained unchanged during isolation. Injection of Dop1 agonist SKF38393 into the brains of solitary locusts promoted gregarization, induced conspecific attraction-response and increased locomotion. RNAi knockdown of Dop1 and injection of antagonist SCH23390 in gregarious locusts induced solitary behavior, promoted the shift to repulsion-response and reduced locomotion. By contrast, the expression level of dopamine receptor 2 (Dop2) gradually increased during isolation, but remained stable during crowding. During the isolation of gregarious locusts, injection of Dop2 antagonist S(–)-sulpiride or RNAi knockdown of Dop2 inhibited solitarization, maintained conspecific attraction-response and increased locomotion; by comparison, the isolated controls displayed conspecific repulsion-response and weaker motility. Activation of Dop2 in solitary locusts through injection of agonist, R(-)-TNPA, did not affect their behavioral state. Thus, DA-Dop1 signaling in the brain of Locusta induced the gregariousness, whereas DA-Dop2 signaling mediated the solitariness. Our study demonstrated that Dop1 and Dop2 modulated locust phase change in two different directions. Further investigation of Locusta Dop1 and Dop2 functions in modulating phase change will improve our understanding of the molecular mechanism underlying phenotypic plasticity in locusts

  12. Vasodilator responses to dopamine in rat perfused mesentery are age-dependent.

    PubMed Central

    Wanstall, J. C.; O'Donnell, S. R.

    1989-01-01

    1. Dose-dependent vasodilator responses to dopamine, isoprenaline, noradrenaline, 3-isobutyl-1-methylxanthine (IBMX) and sodium nitroprusside were obtained in isolated perfused mesentery preparations, taken from reserpine-treated rats of different ages. The preparations were pretreated with phenoxybenzamine (1 microM) and perfused with physiological salt solution containing cocaine (10 microM), additional KCl (20 mM) and vasopressin (0.1 microM). 2. Vasodilator responses to dopamine were abolished by the dopamine1 (DA1)-selective antagonist SCH 23390 (10 nM) and those to isoprenaline by propranolol (1 microM), but the vasodilator responses to noradrenaline were abolished only when SCH 23390 and propranolol were used together. This indicated that dopamine was acting via DA1-receptors, isoprenaline via beta-adrenoceptors and that noradrenaline could act via DA1-receptors and beta-adrenoceptors in this preparation. 3. Responses to all the vasodilator drugs decreased in magnitude between the ages of 1 and 2 months. Responses to dopamine declined further in 4 month-old rats and were negligible at 6 or 22-24 months of age. Responses to isoprenaline were well maintained up to 6 months of age, but were negligible at 22-24 months. 4. It is concluded that, in the rat mesenteric vasculature, there is a non-specific decline in responses to vasodilator drugs during development (1 to 2 months). Subsequently there is a specific decline in DA1-receptor-mediated and beta-adrenoceptor-mediated responses; the former are lost at an earlier age than the latter. This different time course suggests that age influences receptor numbers, or their coupling to adenylate cyclase, rather than a post-receptor event in the adenylate cyclase/cyclic AMP pathway. PMID:2804550

  13. Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

    PubMed Central

    Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.

    2014-01-01

    Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570

  14. Cytosolic Sulfotransferase 1A3 Is Induced by Dopamine and Protects Neuronal Cells from Dopamine Toxicity

    PubMed Central

    Sidharthan, Neelima P.; Minchin, Rodney F.; Butcher, Neville J.

    2013-01-01

    Dopamine neurotoxicity is associated with several neurodegenerative diseases, and neurons utilize several mechanisms, including uptake and metabolism, to protect them from injury. Metabolism of dopamine involves three enzymes: monoamine oxidase, catechol O-methyltransferase, and sulfotransferase. In primates but not lower order animals, a sulfotransferase (SULT1A3) is present that can rapidly metabolize dopamine to dopamine sulfate. Here, we show that SULT1A3 and a closely related protein SULT1A1 are highly inducible by dopamine. This involves activation of the D1 and NMDA receptors. Both ERK1/2 phosphorylation and calcineurin activation are required for induction. Pharmacological agents that inhibited induction or siRNA targeting SULT1A3 significantly increased the susceptibility of cells to dopamine toxicity. Taken together, these results show that dopamine can induce its own metabolism and protect neuron-like cells from damage, suggesting that SULT1A3 activity may be a risk factor for dopamine-dependent neurodegenerative diseases. PMID:24136195

  15. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  16. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    PubMed

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  17. Chronic cocaine administration reduces striatal dopamine terminal density and striatal dopamine release which leads to drug-seeking behaviour.

    PubMed

    Lee, J; Parish, C L; Tomas, D; Horne, M K

    2011-02-01

    Drug addiction is associated with altered dopamine (DA) neurotransmission in the basal ganglia. We have previously shown that chronic stimulation of the dopamine D2 receptor (D(2)R) with cocaine results in reduced striatal DA terminal density. The aims of this study were to establish whether this reduction in DA terminal density results in reduced striatal DA release and increased cocaine-seeking behaviour and whether D(2)R antagonism can restore the cocaine-induced alterations in DA neurotransmission and drug-seeking behaviour. Rats were housed individually and either control, cocaine, haloperidol (D(2)R antagonist), or cocaine and haloperidol was administered in the drinking water for 16 weeks. Chronic cocaine treatment, which reduced striatal DA terminal density by 20%, resulted in a reduction in basal (-34%) and cocaine-evoked (-33%) striatal DA release and increased cocaine-seeking behaviour. These cocaine-mediated effects on striatal DA terminal density, DA release and drug-seeking could be prevented by co-administration with haloperidol. Basal and cocaine-evoked DA release in the striatum directly correlated with DA terminal density and with preference for cocaine. We conclude that striatal DA terminal density and DA release is an important factor in maintaining drug preference and should be considered as a factor in drug-seeking behaviour and relapse. PMID:21129449

  18. The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man.

    PubMed

    Price, D D; Mao, J; Frenk, H; Mayer, D J

    1994-11-01

    Oral doses of dextromethorphan (DM), a common cough suppressant and N-methyl-D-aspartate (NMDA) receptor antagonist, and their vehicle control were given on a double-blind basis to normal volunteer human subjects who rated intensities of first and second pain in response to repeated painful electric shocks and repeated 52 degrees C heat pulses. Doses of 30 and 45 mg, but not 15 mg, were effective in attenuating temporal summation of second pain, a psychophysical correlate of temporal summation of C afferent-mediated responses of dorsal horn nociceptive neurons, termed 'wind-up'. By contrast, neither first nor second pain evoked by the first stimulus in a train of stimuli were affected by any of these doses of DM. These results further confirm temporal summation of second pain as a psychophysical correlate of wind-up by providing evidence that DM selectively reduces temporal summation of second pain, as has been shown for wind-up. PMID:7892014

  19. Flap Dynamics in Aspartic Proteases: A Computational Perspective.

    PubMed

    Mahanti, Mukul; Bhakat, Soumendranath; Nilsson, Ulf J; Söderhjelm, Pär

    2016-08-01

    Recent advances in biochemistry and drug design have placed proteases as one of the critical target groups for developing novel small-molecule inhibitors. Among all proteases, aspartic proteases have gained significant attention due to their role in HIV/AIDS, malaria, Alzheimer's disease, etc. The binding cleft is covered by one or two β-hairpins (flaps) which need to be opened before a ligand can bind. After binding, the flaps close to retain the ligand in the active site. Development of computational tools has improved our understanding of flap dynamics and its role in ligand recognition. In the past decade, several computational approaches, for example molecular dynamics (MD) simulations, coarse-grained simulations, replica-exchange molecular dynamics (REMD) and metadynamics, have been used to understand flap dynamics and conformational motions associated with flap movements. This review is intended to summarize the computational progress towards understanding the flap dynamics of proteases and to be a reference for future studies in this field. PMID:26872937

  20. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. PMID:25922304

  1. Endogenous Dopamine Suppresses Initiation of Swimming in Prefeeding Zebrafish Larvae

    PubMed Central

    Thirumalai, Vatsala; Cline, Hollis T.

    2008-01-01

    Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of longer durations at 3 than at 5dpf. At 3dpf, application of dopamine as well as bupropion, a dopamine reuptake blocker, abolished spontaneous fictive swim episodes. Blocking D2 receptors increased frequency of occurrence of episodes and activation of adenylyl cyclase, a downstream target inhibited by D2-receptor signaling, blocked the inhibitory effect of dopamine. Dopamine had no effect on motor neuron firing properties, input impedance, resting membrane potential, or the amplitude of spike afterhyperpolarization. Application of dopamine either to the isolated spinal cord or locally within the cord does not decrease episode frequency, whereas dopamine application to the brain silences episodes, suggesting a supraspinal locus of dopaminergic action. Treating larvae with 10 μM MPTP reduced catecholaminergic innervation in the brain and increased episode frequency. These data indicate that dopamine inhibits the initiation of fictive swimming episodes at 3dpf. We found that at 5dpf, exogenously applied dopamine inhibits swim episodes, yet the dopamine reuptake blocker or the D2-receptor antagonist have no effect on episode frequency. These results led us to propose that endogenous dopamine release transiently suppresses swim circuits in developing zebrafish. PMID:18562547

  2. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  3. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  4. Dopamine systems in the forebrain

    PubMed Central

    Cave, John W.; Baker, Harriet

    2009-01-01

    The brain contains a number of distinct regions that share expression of dopamine (DA) and its requisite biosynthetic machinery, but otherwise encompass a diverse array of features and functions. Across the vertebrate family, the olfactory bulb (OB) contains the major DA system in the forebrain. OB DA cells are primarily periglomerular interneurons that define the glomerular structures in which they receive innervation from olfactory receptor neurons as well as mitral and tufted cells, the primary OB output neurons. The OB DA cells are necessary for both discrimination and the dynamic range over which odorant sensory information can be detected. In the embryo, OB DA neurons are derived from the ventricular area of the evaginating telencephalon, the dorsal lateral ganglionic eminence, and the septum. However, most OB DA interneurons are generated post-natally and continue to be produced throughout adult life from neural stem cells in the subventricular zone of the lateral ventricle and rostral migratory stream. Adult born OB DA neurons are capable of integrating into existing circuits and do not appear to degenerate in Parkinson’s disease. Several genes have been identified that regulate the differentiation of OB DA interneurons from neural stem cells. These include transcription factors that modify the expression of tyrosine hydroxylase, the first enzyme in the DA biosynthetic pathway and a reliable marker of the DA phenotype. Elucidation of the molecular genetic pathways of OB DA differentiation may advance the development of strategies to treat neurological disease. PMID:19731547

  5. Retroactive modulation of spike timing-dependent plasticity by dopamine

    PubMed Central

    Brzosko, Zuzanna; Schultz, Wolfram; Paulsen, Ole

    2015-01-01

    Most reinforcement learning models assume that the reward signal arrives after the activity that led to the reward, placing constraints on the possible underlying cellular mechanisms. Here we show that dopamine, a positive reinforcement signal, can retroactively convert hippocampal timing-dependent synaptic depression into potentiation. This effect requires functional NMDA receptors and is mediated in part through the activation of the cAMP/PKA cascade. Collectively, our results support the idea that reward-related signaling can act on a pre-established synaptic eligibility trace, thereby associating specific experiences with behaviorally distant, rewarding outcomes. This finding identifies a biologically plausible mechanism for solving the ‘distal reward problem’. DOI: http://dx.doi.org/10.7554/eLife.09685.001 PMID:26516682

  6. Dopamine and Psychosis: Theory, Pathomechanisms and Intermediate Phenotypes

    PubMed Central

    Tost, Heike; Alam, Tajvar; Meyer-Lindenberg, Andreas

    2009-01-01

    Schizophrenia is a chronic, severe, and disabling brain disorder arising from the adverse interaction of predisposing risk genes and environmental factors. The psychopathology is characterized by a wide array of disturbing cognitive, emotional, and behavioral symptoms that interfere with the individual's capacity to function in society. Contemporary pathophysiological models assume that psychotic symptoms are triggered by a dysregulation of dopaminergic activity in the brain, a theory that is tightly linked to the serendipitous discovery of the first effective antipsychotic agents in the early 1950s. In recent years, the availability of modern neuroimaging techniques has significantly expanded our understanding of the key mediator circuits that bridge the gap between genetic susceptibility and clinical phenotype. This paper discusses the pathophysiological concepts, molecular mechanisms and neuroimaging evidence that link psychosis to disturbances in dopamine neurotransmission. PMID:19559045

  7. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  8. Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits.

    PubMed

    Chandra, T; Maier, W; König, H-G; Hirzel, K; Kögel, D; Schüler, T; Chandra, A; Demirhan, I; Laube, B

    2005-01-01

    We investigated the effect of type 1 human immunodeficiency virus (HIV-1) regulatory protein Tat on N-methyl-d-aspartate (NMDA) receptors expressed in Xenopus oocytes by voltage-clamp recording and its role in NMDA-mediated neurotoxicity using cultured rat hippocampal neurons. Tat (0.01-1muM) potentiated NMDA-induced currents of recombinant NMDA receptors. However, in the presence of Zn(2+), the potentiating effect of Tat was much more pronounced, indicating an additional Zn(2+)-related effect on NMDA receptors. Consistently, Tat potentiated currents of the particularly Zn(2+)-sensitive NR1/NR2A NMDA receptor with a higher efficacy, whereas currents from a Zn(2+)-insensitive mutant were only marginally augmented. In addition, chemical-modified Tat, deficient for metal binding, did not reverse Zn(2+)-mediated inhibition of NMDA responses, demonstrating that Tat disinhibits NMDA receptors from Zn(2+)-mediated antagonism by complexing the cation. We therefore investigated the interplay of Tat and Zn(2+) in NMDA-mediated neurotoxicity using cultures of rat hippocampal neurons. Zn(2+) exhibited a prominent rescuing effect when added together with the excitotoxicant NMDA, which could be reverted by the Zn(2+)-chelator tricine. Similar to tricine, Tat enhanced NMDA-mediated neurotoxicity in the presence of neuroprotective Zn(2+) concentrations. Double-staining with antibodies against Tat and the NR1 subunit of the NMDA receptor revealed partial colocalization of the immunoreactivities in membrane patches of hippocampal neurons, supporting the idea of a direct interplay between Tat and glutamatergic transmission. We therefore propose that release of Zn(2+)-mediated inhibition of NMDA receptors by HIV-1 Tat contributes to the neurotoxic effect of glutamate and may participate in the pathogenesis of AIDS-associated dementia. PMID:15964699

  9. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain.

    PubMed

    Freyberg, Zachary; Sonders, Mark S; Aguilar, Jenny I; Hiranita, Takato; Karam, Caline S; Flores, Jorge; Pizzo, Andrea B; Zhang, Yuchao; Farino, Zachary J; Chen, Audrey; Martin, Ciara A; Kopajtic, Theresa A; Fei, Hao; Hu, Gang; Lin, Yi-Ying; Mosharov, Eugene V; McCabe, Brian D; Freyberg, Robin; Wimalasena, Kandatege; Hsin, Ling-Wei; Sames, Dalibor; Krantz, David E; Katz, Jonathan L; Sulzer, David; Javitch, Jonathan A

    2016-01-01

    Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H(+) antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects. PMID:26879809

  10. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain

    PubMed Central

    Freyberg, Zachary; Sonders, Mark S.; Aguilar, Jenny I.; Hiranita, Takato; Karam, Caline S.; Flores, Jorge; Pizzo, Andrea B.; Zhang, Yuchao; Farino, Zachary J.; Chen, Audrey; Martin, Ciara A.; Kopajtic, Theresa A.; Fei, Hao; Hu, Gang; Lin, Yi-Ying; Mosharov, Eugene V.; McCabe, Brian D.; Freyberg, Robin; Wimalasena, Kandatege; Hsin, Ling-Wei; Sames, Dalibor; Krantz, David E.; Katz, Jonathan L.; Sulzer, David; Javitch, Jonathan A.

    2016-01-01

    Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H+ antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects. PMID:26879809

  11. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  12. Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway

    PubMed Central

    Talaei, Fatemeh; Bouma, Hjalmar R.; Van der Graaf, Adrianus C.; Strijkstra, Arjen M.; Schmidt, Martina; Henning, Robert H.

    2011-01-01

    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters. PMID:21829469

  13. Dopamine, urges to smoke, and the relative salience of drug versus non-drug reward

    PubMed Central

    Das, Ravi K.; Kamboj, Sunjeev K.; Curran, H. Valerie

    2015-01-01

    When addicted individuals are exposed to drug-related stimuli, dopamine release is thought to mediate incentive salience attribution, increasing attentional bias, craving and drug seeking. It is unclear whether dopamine acts specifically on drug cues versus other rewards, and if these effects correspond with craving and other forms of cognitive bias. Here, we administered the dopamine D2/D3 agonist pramipexole (0.5 mg) to 16 tobacco smokers in a double-blind placebo-controlled crossover design. Visual fixations on smoking and money images were recorded alongside smoking urges and fluency tasks. Pramipexole attenuated a marked bias in initial orienting towards smoking relative to money but did not alter a maintained attentional bias towards smoking. Pramipexole decreased urges to smoke retrospectively after the task but not on a state scale. Fewer smoking words were generated after pramipexole but phonological and semantic fluency were preserved. Although these treatment effects did not correlate with each other, changes in initial orienting towards smoking and money were inversely related to baseline scores. In conclusion, pramipexole can reduce the salience of an addictive drug compared with other rewards and elicit corresponding changes in smoking urges and cognitive bias. These reward-specific and baseline-dependent effects support an ‘inverted-U’ shaped profile of dopamine in addiction. PMID:24526184

  14. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-01

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. PMID:25740537

  15. Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures.

    PubMed

    Mena, M A; Davila, V; Sulzer, D

    1997-10-01

    L-DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of L-DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. L-DOPA (50 microM) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where L-DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 microM L-DOPA. The stereoisomer D-DOPA (50-400 microM) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 microM) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of L-DOPA is stereospecific but independent of the production of dopamine. However, L-DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by L-buthionine sulfoximine (3 microM for 24 h) blocked the neurotrophic action of L-DOPA. N-Acetyl-L-cysteine (250 microM for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of L-DOPA. These data suggest that the neurotrophic effect of L-DOPA may be mediated, at least in part, by elevation of glutathione content. PMID:9326268

  16. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  17. Dopamine, urges to smoke, and the relative salience of drug versus non-drug reward.

    PubMed

    Freeman, Tom P; Das, Ravi K; Kamboj, Sunjeev K; Curran, H Valerie

    2015-01-01

    When addicted individuals are exposed to drug-related stimuli, dopamine release is thought to mediate incentive salience attribution, increasing attentional bias, craving and drug seeking. It is unclear whether dopamine acts specifically on drug cues versus other rewards, and if these effects correspond with craving and other forms of cognitive bias. Here, we administered the dopamine D2/D3 agonist pramipexole (0.5 mg) to 16 tobacco smokers in a double-blind placebo-controlled crossover design. Visual fixations on smoking and money images were recorded alongside smoking urges and fluency tasks. Pramipexole attenuated a marked bias in initial orienting towards smoking relative to money but did not alter a maintained attentional bias towards smoking. Pramipexole decreased urges to smoke retrospectively after the task but not on a state scale. Fewer smoking words were generated after pramipexole but phonological and semantic fluency were preserved. Although these treatment effects did not correlate with each other, changes in initial orienting towards smoking and money were inversely related to baseline scores. In conclusion, pramipexole can reduce the salience of an addictive drug compared with other rewards and elicit corresponding changes in smoking urges and cognitive bias. These reward-specific and baseline-dependent effects support an 'inverted-U' shaped profile of dopamine in addiction. PMID:24526184

  18. Dopamine Does Not Appear to Affect Mental Rotation in Parkinson’s Disease

    PubMed Central

    Crucian, Gregory P.; Armaghani, Sheyan; Armaghani, Avan; Foster, Paul S.; Burks, David W.; Skoblar, Barry; Drago, Valeria; Heilman, Kenneth M.

    2014-01-01

    Objective Patients with Parkinson’s disease (PD) often have deficits with mental rotation (MR). The neuropathological factors underlying these deficits, however, remain to be elucidated. One hypothesis suggests that dopamine depletion in nigro-striatal systems adversely influences MR. Another hypothesis suggests that deterioration of cortical (fronto-temporo-parietal basal ganglia) networks that mediate this function are responsible for this deficit. The goal of this study was to test the dopamine hypothesis by determining if dopamine abstinence negatively influences MR performance. Methods Thirty three non-demented right-handed individuals with PD were assess for their ability to perform a pencil and paper MR test while “on” and “off” dopaminergic medications. Dopamine abstinence followed the typical overnight withdrawal procedures. Results No differences in mental rotation abilities were found between “on” and “off” dopaminergic medications. Conclusions These results suggest that other neuropathological factors, such as cortical-basal ganglia neurodegeneration, or dysfunction of other neurotransmitters systems, might account for these cognitive deficits and future research will have to test these alternative hypotheses. PMID:25360231

  19. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    PubMed Central

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  20. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU).

    PubMed

    Harding, Cary O; Winn, Shelley R; Gibson, K Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-09-01

    Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  1. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... CONGENITAL Sources for This Page Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: ... GeneReview: Dopamine Beta-Hydroxylase Deficiency Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson ...

  2. Levodopa Reverses Cytokine-Induced Reductions in Striatal Dopamine Release

    PubMed Central

    Hernandez, Carla R.; Miller, Andrew H.

    2015-01-01

    Background: Studies using neuroimaging and in vivo microdialysis in humans and nonhuman primates indicate that inflammatory cytokines such as interferon-alpha reduce dopamine release in the ventral striatum in association with depressive symptoms including anhedonia and psychomotor slowing. Methods: Herein, we examined whether reduced striatal dopamine release in rhesus monkeys chronically treated with interferon-alpha can be restored by administration of the dopamine precursor levodopa via reverse in vivo microdialysis. Results: Levodopa completely reversed interferon-alpha–induced reductions in striatal dopamine release. No changes were found in the 3,4-dihydroxyphenylacetic acid to dopamine ratio, which increases when unpackaged dopamine is metabolized via monoamine oxidase. Conclusions: These findings suggest that inflammatory cytokines reduce the availability of dopamine precursors without affecting end-product synthesis or vesicular packaging and/or release and provide the foundation for future studies investigating therapeutic strategies that facilitate availability of dopamine precursors to improve depressive symptoms in patient populations with increased inflammation. PMID:25638816

  3. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    MedlinePlus

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  4. Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance

    PubMed Central

    Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R

    2015-01-01

    Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079

  5. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  6. Insulin degludec aspart: One-year real world experience

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.

    2016-01-01

    Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp) in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men), with mean age of 54.33 ± 9.63 years and mean duration of diabetes of 6.33 ± 2.96 years, started IDegAsp as insulin of initiation (16), as an intensification regime (4), as de-escalation from basal-bolus therapy (16), or as switch from premixed insulin (12). The dose of IDegAsp fell from 43.17 ± 21.18 U/day or 0.56 ± 0.23 U/kg to 37.75 ± 17.13U/day (0.51 ± 0.12 U/kg) at 24 weeks and 41.41 ± 15.33 U/day (0.56 ± 0.17 U/kg) at 52 weeks. Hemoglobin A1c (HbA1c), which was 9.52 ± 1.27% at the start of therapy, fell to 7.51 ± 0.46% at 26 weeks and to 7.48 ± 0.40% at 52 weeks. Fasting plasma glucose fell from 154.08 ± 33.30 mg% to 108.58 ± 22.26 mg% at 26 weeks and 102.17 ± 12.79 mg% at 52 weeks. Of the 48 subjects, 39 (81.25%) achieved a target of HbA1c <7.0% at both 26 and 52 weeks. No episode of hypoglycemia was reported in the 4 weeks preceding the analysis. Conclusion: This communication highlights the efficacy, safety, and tolerability, while providing insight into the usage patterns of IDegAsp. PMID:27186556

  7. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. PMID

  8. Disruption of hippocampal–prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission

    PubMed Central

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-01-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal–PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal–PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia. PMID:26286993

  9. Disruption of hippocampal-prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission.

    PubMed

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-09-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia. PMID:26286993

  10. Imaging of Brain Dopamine Pathways

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.; Fowler, Joanna S.

    2011-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. PMID:21603099

  11. Differential dopamine function in fibromyalgia.

    PubMed

    Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K

    2016-09-01

    Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain. PMID:26497890

  12. Thermal Stability of Dopamine Transporters.

    PubMed

    Kukk, Siim; Stepanov, Vladimir; Järv, Jaak

    2015-08-01

    The thermal stabilities of the rat and mouse dopamine transporter (DAT) proteins were studied within the temperature range of 0-37°C. The inactivation of the protein was followed by monitoring changes in radioligand-specific binding. We found that the process followed a rate equation with first-order kinetics and was characterized by having a single rate constant k inact. The activation energies (E a) that were calculated from the Arrhenius plots (ln k inact vs. 1/T) were 43 ± 5 and 45 ± 6 kJ/mol for the rat (rDAT) and mouse (mDAT) transporters, respectively, and 44 ± 7 kJ/mol for rDAT from PC-6.3 cell line. These E a values were similar to the E a values of thermal inactivation of the muscarinic receptor from rat brain cortex and to the thermal inactivation of other transmembrane proteins. However, all of these activation energy values were significantly lower than the E a values for soluble single-subunit proteins of similar size. These results therefore suggest that the thermal stability of transmembrane proteins may be governed to a significant extent by cell membrane properties and by interactions between the membrane components and the protein. In contrast, the stability of soluble proteins seems to be mostly governed by protein structure and size, which determine the sum of the stabilizing intramolecular interactions within the protein molecule. It is therefore not surprising that cell membrane properties and composition may have significant effects on the functional properties of transmembrane proteins. PMID:25812533

  13. No evidence of association between structural polymorphism at the dopamine D3 receptor locus and alcoholism in the Japanese

    SciTech Connect

    Higuchi, Susumu; Muramatsu, Taro; Matsushita, Sachio; Murayama, Masanobu

    1996-07-26

    Dopaminergic systems mediate reward mechanisms and are involved in reinforcing self-administration of dependence-forming substances, including alcohol. Studies have reported that polymorphisms of the dopamine D2 receptor, whose structure and function are similar to those of the dopamine D3 receptor, increase the susceptibility to alcoholism. The observations led to the examination of the possible association between a structural polymorphism of the D3 receptor gene and alcoholism. Genotyping results, employing a PCR-RFLP method, showed no difference in allele and genotype frequencies of the D3 BalI polymorphism (Ser{sup 9}/Gly{sup 9}) between Japanese alcoholics and controls. Moreover, these frequencies were not altered in alcoholics with inactive aldehyde dehydrogenase-2 (ALDH2), a well-defined negative risk factor for alcoholism. These results strongly suggest that the dopamine D3 receptor is not associated with alcoholism. 19 refs., 1 fig., 1 tab.

  14. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review

    PubMed Central

    Iadarola, Nicolas D.; Niciu, Mark J.; Richards, Erica M.; Vande Voort, Jennifer L.; Ballard, Elizabeth D.; Lundin, Nancy B.; Nugent, Allison C.; Machado-Vieira, Rodrigo

    2015-01-01

    Current pharmacotherapies for major depressive disorder (MDD) and bipolar depression (BDep) have a distinct lag of onset that can generate great distress and impairment in patients. Furthermore, as demonstrated by several real-world effectiveness trials, their efficacy is limited. All approved antidepressant medications for MDD primarily act through monoaminergic mechanisms, agonists or antagonists with varying affinities for serotonin, norepinephrine and dopamine. The glutamate system has received much attention in recent years as an avenue for developing novel therapeutics. A single subanesthetic dose infusion of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has been shown to have rapid and potent antidepressant effects in treatment-resistant MDD and BDep. In a reverse translational framework, ketamine’s clinical efficacy has inspired many preclinical studies to explore glutamatergic mechanisms of antidepressant action. These studies have revealed enhanced synaptic plasticity/synaptogenesis via numerous molecular and cellular mechanisms: release of local translational inhibition of brain-derived neurotrophic factor and secretion from dendritic spines, mammalian target of rapamycin activation and glycogen synthase kinase-3 inhibition. Current efforts are focused on extending ketamine’s antidepressant efficacy, uncovering the neurobiological mechanisms responsible for ketamine’s antidepressant activity in biologically enriched subgroups, and identifying treatment response biomarkers to personalize antidepressant selection. Other NMDA receptor antagonists have been studied both preclinically and clinically, which have revealed relatively modest antidepressant effects compared with ketamine but potentially other favorable characteristics, for example, decreased dissociative or psychotomimetic effects; therefore, there is great interest in developing novel glutamatergic antidepressants with greater target specificity and

  15. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  16. Theoretical determinations of ionization potentials of dopamine

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Yu, Z. Y.

    2013-04-01

    Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green's function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.

  17. Dopamine receptors in a songbird brain

    PubMed Central

    Kubikova, Lubica; Wada, Kazuhiro; Jarvis, Erich D

    2010-01-01

    Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors. J. Comp. Neurol. 518:741–769, 2010. © 2009 Wiley-Liss, Inc. PMID:20058221

  18. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  19. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    PubMed Central

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Summary Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225

  20. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225

  1. Dopamine and synaptic plasticity in the neostriatum

    PubMed Central

    ARBUTHNOTT, G. W.; INGHAM, C. A.; WICKENS, J. R.

    2000-01-01

    After the unilateral destruction of the dopamine input to the neostriatum there are enduring changes in rat behaviour. These have been ascribed to the loss of dopamine and the animals are often referred to as ‘hemiparkinsonian’. In the denervated neostriatum, we have shown that not only are the tyrosine hydroxylase positive boutons missing, but also the medium sized densely spiny output cells have fewer spines. Spines usually have asymmetric synapses on their heads. In a recent stereological study we were able to show that there is a loss of approximately 20% of asymmetric synapses in the lesioned neostriatum by 1 mo after the lesion. Current experiments are trying to establish the specificity of this loss. So far we have evidence suggesting that there is no obvious preferential loss of synapses from either D1 or D2 receptor immunostained dendrites in the neostriatum with damaged dopamine innervation. These experiments suggest that dopamine is somehow necessary for the maintenance of corticostriatal synapses in the neostriatum. In a different series of experiments slices of cortex and neostriatum were maintained in vitro in such a way as to preserve at least some of the corticostriatal connections. In this preparation we have been able to show that cortical stimulation results in robust excitatory postsynaptic potentials (EPSPs) recorded from inside striatal neurons. Using stimulation protocols derived from the experiments on hippocampal synaptic plasticity we have shown that the usual consequence of trains of high frequency stimulation of the cortex is the depression of the size of EPSPs in the striatal cell. In agreement with similar experiments by others, the effect seems to be influenced by NMDA receptors since the unblocking of these receptors with low Mg++ concentrations in the perfusate uncovers a potentiation of the EPSPs after trains of stimulation. Dopamine applied in the perfusion fluid round the slices has no effect but pulsatile application of

  2. Analysis of a Delivery Device Conversion for Insulin Aspart: Potential Clinical Impact in Veterans.

    PubMed

    Moorman Spangler, Caitlin M; Greck, Beth D; Killian, Jancy H

    2016-04-01

    In Brief Insulin therapies using a wide variety of delivery devices are available to accommodate individual patients' needs. In this study of veterans with diabetes, converting from insulin aspart delivered with vials and syringes to insulin aspart delivered via a pen device resulted in no significant change in A1C. Although insulin pen delivery devices offer benefits, providers should thoroughly consider all potential reasons for uncontrolled diabetes before modifying a patient's insulin delivery method. PMID:27092019

  3. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  4. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience.

    PubMed

    Hermansen, Kjeld; Bohl, Mette; Schioldan, Anne Grethe

    2016-01-01

    Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time-action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved pharmacokinetic profile, insulin aspart demonstrates a greater glucose-lowering effect compared with regular human insulin. Numerous randomized controlled trials and a meta-analysis have also demonstrated improved postprandial control with insulin aspart compared with regular human insulin in patients with type 1 or type 2 diabetes, as well as efficacy and safety in children, pregnant patients, hospitalized patients, and patients using continuous subcutaneous insulin infusion. Studies have demonstrated that step-wise addition of insulin aspart is a viable intensification option for patients with type 2 diabetes failing on basal insulin. Insulin aspart has shown a good safety profile, with no evidence of increased receptor binding, mitogenicity, stimulation of anti-insulin antibodies, or hypoglycemia compared with regular human insulin. In one meta-analysis, there was evidence of a lower rate of nocturnal hypoglycemia compared with regular human insulin and, in a trial that specifically included patients with a history of recurrent hypoglycemia, a significantly lower rate of severe hypoglycemic episodes. The next generation of insulin aspart (faster-acting insulin aspart) is being developed with a view to further improving on these pharmacokinetic/pharmacodynamic properties. PMID:26607485

  5. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.

    PubMed Central

    Ford, G C; Eichele, G; Jansonius, J N

    1980-01-01

    X-ray diffraction studies to 2.8-A resolution have yielded the three-dimensional structure of mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an isologous alpha 2 dimer (Mr = 2 x 45,000). The subunits are rich in secondary structure and contain two domains, one of which anchors the coenzyme, pyridoxal 5'-phosphate. Each active site lies between the subunits and is composed of residues from both of them. PMID:6930651

  6. Multiple cone pathways are involved in photic regulation of retinal dopamine

    PubMed Central

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P.; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-01-01

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina. PMID:27356880

  7. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration.

    PubMed

    Nair, Anu G; Bhalla, Upinder S; Hellgren Kotaleski, Jeanette

    2016-09-01

    In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. PMID:27584878

  8. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal

    PubMed Central

    Natividad, Luis A.; Buczynski, Matthew W.; Parsons, Loren H.; Torres, Oscar; O'Dell, Laura E.

    2012-01-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, since adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal. PMID:22905672

  9. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  10. Aspartate Aminotransferase in Alfalfa Root Nodules : III. Genotypic and Tissue Expression of Aspartate Aminotransferase in Alfalfa and Other Species.

    PubMed

    Farnham, M W; Griffith, S M; Miller, S S; Vance, C P

    1990-12-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N(2)-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N(2)-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. PMID:16667896

  11. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  12. Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Newly Recognized Inflammatory Brain Disease in Children

    PubMed Central

    Luca, Nadia; Daengsuwan, Tassalapa; Dalmau, Josep; Jones, Kevin; deVeber, Gabrielle; Kobayashi, Jeffrey; Laxer, Ronald M.; Benseler, Susanne M.

    2013-01-01

    Objective Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a newly recognized anti-neuronal antibody-mediated inflammatory brain disease causing severe psychiatric and neurological deficits in previously healthy children. The aim of this study was to report characteristic clinical features and outcomes of children diagnosed with anti-NMDAR encephalitis. Methods Consecutive children presenting with newly acquired psychiatric and/or neurologic deficits consistent with anti-NMDAR encephalitis and evidence of CNS inflammation were screened over a 12-month period. Children were included in the study if they had confirmatory evidence of anti-NMDAR antibodies in the serum and/or cerebrospinal fluid (CSF). Details of clinical presentation and results of investigations were reported. Type and duration of treatment and outcomes at last follow-up were documented. Results Seven children were screened and three children with anti-NMDAR encephalitis were identified. All patients presented with neurological or psychiatric (‘neuropsychiatric’) abnormalities, seizures, speech disorder, sleep disturbance, and fluctuating level of consciousness. The two older patients also had more prominent psychiatric features, while the younger child had significant autonomic instability and prominent involuntary movement disorder. None had an underlying tumor. Immunosuppressive therapies resulted in near or complete recovery; however, two of the patients had early relapse requiring re-treatment. Conclusion Anti-NMDAR encephalitis is an important cause of neuropsychiatric deficits in children that must be included in the differential diagnosis of CNS vasculitis and other inflammatory brain diseases. Early diagnosis and treatment are essential for neurologic recovery. PMID:21547896

  13. N-methyl-D-aspartate receptors strongly regulate postsynaptic activity levels during optic nerve regeneration.

    PubMed

    Kolls, Brad J; Meyer, Ronald L

    2013-10-01

    During development, neuronal activity is used as a cue to guide synaptic rearrangements to refine connections. Many studies, especially in the visual system, have shown that the N-methyl-D-aspartate receptor (NMDAr) plays a key role in mediating activity-dependent refinement through long-term potentiation (LTP)-like processes. Adult goldfish can regenerate their optic nerve and utilize neuronal activity to generate precise topography in their projection onto tectum. Although the NMDAr has been implicated in this process, its precise role in regeneration has not been extensively studied. In examining NMDAr function during regeneration, we found salient differences compared with development. By using field excitatory postsynaptic potential (fEPSP) recordings, the contribution of the NMDAr at the primary optic synapse was measured. In contrast to development, no increase in NMDAr function was detectable during synaptic refinement. Unlike development, LTP could not be reliably elicited during regeneration. Unexpectedly, we found that NMDAr exerted a major effect on regulating ongoing tectal (postsynaptic) activity levels during regeneration. Blocking NMDAr strongly suppressed spontaneous activity during regeneration but had no significant effect in the normal projection. This difference could be attributed to an occlusion effect of strong optic drive in the normal projection, which dominated ongoing tectal activity. During regeneration, this optic drive is largely absent. Optic nerve stimulation further indicated that the NMDAr had little effect on the ability of optic fibers to evoke early postsynaptic impulse activity but was important for late network activity. These results indicate that, during regeneration, the NMDAr may play a critical role in the homeostatic regulation of ongoing activity and network excitability. PMID:23873725

  14. Regulation of airway contractility by plasminogen activators through N-methyl-D-aspartate receptor-1.

    PubMed

    Nassar, Taher; Yarovoi, Serge; Fanne, Rami Abu; Akkawi, Sa'ed; Jammal, Mahmud; Allen, Timothy Craig; Idell, Steven; Cines, Douglas B; Higazi, Abd Al-Roof

    2010-12-01

    Reactive airway disease is mediated by smooth muscle contraction initiated through several agonist-dependent pathways. Activation of type 1 N-methyl-D-aspartate receptors (NMDA-R1s) by plasminogen activators (PAs) has been linked to control of vascular tone, but their effect on airway smooth muscle contractility has not previously been studied to our knowledge. We observed that NMDA-R1s are expressed by human airway smooth muscle cells and constitutively inhibit the contraction of isolated rat tracheal rings in response to acetylcholine (Ach). Both tissue-type PA (tPA) and urokinase-type PA (uPA) bind to NMDA-R1 and reverse this effect, thereby enhancing Ach-induced tracheal contractility. Tracheal contractility initiated by Ach is reduced in rings isolated from tPA(-/-) and uPA(-/-) mice compared with their wild-type counterparts. The procontractile effect of uPA or tPA was mimicked and augmented by the nitric oxide synthase inhibitor, l-NAME. uPA and tPA further enhanced the contractility of rings denuded of epithelium, an effect that was inhibited by the NMDA-R antagonist, MK-801. Binding of PAs to NMDA-R1 and the subsequent activation of the receptor were inhibited by PA inhibitor type 1, by a PA inhibitor type 1-derived hexapeptide that recognizes the tPA and uPA docking domains, as well as by specific mutations within the docking site of tPA. These studies identify involvement of PAs and NMDA-R1 in airway contractility, and define new loci that could lead to the development of novel interventions for reactive airway disease. PMID:20097831

  15. Inhibitory effects of ginseng total saponins on behavioral sensitization and dopamine release induced by cocaine.

    PubMed

    Lee, BomBi; Yang, Chae Ha; Hahm, Dae-Hyun; Lee, Hye-Jung; Han, Seung-Moo; Kim, Kyung-Soo; Shim, Insop

    2008-03-01

    Many studies have suggested that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. It has been shown that repeated injections of cocaine produce an increase in locomotor activity, the expression of the immediate-early gene, c-fos, and the release of dopamine (DA) in the nucleus accumbens (NAc), which is one of the main dopaminergic terminal areas. Several studies have shown that behavioral activation and changes in extracellular dopamine levels in the central nervous system induced by psychomotor stimulants are prevented by ginseng total saponins (GTS). In order to investigate the effects of GTS on the repeated cocaine-induced behavioral and neurochemical alterations, we examined the influence of GTS on the cocaine-induced behavioral sensitization and on c-Fos expression in the brain using immunohistochemistry in rats repeatedly treated with cocaine. We also examined the effect of GTS on cocaine-induced dopamine release in the NAc of freely moving rats repeatedly treated with cocaine using an in vivo microdialysis technique. Pretreatment with GTS (100, 200, 400 mg/kg, i.p.) 30 min before the daily injections of cocaine (15 mg/kg, i.p.) significantly inhibited the repeated cocaine-induced increase in locomotor activity as well as the c-Fos expression in the core and shell in a dose-dependent manner. Also, pretreatment with GTS significantly decreased the repeated cocaine-induced increase in dopamine release in the NAc. Our data demonstrate that the inhibitory effects of GTS on the repeated cocaine-induced behavioral sensitization were closely associated with the reduction of dopamine release and the postsynaptic neuronal activity. The results of the present study suggest that GTS may be effective for inhibiting the behavioral effects of cocaine by possibly modulating the central dopaminergic system. These results also suggest that GTS may prove to be a useful therapeutic agent for cocaine addiction. PMID:18310906

  16. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    PubMed

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  17. Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins.

    PubMed

    Skieterska, Kamila; Shen, Ao; Clarisse, Dorien; Rondou, Pieter; Borroto-Escuela, Dasiel Oscar; Lintermans, Béatrice; Fuxe, Kjell; Xiang, Yang Kevin; Van Craenenbroeck, Kathleen

    2016-08-01

    Dopamine receptors are G protein-coupled receptors involved in regulation of cognition, learning, movement and endocrine signaling. The action of G protein-coupled receptors is highly regulated by multifunctional proteins, such as β-arrestins which can control receptor desensitization, ubiquitination and signaling. Previously, we have reported that β-arrestin 2 interacts with KLHL12, a BTB-Kelch protein which functions as an adaptor in a Cullin3-based E3 ligase complex and promotes ubiquitination of the dopamine D4 receptor. Here, we have investigated the molecular basis of the interaction between KLHL12 and β-arrestins and questioned its functional relevance. Our data demonstrate that β-arrestin 1 and β-arrestin 2 bind constitutively to the most common dopamine D4 receptor polymorphic variants and to KLHL12 and that all three proteins can interact within a single macromolecular complex. Surprisingly, stimulation of the receptor has no influence on the association between these proteins or their cellular distribution. We found that Cullin3 also interacts with both β-arrestins but has no influence on their ubiquitination. Knockout of one of the two β-arrestins hampers neither interaction between the dopamine D4 receptor and KLHL12, nor ubiquitination of the receptor. Finally, our results indicate that p44/42 MAPK phosphorylation, the signaling pathway which is often regulated by β-arrestins is not influenced by KLHL12, but seems to be exclusively mediated by Gαi protein upon dopamine D4 receptor stimulation. PMID:27155323

  18. Nonclassical Pharmacology of the Dopamine Transporter: Atypical Inhibitors, Allosteric Modulators, and Partial Substrates

    PubMed Central

    Rothman, Richard B.; Reith, Maarten E. A.

    2013-01-01

    The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein–coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders. PMID:23568856

  19. Shifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems.

    PubMed

    Canales, J J; Capper-Loup, C; Hu, D; Choe, E S; Upadhyay, U; Graybiel, A M

    2002-10-01

    Dopamine and glutamate are key neurotransmitters in cortico-basal ganglia loops affecting motor and cognitive function. To examine functional convergence of dopamine and glutamate neurotransmitter systems in the basal ganglia, we evaluated the long-term effects of chronic stimulation of each of these systems on striatal responses to stimulation of the other. First we exposed rats to chronic intermittent cocaine and used early-gene assays to test the responsivity of the striatum to subsequent acute motor cortex stimulation by application of the GABA(A) (gamma-aminobutyric acid alpha subunit) receptor antagonist, picrotoxin. Reciprocally, we studied the effects of chronic intermittent motor cortex stimulation on the capacity for subsequent acute dopaminergic treatments to induce early-gene activation in the striatum. Prior treatment with chronic intermittent cocaine induced motor sensitization and significantly potentiated the striatal expression of Fos-family early genes in response to stimulation of the motor cortex. Contrary to this, chronic intermittent stimulation of the motor cortex down-regulated cocaine-induced gene expression in the striatum, but enhanced striatal gene expression induced by a full D1 receptor agonist (SKF 81297) and did not change the early-gene response elicited by a D2 receptor antagonist (haloperidol). These findings suggests that repeated dopaminergic stimulation produces long-term enhancement of corticostriatal signalling from the motor cortex, amplifying cortically evoked modulation of the basal ganglia. By contrast, persistent stimulation of the motor cortex inhibits cocaine-stimulated signalling in the striatum, but not signalling mediated by individual dopamine receptor sites, suggesting that chronic cortical hyperexcitability produces long-term impairment of dopaminergic activity and compensation at the receptor level. These findings prompt a model of the basal ganglia function as being regulated by opposing homeostatic dopamine

  20. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  1. A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine.

    PubMed

    Heremans, B; Jacobs, M

    1997-04-01

    Mutagenesis and subsequent selection of Arabidopsis thaliana plantlets on a growth inhibitory concentration of lysine has led to the isolation of lysine-resistant mutants. The ability to grown on 2 mM lysine has been used to isolate mutants that may contain an aspartate kinase with altered regulatory-feedback properties. One of these mutants (RL 4) was characterized by a relative enhancement of soluble lysine. The recessive monogenic nuclear transmission of the resistance trait was established. It was associated with an aspartate kinase less sensitive to feedback inhibition by threonine. Two mutants (RLT 40 and RL 4) in Arabidopsis, characterized by an altered regulation of aspartate kinase, were crossed to assess the effects of the simultaneous presence of these different aspartate kinase forms. A double mutant (RLT40 x RL4) was isolated and characterized by two feedback-desensitized isozymes of aspartate kinase to, respectively, lysine and threonine but no threonine and/or lysine overproduction was observed. Genetical analysis of this unique double aspartate kinase mutant indicated that both mutations were located on chromosome 2, but their loci (ak1 and ak2) were found to be unlinked. PMID:9241437

  2. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    PubMed

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. PMID:22727116

  3. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  4. Cocaine Decreases Metabotropic Glutamate Receptor mGluR1 Currents in Dopamine Neurons by Activating mGluR5.

    PubMed

    Kramer, Paul F; Williams, John T

    2015-09-01

    Midbrain dopamine neurons are important mediators of reward and movement and are sensitive to cocaine-induced plasticity. After even a single injection of cocaine, there is an increase in AMPA-dependent synaptic transmission. The present study examines cocaine-induced plasticity of mGluR-dependent currents in dopamine neurons in the substantia nigra. Activation of mGluR1 and mGluR5 resulted in a mixture of inward and outward currents mediated by a nonselective cation conductance and a calcium-activated potassium conductance (SK), respectively. A single injection of cocaine decreased the current activated by mGluR1 in dopamine neurons, and it had no effect on the size of the mGluR5-mediated current. When the injection of cocaine was preceded by treatment of the animals with a blocker of mGluR5 receptors (MPEP), cocaine no longer decreased the mGluR1 current. Thus, the activation of mGluR5 was required for the cocaine-mediated suppression of mGluR1-mediated currents in dopamine neurons. The results support the hypothesis that mGluR5 coordinates a reduction in mGluR1 functional activity after cocaine treatment. PMID:25829143

  5. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits

    SciTech Connect

    Mendes, K.; Kantrowitz, E

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c{sub 6}r{sub 6}. Dissociation of the native holoenzyme produces catalytically active trimers, c{sub 3}, and nucleotide-binding regulatory dimers, r{sub 2}. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c{sub 6}, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c{sub 6} species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c{sub 6} ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 {angstrom} resolution. The structure of c{sub 6} ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c{sub 6} enzyme, enhancing its activity over the wild-type holoenzyme (c{sub 6}r{sub 6}) and c{sub 3}. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction

  6. L-aspartic acid transport by cat erythrocytes

    SciTech Connect

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  7. Dopamine Transporters, D2 Receptors, and Dopamine Release in Generalized Social Anxiety Disorder

    PubMed Central

    Schneier, Franklin R.; Abi-Dargham, Anissa; Martinez, Diana; Slifstein, Mark; Hwang, Dah-Ren; Liebowitz, Michael R.; Laruelle, Marc

    2009-01-01

    Background Dopamine D2 receptor and dopamine transporter availability in the striatum have each been reported abnormal in generalized social anxiety disorder (GSAD) in studies using single photon computerized tomography (SPECT). D2 receptors and dopamine transporters have not previously been studied within the same GSAD subjects, however, and prior GSAD studies have not assessed dopamine release or subdivided striatum into functional subregions. Methods Unmedicated adults with GSAD (N=17) and matched healthy comparison subjects (HC, N=13) participated in this study. Of these, 15 GSAD and 13 HC subjects completed baseline assessment of D2 receptor availability using positron emission tomography (PET) with the radiotracer [11C] raclopride. Twelve GSAD and 13 HC subjects completed a repeat scan after intravenous administration of D-amphetamine, to study dopamine release. Twelve of the GSAD subjects and 10 of the HC subjects also completed SPECT with the radiotracer [123I] methyl 3ß-(4-iodophenyl) tropane-2ß-carboxylate ([123I] ß-CIT) to assess dopamine transporter availability. Results GSAD and HC groups did not differ significantly in striatal dopamine transporter availability, overall striatal or striatal subregion D2 receptor availability at baseline, or change in D2 receptor availability after D-amphetamine. Receptor availability and change after D-amphetamine were not significantly associated with severity of social anxiety or trait detachment. Conclusions These findings do not replicate previous findings of altered striatal dopamine transporter and D2 receptor availability in GSAD subjects assessed with SPECT. The differences from results of prior studies may be due to differences in imaging methods or characteristics of samples. PMID:19180583

  8. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons

    PubMed Central

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Wang, Huikun; de Jesus Aceves Buendia, Jose; Hoffman, Alexander F.; Lupica, Carl R.; Seal, Rebecca P.; Morales, Marisela

    2014-01-01

    Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibers of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibers have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release innucleus accumbens. Activation also reinforces instrumental behavior and establishes conditioned place preferences. These findings indicate that the DR-VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR—one of the most sensitive reward sites in the brain—to VTA dopaminergic neurons. PMID:25388237

  9. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.

    PubMed

    Su, Gaoxing; Yang, Chi; Zhu, Jun-Jie

    2015-01-20

    Hydroxyphenol compounds are often used as reductants in controlling the growth of nanoparticles. Herein, dopamine was used as an effective reductant in seed-mediated synthesis of gold nanorods (GNRs). The as-prepared GNRs (83 × 16 nm) were monodisperse and had a high degree of purity. The conversion ratio from gold ions to GNRs was around 80%. In addition, dopamine worked as an additive. At a very low concentration of hexadecyltrimethylammonium bromide (CTAB; 0.025 M), thinner and shorter GNRs (60 × 9 nm) were successfully prepared. By regulating the concentration of silver ions, CTAB, seeds, and reductant, GNRs with longitudinal surface plasmon resonance (LSPR) peaks ranging from 680 to 1030 nm were synthesized. The growth process was tracked using UV-vis-NIR spectroscopy, and it was found that a slow growth rate was beneficial to the formation of GNRs. PMID:25521416

  10. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  11. Dopamine-melanin nanofilms for biomimetic structural coloration.

    PubMed

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-01

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials. PMID:25587771

  12. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatorysystems

    PubMed Central

    Ogawa, Sachie K.; Cohen, Jeremiah Y.; Hwang, Dabin; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2014-01-01

    SUMMARY Serotonin and dopamine are major neuromodulators. Here we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shiftedin the forebrain, with MRserotonin neurons receiving inputs from more medial structures. We then compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantianigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons, apart from the striatum, which preferentially targets dopamine neurons. Ourresults suggest three majorinput streams: amedial stream regulates MR serotonin neurons, anintermediate stream regulatesDR serotonin and VTA dopamine neurons, and alateral stream regulatesSNc dopamine neurons. These results providefundamental organizational principlesofafferent control forserotonin and dopamine. PMID:25108805

  13. Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans.

    PubMed

    Fujita, M; Verhoeff, N P; Varrone, A; Zoghbi, S S; Baldwin, R M; Jatlow, P A; Anderson, G M; Seibyl, J P; Innis, R B

    2000-01-10

    The effect of endogenous dopamine on in vivo measurement of dopamine D(2) receptors in extrastriatal regions (thalamus and temporal cortex) was evaluated with single photon emission computed tomography and the high affinity ligand [123I]epidepride by comparing the binding potential before and after acute dopamine depletion. Dopamine depletion was achieved by per-oral administration of 5.5 g/70 kg body weight alpha-methyl-para-tyrosine given in 37 h. The alpha-methyl-para-tyrosine treatment increased the binding potential significantly in the temporal cortex (13+/-15%, P=0.036) but not in the thalamus (2+/-9%). The increase of the binding potential in the temporal cortex correlated strongly with the increase of dysphoric mood evaluated by the Positive and Negative Symptom Scale (PANSS) (rho=0.88, P=0.004). These results imply that [123I]epidepride, coupled with acute dopamine depletion might provide estimates of synaptic dopamine concentration. PMID:10650158

  14. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    PubMed Central

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  15. The monoamine stabilizer (-)-OSU6162 counteracts downregulated dopamine output in the nucleus accumbens of long-term drinking Wistar rats.

    PubMed

    Feltmann, Kristin; Fredriksson, Ida; Wirf, Malin; Schilström, Björn; Steensland, Pia

    2016-03-01

    We recently established that the monoamine stabilizer (-)-OSU6162 (OSU6162) decreased voluntary alcohol-mediated behaviors, including alcohol intake and cue/priming-induced reinstatement, in long-term drinking rats, while blunting alcohol-induced dopamine output in the nucleus accumbens (NAc) of alcohol-naïve rats. Therefore, we hypothesized that OSU6162 attenuates alcohol-mediated behaviors by blunting alcohol's rewarding effects. Here, we evaluated the effects of long-term drinking and OSU6162 treatment (30 mg/kg, sc) on basal and alcohol-induced (2.5 g/kg, ip) NAc dopamine outputs in Wistar rats after 10 months of intermittent access to 20% alcohol. The results showed that basal and alcohol-induced NAc dopamine outputs were significantly lower in long-term drinking rats, compared with alcohol-naïve rats. In the long-term drinking rats, OSU6162 slowly increased and maintained the dopamine output significantly elevated compared with baseline for at least 4 hours. Furthermore, OSU6162 pre-treatment did not blunt the alcohol-induced output in the long-term drinking rats, a finding that contrasted with our previous results in alcohol-naïve rats. Finally, OSU6162 did not induce conditioned place preference (CPP) in either long-term drinking or alcohol-naïve rats, indicating that OSU6162 has no reinforcing properties. To verify that the CPP results were not due to memory acquisition impairment, we demonstrated that OSU6162 did not affect novel object recognition. In conclusion, these results indicate that OSU6162 attenuates alcohol-mediated behaviors by counteracting NAc dopamine deficits in long-term drinking rats and that OSU6162 is not rewarding on its own. Together with OSU6162's beneficial side-effect profile, the present study merits evaluation of OSU6162's clinical efficacy to attenuate alcohol use in alcohol-dependent patients. PMID:26464265

  16. Dopamine D₁-D₂ receptor heteromer regulates signaling cascades involved in addiction: potential relevance to adolescent drug susceptibility.

    PubMed

    Perreault, Melissa L; O'Dowd, Brian F; George, Susan R

    2014-01-01

    Adolescence is a developmental period that has been associated with heightened sensitivity to psychostimulant-induced reward, thus placing adolescents at increased risk to develop drug addiction. Although alterations in dopamine-induced synaptic plasticity are perhaps the most critical factor in mediating addiction processes, developmental differences in the cell signaling mechanisms that contribute to synaptic plasticity, and their contribution to adolescent reward sensitivity, has been grossly understudied. The most abundant dopamine receptors, the D1 and D2 receptors, as well as the dopamine D1-D2 receptor heteromer, exhibit age-dependent and brain region-specific changes in their expression and function and are responsible for regulating cell signaling pathways known to significantly contribute to the neurobiological mechanisms underlying addiction. The D1-D2 receptor heteromer, for instance, has been associated with calcium calmodulin kinase IIα, brain-derived neurotrophic factor and glycogen synthase kinase 3 (GSK-3) signaling, three proteins highly implicated in the regulation of glutamate transmission and synaptic plasticity and which regulate addiction to amphetamine, opioids and cocaine. Therefore, in this review the importance of these signaling proteins as potential mediators of addiction susceptibility in adolescence will be highlighted, and the therapeutic potential of the D1-D2 receptor heteromer in addiction will be discussed. It is the overall goal of this review to draw attention to the research gap in dopamine-induced cell signaling in the adolescent brain--knowledge that would provide much-needed insights into adolescent addiction vulnerability. PMID:24820626

  17. D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors.

    PubMed

    Price, C J; Kim, P; Raymond, L A

    1999-12-01

    Dopamine receptor activation regulates cyclic AMP levels and is critically involved in modulating neurotransmission in the striatum. Others have shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor-mediated current is potentiated by cyclic AMP-dependent protein kinase (PKA) activation. We made whole-cell patch clamp recordings from cultured striatal neurons and tested whether D1-type dopamine receptor activation affected AMPA receptor-mediated currents. After a 5-min exposure to the D1 agonist SKF 81297 (1 microM), kainate-evoked current amplitude was enhanced in approximately 75% of cells to 121+/-2.5% of that recorded prior to addition of drug. This response was inhibited by the D1 antagonist SCH 23390 and mimicked by activators of PKA. Moreover, by western blot analysis using an antibody specific for the phosphorylated PKA site Ser845 of GluR1, we observed a marked increase in phosphorylated GluR1 following a 10-min exposure of striatal neurons to 1 microM SKF 81297. Our data demonstrate that activation of D1-type dopamine receptors on striatal neurons promotes phosphorylation of AMPA receptors by PKA as well as potentiation of current amplitude. These results elucidate one mechanism by which dopamine can modulate neurotransmission in the striatum. PMID:10582604

  18. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth.

    PubMed

    Gallant, Pamela; Malutan, Tabita; McLean, Heather; Verellen, LouAnn; Caveney, Stanley; Donly, Cam

    2003-02-01

    A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found. PMID:12581206

  19. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine?

    PubMed

    Villalba, R M; Smith, Y

    2013-10-22

    In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted. PMID:23867772

  20. N-methyl-D-aspartate preconditioning improves short-term motor deficits outcome after mild traumatic brain injury in mice.

    PubMed

    Costa, Tayana; Constantino, Leandra C; Mendonça, Bruna P; Pereira, Josimar G; Herculano, Bruno; Tasca, Carla I; Boeck, Carina R

    2010-05-01

    Traumatic brain injury (TBI) causes impairment of fine motor functions in humans and nonhuman mammals that often persists for months after the injury occurs. Neuroprotective strategies for prevention of the sequelae of TBI and understanding the molecular mechanisms and cellular pathways are related to the glutamatergic system. It has been suggested that cellular damage subsequent to TBI is mediated by the excitatory neurotransmitters, glutamate and aspartate, through the excessive activation of the N-methyl-D-aspartate (NMDA) receptors. Thus, preconditioning with a low dose of NMDA was used as a strategy for protection against locomotor deficits observed after TBI in mice. Male adult mice CF-1 were preconditioned with NMDA (75 mg/kg) 24 hr before the TBI induction. Under anesthesia with O(2)/N(2)O (33%: 66%) inhalation, the animals were subjected to the experimental model of trauma that occurs by the impact of a 25 g weight on the skull. Sensorimotor gating was evaluated at 1.5, 6, or 24 hr after TBI induction by using footprint and rotarod tests. Cellular damage also was assessed 24 hr after occurrence of cortical trauma. Mice preconditioned with NMDA were protected against all motor deficits revealed by footprint tests, but not those observed in rotarod tasks. Although mice showed motor deficits after TBI, no cellular damage was observed. These data corroborate the hypothesis that glutamatergic excitotoxicity, especially via NMDA receptors, contributes to severity of trauma. They also point to a putative neuroprotective mechanism induced by a sublethal dose of NMDA to improve motor behavioral deficits after TBI. PMID:19998488