Science.gov

Sample records for aspect prefrontal area

  1. Age Differences in Prefrontal Surface Area and Thickness in Middle Aged to Older Adults

    PubMed Central

    Dotson, Vonetta M.; Szymkowicz, Sarah M.; Sozda, Christopher N.; Kirton, Joshua W.; Green, Mackenzie L.; O’Shea, Andrew; McLaren, Molly E.; Anton, Stephen D.; Manini, Todd M.; Woods, Adam J.

    2016-01-01

    Age is associated with reductions in surface area and cortical thickness, particularly in prefrontal regions. There is also evidence of greater thickness in some regions at older ages. Non-linear age effects in some studies suggest that age may continue to impact brain structure in later decades of life, but relatively few studies have examined the impact of age on brain structure within middle-aged to older adults. We investigated age differences in prefrontal surface area and cortical thickness in healthy adults between the ages of 51 and 81 years. Participants received a structural 3-Tesla magnetic resonance imaging scan. Based on a priori hypotheses, primary analyses focused on surface area and cortical thickness in the dorsolateral prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex. We also performed exploratory vertex-wise analyses of surface area and cortical thickness across the entire cortex. We found that older age was associated with smaller surface area in the dorsolateral prefrontal and orbitofrontal cortices but greater cortical thickness in the dorsolateral prefrontal and anterior cingulate cortices. Vertex-wise analyses revealed smaller surface area in primarily frontal regions at older ages, but no age effects were found for cortical thickness. Results suggest age is associated with reduced surface area but greater cortical thickness in prefrontal regions during later decades of life, and highlight the differential effects age has on regional surface area and cortical thickness. PMID:26834623

  2. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function

    PubMed Central

    Butts, Kelly A.; Weinberg, Joanne; Young, Allan H.; Phillips, Anthony G.

    2011-01-01

    Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress. PMID:22032926

  3. Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey.

    PubMed

    Barbas, H; Medalla, M; Alade, O; Suski, J; Zikopoulos, B; Lera, P

    2005-09-01

    The prefrontal cortex selects relevant signals and suppresses irrelevant signals in behavior, as exemplified by its functional interaction with superior temporal cortices. We addressed the structural basis of this process by investigating quantitatively the relationship of prefrontal pathways to inhibitory interneurons in superior temporal cortices. Pathways were labeled with neural tracers, and two neurochemical classes of inhibitory interneurons were labeled with parvalbumin (PV) and calbindin (CB), which differ in mode of inhibitory control. Both markers varied significantly and systematically across superior temporal areas. Calbindin neurons were more prevalent than PV neurons, with the highest densities found in posterior high-order auditory association cortices. Axons from anterior lateral, medial prefrontal and orbitofrontal areas terminated in the anterior half of the superior temporal gyrus, targeting mostly the superficial layers (I to upper III), where CB neurons predominated. Reciprocal projection neurons were intermingled with PV neurons, and emanated mostly from the deep part of layer III and to a lesser extent from layers V-VI, in proportions matching the laminar density of inhibitory interneurons. In marked contrast, prefrontal connections in temporal polar cortex were found mostly in the deep layers, showing mismatch with the predominant upper laminar distribution of interneurons. Differences in the relationship of connections to inhibitory neurons probably affect the dynamics in distinct superior temporal cortices. These findings may help explain the reduced efficacy of inhibitory control in superior temporal areas after prefrontal cortical damage. PMID:15635060

  4. Morphological abnormalities in prefrontal surface area and thalamic volume in attention deficit/hyperactivity disorder

    PubMed Central

    Batty, Martin J.; Palaniyappan, Lena; Scerif, Gaia; Groom, Madeleine J.; Liddle, Elizabeth B.; Liddle, Peter F.; Hollis, Chris

    2015-01-01

    Although previous morphological studies have demonstrated abnormalities in prefrontal cortical thickness in children with attention deficit/hyperactivity disorder (ADHD), studies investigating cortical surface area are lacking. As the development of cortical surface is closely linked to the establishment of thalam-ocortical connections, any abnormalities in the structure of the thalamus are likely to relate to altered cortical surface area. Using a clinically well-defined sample of children with ADHD (n=25, 1 female) and typically developing controls (n=24, 1 female), we studied surface area across the cortex to determine whether children with ADHD had reduced thalamic volume that related to prefrontal cortical surface area. Relative to controls, children with ADHD had a significant reduction in thalamic volume and dorsolateral prefrontal cortical area in both hemispheres. Furthermore, children with ADHD with smaller thalamic volumes were found to have greater reductions in surface area, a pattern not evident in the control children. Our results are further evidence of reduced lateral prefrontal cortical area in ADHD. Moreover, for the first time, we have also shown a direct association between thalamic anatomy and frontal anatomy in ADHD, suggesting the pathophysiological process that alters surface area maturation is likely to be linked to the development of the thalamus. PMID:26190555

  5. Co-Activation-Based Parcellation of the Lateral Prefrontal Cortex Delineates the Inferior Frontal Junction Area.

    PubMed

    Muhle-Karbe, Paul S; Derrfuss, Jan; Lynn, Margaret T; Neubert, Franz X; Fox, Peter T; Brass, Marcel; Eickhoff, Simon B

    2016-05-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal sulcus (IFS), was subdivided via cluster analyses of voxel-wise whole-brain co-activation patterns. The ensuing clusters were characterized by their unique connections, the functional profiles of associated experiments, and an independent topic mapping approach. A cluster at the posterior end of the IFS matched previous descriptions of the IFJ in location and extent and could be distinguished from a more caudal cluster involved in motor control, a more ventral cluster involved in linguistic processing, and 3 more rostral clusters involved in other aspects of cognitive control. Overall, our findings highlight that the IFJ constitutes a core functional unit within the frontal lobe and delineate its borders. Implications for the IFJ's role in human cognition and the organizational principles of the frontal lobe are discussed. PMID:25899707

  6. Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration.

    PubMed

    Ghasemzadeh, M Behnam; Vasudevan, Preethi; Giles, Chad; Purgianto, Anthony; Seubert, Chad; Mantsch, John R

    2011-09-21

    Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6h/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic density mGluR5 protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density. PMID:21855055

  7. Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time – an intra-subject analysis

    PubMed Central

    Chao, Herta HA; Luo, Xi; Chang, Jeremy LK; Li, Chiang-shan R

    2009-01-01

    Background Our previous work described the neural processes of motor response inhibition during a stop signal task (SST). Employing the race model, we computed the stop signal reaction time (SSRT) to index individuals' ability in inhibitory control. The pre-supplementary motor area (preSMA), which shows greater activity in individuals with short as compared to those with long SSRT, plays a role in mediating response inhibition. In contrast, the right inferior prefrontal cortex (rIFC) showed greater activity during stop success as compared to stop error. Here we further pursued this functional differentiation of preSMA and rIFC on the basis of an intra-subject approach. Results Of 65 subjects who participated in four sessions of the SST, we identified 30 individuals who showed a difference in SSRT but were identical in other aspects of stop signal performance between the first ("early") and last two ("late") sessions. By comparing regional brain activation between the two sessions, we confirmed greater preSMA but not rIFC activity during short as compared to long SSRT session within individuals. Furthermore, putamen, anterior cerebellum and middle/posterior cingulate cortex also showed greater activity in association with short SSRT. Conclusion These results are consistent with a role of medial prefrontal cortex in controlled action and inferior frontal cortex in orienting attention. We discussed these findings with respect to the process of attentional monitoring and inhibitory motor control during stop signal inhibition. PMID:19602259

  8. Performance-Related Activity in Medial Rostral Prefrontal Cortex (Area 10) during Low-Demand Tasks

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Simons, Jon S.; Frith, Christopher D.; Burgess, Paul W.

    2006-01-01

    Neuroimaging studies have frequently observed relatively high activity in medial rostral prefrontal cortex (PFC) during rest or baseline conditions. Some accounts have attributed this high activity to the occurrence of unconstrained stimulus-independent and task-unrelated thought processes during baseline conditions. Here, the authors investigated…

  9. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.

    PubMed

    Butts, Kelly A; Phillips, Anthony G

    2013-09-01

    Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize that blockade of prefrontal glucocorticoid receptors can reduce activity of descending glutamatergic input to the VTA, thereby attenuating stress-evoked DA efflux in the mPFC. Using in vivo microdialysis, we demonstrate that acute tail-pinch stress leads to a significant increase in glutamate efflux in the VTA. Blockade of prefrontal glucocorticoid receptors with the selective antagonist CORT 108297 attenuates stress-evoked glutamate efflux in the VTA together with DA efflux in the mPFC. Furthermore, blockade of ionotrophic glutamate receptors in the VTA attenuates stress-evoked DA efflux in the mPFC. We also examine the possible role of glucocorticoid-induced synthesis and release of endocannabinoids acting presynaptically via cannabinoid CB1 receptors to inhibit GABA release onto prefrontal pyramidal cells, thus enhancing descending glutamatergic input to the VTA leading to an increase in mPFC DA efflux during stress. However, administration of the cannabinoid CB1 receptor antagonist into the mPFC does not attenuate stress-evoked DA efflux in the mPFC. Taken together, our data indicate that glucocorticoids act locally within the mPFC to modulate mesocortical DA efflux by potentiation of glutamatergic drive onto DA neurons in the VTA. PMID:23590841

  10. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    PubMed Central

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  11. Structure of Spike Count Correlations Reveals Functional Interactions between Neurons in Dorsolateral Prefrontal Cortex Area 8a of Behaving Primates

    PubMed Central

    Leavitt, Matthew L.; Pieper, Florian; Sachs, Adam; Joober, Ridha; Martinez-Trujillo, Julio C.

    2013-01-01

    Neurons within the primate dorsolateral prefrontal cortex (dlPFC) are clustered in microcolumns according to their visuospatial tuning. One issue that remains poorly investigated is how this anatomical arrangement influences functional interactions between neurons during behavior. To investigate this question we implanted 4 mm×4 mm multielectrode arrays in two macaques' dlPFC area 8a and measured spike count correlations (rsc) between responses of simultaneously recorded neurons when animals maintained stationary gaze. Positive and negative rsc were significantly higher than predicted by chance across a wide range of inter-neuron distances (from 0.4 to 4 mm). Positive rsc were stronger between neurons with receptive fields (RFs) separated by ≤90° of angular distance and progressively decreased as a function of inter-neuron physical distance. Negative rsc were stronger between neurons with RFs separated by >90° and increased as a function of inter-neuron distance. Our results show that short- and long-range functional interactions between dlPFC neurons depend on the physical distance between them and the relationship between their visuospatial tuning preferences. Neurons with similar visuospatial tuning show positive rsc that decay with inter-neuron distance, suggestive of excitatory interactions within and between adjacent microcolumns. Neurons with dissimilar tuning from spatially segregated microcolumns show negative rsc that increase with inter-neuron distance, suggestive of inhibitory interactions. This pattern of results shows that functional interactions between prefrontal neurons closely follow the pattern of connectivity reported in anatomical studies. Such interactions may be important for the role of the prefrontal cortex in the allocation of attention to targets in the presence of competing distracters. PMID:23630595

  12. The Influence of rTMS over Prefrontal and Motor Areas in a Morphological Task: Grammatical vs. Semantic Effects

    ERIC Educational Resources Information Center

    LoGerfo, Emanuele; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-01

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also…

  13. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    PubMed

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity. PMID:24790186

  14. Connecting to Create: Expertise in Musical Improvisation Is Associated with Increased Functional Connectivity between Premotor and Prefrontal Areas

    PubMed Central

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene

    2014-01-01

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity. PMID:24790186

  15. Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors.

    PubMed

    Lewis, B L; O'Donnell, P

    2000-12-01

    The electrophysiological nature of dopamine actions has been controversial for years, with data supporting both inhibitory and excitatory actions. In this study, we tested whether stimulation of the ventral tegmental area (VTA), the source of the dopamine innervation of the prefrontal cortex, would exert different responses depending on the membrane potential states that pyramidal neurons exhibit when recorded in vivo, and whether VTA stimulation would have a role in controlling transitions between these states. Prefrontal cortical neurons have a very negative resting membrane potential (down state) interrupted by plateau depolarizations (up state). Although the up state had been shown to be dependent on hippocampal afferents in nucleus accumbens neurons, our results indicate that neither hippocampal nor thalamic inputs are sufficient to drive up events in prefrontal cortical neurons. Electrical VTA stimulation resulted in a variety of actions, in many cases depending on the neuron membrane potential state. Trains of stimuli resembling burst firing evoked a long-lasting transition to the up state, an effect blocked by a D(1) antagonist and mimicked by chemical VTA stimulation. These results indicate that projections from the VTA to the prefrontal cortex may be involved in controlling membrane potential states that define assemblies of activable pyramidal neurons in this region. PMID:11073866

  16. Functional brain measurements within the prefrontal area on pseudo-"blindsight" induced by extremely low frequency electromagnetic stimulations

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hidenori; Ueno, Shoogo

    2015-05-01

    For evaluating the effects of phosphene as pseudo-blindsight closely, we used functional near-infrared spectroscopy to investigate whether or not the phosphene appearance itself substantially affects the hemodynamic responses of the prefrontal area. Seven healthy volunteers ranging in age from 22 to 72 participated in the visual stimulation experiments. First, we examined the influences of electromagnetic stimulations at around the threshold (10 mT) for a blindsight-like phosphene on the responses. According to the results of the aged volunteers, we found the possibility that the delay in the phosphene perception might be caused by aging beyond a certain age. In the results of our measurements using the stimulation of 50 mT, no significant difference in the perception delay for all the volunteers could be detected. When the field strength was decreased from 50 mT to the threshold in steps of 10 mT, the results obtained at the threshold are equivalent to that obtained at 50 mT. Our data strongly support the hypothesis that pseudo-blindsight induced by electromagnetic stimulation of above 50 mT is able to excite all the volunteers' retinal photoreceptor cells provisionally. Hence the continuous stimulations for a long period of time might gradually activate synaptic plasticity on the neural network of the retina.

  17. Anatomical and pharmacological characterization of catecholamine transients in the medial prefrontal cortex evoked by ventral tegmental area stimulation.

    PubMed

    Shnitko, Tatiana A; Robinson, Donita L

    2014-04-01

    Voltammetric measurements of catecholamines in the medial prefrontal cortex (mPFC) are infrequent because of lack of chemical selectivity between dopamine and norepinephrine and their overlapping anatomical inputs. Here, we examined the contribution of norepinephrine to the catecholamine release in the mPFC evoked by electrical stimulation of the ventral tegmental area (VTA). Initially, electrical stimulation was delivered in the midbrain at incremental depths of -5 to -9.4 mm from bregma while catecholamine release was monitored in the mPFC. Although catecholamine release was observed at dorsal stimulation sites that may correspond to the dorsal noradrenergic bundle (DNB, containing noradrenergic axonal projections to the mPFC), maximal release was evoked by stimulation of the VTA (the source of dopaminergic input to the mPFC). Next, VTA-evoked catecholamine release was monitored in the mPFC before and after knife incision of the DNB, and no significant changes in the evoked catecholamine signals were found. These data indicated that DNB fibers did not contribute to the VTA-evoked catecholamine release observed in the mPFC. Finally, while the D2-receptor antagonist raclopride significantly altered VTA-evoked catecholamine release, the α₂-adrenergic receptor antagonist idazoxan did not. Specifically, raclopride reduced catecholamine release in the mPFC, opposite to that observed in the striatum, indicating differential autoreceptor regulation of mesocortical and mesostriatal neurons. Together, these findings suggest that the catecholamine release in the mPFC arising from VTA stimulation was predominately dopaminergic rather than noradrenergic. PMID:24285555

  18. Investigating Conceptual, Procedural, and Intuitive Aspects of Area Measurement with Non-Square Area Units

    ERIC Educational Resources Information Center

    Miller, Amanda L.

    2013-01-01

    This dissertation reports the results of a qualitative research project on area measurement. The study utilized structured, task-based interviews with students to (a) investigate the ways students enumerate and structure two-dimensional space with a variety of area units; (b) identify conceptual, procedural, and intuitive aspects of area…

  19. HOW MOTIVATIONAL AND CALM MUSIC MAY AFFECT THE PREFRONTAL CORTEX AREA AND EMOTIONAL RESPONSES: A FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (fNIRS) STUDY.

    PubMed

    Bigliassi, Marcelo; Barreto-Silva, Vinícius; Altimari, Leandro R; Vandoni, Matteo; Codrons, Erwan; Buzzachera, Cosme F

    2015-02-01

    Using functional near-infrared spectroscopy, the present study investigated how listening to differently valenced music is associated with changes in hemoglobin concentrations in the prefrontal cortex area, indicating changes in neural activity. Thirty healthy people (15 men; M age = 24.8 yr., SD = 2.4; 15 women; M age = 25.2 yr., SD = 3.1) participated. Prefrontal cortex activation, emotional responses (heart rate variability), and self-reported affective ratings were measured while listening to calm and motivational music. The songs were presented in a random counterbalanced order and separated by periods of white noise. Mixed-model repeated-measures analysis of variance (ANOVA) evaluated the relationships for main effects and interactions. The results showed that music was associated with increased activation of the prefrontal cortex area. For both sexes, listening to the motivational song was associated with higher vagal withdrawal (lower HR) than the calm song. As expected, participants rated the motivational song with greater affective valence and higher arousal. Effects persisted longer in men than in women. These findings suggest that both the characteristics of music and sex differences may significantly affect the results of emotional neuroimaging in samples of young adults. PMID:25650505

  20. Acoustic black holes and universal aspects of area products

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2016-03-01

    In this paper we derive acoustic metrics in the (3 + 1)-dimensional Abelian Higgs model with higher derivative terms. We have found acoustic metrics that are conformally related to the Reissner-Nordström and Kerr-Newman metrics. The universal aspects of area products which depend only on quantized quantities such as conserved electric charge and angular momentum are also addressed. We relate these areas with entanglement entropy of acoustic black holes in BEC systems. We also have shown there is an equivalence between microscopic descriptions of axisymmetric acoustic black hole entropy in a BEC system in four and two dimensions. Particularly, the system seems to develop an analogue of the Kerr/CFT correspondence.

  1. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    PubMed

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  2. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex

    PubMed Central

    Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-01-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. SIGNIFICANCE STATEMENT Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  3. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    PubMed Central

    Demanuele, Charmaine; Kirsch, Peter; Esslinger, Christine; Zink, Mathias; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task. Methods We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages. Results Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative. Conclusions/Significance We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns

  4. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex. PMID:8598908

  5. Dissociable effects of natural image structure and color on LFP and spiking activity in the lateral prefrontal cortex and extrastriate visual area V4.

    PubMed

    Liebe, Stefanie; Logothetis, Nikos K; Rainer, Gregor

    2011-07-13

    Visual perception is mediated by unique contributions of the numerous brain regions that constitute the visual system. We performed simultaneous recordings of local field potentials (LFPs) and single unit activity (SUA) in areas V4 and lateral prefrontal cortex to characterize their contribution to visual processing. Here, we trained monkeys to identify natural images at different degradation levels in a visual recognition task. We parametrically varied color and structural information of natural images while the animals were performing the task. We show that the visual-evoked potential (VEP) of the LFP in V4 is highly sensitive to color, whereas the VEP in prefrontal cortex predominantly depends on image structure. When examining the relationship between VEP and SUA, we found that stimulus sensitivity for SUA was well predicted by the VEP in PF cortex but not in V4. Our results first reveal a functional specialization in both areas at the level of the LFP and further suggest that the degree to which mesoscopic signals, such as the VEP, are representative of the underlying SUA neural processing may be brain region specific within the context of visual recognition. PMID:21752998

  6. Projections from caudal ventrolateral prefrontal areas to brainstem preoculomotor structures and to Basal Ganglia and cerebellar oculomotor loops in the macaque.

    PubMed

    Borra, Elena; Gerbella, Marzio; Rozzi, Stefano; Luppino, Giuseppe

    2015-03-01

    The caudal part of the macaque ventrolateral prefrontal (VLPF) cortex hosts several distinct areas or fields--45B, 45A, 8r, caudal 46vc, and caudal 12r--connected to the frontal eye field (area 8/FEF). To assess whether these areas/fields also display subcortical projections possibly mediating a role in controlling oculomotor behavior, we examined their descending projections, based on anterograde tracer injections in each area/field, and compared them with those of area 8/FEF. All the studied areas/fields displayed projections to brainstem preoculomotor structures, precerebellar centers, and striatal sectors that are also targets of projections originating from area 8/FEF. Specifically, these projections involved: (1) the intermediate and superficial layers of the superior colliculus; (2) the mesencephalic and pontine reticular formation; (3) the dorsomedial and lateral pontine nuclei and the reticularis tegmenti pontis; and (4) the body of the caudate nucleus. Furthermore, area 45B projected also to the regions around the trochlear nucleus and to the raphe interpositus. The present data provide evidence for a role of the caudal VLPF areas/fields in controlling oculomotor behavior not only through their connections to area 8/FEF, but also in parallel through a direct access to preoculomotor brainstem structures and to the cerebellar and basal ganglia oculomotor loops. PMID:24068552

  7. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex

    PubMed Central

    Ray, Rebecca; Zald, David H.

    2011-01-01

    Ray, R. and D. Zald. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. NEUROSCI BIOBEHAV REV 36(X) XXX-XXX, 2011. -Psychological research increasingly indicates that emotional processes interact with other aspects of cognition. Studies have demonstrated both the ability of emotional stimuli to influence a broad range of cognitive operations, and the ability of humans to use top-down cognitive control mechanisms to regulate emotional responses. Portions of the prefrontal cortex appear to play a significant role in these interactions. However, the manner in which these interactions are implemented remains only partially elucidated. In the present review we describe the anatomical connections between ventral and dorsal prefrontal areas as well as their connections with limbic regions. Only a subset of prefrontal areas are likely to directly influence amygdalar processing, and as such models of prefrontal control of emotions and models of emotional regulation should be constrained to plausible pathways of influence. We also focus on how the specific pattern of feedforward and feedback connections between these regions may dictate the nature of information flow between ventral and dorsal prefrontal areas and the amygdala. These patterns of connections are inconsistent with several commonly expressed assumptions about the nature of communications between emotion and cognition. PMID:21889953

  8. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    PubMed Central

    2014-01-01

    Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded. PMID:24397347

  9. Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)

    PubMed Central

    Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.

    2014-01-01

    We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475

  10. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    PubMed

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03) and control subjects (n = 21; age 22.18 ± 1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  11. Larger Mid-Dorsolateral Prefrontal Gray Matter Volume in Young Binge Drinkers Revealed by Voxel-Based Morphometry

    PubMed Central

    Doallo, Sonia; Cadaveira, Fernando; Corral, Montserrat; Mota, Nayara; López-Caneda, Eduardo; Holguín, Socorro Rodríguez

    2014-01-01

    Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory), processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9), less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years) binge drinking pattern of alcohol use (n = 11; age 22.43±1.03) and control subjects (n = 21; age 22.18±1.08) to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9) in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT) total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol −that does not meet criteria for alcohol dependence− throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory. PMID:24789323

  12. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics.

    PubMed

    Gabbott, P L; Bacon, S J

    1996-01-22

    This paper provides a comprehensive morphological description of local circuit neurons in the medial prefrontal cortex (mPFC: areas 24a, 24b, 24c, 25 and 32) of the monkey. Cortical interneurons were identified immunocytochemically by the expression of the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin D-28k (CB). Interneurons were also identified using GABA immunocytochemistry. The areal and laminar distributions of CR, PV, and CB cells were consistent across mPFC; their morphological characteristics identified them as local circuit neurons. Throughout layers 2-6: CR immunoreactivity labelled double bouquet and bipolar neurons, PV was localised in large and small basket neurons and in chandelier (axoaxonic) cells, while CB immunoreactivity was present in double bouquet, Martinotti, and neurogliaform neurons. In addition, some cells in layer 1 (including Cajal-Retzius neurons) were CR immunoreactive. Calbindin immunoreactivity also labelled a population of large nonpyramidal neurons deep in the cortex. Other types of CR, PV and CB cells were also immunolabelled. A small population of layer 3 pyramidal cells was weakly CB immunoreactive. Peak cell densities occurred in layer 2/upper layer 3 for CR+ neurons and in upper to midlayer 3 for CB+ cells. PV+ neuron density peaked in midcortex. These observations support and extend a similar study of monkey prefrontal cortex (Condé et al. [1994] J. Comp. Neurol. 341:95-116). The morphologies and combined cortical depth distributions of CR+, PV+, and CB+ neurons were similar to GABA-immunolabelled cells. Local circuit neurons in mPFC displaying NADPH diaphorase activity composed less than 0.25% of the total neuron population, and were distributed in two horizontal strata, in mid- to lower layer 3 and in lower layer 5/upper layer 6. CR, PV and CB immunoreactivity was colocalised in NADPH diaphorase-reactive neurons. The interrelationships between CR+, PV+ and CB+ neurons were investigated using dual

  13. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  14. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde

    PubMed Central

    Segovia, Kristen N.; Vontell, Regina; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    Considerable evidence indicates that the metabolite of ethanol (EtOH), acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase (ADH), and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA) rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg) or acetaldehyde (0.1 or 0.5 g/kg) or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 μmoles). IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg), while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration. PMID:23745109

  15. Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons.

    PubMed

    Gao, Can; Wolf, Marina E

    2007-12-26

    Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevation of DA levels, mimicking cocaine exposure. We used cocultures containing rat VTA neurons and prefrontal cortex (PFC) neurons from enhanced cyan fluorescent protein-expressing mice. In VTA-PFC cocultures, D1 receptor activation (10 min) increased synaptic and nonsynaptic glutamate receptor subunit 1 (GluR1) and GluR2 surface expression on DA neurons. NMDA or AMPA receptor antagonists blocked this effect, and it was not observed in pure VTA cultures, suggesting that DA agonists acted on D1 receptors on PFC neurons, altering their excitatory transmission onto VTA DA neurons and, thus, influencing AMPARs. To mimic the longer elevation in extracellular DA levels produced by systemic cocaine, cocultures were incubated with DA for 1 h. Synaptic GluR1 was increased 24 h later, reminiscent of the increased AMPA/NMDA ratio at excitatory synapses onto VTA DA neurons 24 h after cocaine injection (Ungless et al., 2001). In contrast, GluR2 was unchanged. Analysis of colocalization of surface GluR1-3 labeling suggested that control DA neurons express a substantial number of GluR1/2, GluR2/3, and homomeric GluR1 receptors and that the increase in surface AMPARs 24 h after DA exposure may in part reflect increased GluR1/3-containing receptors. These results help define the cellular basis for plasticity underlying the development of behavioral sensitization. PMID:18160635

  16. Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution.

    PubMed

    Gabbott, P L; Dickie, B G; Vaid, R R; Headlam, A J; Bacon, S J

    1997-01-27

    This paper is a light microscopical study describing the detailed morphology and quantitative distribution of local circuit neurones in areas 25, 32, and 24b of the medial prefrontal cortex (mPFC) in the rat. Cortical interneurones were identified immunocytochemically by their expression of calretinin (CR), parvalbumin (PV), and calbindin D-28k (CB) immunoreactivity. Neurones immunoreactive for gamma-aminobutyric acid (GABA) were also investigated, as were interneurones containing reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity. Several distinct classes of CR+, PV+, and CB+ neurones were identified; the most frequent were: bipolar/bitufted CR+ cells in upper layer 3; multipolar PV+ neurones in layers 3 and 5; and bitufted/multipolar CB+ neurones in lower layer 3. CB+ neurones resembling Martinotti and neurogliaform cells were also present in layers 5/6. The morphologies and depth distributions of each cell type were consistent across the three areas of mPFC studied. Seven classes of diaphorase-reactive mPFC neurone are described; these cells were composed about 0.8% of the total neurone population and had a peak distribution located in mid- to lower layer 5 in each area. In areas 32 and 25, three defined bands of diffuse NADPH diaphorase staining were located in layer 2 and in upper and deep layer 5. Diaphorase reactivity was very infrequently colocalised with either CR, PV, or CB immunoreactivities. The numerical densities of neurones (N(V), number of cells per mm3) in each layer were calculated stereologically. The mean total neuronal N(V) estimate for areas 25, 32, and 24b was 51,603 +/- 3,324 (mean +/- S.D.; n = 8). Significant interareal differences were detected. From cortical thickness data and neuronal N(V) estimates, the absolute number of neurones under 1 mm2 of cortical surface (N(C)) have been derived. The mean N(C) value for areas 25, 32, and 24b was 57,328 +/- 7,505 neurones. In immunolabelled Nissl-stained sections, CR

  17. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    PubMed Central

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  18. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  19. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  20. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition

    PubMed Central

    Wolf, Richard C.; Philippi, Carissa L.; Motzkin, Julian C.; Baskaya, Mustafa K.

    2014-01-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex—the basic attentional process of controlling eye movements to faces expressing emotion. PMID:24691392

  1. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    PubMed

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. PMID:24691392

  2. Geologic and hydrologic aspects of tunneling in the Twin Cities area, Minnesota

    USGS Publications Warehouse

    Norvitch, Ralph F.; Walton, Matt S.

    1979-01-01

    This report presents the results of a pilot study of geologic and hydrologic aspects of tunneling in part of the Minneapolis-St. Paul (Twin Cities) metropolitan area, Minnesota. The Minnesota Geological Survey collected, compiled and interpreted geologic and engineering-test data and the U.S. Geological Survey complies and interpreted hydrologic data. The report was prepared on behalf of the U.S. Department of Transportation and funding was provided by that agency. A similar pilot study was recently made in the Los Angeles area, California (Yerkes and others, 1977).

  3. The Cortical Signature of Central Poststroke Pain: Gray Matter Decreases in Somatosensory, Insular, and Prefrontal Cortices.

    PubMed

    Krause, T; Asseyer, S; Taskin, B; Flöel, A; Witte, A V; Mueller, K; Fiebach, J B; Villringer, K; Villringer, A; Jungehulsing, G J

    2016-01-01

    It has been proposed that cortical structural plasticity plays a crucial role in the emergence and maintenance of chronic pain. Various distinct pain syndromes have accordingly been linked to specific patterns of decreases in regional gray matter volume (GMV). However, it is not known whether central poststroke pain (CPSP) is also associated with cortical structural plasticity. To determine this, we employed T1-weighted magnetic resonance imaging at 3 T and voxel-based morphometry in 45 patients suffering from chronic subcortical sensory stroke with (n = 23) and without CPSP (n = 22), and healthy matched controls (n = 31). CPSP patients showed decreases in GMV in comparison to healthy controls, involving secondary somatosensory cortex (S2), anterior as well as posterior insular cortex, ventrolateral prefrontal and orbitofrontal cortex, temporal cortex, and nucleus accumbens. Comparing CPSP patients to nonpain patients revealed a similar but more restricted pattern of atrophy comprising S2, ventrolateral prefrontal and temporal cortex. Additionally, GMV in the ventromedial prefrontal cortex negatively correlated to pain intensity ratings. This shows for the first time that CPSP is accompanied by a unique pattern of widespread structural plasticity, which involves the sensory-discriminative areas of insular/somatosensory cortex, but also expands into prefrontal cortex and ventral striatum, where emotional aspects of pain are processed. PMID:25129889

  4. Increased Functional Connectivity between Prefrontal Cortex and Reward System in Pathological Gambling

    PubMed Central

    Koehler, Saskia; Ovadia-Caro, Smadar; van der Meer, Elke; Villringer, Arno; Heinz, Andreas

    2013-01-01

    Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder. PMID:24367675

  5. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  6. Intentional signal in prefrontal cortex generalizes across different sensory modalities.

    PubMed

    Choi, Kyuwan; Torres, Elizabeth B

    2014-07-01

    Biofeedback-EEG training to learn the mental control of an external device (e.g., a cursor on the screen) has been an important paradigm to attempt to understand the involvements of various areas of the brain in the volitional control and the modulation of intentional thought processes. Often the areas to adapt and to monitor progress are selected a priori. Less explored, however, has been the notion of automatically emerging activation in a particular area or subregions within that area recruited above and beyond the rest of the brain. Likewise, the notion of evoking such a signal as an amodal, abstract one remaining robust across different sensory modalities could afford some exploration. Here we develop a simple binary control task in the context of brain-computer interface (BCI) and use a Bayesian sparse probit classification algorithm to automatically uncover brain regional activity that maximizes task performance. We trained and tested 19 participants using the visual modality for instructions and feedback. Across training blocks we quantified coupling of the frontoparietal nodes and selective involvement of visual and auditory regions as a function of the real-time sensory feedback. The testing phase under both forms of sensory feedback revealed automatic recruitment of the prefrontal cortex with a parcellation of higher strength levels in Brodmann's areas 9, 10, and 11 significantly above those in other brain areas. We propose that the prefrontal signal may be a neural correlate of externally driven intended direction and discuss our results in the context of various aspects involved in the cognitive control of our thoughts. PMID:24259543

  7. Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex

    PubMed Central

    Aggleton, John P.; Wright, Nicholas F.; Rosene, Douglas L.; Saunders, Richard C.

    2015-01-01

    The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex. PMID:25715284

  8. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.

    PubMed

    Zhou, W X; Chan-Park, Mary B

    2005-05-01

    Large area molding of long and deep microchannels separated by high aspect ratio microwalls is important for high sensitivity and high throughput microfluidic devices. Ultraviolet (UV) casting is a feasible, economical and convenient method of replication of such microstructures in plastics. It is shown that a wide variety of polyacrylates with diverse properties such as those made from epoxy (EP), polyurethane (UR), polyester (ES), poly (ethylene glycol) (EG) and poly(propylene glycol) (PG) can be used for the high aspect ratio (7-9) UV casting of such linear microstructures over a 100 mm diameter, enlarging the range of applications of the replicated microstructures. Some challenges arise. With the EG formulation, wavy microstructures were observed; this can be overcome by stress relaxation. With non-polar PG formulation, poor adhesion between the polyester substrate and resin can lead to delamination of the casting from the substrate during demolding; this can be overcome by pre-coating a partially cured same resin on the polyester substrate. An optimum UV irradiation time was important for cure at the deepest end of the microstructure without excessive crosslinking leading to much increased demolding forces. The viscosity and wetting capability of the formulations were found to affect replication fidelity. PMID:15856087

  9. The Effects of Vision-Related Aspects on Noise Perception of Wind Turbines in Quiet Areas

    PubMed Central

    Maffei, Luigi; Iachini, Tina; Masullo, Massimiliano; Aletta, Francesco; Sorrentino, Francesco; Senese, Vincenzo Paolo; Ruotolo, Francesco

    2013-01-01

    Preserving the soundscape and geographic extension of quiet areas is a great challenge against the wide-spreading of environmental noise. The E.U. Environmental Noise Directive underlines the need to preserve quiet areas as a new aim for the management of noise in European countries. At the same time, due to their low population density, rural areas characterized by suitable wind are considered appropriate locations for installing wind farms. However, despite the fact that wind farms are represented as environmentally friendly projects, these plants are often viewed as visual and audible intruders, that spoil the landscape and generate noise. Even though the correlations are still unclear, it is obvious that visual impacts of wind farms could increase due to their size and coherence with respect to the rural/quiet environment. In this paper, by using the Immersive Virtual Reality technique, some visual and acoustical aspects of the impact of a wind farm on a sample of subjects were assessed and analyzed. The subjects were immersed in a virtual scenario that represented a situation of a typical rural outdoor scenario that they experienced at different distances from the wind turbines. The influence of the number and the colour of wind turbines on global, visual and auditory judgment were investigated. The main results showed that, regarding the number of wind turbines, the visual component has a weak effect on individual reactions, while the colour influences both visual and auditory individual reactions, although in a different way. PMID:23624578

  10. The effects of vision-related aspects on noise perception of wind turbines in quiet areas.

    PubMed

    Maffei, Luigi; Iachini, Tina; Masullo, Massimiliano; Aletta, Francesco; Sorrentino, Francesco; Senese, Vincenzo Paolo; Ruotolo, Francesco

    2013-05-01

    Preserving the soundscape and geographic extension of quiet areas is a great challenge against the wide-spreading of environmental noise. The E.U. Environmental Noise Directive underlines the need to preserve quiet areas as a new aim for the management of noise in European countries. At the same time, due to their low population density, rural areas characterized by suitable wind are considered appropriate locations for installing wind farms. However, despite the fact that wind farms are represented as environmentally friendly projects, these plants are often viewed as visual and audible intruders, that spoil the landscape and generate noise. Even though the correlations are still unclear, it is obvious that visual impacts of wind farms could increase due to their size and coherence with respect to the rural/quiet environment. In this paper, by using the Immersive Virtual Reality technique, some visual and acoustical aspects of the impact of a wind farm on a sample of subjects were assessed and analyzed. The subjects were immersed in a virtual scenario that represented a situation of a typical rural outdoor scenario that they experienced at different distances from the wind turbines. The influence of the number and the colour of wind turbines on global, visual and auditory judgment were investigated. The main results showed that, regarding the number of wind turbines, the visual component has a weak effect on individual reactions, while the colour influences both visual and auditory individual reactions, although in a different way. PMID:23624578

  11. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m‑1 K‑1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

  12. Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Howell, William E.; Perez, Sharon E.; Vogler, William A.

    1991-01-01

    The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.

  13. Finding prefrontal cortex in the rat.

    PubMed

    Leonard, Christiana M

    2016-08-15

    The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections The cortical projection field of the mediodorsal nucleus of the thalamus (MD) was identified in the rat using the Fink-Heimer silver technique for tracing degenerating fibers. Small stereotaxic lesions confined to MD were followed by terminal degeneration in the dorsal bank of the rhinal sulcus (sulcal cortex) and the medial wall of the hemisphere anterior and dorsal to the genu of the corpus callosum (medial cortex). No degenerating fibers were traced to the convexity of the hemisphere. The cortical formation receiving a projection from MD is of a relatively undifferentiated type which had been previously classified as juxtallocortex. A study of the efferent fiber connections of the rat׳s MD-projection cortex demonstrated some similarities to those of monkey prefrontal cortex. A substantial projection to the pretectal area and deep layers of the superior colliculus originates in medial cortex, a connection previously reported for caudal prefrontal (area 8) cortex in the monkey. Sulcal cortex projects to basal olfactory structures and lateral hypothalamus, as does orbital frontal cortex in the monkey. The rat׳s MD-projection cortex differs from that in the monkey in that it lacks a granular layer and appears to have no prominent direct associations with temporal and juxtahippocampal areas. Furthermore, retrograde degeneration does not appear in the rat thalamus after damage to MD-projection areas, suggesting that the striatum or thalamus receives a proportionally larger share of the MD-projection in this animal than it does in the monkey. Comparative behavioral investigations are in progress to investigate functional differences between granular prefrontal cortex in the primate and the relatively primitive MD-projection cortex in the rat. © 1969. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26867704

  14. The effect of area aspect ratio on the yawing moments of rudders at large angles of pitch on three fuselages

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L; Monish, B H

    1933-01-01

    This reports presents the results of measurements made of yawing moments produced by rudder displacement for seven rudders mounted on each of three fuselages at angles of pitch of 0 degree, 8 degrees, 12 degrees, 20 degrees, 30 degrees and 40 degrees. The dimensions of the rudders were selected to cover the range of areas and aspect ratios commonly used, while the ratios of rudder area to fin area and of rudder chord to fin chord were kept approximately constant. An important result of the measurements is to show that increased aspect ratio gives increased yawing moments for a given area, provided the maximum rudder displacement does not exceed 25 degrees. If large rudder displacements are used, the effect of aspect ratio is not so great.

  15. Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging.

    PubMed

    Bories, Cyril; Husson, Zoé; Guitton, Matthieu J; De Koninck, Yves

    2013-01-23

    Normal aging is associated with a variable decline in cognitive functions. Among these, executive function, decision-making, and working memory are primarily associated with the prefrontal cortex. Although a number of studies have examined the structural substrates of cognitive decline associated with aging within this cortical area, their functional correlates remain poorly understood. To fill this gap, we aimed to identify functional synaptic substrates of age-associated frontal-dependent deficits in layer 2/3 pyramidal neurons of medial prefrontal cortex of 3-, 9-, and ≥ 23-month-old Fischer 344 rats. We combined, in the same animals, novelty recognition and exploratory behavioral tasks with assessment of structural and functional aspects of prefrontal synaptic properties. We found that subsets of aged animals displayed stereotyped exploratory behavior or memory deficits. Despite an age-dependent dendritic spine loss, patch-clamp recording of synaptic activity revealed an increase in miniature EPSC frequency restricted to aged animals with preserved exploratory behavior. In contrast, we found a strong positive relationship between miniature IPSC frequency and the occurrence of both stereotyped exploratory behavior and novelty-related memory deficits. The enhanced miniature inhibitory tone was accompanied by a deficit in activity-driven inhibition, also suggesting an impaired dynamic range for modulation of inhibition in the aged, cognitively impaired animals. Together, our data indicate that differential changes in the balance of inhibitory to excitatory synaptic tone may underlie distinct trajectories in the evolution of cognitive performance during aging. PMID:23345211

  16. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition.

    PubMed

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m(-1) K(-1) while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation. PMID:27454037

  17. Preliminary appraisal of the geohydrologic aspects of drainage wells, Orlando area, central Florida

    USGS Publications Warehouse

    Kimrey, Joel O.

    1978-01-01

    The Floridan aquifer contains two highly transmissive cavernous zones in the Orlando area: an upper producing zone about 150-600 feet below land surface and a lower producing zone about 1,100-1 ,500 feet below land surface. Natural head differences are downward and there is hydraulic connection between the two producing zones. Drainage wells are finished open-end into the upper producing zone and emplace surface waters directly into that zone by gravity. Quantitatively, their use constitutes an effective method of artificial recharge. Their negative aspects relate to the probably poor, but unknown, quality of the recharge water. Caution is suggested in drawing definite and final conclusions on the overall geohydrologic and environmental effects of drainage wells prior to the collection and interpretation of a considerable quantity of new data. Though few ground-water pollution problems have been documented, the potential for pollution should be seriously considered in light of the probable continuing need to use drainage wells; the probable volumes and quality of water involved; and the hydraulic relations between the two producing zones. (Woodard-USGS)

  18. Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test.

    PubMed

    Carvalho, Fabiana M; Pereira, Silvia R C; Pires, Rita G W; Ferraz, Vany P; Romano-Silva, Marco Aurélio; Oliveira-Silva, Ieda F; Ribeiro, Angela M

    2006-04-01

    Using an animal model of Wernicke-Korsakoff syndrome, in which rats were submitted to a chronic ethanol treatment with or without a thiamine deficiency episode, the glutamate uptake in the prefrontal cortex and spatial memory aspects were studied. It was found that (i) thiamine deficiency, but not chronic ethanol consumption, induced a significant decrease of glutamate uptake; (ii) thiamine-deficient subjects showed an impaired performance in the water maze spatial memory test though these animals were able to learn the task during the acquisition. In spite of the fact that thiamine deficiency affects both glutamate uptake and spatial reference memory, there was no significant correlation between these two data. The present results show that, although prefrontal cortex is considered by some authors a not vulnerable area to lesions caused by thiamine deficiency, this vitamin deficiency does cause a neurochemistry dysfunction in that region. PMID:16687165

  19. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    PubMed

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  20. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.

    PubMed

    Courtin, Julien; Chaudun, Fabrice; Rozeske, Robert R; Karalis, Nikolaos; Gonzalez-Campo, Cecilia; Wurtz, Hélène; Abdi, Azzedine; Baufreton, Jerome; Bienvenu, Thomas C M; Herry, Cyril

    2014-01-01

    Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression. PMID:24256726

  1. Deficits in prospective memory following damage to the prefrontal cortex.

    PubMed

    Umeda, Satoshi; Kurosaki, Yoshiko; Terasawa, Yuri; Kato, Motoichiro; Miyahara, Yasuyuki

    2011-07-01

    Neuropsychological investigations of prospective memory (PM), representing memory of future intentions or plans, have evolved over the past two decades. The broadly accepted divisions involved in PM consist of a prospective memory component (PMC), a process for remembering to remember, and a retrospective memory component, a process for remembering the content of the intended action. Previous functional neuroimaging studies have provided some evidence that the rostral prefrontal cortex (BA10) is one of areas that is critical for prospective remembering. However, the question of whether damage to part of the prefrontal cortex affects attenuated performance for PMC remains unresolved. In this study, 74 participants with traumatic brain injury (TBI) including focal damage to frontal or temporal lobe areas were administered thirteen standard neuropsychological tests and the PM task. To identify influential areas contributing to PM performance, discriminant function analysis was conducted. The results indicated that the following three areas are highly contributory to PM performance: the right dorsolateral prefrontal cortex; the right ventromedial prefrontal cortex; and the left dorsomedial prefrontal cortex. Comparing differences in neuropsychological test scores showed that orientation scores were significantly higher in the greater PM performance group, suggesting that PMC represents an integrated memory function associated with awareness of current status. These data contribute to our understanding of the neural substrates and functional characteristics of the PMC. PMID:21477605

  2. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was prefrontal cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  3. Reduced Prefrontal Connectivity in Psychopathy

    PubMed Central

    Motzkin, Julian C.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2012-01-01

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy. PMID:22131397

  4. Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus).

    PubMed

    Neufeld, Janina; Teuchert-Noodt, Gertraud; Grafen, Keren; Winter, York; Witte, A Veronica

    2009-01-01

    Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (pre)synaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA) in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER) or impoverished rearing (IR) were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals. PMID:19809517

  5. Child Rearing in Lesotho: Some Aspects of Child Rearing in the Teyateyaneng Area.

    ERIC Educational Resources Information Center

    Bam, Edna E.

    This study presents first-hand information on aspects of the developmental process during the first five years of life in rural Teyateyaneng in Lesotho, a small country surrounded by the Republic of South Africa. Implicit in the study is the assumption that a relationship exists between informal education at home and formal education at school.…

  6. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex

    PubMed Central

    Chandler, Daniel J.; Lamperski, Carolyn S.; Waterhouse, Barry D.

    2013-01-01

    The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive functions and is composed of several distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). These regions serve dissociable cognitive functions, and are heavily innervated by acetylcholine, dopamine, serotonin and norepinephrine systems. In this study, fluorescently labeled retrograde tracers were injected into the ACC, mPFC, and OFC, and labeled cells were identified in the nucleus basalis (NB), ventral tegmental area (VTA), dorsal raphe nucleus (DRN) and locus coeruleus (LC). DRN and LC showed similar distributions of retrogradely labeled neurons such that most were single labeled and the largest population projected to mPFC. VTA showed a slightly greater proportion of double and triple labeled neurons, with the largest population projecting to OFC. NB, on the other hand, showed mostly double and triple labeled neurons projecting to multiple subregions. Therefore, subsets of VTA, DRN and LC neurons may be capable of modulating individual prefrontal subregions independently, whereas NB cells may exert a more unified influence on the three areas simultaneously. These findings emphasize the unique aspects of the cholinergic and monoaminergic projections to functionally and anatomically distinct subregions of PFC. PMID:23665053

  7. Feeling Present in Arousing Virtual Reality Worlds: Prefrontal Brain Regions Differentially Orchestrate Presence Experience in Adults and Children

    PubMed Central

    Baumgartner, Thomas; Speck, Dominique; Wettstein, Denise; Masnari, Ornella; Beeli, Gian; Jäncke, Lutz

    2008-01-01

    Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of “being there”, that is, the feeling of “Presence”. In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs. PMID:18958209

  8. Interplay of hippocampus and prefrontal cortex in memory

    PubMed Central

    Preston, Alison R.; Eichenbaum, Howard

    2013-01-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation. PMID:24028960

  9. Hydrogeological aspects of groundwater drainage of the urban areas in Kuwait City

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Muhammad F.; Sherif, Mohsen M.

    2001-04-01

    Residential areas in Kuwait City have witnessed a dramatic rise in subsurface water tables over the last three decades. This water rise phenomenon is attributed mainly to over irrigation practices of private gardens along with leakage from domestic and sewage networks. This paper presents a comprehensive study for urban drainage in two selected areas representing the two hydrogeological settings encountered in Kuwait City. In the first area, a vertical drainage scheme was applied successfully over an area of 1 km2. The system has been under continuous operation and monitoring for more than 4 years without problems, providing a permanent solution for the water rise problem in this area. The hydrogeological system has approached steady state conditions and the water levels have dropped to about 3·5 m below the ground surface. In the second area a dual drainage scheme, composing of horizontal and vertical elements, is proposed. Horizontal elements are suggested in the areas where the deep groundwater contains hazardous gases that may pose environmental problems. The proposed drainage scheme in the second area has not yet been implemented. Field tests were conducted to assess the aquifer parameters in both areas and a numerical model has been developed to predict the long-term response of the hydrogeological system in the two areas under consideration.

  10. Role of Prefrontal Persistent Activity in Working Memory

    PubMed Central

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  11. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas.

    PubMed

    Lozano-García, Beatriz; Parras-Alcántara, Luis; Brevik, Eric C

    2016-02-15

    Soil organic carbon (SOC) plays a critical role in the global carbon (C) cycle, and C sequestration in forest soils can represent a C sink. A relevant question is how does SOC changes in space and time; consequently, the study of the influence of topographic aspect on SOC stocks (SOCS) is very important to build a complete understanding of the soil system. In this line, four topographic aspects, north (N), south (S), east (E) and west (W) were studied under two different plant communities; native forests (NF) and reforested areas (RF) in the Despeñaperros Natural Park (S Spain). Five soil profiles were sampled at each of six different sites, 2 sites for NF (N and E) and 4 sites for RF (N, S, E and W). Soil properties were studied at different depths using soil control sections (S1: 0-25 cm; S2: 25-50 cm; S3: 50-75 cm). The results indicate that RF (N: 147.1 Mg ha(-1); E: 137.3 Mg ha(-1); W: 124.9 Mg ha(-1) and S: 87.0 Mg ha(-1)) had increased total SOCS compared to NF (N: 110.4 Mg ha(-1) and E: 80.9 Mg ha(-1)), and that SOCS in the N position were higher than in the other topographic aspects. Therefore, the results suggest that topographic aspect should be included in SOCS models and estimations at local and regional scales. PMID:26706767

  12. Neurodynamics of the prefrontal cortex during conditional visuomotor associations.

    PubMed

    Loh, Marco; Pasupathy, Anitha; Miller, Earl K; Deco, Gustavo

    2008-03-01

    The prefrontal cortex is believed to be important for cognitive control, working memory, and learning. It is known to play an important role in the learning and execution of conditional visuomotor associations, a cognitive task in which stimuli have to be associated with actions by trial-and-error learning. In our modeling study, we sought to integrate several hypotheses on the function of the prefrontal cortex using a computational model, and compare the results to experimental data. We constructed a module of prefrontal cortex neurons exposed to two different inputs, which we envision to originate from the inferotemporal cortex and the basal ganglia. We found that working memory properties do not describe the dominant dynamics in the prefrontal cortex, but the activation seems to be transient, probably progressing along a pathway from sensory to motor areas. During the presentation of the cue, the dynamics of the prefrontal cortex is bistable, yielding a distinct activation for correct and error trails. We find that a linear change in network parameters relates to the changes in neural activity in consecutive correct trials during learning, which is important evidence for the underlying learning mechanisms. PMID:18004947

  13. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  14. Hydrogeologic aspects of the Knippa Gap area in eastern Uvalde and western Medina counties, Texas

    USGS Publications Warehouse

    Lambert, Rebecca B.; Clark, Allan K.; Pedraza, Diana E.; Morris, Robert R.

    2014-01-01

    The Edwards aquifer is the primary source of potable water for the San Antonio area in south-central Texas. The Knippa Gap area is a structural low (trough) postulated to channel or restrict flow in the Edwards aquifer in eastern Uvalde and western Medina Counties, Tex. To better understand the function of the Knippa Gap, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, developed the first detailed surficial geologic map of the Knippa Gap area with data and information obtained from previous investigations and field observations. A simplified version of the detailed geologic map depicting the hydrologic units, faulting, and structural dips of the Knippa Gap area is provided in this fact sheet. The map shows that groundwater flow in the Edwards aquifer is influenced by the Balcones Fault Zone, a structurally complex area of the aquifer that contains relay ramps that have formed in extensional fault systems and allowed for deformational changes along fault blocks. Faulting in southeast Uvalde and southwest Medina Counties has produced relay-ramp structures that dip downgradient to the structural low (trough) of the Knippa Gap.

  15. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study.

    PubMed

    Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles

    2009-08-01

    Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. PMID:19338025

  16. Bio-nanotextured high aspect ratio micropillar arrays for high surface area energy storage devices

    NASA Astrophysics Data System (ADS)

    Chu, S.; Gerasopoulos, K.; Ghodssi, R.

    2015-12-01

    This paper presents fabrication and characterization of bio-nanotextured hierarchical nickel oxide (NiO) supercapacitor electrodes. The hierarchical electrode structure is created through self-assembly of Tobacco mosaic viruses (TMVs) on high aspect-ratio micropillar arrays. Enhanced assembly of the bio-nanoparticles was achieved by increasing TMV solution accessibility into the deep microcavities of the pillar arrays. Electrochemical characterization of the hierarchical NiO supercapacitor electrodes revealed a 25-fold increase in charge capacity compared to a planar NiO, and demonstrated excellent cycle stability over 1500 charge/discharge cycles at 2 mA/cm2. This study leverages the unique bio-nanoscaffolds for small scale energy storage devices through further optimization of the hierarchical structures and wetting techniques for significant improvements in micro/nano scale energy storage devices.

  17. Prefrontal and midline interactions mediating behavioural control

    PubMed Central

    Fassbender, Catherine; Hester, Robert; Murphy, Kevin; Foxe, John J.; Foxe, Deirdre M.; Garavan, Hugh

    2011-01-01

    Top-down control processes are thought to interact with bottom-up stimulus-driven task demands to facilitate the smooth execution of behaviour. Frontal and midline areas are believed to subserve these control processes but their distinct roles and the interactions between them remain to be fully elucidated. In this fMRI study, we utilised a GO/NO-GO task with cued and uncued inhibitory events to investigate the effect of cue-induced levels of top-down control on NO-GO trial response conflict. We found that on a within-subjects, trial-for-trial basis, high levels of top-down control, as indexed by left dorsolateral prefrontal activation prior to the NO-GO, resulted in lower levels of activation on the NO-GO trial in the pre-supplementary motor area. These results suggest that prefrontal and midline regions work together to implement cognitive control and reveal that intra-subject variability is reflected in these lateral and midline interactions. PMID:19120444

  18. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    PubMed

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence. PMID:21828348

  19. [Human health in the space rocket-making areas: medical and environmental aspects].

    PubMed

    Sidorov, P I; Skrebtsova, N V; Sovershaeva, S L

    2006-01-01

    The paper deals with the problems of medical and ecological escorts of space rocket-making activities. The properties of one of the highly toxic components of propellant - asymmetric dimethylhydrazine as a substance assigned to a class of ecological toxicants, are considered. The data obtained on implementing the program for a study of the health status in the population living not far from the asymmetric dimethylhydrazine-polluted areas are presented. The authors propose to consider a package of measures that can apply the systems approach to securing the safety of the population to live and work in areas under space-rocket making activities, which is based on the prevention principle provided by the Rio de Janeiro Environment and Development Declaration. PMID:16808395

  20. Geologic aspects of the surficial aquifer in the upper East Coast planning area, Southeast Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1980-01-01

    The Upper East Coast Planning Area, as designated by the South Florida Water Management District, consists of St. Lucie County, Martin County, and eastern Okeechobee County. The surficial aquifer is the main source of freshwater for agricultural and urban uses in the area. The geologic framework of the aquifer is displayed by contour mapping and lithologic cross sections to provide water managers with a better understanding of the natural restraints that may be imposed on future development. The surficial aquifer is primarily sand, limestone, shell, silt, and clay deposited during the Pleistocene and Pliocene Epochs. The aquifer is unconfined and under water-table conditions in most of the area, but locally, artesian conditions exits where discontinuous clay layers act as confining units. Impermeable and semipermeable clays and marls of the Tamiami (lower Pliocene) and Hawthorn Formations (Miocene) unconformably underlie the surficial aquifer and form its base. Contour lines showing the altitude of the base of the aquifer indicate extensive erosion of the Miocene sediments prior to deposition of the aquifer materials. (USGS)

  1. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition.

    PubMed

    Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos

    2016-03-29

    The dorsolateral prefrontal cortex and posterior parietal cortex have been implicated in the planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question, we trained monkeys to perform memory-guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that the prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition. PMID:26997283

  2. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition

    PubMed Central

    Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos

    2016-01-01

    SUMMARY The dorsolateral prefrontal and posterior parietal cortex have been implicated in planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question we trained monkeys to perform memory guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition. PMID:26997283

  3. The obesity‐associated gene Negr1 regulates aspects of energy balance in rat hypothalamic areas

    PubMed Central

    Boender, Arjen J.; van Gestel, Margriet A.; Garner, Keith M.; Luijendijk, Mieneke C. M.; Adan, Roger A. H.

    2014-01-01

    Abstract Neural growth regulator 1 (Negr1) is among the first common variants that have been associated with the regulation of body mass index. Using AAV technology directed to manipulate Negr1 expression in vivo, we find that decreased expression of Negr1 in periventricular hypothalamic areas leads to increases in body weight, presumably via increased food intake. Moreover, we observed that both increased and decreased levels of Negr1 lead to reduced locomotor activity and body temperature. In sum, our results provide further support for a role of hypothalamic expressed Negr1 in the regulation of energy balance. PMID:25077509

  4. An investigation of vehicle dependent aspects of terminal area ATC operation.

    NASA Technical Reports Server (NTRS)

    Britt, C. L., Jr.; Modi, J. A.; Baxa, E. G., Jr.; Walsh, T. M.

    1972-01-01

    Description of a terminal area simulation which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries, and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links.

  5. A dorsolateral prefrontal cortex semi-automatic segmenter

    NASA Astrophysics Data System (ADS)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  6. Epidemiologic aspects of the malaria transmission cycle in an area of very low incidence in Brazil

    PubMed Central

    Cerutti, Crispim; Boulos, Marcos; Coutinho, Arnídio F; Hatab, Maria do Carmo LD; Falqueto, Aloísio; Rezende, Helder R; Duarte, Ana Maria RC; Collins, William; Malafronte, Rosely S

    2007-01-01

    Background Extra-Amazonian autochthonous Plasmodium vivax infections have been reported in mountainous regions surrounded by the Atlantic Forest in Espírito Santo state, Brazil. Methods Sixty-five patients and 1,777 residents were surveyed between April 2001 and March 2004. Laboratory methods included thin and thick smears, multiplex-PCR, immunofluorescent assay (IFA) against P. vivax and Plasmodium malariae crude blood-stage antigens and enzyme-linked immunosorbent assay (ELISA) for antibodies against the P. vivax-complex (P. vivax and variants) and P. malariae/Plasmodium brasilianum circumsporozoite-protein (CSP) antigens. Results Average patient age was 35.1 years. Most (78.5%) were males; 64.6% lived in rural areas; 35.4% were farmers; and 12.3% students. There was no relevant history of travel. Ninety-five per cent of the patients were experiencing their first episode of malaria. Laboratory data from 51 patients were consistent with P. vivax infection, which was determined by thin smear. Of these samples, 48 were assayed by multiplex-PCR. Forty-five were positive for P. vivax, confirming the parasitological results, while P. malariae was detected in one sample and two gave negative results. Fifty percent of the 50 patients tested had IgG antibodies against the P. vivax-complex or P. malariae CSP as determined by ELISA. The percentages of residents with IgM and IgG antibodies detected by IFA for P. malariae, P. vivax and Plasmodium falciparum who did not complain of malaria symptoms at the time blood was collected were 30.1% and 56.5%, 6.2% and 37.7%, and 13.5% and 13%, respectively. The same sera that reacted to P. vivax also reacted to P. malariae. The following numbers of samples were positive in multiplex-PCR: 23 for P. vivax; 15 for P. malariae; 9 for P. falciparum and only one for P. falciparum and P. malariae. All thin and thick smears were negative. ELISA against CSP antigens was positive in 25.4%, 6.3%, 10.7% and 15.1% of the samples tested for

  7. [Snakes from the urban area of Cuiabá, Mato Grosso: ecological aspects and associated snakebites].

    PubMed

    de Carvalho, M A; Nogueira, F N

    1998-01-01

    This study presents data on snakes recorded in the urban area of Cuiabá, Mato Grosso, Brazil. Sources of information included specimens captured by local residents (1986-1993) and turned over to the Mato Grosso Regional Ophiological Center (Normat), and data from the Anti-Venom Information Center (Ciave), regarding urban snake bites (1988-1993). Thirty-seven species of snakes from 25 genera and three families were recorded. Diurnal and terrestrial habits predominated, as well as a diet based on amphibians and/or lizards. From a total of 307 snake bites recorded, some 56% were of no clinical importance, caused by non-venomous snakes, whereas 44% were clinically relevant. Approximately 99% of the latter were attributed to vipers of the genus Bothrops, and especially the Bothrops moojeni and Bothrops neuwiedi species The colubrids Philodryas olfersii and Waglerophis merremii were probably responsible for most of the non-venomous snake bites. PMID:9878908

  8. Meningococcal meningitis in an industrial area adjoining Surat City--some clinico-epidemiological aspects.

    PubMed

    Bhavsar, B S; Saxena, D M; Kantharia, S L; Somasunderam, C; Mehta, N R

    1989-06-01

    An industrial area with poor sanitation and inhabited by migrant, male predominant population, situated South to Surat City, experienced an outbreak of pyogenic meningitis during 1985-87. A total of 197 cases of meningitis with 34 deaths were reported during a period of 1 1/2 years. Neisseria meningitidis was the predominant pathogen isolated from 66 out of 138 CSF samples. Recently migrated males of productive age groups drawn from the States of Uttar Pradesh and Orissa were predominantly affected. Male to female ratio was found to be 7.2:1. Nearly 2/3rd of the cases were reported during the dry colder months of winter and spring. Pregnancy and childbirth appeared to be important predisposing factors in females. Nine cases were reported from the family contacts of cases. Majority of the cases were labourers doing manual work. PMID:2809153

  9. Linking trait-based phenotypes to prefrontal cortex activation during inhibitory control.

    PubMed

    Rodrigo, Achala H; Di Domenico, Stefano I; Graves, Bryanna; Lam, Jaeger; Ayaz, Hasan; Bagby, R Michael; Ruocco, Anthony C

    2016-01-01

    Inhibitory control is subserved in part by discrete regions of the prefrontal cortex whose functionality may be altered according to specific trait-based phenotypes. Using a unified model of normal range personality traits, we examined activation within lateral and medial aspects of the prefrontal cortex during a manual go/no-go task. Evoked hemodynamic oxygenation within the prefrontal cortex was measured in 106 adults using a 16-channel continuous-wave functional near-infrared spectroscopy system. Within lateral regions of the prefrontal cortex, greater activation was associated with higher trait levels of extraversion, agreeableness and conscientiousness, and lower neuroticism. Higher agreeableness was also related to more activation in the medial prefrontal cortex during inhibitory control. These results suggest that personality traits reflecting greater emotional stability, extraversion, agreeableness and conscientiousness may be associated with more efficient recruitment of control processes subserved by lateral regions of the prefrontal cortex. These findings highlight key links between trait-based phenotypes and neural activation patterns in the prefrontal cortex underlying inhibitory control. PMID:26163672

  10. Legal and Technical Aspects of Modernization of Land and Buildings Cadastre in Selected Area

    NASA Astrophysics Data System (ADS)

    Siejka, Monika; Ślusarski, Marek; Mika, Monika

    2015-12-01

    Modernization of the land and buildings cadastre is a set of actions aimed at improving the quality of data collected there. Application in the process of modernization of the sources of information from the land surveying, gives fully satisfactory results. On the other hand the use of photogrammetric measurements is the solution more economical in terms of financial and time. However, there is a danger of obtaining the results which do not meet the standards of accuracy of the border points position. The paper presents an example of the results of the influence of the process of modernizing the land and buildings cadastre for the areas where the source material are cadastral maps in the scale 1: 2000, created on the basis of photomaps or cadastral maps in the scale 1: 2880. An assessment of the suitability of these materials in the process of modernization and their impact on the current form of the land and building cadastre as a public register was made.

  11. Dietary aspects of pregnant women in rural areas of Northern India.

    PubMed

    Gautam, Virender P; Taneja, Devender K; Sharma, Nandini; Gupta, Vimal K; Ingle, Gopal K

    2008-04-01

    The aim of this article is to document the current dietary profile of pregnant women in rural areas of Delhi. In order to explore the diet the combination of quantitative (24-h recall method) and qualitative methods (food frequency method) were used. The mean intake of macronutrients and micronutrients, namely, iron, folic acid and Vitamin C which play an important role in the pathophysiology of nutritional anaemia during pregnancy was calculated from the foodstuffs, using Nutritive Value of Indian Foods. The preferences and avoidance of various foods by the pregnant women were also elicited. The data were analysed using Epi Info 3.4. The intake of calories, protein, iron, folic acid and Vitamin C was found to be less than the recommended dietary allowance in 100%, 91.2%, 98.2%, 99.1% and 65.8% of pregnant women respectively. Folic acid intakes were significantly lower in younger, primiparous and poorly educated women from low-income families. Vitamin C intake was lower among non-Hindus only. The overall data suggested the presence of food gap rather than isolated deficiency of any particular nutrient. PMID:18336642

  12. A methodology for evacuation design for urban areas: theoretical aspects and experimentation

    NASA Astrophysics Data System (ADS)

    Russo, F.; Vitetta, A.

    2009-04-01

    This paper proposes an unifying approach for the simulation and design of a transportation system under conditions of incoming safety and/or security. Safety and security are concerned with threats generated by very different factors and which, in turn, generate emergency conditions, such as the 9/11, Madrid and London attacks, the Asian tsunami, and the Katrina hurricane; just considering the last five years. In transportation systems, when exogenous events happen and there is a sufficient interval time between the instant when the event happens and the instant when the event has effect on the population, it is possible to reduce the negative effects with the population evacuation. For this event in every case it is possible to prepare with short and long term the evacuation. For other event it is possible also to plan the real time evacuation inside the general risk methodology. The development of models for emergency conditions in transportation systems has not received much attention in the literature. The main findings in this area are limited to only a few public research centres and private companies. In general, there is no systematic analysis of the risk theory applied in the transportation system. Very often, in practice, the vulnerability and exposure in the transportation system are considered as similar variables, or in other worse cases the exposure variables are treated as vulnerability variables. Models and algorithms specified and calibrated in ordinary conditions cannot be directly applied in emergency conditions under the usual hypothesis considered. This paper is developed with the following main objectives: (a) to formalize the risk problem with clear diversification (for the consequences) in the definition of the vulnerability and exposure in a transportation system; thus the book offers improvements over consolidated quantitative risk analysis models, especially transportation risk analysis models (risk assessment); (b) to formalize a system

  13. Social cognition in patients following surgery to the prefrontal cortex.

    PubMed

    Jenkins, Lisanne Michelle; Andrewes, David Gordon; Nicholas, Christian Luke; Drummond, Katharine Jann; Moffat, Bradford Armstrong; Phal, Pramit; Desmond, Patricia; Kessels, Roy Peter Caspar

    2014-12-30

    Impaired social cognition, including emotion recognition, may explain dysfunctional emotional and social behaviour in patients with lesions to the ventromedial prefrontal cortex (VMPFC). However, the VMPFC is a large, poorly defined area that can be sub-divided into orbital and medial sectors. We sought to investigate social cognition in patients with discrete, surgically circumscribed prefrontal lesions. Twenty-seven patients between 1 and 12 months post-neurosurgery were divided into groups based on Brodmann areas resected, determined by post-surgical magnetic resonance imaging. We hypothesised that patients with lesions to the VMPFC (n=5), anterior cingulate cortex (n=4), orbitofrontal cortex (n=7) and dorsolateral prefrontal cortex (DLPFC, n=11) would perform worse than a control group of 26 extra-cerebral neurosurgery patients on measures of dynamic facial emotion recognition, theory of mind (ToM) and empathy. Results indicated the VMPFC-lesioned group performed significantly worse than the control group on the facial emotion recognition task overall, and for fear specifically, and performed worse on the ToM measure. The DLPFC group also performed worse on the ToM and empathy measures, but DLPFC lesion location was not a predictor of performance in hierarchical multiple regressions that accounted for other variables, including the reduced estimated verbal IQ in this group. It was concluded that isolated orbital or medial prefrontal lesions are not sufficient to produce impairments in social cognition. This is the first study to demonstrate that it is the combination of lesions to both areas that affect social cognition, irrespective of lesion volume. While group sizes were similar to other comparable studies that included patients with discrete, surgically circumscribed lesions to the prefrontal cortex, future large, multi-site studies are needed to collect larger samples and confirm these results. PMID:25284626

  14. Effects of repeated cocaine on medial prefrontal cortical GABAB receptor modulation of neurotransmission in the mesocorticolimbic dopamine system.

    PubMed

    Jayaram, Prathiba; Steketee, Jeffery D

    2004-08-01

    Increased excitatory output from medial prefrontal cortex is an important component in the development of cocaine sensitization. Activation of GABAergic systems in the prefrontal cortex can decrease glutamatergic activity. A recent study suggested that sensitization might be associated with a decrease in GABAB receptor responsiveness in the medial prefrontal cortex. Therefore, the present study examined whether repeated exposure to cocaine-modified neurochemical changes in the mesocorticolimbic dopamine system induced by infusion of baclofen into the medial prefrontal cortex. In vivo microdialysis studies were conducted to monitor dopamine, glutamate and GABA levels in the medial prefrontal cortex and glutamate levels in the ipsilateral nucleus accumbens and ventral tegmental area during the infusion of baclofen into medial prefrontal cortex. Baclofen minimally affected glutamate levels in the medial prefrontal cortex, nucleus accumbens or ventral tegmental area of control animals, but dose-dependently increased glutamate levels in each of these regions in animals sensitized to cocaine. This effect was not the result of changes in GABAB receptor-mediated modulation of dopamine or GABA in the medial prefrontal cortex. The data suggest that alterations in GABAB receptor modulation of medial prefrontal cortical excitatory output may play an important role in the development of sensitization to cocaine. PMID:15287889

  15. Successful Face Recognition is Associated with Increased Prefrontal Cortex Activation in Autism Spectrum Disorder

    PubMed Central

    Herrington, John D.; Riley, Meghan E.; Grupe, Daniel W.; Schultz, Robert T.

    2014-01-01

    This study examines whether deficits in visual information processing in ASD can be offset by the recruitment of brain structures involved in selective attention. During functional MRI, 12 children with ASD and 19 control participants completed a selective attention one-back task in which images of faces and houses were superimposed. When attending to faces, the ASD group showed increased activation relative to control participants within multiple prefrontal cortex areas, including dorsolateral prefrontal cortex (DLPFC). DLPFC activation in ASD was associated with increased response times for faces. These data suggest that prefrontal cortex activation may represent a compensatory mechanism for diminished visual information processing abilities. PMID:25234479

  16. Multisynaptic projections from the ventrolateral prefrontal cortex to hand and mouth representations of the monkey primary motor cortex.

    PubMed

    Miyachi, Shigehiro; Hirata, Yoshihiro; Inoue, Ken-ichi; Lu, Xiaofeng; Nambu, Atsushi; Takada, Masahiko

    2013-07-01

    Different sectors of the prefrontal cortex have distinct neuronal connections with higher-order sensory areas and/or limbic structures and are related to diverse aspects of cognitive functions, such as visual working memory and reward-based decision-making. Recent studies have revealed that the prefrontal cortex (PF), especially the lateral PF, is also involved in motor control. Hence, different sectors of the PF may contribute to motor behaviors with distinct body parts. To test this hypothesis anatomically, we examined the patterns of multisynaptic projections from the PF to regions of the primary motor cortex (MI) that represent the arm, hand, and mouth, using retrograde transsynaptic transport of rabies virus. Four days after rabies injections into the hand or mouth region, particularly dense neuron labeling was observed in the ventrolateral PF, including the convexity part of ventral area 46. After the rabies injections into the mouth region, another dense cluster of labeled neurons was seen in the orbitofrontal cortex (area 13). By contrast, rabies labeling of PF neurons was rather sparse in the arm-injection cases. The present results suggest that the PF-MI multisynaptic projections may be organized such that the MI hand and mouth regions preferentially receive cognitive information for execution of elaborate motor actions. PMID:23664864

  17. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  18. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks.

    PubMed

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-09-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention and prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and on correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm the involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention, but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  19. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.

    PubMed

    DePoy, Lauren M; Gourley, Shannon L

    2015-09-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents. PMID:25951902

  20. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  1. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders

    PubMed Central

    Schubert, D; Martens, G J M; Kolk, S M

    2015-01-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies. PMID:25450230

  2. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies. PMID:25450230

  3. Unconscious activation of the prefrontal no-go network.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Scholte, H Steven; Lamme, Victor A F

    2010-03-17

    Cognitive control processes involving prefrontal cortex allow humans to overrule and inhibit habitual responses to optimize performance in new and challenging situations, and traditional views hold that cognitive control is tightly linked with consciousness. We used functional magnetic resonance imaging to investigate to what extent unconscious "no-go" stimuli are capable of reaching cortical areas involved in inhibitory control, particularly the inferior frontal cortex (IFC) and the pre-supplementary motor area (pre-SMA). Participants performed a go/no-go task that included conscious (weakly masked) no-go trials, unconscious (strongly masked) no-go trials, as well as go trials. Replicating typical neuroimaging findings, response inhibition on conscious no-go stimuli was associated with a (mostly right-lateralized) frontoparietal "inhibition network." Here, we demonstrate, however, that an unconscious no-go stimulus also can activate prefrontal control networks, most prominently the IFC and the pre-SMA. Moreover, if it does so, it brings about a substantial slowdown in the speed of responding, as if participants attempted to inhibit their response but just failed to withhold it completely. Interestingly, overall activation in this "unconscious inhibition network" correlated positively with the amount of slowdown triggered by unconscious no-go stimuli. In addition, neural differences between conscious and unconscious control are revealed. These results expand our understanding of the limits and depths of unconscious information processing in the human brain and demonstrate that prefrontal cognitive control functions are not exclusively influenced by conscious information. PMID:20237284

  4. Human ventromedial prefrontal lesions alter incentivisation by reward

    PubMed Central

    Manohar, Sanjay G.; Husain, Masud

    2016-01-01

    Although medial frontal brain regions are implicated in valuation of rewards, evidence from focal lesions to these areas is scant, with many conflicting results regarding motivation and affect, and no human studies specifically examining incentivisation by reward. Here, 19 patients with isolated, focal damage in ventral and medial prefrontal cortex were selected from a database of 453 individuals with subarachnoid haemorrhage. Using a speeded saccadic task based on the oculomotor capture paradigm, we manipulated the maximum reward available on each trial using an auditory incentive cue. Modulation of behaviour by motivation permitted quantification of reward sensitivity. At the group level, medial frontal damage was overall associated with significantly reduced effects of reward on invigorating saccadic velocity and autonomic (pupil) responses compared to age-matched, healthy controls. Crucially, however, some individuals instead showed abnormally strong incentivisation effects for vigour. Increased sensitivity to rewards within the lesion group correlated with damage in subgenual ventromedial prefrontal cortex (vmPFC) areas, which have recently become the target for deep brain stimulation (DBS) in depression. Lesion correlations with clinical apathy suggested that the apathy associated with prefrontal damage is in fact reduced by damage at those coordinates. Reduced reward sensitivity showed a trend to correlate with damage near nucleus accumbens. Lesions did not, on the other hand, influence reward sensitivity of cognitive control, as measured by distractibility. Thus, although medial frontal lesions may generally reduce reward sensitivity, damage to key subregions paradoxically protect from this effect. PMID:26874940

  5. Prefrontal hyperactivity in older people during motor planning.

    PubMed

    Berchicci, Marika; Lucci, Giuliana; Pesce, Caterina; Spinelli, Donatella; Di Russo, Francesco

    2012-09-01

    The aim of this study was to assess the influence of age-related changes in cortical activity related to the motor preparation involved in simple- and discriminative-reaction tasks. To distinguish between age effects on motor planning and stimulus processing, both movement- and stimulus-locked event related potentials (ERPs) were investigated in 14 younger, 14 middle-aged, and 14 older adults (mean ages 24.4, 49, and 70 years, respectively). The novel results of the present study are the prefrontal over-recruitment observed in older adults in movement-related cortical potentials (MRCPs) and the differential pattern of aging effects observed at behavioral and at electrophysiological level between middle-aged and older adults. Overall, the following results were observed: (i) behavioral results confirmed the well-known slowing of responses in aging people, which were associated with optimal accuracy; (ii) the age-related differences in cortical activity underlying the generation of voluntary movements in response to external stimuli were more pronounced for the motor planning than the stimulus processing stage; (iii) the source and the time-course analysis of the over-recruitment in the older adults indicated tonic involvement of prefrontal areas regardless of task complexity; and (iv) middle-aged adults showed a 'young adult-like' behavioral speed, but an 'older adult-like' overactivation of prefrontal areas. In summary, to reach the same accuracy, older subjects prepared the action with greater anticipation and higher cost, as indexed by the earlier latency onset and larger prefrontal cortical activation. PMID:22732557

  6. Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.

    PubMed

    Qi, Xue-Lian; Constantinidis, Christos

    2015-10-01

    The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate. PMID:26269556

  7. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  8. Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex.

    PubMed

    Jiménez-Sánchez, Laura; Castañé, Anna; Pérez-Caballero, Laura; Grifoll-Escoda, Marc; López-Gil, Xavier; Campa, Leticia; Galofré, Mireia; Berrocoso, Esther; Adell, Albert

    2016-06-01

    Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS. PMID:26088969

  9. Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance

    PubMed Central

    Parker, Krystal L.; Alberico, Stephanie L.; Miller, Adam D.; Narayanan, Nandakumar S.

    2013-01-01

    Responses during a simple reaction time task are influenced by temporal expectation, or the ability to anticipate when a stimulus occurs in time. Here, we test the hypothesis that prefrontal D1 dopamine signaling is necessary for temporal expectation during simple reaction time task performance. We depleted dopamine projections to the medial prefrontal circuits by infusing 6-hydroxidopamine, a selective neurotoxin, into the ventral tegmental area (VTA) of rats, and studied their performance on a simple reaction time task with two delays. VTA dopamine depletion did not change movements or learning of the reaction time task. However, VTA dopamine-depleted animals did not develop delay-dependent speeding of reaction times, suggesting that mesocortical dopamine signaling is required for temporal expectation. Next, we manipulated dopamine signaling within the medial prefrontal cortex using local pharmacology. We found that SCH23390, a D1-type dopamine receptor antagonist, specifically attenuated delay-dependent speeding, while sulpiride, a D2-type receptor antagonist, did not. These data suggest that prefrontal D1 dopamine signaling is necessary for temporal expectation during performance of a simple reaction time task. Our findings provide insight into temporal processing of the prefrontal cortex, and how dopamine signaling influences prefrontal circuits that guide goal-directed behavior. PMID:24120554

  10. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    PubMed

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. PMID:27033686

  11. Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance.

    PubMed

    Parker, K L; Alberico, S L; Miller, A D; Narayanan, N S

    2013-01-01

    Responses during a simple reaction time task are influenced by temporal expectation, or the ability to anticipate when a stimulus occurs in time. Here, we test the hypothesis that prefrontal D1 dopamine signaling is necessary for temporal expectation during simple reaction time task performance. We depleted dopamine projections to the medial prefrontal circuits by infusing 6-hydroxidopamine, a selective neurotoxin, into the ventral tegmental area (VTA) of rats, and studied their performance on a simple reaction time task with two delays. VTA dopamine depletion did not change movements or learning of the reaction time task. However, VTA dopamine-depleted animals did not develop delay-dependent speeding of reaction times, suggesting that mesocortical dopamine signaling is required for temporal expectation. Next, we manipulated dopamine signaling within the medial prefrontal cortex using local pharmacology. We found that SCH23390, a D1-type dopamine receptor antagonist, specifically attenuated delay-dependent speeding, while sulpiride, a D2-type receptor antagonist, did not. These data suggest that prefrontal D1 dopamine signaling is necessary for temporal expectation during performance of a simple reaction time task. Our findings provide insight into temporal processing of the prefrontal cortex, and how dopamine signaling influences prefrontal circuits that guide goal-directed behavior. PMID:24120554

  12. Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)

    PubMed Central

    Glotzbach, Evelyn; Mühlberger, Andreas; Gschwendtner, Kathrin; Fallgatter, Andreas J; Pauli, Paul; Herrmann, Martin J

    2011-01-01

    The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes. PMID:21673974

  13. Fast Left Prefrontal rTMS Acutely Suppresses Analgesic Effects of Perceived Controllability on the Emotional Component of Pain Experience

    PubMed Central

    Borckardt, Jeffrey J.; Reeves, Scott T.; Frohman, Heather; Madan, Alok; Jensen, Mark P.; Patterson, David; Barth, Kelly; Smith, A. Richard; Gracely, Richard; George, Mark S.

    2010-01-01

    The prefrontal cortex may be a promising target for transcranial magnetic stimulation (TMS) in the management of pain. It is not clear how prefrontal TMS affects pain perception, but previous findings suggest that ventral lateral and medial prefrontal circuits may comprise an important part of a circuit of ‘perceived controllability’ regarding pain, stress and learned helplessness. While the left dorsolateral prefrontal cortex is a common TMS target for treating clinical depression as well as modulating pain, little is known about whether TMS over this area may affect perceived controllability. The present study explored the immediate effects of fast TMS over the left dorsolateral prefrontal cortex on the analgesic effects of perceived pain controllability. Twenty-four healthy volunteers underwent a laboratory pain task designed to manipulate perception of pain controllability. Real TMS, compared to sham, suppressed the analgesic benefits of perceived-control on the emotional dimension of pain, but not the sensory/discriminatory dimension. Findings suggest that, at least acutely, fast TMS over the left dorsolateral prefrontal cortex may interrupt the perceived-controllability effect on the emotional dimension of pain experience. While it is not clear whether this cortical area is directly involved with modulating perceived controllability or whether downstream effects are responsible for the present findings, it appears possible that left dorsolateral prefrontal TMS may produce analgesic effects by acting through a cortical ‘perceived control’ circuit regulating limbic and brainstem areas of the pain circuit. PMID:21122992

  14. Task Dependence of Visual and Category Representations in Prefrontal and Inferior Temporal Cortices

    PubMed Central

    McKee, Jillian L.; Riesenhuber, Maximilian; Miller, Earl K.

    2014-01-01

    Visual categorization is an essential perceptual and cognitive process for assigning behavioral significance to incoming stimuli. Categorization depends on sensory processing of stimulus features as well as flexible cognitive processing for classifying stimuli according to the current behavioral context. Neurophysiological studies suggest that the prefrontal cortex (PFC) and the inferior temporal cortex (ITC) are involved in visual shape categorization. However, their precise roles in the perceptual and cognitive aspects of the categorization process are unclear, as the two areas have not been directly compared during changing task contexts. To address this, we examined the impact of task relevance on categorization-related activity in PFC and ITC by recording from both areas as monkeys alternated between a shape categorization and passive viewing tasks. As monkeys viewed the same stimuli in both tasks, the impact of task relevance on encoding in each area could be compared. While both areas showed task-dependent modulations of neuronal activity, the patterns of results differed markedly. PFC, but not ITC, neurons showed a modest increase in firing rates when stimuli were task relevant. PFC also showed significantly stronger category selectivity during the task compared with passive viewing, while task-dependent modulations of category selectivity in ITC were weak and occurred with a long latency. Finally, both areas showed an enhancement of stimulus selectivity during the task compared with passive viewing. Together, this suggests that the ITC and PFC show differing degrees of task-dependent flexibility and are preferentially involved in the perceptual and cognitive aspects of the categorization process, respectively. PMID:25429147

  15. Prefrontal dopamine in associative learning and memory.

    PubMed

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. PMID:25241063

  16. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    PubMed

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26790349

  17. Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study.

    PubMed

    Ferstl, Evelyn C; Rinck, Mike; von Cramon, D Yves

    2005-05-01

    Language comprehension in everyday life requires the continuous integration of prior discourse context and general world knowledge with the current utterance or sentence. In the neurolinguistic literature, these so-called situation model building processes have been ascribed to the prefrontal cortex or to the right hemisphere. In this study, we use whole-head event-related fMRI to directly map the neural correlates of narrative comprehension in context. While being scanned using a spin-echo sequence, 20 participants listened to 32 short stories, half of which contained globally inconsistent information. The inconsistencies concerned either temporal or chronological information or the emotional status of the protagonist. Hearing an inconsistent word elicited activation in the right anterior temporal lobe. The comparison of different information aspects revealed activation in the left precuneus and a bilateral frontoparietal network for chronological information. Emotional information elicited activation in the ventromedial prefrontal cortex and the extended amygdaloid complex. In addition, the integration of inconsistent emotional information engaged the dorsal frontomedial cortex (Brodmann's area 8/9), whereas the integration of inconsistent temporal information required the lateral prefrontal cortex bilaterally. These results indicate that listening to stories can elicit activation reflecting content-specific processes. Furthermore, updating of the situation model is not a unitary process but it also depends on the particular requirements of the text. The right hemisphere contributes to language processing in context, but equally important are the left medial and bilateral prefrontal cortices. PMID:15904540

  18. Double Virus Vector Infection to the Prefrontal Network of the Macaque Brain

    PubMed Central

    Tanaka, Shingo; Koizumi, Masashi; Kikusui, Takefumi; Ichihara, Nobutsune; Kato, Shigeki; Kobayashi, Kazuto; Sakagami, Masamichi

    2015-01-01

    To precisely understand how higher cognitive functions are implemented in the prefrontal network of the brain, optogenetic and pharmacogenetic methods to manipulate the signal transmission of a specific neural pathway are required. The application of these methods, however, has been mostly restricted to animals other than the primate, which is the best animal model to investigate higher cognitive functions. In this study, we used a double viral vector infection method in the prefrontal network of the macaque brain. This enabled us to express specific constructs into specific neurons that constitute a target pathway without use of germline genetic manipulation. The double-infection technique utilizes two different virus vectors in two monosynaptically connected areas. One is a vector which can locally infect cell bodies of projection neurons (local vector) and the other can retrogradely infect from axon terminals of the same projection neurons (retrograde vector). The retrograde vector incorporates the sequence which encodes Cre recombinase and the local vector incorporates the “Cre-On” FLEX double-floxed sequence in which a reporter protein (mCherry) was encoded. mCherry thus came to be expressed only in doubly infected projection neurons with these vectors. We applied this method to two macaque monkeys and targeted two different pathways in the prefrontal network: The pathway from the lateral prefrontal cortex to the caudate nucleus and the pathway from the lateral prefrontal cortex to the frontal eye field. As a result, mCherry-positive cells were observed in the lateral prefrontal cortex in all of the four injected hemispheres, indicating that the double virus vector transfection is workable in the prefrontal network of the macaque brain. PMID:26193102

  19. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure

    PubMed Central

    Opris, Ioan; Gerhardt, Greg A.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional’ interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration. PMID:26074787

  20. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses. PMID:27409809

  1. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  2. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    PubMed

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. PMID:23624495

  3. Recency gets larger as lesions move from anterior to posterior locations within the ventromedial prefrontal cortex.

    PubMed

    Hochman, Guy; Yechiam, Eldad; Bechara, Antoine

    2010-11-12

    In the past two decades neuroimaging research has substantiated the important role of the prefrontal cortex (PFC) in decision-making. In the current study, we use the complementary lesion based approach to deepen our knowledge concerning the specific cognitive mechanisms modulated by prefrontal activity. Specifically, we assessed the brain substrates implicated in two decision making dimensions in a sample of prefrontal cortex patients: (a) the tendency to differently weigh recent compared to past experience; and (b) the tendency to differently weigh gains compared to losses. The participants performed the Iowa Gambling Task, a complex experience-based decision-making task, which was analyzed with a formal cognitive model (the Expectancy-Valance model). The results indicated that decisions become influenced by more recent, as opposed to older, events when the damage reaches the posterior sectors of the ventromedial prefrontal cortex (VMPC). Furthermore, the degree of this recency deficit was related to the size of the lesion. These results suggest that the posterior area of the prefrontal cortex directly modulates the capacity to use time-delayed information. In contrast, we did not find similar modulation for the sensitivity to gains versus losses. PMID:20412820

  4. Aspects of the bottom sediment of Lake Nakaumi and Honjo area ~ featuring with organic matter and the Sulfides ~

    NASA Astrophysics Data System (ADS)

    Shinohara, R.

    2015-12-01

    Lake Nakaumi is a brackish water located at southwest Japan. Seawater from the Sea of Japan inflows through Sakai-strait, and river water flows through the Oohashi River into this lake. Lake Nakaumi is characterized with hypoxic and/or anoxic condition of bottom water derived with the distinct stratification of salinity in summer season. In this lake, a public project had been carried out for land reclamation since 1963. Honjo Area located to the north part of Lake Nakaumi, was semi-separated from Lake Nakaumi by reclamation dikes constructed for this project at 1981. However, this public project was aborted with the change of social conditions. To the effective utilization of the area, the partial removal of dike was carried out. Seawater from Sakai-strait flows directly into Honjo Area again. Environmental change of the lake is expected by this inflow of the seawater in Lake Nakaumi and Honjo Area after this restoration. It is well known that the surface sediment reflects the environment of lake bottom. The organic matter and the sulfides in sediment are good indicators of sedimentation environment. In this study, we analyzed them by several methods and grasped the bottom environment of both areas after the removal of dikes. We examined the impact of the restoration to both areas by comparing the observations with the past data. Surface sediment samples in Lake Nakaumi and Honjo Area were obtained at 77 and 40 stations, respectively. We collected surface sediment (about 1cm) were for each station, and analyzed total organic carbon (TOC) and total nitrogen (TN) as organic matter, and hydrogen sulfide (H2S) in pore water, total sulfide (TS) and acid volatile sulfide (AVS) as sulfides. TOC contents of Lake Nakaumi and Honjo Area range within 0.0-5.1% and 0.2-4.9%, respectively. TN contents range within 0.0-0.6 % and 0.1-0.6 %. TS contents range within 0.1-2.6% and 0.0-2.0 %. H2S contents range within 0.3-119.0 ppm and 0.5-140.4 ppm. AVS contents range within 0

  5. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex.

    PubMed

    McNamee, Daniel; Rangel, Antonio; O'Doherty, John P

    2013-04-01

    To choose between manifestly distinct options, it is suggested that the brain assigns values to goals using a common currency. Although previous studies have reported activity in ventromedial prefrontal cortex (vmPFC) correlating with the value of different goal stimuli, it remains unclear whether such goal-value representations are independent of the associated stimulus categorization, as required by a common currency. Using multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data, we found a region of medial prefrontal cortex to contain a distributed goal-value code that is independent of stimulus category. More ventrally in the vmPFC, we found spatially distinct areas of the medial orbitofrontal cortex to contain unique category-dependent distributed value codes for food and consumer items. These results implicate the medial prefrontal cortex in the implementation of a common currency and suggest a ventral versus dorsal topographical organization of value signals in the vmPFC. PMID:23416449

  6. Successful face recognition is associated with increased prefrontal cortex activation in autism spectrum disorder.

    PubMed

    Herrington, John D; Riley, Meghan E; Grupe, Daniel W; Schultz, Robert T

    2015-04-01

    This study examines whether deficits in visual information processing in autism-spectrum disorder (ASD) can be offset by the recruitment of brain structures involved in selective attention. During functional MRI, 12 children with ASD and 19 control participants completed a selective attention one-back task in which images of faces and houses were superimposed. When attending to faces, the ASD group showed increased activation relative to control participants within multiple prefrontal cortex areas, including dorsolateral prefrontal cortex (DLPFC). DLPFC activation in ASD was associated with increased response times for faces. These data suggest that prefrontal cortex activation may represent a compensatory mechanism for diminished visual information processing abilities in ASD. PMID:25234479

  7. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.

    PubMed

    Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A

    2015-02-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in

  8. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    ERIC Educational Resources Information Center

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  9. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  10. Social and Nonsocial Functions of Rostral Prefrontal Cortex: Implications for Education

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Burgess, Paul W.

    2008-01-01

    In this article, we discuss the role of rostral prefrontal cortex (approximating Brodmann Area 10) in two domains relevant to education: executive function (particularly prospective memory, our ability to realize delayed intentions) and social cognition (particularly our ability to reflect on our own mental states and the mental states of others).…

  11. Prefrontal Activity Predicts Monkeys' Decisions During an Auditory Category Task

    PubMed Central

    Lee, Jung H.; Russ, Brian E.; Orr, Lauren E.; Cohen, Yale E.

    2009-01-01

    The neural correlates that relate auditory categorization to aspects of goal-directed behavior, such as decision-making, are not well understood. Since the prefrontal cortex (PFC) plays an important role in executive function and the categorization of auditory objects, we hypothesized that neural activity in the PFC should predict an animal's behavioral reports (decisions) during a category task. To test this hypothesis, we tested PFC activity that was recorded while monkeys categorized human spoken words (Russ et al., 2008b). We found that activity in the ventrolateral PFC, on average, correlated best with the monkeys' choices than with the auditory stimuli. This finding demonstrates a direct link between PFC activity and behavioral choices during a non-spatial auditory task. PMID:19587846

  12. Visual space is compressed in prefrontal cortex before eye movements.

    PubMed

    Zirnsak, Marc; Steinmetz, Nicholas A; Noudoost, Behrad; Xu, Kitty Z; Moore, Tirin

    2014-03-27

    We experience the visual world through a series of saccadic eye movements, each one shifting our gaze to bring objects of interest to the fovea for further processing. Although such movements lead to frequent and substantial displacements of the retinal image, these displacements go unnoticed. It is widely assumed that a primary mechanism underlying this apparent stability is an anticipatory shifting of visual receptive fields (RFs) from their presaccadic to their postsaccadic locations before movement onset. Evidence of this predictive 'remapping' of RFs has been particularly apparent within brain structures involved in gaze control. However, critically absent among that evidence are detailed measurements of visual RFs before movement onset. Here we show that during saccade preparation, rather than remap, RFs of neurons in a prefrontal gaze control area massively converge towards the saccadic target. We mapped the visual RFs of prefrontal neurons during stable fixation and immediately before the onset of eye movements, using multi-electrode recordings in monkeys. Following movements from an initial fixation point to a target, RFs remained stationary in retinocentric space. However, in the period immediately before movement onset, RFs shifted by as much as 18 degrees of visual angle, and converged towards the target location. This convergence resulted in a threefold increase in the proportion of RFs responding to stimuli near the target region. In addition, like in human observers, the population of prefrontal neurons grossly mislocalized presaccadic stimuli as being closer to the target. Our results show that RF shifts do not predict the retinal displacements due to saccades, but instead reflect the overriding perception of target space during eye movements. PMID:24670771

  13. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    The development of third world rural areas depends largely on the availability of energy and for an improvement in agricultural production; an increase in energy consumption is required. It seems attractive to replace the fossil liquid fuels needed for machinery by locally produced fuels. The thermal gasification of agricultural waste which produces gas that can be used directly to drive engines is suggested. A study to identify the social and economic advantages of this process and its applicability in rural areas of Tanzania has been made.

  14. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  15. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex.

    PubMed

    Harris, Erin P; Abel, Jean M; Tejada, Lucia D; Rissman, Emilie F

    2016-05-01

    Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior. PMID:27010449

  16. Environmental quality of a semi-natural area of the Po Valley (northern Italy): aspects of soil and vegetation.

    NASA Astrophysics Data System (ADS)

    Manfredi, Paolo; Giupponi, Luca; Cassinari, Chiara; Trevisan, Marco

    2014-05-01

    This work, originating in the preliminary analyses of a Life project and co-financed by the European Union ("Environmental recovery of degraded soils and desertified by a new treatment technology for land reconstruction", Life 10 ENV IT 400 "New Life"; http://www.lifeplusecosistemi.eu), aims to evaluate the environmental quality of a semi-natural area of the Po Valley (northern Italy) by analysing the characteristics of soil and vegetation. The area of study is located in the municipal territory of Piacenza (Emilia-Romagna, Italy) along the eastern shores of the river Trebbia and is made up of the closed landfill of Solid Urban Waste of Borgotrebbia (active from 1972 to 1985) and of the neighbouring areas (in North-South order: riverside area, northern borders of the landfill, landfill disposal, southern borders and cultivated corn fields). For each area pedological and vegetational analyses were carried out and in particular, as regards the soil, various chemical-physical analyses were done among which: pH, organic carbon, total nitrogen, salinity, exchangeable bases and granulometry. The ground vegetation data were collected using phytosociological relevés according to the method of the Zurich-Montpellier Sigmatist School, (Braun-Blanquet, 1964). For the analysis of the environmental quality of each area, the floristic-vegetation indexes system was applied as proposed by Taffetani & Rismondo (2009) (updated by Rismondo et al., 2011) conveniently created for analysing the ecological functionality of the agro-ecosystems. The results obtained by such applications drew attention to a dynamic vegetation mass in the landfill which, despite a value of the floristic biodiversity index (IFB) comparable to that of the borders, shows a much lower value of the maturity index (IM). This is due to the elevated percentage of annual species (index of the therophytic component = 52.78%) belonging to the phytosociological class Stellarietea mediae Tüxen, Lohmeyer & Preising ex

  17. Monogamous and promiscuous rodent species exhibit discrete variation in the size of the medial prefrontal cortex.

    PubMed

    Kingsbury, Marcy A; Gleason, Erin D; Ophir, Alexander G; Phelps, Steven M; Young, Larry J; Marler, Catherine A

    2012-01-01

    Limbic-associated cortical areas, such as the medial prefrontal and retrosplenial cortex (mPFC and RS, respectively), are involved in the processing of emotion, motivation, and various aspects of working memory and have been implicated in mating behavior. To determine whether the independent evolution of mating systems is associated with a convergence in cortical mechanisms, we compared the size of mPFC and RS between the monogamous prairie vole (Microtus ochrogaster) and the promiscuous meadow vole (Microtus pennsylvanicus), and between the monogamous California mouse (Peromyscus californicus) and the promiscuous white-footed mouse (Peromyscus leucopus). For both promiscuous mice and voles, the mPFC occupied a significantly larger percentage of total cortex than in the monogamous species. No significant differences were observed for the RS or overall cortex size with respect to mating system, supporting the convergent evolution of mPFC size, specifically. Individual differences in the mating behavior of male prairie voles (wandering versus pair-bonding), presumably facultative tactics, were not reflected in the relative size of the mPFC, which is likely a heritable trait. Given the importance of the mPFC for complex working memory, particularly object-place and temporal order memory, we hypothesize that the relatively greater size of the mPFC in promiscuous species reflects a greater need to remember multiple individuals and the times and locations in which they have been encountered in the home range. PMID:22759599

  18. Neural correlates of script event knowledge: a neuropsychological study following prefrontal injury.

    PubMed

    Wood, Jacqueline N; Tierney, Michael; Bidwell, Laura A; Grafman, Jordan

    2005-12-01

    Scripts sequentially link information about daily activities and event knowledge. Patients have difficulty sequencing script events following lesions of the prefrontal cortex while showing intact access to selective aspects of script knowledge. It has been suggested that the sequencing impairment is due to a deficit in an inhibitory gating mechanisms that usually enables selection of an item from competing alternatives. If this is the case, then an inhibitory task should reveal script processing impairments on a script categorization task that is not normally associated with poor performance following prefrontal damage. To test this hypothesis, we administered a simple untimed classification task and a modified Go/NoGo task in which subjects classified events from social and non-social activities (e.g., read the menu, order the food) and related semantic items (e.g., menu, order) in terms of whether they belonged to a target activity. Participants were patients with lesions of the prefrontal cortex and matched controls. The results showed that damage to the right orbitofrontal cortex was associated with social item classification errors in the simple untimed classification task. In addition, the damage to the right prefrontal cortex was associated with increased response times to respond correctly to Go trials in the modified Go/NoGo task. The data demonstrate that damage to the right orbitofrontal cortex results in impairment in the accessibility of script and semantic representations of social activities. This impairment is exacerbated by an inefficient inhibitory gating mechanism. PMID:16350660

  19. The aspect of ultrastructural changes of the osteoblasts and surface areas of alveolar bone appearing in experimental tooth movement.

    PubMed

    Hirashita, A

    1976-12-01

    Molars of mature Wistar rats were moved experimentally by orthodontic elastic for four days. Then, the aspects of ultrastructural changes of the osteoblasts and structure of the alveolar bone surface which appeared in experimental tooth movement were studied. The following results were obtained. 1) These osteoblasts are classified into three groups according to their position. 2) The most active response to the orthodontic force is exhibited by the second group of cells with the ability of rapid production of abundant acid polysaccharide; i) Abundant rough surfaced endoplasmic reticulum with markedly dilated cisternae. ii) Well developed Golgi apparatus and electron opaque granules with a limiting membrane are found in the cytoplasm. Large granules are frequently seen to be secreted out of the cell. iii) The mitochondria are of large size and round shape with well developed cristae. 3) The surface of the new alveolar bone is covered with a belt-shaped structure consisting of small dense spherical-shaped structures. 4) Osteoclasts are rarely seen, but the original function of the cells appears to be almost inactive. PMID:1072189

  20. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    According to the evaluation criteria presented, the gasification of corn cobs is acceptable from the economical and agricultural point of view in the rural areas around Arusha (Tanzania). The gasification system is of relatively simple construction and local maintenance is possible. If the system is connected to the already existing corn mills in the villages, it is appropriate to the existing socio-cultural system. The economic calculations made clear that the use of gasification is attractive for both the owners of the corn mill and the government. The advantages for the government are the savings on imported oil and the extra income created for the users of the corn mill (inhabitants of the rural villages). The government loses income from taxes and from the production and transport of diesel oil. Evaluation methods presented can and should be used for gasification projects in other areas.

  1. Hydrogeological aspects and environmental concerns of the New Valley Project, Western Desert, Egypt, with special emphasis on the southern area

    SciTech Connect

    Assaad, F.A. )

    1988-12-01

    The New Valley Project has been given much attention in the past 20 years especially from the hydrogeological point of view concerning groundwater utilization for the reclamation of a large area of the Western Desert. Lithological, petrophysical, and petrographical studies were conducted on four wells south of Beris Oasis. The Nubian sandstones in the area south of Beris Oasis contain hematitic stains and/or fine granular authigenic hematite, thin laminae of brown ferruginous quartzite is also recorded denoting oxidizing conditions in the basin of deposition. Thin streaks of carbonaceous shales are met with in different depths to the south of Beris area, may be taken to denote oscillations in the sea level and accordingly its depths, and are responsible for the change in the oxidation-reduction potential during the deposition of the corresponding beds. Petrographic examination of a thin section of the subsurface Nubia sandstones in the South of Beris Oasis showed that the lithified rocks fail into three types depending on the nature of cement being, silicious or ferruginous, and on the amount of primary matrix, which at present is reorganized into iron oxides, microquartz, and muscovite flakes, thus reaching the phyllomorphic stage of diagenesis. Rounding of the quartz grains shows that transportation had a minor effect on the grain morphology and favor a fluviatile transporting agent.

  2. Multiple Effects of Prefrontal Lesions on Task-Switching

    PubMed Central

    Shallice, Tim; Stuss, Donald T.; Picton, Terence W.; Alexander, Michael P.; Gillingham, Susan

    2007-01-01

    This study examined the performance of 41 patients with focal prefrontal cortical lesions and 38 healthy controls on a task-switching procedure. Three different conditions were evaluated: single tasks without switches and two switching tasks with the currently relevant task signalled either 1500 ms (Long Cue) or 200 ms (Short Cue) before the stimulus. Patients with Superior Medial lesions showed both a general slowing of reaction time (RT) and a significantly increased switch cost as measured by RT. No other prefrontal group showed this increased reaction time switch cost. Increased error rates in the switching conditions, on the other hand, were observed in patients with Inferior Medial lesions and, to a lesser extent, ones with Superior Medial lesions. Patients with left dorsolateral lesions (9/46v) showed slower learning of the task as indicated by a high error rate early on. Several different processes are involved in task-switching and these are selectively disrupted by lesions to specific areas of the frontal lobes. PMID:18958216

  3. Prefrontal/accumbal catecholamine system processes high motivational salience

    PubMed Central

    Puglisi-Allegra, Stefano; Ventura, Rossella

    2012-01-01

    Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events. PMID:22754514

  4. Medial prefrontal theta phase coupling during spatial memory retrieval.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bonnefond, Mathilde; Bandettini, Peter A; Barnes, Gareth R; Doeller, Christian F; Burgess, Neil

    2014-06-01

    Memory retrieval is believed to involve a disparate network of areas, including medial prefrontal and medial temporal cortices, but the mechanisms underlying their coordination remain elusive. One suggestion is that oscillatory coherence mediates inter-regional communication, implicating theta phase and theta-gamma phase-amplitude coupling in mnemonic function across species. To examine this hypothesis, we used non-invasive whole-head magnetoencephalography (MEG) as participants retrieved the location of objects encountered within a virtual environment. We demonstrate that, when participants are cued with the image of an object whose location they must subsequently navigate to, there is a significant increase in 4-8 Hz theta power in medial prefrontal cortex (mPFC), and the phase of this oscillation is coupled both with ongoing theta phase in the medial temporal lobe (MTL) and perceptually induced 65-85 Hz gamma amplitude in medial parietal cortex. These results suggest that theta phase coupling between mPFC and MTL and theta-gamma phase-amplitude coupling between mPFC and neocortical regions may play a role in human spatial memory retrieval. PMID:24497013

  5. Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder

    PubMed Central

    Best, Mary; Williams, J. Michael; Coccaro, Emil F.

    2002-01-01

    Humans with lesions to the orbital/medial prefrontal cortex and interconnected areas display impulsive aggressive behavior. To examine further the relationship between impulsive aggression and orbital/medial prefrontal dysfunction, we measured the behavioral performance of psychiatric patients with a disorder characterized by impulsive aggression, Intermittent Explosive Disorder (IED). Presently, no evidence exists for a localized brain lesion in IED subjects. However, on the basis of the location of brain lesions that produce acquired impulsive aggression, we hypothesized that IED subjects would exhibit test performance similar to patients with lesions to the orbital/medial prefrontal cortex. Subjects with IED and controls were administered three tests sensitive to lesions of the orbital/medial prefrontal circuit: the Iowa Gambling Task, facial emotion recognition, and odor identification, and two control tests of working memory. On the gambling task, IED subjects continued to make disadvantageous decisions throughout the 100 trials, whereas controls learned to avoid disadvantageous decisions. On the facial recognition test, IED subjects were impaired at recognizing “anger,” “disgust,” and “surprise,” and they were biased to label neutral faces with “disgust” and “fear.” On odor identification, IED subjects were mildly anosmic and were impaired relative to controls. However, on the working memory control tests, both groups performed similarly. Across tests, the performance of IED subjects resembles the performance of patients with orbital/medial prefrontal lesions in previous studies. These results extend the link between dysfunction of the orbital/medial prefrontal circuit and impulsive aggressive behavior. PMID:12034876

  6. Land use effects on quality and quantity aspects of water resources in headwater areas of the Jaguari River Basin

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Camargo, P. B. D.; Piccolo, M. C.; Zuccari, M. L.; Ferracini, V. L.; Cruz, P. P. N. D.; Green, T. R.; Costa, C. F. G. D.; Reis, L. D. C.

    2015-12-01

    In the context of the recent drought conditions in southeastern Brazil, EMBRAPA (Brazilian Agricultural Research Corporation) in partnership with two Brazilian universities (USP/CENA and UNIFAL) planned a research project, called BaCaJa, to understand the hydrobiogeochemistry processes that occur in small catchments (<1,000 ha) at the upper portions of the Jaguari River Basin situated on both states of Sao Paulo and Minas Gerais. The approach of this study is based on the fact that the evaluation of stream water quality and quantity is an efficient tool to characterize the sustainability of the agriculture production at a catchment level. Its goal is, therefore, to survey the land use effects on the hydrobiogeochemistry in headwaters areas of the Jaguari River Basin to support sustainable management of water resources in this region. Sampling stations were established on rivers and streams ranging from one to five order channels as well as selected small catchments to conduct studies on overland flow, soil solution, soil quality, aquatic biota and pesticide dynamic. The research team is huge and their goals are specific, diverse and complementary, being summed up as: characterize land use, topography and soils; evaluate erosive potential in agriculture areas; measure soil carbon and nitrogen contents; characterize hydrogeochemistry fluxes; apply hydrological modeling and simulate different land use and management scenarios; monitor possible pesticides contamination; and survey macro invertebrates as indicators of water quality. Based on a synthesis of the results, the project team intends to point out the environmental impacts and contribute recommendations of management for the focused region to conserve water resources in terms of quality and quantity.

  7. Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the Modern Age

    SciTech Connect

    Cataldi, R. )

    1993-08-01

    This investigation aims not only to gain greater insight into the ancient uses of natural heat and its by-products, but also to gather elements for comprehending what kind of impact the presence of geothermal manifestations and the occurrence of volcanic eruptions may have produced on the ancient inhabitants of the Mediterranean and Mesoamerican regions. The first part of the paper discusses what may have occurred in the time period from the Lower Paleolithic (10[sup 5]--10[sup 6] years ago) until the end of the Neolithic. Throughout this period, the relationship of man with the various manifestations of terrestrial heat and its associated products was quite close and intense. In addition to the initial development of direct uses, this relationship with geothermal energy also involved man's cultural sphere. The second part of the paper discusses the development of direct uses and the importance that thermal balneology attained in some regions of the Mediterranean area in historical times. The exploitation and processing of hydrothermal products by the Etruscans, the blossoming of balneotherapy and the multiple functions of the spas in Roman times, the decline of all direct uses between the 5th and 6th centuries A.D. following the collapse of the Roman Empire, and the intensive exploitation of the manifestations of Larderello between the 11th and 16th centuries are discussed. The third part of the work refers to the Mesoamerican area (Mexico and neighboring regions) and covers the period extending from several millennia before the Christian era until the time of the voyages of Columbus. The last part of the paper attempts to reconstruct the birth and initial development of scientific thought regarding the various types of geothermal phenomena, starting from the oldest known illustration of a volcanic eruption until the end of the Middle Ages. 2 figs., 1 tab.

  8. Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package.

    PubMed

    Rockwell, David A; Shkunov, Vladimir V; Marciante, John R

    2011-07-18

    A new class of optical fiber is presented that departs from the circular-core symmetry common to conventional fibers. By using a high-aspect-ratio (~30:1) rectangular core, the mode area can be significantly expanded well beyond 10,000 μm2. Moreover, by also specifying a very small refractive-index step at the narrow core edges, the core becomes "semi-guiding," i.e. it guides in the narrow dimension and is effectively un-guiding in the wide mm-scale dimension. The mode dependence of the resulting Fresnel leakage loss in the wide dimension strongly favors the fundamental mode, promoting single-mode operation. Since the modal loss ratios are independent of mode area, this core structure offers nearly unlimited scalability. The implications of using such a fiber in fiber laser and amplifier systems are also discussed. PMID:21934837

  9. Prefrontal neuronal circuits of contextual fear conditioning.

    PubMed

    Rozeske, R R; Valerio, S; Chaudun, F; Herry, C

    2015-01-01

    Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories. PMID:25287656

  10. The role of prefrontal cortex in psychopathy

    PubMed Central

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  11. Prefrontal system dysfunction and credit card debt.

    PubMed

    Spinella, Marcello; Yang, Bijou; Lester, David

    2004-10-01

    Credit card use often involves a disadvantageous allocation of finances because they allow for spending beyond means and buying on impulse. Accordingly they are associated with increased bankruptcy, anxiety, stress, and health problems. Mounting evidence from functional neuroimaging and clinical studies implicates prefrontal-subcortical systems in processing financial information. This study examined the relationship of credit card debt and executive functions using the Frontal System Behavior Scale (FRSBE). After removing the influences of demographic variables (age, sex, education, and income), credit card debt was associated with the Executive Dysfunction scale, but not the Apathy or Disinhibition scales. This suggests that processes of conceptualizing and organizing finances are most relevant to credit card debt, and implicates dorsolateral prefrontal dysfunction. PMID:15370189

  12. Incidence of primary liver cancer and aetiological aspects: a study of a defined population from a low-endemicity area.

    PubMed Central

    Kaczynski, J.; Hansson, G.; Wallerstedt, S.

    1996-01-01

    The prevalence of primary liver cancer (PLC) varies throughout the world. It has been attributed to variations in incidence of the predominant histological type, hepatocellular carcinoma (HCC). The incidence of PLC types other than HCC such as cholangiocellular carcinoma (CCC) is far less known, especially in low-incidence areas. The aetiology of HCC and other PLC types is obscure, with the exception of the association between HCC and cirrhosis as well as chronic viral hepatitis. The present retrospective incidence and aetiology study concerns a well-defined population from a period with a high autopsy frequency. Preserved biopsy specimens were re-evaluated histopathologically and patient records were studied. Among 590 histologically verified cases of PLC, HCC constituted 90%, CCC 8% and a mixed form of these types 1%. At the end of the study period the annual age-standardised incidence rate of HCC was 3.6 cases per 100,000 inhabitants. Other PLC types were hepatoblastoma (n = 3), fibrolamellar carcinoma (n = 2), angiosarcoma (n = 1) and infantile haemangioendothelioma (n = 1), each constituting less than 1% of the PLC cases. Comparing HCC with CCC we found that cirrhosis (70%) and alcoholism (21%) was significantly more frequent in HCC, and cholelithiasis was significantly more common (60%) in patients with CCC. In the majority of the PLC cases with liver cirrhosis this disorder was unknown before diagnosis of the tumour. PMID:8554975

  13. Structural Aspects of the Iquique Area With Possible Influence on the Mw 8.2, 2014, Pisagua Earthquake

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Schaller, T.; Meneses, G.; Goetze, H. J.; Satriano, C.; Poiata, N.; Ruiz, S.; Comte, D.; Bernard, P.; Vilotte, J. P.; Métois, M.; Olcay, M.; Tassera, C.; Campos, J. A.

    2014-12-01

    The Mw 8.2, 2014, Pisagua earthquake in Northern Chile did not come as a complete surprise as it was anticipated that in the "near future" a large earthquake could happen in the North Chile seismic gap. Whether the gap would rupture in a single M~9 event or in several M 7-8 events has been subject of debate. Now it is clear that the Pisagua earthquake ruptured the shallower part of one segment of the North Chilean seismogenic subduction interface and leaves the questions why the new rupture started here and what could be a future scenario for the failure of the seismic gaps' residuals. To identify seismogenic structures which define areas where large events might nucleate, asperities develop or segment boundaries form, we need large catalogues of accurately located seismic events in all magnitude ranges. Therefore, we apply a new method to automatically detect and locate seismic events based on the backprojection algorithm and multi-band kurtosis signal representation (see also abstracts Satriano et al. and Poiata et al.) using the data basis of the Iquique Local Network and the Integrated Plate Boundary Observatory in North Chile. Precise earthquake locations, seismicity rate changes and spatial b-value distributions can then refer to material boundaries, and distinguish between locked and creeping sections, which lead to the sites where actual deformation also on small scales is taking place.While seismicity distribution and its temporal changes help to identify the outlines of seismogenic structures, congruent gravity isostatic residual anomalies and modeled density distributions tell us something about the physical nature of earthquake nucleation zones and asperities. We present new results from density modeling on narrow profiles over the entire Pisagua earthquake rupture plane revealing dense bodies which we suggest have influenced the start of the main shock rupture as well as its propagation by linking spatial background and aftershock distributions.

  14. Perception of floods as an important aspect of quality of life and territorial changes in flood areas

    NASA Astrophysics Data System (ADS)

    Klemešová, Kamila; Andráško, Ivan

    2014-05-01

    The quality of life in many municipalities in the Czech Republic is affected by coming floods. Since 1997 when a great part of Moravia was affected by an extreme flood situation, much closer attention is paid to floods and flood protection. Flood management is based, besides others, on European flood legislation but it still does not reflect the social perception of flood situations as a common part of the evaluation of flood risk. However, this very perception strongly influences future implementation of flood measures, territorial and social development of the municipality and indirectly the quality of life in the municipality. One of the main problems in flood issue is the financing of anti-flood measures. In view of the fact that financial resources in environmental sphere are limited, preventive anti-flood measures, that can eliminate the impacts of future floods and are not so expensive, assume more importance. Such kind of measures is often suggested for local needs. The necessity to research the social perception of flood in this context is supported by some studies pointing out a still insufficient use of preventive anti-flood measures in the Czech Republic in spite of several extreme floods in the past 20 years. This paper aims at presenting the results of a research which has been done in a model area affected by floods. The aim of this research was to point out the main factors that influence the life in the municipality after flood (including suggested anti-flood measures) and the possibilities and willingness of the inhabitants to change them. The research results have subsequently been supplemented with the same evaluation by the members of local administrations who are important players in post-flood development of the municipality and in dealings with citizens about the suggested anti-flood measures.

  15. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    PubMed

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. PMID:21567663

  16. Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO{sub 2} nanotube powders

    SciTech Connect

    Antony, Rajini P.; Mathews, Tom; Dasgupta, Arup; Dash, S.; Tyagi, A.K.; Raj, Baldev

    2011-03-15

    Clusters of high aspect ratio, high surface area anatase-TiO{sub 2} nanotubes with a typical nanotube outer diameter of about 18 nm, wall thickness of approximately 5 nm and length of 5-10 {mu}m were synthesized, in powder form, by breakdown anodization of Ti foils in 0.1 M perchloric acid, at 10 V (299 K) and 20 V ({approx}275 and 299 K). The surface area, morphology, structure and band gap were determined from Brunauer Emmet Teller method, field emmission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, photoluminescence and diffuse reflectance spectroscopic studies. The tubular morphology and anatase phase were found to be stable up to 773 K and above 773 K anatase phase gradually transformed to rutile phase with disintegration of tubular morphology. At 973 K, complete transformation to rutile phase and disintegration of tubular morphology were observed. The band gap of the as prepared and the annealed samples varied from 3.07 to 2.95 eV with increase in annealing temperature as inferred from photoluminescence and diffuse reflectance studies. -- Graphical abstract: Display Omitted Research highlights: {yields} High aspect ratio anatase-titania nanotube powders were synthesized electrochemically. {yields} The surface area of the nanotubes were much higher than those reported. {yields} The annealing temperature limit for maintaining tubular morphology was established. {yields} The photoluminiscence spectroscopy reflected the presence of defects, annealing of defects and phase transformation. {yields} The nanotubes were of {approx}5 nm wall thickness as revealed by TEM studies.

  17. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s Disease

    PubMed Central

    Narayanan, Nandakumar S.; Rodnitzky, Robert L.; Uc, Ergun

    2013-01-01

    Cognitive dysfunction is a common symptom of Parkinson’s disease that causes significant morbidity and mortality. The severity of these symptoms ranges from minor executive symptoms to frank dementia involving multiple domains. In the present review, we will concentrate on the aspects of cognitive impairment associated with prefrontal dopaminergic dysfunction seen in non-demented patients with PD. These symptoms include executive dysfunction and disorders of thought such as hallucinations and psychosis. Such symptoms may go on to predict dementia related to Parkinson’s disease, which involves amnestic dysfunction and is typically seen later in the disease. Cognitive symptoms are associated with dysfunction in cholinergic circuits in addition to the abnormalities in the prefrontal dopaminergic system. These circuits can be carefully studied and evaluated in Parkinson’s disease, and could be leveraged to treat difficult clinical problems related to cognitive symptoms of PD. PMID:23729617

  18. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty.

    PubMed

    Karlsson, Mattias P; Tervo, Dougal G R; Karpova, Alla Y

    2012-10-01

    Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal's internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal's belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed. PMID:23042898

  19. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    PubMed Central

    Murray, Andrew J.; Woloszynowska-Fraser, Marta U.; Ansel-Bollepalli, Laura; Cole, Katy L. H.; Foggetti, Angelica; Crouch, Barry; Riedel, Gernot; Wulff, Peer

    2015-01-01

    Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements. PMID:26608841

  20. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-03-01

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories. PMID:22286175

  1. Bidirectional prefrontal-hippocampal interactions support context-guided memory.

    PubMed

    Place, Ryan; Farovik, Anja; Brockmann, Marco; Eichenbaum, Howard

    2016-08-01

    We compared the dynamics of hippocampal and prefrontal interactions in rats as they used spatial contexts to guide the retrieval of object memories. Functional connectivity analysis indicated a flow of contextual information from the hippocampus to prefrontal cortex upon the rat's entry into the spatial context. Conversely, upon the onset of object sampling, the direction of information flow reversed, consistent with prefrontal control over the retrieval of context-appropriate hippocampal memory representations. PMID:27322417

  2. Involvement of prefrontal cortex in scalar implicatures: evidence from magnetoencephalography

    PubMed Central

    Politzer-Ahles, Stephen; Gwilliams, Laura

    2015-01-01

    The present study investigated the neural correlates of the realisation of scalar inferences, i.e., the interpretation of some as meaning some but not all. We used magnetoencephalography, which has high temporal resolution, to measure neural activity while participants heard stories that included the scalar inference trigger some in contexts that either provide strong cues for a scalar inference or provide weaker cues. The middle portion of the lateral prefrontal cortex (Brodmann area 46) showed an increased response to some in contexts with fewer cues to the inference, suggesting that this condition elicited greater effort. While the results are not predicted by traditional all-or-nothing accounts of scalar inferencing that assume the process is always automatic or always effortful, they are consistent with more recent gradient accounts which predict that the speed and effort of scalar inferences is strongly modulated by numerous contextual factors. PMID:26247054

  3. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    PubMed

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  4. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  5. Abstract context representations in primate amygdala and prefrontal cortex

    PubMed Central

    Saez, A.; Rigotti, M.; Ostojic, S.; Fusi, S.; Salzman, C. D.

    2015-01-01

    Summary Neurons in prefrontal cortex (PFC) encode rules, goals and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  6. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.

    PubMed

    Saez, A; Rigotti, M; Ostojic, S; Fusi, S; Salzman, C D

    2015-08-19

    Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  7. Delayed-alternation performance after selective lesions within the prefrontal cortex of the cat.

    PubMed

    Markowitsch, H J; Pritzel, M; Kessler, J; Guldin, W; Freeman, R B

    1980-02-01

    On the basis of new neuroanatomical findings on relationships between subregions of the mediodorsal thalamic nucleus and the prefrontal cortex of the cat, it was attempted to investigate the relative importance of prefrontal subfields with the aim of obtaining evidence in favor of a functional inequality of different prefrontal subfields. Four areas, named presylvian (PRS), proreal (PR), dorsomedial (DM), and orbito-insular (OI) sectors, were ablated successfully in 30 adult animals. Performance of a 10-sec delayed-alternation task was compared pre- and postoperatively. Furthermore, most of the cats had to learn an extension of this task postoperatively, using a 20-sec delay period, and lastly, these animals were subjected to an extinction test. Significant performance differences were obtained between cats of different groups in all three tasks. Lesions of subregion PR, and even more of subregion PRS, led to severe behavioral deterioration, whereas lesions of subregion OI were without effect, when compared with the behavior of a sham-operated control group. PRS-cats, furthermore, showed motor disturbances during the first postoperative week. The results obtained suggest that it is possible to subdivide the cat's prefrontal cortex functionally. In addition, it is hypothesized that behavioral changes in cats of groups PRS and PR are due to an inability to use kinesthetic information properly. PMID:7284081

  8. Dopaminergic modulation of distracter-resistance and prefrontal delay period signal.

    PubMed

    Bloemendaal, Mirjam; van Schouwenburg, Martine R; Miyakawa, Asako; Aarts, Esther; D'Esposito, Mark; Cools, Roshan

    2015-03-01

    Dopamine has long been implicated in the online maintenance of information across short delays. Specifically, dopamine has been proposed to modulate the strength of working memory representations in the face of intervening distracters. This hypothesis has not been tested in humans. We fill this gap using pharmacological neuroimaging. Healthy young subjects were scanned after intake of the dopamine receptor agonist bromocriptine or placebo (in a within-subject, counterbalanced, and double-blind design). During scanning, subjects performed a delayed match-to-sample task with face stimuli. A face or scene distracter was presented during the delay period (between the cue and the probe). Bromocriptine altered distracter-resistance, such that it impaired performance after face relative to scene distraction. Individual differences in the drug effect on distracter-resistance correlated negatively with drug effects on delay period signal in the prefrontal cortex, as well as on functional connectivity between the prefrontal cortex and the fusiform face area. These results provide evidence for the hypothesis that dopaminergic modulation of the prefrontal cortex alters resistance of working memory representations to distraction. Moreover, we show that the effects of dopamine on the distracter-resistance of these representations are accompanied by modulation of the functional strength of connections between the prefrontal cortex and stimulus-specific posterior cortex. PMID:25300902

  9. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  10. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  11. Textural aspects of high T-low P polymetamorphism in the Rangeley area, western Maine: General implications for studies of Acadian metamorphic rocks in New England

    SciTech Connect

    Guidotti, C.V. . Dept. of Geology)

    1993-03-01

    High T-Low P polymetamorphism in W. Maine results from overlapping, regionally extensive thermal aureoles around sheet-like granitic plutons. At least five metamorphic events have been recognized. The Rangeley-Oquossoc (R-O) area was affected by two high T, static events (M[sub 2] and M[sub 3]). M[sub 2], (400 Ma) developed and + St + Bt regionally. M[sub 3] (370 Ma), due to heating by the sheet-like Mooselookmeguntic Pluton (MP), is superimposed on M[sub 2] such that near the MP, M[sub 2] rocks were prograded to upper sillimanite zone, migmatitic gneisses. To the E., M[sub 2] rocks have been downgraded to garnet zone. Mineral chemistry and assemblage data strongly suggest that M[sub 3] parageneses closely approximated a new equilibrium. These temporally separate superimposed events produced pseudomorphic replacement textures; in the E. by downgrade reactions; in the W. by prograde reactions. The nature of the downgrade or prograde pseudomorphs reflects where they occur in the M[sub 3] range of metamorphic grades. Some authors have interpreted these textures as due to continuous PTt paths or K-metasomatism. Even worse, in some studies the textures are simply ignored and mineral assemblages merely assumed to be the result of a single, equilibrium metamorphic event. The three Al-silicate rocks in the Littleton-Mooselauke area of New Hampshire probably fall in this latter category. It is suggested that in most cases such textures are best interpreted as the R-O area. Metamorphic textures probably are unique in some aspects related to the details of the metamorphism(s) of the given area. However, in New England the commonness in Acadian metamorphic rocks of textures similar to those found in the fortuitously well displayed example of temporally separated polymetamorphism in the R-O area suggests a basis to recognize similar histories elsewhere.

  12. Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates

    PubMed Central

    Zikopoulos, Basilis; Barbas, Helen

    2008-01-01

    Converging evidence from anatomic and physiologic studies suggests that the interaction of high-order association cortices with the thalamus is necessary to focus attention on a task in a complex environment with multiple distractions. Interposed between the thalamus and cortex, the inhibitory thalamic reticular nucleus intercepts and regulates communication between the two structures. Recent findings demonstrate that a unique circuitry links the prefrontal cortex with the reticular nucleus and may underlie the process of selective attention to enhance salient stimuli and suppress irrelevant stimuli in behavior. Unlike other cortices, some prefrontal areas issue widespread projections to the reticular nucleus, extending beyond the frontal sector to the sensory sectors of the nucleus and may influence the flow of sensory information from the thalamus to the cortex. Unlike other thalamic nuclei, the mediodorsal nucleus, which is the principal thalamic nucleus for the prefrontal cortex, has similarly widespread connections with the reticular nucleus. Unlike sensory association cortices, some terminations from prefrontal areas to the reticular nucleus are large, suggesting efficient transfer of information. We propose a model showing that the specialized features of prefrontal pathways in the reticular nucleus may allow selection of relevant information and override distractors, in processes that are deranged in schizophrenia. PMID:18330211

  13. Suppressing Emotions Impairs Subsequent Stroop Performance and Reduces Prefrontal Brain Activation

    PubMed Central

    Luechinger, Roger; Boesiger, Peter; Rasch, Björn

    2013-01-01

    Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks. PMID:23565239

  14. Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data

    PubMed Central

    Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle

    2013-01-01

    Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927

  15. Prefrontal Cortex Glutamate Correlates with Mental Perspective-Taking

    PubMed Central

    Montag, Christiane; Schubert, Florian; Heinz, Andreas; Gallinat, Jürgen

    2008-01-01

    Background Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC) and anterior cingulate cortex (ACC) function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. Methodology/Principal Findings Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS) in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI). Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor “perspective taking” (T = −2.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni) but not by “empathic concern” or “personal distress”. No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. Conclusions/Significance This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated by prefrontal glutamatergic projections. This is a preliminary finding that needs a replication in an independent sample. PMID:19060949

  16. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  17. Medial Prefrontal Cortex Lesions Abolish Contextual Control of Competing Responses

    ERIC Educational Resources Information Center

    Haddon, J. E.; Killcross, A. S.

    2005-01-01

    There is much debate as to the extent and nature of functional specialization within the different subregions of the prefrontal cortex. The current study was undertaken to investigate the effect of damage to medial prefrontal cortex subregions in the rat. Rats were trained on two biconditional discrimination tasks, one auditory and one visual, in…

  18. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    PubMed

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  19. Lucid Dreaming and Ventromedial versus Dorsolateral Prefrontal Task Performance

    PubMed Central

    Neider, Michelle; Pace-Schott, Edward F.; Forselius, Erica; Pittman, Brian; Morgan, Peter T.

    2010-01-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for one week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  20. Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation.

    PubMed

    Wang, Yu-Chun; Ho, Ue-Cheung; Ko, Meng-Ching; Liao, Chun-Chieh; Lee, Li-Jen

    2012-04-01

    The mesocorticolimbic system contains dopamine (DA)-producing neurons in the ventral tegmental area (VTA) and their projection targets, including the medial prefrontal cortex (mPFC), amygdala (AMY) and nucleus accumbens (NAc). Disruption of this system might attribute to mental illnesses. In the present study, we adopted the postweaning social isolation paradigm to model neuropsychiatric disorders and studied the functional and structural changes of the mesocorticolimbic system. After 8-9 weeks of isolation, rats exhibited hyperlocomotor activity and impaired sensorimotor gating compared to group-reared controls. However, the number of tyrosine hydroxylase-positive VTA neurons and the volume of VTA were not affected. Comparing with group-reared controls, the DA levels in the isolation-reared were not altered in the VTA, mPFC and NAc but decreased in the AMY. In the structural aspect, dendritic features of layer II/III pyramidal mPFC neurons; pyramidal neurons in the basolateral nucleus of amygdala (BLA) and medium spiny neurons in the core region of the NAc (NAcc) were examined. Interestingly, the neuronal changes were region-specific. The mPFC neurons had reduced dendritic complexity, spine density and elongated terminal branches. The BLA neurons had extensive dendritic arbors with short branches but unchanged spine density. The NAcc neurons had reduced total dendritic length but the segment length and spine density remained the same. Together, the results demonstrated the structural and functional changes in the mesocorticolimbic DA system of socially isolated rats. These changes may account for the behavioral impairments in these rats and attribute to the susceptibility to mental disorders related to schizophrenia and depression. PMID:22002740

  1. Regulation of prefrontal cortex myelination by the microbiota.

    PubMed

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-01-01

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC. PMID:27045844

  2. The role of the medial prefrontal cortex in social categorization.

    PubMed

    Molenberghs, Pascal; Morrison, Samantha

    2014-03-01

    Group membership is an important aspect of our everyday behavior. Recently, we showed that existing relevant in-group labels increased activation in the medial prefrontal cortex (MPFC) compared with out-group labels, suggesting a role of the MPFC in social categorization. However, the question still remains whether this increase in MPFC activation for in-group representation is solely related with previous experience with the in-group. To test this, we randomly assigned participants to a red or blue team and in a subsequent functional magnetic resonance imaging experiment they categorized red and blue team words as belonging to either the in-group or the out-group. Results showed that even under these minimal conditions increased activation was found in the MPFC when participants indicated that they belonged to a group, as compared with when they did not. This effect was found to be associated with the level of group identification. These results confirm the role of MPFC in social categorization. PMID:23175678

  3. Medial prefrontal cortex subserves diverse forms of self-reflection.

    PubMed

    Jenkins, Adrianna C; Mitchell, Jason P

    2011-01-01

    The ability to think about oneself--to self--reflect--is one of the defining features of the human mind. Recent research has suggested that this ability may be subserved by a particular brain region: the medial prefrontal cortex (MPFC). However, although humans can contemplate a variety of different aspects of themselves, including their stable personality traits, current feelings, and physical attributes, no research has directly examined the extent to which these different forms of self-reflection are subserved by common mechanisms. To address this question, participants were scanned using functional magnetic resonance imaging (fMRI) while making judgments about their own personality traits, current mental states, and physical attributes as well as those of another person. Whereas some brain regions responded preferentially during only one form of self-reflection, a robust region of MPFC was engaged preferentially during self-reflection across all three types of judgment. These results suggest that--although dissociable--diverse forms of self-referential thought draw on a shared cognitive process subserved by MPFC. PMID:20711940

  4. Regulation of prefrontal cortex myelination by the microbiota

    PubMed Central

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-01-01

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC. PMID:27045844

  5. Cumulative genetic risk and prefrontal activity in patients with schizophrenia.

    PubMed

    Walton, Esther; Turner, Jessica; Gollub, Randy L; Manoach, Dara S; Yendiki, Anastasia; Ho, Beng-Choon; Sponheim, Scott R; Calhoun, Vince D; Ehrlich, Stefan

    2013-05-01

    The lack of consistency of genetic associations in highly heritable mental illnesses, such as schizophrenia, remains a challenge in molecular psychiatry. Because clinical phenotypes for psychiatric disorders are often ill defined, considerable effort has been made to relate genetic polymorphisms to underlying physiological aspects of schizophrenia (so called intermediate phenotypes), that may be more reliable. Given the polygenic etiology of schizophrenia, the aim of this work was to form a measure of cumulative genetic risk and study its effect on neural activity during working memory (WM) using functional magnetic resonance imaging. Neural activity during the Sternberg Item Recognition Paradigm was measured in 79 schizophrenia patients and 99 healthy controls. Participants were genotyped, and a genetic risk score (GRS), which combined the additive effects of 41 single-nucleotide polymorphisms (SNPs) from 34 risk genes for schizophrenia, was calculated. These risk SNPs were chosen according to the continuously updated meta-analysis of genetic studies on schizophrenia available at www.schizophreniaresearchforum.org. We found a positive relationship between GRS and left dorsolateral prefrontal cortex inefficiency during WM processing. GRS was not correlated with age, performance, intelligence, or medication effects and did not differ between acquisition sites, gender, or diagnostic groups. Our study suggests that cumulative genetic risk, combining the impact of many genes with small effects, is associated with a known brain-based intermediate phenotype for schizophrenia. The GRS approach could provide an advantage over studying single genes in studies focusing on the genetic basis of polygenic conditions such as neuropsychiatric disorders. PMID:22267534

  6. Self-Reported Sleep Correlates with Prefrontal-Amygdala Functional Connectivity and Emotional Functioning

    PubMed Central

    Killgore, William D. S.

    2013-01-01

    Study Objectives: Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Design: Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. Interventions: N/A. Measurements and Results: Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Conclusions: Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength. Citation: Killgore WDS. Self

  7. Resolution enhancement and performance characteristics of large-area a-Si:H x-ray imager with a high-aspect-ratio SU-8 micromold

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Avila-Munoz, Alfredo; Tao, Sheng; Gu, Zhihua; Nathan, Arokia; Rowlands, John A.

    2002-09-01

    Hydrogenated amorphous silicon is known for its large area imaging applications because of its high photoconductivity and high absorption coefficient in the visible light range. This material can be also applied to X-ray imaging when coupled with a uniform scintillation (e.g. Gd2O2S phosphor) film integrated on top of a 2-D detection array. A thick phosphor layer is the prerequisite for high X-ray conversion efficiency. In reality, however, there may be significant crosstalk between adjacent pixels thus undermining spatial resolution. This paper introduces a high aspect ratio microstructure with the new photoresist SU-8 epoxy, which limits the phosphor to regions above the photodiodes. The differences between the above scheme and that of a continuous phosphor layer are compared in terms of the absorption efficiency, the conversion efficiency, and the modulation transfer function (MTF). The measurements are carried out in a medical testing environment with X-ray source voltages of 40-120kVp. The results show a great improvement in the spatial resolution.

  8. Autonomic and prefrontal events during moral elevation.

    PubMed

    Piper, Walter T; Saslow, Laura R; Saturn, Sarina R

    2015-05-01

    Moral elevation, or elevation, is a specific emotional state triggered by witnessing displays of profound virtue and moral beauty. This study set out to characterize the physiology underlying elevation with measurements of heart rate (HR), respiratory sinus arrhythmia (RSA), and medial prefrontal cortex (mPFC) activity. During elevation, HR and RSA increased. These findings illustrate that elevation involves an uncommon combination of both sympathetic and parasympathetic activation, which is present in circumstances where arousal and social engagement are both required. In addition, we show evidence of content-dependent alterations of mPFC activity during elevation peaks. Altogether, this study shows that the induction of moral elevation recruits an uncommon autonomic and neural pattern that is consistent with previous understanding of socioemotional-induced allostasis. PMID:25813121

  9. Prefrontal cortical dopamine from an evolutionary perspective.

    PubMed

    Lee, Young-A; Goto, Yukiori

    2015-04-01

    In this article, we propose the hypothesis that the prefrontal cortex (PFC) acquired neotenic development as a consequence of mesocortical dopamine (DA) innervation, which in turn drove evolution of the PFC into becoming a complex functional system. Accordingly, from the evolutionary perspective, decreased DA signaling in the PFC associated with such adverse conditions as chronic stress may be considered as an environmental adaptation strategy. Psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder may also be understood as environmental adaptation or a by-product of such a process that has emerged through evolution in humans. To investigate the evolutionary perspective of DA signaling in the PFC, domestic animals such as dogs may be a useful model. PMID:25617024

  10. Psychosis-related matricide associated with a lesion of the ventromedial prefrontal cortex.

    PubMed

    Orellana, Gricel; Alvarado, Luis; Muñoz-Neira, Carlos; Ávila, Rodrigo; Méndez, Mario F; Slachevsky, Andrea

    2013-01-01

    Matricide, the killing of a mother by her biological child, is a rare event. We report a case of matricide associated with a woman who sustained a right ventromedial prefrontal lesion during surgery for nasal polyposis that was performed when she was 40 years old. After her surgery, she developed psychotic symptoms associated with the emergence of antisocial behavior. She committed matricide 22 years later. Neuropsychological evaluation showed decreased frontal-executive deficits, and magnetic resonance imaging revealed a lesion in the right gyrus rectus area of the ventromedial prefrontal region. This case suggests that a secondary psychotic syndrome associated with a lesion in the frontal neural network, which is disturbed in psychopathy, could facilitate homicidal behavior. Furthermore, this case has legal implications for the prosecution of murder associated with a brain lesion. PMID:24051593

  11. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  12. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood

    PubMed Central

    Goriounova, Natalia A.; Mansvelder, Huibert D.

    2012-01-01

    The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs) are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings. PMID:22876231

  13. Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood.

    PubMed

    Kleibeuker, Sietske W; Koolschijn, P Cédric M P; Jolles, Dietsje D; Schel, Margot A; De Dreu, Carsten K W; Crone, Eveline A

    2013-07-01

    Creative cognition, defined as the generation of new yet appropriate ideas and solutions, serves important adaptive purposes. Here, we tested whether and how middle adolescence, characterized by transformations toward life independency and individuality, is a more profitable phase than adulthood for creative cognition. Behavioral and neural differences for creative problem solving in adolescents (15-17 years) and adults (25-30 years) were measured while performing a matchstick problem task (MPT) in the scanner and the creative ability test (CAT), a visuo-spatial divergent thinking task, outside the scanner. Overall performances were comparable, although MPT performance indicated an advantage for adolescents in creative problem solving. In addition, adolescents showed more activation in lateral prefrontal cortex (ventral and dorsal) during creative problem solving compared to adults. These areas correlated with performances on the MPT and the CAT performance. We discuss that extended prefrontal cortex activation in adolescence is important for exploration and aids in creative cognition. PMID:23624336

  14. Prefrontal Hemodynamic Functions during a Verbal Fluency Task in Blepharospasm Using Multi-Channel NIRS.

    PubMed

    Shen, Chen-Yu; Wang, Yong-Jun; Zhang, Xiao-Qian; Liu, Xiao-Min; Ren, Xia-Jin; Ma, Xiang-Yun; Sun, Jing-Jing; Feng, Kun; Sun, Gao-Xiang; Xu, Bo; Liu, Po-Zi

    2016-01-01

    Blepharospasm (BSP) has a morbidity of 16 to 133 per million and is characterized by orbicularis oculi spasms. BSP can severely impact daily life. However, to date, its pathophysiology has not been clearly demonstrated. Near-infrared spectroscopy (NIRS) is a portable, non-invasive, and high time resolution apparatus used to measure cerebral blood flow. This study aimed to investigate the hemodynamic response patterns of BSP patients and determine whether BSP alone can be an attributional factor to influence the function of the prefrontal area using a verbal fluency task (VFT) and NIRS. Twenty-three BSP patients (10 males and 13 females) and 13 healthy controls (HC; five males and eight females) matched by gender and education were examined using NIRS. BSP patients were divided into two groups based on the presence or absence of depression and anxiety symptoms. A covariance analysis was conducted to analyze differences between the three groups and reduce the influence of different ages and educational levels. Bonferroni was used to process the post hoc test. The bilateral orbitofrontal area (ch36, 39, and 41; P<0.01) exhibited a lower activation in BSP patients without psychiatric symptoms compared with HC. This study is the first report to identify the prefrontal function in BSP using NIRS. Our findings indicate that BSP alone may cause a hypoactive hemodynamic performance in the prefrontal cortex in the absence of psychiatric symptoms. These findings provide evidence to support novel pathophysiological mechanisms of BSP. PMID:26942579

  15. Prefrontal Hemodynamic Functions during a Verbal Fluency Task in Blepharospasm Using Multi-Channel NIRS

    PubMed Central

    Zhang, Xiao-Qian; Liu, Xiao-Min; Ren, Xia-Jin; Ma, Xiang-Yun; Sun, Jing-Jing; Feng, Kun; Sun, Gao-Xiang; Xu, Bo; Liu, Po-Zi

    2016-01-01

    Blepharospasm (BSP) has a morbidity of 16 to 133 per million and is characterized by orbicularis oculi spasms. BSP can severely impact daily life. However, to date, its pathophysiology has not been clearly demonstrated. Near-infrared spectroscopy (NIRS) is a portable, non-invasive, and high time resolution apparatus used to measure cerebral blood flow. This study aimed to investigate the hemodynamic response patterns of BSP patients and determine whether BSP alone can be an attributional factor to influence the function of the prefrontal area using a verbal fluency task (VFT) and NIRS. Twenty-three BSP patients (10 males and 13 females) and 13 healthy controls (HC; five males and eight females) matched by gender and education were examined using NIRS. BSP patients were divided into two groups based on the presence or absence of depression and anxiety symptoms. A covariance analysis was conducted to analyze differences between the three groups and reduce the influence of different ages and educational levels. Bonferroni was used to process the post hoc test. The bilateral orbitofrontal area (ch36, 39, and 41; P<0.01) exhibited a lower activation in BSP patients without psychiatric symptoms compared with HC. This study is the first report to identify the prefrontal function in BSP using NIRS. Our findings indicate that BSP alone may cause a hypoactive hemodynamic performance in the prefrontal cortex in the absence of psychiatric symptoms. These findings provide evidence to support novel pathophysiological mechanisms of BSP. PMID:26942579

  16. A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control.

    PubMed

    Donnarumma, Francesco; Prevete, Roberto; Chersi, Fabian; Pezzulo, Giovanni

    2015-09-01

    There is wide consensus that the prefrontal cortex (PFC) is able to exert cognitive control on behavior by biasing processing toward task-relevant information and by modulating response selection. This idea is typically framed in terms of top-down influences within a cortical control hierarchy, where prefrontal-basal ganglia loops gate multiple input-output channels, which in turn can activate or sequence motor primitives expressed in (pre-)motor cortices. Here we advance a new hypothesis, based on the notion of programmability and an interpreter-programmer computational scheme, on how the PFC can flexibly bias the selection of sensorimotor patterns depending on internal goal and task contexts. In this approach, multiple elementary behaviors representing motor primitives are expressed by a single multi-purpose neural network, which is seen as a reusable area of "recycled" neurons (interpreter). The PFC thus acts as a "programmer" that, without modifying the network connectivity, feeds the interpreter networks with specific input parameters encoding the programs (corresponding to network structures) to be interpreted by the (pre-)motor areas. Our architecture is validated in a standard test for executive function: the 1-2-AX task. Our results show that this computational framework provides a robust, scalable and flexible scheme that can be iterated at different hierarchical layers, supporting the realization of multiple goals. We discuss the plausibility of the "programmer-interpreter" scheme to explain the functioning of prefrontal-(pre)motor cortical hierarchies. PMID:25986752

  17. Dissociation of the rostral and dorsolateral prefrontal cortex during sequence learning in saccades: a TMS investigation.

    PubMed

    Burke, M R; Coats, R O

    2016-02-01

    This experiment sought to find whether differences exist between the dorsolateral prefrontal cortex (DLPFC) and the medial rostral prefrontal cortex (MRPFC) for performing stimulus-independent and stimulus-oriented tasks, respectively. To find a causal relationship in these areas, we employed the use of trans-cranial magnetic stimulation (TMS). Prefrontal areas were stimulated whilst participants performed random or predictable sequence learning tasks at stimulus onset (1st presentation of the sequence only for both Random and Predictable), or during the inter-sequence interval. Overall, we found that during the predictable task a significant decrease in saccade latency, gain and duration was found when compared to the randomised conditions, as expected and observed previously. However, TMS stimulation in DLPFC during the delay in the predictive sequence learning task reduced this predictive ability by delaying the saccadic onset and generating abnormal reductions in saccadic gains during prediction. In contrast, we found that stimulation during a delay in MRPFC reversed the normal effects on peak velocity of the task with the predictive task revealing higher peak velocity than the randomised task. These findings provide causal evidence for independent functions of DLPFC and MRPFC in performing stimulus-independent processing during sequence learning in saccades. PMID:26563164

  18. Microglia of Prefrontal White Matter in Suicide

    PubMed Central

    Schnieder, Tatiana P.; Trencevska, Iskra; Rosoklija, Gorazd; Stankov, Aleksandr; Mann, J. John; Smiley, John; Dwork, Andrew J.

    2014-01-01

    Immune functions in the brain are associated with psychiatric illness and with temporary alteration of mental state. Microglia, the principal brain immunological cells, respond to changes in the internal brain milieu through a sequence of activated states, each with characteristic function and morphology. To assess a possible association of frontal white matter pathology with suicide, autopsy brain tissue samples from 11 suicide and 25 non-suicide subjects were stained for ionized calcium-binding adapter molecule 1 (Iba-1), CD68, and myelin. Groups were matched by age, sex, and psychiatric diagnosis. We classified Iba-1-immunoreactive cells on the basis of shape, immunoreactivity for CD68, and association with blood vessels to obtain stereologic estimates of densities of resting microglia, activated phagocytes, and perivascular cells. We found no effect of psychiatric diagnosis but 2 statistically significant effects of suicide: 1) the dorsal-ventral difference in activated microglial density was reversed such that with suicide, the density was greater in ventral than in dorsal prefrontal white matter, whereas in the absence of suicide, the opposite was true; and 2) with suicide there was a greater density of Iba-1-immunoreactive cells within or in contact with blood vessel walls in dorsal prefrontal white matter. These observations could reflect a mechanism for the stress/diathesis (state/trait) model of suicide whereby an acute stress activates a reactive process in the brain, either directly or by compromising the blood-brain barrier, and creates a suicidal state in an individual at risk. They also indicate the theoretical potential of imaging studies in live, vulnerable individuals for the assessment of suicide risk. Further studies are needed to investigate specific phenotypes of perivascular cells and blood-brain barrier changes associated with suicide. PMID:25101704

  19. The topology of connections between rat prefrontal and temporal cortices

    PubMed Central

    Bedwell, Stacey A.; Billett, E. Ellen; Crofts, Jonathan J.; MacDonald, Danielle M.; Tinsley, Chris J.

    2015-01-01

    Understanding the structural organization of the prefrontal cortex (PFC) is an important step toward determining its functional organization. Here we investigated the organization of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100 nl) and anterograde [Biotinylated dextran amine (BDA) or Fluoro-Ruby, 100 nl] tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labeled neurons and anterogradely labeled axon terminals were then analyzed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) and retrograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) connections of PFC. We observed that anterograde and retrograde labeling in ipsilateral temporal cortex (i.e., PFC inputs and outputs) often occurred reciprocally (i.e., the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labeling). However, often the same specific columnar temporal cortex regions contained only either labeling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched. PMID:26042005

  20. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  1. Working Memory Performance Correlates with Prefrontal-Hippocampal Theta Interactions but not with Prefrontal Neuron Firing Rates

    PubMed Central

    Hyman, James M.; Zilli, Eric A.; Paley, Amanda M.; Hasselmo, Michael E.

    2009-01-01

    Performance of memory tasks is impaired by lesions to either the medial prefrontal cortex (mPFC) or the hippocampus (HPC); although how these two areas contribute to successful performance is not well understood. mPFC unit activity is temporally affected by hippocampal-theta oscillations, with almost half the mPFC population entrained to theta in behaving animals, pointing to theta interactions as the mechanism enabling collaborations between these two areas. mPFC neurons respond to sensory stimuli and responses in working memory tasks, though the function of these correlated firing rate changes remains unclear because similar responses are reported during mPFC dependent and independent tasks. Using a DNMS task we compared error trials vs. correct trials and found almost all mPFC cells fired at similar rates during both error and correct trials (92%), however theta-entrainment of mPFC neurons declined during error performance as only 17% of cells were theta-entrained (during correct trials 46% of the population was theta-entrained). Across the population, error and correct trials did not differ in firing rate, but theta-entrainment was impaired. Periods of theta-entrainment and firing rate changes appeared to be independent variables, and only theta-entrainment was correlated with successful performance, indicating mPFC-HPC theta-range interactions are the key to successful DNMS performance. PMID:20431726

  2. A parametric relief signal in human ventrolateral prefrontal cortex.

    PubMed

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-02-01

    People experience relief whenever outcomes are better than they would have been, had an alternative course of action been chosen. Here we investigated the neuronal basis of relief with functional resonance imaging in a choice task in which the outcome of the chosen option and that of the unchosen option were revealed sequentially. We found parametric activation increases in anterior ventrolateral prefrontal cortex with increasing relief (chosen outcomes better than unchosen outcomes). Conversely, anterior ventrolateral prefrontal activation was unrelated to the opposite of relief, increasing regret (chosen outcomes worse than unchosen outcomes). Furthermore, the anterior ventrolateral prefrontal activation was unrelated to primary gains and increased with relief irrespective of whether the chosen outcome was a loss or a gain. These results suggest that the anterior ventrolateral prefrontal cortex encodes a higher-order reward signal that lies at the core of current theories of emotion. PMID:18992349

  3. Hippocampal-prefrontal input supports spatial encoding in working memory

    PubMed Central

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E.; Fusi, Stefano; Gogos, Joseph A.; Gordon, Joshua A.

    2015-01-01

    Summary Spatial working memory, the caching of behaviorally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. While the prefrontal cortex and hippocampus are known to jointly contribute to successful spatial working memory, the anatomical pathway and temporal window for interaction of these structures critical to spatial working memory has not yet been established. Here, we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. PMID:26053122

  4. Developmental trajectories of abuse--an hypothesis for the effects of early childhood maltreatment on dorsolateral prefrontal cortical development.

    PubMed

    Burrus, Caley

    2013-11-01

    The United States has a high rate of child maltreatment, with nearly 12 in 1000 children being victims of abuse or neglect. Child abuse strongly predicts negative life outcomes, especially in areas of emotional and mental health. Abused children are also more likely than their peers to engage in violence and enter the juvenile justice system, as well as to become abusive parents themselves. Research has shown that child abuse and trauma can lead to decreased hippocampal volume, which could be indicative of abnormal hippocampal development. Hippocampal development appears to directly affect the development of the dorsolateral prefrontal cortex, a brain area responsible for emotion regulation, cognitive reappraisal, and general executive function. Therefore, I hypothesize that if child abuse results in abnormal hippocampal development, which leads to abnormal dorsolateral prefrontal cortex development, many of the correlated risk factors of child abuse, such as emotionally-laden parenting and unfavorable cognitive distortions regarding children's behaviors, may be in part caused by underdevelopment or abnormal functioning of the dorsolateral prefrontal cortex, as a function of the individual's own experiences with abuse during childhood. If this hypothesis is supported with future research, more targeted, successful, and cost-effective prevention and treatment protocols could ensue. For instance, programs that have been empirically shown to increase the activity of the dorsolateral prefrontal cortex, such as cognitive behavioral therapy, could be effective in decreasing the incidence of intergenerational transfer of abuse. PMID:24075592

  5. Changes in Effective Connectivity Between Dorsal and Ventral Prefrontal Regions Moderate Emotion Regulation.

    PubMed

    Morawetz, Carmen; Bode, Stefan; Baudewig, Juergen; Kirilina, Evgeniya; Heekeren, Hauke R

    2016-05-01

    Reappraisal, the cognitive reevaluation of a potentially emotionally arousing event, has been proposed to be based upon top-down appraisal systems within the prefrontal cortex (PFC). It still remains unclear, however, how different prefrontal regions interact to control and regulate emotional responses. We used fMRI and dynamic causal modeling (DCM) to characterize the functional interrelationships among dorsal and ventral PFC regions involved in reappraisal. Specifically, we examined the effective connectivity between the inferior frontal gyrus (IFG), dorsolateral PFC (DLPFC), and other reappraisal-related regions (supplementary motor area, supramarginal gyrus) during the up- and downregulation of emotions in response to highly arousing extreme sports film clips. We found DLPFC to be the central node of the prefrontal emotion regulation network, strongly interconnected with the IFG. The DCM analysis further revealed excitatory changes of connection strength from the DLPFC to the IFG and strong inhibitory changes of connection strength between the IFG and DLPFC during reappraisal. These bidirectional changes in connectivity strength indicate a feedback mechanism by which the IFG may select one out of several possible goal-appropriate reappraisals held active in working memory (represented in the DLPFC) and inhibits the DLPFC once the selection process is completed. PMID:25631055

  6. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia.

    PubMed

    O'Reilly, Randall C; Frank, Michael J

    2006-02-01

    The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks. PMID:16378516

  7. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    PubMed

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. PMID:26522867

  8. Anxiety and performance: the disparate roles of prefrontal subregions under maintained psychological stress.

    PubMed

    Takizawa, Ryu; Nishimura, Yukika; Yamasue, Hidenori; Kasai, Kiyoto

    2014-07-01

    Despite increasing interest in anxiety and psychological stress in daily life, little is known about neural correlates that underlie maintained psychological stress and their relationship with anxiety. In particular, the activation characteristics of lateral prefrontal subregions and their relationship with anxiety and cognitive performance under maintained psychological stress remain unknown. This study used near-infrared spectroscopy (NIRS), a noninvasive and "real-world" functional neuroimaging method, to investigate the hemodynamic responses in wide areas of the prefrontal cortex (PFC) and the influence of anxiety under conditions of maintained stress induced by a continuous arithmetic task (2 sets, 15 min each) performed in a natural sitting posture. Although anxiety and performance are not directly correlated, the hemodynamic response in the medial portion of the lateral PFC (dorsolateral and frontopolar PFC) was significantly associated with anxiety, while hemodynamic responses in the ventrolateral PFC were associated with performance. Additionally, in the same medial region of the lateral PFC, trait and state anxieties were related to changes in deoxy- and oxy-hemoglobin concentrations, respectively. This NIRS finding suggests disparate roles for prefrontal subregions in anxiety and performance under psychological stress and may lead to a better understanding of neural correlates for anxiety in everyday life. PMID:23425891

  9. Impaired Prefrontal Hemodynamic Maturation in Autism and Unaffected Siblings

    PubMed Central

    Kawakubo, Yuki; Kuwabara, Hitoshi; Watanabe, Kei-ichiro; Minowa, Michiko; Someya, Toshikazu; Minowa, Iwao; Kono, Toshiaki; Nishida, Hisami; Sugiyama, Toshiro; Kato, Nobumasa; Kasai, Kiyoto

    2009-01-01

    Background Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD). Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. Methodology/Principal Findings Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb]) in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. Conclusion/Significance Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena. PMID:19727389

  10. Prefrontal Gray Matter and Motivation for Treatment in Cocaine-Dependent Individuals with and without Personality Disorders

    PubMed Central

    Moreno-López, Laura; Albein-Urios, Natalia; Martinez-Gonzalez, José Miguel; Soriano-Mas, Carles; Verdejo-García, Antonio

    2014-01-01

    Addiction treatment is a long-term goal and therefore prefrontal–striatal regions regulating goal-directed behavior are to be associated with individual differences on treatment motivation. We aimed at examining the association between gray matter volumes in prefrontal cortices and striatum and readiness to change at treatment onset in cocaine users with and without personality disorders. Participants included 17 cocaine users without psychiatric comorbidities, 17 cocaine users with Cluster B disorders, and 12 cocaine users with Cluster C disorders. They completed the University of Rhode Island Change Assessment Scale, which measures four stages of treatment change (precontemplation, contemplation, action, and maintenance) and overall readiness to change, and were scanned in a 3 T MRI scanner. We defined three regions of interest (ROIs): the ventromedial prefrontal cortex (including medial orbitofrontal cortex and subgenual and rostral anterior cingulate cortex), the dorsomedial prefrontal cortex (i.e., superior medial frontal cortex), and the neostriatum (caudate and putamen). We found that readiness to change correlated with different aspects of ventromedial prefrontal gray matter as a function of diagnosis. In cocaine users with Cluster C comorbidities, readiness to change positively correlated with gyrus rectus gray matter, whereas in cocaine users without comorbidities it negatively correlated with rostral anterior cingulate cortex gray matter. Moreover, maintenance scores positively correlated with dorsomedial prefrontal gray matter in cocaine users with Cluster C comorbidities, but negatively correlated with this region in cocaine users with Cluster B and cocaine users without comorbidities. Maintenance scores also negatively correlated with dorsal striatum gray matter in cocaine users with Cluster C comorbidities. We conclude that the link between prefrontal–striatal gray matter and treatment motivation is modulated by co-existence of personality

  11. Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease

    PubMed Central

    Sigurdsson, Torfi; Duvarci, Sevil

    2016-01-01

    The hippocampus and prefrontal cortex (PFC) have long been known to play a central role in various behavioral and cognitive functions. More recently, electrophysiological and functional imaging studies have begun to examine how interactions between the two structures contribute to behavior during various tasks. At the same time, it has become clear that hippocampal-prefrontal interactions are disrupted in psychiatric disease and may contribute to their pathophysiology. These impairments have most frequently been observed in schizophrenia, a disease that has long been associated with hippocampal and prefrontal dysfunction. Studies in animal models of the illness have also begun to relate disruptions in hippocampal-prefrontal interactions to the various risk factors and pathophysiological mechanisms of the illness. The goal of this review is to summarize what is known about the role of hippocampal-prefrontal interactions in normal brain function and compare how these interactions are disrupted in schizophrenia patients and animal models of the disease. Outstanding questions for future research on the role of hippocampal-prefrontal interactions in both healthy brain function and disease states are also discussed. PMID:26858612

  12. Nature experience reduces rumination and subgenual prefrontal cortex activation

    PubMed Central

    Bratman, Gregory N.; Hamilton, J. Paul; Hahn, Kevin S.; Daily, Gretchen C.; Gross, James J.

    2015-01-01

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  13. The hierarchical organization of the lateral prefrontal cortex.

    PubMed

    Nee, Derek Evan; D'Esposito, Mark

    2016-01-01

    Higher-level cognition depends on the lateral prefrontal cortex (LPFC), but its functional organization has remained elusive. An influential proposal is that the LPFC is organized hierarchically whereby progressively rostral areas of the LPFC process/represent increasingly abstract information facilitating efficient and flexible cognition. However, support for this theory has been limited. Here, human fMRI data revealed rostral/caudal gradients of abstraction in the LPFC. Dynamic causal modeling revealed asymmetrical LPFC interactions indicative of hierarchical processing. Contrary to dominant assumptions, the relative strength of efferent versus afferent connections positioned mid LPFC as the apex of the hierarchy. Furthermore, cognitive demands induced connectivity modulations towards mid LPFC consistent with a role in integrating information for control operations. Moreover, the strengths of these dynamics were related to trait-measured higher-level cognitive ability. Collectively, these results suggest that the LPFC is hierarchically organized with the mid LPFC positioned to synthesize abstract and concrete information to control behavior. PMID:26999822

  14. Nature experience reduces rumination and subgenual prefrontal cortex activation.

    PubMed

    Bratman, Gregory N; Hamilton, J Paul; Hahn, Kevin S; Daily, Gretchen C; Gross, James J

    2015-07-14

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  15. The hierarchical organization of the lateral prefrontal cortex

    PubMed Central

    Nee, Derek Evan; D'Esposito, Mark

    2016-01-01

    Higher-level cognition depends on the lateral prefrontal cortex (LPFC), but its functional organization has remained elusive. An influential proposal is that the LPFC is organized hierarchically whereby progressively rostral areas of the LPFC process/represent increasingly abstract information facilitating efficient and flexible cognition. However, support for this theory has been limited. Here, human fMRI data revealed rostral/caudal gradients of abstraction in the LPFC. Dynamic causal modeling revealed asymmetrical LPFC interactions indicative of hierarchical processing. Contrary to dominant assumptions, the relative strength of efferent versus afferent connections positioned mid LPFC as the apex of the hierarchy. Furthermore, cognitive demands induced connectivity modulations towards mid LPFC consistent with a role in integrating information for control operations. Moreover, the strengths of these dynamics were related to trait-measured higher-level cognitive ability. Collectively, these results suggest that the LPFC is hierarchically organized with the mid LPFC positioned to synthesize abstract and concrete information to control behavior. DOI: http://dx.doi.org/10.7554/eLife.12112.001 PMID:26999822

  16. Thalamic control of layer 1 circuits in prefrontal cortex

    PubMed Central

    Cruikshank, Scott J.; Ahmed, Omar J.; Stevens, Tanya R.; Patrick, Saundra L.; Gonzalez, Amalia N.; Elmaleh, Margot; Connors, Barry W.

    2012-01-01

    Knowledge of thalamocortical (TC) processing comes mainly from studying core thalamic systems that project to middle layers of primary sensory cortices. However, most thalamic relay neurons comprise a matrix of cells that are densest in the “nonspecific” thalamic nuclei and usually target layer 1 of multiple cortical areas. A longstanding hypothesis is that matrix TC systems are crucial for regulating neocortical excitability during changing behavioral states, yet we know almost nothing about the mechanisms of such regulation. It is also unclear whether synaptic and circuit mechanisms that are well established for core sensory TC systems apply to matrix TC systems. Here we describe studies of thalamic matrix influences on mouse prefrontal cortex using optogenetic and in vitro electrophysiology techniques. Channelrhodopsin-2 was expressed in midline and paralaminar (matrix) thalamic neurons, and their layer 1-projecting TC axons were activated optically. Contrary to conventional views, we found that matrix TC projections to layer 1 could transmit relatively strong, fast, high-fidelity synaptic signals. Layer 1 TC projections preferentially drove inhibitory interneurons of layer 1, especially those of the late-spiking subtype, and often triggered feedforward inhibition in both layer 1 interneurons and pyramidal cells of layers 2/3. Responses during repetitive stimulation were far more sustained for matrix than for core sensory TC pathways. Thus, matrix TC circuits appear to be specialized for robust transmission over relatively extended periods, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability. PMID:23223300

  17. Anterior prefrontal cortex inhibition impairs control over social emotional actions.

    PubMed

    Volman, Inge; Roelofs, Karin; Koch, Saskia; Verhagen, Lennart; Toni, Ivan

    2011-10-25

    When dealing with emotional situations, we often need to rapidly override automatic stimulus-response mappings and select an alternative course of action [1], for instance, when trying to manage, rather than avoid, another's aggressive behavior. The anterior prefrontal cortex (aPFC) has been linked to the control of these social emotional behaviors [2, 3]. We studied how this control is implemented by inhibiting the left aPFC with continuous theta burst stimulation (cTBS; [4]). The behavioral and cerebral consequences of this intervention were assessed with a task quantifying the control of social emotional actions and with concurrent measurements of brain perfusion. Inhibition of the aPFC led participants to commit more errors when they needed to select rule-driven responses overriding automatic action tendencies evoked by emotional faces. Concurrently, task-related perfusion decreased in bilateral aPFC and posterior parietal cortex and increased in amygdala and left fusiform face area. We infer that the aPFC controls social emotional behavior by upregulating regions involved in rule selection [5] and downregulating regions supporting the automatic evaluation of emotions [6]. These findings illustrate how exerting emotional control during social interactions requires the aPFC to coordinate rapid action selection processes, the detection of emotional conflicts, and the inhibition of emotionally-driven responses. PMID:22000109

  18. Dynamic Construction of Stimulus Values in the Ventromedial Prefrontal Cortex

    PubMed Central

    Harris, Alison; Adolphs, Ralph; Camerer, Colin; Rangel, Antonio

    2011-01-01

    Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across three major time windows after stimulus onset: 150–250 ms, 400–550 ms, and 700–800 ms. Exploratory localization of the EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results, functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the choice process, and seem to reflect the integration of incoming information from sensory and memory related regions. PMID:21695081

  19. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  20. Prefrontal Parvalbumin Neurons in Control of Attention

    PubMed Central

    Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming; Deisseroth, Karl; Carlén, Marie

    2016-01-01

    Summary While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing. PMID:26771492

  1. Divergent Plasticity of Prefrontal Cortex Networks

    PubMed Central

    Moghaddam, Bita; Homayoun, Houman

    2010-01-01

    The ‘executive’ regions of the prefrontal cortex (PFC) such as the dorsolateral PFC (dlPFC) and its rodent equivalent medial PFC (mPFC) are thought to respond in concert with the ‘limbic’ regions of the PFC such as the orbitofrontal (OFC) cortex to orchestrate behavior that is consistent with context and expected outcome. Both groups of regions have been implicated in behavioral abnormalities associated with addiction and psychiatric disorders, in particular, schizophrenia and mood disorders. Theories about the pathophysiology of these disorders, however, incorporate abnormalities in discrete PFC regions independently of each other or assume they are one and the same and, thus, bunch them under umbrella of ‘PFC dysfunction.’ Emerging data from animal studies suggest that mPFC and OFC neurons display opposing patterns of plasticity during associative learning and in response to repeated exposure to psychostimulants. These data corroborate clinical studies reporting different patterns of activation in OFC versus dlPFC in individuals with schizophrenia or addictive disorders. These suggest that concomitant but divergent engagement of discrete PFC regions is critical for learning stimulus-outcome associations, and the execution of goal-directed behavior that is based on these associations. An atypical interplay between these regions may lead to abnormally high or low salience assigned to stimuli, resulting in symptoms that are fundamental to many psychiatric and addictive disorders, including attentional deficits, improper affective response to stimuli, and inflexible or impulsive behavior. PMID:17912252

  2. Prefrontal control of attention to threat.

    PubMed

    Peers, Polly V; Simons, Jon S; Lawrence, Andrew D

    2013-01-01

    Attentional control refers to the regulatory processes that ensure that our actions are in accordance with our goals. Dual-system accounts view temperament as consisting of both individual variation in emotionality (e.g., trait anxiety) and variation in regulatory attentional mechanisms that act to modulate emotionality. Increasing evidence links trait variation in attentional control to clinical mood and anxiety disorder symptoms, independent of trait emotionality. Attentional biases to threat have been robustly linked to mood and anxiety disorders. However, the role of variation in attentional control in influencing such biases, and the neural underpinnings of trait variation in attentional control, are unknown. Here, we show that individual differences in trait attentional control, even when accounting for trait and state anxiety, are related to the magnitude of an attentional blink (AB) following threat-related targets. Moreover, we demonstrate that activity in dorso-lateral prefrontal cortex (DLPFC), is observed specifically in relation to control of attention over threatening stimuli, in line with neural theories of attentional control, such as guided activation theory. These results have key implications for neurocognitive theories of attentional bias and emotional resilience. PMID:23386824

  3. Prefrontal glutamate correlates of methamphetamine sensitization and preference.

    PubMed

    Lominac, Kevin D; Quadir, Sema G; Barrett, Hannah M; McKenna, Courtney L; Schwartz, Lisa M; Ruiz, Paige N; Wroten, Melissa G; Campbell, Rianne R; Miller, Bailey W; Holloway, John J; Travis, Katherine O; Rajasekar, Ganesh; Maliniak, Dan; Thompson, Andrew B; Urman, Lawrence E; Kippin, Tod E; Phillips, Tamara J; Szumlinski, Karen K

    2016-03-01

    Methamphetamine (MA) is a widely misused, highly addictive psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated MA impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relationship between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of MA (ten injections of 2 mg/kg, i.p.) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high vs. low MA-drinking selectively bred mouse lines (MAHDR vs. MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated MA sensitized drug-induced glutamate release and lowered indices of N-methyl-d-aspartate receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. Elevated basal glutamate, blunted MA-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high vs. low MA drinking, and Homer2a/b levels were inversely correlated with the motivational valence of MA in C57BL/6J mice. These data provide novel evidence that repeated, low-dose MA is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in MA addiction vulnerability/resiliency. PMID:26742098

  4. Legal aspects.

    PubMed

    Escher, A

    1975-01-01

    The manufacture, application, use and disposal of fluorescent whitening agents (FWAs) may give rise to legal questions relating mainly to environmental protection and the effects on man and animals. In addition to legal aspects, certain commercial aspects such as the law of competition and the obligations of industry, including compensation for damage caused by FWAs, are discussed. PMID:1064546

  5. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    PubMed Central

    López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M.

    2015-01-01

    Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations. PMID:25688195

  6. Variability in Prefrontal Hemodynamic Response during Exposure to Repeated Self-Selected Music Excerpts, a Near-Infrared Spectroscopy Study

    PubMed Central

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes. PMID:25837268

  7. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    PubMed

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes. PMID:25837268

  8. Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing

    PubMed Central

    Hwang, Jaewon

    2015-01-01

    During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614

  9. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.

    PubMed

    Karalis, Nikolaos; Dejean, Cyril; Chaudun, Fabrice; Khoder, Suzana; Rozeske, Robert R; Wurtz, Hélène; Bagur, Sophie; Benchenane, Karim; Sirota, Anton; Courtin, Julien; Herry, Cyril

    2016-04-01

    Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior. PMID:26878674

  10. Aspects of the Mother-Nanny Relationship: Some Concepts from Psychoanalytic Research to Understand Problem Areas Which Can Interfere with the Optimal Care for Children.

    ERIC Educational Resources Information Center

    Magagna, Jeanne

    Elaborating on two main styles of multiple caretaking, this paper discusses those aspects of the mother-nanny relationship which influence the optimal care of the child. A caretaking style based in denial involves obliterating, denying, and distracting the child from his painful emotional experiences, fostering "the stiff upper lip," and the "I…

  11. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection.

    PubMed

    Johnston, Kevin; Lomber, Stephen G; Everling, Stefan

    2016-03-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  12. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits

    PubMed Central

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana

    2016-01-01

    frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. PMID:26758840

  13. Survey of women׳s experiences of care in a new freestanding midwifery unit in an inner city area of London, England: 2. Specific aspects of care

    PubMed Central

    Macfarlane, Alison J.; Rocca-Ihenacho, Lucia; Turner, Lyle R.

    2014-01-01

    Objective to describe and compare women׳s experiences of specific aspects of maternity care before and after the opening of the Barkantine Birth Centre, a new freestanding midwifery unit in an inner city area. Design telephone surveys undertaken in late pregnancy and about six weeks after birth. Two separate waves of interviews were conducted, Phase 1 before the birth centre opened and Phase 2 after it had opened. Setting Tower Hamlets, a deprived inner city borough in east London, 2007–2010. Participants 620 women who were resident in Tower Hamlets and who satisfied the Barts and the London Trust’s eligibility criteria for using the birth centre. Of these, 259 women were recruited to Phase 1 and 361 to Phase 2. Measurements and findings the replies women gave show marked differences between the model of care in the birth centre and that at the obstetric unit at the Royal London Hospital with respect to experiences of care and specific practices. Women who initially booked for birth centre care were more likely to attend antenatal classes and find them useful and were less likely to be induced. Women who started labour care at the birth centre in spontaneous labour were more likely to use non-pharmacological methods of pain relief, most notably water and less likely to use pethidine than women who started care at the hospital. They were more likely to be able to move around in labour and less likely to have their membranes ruptured or have continuous CTG. They were more likely to be told to push spontaneously when they needed to rather than under directed pushing and more likely to report that they had been able to choose their position for birth and deliver in places other than the bed, in contrast to the situation at the hospital. The majority of women who had a spontaneous onset of labour delivered vaginally, with 28.6 per cent of women at the birth centre but no one at the hospital delivering in water. Primiparous women who delivered at the birth centre

  14. Prefrontal cortical microcircuits bind perception to executive control

    NASA Astrophysics Data System (ADS)

    Opris, Ioan; Santos, Lucas; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2013-07-01

    During the perception-to-action cycle, our cerebral cortex mediates the interactions between the environment and the perceptual-executive systems of the brain. At the top of the executive hierarchy, prefrontal cortical microcircuits are assumed to bind perceptual and executive control information to guide goal-driven behavior. Here, we tested this hypothesis by comparing simultaneously recorded neuron firing in prefrontal cortical layers and the caudate-putamen of rhesus monkeys, trained in a spatial-versus-object, rule-based match-to-sample task. We found that during the perception and executive selection phases, cell firing in the localized prefrontal layers and caudate-putamen region exhibited similar location preferences on spatial-trials, but less on object- trials. Then, we facilitated the perceptual-executive circuit by stimulating the prefrontal infra-granular-layers with patterns previously derived from supra-granular-layers, and produced stimulation-induced spatial preference in percent correct performance on spatial trials, similar to neural tuning. These results show that inter-laminar prefrontal microcircuits play causal roles to the perception-to-action cycle.

  15. Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy.

    PubMed

    Trebuchon, Agnès; Bartolomei, Fabrice; McGonigal, Aileen; Laguitton, Virginie; Chauvel, Patrick

    2013-11-01

    Frontal lobe dysfunction is known to be associated with impairment in social behavior. We investigated the link between severe pharmacoresistant frontal lobe epilepsy and antisocial trait. We studied four patients with pharmacoresistant epilepsy involving the prefrontal cortex, presenting abnormal interictal social behavior. Noninvasive investigations (video-EEG, PET, MRI) and intracerebral recording (stereoelectroencephalography (SEEG)) were performed as part of a presurgical assessment. Comprehensive psychiatric and cognitive evaluation was performed pre- and postoperatively for frontal lobe epilepsy, with at least 7years of follow-up. All patients shared a characteristic epilepsy pattern: (1) chronic severe prefrontal epilepsy with daily seizures and (2) an epileptogenic zone as defined by intracerebral recording involving the anterior cingulate cortex, ventromedial PFC, and the posterior part of the orbitofrontal cortex, with early propagation to contralateral prefrontal and ipsilateral medial temporal structures. All patients fulfilled the diagnostic criteria (DSM-IV) of antisocial personality disorder, which proved to be reversible following seizure control. Pharmacoresistant epilepsy involving a prefrontal network is associated with antisocial personality. We hypothesize that the occurrence of frequent seizures in this region over a prolonged period produces functional damage leading to impaired prefrontal control of social behavior. This functional damage is reversible since successful epilepsy surgery markedly improved antisocial behavior in these patients. The results are in line with previous reports of impairment of social and moral behavior following ventromedial frontal lobe injury. PMID:24074892

  16. DISC1 Ser704Cys impacts thalamic-prefrontal connectivity.

    PubMed

    Liu, Bing; Fan, Lingzhong; Cui, Yue; Zhang, Xiaolong; Hou, Bing; Li, Yonghui; Qin, Wen; Wang, Dawei; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The Disrupted-in-Schizophrenia 1 (DISC1) gene has been thought as a putative susceptibility gene for various psychiatric disorders, and DISC1 Ser704Cys is associated with variations of brain morphology and function. Moreover, our recent diffusion magnetic resonance imaging (dMRI) study reported that DISC1 Ser704Cys was associated with information transfer efficiency in the brain anatomical network. However, the effects of the DISC1 gene on functional brain connectivity and networks, especially for thalamic-prefrontal circuit, which are disrupted in various psychiatric disorders, are largely unknown. Using a functional connectivity density (FCD) mapping method based on functional magnetic resonance imaging data in a large sample of healthy Han Chinese subjects, we first investigated the association between DISC1 Ser704Cys and short- and long-range FCD hubs. Compared with Ser homozygotes, Cys-allele individuals had increased long-range FCD hubs in the bilateral thalami. The functional and anatomical connectivity of the thalamus to the prefrontal cortex was further analyzed. Significantly increased thalamic-prefrontal functional connectivity and decreased thalamic-prefrontal anatomical connectivity were found in DISC1 Cys-allele carriers. Our findings provide consistent evidence that the DISC1 Ser704Cys polymorphism influences the thalamic-prefrontal circuits in humans and may provide new insights into the neural mechanisms that link DISC1 and the risk for psychiatric disorders. PMID:24146131

  17. Reduced prefrontal gyrification in obsessive–compulsive disorder

    PubMed Central

    Gruber, Oliver; McIntosh, Andrew M.; Kraft, Susanne; Klinghardt, Anne; Scherk, Harald; Reith, Wolfgang; Schneider-Axmann, Thomas; Lawrie, Stephen M.; Falkai, Peter; Moorhead, Thomas William

    2010-01-01

    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessive–compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (p = 0.021) and a trend for a decreased A-GI in the right hemisphere (p = 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease. PMID:20112027

  18. Right prefrontal activation produced by arterial baroreceptor stimulation: a PET study.

    PubMed

    Weisz, J; Emri, M; Fent, J; Lengyel, Z; Márián, T; Horváth, G; Bogner, P; Trón, L; Adám, G

    2001-10-29

    This study was performed to test the hypothesis of greater right hemispheric involvement in the processing of baroreceptor stimuli. Carotid sinus baroreceptors were stimulated by rhythmically decreasing air pressure in a neck chamber, and under control conditions the thorax was stimulated in a similar manner. Changes in regional cerebral blood flow (rCBF) were measured by PET. Baroreceptor stimulation resulted in rCBF increase in the right anterior-inferior prefrontal cortex (Brodmann areas (BA) 10/44/47) and bilaterally in BA 6/8. We conclude that in at least some stages of baroreceptor information processing the right hemisphere plays a greater role than the left hemisphere. PMID:11711862

  19. Correlation between Ventromedial Prefrontal Cortex Activation to Food Aromas and Cue-driven Eating: An fMRI Study

    PubMed Central

    Eiler, William J.A.; Dzemidzic, Mario; Case, K. Rose; Considine, Robert V.; Kareken, David A.

    2014-01-01

    Food aromas are signals associated with both food's availability and pleasure. Previous research from this laboratory has shown that food aromas under fasting conditions evoke robust activation of medial prefrontal brain regions thought to reflect reward value (Bragulat, et al. 2010). In the current study, eighteen women (eleven normal-weight and seven obese) underwent a two-day imaging study (one after being fed, one while fasting). All were imaged on a 3T Siemens Trio-Tim scanner while sniffing two food (F; pasta and beef) odors, one non-food (NF; Douglas fir) odor, and an odorless control (CO). Prior to imaging, participants rated hunger and perceived odor qualities, and completed the Dutch Eating Behavior Questionnaire (DEBQ) to assess “Externality” (the extent to which eating is driven by external food cues). Across all participants, both food and non-food odors (compared to CO) elicited large blood oxygenation level dependent (BOLD) responses in olfactory and reward-related areas, including the medial prefrontal and anterior cingulate cortex, bilateral orbitofrontal cortex, and bilateral piriform cortex, amygdala, and hippocampus. However, food odors produced greater activation of medial prefrontal cortex, left lateral orbitofrontal cortex and inferior insula than non-food odors. Moreover, there was a significant correlation between the [F > CO] BOLD response in ventromedial prefrontal cortex and “Externality” sub-scale scores of the DEBQ, but only under the fed condition; no such correlation was present with the [NF > CO] response. This suggests that in those with high Externality, ventromedial prefrontal cortex may inappropriately valuate external food cues in the absence of internal hunger. PMID:25485031

  20. Age differences in medial prefrontal activity for subsequent memory of truth value

    PubMed Central

    Cassidy, Brittany S.; Hedden, Trey; Yoon, Carolyn; Gutchess, Angela H.

    2014-01-01

    Much research has demonstrated that aging is marked by decreased source memory relative to young adults, yet a smaller body of work has demonstrated that increasing the socioemotional content of source information may be one way to reduce age-related performance differences. Although dorsomedial prefrontal cortex (dmPFC) activity may support source memory among young and older adults, the extent to which one activates dorsal vs. ventral mPFC may reflect one's personal connection with incoming information. Because truth value may be one salient marker that impacts one's connection with information and allocation of attention toward incoming material, we investigated whether the perceived truth value of information differently impacts differences in mPFC activity associated with encoding source information, particularly with age. Twelve young (18–23 years) and 12 older adults (63–80 years) encoded true and false statements. Behavioral results showed similar memory performance between the age groups. With respect to neural activity associated with subsequent memory, young adults, relative to older adults, exhibited greater activity in dmPFC while older adults displayed enhanced ventromedial prefrontal cortex (vmPFC) and insula engagement relative to young. These results may potentially indicate that young adults focus on a general knowledge acquisition goal, while older adults focus on emotionally relevant aspects of the material. The findings demonstrate that age-related differences in recruitment of mPFC associated with encoding source information may in some circumstances underlie age-equivalent behavioral performance. PMID:24570672

  1. Single Prolonged Stress Decreases Glutamate, Glutamine, and Creatine Concentrations In The Rat Medial Prefrontal Cortex

    PubMed Central

    Knox, Dayan; Perrine, Shane A.; George, Sophie A.; Galloway, Matthew P.; Liberzon, Israel

    2010-01-01

    Application of Single Prolonged Stress (SPS) in rats induces changes in neuroendocrine function and arousal that are characteristic of Post Traumatic Stress Disorder (PTSD). PTSD, in humans, is associated with decreased neural activity in the prefrontal cortex, increased neural activity in the amygdala complex, and reduced neuronal integrity in the hippocampus. However, the extent to which SPS models these aspects of PTSD has not been established. In order to address this, we used high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H MRS) ex vivo to assay levels of neurochemicals critical for energy metabolism (creatine and lactate), excitatory (glutamate and glutamine) and inhibitory (gamma amino butyric acid (GABA)) neurotransmission, and neuronal integrity (N-acetyl aspartate (NAA)) in the medial prefrontal cortex (mPFC), amygdala complex, and hippocampus of SPS and control rats. Glutamate, glutamine, and creatine levels were decreased in the mPFC of SPS rats when compared to controls, which suggests decreased excitatory tone in this region. SPS did not alter the neurochemical profiles of either the hippocampus or amygdala. These data suggest that SPS selectively attenuates excitatory tone, without a disruption of neuronal integrity, in the mPFC. PMID:20546834

  2. Development of abstract thinking during childhood and adolescence: the role of rostrolateral prefrontal cortex.

    PubMed

    Dumontheil, Iroise

    2014-10-01

    Rostral prefrontal cortex (RPFC) has increased in size and changed in terms of its cellular organisation during primate evolution. In parallel emerged the ability to detach oneself from the immediate environment to process abstract thoughts and solve problems and to understand other individuals' thoughts and intentions. Rostrolateral prefrontal cortex (RLPFC) is thought to play an important role in supporting the integration of abstract, often self-generated, thoughts. Thoughts can be temporally abstract and relate to long term goals, or past or future events, or relationally abstract and focus on the relationships between representations rather than simple stimulus features. Behavioural studies have provided evidence of a prolonged development of the cognitive functions associated with RLPFC, in particular logical and relational reasoning, but also episodic memory retrieval and prospective memory. Functional and structural neuroimaging studies provide further support for a prolonged development of RLPFC during adolescence, with some evidence of increased specialisation of RLPFC activation for relational integration and aspects of episodic memory retrieval. Topics for future research will be discussed, such as the role of medial RPFC in processing abstract thoughts in the social domain, the possibility of training abstract thinking in the domain of reasoning, and links to education. PMID:25173960

  3. Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex.

    PubMed

    Huang, Chiung-Chun; Lin, Hsiao-Ju; Hsu, Kuei-Sen

    2007-08-01

    Although drug-induced adaptations in the prefrontal cortex (PFC) may contribute to several core aspects of addictive behaviors, it is not clear yet whether drugs of abuse elicit changes in synaptic plasticity at the PFC excitatory synapses. Here we report that, following repeated cocaine administration (15 mg/kg/day intraperitoneal injection for 5 consecutive days) with a 3-day withdrawal, excitatory synapses to layer V pyramidal neurons in rat medial prefrontal cortex (mPFC) become highly sensitive to the induction of long-term potentiation (LTP) by repeated correlated presynaptic and postsynaptic activity. This promoted LTP induction is caused by cocaine-induced reduction of gamma-aminobutyric acid (GABA)(A) receptor-mediated inhibition of mPFC pyramidal neurons. In contrast, in slices from rats treated with saline or a single dose of cocaine, the same LTP induction protocol did not induce significant LTP unless the blockade of GABA(A) receptors. Blockade of the D1-like receptors specifically prevented the cocaine-induced enhancement of LTP. Repeated cocaine exposure reduced the GABA(A) receptor-mediated synaptic currents in mPFC pyramidal neurons. Biotinylation experiments revealed a significant reduction of surface GABA(A) receptor alpha1 subunit expression in mPFC slices from repeated cocaine-treated rats. These findings support an important role for cocaine-induced enhancement of synaptic plasticity in the PFC in the development of drug-associated behavioral plasticity. PMID:17050645

  4. Prefrontal cortical blood flow and cognitive function in Huntington's disease.

    PubMed Central

    Weinberger, D R; Berman, K F; Iadarola, M; Driesen, N; Zec, R F

    1988-01-01

    To examine the relationship between cortical physiology and dementia in Huntington's disease, rCBF during three different behavioural conditions, one of which emphasised prefrontal cognition, was determined by xenon-133 inhalation in 14 patients with Huntington's disease and in matched controls. Cortical rCBF was not reduced in Huntington's disease patients even while they manifested overt prefrontal-type cognitive deficits. Caudate atrophy on CT and rCBF were significantly correlated, but only during the prefrontal behaviour where the correlation was positive. These results suggest a qualification of the subcortical dementia concept as applied to Huntington's disease and implicate an interaction between pathology that is subcortical and cognitive function that is cortical. Images PMID:2965218

  5. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    PubMed

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC. PMID:22879355

  6. Synapses with inhibitory neurons differentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control

    PubMed Central

    Medalla, M.; Barbas, H.

    2009-01-01

    Summary The primate dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) focus attention on relevant signals and suppress noise in cognitive tasks. However, their synaptic interactions and unique roles in cognitive control are unknown. We report that two distinct pathways to DLPFC area 9, one from the neighboring area 46 and the other from the functionally distinct ACC, similarly innervate excitatory neurons associated with selecting relevant stimuli. However, ACC has more prevalent and larger synapses with inhibitory neurons and preferentially innervates calbindin inhibitory neurons, which reduce noise by inhibiting excitatory neurons. In contrast, area 46 mostly innervates calretinin inhibitory neurons, which disinhibit excitatory neurons. These synaptic specializations suggest that ACC has a greater impact in reducing noise in dorsolateral areas during challenging cognitive tasks involving conflict, error, or reversing decisions, mechanisms that are disrupted in schizophrenia. These observations highlight the unique roles of the DLPFC and ACC in cognitive control. PMID:19249280

  7. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia

    PubMed Central

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A.; Semeralul, Mawahib O.; Chen, Robert; Fitzgerald, Paul B.

    2015-01-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  8. Speed-accuracy strategy regulations in prefrontal tumor patients

    PubMed Central

    Campanella, Fabio; Skrap, Miran; Vallesi, Antonino

    2016-01-01

    The ability to flexibly switch between fast and accurate decisions is crucial in everyday life. Recent neuroimaging evidence suggested that left lateral prefrontal cortex plays a role in switching from a quick response strategy to an accurate one. However, the causal role of the left prefrontal cortex in this particular, non-verbal, strategy switch has never been demonstrated. To fill this gap, we administered a perceptual decision-making task to neuro-oncological prefrontal patients, in which the requirement to be quick or accurate changed randomly on a trial-by-trial basis. To directly assess hemispheric asymmetries in speed-accuracy regulation, patients were tested a few days before and a few days after surgical excision of a brain tumor involving either the left (N=13) or the right (N=12) lateral frontal brain region. A group of age- and education-matched healthy controls was also recruited. To gain more insight on the component processes implied in the task, performance data (accuracy and speed) were not only analyzed separately but also submitted to a diffusion model analysis. The main findings indicated that the left prefrontal patients were impaired in appropriately adopting stricter response criteria in speed-to-accuracy switching trials with respect to healthy controls and right prefrontal patients, who were not impaired in this condition. This study demonstrates that the prefrontal cortex in the left hemisphere is necessary for flexible behavioral regulations, in particular when setting stricter response criteria is required in order to successfully switch from a speedy strategy to an accurate one. PMID:26772144

  9. Speed-accuracy strategy regulations in prefrontal tumor patients.

    PubMed

    Campanella, Fabio; Skrap, Miran; Vallesi, Antonino

    2016-02-01

    The ability to flexibly switch between fast and accurate decisions is crucial in everyday life. Recent neuroimaging evidence suggested that left lateral prefrontal cortex plays a role in switching from a quick response strategy to an accurate one. However, the causal role of the left prefrontal cortex in this particular, non-verbal, strategy switch has never been demonstrated. To fill this gap, we administered a perceptual decision-making task to neuro-oncological prefrontal patients, in which the requirement to be quick or accurate changed randomly on a trial-by-trial basis. To directly assess hemispheric asymmetries in speed-accuracy regulation, patients were tested a few days before and a few days after surgical excision of a brain tumor involving either the left (N=13) or the right (N=12) lateral frontal brain region. A group of age- and education-matched healthy controls was also recruited. To gain more insight on the component processes implied in the task, performance data (accuracy and speed) were not only analyzed separately but also submitted to a diffusion model analysis. The main findings indicated that the left prefrontal patients were impaired in appropriately adopting stricter response criteria in speed-to-accuracy switching trials with respect to healthy controls and right prefrontal patients, who were not impaired in this condition. This study demonstrates that the prefrontal cortex in the left hemisphere is necessary for flexible behavioral regulations, in particular when setting stricter response criteria is required in order to successfully switch from a speedy strategy to an accurate one. PMID:26772144

  10. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation

    PubMed Central

    Witteveen, Josefine S.; Middelman, Anthonieke; van Hulten, Josephus A.; Martens, Gerard J. M.; Homberg, Judith R.; Kolk, Sharon M.

    2013-01-01

    Besides its “classical” neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT−/−). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT−/− pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for

  11. Prefrontal Cortex Activity Related to Abstract Response Strategies

    PubMed Central

    Genovesio, Aldo; Brasted, Peter J.; Mitz, Andrew R.; Wise, Steven P.

    2005-01-01

    Overview In monkeys, foraging strategies depend not only on a context established by spatial or symbolic cues, but also on the relations among cues. Genovesio et al. recorded the activity of prefrontal cortex neurons while monkeys chose a strategy based on the relation between consecutive symbolic cues. For the same cues and actions, the monkeys also learned fixed responses to the same symbols. Many neurons had activity selective for a given strategy, others for whether the monkeys’ response choice depended on a symbol or the relation between symbols. These findings indicate that the primate prefrontal cortex contributes to implementing abstract strategies. PMID:16039571

  12. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults☆

    PubMed Central

    Ishii-Takahashi, Ayaka; Takizawa, Ryu; Nishimura, Yukika; Kawakubo, Yuki; Kuwabara, Hitoshi; Matsubayashi, Junko; Hamada, Kasumi; Okuhata, Shiho; Yahata, Noriaki; Igarashi, Takashi; Kawasaki, Shingo; Yamasue, Hidenori; Kato, Nobumasa; Kasai, Kiyoto; Kano, Yukiko

    2013-01-01

    The differential diagnosis of autism spectrum disorders (ASDs) and attention deficit hyperactivity disorder (ADHD) based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders. PMID:24298446

  13. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults.

    PubMed

    Ishii-Takahashi, Ayaka; Takizawa, Ryu; Nishimura, Yukika; Kawakubo, Yuki; Kuwabara, Hitoshi; Matsubayashi, Junko; Hamada, Kasumi; Okuhata, Shiho; Yahata, Noriaki; Igarashi, Takashi; Kawasaki, Shingo; Yamasue, Hidenori; Kato, Nobumasa; Kasai, Kiyoto; Kano, Yukiko

    2014-01-01

    The differential diagnosis of autism spectrum disorders (ASDs) and attention deficit hyperactivity disorder (ADHD) based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders. PMID:24298446

  14. Are you upset? Distinct roles for orbitofrontal and lateral prefrontal cortex in detecting and distinguishing facial expressions of emotion.

    PubMed

    Tsuchida, Ami; Fellows, Lesley K

    2012-12-01

    Navigating our complex social world requires effective processing of subtle emotional signals, such as those conveyed by facial expressions. Failure to do so may underlie some of the disabling social-emotional deficits common in a range of neuropsychiatric and neurological conditions. Prefrontal cortex (PFC) has long been implicated in these processes, but the particular contributions of subregions within PFC remain unclear. We used a sensitive facial emotion rating task in patients with focal lesions to different regions within PFC to identify distinct contributions of 2 prefrontal regions to recognizing emotions from facial expressions. A combination of region-of-interest and voxel-based lesion-symptom mapping established that damage to ventromedial PFC impaired the detection of subtle facial expressions of emotion. Such patients had difficulty distinguishing emotional from neutral expressions. In contrast, patients with left ventrolateral PFC were able to detect the presence of emotional signals but had difficulty discriminating between specific emotions. These effects were regionally specific: Dorsomedial prefrontal damage had no effect on either aspect of emotion recognition. These findings suggest that separable processes relying critically on distinct regions within PFC responsible, on the one hand, for detecting emotional signals from facial expressions and, on the other, for correctly classifying such signals. PMID:22223852

  15. Differential expression of immediate early genes Zif268 and c-Fos in the hippocampus and prefrontal cortex following spatial learning and glutamate receptor antagonism.

    PubMed

    Farina, Francesca R; Commins, Sean

    2016-07-01

    The objective of this study was to examine the effects of NMDAR and AMPAR antagonism on the expression of Zif268 and c-Fos in the hippocampus and medial prefrontal cortex during spatial memory encoding in rats trained in the Morris water maze. NMDAR inhibition impaired navigation and significantly attenuated expression of Zif268, but not c-Fos, in area CA1. AMPAR channel blockade had little effect on learning or IEG expression. Overall, Zif268 and c-Fos displayed markedly different patterns of hippocampal and prefrontal expression, with Zif268 being more closely linked to spatial learning. PMID:27071329

  16. Advantages and disadvantages of intraoperative language tasks in awake surgery: a three-task approach for prefrontal tumors.

    PubMed

    Rofes, A; Spena, G; Miozzo, A; Fontanella, M M; Miceli, G

    2015-12-01

    Multidisciplinary efforts are being made to provide surgical teams with sensitive and specific tasks for language mapping in awake surgery. Researchers and clinicians have elaborated different tasks over time. A fair amount of work has been directed to study the neurofunctional correlates of some of these tasks, and there is recent interest in their standardization. However, little discussion exists on the advantages and disadvantages that each task poses from the perspective of the cognitive neuroscience of language. Such an approach may be a relevant step to assess task validity, to avoid using tasks that tap onto similar processes, and to provide patients with a surgical treatment that ensures maximal tumor resection while avoiding postoperative language deficits. An understanding of the language components that each task entails may also be relevant to improve the current assessments and the ways in which tasks are administered, and to disentangle neurofunctional questions. We reviewed 17 language mapping tasks that have been used in awake surgery. Overt production tasks have been a preferred choice over comprehension tasks. Tasks tapping lexico-semantic processes, particularly object-naming, maintain their role as gold standards. Automated speech tasks are used to detect speech errors and to set the amplitude of the stimulator. Comprehension tasks, reading and writing tasks, and tasks that assess grammatical aspects of language may be regularly administered in the near future. We provide examples of a three-task approach we are administering to patients with prefrontal lesions. We believe that future advances in this area are contingent upon reviewing gold standards and introducing new assessment tools. PMID:26159550

  17. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex.

    PubMed

    Fujisawa, Shigeyoshi; Amarasingham, Asohan; Harrison, Matthew T; Buzsáki, György

    2008-07-01

    Although short-term plasticity is believed to play a fundamental role in cortical computation, empirical evidence bearing on its role during behavior is scarce. Here we looked for the signature of short-term plasticity in the fine-timescale spiking relationships of a simultaneously recorded population of physiologically identified pyramidal cells and interneurons, in the medial prefrontal cortex of the rat, in a working memory task. On broader timescales, sequentially organized and transiently active neurons reliably differentiated between different trajectories of the rat in the maze. On finer timescales, putative monosynaptic interactions reflected short-term plasticity in their dynamic and predictable modulation across various aspects of the task, beyond a statistical accounting for the effect of the neurons' co-varying firing rates. Seeking potential mechanisms for such effects, we found evidence for both firing pattern-dependent facilitation and depression, as well as for a supralinear effect of presynaptic coincidence on the firing of postsynaptic targets. PMID:18516033

  18. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability.

    PubMed

    Armbruster, Diana J N; Ueltzhöffer, Kai; Basten, Ulrike; Fiebach, Christian J

    2012-12-01

    The pFC is critical for cognitive flexibility (i.e., our ability to flexibly adjust behavior to changing environmental demands), but also for cognitive stability (i.e., our ability to follow behavioral plans in the face of distraction). Behavioral research suggests that individuals differ in their cognitive flexibility and stability, and neurocomputational theories of working memory relate this variability to the concept of attractor stability in recurrently connected neural networks. We introduce a novel task paradigm to simultaneously assess flexible switching between task rules (cognitive flexibility) and task performance in the presence of irrelevant distractors (cognitive stability) and to furthermore assess the individual "spontaneous switching rate" in response to ambiguous stimuli to quantify the individual dispositional cognitive flexibility in a theoretically motivated way (i.e., as a proxy for attractor stability). Using fMRI in healthy human participants, a common network consisting of parietal and frontal areas was found for task switching and distractor inhibition. More flexible persons showed reduced activation and reduced functional coupling in frontal areas, including the inferior frontal junction, during task switching. Most importantly, the individual spontaneous switching rate antagonistically affected the functional coupling between inferior frontal junction and the superior frontal gyrus during task switching and distractor inhibition, respectively, indicating that individual differences in cognitive flexibility and stability are indeed related to a common prefrontal neural mechanism. We suggest that the concept of attractor stability of prefrontal working memory networks is a meaningful model for individual differences in cognitive stability versus flexibility. PMID:22905818

  19. Similar or different? The role of the ventrolateral prefrontal cortex in similarity detection.

    PubMed

    Garcin, Béatrice; Volle, Emmanuelle; Dubois, Bruno; Levy, Richard

    2012-01-01

    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., "both have peel"), while others continue to look for differences between these objects (e.g., "one is yellow, the other is orange"). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC. PMID:22479551

  20. Optical imaging of the prefrontal activity in joint attention experience

    PubMed Central

    Qiu, Lina; Zhang, Xiao; Li, Jun

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) was used to measure the prefrontal activity in joint attention experience. 16 healthy adults participated in the experiment in which 42 optical channels were fixed over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG) and a small anterior portion of the superior temporal gyrus (STG). Video stimuli were used to engender joint or non-joint attention experience in observers. Cortical hemodynamic response and functional connectivity were measured and averaged across all subjects for each stimulus condition. Our data showed the activation in joint attention located in the aPFC and DLPFC bilaterally, but dominantly in the left hemisphere. This observation, together with the previous findings on infants and children, provides a clear developmental scenario on the prefrontal activation associated with joint attention process. In the case of non-joint attention condition, only a small region of the right DLPFC was activated. Functional connectivity was observed to be enhanced, but differently in joint and non-joint attention condition. PMID:26417513

  1. Prefrontal Cortex and Social Cognition in Mouse and Man

    PubMed Central

    Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  2. Extinction Circuits for Fear and Addiction Overlap in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Peters, Jamie; Kalivas, Peter W.; Quirk, Gregory J.

    2009-01-01

    Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is…

  3. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  4. Dissociation between verbal response initiation and suppression after prefrontal lesions.

    PubMed

    Volle, Emmanuelle; de Lacy Costello, Angela; Coates, Laure M; McGuire, Catrin; Towgood, Karren; Gilbert, Sam; Kinkingnehun, Serge; McNeil, Jane E; Greenwood, Richard; Papps, Ben; van den Broeck, Martin; Burgess, Paul W

    2012-10-01

    Some of the most striking symptoms after prefrontal damage are reduction of behavioral initiation and inability to suppress automatic behaviors. However, the relation between these 2 symptoms and the location of the lesions that cause them are not well understood. This study investigates the cerebral correlates of initiation and suppression abilities assessed by the Hayling Sentence Completion Test, using the human lesion approach. Forty-five patients with focal brain lesions and 110 healthy matched controls were examined. We combined a classical group approach with 2 voxel-based lesion methods. The results show several critical prefrontal regions to Hayling Test performance, associated with either common or differential impairment in "initiation" and "suppression" conditions. A crucial role for medial rostral prefrontal cortex (BA 10) in the initiation condition was shown by both group and lesion-mapping methods. A posterior inferolateral lesion provoked both initiation and suppression slowness, although to different degrees. An orbitoventral region was associated with errors in the suppression condition. These findings are important for clinical practice since they indicate that the brain regions required to perform a widely used and sensitive neuropsychological test but also shed light on the regions crucial for distinct components of adaptative behaviors, in particular, rostral prefrontal cortex. PMID:22095216

  5. Dissociation between Verbal Response Initiation and Suppression after Prefrontal Lesions

    PubMed Central

    de Lacy Costello, Angela; Coates, Laure M.; McGuire, Catrin; Towgood, Karren; Gilbert, Sam; Kinkingnehun, Serge; McNeil, Jane E.; Greenwood, Richard; Papps, Ben; van den Broeck, Martin; Burgess, Paul W.

    2012-01-01

    Some of the most striking symptoms after prefrontal damage are reduction of behavioral initiation and inability to suppress automatic behaviors. However, the relation between these 2 symptoms and the location of the lesions that cause them are not well understood. This study investigates the cerebral correlates of initiation and suppression abilities assessed by the Hayling Sentence Completion Test, using the human lesion approach. Forty-five patients with focal brain lesions and 110 healthy matched controls were examined. We combined a classical group approach with 2 voxel-based lesion methods. The results show several critical prefrontal regions to Hayling Test performance, associated with either common or differential impairment in “initiation” and “suppression” conditions. A crucial role for medial rostral prefrontal cortex (BA 10) in the initiation condition was shown by both group and lesion-mapping methods. A posterior inferolateral lesion provoked both initiation and suppression slowness, although to different degrees. An orbitoventral region was associated with errors in the suppression condition. These findings are important for clinical practice since they indicate that the brain regions required to perform a widely used and sensitive neuropsychological test but also shed light on the regions crucial for distinct components of adaptative behaviors, in particular, rostral prefrontal cortex. PMID:22095216

  6. Theta Synchronizes the Activity of Medial Prefrontal Neurons during Learning

    ERIC Educational Resources Information Center

    Paz, Rony; Bauer, Elizabeth P.; Pare, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony…

  7. Dissociable prefrontal brain systems for attention and emotion

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  8. Hippocampal-prefrontal input supports spatial encoding in working memory.

    PubMed

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A

    2015-06-18

    Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. PMID:26053122

  9. Prefrontal Cortex and Social Cognition in Mouse and Man.

    PubMed

    Bicks, Lucy K; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  10. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing

    PubMed Central

    Casanova, Manuel F.

    2014-01-01

    The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer’s and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders. PMID:24531625

  11. Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation

    ERIC Educational Resources Information Center

    Cruse, Damian; Wilding, Edward L.

    2009-01-01

    Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…

  12. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    PubMed

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. Hum Brain Mapp 37:896-912, 2016. © 2015 Wiley Periodicals, Inc. PMID:26663572

  13. The Prefrontal Cortex Achieves Inhibitory Control by Facilitating Subcortical Motor Pathway Connectivity

    PubMed Central

    Hughes, Laura E.; Anderson, Michael C.; Rowe, James B.

    2015-01-01

    Communication between the prefrontal cortex and subcortical nuclei underpins the control and inhibition of behavior. However, the interactions in such pathways remain controversial. Using a stop-signal response inhibition task and functional imaging with analysis of effective connectivity, we show that the lateral prefrontal cortex influences the strength of communication between regions in the frontostriatal motor system. We compared 20 generative models that represented alternative interactions between the inferior frontal gyrus, presupplementary motor area (preSMA), subthalamic nucleus (STN), and primary motor cortex during response inhibition. Bayesian model selection revealed that during successful response inhibition, the inferior frontal gyrus modulates an excitatory influence of the preSMA on the STN, thereby amplifying the downstream polysynaptic inhibition from the STN to the motor cortex. Critically, the strength of the interaction between preSMA and STN, and the degree of modulation by the inferior frontal gyrus, predicted individual differences in participants' stopping performance (stop-signal reaction time). We then used diffusion-weighted imaging with tractography to assess white matter structure in the pathways connecting these three regions. The mean diffusivity in tracts between preSMA and the STN, and between the inferior frontal gyrus and STN, also predicted individual differences in stopping efficiency. Finally, we found that white matter structure in the tract between preSMA and STN correlated with effective connectivity of the same pathway, providing important cross-modal validation of the effective connectivity measures. Together, the results demonstrate the network dynamics and modulatory role of the prefrontal cortex that underpin individual differences in inhibitory control. PMID:25589771

  14. Functional and Structural Remodeling of Glutamate Synapses in Prefrontal and Frontal Cortex Induced by Behavioral Stress

    PubMed Central

    Musazzi, Laura; Treccani, Giulia; Popoli, Maurizio

    2015-01-01

    Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles, but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress. Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes – including those consequent to chronic stress – induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches. PMID

  15. Scientists Zero in On Brain Area Linked to 'Parkinson's Gait'

    MedlinePlus

    ... Scientists Zero in on Brain Area Linked to 'Parkinson's Gait' Discovery could lead to new treatments for ... play a role in walking difficulties that afflict Parkinson's disease patients, new research suggests. The prefrontal cortex ...

  16. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    PubMed

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. PMID:24799137

  17. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  18. Teenagers' Significant Experiences in Areas of Arts: A Study of the Subjectively Felt Impact and Some Qualitative Aspects of Experiences Involving Productive Arts Activities

    ERIC Educational Resources Information Center

    Finnas, Leif

    2012-01-01

    As a part of a larger project, this study focused primarily on Finland-Swedish ninth-graders' "productive" arts experiences (involving music-making, acting, writing, painting/drawing, dancing), as these had been reported when the pupils had been asked to write down descriptions of "strong" experiences in arts areas (music, dramatic art, literature…

  19. Aspects of three-dimensional strain at the margin of the extensional orogen, Virgin River depression area, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Anderson, R.E.; Barnhard, T.P.

    1993-01-01

    The Virgin River depression and surrounding mountains are Neogene features that are partly contiguous with the little-strained rocks of the structural transition to the Colorado Plateau province. This contiguity makes the area ideally suited for evaluating the sense, magnitude, and kinematics of Neogene deformation. Analysis along the strain boundary shows that, compared to the adjacent little-strained area, large-magnitude vertical deformation greatly exceeds extensional deformation and that significant amounts of lateral displacement approximately parallel the province boundary. Isostatic rebound following tectonic denudation is an unlikely direct cause of the strong vertical structural relief adjacent to the strain boundary. Instead, the observed structures are first-order features defining a three-dimensional strain field produced by approximately east-west extension, vertical structural attenuation, and extension-normal shortening. All major structural elements of the strain-boundary strain field are also found in the adjacent Basin and Range. -from Authors

  20. Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident.

    PubMed

    Amano, Hikaru; Akiyama, Masakazu; Chunlei, Bi; Kawamura, Takao; Kishimoto, Takeshi; Kuroda, Tomotaka; Muroi, Takahiko; Odaira, Tomoaki; Ohta, Yuji; Takeda, Kenji; Watanabe, Yushu; Morimoto, Takao

    2012-09-01

    Large amounts of radioactive substances were released into the environment from the Fukushima Dai-ichi Nuclear Power Plants in eastern Japan as a consequence of the great earthquake (M 9.0) and tsunami of 11 March 2011. Radioactive substances discharged into the atmosphere first reached the Chiba Metropolitan Area on 15 March. We collected daily samples of air, fallout deposition, and tap water starting directly after the incident and measured their radioactivity. During the first two months maximum daily concentrations of airborne radionuclides observed at the Japan Chemical Analysis Center in the Chiba Metropolitan Area were as follows: 4.7 × 10(1) Bq m(-3) of (131)I, 7.5 Bq m(-3) of (137)Cs, and 6.1 Bq m(-3) of (134)Cs. The ratio of gaseous iodine to total iodine ranged from 5.2 × 10(-1) to 7.1 × 10(-1). Observed deposition rate maxima were as follows: 1.7 × 10(4) Bq m(-2) d(-1) of (131)I, 2.9 × 10(3) Bq m(-2) d(-1) of (137)Cs, and 2.9 × 10(3) Bq m(-2) d(-1) of (134)Cs. The deposition velocities (ratio of deposition rate to concentration) of cesium radionuclides and (131)I were detectably different. Radioactivity in tap water caused by the accident was detected several days after detection of radioactivity in fallout in the area. Radiation doses were estimated from external radiation and internal radiation by inhalation and ingestion of tap water for people living outdoor in the Chiba Metropolitan Area following the Fukushima accident. PMID:22119284

  1. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex.

    PubMed

    Cheng, Gordon L F; Lee, Tatia M C

    2016-08-01

    The prefrontal cortex (PFC) subserves complex cognitive abilities, including risky decision-making; the modulation of this brain area is shown to alter the way people take risks. Yet, neuromodulation of the PFC in relation to risk-taking behavior remains relatively less well-studied. Moreover, the psychological variables that influence such neuromodulation remain poorly understood. To address these issues, 16 participants took part in 3 experimental sessions on separate days. They received: (i) left anodal-right cathodal transcranial direct current stimulation (tDCS); (ii) left cathodal-right anodal stimulation; or (iii) sham stimulation while they completed two risk-taking tasks. They also measured on several cognitive-affective abilities and personality traits. It was revealed that left cathodal-right anodal stimulation led to significantly reduced risk-taking under a context of haste. The reduction of risk-taking (relative to sham) correlated with state and trait impulsivity, such that the effect was larger in more impulsive individuals. For these individuals, the tDCS effect size was considered to be large (generalized partial η(2) > .17). The effect of prefrontal-neuromodulation in reducing risk-taking was influenced by baseline impulsivity, reflecting a state-dependent effect of neuromodulation on the PFC. The results of this study carry important insights into the use of neuromodulation to alter higher cognition. PMID:26343527

  2. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity

    SciTech Connect

    Berman, K.F.; Illowsky, B.P.; Weinberger, D.R.

    1988-07-01

    In previous studies we found that patients with chronic schizophrenia had lower regional cerebral blood flow (rCBF) in dorsolateral prefrontal cortex (DLPFC) than did normal subjects during performance of the Wisconsin Card Sort Test, an abstract reasoning task linked to DLPFC function. This was not the case during less complex tasks. To examine further whether this finding represented regionally circumscribed pathophysiology or a more general correlate of abstract cognition, 24 medication-free patients and 25 age- and sex-matched normal control subjects underwent rCBF measurements with the xenon 133 technique while they performed two tasks: Raven's Progressive Matrices (RPM) and an active baseline control task. While performing RPM, normal subjects activated posterior cortical areas over baseline, but did not activate DLPFC, as had been seen during the Wisconsin Card Sort Test. Like normal subjects, patients showed maximal rCBF elevations posteriorly and, moreover, they had no significant DLPFC or other cortical deficit while performing RPM. These results suggest that DLPFC dysfunction in schizophrenia is linked to pathophysiology of a regionally specific neural system rather than to global cortical dysfunction, and that this pathophysiology is most apparent under prefrontally specific cognitive demand.

  3. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    PubMed Central

    Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  4. Methylphenidate Enhances Executive Function and Optimizes Prefrontal Function in Both Health and Cocaine Addiction

    PubMed Central

    Moeller, Scott J.; Honorio, Jean; Tomasi, Dardo; Parvaz, Muhammad A.; Woicik, Patricia A.; Volkow, Nora D.; Goldstein, Rita Z.

    2014-01-01

    Previous studies have suggested dopamine to be involved in error monitoring/processing, possibly through impact on reinforcement learning. The current study tested whether methylphenidate (MPH), an indirect dopamine agonist, modulates brain and behavioral responses to error, and whether such modulation is more pronounced in cocaine-addicted individuals, in whom dopamine neurotransmission is disrupted. After receiving oral MPH (20 mg) or placebo (counterbalanced), 15 healthy human volunteers and 16 cocaine-addicted individuals completed a task of executive function (the Stroop color word) during functional magnetic resonance imaging (fMRI). During MPH, despite not showing differences on percent accuracy and reaction time, all subjects committed fewer total errors and slowed down more after committing errors, suggestive of more careful responding. In parallel, during MPH all subjects showed reduced dorsal anterior cingulate cortex response to the fMRI contrast error>correct. In the cocaine subjects only, MPH also reduced error>correct activity in the dorsolateral prefrontal cortex (controls instead showed lower error>correct response in this region during placebo). Taken together, MPH modulated dopaminergically innervated prefrontal cortical areas involved in error-related processing, and such modulation was accentuated in the cocaine subjects. These results are consistent with a dopaminergic contribution to error-related processing during a cognitive control task. PMID:23162047

  5. Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction.

    PubMed

    Moeller, Scott J; Honorio, Jean; Tomasi, Dardo; Parvaz, Muhammad A; Woicik, Patricia A; Volkow, Nora D; Goldstein, Rita Z

    2014-03-01

    Previous studies have suggested dopamine to be involved in error monitoring/processing, possibly through impact on reinforcement learning. The current study tested whether methylphenidate (MPH), an indirect dopamine agonist, modulates brain and behavioral responses to error, and whether such modulation is more pronounced in cocaine-addicted individuals, in whom dopamine neurotransmission is disrupted. After receiving oral MPH (20 mg) or placebo (counterbalanced), 15 healthy human volunteers and 16 cocaine-addicted individuals completed a task of executive function (the Stroop color word) during functional magnetic resonance imaging (fMRI). During MPH, despite not showing differences on percent accuracy and reaction time, all subjects committed fewer total errors and slowed down more after committing errors, suggestive of more careful responding. In parallel, during MPH all subjects showed reduced dorsal anterior cingulate cortex response to the fMRI contrast error>correct. In the cocaine subjects only, MPH also reduced error>correct activity in the dorsolateral prefrontal cortex (controls instead showed lower error>correct response in this region during placebo). Taken together, MPH modulated dopaminergically innervated prefrontal cortical areas involved in error-related processing, and such modulation was accentuated in the cocaine subjects. These results are consistent with a dopaminergic contribution to error-related processing during a cognitive control task. PMID:23162047

  6. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats.

    PubMed

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  7. Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex.

    PubMed

    Khamassi, Mehdi; Quilodran, René; Enel, Pierre; Dominey, Peter F; Procyk, Emmanuel

    2015-09-01

    To explain the high level of flexibility in primate decision-making, theoretical models often invoke reinforcement-based mechanisms, performance monitoring functions, and core neural features within frontal cortical regions. However, the underlying biological mechanisms remain unknown. In recent models, part of the regulation of behavioral control is based on meta-learning principles, for example, driving exploratory actions by varying a meta-parameter, the inverse temperature, which regulates the contrast between competing action probabilities. Here we investigate how complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. Model-based analyses of unit activity recorded in these 2 areas in monkeys first revealed that adaptation of the decision function is reflected in a covariation between LPFC neural activity and the control level estimated from the animal's behavior. Second, dACC more prominently encoded a reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-based analyses also revealed higher information integration before feedback in LPFC, and after feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based information to regulate decision functions in LPFC. Our results thus provide biological evidence on how prefrontal cortical subregions may cooperate to regulate decision-making. PMID:24904073

  8. Prefrontal cortex organization: dissociating effects of temporal abstraction, relational abstraction, and integration with FMRI.

    PubMed

    Nee, Derek Evan; Jahn, Andrew; Brown, Joshua W

    2014-09-01

    The functions of the prefrontal cortex (PFC) underlie higher-level cognition. Varying proposals suggest that the PFC is organized along a rostral-caudal gradient of abstraction with more abstract representations/processes associated with more rostral areas. However, the operational definition of abstraction is unclear. Here, we contrasted 2 prominent theories of abstraction--temporal and relational--using fMRI. We further examined whether integrating abstract rules--a function common to each theory--recruited the PFC independently of other abstraction effects. While robust effects of relational abstraction were present in the PFC, temporal abstraction effects were absent. Instead, we found activations specific to the integration of relational rules in areas previously shown to be associated with temporal abstraction. We suggest that previous effects of temporal abstraction were due to confounds with integration demands. We propose an integration framework to understand the functions of the PFC that resolves discrepancies in prior data. PMID:23563962

  9. Distinct Regions of Prefrontal Cortex Mediate Resistance and Vulnerability to Depression

    PubMed Central

    Koenigs, Michael; Huey, Edward D.; Calamia, Matthew; Raymont, Vanessa; Tranel, Daniel; Grafman, Jordan

    2008-01-01

    The neuroanatomical correlates of depression remain unclear. Functional imaging data have associated depression with abnormal patterns of activity in prefrontal cortex (PFC), including the ventromedial (vmPFC) and dorsolateral (dlPFC) sectors. If vmPFC and dlPFC are critical neural substrates for the pathogenesis of depression, then damage to either area should affect the expression of depressive symptoms. Using patients with brain lesions we show that, relative to nonfrontal lesions, bilateral vmPFC lesions are associated with markedly low levels of depression, whereas bilateral dorsal PFC lesions (involving dorsomedial and dorsolateral areas in both hemispheres) are associated with substantially higher levels of depression. These findings demonstrate that vmPFC and dorsal PFC are critically and causally involved in depression, although with very different roles: vmPFC damage confers resistance to depression, whereas dorsal PFC damage confers vulnerability. PMID:19020027

  10. Distribution and Schistosoma mansoni infection of Biomphalaria glabrata in different habitats in a rural area in the Jequitinhonha Valley, Minas Gerais, Brazil: environmental and epidemiological aspects.

    PubMed

    Kloos, Helmut; Passos, Liana Kanovaloff Janotti; Loverde, Philip; Oliveira, Rodrigo Correa; Gazzinelli, Andréa

    2004-11-01

    This paper examines the distribution and infection of Biomphalaria glabrata with Schistosoma mansoni in all aquatic snail habitats in a rural area in the state of Minas Gerais, Brazil, in relation to physico/biotic and behavioral factors. Snail and environmental surveys were carried out semi-annually between July 2001 and November 2002 at 106 sites. Collected snails were examined in the laboratory for infection. B. glabrata densities were highest in overflow ponds, irrigation ponds, springs, canals and wells, and lowest in fishponds and water tanks. Snail densities were higher during the hot, rainy season except for streams and canals and were statistically associated with the presence of fish, pollution, and vegetation density. Tilapia fish and an unidentified Diptera larva were found to be predators of B. glabrata but ducks were not. Twenty-four of the 25 infected snails were collected in 2001(1.4% infection rate) and only one in 2002, after mass chemotherapy. The occurrence of B. glabrata in all 11 snail habitats both at and away from water contact sites studied indicates widespread risk of human infection in the study area. In spite of the strong association between B. glabrata and tilapia in fishponds we do not recommend its use in schistosomiasis control for ecological reasons and its relative inefficiency in streams and dams. PMID:15654420

  11. ASPECTS OF THE ECOLOGY OF PHLEBOTOMINES (Diptera: Psychodidae: Phlebotominae) IN AN AREA OF CUTANEOUS LEISHMANIASIS OCCURRENCE, MUNICIPALITY OF ANGRA DOS REIS, COAST OF RIO DE JANEIRO STATE, BRAZIL

    PubMed Central

    de Aguiar, Gustavo Marins; de Azevedo, Alfredo Carlos Rodrigues; de Medeiros, Wagner Muniz; Alves, João Ricardo Carreira; Rendeiro, Vanessa

    2014-01-01

    Over a complete two-year period, phlebotomine specimens were caught in an area of cutaneous leishmaniasis occurrence in the municipality of Angra dos Reis. A manual suction tube was used to catch phlebotomines on house walls, and also light traps in domestic and peridomestic settings and in the forest. This yielded 14,170 specimens of 13 species: two in the genus Brumptomyia and eleven in the genus Lutzomyia. L. intermedia predominantly in domestic and peridomestic settings, with little presence in the forest, with the same trend being found in relation to L. migonei, thus proving that these species have adapted to the human environment. L. fischeri appeared to be eclectic regarding location, but was seen to be proportionally more endophilic. L. intermedia and L. migonei were more numerous in peridomestic settings, throughout the year, while L. fischeri was more numerous in domestic settings except in March, April, May and September. From the prevalence of L. intermedia, its proven anthropophily and findings of this species naturally infected with Leishmania (Viannia) braziliensis, it can be incriminated as the main vector for this agent of cutaneous leishmaniasis in the study area, especially in the peridomestic environment. L. fischeri may be a coadjuvant in carrying the parasite. PMID:24626417

  12. Methodological Aspects of the Potential Use of Dendrochronological Techniques When Analyzing the Long-Term Impact of Tourism on Protected Areas.

    PubMed

    Ciapała, Szymon; Adamski, Paweł

    2015-01-01

    Intensification of pedestrian tourism causes damage to trees near tourist tracks, and likewise changes the soil structure. As a result, one may expect that annual amount of trees growing near tracks is significantly lower than deeper in the forest. However, during the study of the long-term impact of tourism on the environment (determined from tree increment dynamics), some methodological problems may occur. It is particularly important in protected areas where law and administrative regulations related to nature conservation force research to be conducted using small samples. In this paper we have analyzed the data collected in the Polish part of the Tatra National Park in the two study plots divided into two zones each: the area directly under the influence of the tourist's trampling and the control group. The aim of such analyses was to present the potential effects of the factors which may affect the results of dendrochronological analysis: (i) small size of samples that affects their representativeness, (ii) spatial differences in the rates of the process, as a result of spatial variability of environmental factors and (iii) temporal differences in the rates of the process. This study confirms that the factors mentioned above could significantly influence the results and should be taken into consideration during the analysis. PMID:26325062

  13. Methodological Aspects of the Potential Use of Dendrochronological Techniques When Analyzing the Long-Term Impact of Tourism on Protected Areas

    PubMed Central

    Ciapała, Szymon; Adamski, Paweł

    2015-01-01

    Intensification of pedestrian tourism causes damage to trees near tourist tracks, and likewise changes the soil structure. As a result, one may expect that annual amount of trees growing near tracks is significantly lower than deeper in the forest. However, during the study of the long-term impact of tourism on the environment (determined from tree increment dynamics), some methodological problems may occur. It is particularly important in protected areas where law and administrative regulations related to nature conservation force research to be conducted using small samples. In this paper we have analyzed the data collected in the Polish part of the Tatra National Park in the two study plots divided into two zones each: the area directly under the influence of the tourist's trampling and the control group. The aim of such analyses was to present the potential effects of the factors which may affect the results of dendrochronological analysis: (i) small size of samples that affects their representativeness, (ii) spatial differences in the rates of the process, as a result of spatial variability of environmental factors and (iii) temporal differences in the rates of the process. This study confirms that the factors mentioned above could significantly influence the results and should be taken into consideration during the analysis. PMID:26325062

  14. Corticostriate Projections from Areas of the "Lateral Grasping Network": Evidence for Multiple Hand-Related Input Channels.

    PubMed

    Gerbella, Marzio; Borra, Elena; Mangiaracina, Chiara; Rozzi, Stefano; Luppino, Giuseppe

    2016-07-01

    Corticostriatal projections from the primate cortical motor areas partially overlap in different zones of a large postcommissural putaminal sector designated as "motor" putamen. These zones are at the origin of parallel basal ganglia-thalamocortical subloops involved in modulating the cortical motor output. However, it is still largely unknown how parietal and prefrontal areas, connected to premotor areas, and involved in controlling higher order aspects of motor control, project to the basal ganglia. Based on tracer injections at the cortical level, we analyzed the corticostriatal projections of the macaque hand-related ventrolateral prefrontal, ventral premotor, and inferior parietal areas forming a network for controlling purposeful hand actions (lateral grasping network). The results provided evidence for partial overlap or interweaving of these projections in correspondence of 2 putaminal zones, distinct from the motor putamen, one located just rostral to the anterior commissure, the other in the caudal and ventral part. Thus, the present data provide evidence for partial overlap or interweaving in specific striatal zones (input channels) of projections from multiple, even remote, areas taking part in a large-scale functionally specialized cortical network. Furthermore, they suggest the presence of multiple hand-related input channels, possibly differentially involved in controlling goal-directed hand actions. PMID:26088968

  15. Prefrontal GABA concentration changes in women-Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms.

    PubMed

    De Bondt, Timo; De Belder, Frank; Vanhevel, Floris; Jacquemyn, Yves; Parizel, Paul M

    2015-02-01

    Prefrontal regions are involved in processing emotional stimuli and are a topic of interest in clinical and neurological research. Although sex steroids are potent neuromodulators, the influence of menstrual cycle phase and hormonal contraceptive use is rarely taken into account in neuroimaging studies. Our purpose was to evaluate changes in gamma-aminobutyric acid (GABA) in women, as measured by magnetic resonance spectroscopy (MRS), with phases of the menstrual cycle and use of hormonal contraceptives, and to assess correlations with premenstrual symptoms.Three MRI sessions per cycle were obtained in the natural cycle group, and two sessions in the hormonal contraceptives group. In addition to an anatomical scan, single voxel MRS in the prefrontal area was performed. After quality control, 10 women with natural cycle and 21 women taking hormonal contraceptives were included for analysis. Peripheral blood samples were obtained to determine endogenous hormone concentrations. Subjects were asked to complete a daily rating of severity of problems questionnaire, to quantify premenstrual symptoms. In the natural cycle group, we found a significant increase in prefrontal GABA concentration at the time of ovulation. Conversely, in the hormonal contraceptives group, no differences were found between the pill phase and pill-free phase. GABA concentrations did not significantly correlate with endogenous hormone levels, nor with premenstrual symptoms. Our results indicate that spectroscopically measured GABA concentrations are higher during ovulation in women with a natural menstrual cycle. We suggest that neuroimaging studies should take into account this variability. PMID:25481417

  16. Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system

    NASA Astrophysics Data System (ADS)

    Atsumori, Hirokazu; Kiguchi, Masashi; Katura, Takusige; Funane, Tsukasa; Obata, Akiko; Sato, Hiroki; Manaka, Takaaki; Iwamoto, Mitsumasa; Maki, Atsushi; Koizumi, Hideaki; Kubota, Kisou

    2010-07-01

    Optical topography (OT) based on near-infrared spectroscopy is a noninvasive technique for mapping the relative concentration changes in oxygenated and deoxygenated hemoglobin (oxy- and deoxy-Hb, respectively) in the human cerebral cortex. In our previous study, we developed a small and light wearable optical topography (WOT) system that covers the entire forehead for monitoring prefrontal activation. In the present study, we examine whether the WOT system is applicable to OT measurement while walking, which has been difficult with conventional OT systems. We conduct OT measurements while subjects perform an attention-demanding (AD) task of balancing a ping-pong ball on a small card while walking. The measured time course and power spectra of the relative concentration changes in oxy- and deoxy-Hb show that the step-related changes in the oxy- and deoxy-Hb signals are negligible compared to the task-related changes. Statistical assessment of the task-related changes in the oxy-Hb signals show that the dorsolateral prefrontal cortex and rostral prefrontal area are significantly activated during the AD task. These results suggest that our functional imaging technique with the WOT system is applicable to OT measurement while walking, and will be a powerful tool for evaluating brain activation in a natural environment.

  17. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    PubMed

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems. PMID:26837463

  18. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease

    PubMed Central

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-01-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest (‘task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems. PMID:26837463

  19. DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory

    PubMed Central

    Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro

    2014-01-01

    Background Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. Methods A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. Results We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. Conclusions The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5. PMID:24819610

  20. Phlogopite compositions as an indicator of both the geodynamic context of granitoids and the metallogeny aspect in Memve'ele Archean area, northwestern Congo craton

    NASA Astrophysics Data System (ADS)

    Ntomba, Sylvestre M.; Bidzang, François Ndong; Ottou, José Eric Messi; Goussi Ngalamo, François Jeannot; Bisso, Dieudonné; Magnekou Takamte, Christelle Rufine; Ondoa, Joseph Mvondo

    2016-06-01

    A barium bearing phlogopite (celsian) has been found for the first time within the charnockitic and tonalitic suites that compose Archean mineral belt in Cameroon. Electron microprobe analyses of these phlogopites are reported and contain moderate contents of BaO (0.42-1.26 wt. %) and up to 5.95 wt. % TiO2. Micas are Mg-rich and their compositions indicate phlogopites rich-meroxenes. Phlogopites from Memve'ele are characterized by a nearly horizontal trend of increasing total aluminium (2.494-2.931 a.p.f.u.) and relatively constant Fe/(Fe + Mg) suggesting contributions of aluminous supracrustal material to the magmas by anatexis or assimilation. Compositions of the barium titanium bearing phlogopite vary systematically according to rock types. It seems that the substitution scheme include Ba + Al + VI (Mg, Fe)2+ + 2 IVSi = K + Si + VITi + 2IVAl was dominant in the Memve'ele area thus, this scheme has made easy incorporation of Ba into phlogopite structure. The binary diagram of aluminium vs. titanium shows that phlogopites from the Memve'ele area have been formed by the same metasomatic mechanism as phlogopites from Canary Island xenoliths and Mezitler andesites but Ba enrichment of phlogopites from the Memve'ele area implies an early Ba-metasomatism contrary to those from Mezitler. The estimated temperature of the studied phlogopites indicated mainly two groups: (1) temperature range from 662 to 688 °C (average 676 °C) for phlogopite grains with High Mg# in the trondhjemite sample and (2) temperatures with interval limits from 757 to 800 °C (average 777.07 °C) for remnant phlogopites; reflecting primary and late crystallization respectively from slightly to highly oxidized magma (-17.30 to -13.87 Kbars). The geothermal gradient with average temperatures are 35.57-53.360 °C/Km and 30.95-46.42 °C/Km corresponding to 14.56-21.84 Km and 14.56-30.58 Km depth of below crust respectively. The crystallizing melt is enriched in Ba emanated from sea water at medium

  1. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    PubMed Central

    Hirosawa, Rikuei; Narumoto, Jin; Sakai, Yuki; Nishida, Seiji; Ishida, Takuya; Nakamae, Takashi; Takei, Yuichi; Fukui, Kenji

    2013-01-01

    Background Near-infrared spectroscopy has helped our understanding of the neurobiological mechanisms of psychiatric disorders and has advantages including noninvasiveness, lower cost, and ease of use compared with other imaging techniques, like functional magnetic resonance imaging. The verbal fluency task is the most common and well established task used to assess cognitive activation during near-infrared spectroscopy. Recent functional neuroimaging studies have shown that the orbitofrontal cortex and other brain regions, including the dorsolateral prefrontal cortex, may play important roles in the pathophysiology of obsessive-compulsive disorder (OCD). This study aimed to evaluate hemodynamic responses in the dorsolateral prefrontal cortex in patients with OCD using near-infrared spectroscopy during the verbal fluency task and to compare these with dorsolateral prefrontal cortex responses in healthy controls. Methods Twenty patients with OCD and 20 controls matched for age, gender, handedness, and estimated intelligence quotient participated in this study. The verbal fluency task was used to elicit near-infrared spectroscopic activation and consisted of a 30-second pre-task, followed by three repetitions of a 20-second verbal fluency task (total 60 seconds), followed by a 70-second post-task period. The near-infrared spectroscopy experiment was conducted on the same day as surveys of obsessive-compulsive symptoms, depression, and anxiety. Z-scores for changes in the concentration of oxygenated hemoglobin were compared between the OCD patients and controls in 14 channels set over the left and right dorsolateral prefrontal cortex and frontopolar areas. Results During the verbal fluency task, significant task-related activation was detected in both the OCD group and the controls. Changes in oxygenated hemoglobin concentration in the right dorsolateral prefrontal cortex were significantly smaller in the OCD group than in the controls, but were not statistically

  2. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.

    PubMed

    Oemisch, Mariann; Westendorff, Stephanie; Everling, Stefan; Womelsdorf, Thilo

    2015-09-23

    The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and

  3. Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences.

    PubMed

    Ye, Li; Allen, William E; Thompson, Kimberly R; Tian, Qiyuan; Hsueh, Brian; Ramakrishnan, Charu; Wang, Ai-Chi; Jennings, Joshua H; Adhikari, Avishek; Halpern, Casey H; Witten, Ilana B; Barth, Alison L; Luo, Liqun; McNab, Jennifer A; Deisseroth, Karl

    2016-06-16

    A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states. PMID:27238022

  4. Impaired facial emotion recognition in patients with ventromedial prefrontal hypoperfusion.

    PubMed

    Vandekerckhove, Marie; Plessers, Maarten; Van Mieghem, Arno; Beeckmans, Kurt; Van Acker, Frederik; Maex, Reinoud; Markowitsch, Hans; Mariën, Peter; Van Overwalle, Frank

    2014-07-01

    Empathy refers to our ability to recognize and share emotions by another human being. Impairment may underlie many of the emotional deficits commonly associated with a range of neuropsychiatric and neurological conditions. The prefrontal cortex (PFC) has long been implicated in these processes, but the specific contribution of subregions of the PFC remain unclear. Studies regarding the role of subregions of the prefrontal cortex such as the ventromedial prefrontal cortex (vmPFC)-in facial emotion recognition have yielded inconsistent results. The present study aimed to investigate the capacity to recognize nonverbal emotional facial expressions in a group of patients with the following: (a) perfusion deficits in the vmPFC (vmPFC group; N = 13), (b) hypoperfusions sparing the vmPFC (nonvmPFC group; N = 12), and in (c) a control group of healthy volunteers (control group; N = 17). Regions of hypoperfusion were identified by means of Single Photon Emission Computed Tomography (SPECT). Participants were asked to recognize facial expressions of the 7 basic emotions (happiness, fear, surprise, anger, disgust, sadness, or neutral). Detection of facial expressions of fear, disgust, and surprise was affected after functional disruption of the vmPFC. The present study confirms the role of the vmPFC in recognizing emotional facial expressions. PMID:24773416

  5. Probing prefrontal function in schizophrenia with neuropsychological paradigms.

    PubMed

    Goldberg, T E; Weinberger, D R

    1988-01-01

    In a recent series of studies we have attempted to clarify the nature of intellectual impairment in schizophrenia, and in particular, how patterns of dysfunction implicate specific neural systems. First, we found that acute psychotic adolescent patients displayed the same pattern of IQ scores (Performance less than Verbal) as adult chronic schizophrenic patients. We explored this deficit in problem solving by studying the performance of schizophrenic patients after receiving concrete and explicit instructions on how to do the Wisconsin Card Sorting Test, a task thought to be mediated by prefrontal cortex. We then studied the differential impact such a deficit in problem-solving strategies might have on a task thought to elicit both cognitive (prefrontal) and procedural or motor-skill (basal ganglia) processing. Procedural components appeared to be relatively more intact. We also addressed schizophrenic patients' ability to learn in other (extrafrontal) cognitive domains through verbal memory tasks and block design puzzles. Learning occurred under both conditions. We believe the overall pattern of deficit implicates primarily prefrontal neural systems, though a number of other neuropsychological functions are yet to be surveyed. PMID:3059467

  6. Morphometric Correlation of Impulsivity in Medial Prefrontal Cortex

    PubMed Central

    Cho, Sang Soo; Pellecchia, Giovanna; Aminian, Kelly; Ray, Nicola; Segura, Barbara; Obeso, Ignacio

    2014-01-01

    Impulsivity is a complex behaviour composed of different domains encompassing behavioural disinhibition, risky decision-making and delay discounting abnormalities. To investigate regional brain correlates between levels of individual impulsivity and grey matter volume, we performed voxel-based morphometric correlation analysis in 34 young, healthy subjects using impulsivity scores measured with Barratt Impulsivity Scale-11 and computerized Kirby’s delay discounting task. The VBM analysis showed that impulsivity appears to be reliant on a network of cortical (medial prefrontal cortex and dorsolateral prefrontal cortex) and subcortical (ventral striatum) structures emphasizing the importance of brain networks associated with reward related decision-making in daily life as morphological biomarkers for impulsivity in a normal healthy population. While our results in healthy volunteers may not directly extend to pathological conditions, they provide an insight into the mechanisms of impulsive behaviour in patients with abnormalities in prefrontal/frontal-striatal connections, such as in drug abuse, pathological gambling, ADHD and Parkinson’s disease. PMID:23274773

  7. Brain Injury Impairs Working Memory and Prefrontal Circuit Function

    PubMed Central

    Smith, Colin J.; Xiong, Guoxiang; Elkind, Jaclynn A.; Putnam, Brendan; Cohen, Akiva S.

    2015-01-01

    More than 2.5 million Americans suffer a traumatic brain injury (TBI) each year. Even mild to moderate TBI causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI), the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice, while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI. PMID:26617569

  8. I find you more attractive … after (prefrontal cortex) stimulation.

    PubMed

    Ferrari, Chiara; Lega, Carlotta; Tamietto, Marco; Nadal, Marcos; Cattaneo, Zaira

    2015-06-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is involved in high-level processes, so how does its activity relate to beauty appreciation? To shed light on this, we asked male and female participants to evaluate the attractiveness of faces of the same and other sex prior and after transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC). We found that increasing excitability via anodal tDCS in the right but not in the left DLPFC increased perceived attractiveness of the faces, irrespective of the sex of the faces or the sex of the viewers. Identical stimulation over the same site did not affect estimation of other facial characteristics, such as age, thereby suggesting that the effects of anodal tDCS over the right DLPFC might be selective for facial attractiveness, and might not generalize to decisions concerning other facial attributes. Overall, our data suggest that the right DLPFC plays a causal role in explicit judgment of facial attractiveness. The mechanisms mediating such effect are discussed. PMID:25912761

  9. Time-dependent corticosteroid modulation of prefrontal working memory processing

    PubMed Central

    Henckens, Marloes J. A. G.; van Wingen, Guido A.; Joëls, Marian; Fernández, Guillén

    2011-01-01

    Corticosteroids are potent modulators of human higher cognitive function. They are released in response to stress, and are thought to be involved in the modulation of cognitive function by inducing distinct rapid nongenomic, and slow genomic changes, affecting neural plasticity throughout the brain. However, their exact effects on the neural correlates of higher-order cognitive function as performed by the prefrontal cortex at the human brain system level remain to be elucidated. Here, we targeted these time-dependent effects of corticosteroids on prefrontal cortex processing in humans using a working memory (WM) paradigm during functional MRI scanning. Implementing a randomized, double-blind, placebo-controlled design, 72 young, healthy men received 10 mg hydrocortisone either 30 min (rapid corticosteroid effects) or 240 min (slow corticosteroid effects), or placebo before a numerical n-back task with differential load (0- to 3-back). Corticosteroids’ slow effects appeared to improve working memory performance and increased neuronal activity during WM performance in the dorsolateral prefrontal cortex depending on WM load, whereas no effects of corticosteroids’ rapid actions were observed. Thereby, the slow actions of corticosteroids seem to facilitate adequate higher-order cognitive functioning, which may support recovery in the aftermath of stress exposure. PMID:21436038

  10. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates.

    PubMed

    Pears, Andrew; Parkinson, John A; Hopewell, Lucy; Everitt, Barry J; Roberts, Angela C

    2003-12-01

    The ventromedial prefrontal cortex (PFC) is implicated in affective and motivated behaviors. Damage to this region, which includes the orbitofrontal cortex as well as ventral sectors of medial PFC, causes profound changes in emotional and social behavior, including impairments in certain aspects of decision making. One reinforcement mechanism that may well contribute to these behaviors is conditioned reinforcement, whereby previously neutral stimuli in the environment, by virtue of their association with primary rewards, take on reinforcing value and come to support instrumental action. Conditioned reinforcers are powerful determinants of behavior and can maintain responding over protracted periods of time in the absence of and potentially in conflict with primary reinforcers. It has already been shown that conditioned reinforcement is dependent on the amygdala, and because the amygdala projects to both the orbitofrontal cortex and the medial PFC, the present study determined whether conditioned reinforcement was also dependent on one or the other of these prefrontal regions. Comparison of the behavioral effects of selective excitotoxic lesions of the PFC in the common marmoset revealed that orbitofrontal but not medial PFC lesions disrupted two distinct measures of conditioned reinforcement: (1) acquisition of a new response and (2) sensitivity to conditioned stimulus omission on a second-order schedule. In contrast, the orbitofrontal lesion did not affect sensitivity to primary reinforcement as measured by responding on a progressive-ratio schedule and a home cage consumption test. Together, these findings demonstrate the critical and specific involvement of the orbitofrontal cortex but not the medial PFC in conditioned reinforcement. PMID:14657178

  11. Regulatory aspects

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    At this time, there is no US legislation that is specifically aimed at regulating the environmental release of genetically engineered organisms or their modified components, either during the research and development stage or during application. There are some statutes, administered by several federal agencies, whose language is broad enough to allow the extension of intended coverage to include certain aspects of biotechnology. The one possible exception is FIFRA, which has already brought about the registration of several natural microbial pesticides but which also has provision for requiring the registration of “strain improved” microbial pesticides. Nevertheless, there may be gaps in coverage even if all pertinent statutes were to be actively applied to the control of environmental release of genetically modified substances. The decision to regulate biotechnology under TSCA was justified, in part, on the basis of its intended role as a gap-filling piece of environmental legislation. The advantage of regulating biotechnology under TSCA is that this statute, unlike others, is concerned with all media of exposure (air, water, soil, sediment, biota) that may pose health and environmental hazards. Experience may show that extending existing legislation to regulate biotechnology is a poor compromise compared to the promulgation of new legislation specifically designed for this purpose. It appears that many other countries are ultimately going to take the latter course to regulate biotechnology.

  12. Theta frequency prefrontal-hippocampal driving relationship during free exploration in mice.

    PubMed

    Zhan, Y

    2015-08-01

    Inter-connected brain areas coordinate to process information and synchronized neural activities engage in learning and memory processes. Recent electrophysiological studies in rodents have implicated hippocampal-prefrontal connectivity in anxiety, spatial learning and memory-related tasks. In human patients with schizophrenia and autism, robust reduced connectivity between the hippocampus (HPC) and prefrontal cortex (PFC) has been reported. However little is known about the directionality of these oscillations and their roles during active behaviors remain unclear. Here the directional information processing in mice was measured by Granger causality, a mathematical tool that has been used in neuroscience to quantify the oscillatory driving relationship between the ventral HPC (vHPC) and the PFC in two anxiety tests and between the dorsal HPC (dHPC) and the PFC in social interaction test. In the open field test, stronger vHPC driving to the PFC was found in the center compartment than in the wall area. In the light-dark box test, PFC to vHPC causality was higher than vHPC to PFC causality although no difference was found between the light and dark areas for the causality in both directions. In the social interaction test using Cx3cr1 knockout mice which model for deficient microglia-dependent synaptic pruning, higher PFC driving to the dHPC was found than driving from the dHPC to the PFC in both knockout mice and wild-type mice. Cx3cr1 knockout mice showed reduced baseline PFC driving to the dHPC compared to their wild-type littermates. PFC to dHPC causality could predict the actual time spent interacting with the social stimuli. The current findings indicate that directed oscillatory activities between the PFC and the HPC have task-dependent roles during exploration in the anxiety test and in the social interaction test. PMID:26037805

  13. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  14. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  15. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  16. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    PubMed

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. PMID:26720411

  17. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    PubMed Central

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  18. Dysregulation of cell death machinery in the prefrontal cortex of human alcoholics

    PubMed Central

    Johansson, Sofia; Ekström, Tomas J.; Marinova, Zoya; Ökvist, Anna; Sheedy, Donna; Garrick, Therese; Harper, Clive; Kuzmin, Alexander; Yakovleva, Tatjana; Bakalkin, Georgy

    2012-01-01

    In human alcoholics, the cell density is decreased in the prefrontal cortex (PFC) and other brain areas. This may be due to persistent activation of cell death pathways. To address this hypothesis, we examined the status of cell death machinery in the dorsolateral PFC in alcoholics. Protein and mRNA expression levels of several key pro- and anti-apoptotic genes were compared in post-mortem samples of 14 male human alcoholics and 14 male controls. The findings do not support the hypothesis. On the contrary, they show that several components of intrinsic apoptotic pathway are decreased in alcoholics. No differences were evident in the motor cortex, which is less damaged in alcoholics and was analysed for comparison. Thus, cell death mechanisms may be dysregulated by inhibition of intrinsic apoptotic pathway in the PFC in human alcoholics. This inhibition may reflect molecular adaptations that counteract alcohol neurotoxicity in cells that survive after many years of alcohol exposure and withdrawal. PMID:18937880

  19. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory.

    PubMed

    Bagherzadeh, Yasaman; Khorrami, Anahita; Zarrindast, Mohammad Reza; Shariat, Seyed Vahid; Pantazis, Dimitrios

    2016-07-01

    Neuroimaging and electrophysiological studies have unequivocally identified the dorsolateral prefrontal cortex (DLPFC) as a crucial structure for top-down control of working memory (WM) processes. By modulating the excitability of neurons in a targeted cortical area, transcranial magnetic stimulation (TMS) offers a unique way to modulate DLPFC function, opening the possibility of WM facilitation. Even though TMS neuromodulation effects over the left DLPFC have successfully improved WM performance in patients with depression and schizophrenia in a multitude of studies, raising the potential of TMS as a safe efficacious treatment for WM deficits, TMS interventions in healthy individuals have produced mixed and inconclusive results. Here, we stimulated the left DLPFC of healthy individuals using a high-frequency repetitive TMS protocol and evaluated behavioral performance in a battery of cognitive tasks. We found that TMS treatment enhanced WM performance in a verbal digit span and a visuospatial 2-back task. PMID:26884132

  20. Generalisation benefits of output gating in a model of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Kriete, Trent; Noelle, David C.

    2011-06-01

    The prefrontal cortex (PFC) plays a central role in flexible cognitive control, including the suppression of habitual responding in favour of situation-appropriate behaviours that can be quite novel. PFC provides a kind of working memory, maintaining the rules, goals, and/or actions that are to control behaviour in the current context. For flexible control, these PFC representations must be sufficiently componential to support systematic generalisation to novel situations. The anatomical structure of PFC can be seen as implementing a componential 'slot-filler' structure, with different components encoded over isolated pools of neurons. Previous PFC models have highlighted the importance of a dynamic gating mechanism to selectively update individual 'slot' contents. In this article, we present simulation results that suggest that systematic generalisation also requires an 'output gating' mechanism that limits the influence of PFC on more posterior brain areas to reflect a small number of representational components at any one time.

  1. Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning

    PubMed Central

    King, Kelly E.; Hernandez, Arturo E.

    2012-01-01

    The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only two hours of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. PMID:23194816

  2. Virtual reality and the role of the prefrontal cortex in adults and children.

    PubMed

    Jäncke, Lutz; Cheetham, Marcus; Baumgartner, Thomas

    2009-05-01

    In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences. PMID:19753097

  3. Ventromedial prefrontal neurokinin 1 receptor availability is reduced in chronic pain.

    PubMed

    Linnman, Clas; Appel, Lieuwe; Furmark, Tomas; Söderlund, Anne; Gordh, Torsten; Långström, Bengt; Fredrikson, Mats

    2010-04-01

    Neurokinin 1 (NK1) receptors are involved in pain and anxiety behaviors in animals, but little is known about central alterations in this receptor system in human pain. With positron emission tomography, using a [11]-Carbon labeled NK1 receptor antagonist, we demonstrate attenuated NK1 receptor availability in frontal, insular and cingulate cortex, as well as the hippocampus, amygdala and the periaqueductal gray area in patients with chronic pain. The reduced availability was most pronounced in the ventromedial prefrontal cortex (vmPFC), where attenuations correlated to measures of fear and avoidance of movement. Further, vmPFC NK1 levels also displayed opposing influences in patients as compared to controls on regional cerebral blood flow in the anterior cingulate. We conclude that the central NK1 receptor system is altered in human chronic pain. The results suggest that NK1 receptors in the vmPFC modulate motor inhibition, and contribute to fear and avoidance of movement. PMID:20137858

  4. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    PubMed

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level. PMID:26311395

  5. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, < 0.1% of all GluR-2 RNA molecules were unedited and > 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of

  6. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    PubMed

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  7. Future Aspects

    NASA Astrophysics Data System (ADS)

    Pilato, Louis

    There are some disturbing signs that appear on the horizon as phenolic resins enter their second century of existence. The large area of wood adhesives application (~60% of the total volume of phenolic resins in North America) is under intense pressure due to many factors that are contributing to continuing reduction in the sales volume of wood adhesives. These factors include the known slow cure speed of phenolic resins compared to Urea Formaldehyde (UF), Melamine Formaldehyde (MF), or Methylene Diphenyl Isocyanate (MDI); installation of new machinery/ equipment with fast continuous lines; continued decrease in plywood consumption at the expense of Oriented Strand Board (OSB) where phenolic resin is the preferred adhesive for plywood; further reduction in formaldehyde emissions through California Air Resources Board (CARB) Phase I and Phase II; uncertainty of whether formaldehyde will be identified as a human carcinogen pending the anticipated 2009 study; and the environmental movement to reduce or eliminate formaldehyde-containing resins in wood and thermal insulation consumer products (U.S. Green Building Council and other Environmental groups like the Sierra Club). Consumers are being urged by environmental organizations to purchase composite wood products with lower formaldehyde emission levels or none at all. This is illustrated by examining the news media reports after the Hurricane Katrina in 2005. The home trailers provided by the Federal Emergency Management Agency (FEMA) that were used for Louisiana and Mississippi residents after Katrina hurricane as temporary housing further accelerated concerns over formaldehyde emissions since higher than typical indoor exposure levels of formaldehyde in travel trailers and mobile homes were determined for the FEMA trailers.

  8. Measuring emotion in advertising research: prefrontal brain activity.

    PubMed

    Silberstein, Richard B; Nield, Geoffrey E

    2012-01-01

    With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw. PMID:22678836

  9. Prefrontal executive function and adaptive behavior in complex environments.

    PubMed

    Koechlin, Etienne

    2016-04-01

    The prefrontal cortex (PFC) subserves higher cognitive abilities such as planning, reasoning and creativity. Here we review recent findings from both empirical and theoretical studies providing new insights about these cognitive abilities and their neural underpinnings in the PFC as overcoming key adaptive limitations in reinforcement learning. We outline a unified theoretical framework describing the PFC function as implementing an algorithmic solution approximating statistically optimal, but computationally intractable, adaptive processes. The resulting PFC functional architecture combines learning, planning, reasoning and creativity processes for balancing exploitation and exploration behaviors and optimizing behavioral adaptations in uncertain, variable and open-ended environments. PMID:26687618

  10. Neuroanatomical substrates of executive functions: Beyond prefrontal structures.

    PubMed

    Bettcher, Brianne M; Mungas, Dan; Patel, Nihar; Elofson, Jonathan; Dutt, Shubir; Wynn, Matthew; Watson, Christa L; Stephens, Melanie; Walsh, Christine M; Kramer, Joel H

    2016-05-01

    Executive functions are often considered lynchpin "frontal lobe tasks", despite accumulating evidence that a broad network of anterior and posterior brain structures supports them. Using a latent variable modelling approach, we assessed whether prefrontal grey matter volumes independently predict executive function performance when statistically differentiated from global atrophy and individual non-frontal lobar volume contributions. We further examined whether fronto-parietal white matter microstructure underlies and independently contributes to executive functions. We developed a latent variable model to decompose lobar grey matter volumes into a global grey matter factor and specific lobar volumes (i.e. prefrontal, parietal, temporal, occipital) that were independent of global grey matter. We then added mean fractional anisotropy (FA) for the superior longitudinal fasciculus (dorsal portion), corpus callosum, and cingulum bundle (dorsal portion) to models that included grey matter volumes related to cognitive variables in previous analyses. Results suggested that the 2-factor model (shifting/inhibition, updating/working memory) plus an information processing speed factor best explained our executive function data in a sample of 202 community dwelling older adults, and was selected as the base measurement model for further analyses. Global grey matter was related to the executive function and speed variables in all four lobar models, but independent contributions of the frontal lobes were not significant. In contrast, when assessing the effect of white matter microstructure, cingulum FA made significant independent contributions to all three executive function and speed variables and corpus callosum FA was independently related to shifting/inhibition and speed. Findings from the current study indicate that while prefrontal grey matter volumes are significantly associated with cognitive neuroscience measures of shifting/inhibition and working memory in healthy

  11. Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats.

    PubMed

    Gygax, Lorenz; Reefmann, Nadine; Wolf, Martin; Langbein, Jan

    2013-02-15

    Recent concepts relating to animal welfare accept that animals experience affective states. These are notoriously difficult to measure in non-verbal species, but it is generally agreed that emotional reactions consist of well-coordinated reactions in behaviour, autonomic and brain activation. The aim of the study was to evaluate whether each or a combination of these aspects can differentiate between situations presumed to differ in emotional content. To this end, we repeatedly confronted dwarf goats at short intervals with a covered and an uncovered feed bowl (i.e. presumably frustrating and rewarding situations respectively) whilst simultaneously observing their behaviour, measuring heart-rate and heart-rate variability and haemodynamic changes in the prefrontal cortex using functional near-infrared spectroscopy. When faced with a covered feed bowl, goats occupied themselves at locations away from the bowl and showed increased locomotion, while there was a general increase in prefrontal cortical activity. There was little indication of autonomic changes. In contrast, when feed was accessible, the goats reduced locomotion, focused their behaviour on the feed bowl, showed signs of sympathetically mediated arousal reflecting anticipation and, if any cortical activity at all was present, it was concentrated to the left hemisphere. We thus observed patterns in behaviour, sympathetic reaction and brain activity that distinguished between a situation of frustration and one of reward in dwarf goats. These patterns consisted of a well-coordinated set of reactions appropriate in respect of the emotional content of the stimuli used. PMID:23142369

  12. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.

    PubMed

    Jarbo, Kevin; Verstynen, Timothy D

    2015-03-01

    Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial-lateral and a rostral-caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning. PMID:25740516

  13. Converging Structural and Functional Connectivity of Orbitofrontal, Dorsolateral Prefrontal, and Posterior Parietal Cortex in the Human Striatum

    PubMed Central

    Jarbo, Kevin

    2015-01-01

    Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial–lateral and a rostral–caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning. PMID:25740516

  14. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    PubMed

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  15. Changes of effective connectivity between the lateral and medial parts of the prefrontal cortex during a visual task.

    PubMed

    Chaminade, Thierry; Fonlupt, Pierre

    2003-08-01

    Structural equation modelling was used to study the change of connectivity during a visual task with continuous variation of the attention load. The model was based on areas defined by the haemodynamic responses described elsewhere [Mazoyer, P., Wicker, B. & Fonlupt, P. (2002) A neural network elicited by parametric manipulation of the attention load. Neuroreport, 13, 2331-2334], including occipitotemporal, parietal, temporal and prefrontal (lateral and medial areas) cortices. We have studied stationary- (which does not depend on the attentional load) and attention-related coupling between areas. This allowed the segregation of two subsystems. The first could reflect a system performing the integration step of the visual signal and the second a system participating in response selection. The major finding is the mutual negative influence between the lateral and medial parts of the prefrontal cortex. This negative influence between these two brain regions increased with the attention load. This is interpreted as a modification of the balance between integration and decision processes that are needed for the task to be efficiently completed. PMID:12911763

  16. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    PubMed

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  17. Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation

    PubMed Central

    Kaping, Daniel; Vinck, Martin; Hutchison, R. Matthew; Everling, Stefan; Womelsdorf, Thilo

    2011-01-01

    Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network. PMID:22215982

  18. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study.

    PubMed

    Al-Yahya, Emad; Johansen-Berg, Heidi; Kischka, Udo; Zarei, Mojtaba; Cockburn, Janet; Dawes, Helen

    2016-07-01

    Background Walking while performing another task (eg, talking) is challenging for many stroke survivors, yet its neural basis are not fully understood. Objective To investigate prefrontal cortex activation and its relationship to gait measures while walking under single-task (ST) and dual-task (DT) conditions (ie, walking while simultaneously performing a cognitive task) in stroke survivors. Methods We acquired near-infrared spectroscopy (NIRS) data from the prefrontal cortex during treadmill walking in ST and DT conditions in chronic stroke survivors and healthy controls. We also acquired functional magnetic resonance imaging (fMRI) and NIRS during simulated walking under these conditions. Results NIRS revealed increased oxygenated hemoglobin concentration in DT-walking compared with ST-walking for both groups. For simulated walking, NIRS showed a significant effect of group and group × task, being greater on both occasions, in stroke survivors. A greater increase in brain activation observed from ST to DT walking/ simulated walking was related to a greater change in motor performance in stroke survivors. fMRI revealed increased activity during DT relative to ST conditions in stroke patients in areas including the inferior temporal gyri, superior frontal gyri and cingulate gyri bilaterally, and the right precentral gyrus. The DT-related increase in fMRI activity correlated with DT-related change in behavior in stroke participants in the bilateral inferior temporal gyrus, left cingulate gyrus, and left frontal pole. Conclusion Our results provide novel evidence that enhanced brain activity changes relate to dual task motor decrements. PMID:26493732

  19. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control

    PubMed Central

    Egner, Tobias

    2013-01-01

    Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631

  20. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex.

    PubMed

    Jiménez-Sánchez, Laura; Linge, Raquel; Campa, Leticia; Valdizán, Elsa M; Pazos, Ángel; Díaz, Álvaro; Adell, Albert

    2016-09-01

    Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs. PMID:27108934

  1. Modulation of the action of stress by ethanol on dopaminergic activity in the rat prefrontal cortex

    SciTech Connect

    Hegarty, A.A.; Vogel, W.H. )

    1992-02-26

    Both stress and ethanol, when administered individually, have been shown to affect dopamine (DA) and its metabolite (DOPAC) in the central nervous system. Stress can increase DA efflux in several areas of the brain, whereas ethanol has been shown to have variable effects on extracellular DA, either increasing DA or having no apparent effect. Furthermore, ethanol has been shown in microdissection studies to antagonize the effect of stress on the dopaminergic system, indicating an anxiety-reducing property of ethanol. However, the influence of the combination of stress and ethanol on the dopaminergic system has not been studied extensively with the newer technique of microdialysis. In this study, microdialysis was again used to characterize the interaction of immobilization stress and ethanol in the prefrontal cortex. Two groups of rats received either ethanol or saline in the resting state. A third group was immobilization stress and ethanol in the prefrontal cortex. Two groups of rats received either ethanol or saline in the resting state. A third group was immobilization Saline-treated animals showed essentially no changes in levels of DA or DOPAC. Ethanol had no effect on DA overflow in resting animals and caused only a small increase in DOPAC levels. Immobilization caused marked increases in DA levels and smaller increases in DOPAC. Ethanol pretreatment strongly reduced and antagonized the stress-induced increases in DA. However, ethanol potentiated the stress-induced increase in extracellular DOPAC. The authors data add biochemical evidence to the tension-reduction hypothesis of ethanol by perhaps implicating a reduction in the DA stress response by ethanol as a contributing factor in the development of alcoholism.

  2. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients

    PubMed Central

    Lim, Manyoel; Kim, June Sic; Kim, Dajung J.; Chung, Chun Kee

    2016-01-01

    Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography (MEG) activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control (HC) subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory (S2) cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM. PMID:27014041

  3. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia

    PubMed Central

    Vallortigara, Julie; Rangarajan, Sindhoo; Whitfield, David; Alghamdi, Amani; Howlett, David; Hortobágyi, Tibor; Johnson, Mary; Attems, Johannes; Ballard, Clive; Thomas, Alan; O’Brien, John; Aarsland, Dag; Francis, Paul

    2014-01-01

    Dementia with Lewy Bodies (DLB) and Parkinson’s Disease Dementia (PDD) together, represent the second most common cause of dementia, after Alzheimer’s disease (AD). The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9), anterior cingulated gyrus (BA24) and parietal cortex (BA40) from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles) and for α-synuclein (Lewy bodies). Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia. PMID:25671083

  4. Differential roles of medial prefrontal subregions in the regulation of drug seeking.

    PubMed

    Moorman, David E; James, Morgan H; McGlinchey, Ellen M; Aston-Jones, Gary

    2015-12-01

    The prefrontal cortex plays an important role in shaping cognition and behavior. Many studies have shown that medial prefrontal cortex (mPFC) plays a key role in seeking, extinction, and reinstatement of cocaine seeking in rodent models of relapse. Subregions of mPFC appear to play distinct roles in these behaviors, such that the prelimbic cortex (PL) is proposed to drive cocaine seeking and the infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction. This dichotomy of mPFC function may be a general attribute, as similar dorsal-ventral distinctions exist for expression vs. extinction of fear conditioning. However, other results indicate that the role of mPFC neurons in reward processing is more complex than a simple PL-seek vs. IL-extinguish dichotomy. Both PL and IL have been shown to drive and inhibit drug seeking (and other types of behaviors) depending on a range of factors including the behavioral context, the drug-history of the animal, and the type of drug investigated. This heterogeneity of findings may reflect multiple subcircuits within each of these PFC areas supporting unique functions. It may also reflect the fact that the mPFC plays a multifaceted role in shaping cognition and behavior, including those overlapping with cocaine seeking and extinction. Here we discuss research leading to the hypothesis that dorsal and ventral mPFC differentially control drug seeking and extinction. We also present recent results calling the absolute nature of a PL vs. IL dichotomy into question. Finally, we consider alternate functions for mPFC that correspond less to response execution and inhibition and instead incorporate the complex cognitive behavior for which the mPFC is broadly appreciated. PMID:25529632

  5. Decreased functional connectivity in dorsolateral prefrontal cortical networks in adult macaques with neonatal hippocampal lesions: Relations to visual working memory deficits.

    PubMed

    Meng, Yuguang; Hu, Xiaoping; Bachevalier, Jocelyne; Zhang, Xiaodong

    2016-10-01

    Neonatal hippocampal lesions in monkeys impairs normal performance on both relational and working memory tasks, suggesting that the early lesions have impacted the normal development of prefrontal-hippocampal functional interactions necessary for normal performance on these tasks. Given that working memory processes engage distributed neuronal networks associated with the prefrontal cortex, it is critical to explore the integrity of distributed neural networks of dorsolateral prefrontal cortex (dlPFC) following neonatal hippocampal lesions in monkeys. We used resting-state functional MRI to assess functional connectivity of dlPFC networks in monkeys with neonatal neurotoxic hippocampal lesion (Neo-Hibo, n=4) and sham-operated control animals (Neo-C, n=4). Significant differences in the patterns of dlPFC functional networks were found between Groups Neo-Hibo and Neo-C. The within-group maps and the between-group comparisons yielded a highly coherent picture showing altered interactions of core regions of the working memory network (medial prefrontal cortex and posterior parietal cortex) as well as the dorsal (fundus of superior temporal area and superior temporal cortex) and ventral (V4 and infero-temporal cortex) visual processing areas in animals with Neo-Hibo lesions. Correlations between functional connectivity changes and working memory impairment in the same animals were found only between the dlPFC and visual cortical areas (V4 and infero-temporal cortex). Thus, the impact of the neonatal hippocampal lesions extends to multiple cortical areas interconnected with the dlPFC. PMID:27063864

  6. Williams Syndrome Hypersociability: A Neuropsychological Study of the Amygdala and Prefrontal Cortex Hypotheses

    ERIC Educational Resources Information Center

    Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.

    2011-01-01

    Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…

  7. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU.

    ERIC Educational Resources Information Center

    Diamond, Adele; Prevor, Meredith B.; Druin, Donald P.; Callender, Glenda

    1997-01-01

    Hypothesized that elevated ratio of phenylalanine to tyrosine in blood of children with phenylketonuria uniquely affects cognitive functions dependent on prefrontal cortex because of the special sensitivity of prefrontally projecting dopamine neurons to small decreases in tyrosine. Found that children whose phenylalanine levels were three to five…

  8. Revisiting the Role of the Prefrontal Cortex in the Pathophysiology of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Halperin, Jeffrey M.; Schulz, Kurt P.

    2006-01-01

    Most neural models for the pathophysiology of attention-deficit/hyperactivity disorder (ADHD) have centered on the prefrontal cortex and its interconnections with the striatum and other subcortical structures. However, research only partially supports these models, and they do not correspond with the development of the prefrontal cortex and its…

  9. Developmental Differences in Prefrontal Activation during Working Memory Maintenance and Manipulation for Different Memory Loads

    ERIC Educational Resources Information Center

    Jolles, Dietsje D.; Kleibeuker, Sietske W.; Rombouts, Serge A. R. B.; Crone, Eveline A.

    2011-01-01

    The ability to keep information active in working memory is one of the cornerstones of cognitive development. Prior studies have demonstrated that regions which are important for working memory performance in adults, such as dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and superior parietal cortex, become…

  10. A Role for Prefrontal Calcium-Sensitive Protein Phosphatase and Kinase Activities in Working Memory

    ERIC Educational Resources Information Center

    Runyan, Jason D.; Moore, Anthony N.; Dash, Pramod K.

    2005-01-01

    The prefrontal cortex is involved in the integration and interpretation of information for directing thoughts and planning action. Working memory is defined as the active maintenance of information in mind and is thought to lie at the core of many prefrontal functions. Although dopamine and other neurotransmitters have been implicated, the…

  11. Prefrontal Asymmetry and Parent-Rated Temperament in Infants

    PubMed Central

    LoBue, Vanessa; Coan, James A.; Thrasher, Cat; DeLoache, Judy S.

    2011-01-01

    Indicators of temperament appear early in infancy and remain relatively stable over time. Despite a great deal of interest in biological indices of temperament, most studies of infant temperament rely on parental reports or behavioral tasks. Thus, the extent to which commonly used temperament measures relate to potential biological indicators of infant temperament is still relatively unknown. The current experiment examines the relationship between a common parental report measure of temperament – the Infant Behavior Questionnaire – Revised (IBQ-R) – and measures of frontal EEG asymmetry in infants. We examined associations between the subscales of the IBQ-R and frontal EEG asymmetry scores recorded during a combined series of neutral attentional and putatively emotional recording conditions in infants between 7 and 9 months of age. We predicted that approach-related subscales of the IBQ-R (e.g., Approach, Soothability) would be related to greater left prefrontal asymmetry, while withdrawal-related subscales (e.g., Distress to Limitations, Fear, Falling Reactivity, Perceptual Sensitivity) would be related to greater right prefrontal asymmetry. In the mid- and lateral-frontal regions, Approach, Distress to Limitations, Fear, Soothability, and Perceptual Sensitivity were generally associated with greater left frontal activation (rs≥.23, ps<0.05), while only Falling Reactivity was associated with greater right frontal activation (rs≤−.44, ps<0.05). Results suggest that variability in frontal EEG asymmetry is robustly associated with parental report measures of temperament in infancy. PMID:21829482

  12. Analysis of oxysterols and cholesterol in prefrontal cortex of suicides.

    PubMed

    Freemantle, Erika; Chen, Gary Gang; Cruceanu, Cristiana; Mechawar, Naguib; Turecki, Gustavo

    2013-07-01

    Brain oxysterol levels, which are enzymatic oxidation products of cholesterol (Chl), have been proposed to reflect the dynamic process of physiological synapse maintenance and repair of nerve terminals within the central nervous system (CNS), due to the turnover of membrane Chl. Modifications of oxysterols have important implications in neurological conditions, especially in neurodegenerative and psychiatric disorders in which alterations of synaptic plasticity or cell signalling are implicated, such as depression. Oxysterols can diffuse across the blood-brain barrier and have been hypothesized to provide a mechanism by which the brain can eliminate excess Chl to maintain a steady state. Relations of 24-hydroxycholesterol (24OH) and 27-hydroxycholesterol (27OH) specifically may provide a depiction of CNS Chl homeostasis. Thus, the objective of this study was to integrate oxysterol measures and gene expression measures in an effort to identify how they may relate to depression and suicide. Using post-mortem human prefrontal cortex tissue, quantification of metabolites by GC-MS and gene expression by qRT-PCR were performed with the aim to provide a characterization of enzymatic oxidative Chl homeostasis. Results show a significant increase in 24OH, which suggests a higher turnover of Chl to 24OH in the prefrontal cortex of suicide cases. An increase in 24OH may, in combination with liver-X receptor activation, explain the observed reduction of low central and peripheral Chl in suicide and would have implications for synapse maintenance and loss in the neuropathology of depression and suicide. PMID:23369504

  13. Prefrontal Engagement by Cognitive Reappraisal of Negative Faces

    PubMed Central

    Nelson, Brady D.; Fitzgerald, Daniel A.; Klumpp, Heide; Shankman, Stewart A.; Phan, K. Luan

    2014-01-01

    Cognitive reappraisal has been associated with increased activation in prefrontal cortex (PFC) and cingulate regions implicated in cognitive control and affect regulation. To date, neuroimaging studies of reappraisal have primarily used emotionally evocative scenes, and it remains unclear whether the same cognitive strategy applied to emotional facial expressions would involve similar or different neural underpinnings. The present study used fMRI to examine brain activation during cognitive reappraisal of negatively valenced facial expressions relative to passive viewing of negative and neutral facial expressions. Twenty-two healthy adults completed a cognitive reappraisal task comprised of three different conditions (Look-Neutral, Maintain-Negative, Reappraise-Negative). Results indicated that reappraisal was associated with a decrease in negative affect and engagement of PFC brain regions implicated in cognitive control and affect regulation (DLPFC, mPFC, and VLPFC). Furthermore, individual differences in habitual reappraisal use were associated with greater DLPFC and mPFC activation, while suppression use was associated with greater amygdala activation. The present study provides preliminary evidence that facial expressions are effective alternative ‘targets’ of prefrontal engagement during cognitive reappraisal. These findings are particularly relevant for future research probing the neural bases of emotion regulation in populations for whom aversive scenes may be less appropriate (e.g., children) and illnesses in which aberrant responses to social signals of threat and negative feedback are cardinal phenotypes. PMID:25433095

  14. The uncertain outcome of prefrontal tDCS

    PubMed Central

    Tremblay, Sara; Lepage, Jean-François; Latulipe-Loiselle, Alex; Fregni, Felipe; Pascual-Leone, Alvaro; Théoret, Hugo

    2015-01-01

    Background Transcranial direct current stimulation (tDCS) is increasingly used in research and clinical settings, and the dorsolateral prefrontal cortex (DLPFC) is often chosen as a target for stimulation. While numerous studies report modulation of cognitive abilities following DLPFC stimulation, the wide array of cognitive functions that can be modulated makes it difficult to predict its precise outcome. Objective The present review aims at identifying and characterizing the various cognitive domains affected by tDCS over DLPFC. Methods Articles using tDCS over DLPFC indexed in PubMed and published between 2000 and January 2014 were included in the present review. Results tDCS over DLPFC affects a wide array of cognitive functions, with sometimes apparent conflicting results. Conclusion Prefrontal tDCS has the potential to modulate numerous cognitive functions simultaneously, but to properly interpret the results, a clear a priori hypothesis is necessary, careful technical consideration are mandatory, further insights into the neurobiological impact of tDCS are needed, and consideration should be given to the possibility that some behavioral effects may be partly explained by parallel modulation of related functions. PMID:25456566

  15. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex

    PubMed Central

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E.; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  16. Medial prefrontal cortex role in recognition memory in rodents.

    PubMed

    Morici, Juan Facundo; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-10-01

    The study of the neurobiology of recognition memory, defined by the integration of the different components of experiences that support recollection of past experiences have been a challenge for memory researches for many years. In the last twenty years, with the development of the spontaneous novel object recognition task and all its variants this has started to change. The features of recognition memory include a particular object or person ("what"), the context in which the experience took place, which can be the arena itself or the location within a particular arena ("where") and the particular time at which the event occurred ("when"). This definition instead of the historical anthropocentric one allows the study of this type of episodic memory in animal models. Some forms of recognition memory that require integration of different features recruit the medial prefrontal cortex. Focusing on findings from spontaneous recognition memory tasks performed by rodents, this review concentrates on the description of previous works that have examined the role that the medial prefrontal cortex has on the different steps of recognition memory. We conclude that this structure, independently of the task used, is required at different memory stages when the task cannot be solved by a single item strategy. PMID:26115848

  17. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression.

    PubMed

    Andersen, Anders H; Smith, Charles D; Slevin, John T; Kryscio, Richard J; Martin, Catherine A; Schmitt, Frederick A; Blonder, Lee X

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  18. Ventromedial prefrontal cortex, adding value to autobiographical memories.

    PubMed

    Lin, Wen-Jing; Horner, Aidan J; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants' memories when they were recalling and evaluating these items. An unrelated modulation by the participant's familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  19. Is the Medial Prefrontal Cortex Necessary for Theory of Mind?

    PubMed Central

    Otti, Alexander; Wohlschlaeger, Afra M.; Noll-Hussong, Michael

    2015-01-01

    Background Successful social interaction relies on the ability to attribute mental states to other people. Previous functional neuroimaging studies have shown that this process, described as Theory of Mind (ToM) or mentalization, is reliably associated with activation of the medial prefrontal cortex (mPFC). However, this study presents a novel and surprising finding that provides new insight into the role of the mPFC in mentalization tasks. Methodology/Principal Findings Twenty healthy individuals were recruited from a wide range of ages and social backgrounds. Participants underwent functional magnetic resonance imaging (fMRI) while viewing a well-established ToM visual paradigm involving moving triangles. Functional MRI data were analyzed using a classical general linear model. No activation was detected in the medial prefrontal cortex (mPFC) during movement patterns that typically elicit ToM. However, increased activity was observed in the right middle occipital gyrus, right temporoparietal junction (TPJ), left middle occipital gyrus and right inferior frontal gyrus. No correlation was found between participants’ age and BOLD response. Conclusions/Significance In contrast with previous neuroimaging research, our findings support the notion that mPFC function is not critical for reasoning about the mental states of others; furthermore, our data indicate that the right TPJ and right inferior frontal gyrus are able to perform mentalization without any contributions from the mPFC. PMID:26301900

  20. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans

    PubMed Central

    Schulz, Enrico; May, Elisabeth S.; Postorino, Martina; Tiemann, Laura; Nickel, Moritz M.; Witkovsky, Viktor; Schmidt, Paul; Gross, Joachim; Ploner, Markus

    2015-01-01

    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain. PMID:25754338

  1. Higher Order Spike Synchrony in Prefrontal Cortex during Visual Memory

    PubMed Central

    Pipa, Gordon; Munk, Matthias H. J.

    2009-01-01

    Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 μm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to seven sites exhibit performance dependent modulation of their spike synchronization. PMID:21713065

  2. Responses of prefrontal multisensory neurons to mismatching faces and vocalizations.

    PubMed

    Diehl, Maria M; Romanski, Lizabeth M

    2014-08-20

    Social communication relies on the integration of auditory and visual information, which are present in faces and vocalizations. Evidence suggests that the integration of information from multiple sources enhances perception compared with the processing of a unimodal stimulus. Our previous studies demonstrated that single neurons in the ventrolateral prefrontal cortex (VLPFC) of the rhesus monkey (Macaca mulatta) respond to and integrate conspecific vocalizations and their accompanying facial gestures. We were therefore interested in how VLPFC neurons respond differentially to matching (congruent) and mismatching (incongruent) faces and vocalizations. We recorded VLPFC neurons during the presentation of movies with congruent or incongruent species-specific facial gestures and vocalizations as well as their unimodal components. Recordings showed that while many VLPFC units are multisensory and respond to faces, vocalizations, or their combination, a subset of neurons showed a significant change in neuronal activity in response to incongruent versus congruent vocalization movies. Among these neurons, we typically observed incongruent suppression during the early stimulus period and incongruent enhancement during the late stimulus period. Incongruent-responsive VLPFC neurons were both bimodal and nonlinear multisensory, fostering their ability to respond to changes in either modality of a face-vocalization stimulus. These results demonstrate that ventral prefrontal neurons respond to changes in either modality of an audiovisual stimulus, which is important in identity processing and for the integration of multisensory communication information. PMID:25143605

  3. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex.

    PubMed

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  4. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    PubMed Central

    Andersen, Anders H.; Smith, Charles D.; Slevin, John T.; Kryscio, Richard J.; Martin, Catherine A.; Schmitt, Frederick A.; Blonder, Lee X.

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  5. Ventromedial prefrontal cortex, adding value to autobiographical memories

    PubMed Central

    Lin, Wen-Jing; Horner, Aidan J.; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants’ memories when they were recalling and evaluating these items. An unrelated modulation by the participant’s familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  6. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia.

    PubMed

    Couch, Yvonne; Anthony, Daniel C; Dolgov, Oleg; Revischin, Alexander; Festoff, Barry; Santos, Ana Isabel; Steinbusch, Harry W; Strekalova, Tatyana

    2013-03-01

    A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference<65%) or resilience (sucrose preference>65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression. PMID:23305936

  7. NUCLEUS REUNIENS OF THE MIDLINE THALAMUS: LINK BETWEEN THE MEDIAL PREFRONTAL CORTEX AND THE HIPPOCAMPUS

    PubMed Central

    Vertes, Robert P.; Hoover, Walter B.; Szigeti-Buck, Klara; Leranth, Csaba

    2016-01-01

    The medial prefrontal cortex and the hippocampus serve well recognized roles in memory processing. The hippocampus projects densely to, and exerts strong excitatory actions on, the medial prefrontal cortex. Interestingly, the medial prefrontal cortex, in rats and other species, has no direct return projections to the hippocampus, and few projections to parahippocampal structures including the entorhinal cortex. It is well established that the nucleus reuniens of the midline thalamus is the major source of thalamic afferents to the hippocampus. Since the medial prefrontal cortex also distributes to nucleus reuniens, we examined medial prefrontal connections with populations of nucleus reuniens neurons projecting to hippocampus. We used a combined anterograde and retrograde tracing procedure at the light and electron microscopic levels. Specifically, we made Phaseolus vulgaris-leuccoagglutinin (PHA-L) injections into the medial prefrontal cortex and Fluorogold injections into the hippocampus (CA1/subiculum) and examined termination patterns of anterogradely PHA-L labeled fibers on retrogradely FG labeled cells of nucleus reuniens. At the light microscopic level, we showed that fibers from the medial prefrontal cortex form multiple putative synaptic contacts with dendrites of hippocampally projecting neurons throughout the extent of nucleus reuniens. At ultrastructural level, we showed that medial prefrontal cortical fibers form asymmetric contacts predominantly with dendritic shafts of hippocampally projecting reuniens cells. These findings indicate that nucleus reuniens represents a critical link between the medial prefrontal cortex and the hippocampus. We discuss the possibility that nucleus reuniens gates the flow of information between the medial prefrontal cortex and hippocampus dependent upon attentive/arousal states of the organism. PMID:17292803

  8. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  9. Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates.

    PubMed

    Wang, Min; Arnsten, Amy F T

    2015-04-01

    Cognitive disorders such as schizophrenia and Alzheimer's disease are associated with dysfunction of the highly evolved dorsolateral prefrontal cortex (dlPFC), and with changes in glutamatergic N-methyl-D-aspartate receptors (NMDARs). Recent research on the primate dlPFC discovered that the pyramidal cell circuits that generate the persistent firing underlying spatial working memory communicate through synapses on spines containing NMDARs with NR2B subunits (GluN2B) in the post-synaptic density. This contrasts with synapses in the hippocampus and primary visual cortex, where GluN2B receptors are both synaptic and extrasynaptic. Blockade of GluN2B in the dlPFC markedly reduces the persistent firing of the Delay cells needed for neuronal representations of visual space. Cholinergic stimulation of nicotinic α7 receptors within the glutamate synapse is necessary for NMDAR actions. In contrast, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors have only subtle effects on the persistent firing of Delay cells, but contribute substantially to the firing of Cue and Response cells. Systemic administration of the NMDAR antagonist ketamine reduces the persistent firing of Delay cells, but increases the firing of some Response cells. The reduction in persistent firing produced by ketamine may explain why this drug can mimic or worsen the cognitive symptoms of schizophrenia. Similar actions in the medial PFC circuits representing the emotional aspects of pain may contribute to the rapid analgesic and anti-depressant actions of ketamine. PMID:25754145

  10. On the Effect of Sex on Prefrontal and Cerebellar Neurometabolites in Healthy Adults: An MRS Study.

    PubMed

    Endres, Dominique; Tebartz van Elst, Ludger; Feige, Bernd; Backenecker, Stephan; Nickel, Kathrin; Bubl, Anna; Lange, Thomas; Mader, Irina; Maier, Simon; Perlov, Evgeniy

    2016-01-01

    In neuropsychiatric research, the aspects of sex have received increasing attention over the past decade. With regard to the neurometabolic differences in the prefrontal cortex and the cerebellum of both men and women, we performed a magnetic resonance spectroscopic (MRS) study of a large group of healthy subjects. For neurometabolic measurements, we used single-voxel proton MRS. The voxels of interest (VOI) were placed in the pregenual anterior cingulate cortex (pACC) and the left cerebellar hemisphere. Absolute quantification of creatine (Cre), total choline (t-Cho), glutamate and glutamine (Glx), N-acetylaspartate, and myo-inositol (mI) was performed. Thirty-three automatically matched ACCs and 31 cerebellar male-female pairs were statistically analyzed. We found no significant neurometabolic differences in the pACC region (Wilks' lambda: p = 0.657). In the left cerebellar region, we detected significant variations between the male and female groups (p = 0.001). Specifically, we detected significantly higher Cre (p = 0.005) and t-Cho (p = 0.000) levels in men. Additionally, males tended to have higher Glx and mI concentrations. This is the first study to report neurometabolic sex differences in the cerebellum. The effects of sexual hormones might have influenced our findings. Our data indicates the importance of adjusting for the confounding effects of sex in MRS studies. PMID:27531975

  11. Association of familial risk for schizophrenia with thalamic and medial prefrontal functional connectivity during attentional control.

    PubMed

    Antonucci, Linda A; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Romano, Raffaella; Quarto, Tiziana; Porcelli, Annamaria; Mancini, Marina; Di Giorgio, Annabella; Caforio, Grazia; Pergola, Giulio; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-05-01

    Anomalies in behavioral correlates of attentional processing and related brain activity are crucial correlates of schizophrenia and associated with familial risk for this brain disorder. However, it is not clear how brain functional connectivity during attentional processes is key for schizophrenia and linked with trait vs. state related variables. To address this issue, we investigated patterns of functional connections during attentional control in healthy siblings of patients with schizophrenia, who share with probands genetic features but not variables related to the state of the disorder. 356 controls, 55 patients with schizophrenia on stable treatment with antipsychotics and 40 healthy siblings of patients with this brain disorder underwent the Variable Attentional Control (VAC) task during fMRI. Independent Component Analysis (ICA) is allowed to identify independent components (IC) of BOLD signal recorded during task performance. Results indicated reduced connectivity strength in patients with schizophrenia as well as in their healthy siblings in left thalamus within an attentional control component and greater connectivity in right medial prefrontal cortex (PFC) within the so-called Default Mode Network (DMN) compared to healthy individuals. These results suggest a relationship between familial risk for schizophrenia and brain functional networks during attentional control, such that this biological phenotype may be considered a useful intermediate phenotype in order to link genes effects to aspects of the pathophysiology of this brain disorder. PMID:27012899

  12. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex

    PubMed Central

    Jackson, Mark E.; Homayoun, Houman; Moghaddam, Bita

    2004-01-01

    Cognitive deficits associated with frontal lobe dysfunction are a determinant of long-term disability in schizophrenia and are not effectively treated with available medications. Clinical studies show that many aspects of these deficits are transiently induced in healthy individuals treated with N-methyl-d-aspartate (NMDA) antagonists. These findings and recent genetic linkage studies strongly implicate NMDA receptor deficiency in schizophrenia and suggest that reversing this deficiency is pertinent to treating the cognitive symptoms of schizophrenia. Despite the wealth of behavioral data on the effects of NMDA antagonist treatment in humans and laboratory animals, there is a fundamental lack of understanding about the mechanisms by which a general state of NMDA deficiency influences the function of cortical neurons. Using ensemble recording in freely moving rats, we found that NMDA antagonist treatment, at doses that impaired working memory, potentiated the firing rate of most prefrontal cortex neurons. This potentiation, which correlated with expression of behavioral stereotypy, resulted from an increased number of irregularly discharged single spikes. Concurrent with the increase in spike activity, there was a significant reduction in organized bursting activity. These results identify two distinct mechanisms by which NMDA receptor deficiency may disrupt frontal lobe function: an increase in disorganized spike activity, which may enhance cortical noise and transmission of disinformation; and a decrease in burst activity, which reduces transmission efficacy of cortical neurons. These findings provide a physiological basis for the NMDA receptor deficiency model of schizophrenia and may clarify the nature of cortical dysfunction in this disease. PMID:15159546

  13. Emotion recognition deficits associated with ventromedial prefrontal cortex lesions are improved by gaze manipulation.

    PubMed

    Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael

    2016-09-01

    Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. PMID:27423116

  14. On the Effect of Sex on Prefrontal and Cerebellar Neurometabolites in Healthy Adults: An MRS Study

    PubMed Central

    Endres, Dominique; Tebartz van Elst, Ludger; Feige, Bernd; Backenecker, Stephan; Nickel, Kathrin; Bubl, Anna; Lange, Thomas; Mader, Irina; Maier, Simon; Perlov, Evgeniy

    2016-01-01

    In neuropsychiatric research, the aspects of sex have received increasing attention over the past decade. With regard to the neurometabolic differences in the prefrontal cortex and the cerebellum of both men and women, we performed a magnetic resonance spectroscopic (MRS) study of a large group of healthy subjects. For neurometabolic measurements, we used single-voxel proton MRS. The voxels of interest (VOI) were placed in the pregenual anterior cingulate cortex (pACC) and the left cerebellar hemisphere. Absolute quantification of creatine (Cre), total choline (t-Cho), glutamate and glutamine (Glx), N-acetylaspartate, and myo-inositol (mI) was performed. Thirty-three automatically matched ACCs and 31 cerebellar male–female pairs were statistically analyzed. We found no significant neurometabolic differences in the pACC region (Wilks' lambda: p = 0.657). In the left cerebellar region, we detected significant variations between the male and female groups (p = 0.001). Specifically, we detected significantly higher Cre (p = 0.005) and t-Cho (p = 0.000) levels in men. Additionally, males tended to have higher Glx and mI concentrations. This is the first study to report neurometabolic sex differences in the cerebellum. The effects of sexual hormones might have influenced our findings. Our data indicates the importance of adjusting for the confounding effects of sex in MRS studies. PMID:27531975

  15. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex

    PubMed Central

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F.; Obermayer, Joshua; Heistek, Tim S.; de Haan, Roel; de Kock, Christiaan P. J.; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D.

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing.

  16. Prefrontal cortical neuregulin-ErbB modulation of inhibitory control in rats.

    PubMed

    Loos, Maarten; Schetters, Dustin; Hoogeland, Myrthe; Spijker, Sabine; de Vries, Taco J; Pattij, Tommy

    2016-06-15

    Impulse control disturbances are key features of various neuropsychiatric and neurological disorders, such as attention-deficit/hyperactivity disorder, drug addiction, Parkinson disease and schizophrenia. Whereas over the last years accumulating evidence has highlighted monoaminergic modulation of the processes underlying impulse control, investigating novel mechanisms beyond monoamines may provide new intervention strategies to ameliorate impulse control disturbances. Recent work has associated the neuregulin (Nrg)-ErbB pathway with several neuropsychiatric diseases, as well as indicated its involvement in murine measures of impulse control. The aim of the present study was to investigate whether this Nrg-ErbB signaling pathway also modulates impulsive action in rats. To this end, a group of rats was trained in the 5-choice serial reaction time task (5-CSRTT), an operant paradigm that provides measures of visuospatial attention and inhibitory control processes. Upon stable baseline performance, the ErbB tyrosine kinase receptor inhibitor JNJ-28871063 (JNJ) was intracranially infused into the medioprefrontal cortex prior to test sessions. Results showed that JNJ dose-dependently improved measures of impulsive action. Importantly, other measures in the 5-CSRTT reflecting visuospatial attention or aspects of motivational behavior were not altered by JNJ. In conclusion, the present data strengthen a role for the Nrg-ErbB4 pathway in the prefrontal cortex in cognitive functioning, and in particular point towards involvement in the processes underlying impulse control. PMID:27079641

  17. An Increase in Tobacco Craving Is Associated with Enhanced Medial Prefrontal Cortex Network Coupling

    PubMed Central

    Janes, Amy C.; Farmer, Stacey; Frederick, Blaise deB.; Nickerson, Lisa D.; Lukas, Scott E.

    2014-01-01

    Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI) in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC) network, which also included the subgenual anterior cingulate cortex (sgACC) extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving. PMID:24505440

  18. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    PubMed

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. PMID:25616180

  19. Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U" toward a family of functions.

    PubMed

    Floresco, Stan B

    2013-01-01

    Studies on prefrontal cortex (PFC) dopamine (DA) function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory) is that PFC DA, acting on D1 receptors, regulates cognition in accordance to an "inverted-U" shaped function, so that too little or too much activity has detrimental effects on performance. However, contemporary studies have indicated that the receptor mechanisms through which mesocortical DA regulates different aspects of behavioral flexibility can vary considerably across different DA receptors and cognitive operations. This article will review psychopharmacological and neurochemical data comparing and contrasting the cognitive effects of antagonism and stimulation of different DA receptors in the medial PFC. Thus, set-shifting is dependent on a co-operative interaction between PFC D1 and D2 receptors, yet, supranormal stimulation of these receptors does not appear to have detrimental effects on this function. On the other hand, modification of cost/benefit decision biases in situations involving reward uncertainty is regulated in complex and sometimes opposing ways by PFC D1 vs. D2 receptors. When viewed collectively, these findings suggest that the "inverted-U" shaped dose-response curve underlying D1 receptor modulation of working memory is not a one-size-fits-all function. Rather, it appears that mesocortical DA exerts its effects via a family of functions, wherein reduced or excessive DA activity can have a variety of effects across different cognitive domains. PMID:23626521

  20. The Role of Prefrontal Cortex in Working Memory: A Mini Review.

    PubMed

    Lara, Antonio H; Wallis, Jonathan D

    2015-01-01

    A prominent account of prefrontal cortex (PFC) function is that single neurons within the PFC maintain representations of task-relevant stimuli in working memory. Evidence for this view comes from studies in which subjects hold a stimulus across a delay lasting up to several seconds. Persistent elevated activity in the PFC has been observed in animal models as well as in humans performing these tasks. This persistent activity has been interpreted as evidence for the encoding of the stimulus itself in working memory. However, recent findings have posed a challenge to this notion. A number of recent studies have examined neural data from the PFC and posterior sensory areas, both at the single neuron level in primates, and at a larger scale in humans, and have failed to find encoding of stimulus information in the PFC during tasks with a substantial working memory component. Strong stimulus related information, however, was seen in posterior sensory areas. These results suggest that delay period activity in the PFC might be better understood not as a signature of memory storage per se, but as a top down signal that influences posterior sensory areas where the actual working memory representations are maintained. PMID:26733825

  1. The Role of Prefrontal Cortex in Working Memory: A Mini Review

    PubMed Central

    Lara, Antonio H.; Wallis, Jonathan D.

    2015-01-01

    A prominent account of prefrontal cortex (PFC) function is that single neurons within the PFC maintain representations of task-relevant stimuli in working memory. Evidence for this view comes from studies in which subjects hold a stimulus across a delay lasting up to several seconds. Persistent elevated activity in the PFC has been observed in animal models as well as in humans performing these tasks. This persistent activity has been interpreted as evidence for the encoding of the stimulus itself in working memory. However, recent findings have posed a challenge to this notion. A number of recent studies have examined neural data from the PFC and posterior sensory areas, both at the single neuron level in primates, and at a larger scale in humans, and have failed to find encoding of stimulus information in the PFC during tasks with a substantial working memory component. Strong stimulus related information, however, was seen in posterior sensory areas. These results suggest that delay period activity in the PFC might be better understood not as a signature of memory storage per se, but as a top down signal that influences posterior sensory areas where the actual working memory representations are maintained. PMID:26733825

  2. rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex

    PubMed Central

    Cho, Sang Soo; Strafella, Antonio P.

    2009-01-01

    Background Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases. PMID:19696930

  3. The role of ventromedial prefrontal cortex in text comprehension inferences: semantic coherence or socio-emotional perspective?

    PubMed

    Burin, Debora I; Acion, Laura; Kurczek, Jake; Duff, Melissa C; Tranel, Daniel; Jorge, Ricardo E

    2014-02-01

    Two hypotheses about the role of the ventromedial prefrontal cortex (vmPFC) in narrative comprehension inferences, global semantic coherence versus socio-emotional perspective, were tested. Seven patients with vmPFC lesions and seven demographically matched healthy comparison participants read short narratives. Using the consistency paradigm, narratives required participants to make either an emotional or visuo-spatial inference, in which a target sentence provided consistent or inconsistent information with a previous emotional state of a character or a visuo-spatial location of an object. Healthy comparison participants made the inferences both for spatial and emotional stories, as shown by longer reading times for inconsistent critical sentences. For patients with vmPFC lesions, inconsistent sentences were read slower in the spatial stories, but not in the emotional ones. This pattern of results is compatible with the hypothesis that vmPFC contributes to narrative comprehension by supporting inferences about socio-emotional aspects of verbally described situations. PMID:24561428

  4. Evidence of anhedonia and differential reward processing in prefrontal cortex among post-withdrawal patients with prescription opiate dependence.

    PubMed

    Huhn, A S; Meyer, R E; Harris, J D; Ayaz, H; Deneke, E; Stankoski, D M; Bunce, S C

    2016-05-01

    Anhedonia is an important but understudied element of a neuroadaptive model underlying vulnerability to relapse in opioid dependence. Previous research using fMRI has shown reduced activation to pleasant stimuli in rostral prefrontal cortex among heroin-dependent patients in early recovery. This study evaluated the presence of anhedonia among recently withdrawn prescription opiate dependent patients (PODP) in residential treatment compared to control subjects. Anhedonia was assessed using self-report, affect-modulated startle response (AMSR), and a cue reactivity task during which participant's rostral prefrontal cortex (RPFC) and ventrolateral prefrontal cortex (VLPFC) was monitored with functional near infrared spectroscopy (fNIRS). The cue reactivity task included three distinct categories of natural reward stimuli: highly palatable food, positive social situations, and intimate (non-erotic) interactions. PODP reported greater anhedonia on self-report (Snaith-Hamilton Pleasure Scale), and showed reduced hedonic response to positive stimuli in the AMSR task relative to controls. PODP also exhibited reduced neural activation in bilateral RPFC and left VLPFC in response to food images and reduced left VLPFC in response to images depicting positive social situations relative to controls. No differences were found for emotionally intimate stimuli. When patients were divided into groups based on the Snaith-Hamilton criteria for the presence or absence of anhedonia, patients endorsing anhedonia showed reduced neural responses to images depicting positive social stimuli and food relative to patients who did not endorse anhedonia. Activations were in areas of RPFC that support the retrieval of episodic memories. The results suggest the presence of anhedonia in a subsample of PODP. PMID:26711857

  5. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective.

    PubMed

    Ding, Y; Lawrence, N; Olié, E; Cyprien, F; le Bars, E; Bonafé, A; Phillips, M L; Courtet, P; Jollant, F

    2015-01-01

    The vulnerability to suicidal behavior has been modeled in deficits in both valuation and cognitive control processes, mediated by ventral and dorsal prefrontal cortices. To uncover potential markers of suicidality based on this model, we measured several brain morphometric parameters using 1.5T magnetic resonance imaging in a large sample and in a specifically designed study. We then tested their classificatory properties. Three groups were compared: euthymic suicide attempters with a past history of mood disorders and suicidal behavior (N=67); patient controls with a past history of mood disorders but not suicidal behavior (N=82); healthy controls without any history of mental disorder (N=82). A hypothesis-driven region-of-interest approach was applied targeting the orbitofrontal cortex (OFC), ventrolateral (VLPFC), dorsal (DPFC) and medial (including anterior cingulate cortex; MPFC) prefrontal cortices. Both voxel-based (SPM8) and surface-based morphometry (Freesurfer) analyses were used to comprehensively evaluate cortical gray matter measure, volume, surface area and thickness. Reduced left VLPFC volume in attempters vs both patient groups was found (P=0.001, surviving multiple comparison correction, Cohen's d=0.65 95% (0.33-0.99) between attempters and healthy controls). In addition, reduced measures in OFC and DPFC, but not MPFC, were found with moderate effect sizes in suicide attempters vs healthy controls (Cohen's d between 0.34 and 0.52). Several of these measures were correlated with suicidal variables. When added to mood disorder history, left VLPFC volume increased within-sample specificity in identifying attempters in a significant but limited way. Our study, therefore, confirms structural prefrontal alterations in individuals with histories of suicide attempts. A future clinical application of these markers will, however, necessitate further research. PMID:25710122

  6. Lower Expression of Glutamic Acid Decarboxylase 67 in the Prefrontal Cortex in Schizophrenia: Contribution of Altered Regulation by Zif268

    PubMed Central

    Kimoto, Sohei; Bazmi, H. Holly; Lewis, David A.

    2015-01-01

    Objective Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. Method The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral pre-frontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. Results GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Conclusions Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia. PMID:24874453

  7. On the Role of the Ventromedial Prefrontal Cortex in Self-Processing: The Valuation Hypothesis

    PubMed Central

    D’Argembeau, Arnaud

    2013-01-01

    With the development of functional neuroimaging, important progress has been made in identifying the brain regions involved in self-related processing. One of the most consistent findings has been that the ventromedial prefrontal cortex (vMPFC) is activated when people contemplate various aspects of themselves and their life, such their traits, experiences, preferences, abilities, and goals. Recent evidence suggests that this region may not support the act of self-reflection per se, but its precise function in self-processing remains unclear. In this article, I examine the hypothesis that the vMPFC may contribute to assign personal value or significance to self-related contents: stimuli and mental representations that refer or relate to the self tend to be assigned unique value or significance, and the function of the vMPFC may precisely be to evaluate or represent such significance. Although relatively few studies to date have directly tested this hypothesis, several lines of evidence converge to suggest that vMPFC activity during self-processing depends on the personal significance of self-related contents. First, increasing psychological distance from self-representations leads to decreased activation in the vMPFC. Second, the magnitude of vMPFC activation increases linearly with the personal importance attributed to self-representations. Third, the activity of the vMPFC is modulated by individual differences in the interest placed on self-reflection. Finally, the evidence shows that the vMPFC responds to outer aspects of self that have high personal value, such as possessions and close others. By assigning personal value to self-related contents, the vMPFC may play an important role in the construction, stabilization, and modification of self-representations, and ultimately in guiding our choices and decisions. PMID:23847521

  8. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    PubMed Central

    2011-01-01

    Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC) has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process. PMID:22136635

  9. Cognitive findings after transient global amnesia: role of prefrontal cortex.

    PubMed

    Le Pira, Francesco; Giuffrida, Salvatore; Maci, Tiziana; Reggio, Ester; Zappalà, Giuseppe; Perciavalle, Vincenzo

    2005-01-01

    The aim of this study is to verify, after recovery, the presence of specific patterns of cognitive dysfunctions in Transient Global Amnesia (TGA). Fourteen patients with the diagnosis of TGA were submitted to a battery of neuropsychological tests and compared to a matched control group. We found significant qualitative and quantitative differences between TGA patients and controls in the California Verbal Learning Test (CLVT) and Rey-Osterrieth Complex Figure Test. Our data support the presence of selective cognitive dysfunctions after the clinical recovery. Moreover, for Verbal Fluency, Digit Span Backward, and Number of Clusters in the CVLT short-term memory test, the relation resulted as positively related with the temporal interval from the TGA episode. Reduction of categorical learning, attention, and qualitative alterations of spatial strategy seem to postulate a planning defect due to a prefrontal impairment. PMID:16422663

  10. Capturing the temporal evolution of choice across prefrontal cortex.

    PubMed

    Hunt, Laurence T; Behrens, Timothy E J; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. PMID:26653139

  11. Prefrontal Cortical Opioids and Dysregulated Motivation: A Network Hypothesis.

    PubMed

    Baldo, Brian A

    2016-06-01

    Loss of inhibitory control over appetitively motivated behavior occurs in multiple psychiatric disorders, including drug abuse, behavioral addictions, and eating disorders with binge features. In this opinion article, novel actions of μ-opioid peptides in the prefrontal cortex (PFC) that could contribute to inhibitory control deficits will be discussed. Evidence has accrued to suggest that excessive intra-PFC μ-opioid receptor (μ-OR) signaling alters the PFC response to excitatory drive, resulting in supernormal and incoherent recruitment of multiple PFC output pathways. Affected pathways include functionally opposed PFC→hypothalamus 'appetitive driver' and PFC→striatum 'appetitive limiter' projections. This network perturbation engenders disorganized, impulsive appetitive responses. Evidence supporting this hypothesis from human imaging and animal studies will be discussed, and combinatorial drug treatments targeting μ-ORs and specific PFC subcortical targets will be explored. PMID:27233653

  12. Prefrontal inputs to the amygdala instruct fear extinction memory formation

    PubMed Central

    Bukalo, Olena; Pinard, Courtney R.; Silverstein, Shana; Brehm, Christina; Hartley, Nolan D.; Whittle, Nigel; Colacicco, Giovanni; Busch, Erica; Patel, Sachin; Singewald, Nicolas; Holmes, Andrew

    2015-01-01

    Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)–amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity. Our data demonstrate a critical instructional role for the vmPFC-amygdala circuit in the formation of extinction memories. These findings advance our understanding of the neural basis of persistent fear, with implications for posttraumatic stress disorder and other anxiety disorders. PMID:26504902

  13. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration.

    PubMed

    Backus, Alexander R; Schoffelen, Jan-Mathijs; Szebényi, Szabolcs; Hanslmayr, Simon; Doeller, Christian F

    2016-02-22

    Integration of separate memories forms the basis of inferential reasoning--an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition. PMID:26832442

  14. Increased prefrontal cortex neurogranin enhances plasticity and extinction learning.

    PubMed

    Zhong, Ling; Brown, Joshua; Kramer, Audra; Kaleka, Kanwardeep; Petersen, Amber; Krueger, Jamie N; Florence, Matthew; Muelbl, Matthew J; Battle, Michelle; Murphy, Geoffrey G; Olsen, Christopher M; Gerges, Nashaat Z

    2015-05-13

    Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates long-term potentiation) in the PFC. Neurogranin overexpression in the PFC enhanced long-term potentiation and increased the rates of extinction learning of both fear conditioning and sucrose self-administration. Our results indicate that elevated neurogranin function within the PFC can enhance local plasticity and increase the rate of extinction learning across different behavioral tasks. Thus, neurogranin can provide a molecular link between enhanced plasticity and enhanced extinction. PMID:25972176

  15. Damage to ventromedial prefrontal cortex impairs judgment of harmful intent

    PubMed Central

    Young, Liane; Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Hauser, Marc; Damasio, Antonio

    2011-01-01

    Summary Moral judgments, whether delivered in ordinary experience or in the courtroom, depend on our ability to infer intentions. We forgive unintentional or accidental harms and condemn failed attempts to harm. Prior work demonstrates that patients with damage to the ventromedial prefrontal cortex (VMPC) deliver abnormal judgments in response to moral dilemmas, and that these patients are especially impaired in triggering emotional responses to inferred or abstract events (e.g., intentions), as opposed to real or actual outcomes. We therefore predicted that VMPC patients would deliver abnormal moral judgments of harmful intentions in the absence of harmful outcomes, as in failed attempts to harm. This prediction was confirmed in the current study: VMPC patients judged attempted harms including attempted murder as more morally permissible relative to controls. These results highlight the critical role of the VMPC in processing harmful intent for moral judgment. PMID:20346759

  16. Right dorsolateral prefrontal cortical activity and behavioral inhibition.

    PubMed

    Shackman, Alexander J; McMenamin, Brenton W; Maxwell, Jeffrey S; Greischar, Lawrence L; Davidson, Richard J

    2009-12-01

    Individuals show marked variation in their responses to threat. Such individual differences in behavioral inhibition play a profound role in mental and physical well-being. Behavioral inhibition is thought to reflect variation in the sensitivity of a distributed neural system responsible for generating anxiety and organizing defensive responses to threat and punishment. Although progress has been made in identifying the key constituents of this behavioral inhibition system in humans, the involvement of dorsolateral prefrontal cortex (DLPFC) remains unclear. Here, we acquired self-reported Behavioral Inhibition System Sensitivity scores and high-resolution electroencephalography from a large sample (n= 51). Using the enhanced spatial resolution afforded by source modeling techniques, we show that individuals with greater tonic (resting) activity in right-posterior DLPFC rate themselves as more behaviorally inhibited. This observation provides novel support for recent conceptualizations of behavioral inhibition and clues to the mechanisms that might underlie variation in threat-induced negative affect. PMID:19906125

  17. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust

    PubMed Central

    Ciaramelli, Elisa; Sperotto, Rebecca G.; Mattioli, Flavia

    2013-01-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach. PMID:22842816

  18. Increased Prefrontal Cortex Neurogranin Enhances Plasticity and Extinction Learning

    PubMed Central

    Zhong, Ling; Brown, Joshua; Kramer, Audra; Kaleka, Kanwardeep; Petersen, Amber; Krueger, Jamie N.; Florence, Matthew; Muelbl, Matthew J.; Battle, Michelle; Murphy, Geoffrey G.; Olsen, Christopher M.

    2015-01-01

    Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates long-term potentiation) in the PFC. Neurogranin overexpression in the PFC enhanced long-term potentiation and increased the rates of extinction learning of both fear conditioning and sucrose self-administration. Our results indicate that elevated neurogranin function within the PFC can enhance local plasticity and increase the rate of extinction learning across different behavioral tasks. Thus, neurogranin can provide a molecular link between enhanced plasticity and enhanced extinction. PMID:25972176

  19. Prefrontal-Hippocampal Interactions in Memory and Emotion

    PubMed Central

    Jin, Jingji; Maren, Stephen

    2015-01-01

    The hippocampal formation (HPC) and medial prefrontal cortex (mPFC) have well-established roles in memory encoding and retrieval. However, the mechanisms underlying interactions between the HPC and mPFC in achieving these functions is not fully understood. Considerable research supports the idea that a direct pathway from the HPC and subiculum to the mPFC is critically involved in cognitive and emotional regulation of mnemonic processes. More recently, evidence has emerged that an indirect pathway from the HPC to the mPFC via midline thalamic nucleus reuniens (RE) may plays a role in spatial and emotional memory processing. Here we will consider how bidirectional interactions between the HPC and mPFC are involved in working memory, episodic memory and emotional memory in animals and humans. We will also consider how dysfunction in bidirectional HPC-mPFC pathways contributes to psychiatric disorders. PMID:26696844

  20. Medial prefrontal cortex predicts internally driven strategy shifts

    PubMed Central

    Schuck, Nicolas W.; Gaschler, Robert; Wenke, Dorit; Heinzle, Jakob; Frensch, Peter A.; Haynes, John-Dylan; Reverberi, Carlo

    2015-01-01

    Summary Many daily behaviors require us to actively focus on the current task and ignore all other distractions. Yet, ignoring everything else might hinder the ability to discover new ways to achieve the same goal. Here, we studied the neural mechanisms that support the spontaneous change to better strategies while an established strategy is executed. Multivariate neuroimaging analysis showed that before the spontaneous change to an alternative strategy, medial prefrontal cortex (MPFC) encoded information that was irrelevant for the current strategy but necessary for the later strategy. Importantly, this neural effect was related to future behavioral changes: information encoding in MPFC was changed only in participants who eventually switched their strategy and started before the actual strategy change. This allowed us to predict spontaneous strategy shifts ahead of time. These findings suggest that MPFC might internally simulate alternative strategies and sheds new light on the organization of PFC. PMID:25819613

  1. MDMA (ecstasy) modulates locomotor and prefrontal cortex sensory evoked activity.

    PubMed

    Atkins, Kristal; Burks, Tilithia; Swann, Alan C; Dafny, Nachum

    2009-12-11

    Ingestion of 3, 4-methylenedioxymethamphetamine (MDMA) leads to heightened response to sensory stimulation; thus, MDMA is referred to as "ecstasy" because it produces pleasurable enhancement of such sensation. There have been no electrophysiological studies that report the consequences of MDMA on sensory input. The present study was initiated to study the effects of acute and chronic MDMA on locomotor activity and sensory evoked field potential from freely behaving rats previously implanted with permanent electrodes in the prefrontal cortex (PFC). The main findings of this study are that: (1) acute MDMA augments locomotor behavior and attenuates the incoming sensory input, (2) chronic treatment of MDMA elicits behavioral sensitization, (3) chronic administration of MDMA results in attenuation of the baseline activity of the sensory evoked field potential, and (4) administration of rechallenge MDMA result in enhancement of the PFC sensory evoked field potential. PMID:19769950

  2. Multiple component networks support working memory in prefrontal cortex.

    PubMed

    Markowitz, David A; Curtis, Clayton E; Pesaran, Bijan

    2015-09-01

    Lateral prefrontal cortex (PFC) is regarded as the hub of the brain's working memory (WM) system, but it remains unclear whether WM is supported by a single distributed network or multiple specialized network components in this region. To investigate this problem, we recorded from neurons in PFC while monkeys made delayed eye movements guided by memory or vision. We show that neuronal responses during these tasks map to three anatomically specific modes of persistent activity. The first two modes encode early and late forms of information storage, whereas the third mode encodes response preparation. Neurons that reflect these modes are concentrated at different anatomical locations in PFC and exhibit distinct patterns of coordinated firing rates and spike timing during WM, consistent with distinct networks. These findings support multiple component models of WM and consequently predict distinct failures that could contribute to neurologic dysfunction. PMID:26283366

  3. Response of dorsomedial prefrontal cortex predicts altruistic behavior

    PubMed Central

    Waytz, Adam; Zaki, Jamil; Mitchell, Jason P.

    2012-01-01

    Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex (dorsal MPFC)—a region consistently involved in understanding others’ mental states—predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought. PMID:22649243

  4. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  5. Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts.

    PubMed

    Jimura, Koji; Locke, Hannah S; Braver, Todd S

    2010-05-11

    Increasing the reward value of behavioral goals can facilitate cognitive processes required for goal achievement. This facilitation may be accomplished by the dynamic and flexible engagement of cognitive control mechanisms operating in distributed brain regions. It is still not clear, however, what are the characteristics of individuals, situations, and neural activation dynamics that optimize motivation-linked cognitive enhancement. Here we show that highly reward-sensitive individuals exhibited greater improvement of working memory performance in rewarding contexts, but exclusively on trials that were not rewarded. This effect was mediated by a shift in the temporal dynamics of activation within right lateral prefrontal cortex, from a transient to predominantly tonic mode, with an additional anticipatory transient boost. In contexts with intermittent rewards, a strategy of proactive cognitive control may enable globally optimal performance to facilitate reward attainment. Reward-sensitive individuals appear preferentially motivated to adopt this resource-demanding strategy, resulting in paradoxical benefits selectively for nonrewarded events. PMID:20421489

  6. Dyspnea-Related Cues Engage the Prefrontal Cortex

    PubMed Central

    Herigstad, Mari; Hayen, Anja; Evans, Eleanor; Hardinge, Frances M.; Davies, Robert J.; Wiech, Katja

    2015-01-01

    BACKGROUND: Dyspnea is the major source of disability in COPD. In COPD, environmental cues (eg, the prospect of having to climb stairs) become associated with dyspnea and may trigger dyspnea even before physical activity commences. We hypothesized that brain activation relating to such cues would be different between patients with COPD and healthy control subjects, reflecting greater engagement of emotional mechanisms in patients. METHODS: Using functional MRI (FMRI), we investigated brain responses to dyspnea-related word cues in 41 patients with COPD and 40 healthy age-matched control subjects. We combined these findings with scores on self-report questionnaires, thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enabled identification of brain networks responsible for pain processing despite absence of a physical challenge. RESULTS: Patients with COPD demonstrated activation in the medial prefrontal cortex and anterior cingulate cortex, which correlated with the visual analog scale (VAS) response to word cues. This activity independently correlated with patient responses on questionnaires of depression, fatigue, and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex, and precuneus correlated with the VAS dyspnea scale but not with the questionnaires. CONCLUSIONS: The findings suggest that engagement of the emotional circuitry of the brain is important for interpretation of dyspnea-related cues in COPD and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and the findings suggest that such mechanisms may be relevant in COPD. PMID:26134891

  7. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    PubMed Central

    Auger, Meagan L.

    2015-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433

  8. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc. PMID:26179962

  9. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model.

    PubMed

    Hara, Yuta; Takuma, Kazuhiro; Takano, Erika; Katashiba, Keisuke; Taruta, Atsuki; Higashino, Kosuke; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2015-08-01

    Previous studies suggest that dysfunction of neurotransmitter systems is associated with the pathology of autism in humans and the disease model rodents, but the precise mechanism is not known. Rodent offspring exposed prenatally to VPA shows autism-related behavioral abnormalities. The present study examined the effect of prenatal VPA exposure on brain monoamine neurotransmitter systems in male and female mice. The prenatal VPA exposure did not affect the levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex and striatum, while it significantly reduced methamphetamine (METH) (1.0 mg/kg)-induced hyperlocomotion in male offspring. In vivo microdialysis study demonstrated that prenatal VPA exposure attenuated METH-induced increases in extracellular DA levels in the prefrontal cortex, while it did not affect those in extracellular NA and 5-HT levels. Prenatal VPA exposure also decreased METH-induced c-Fos expression in the prefrontal cortex and the mRNA levels of DA D1 and D2 receptors in the prefrontal cortex. These effects of VPA were not observed in the striatum. In contrast to male offspring, prenatal VPA exposure did not affect METH-induced increases in locomotor activity and prefrontal DA levels and the D1 and D2 receptor mRNA levels in the prefrontal cortex in female offspring. These findings suggest that prenatal VPA exposure causes hypofunction of prefrontal DA system in a sex-dependent way. PMID:25907743

  10. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    PubMed

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored). PMID:23266766

  11. Milnacipran Remediates Impulsive Deficits in Rats with Lesions of the Ventromedial Prefrontal Cortex

    PubMed Central

    Tsutsui-Kimura, Iku; Yoshida, Takayuki; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2015-01-01

    Background: Deficits in impulse control are often observed in psychiatric disorders in which abnormalities of the prefrontal cortex are observed, including attention-deficit/hyperactivity disorder and bipolar disorder. We recently found that milnacipran, a serotonin/noradrenaline reuptake inhibitor, could suppress impulsive action in normal rats. However, whether milnacipran could suppress elevated impulsive action in rats with lesions of the ventromedial prefrontal cortex, which is functionally comparable with the human prefrontal cortex, remains unknown. Methods: Selective lesions of the ventromedial prefrontal cortex were made using quinolinic acid in rats previously trained on a 3-choice serial reaction time task. Sham rats received phosphate buffered saline. Following a period of recovery, milnacipran (0 or 10mg/kg/d × 14 days) was orally administered 60 minutes prior to testing on the 3-choice task. After 7 days of drug cessation, Western blotting, immunohistochemistry, electrophysiological analysis, and morphological analysis were conducted. Results: Lesions of the ventromedial prefrontal cortex induced impulsive deficits, and repeated milnacipran ameliorated the impulsive deficit both during the dosing period and after the cessation of the drug. Repeated milnacipran remediated the protein levels of mature brain-derived neurotrophic factor and postsynaptic density-95, dendritic spine density, and excitatory currents in the few surviving neurons in the ventromedial prefrontal cortex of ventromedial prefrontal cortex-lesioned rats. Conclusions: The findings of this study suggest that milnacipran treatment could be a novel strategy for the treatment of psychiatric disorders that are associated with a lack of impulse control. PMID:25522418

  12. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction.

    PubMed

    Cisler, Josh M; Elton, Amanda; Kennedy, Ashley P; Young, Jonathan; Smitherman, Sonet; Andrew James, George; Kilts, Clinton D

    2013-07-30

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. Participants comprised 41 patients with cocaine dependence and 19 controls who underwent a resting-state 3-T functional magnetic resonance imaging scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial prefrontal cortex, inferior frontal gyrus, and bilateral dorsolateral prefrontal cortex. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  13. Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy.

    PubMed

    Jokeit, H; Seitz, R J; Markowitsch, H J; Neumann, N; Witte, O W; Ebner, A

    1997-12-01

    Depressions of regional cerebral metabolism beyond the epileptogenic zone have been demonstrated in patients with intractable temporal lobe epilepsy. However, their clinical relevance, and the causes of prefrontal metabolic asymmetries are less well understood. We investigated 96 temporal lobe epilepsy patients by FDG-PET and neuropsychological assessment who had a corresponding unilateral temporal hypometabolism, left hemisphere speech dominance, full scale IQ of > 70 and no extratemporal lesion in MRIs. The regional glucose metabolism was determined in each patient in homologous regions including prefrontal cortex, and normalized to whole brain metabolism. Regional differences of > 10% were regarded as asymmetrical. Prefrontal metabolic asymmetries were more frequent in patients with left temporal lobe epilepsy (21 left, six right) and a history of secondarily generalized seizures. A multivariate analysis of variance revealed a main effect for prefrontal metabolic asymmetry on neuropsychological 'frontal lobe measures', including verbal and performance intelligence measures. Prefrontal metabolic asymmetry was not related to 'measures of episodic memory', presence of psychiatric symptoms or frontal interictal epileptiform discharges. We conclude that prefrontal metabolic asymmetry is associated with cognitive impairment. Patients with temporal lobe epilepsy of the left speech dominant hemisphere and a history of secondarily generalized seizures are at considerable risk of developing prefrontal metabolic asymmetry. PMID:9448582

  14. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study

    PubMed Central

    Foy, Hannah J.; Runham, Patrick; Chapman, Peter

    2016-01-01

    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population. PMID:27227990

  15. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward

    PubMed Central

    Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-01-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock–Paper–Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player’s success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness. PMID:26500290

  16. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    PubMed Central

    Lamichhane, Bidhan; Dhamala, Mukesh

    2015-01-01

    Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI) experiments involving thirty-three participants. The behavioral performance error and response time (RT) were correlated with noise in face-house images. We then built dynamical causal models (DCM) of fMRI blood-oxygenation level dependent (BOLD) signals from the face and house category-specific regions in ventral temporal (VT) cortex, the fusiform face area (FFA) and parahippocampal place area (PPA), and the dorsolateral prefrontal cortex (dlPFC). We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions. PMID:26441596

  17. Functional connectivity between prefrontal cortex and striatum estimated by phase locking value.

    PubMed

    Zhang, Yan; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2016-06-01

    The interplay between the prefrontal cortex (PFC) and striatum has an important role in cognitive processes. To investigate interactive functions between the two areas in reward processing, we recorded local field potentials (LFPs) simultaneously from the two areas of two monkeys performing a reward prediction task (large reward vs small reward). The power of the LFPs was calculated in three frequency bands: the beta band (15-29 Hz), the low gamma band (30-49 Hz), and the high gamma band (50-100 Hz). We found that both the PFC and striatum encoded the reward information in the beta band. The reward information was also found in the high gamma band in the PFC, not in the striatum. We further calculated the phase-locking value (PLV) between two LFP signals to measure the phase synchrony between the PFC and striatum. It was found that significant differences occurred between PLVs in different task periods and in different frequency bands. The PLVs in small reward condition were significant higher than that in large reward condition in the beta band. In contrast, the PLVs in the high gamma band were stronger in large reward trials than in small trials. These results suggested that the functional connectivity between the PFC and striatum depended on the task periods and reward conditions. The beta synchrony between the PFC and striatum may regulate behavioral outputs of the monkeys in the small reward condition. PMID:27275380

  18. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: An fMRI approach

    PubMed Central

    2012-01-01

    Background The Kana Pick-out Test (KPT), which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out) and continuous (reading) dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC), and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. Methods We used functional magnetic resonance imaging (fMRI) to evaluate changes in the blood oxygenation level-dependent (BOLD) signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels) and compared it to its single task components (reading or vowel pick-out alone). Results Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46) was present only in the KPT. Conclusions Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance. PMID:22640773

  19. On the role of the anterior prefrontal cortex in cognitive 'branching': An fMRI study.

    PubMed

    Chahine, George; Diekhof, Esther Kristina; Tinnermann, Alexandra; Gruber, Oliver

    2015-10-01

    The most anterior portion of prefrontal cortex (aPFC), more specifically Brodman Area 10 (BA10), has been implicated in 'branching operations', or the ability to perform tasks related to one goal, while keeping in working memory information related to a secondary goal. Such findings have been based on fMRI recordings under complex behavioral paradigms that compare 'branching' tasks with tasks where one goal is pursued at a time, but are limited by their complete reliance on verbal working memory and by small sample sizes. Here, we test the specificity of BA 10 to branching in similar behavioral paradigms but with a larger sample and in two different conditions involving verbal and visual working memory respectively. We find that BA 10 and other frontal and parietal brain areas are activated in all tasks, with an extent and level of significance increasing with the complexity of the task. We conclude that the activation of BA 10 is not specific to branching as previously hypothesized, but is related to the level of complexity of working memory performance. For further insight into the specific role of anterior portions of the frontal cortex we highlight the importance of simple control tasks with gradual and incremental increase in complexity. PMID:26300386

  20. Prefrontal cortical regulation of drug seeking in animal models of drug relapse.

    PubMed

    Lasseter, Heather C; Xie, Xiaohu; Ramirez, Donna R; Fuchs, Rita A

    2010-01-01

    Prefrontal cortical dysfunction is thought to underlie maladaptive behaviors displayed by chronic drug users, most notably the high propensity for relapse that severely impedes successful treatment of drug addiction. In animal models of drug relapse, exposure to drug-associated stimuli, small amounts of drug, and acute stressors powerfully reinstate drug seeking by critically engaging the prefrontal cortex, with the anterior cingulate, prelimbic, infralimbic, and orbitofrontal subregions making distinct contributions to drug seeking. Hence, from an addiction treatment perspective, it is necessary to fully explicate the involvement of the prefrontal cortex in drug relapse. PMID:21161751

  1. Processing of Hedonic and Chemosensory Features of Taste in Medial Prefrontal and Insular Networks

    PubMed Central

    Jezzini, Ahmad; Mazzucato, Luca; La Camera, Giancarlo

    2013-01-01

    Most of the research on cortical processing of taste has focused on either the primary gustatory cortex (GC) or the orbitofrontal cortex (OFC). However, these are not the only areas involved in taste processing. Gustatory information can also reach another frontal region, the medial prefrontal cortex (mPFC), via direct projections from GC. mPFC has been studied extensively in relation to its role in controlling goal-directed action and reward-guided behaviors, yet very little is known about its involvement in taste coding. The experiments presented here address this important point and test whether neurons in mPFC can significantly process the physiochemical and hedonic dimensions of taste. Spiking responses to intraorally delivered tastants were recorded from rats implanted with bundles of electrodes in mPFC and GC. Analysis of single-neuron and ensemble activity revealed similarities and differences between the two areas. Neurons in mPFC can encode the chemosensory identity of gustatory stimuli. However, responses in mPFC are sparser, more narrowly tuned, and have a later onset than in GC. Although taste quality is more robustly represented in GC, taste palatability is coded equally well in the two areas. Additional analysis of responses in neurons processing the hedonic value of taste revealed differences between the two areas in temporal dynamics and sensitivities to palatability. These results add mPFC to the network of areas involved in processing gustatory stimuli and demonstrate significant differences in taste-coding between GC and mPFC. PMID:24285901

  2. Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks.

    PubMed

    Jezzini, Ahmad; Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    2013-11-27

    Most of the research on cortical processing of taste has focused on either the primary gustatory cortex (GC) or the orbitofrontal cortex (OFC). However, these are not the only areas involved in taste processing. Gustatory information can also reach another frontal region, the medial prefrontal cortex (mPFC), via direct projections from GC. mPFC has been studied extensively in relation to its role in controlling goal-directed action and reward-guided behaviors, yet very little is known about its involvement in taste coding. The experiments presented here address this important point and test whether neurons in mPFC can significantly process the physiochemical and hedonic dimensions of taste. Spiking responses to intraorally delivered tastants were recorded from rats implanted with bundles of electrodes in mPFC and GC. Analysis of single-neuron and ensemble activity revealed similarities and differences between the two areas. Neurons in mPFC can encode the chemosensory identity of gustatory stimuli. However, responses in mPFC are sparser, more narrowly tuned, and have a later onset than in GC. Although taste quality is more robustly represented in GC, taste palatability is coded equally well in the two areas. Additional analysis of responses in neurons processing the hedonic value of taste revealed differences between the two areas in temporal dynamics and sensitivities to palatability. These results add mPFC to the network of areas involved in processing gustatory stimuli and demonstrate significant differences in taste-coding between GC and mPFC. PMID:24285901

  3. Language Arts Scenarios Using "Aspects."

    ERIC Educational Resources Information Center

    Hamstra, Diane

    1993-01-01

    Outlines how the computer groupware program for Macintosh computers called "Aspects" was used at every level of a K-12 school system to enhance collaborative writing and writing skills. Imagines possible future uses of the program in linking classrooms from different areas of the world. (HB)

  4. Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions

    PubMed Central

    Weishaupt, Nina; Zhang, Angela; Deziel, Robert A.; Tasker, R. Andrew; Whitehead, Shawn N.

    2016-01-01

    Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents. PMID:26973455

  5. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders. PMID:24412555

  6. Aspects of Plant Intelligence

    PubMed Central

    TREWAVAS, ANTHONY

    2003-01-01

    Intelligence is not a term commonly used when plants are discussed. However, I believe that this is an omission based not on a true assessment of the ability of plants to compute complex aspects of their environment, but solely a reflection of a sessile lifestyle. This article, which is admittedly controversial, attempts to raise many issues that surround this area. To commence use of the term intelligence with regard to plant behaviour will lead to a better understanding of the complexity of plant signal transduction and the discrimination and sensitivity with which plants construct images of their environment, and raises critical questions concerning how plants compute responses at the whole‐plant level. Approaches to investigating learning and memory in plants will also be considered. PMID:12740212

  7. Various aspects of gravity

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Marcin

    2007-12-01

    This thesis summarizes research projects that I have been involved in during my graduate studies at Vanderbilt University. My research spanned different areas of theoretical high energy physics with gravity as a common denominator. I explore both fundamental and phenomenological aspects of: (i) mathematical physics where I have studied relations between partition functions of certain class of conformal field theories and Fischer-Griess Monster group; (ii) cosmology, where I performed a numerical study of a horizon size modes of scalar field; (iii) a black hole physics project involving possible extensions of the non-hair theorem in a presence of exotic types of scalar field; and (iv) a study of phenomenological space-time foam models and their relation to Planck scale physics.

  8. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism.

    PubMed

    Codagnone, Martín Gabriel; Podestá, María Fernanda; Uccelli, Nonthué Alejandra; Reinés, Analía

    2015-01-01

    Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive

  9. Familial Vulnerability to ADHD Affects Activity in the Cerebellum in Addition to the Prefrontal Systems

    ERIC Educational Resources Information Center

    Mulder, Martijn J.; Baeyens, Dieter; Davidson, Matthew C.; Casey, B. J.; Van Den Ban, Els; Van Engeland, Herman; Durston, Sarah

    2008-01-01

    The study examines whether cerebellar systems are sensitive to familial risk for ADHD in addition to frontostriatal circuitry. The results conclude that familial vulnerability to ADHD affects activity in both the prefrontal cortex and cerebellum.

  10. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later.

    PubMed

    Asensio, Samuel; Romero, Maria J; Romero, Francisco J; Wong, Christopher; Alia-Klein, Nelly; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Volkow, Nora D; Goldstein, Rita Z

    2010-05-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [(11)C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals. PMID:20034014

  11. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    SciTech Connect

    Asensio, S.; Goldstein, R.; Asensio, S.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F..; Volkow, N.D.; Goldstein, R.Z.

    2010-05-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  12. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex.

    PubMed

    Corradi-Dell'Acqua, Corrado; Hofstetter, Christoph; Vuilleumier, Patrik

    2014-08-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive 'mentalizing' functions, associated with theory of mind and also necessary to represent people's non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  13. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    PubMed Central

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  14. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    PubMed

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system. PMID:24679996

  15. Amygdala Perfusion Is Predicted by Its Functional Connectivity with the Ventromedial Prefrontal Cortex and Negative Affect

    PubMed Central

    Coombs III, Garth; Loggia, Marco L.; Greve, Douglas N.; Holt, Daphne J.

    2014-01-01

    Background Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect). It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1) amygdala over-activity and 2) reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. Methods Here we used resting-state arterial spin labeling (ASL) and blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF) and functional connectivity (correlated fluctuations in the BOLD signal) of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA), and subsyndromal anxiety levels in 38 healthy subjects. Results BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. Conclusions These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach. PMID:24816735

  16. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Williams, Graham V.; Goldman-Rakic, Patricia S.

    1995-08-01

    Dopamine has been implicated in the cognitive process of working memory but the cellular basis of its action has yet to be revealed. By combining iontophoretic analysis of dopamine receptors with single-cell recording during behaviour, we found that D1 antagonists can selectively potentiate the 'memory fields' of prefrontal neurons which subserve working memory. The precision shown for D1 receptor modulation of mnemonic processing indicates a direct gating of selective excitatory synaptic inputs to prefrontal neurons during cognition.

  17. Prefrontal Response and Frontostriatal Functional Connectivity to Monetary Reward in Abstinent Alcohol-Dependent Young Adults

    PubMed Central

    Forbes, Erika E.; Rodriguez, Eric E.; Musselman, Samuel; Narendran, Rajesh

    2014-01-01

    Although altered function in neural reward circuitry is widely proposed in models of addiction, more recent conceptual views have emphasized the role of disrupted response in prefrontal regions. Changes in regions such as the orbitofrontal cortex, medial prefrontal cortex, and dorsolateral prefrontal cortex are postulated to contribute to the compulsivity, impulsivity, and altered executive function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults. To address these issues, we examined neural response and functional connectivity during monetary reward in 24 adults with alcohol dependence and 24 psychiatrically healthy adults. Adults with alcohol dependence exhibited less response to the receipt of monetary reward in a set of prefrontal regions including the medial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex. Adults with alcohol dependence also exhibited greater negative correlation between function in each of these regions and that in the nucleus accumbens. Within the alcohol-dependent group, those with family history of alcohol dependence exhibited lower mPFC response, and those with more frequent drinking exhibited greater negative functional connectivity between the mPFC and the nucleus accumbens. These findings indicate that alcohol dependence is associated with less engagement of prefrontal cortical regions, suggesting weak or disrupted regulation of ventral striatal response. This pattern of prefrontal response and frontostriatal connectivity has consequences for the behavior patterns typical of addiction. Furthermore, brain-behavior findings indicate that the potential mechanisms of disruption in frontostriatal circuitry in alcohol dependence include family liability to alcohol use problems and more frequent use of alcohol. In all, these findings build on the extant

  18. Increased oxygenation of the cerebral prefrontal cortex prior to the onset of voluntary exercise in humans.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana; Ohtani, Ryo; Nakamoto, Tomoko; Wakasugi, Rie; Kadowaki, Akito; Komine, Hidehiko

    2015-09-01

    To determine whether output from the forebrain (termed central command) may descend early enough to increase cardiac and renal sympathetic outflows at the onset of voluntary exercise, we examined the changes in regional tissue blood flows of bilateral prefrontal cortices with near-infrared spectroscopy, precisely identifying the onset of voluntary ergometer 30-s exercise at 41 ± 2% of the maximal exercise intensity in humans. Prefrontal oxygenated-hemoglobin (Oxy-Hb) concentration was measured as index of regional blood flow unless deoxygenated-hemoglobin concentration remained unchanged. Prefrontal Oxy-Hb concentration increased significantly (P < 0.05) 5 s prior to the onset of exercise with arbitrary start, whereas such increase in prefrontal Oxy-Hb was absent before exercise abruptly started by a verbal cue. Furthermore, the increase in prefrontal Oxy-Hb observed at the initial 15-s period of exercise was greater with arbitrary start than cued start. The prefrontal Oxy-Hb, thereafter, decreased during the later period of exercise, irrespective of either arbitrary or cued start. The reduction in prefrontal Oxy-Hb had the same time course and response magnitude as that during motor-driven passive exercise. Cardiac output increased at the initial period of exercise, whereas arterial blood pressure and total peripheral resistance decreased. The depressor response was more pronounced (P < 0.05) with arbitrary start than cued start. Taken together, it is suggested that the increase in prefrontal Oxy-Hb observed prior to the onset of voluntary exercise may be in association with central command, while the later decrease in the Oxy-Hb during exercise may be in association with feedback stimulated by mechanical limb motion. PMID:26183481

  19. Cocaine reverses the naltrexone-induced reduction in operant ethanol self-administration: the effects on immediate-early gene expression in the rat prefrontal cortex.

    PubMed

    Echeverry-Alzate, Víctor; Tuda-Arízcun, María; Bühler, Kora-Mareen; Santos, Ángel; Giné, Elena; Olmos, Pedro; Gorriti, Miguel Ángel; Huertas, Evelio; Rodríguez de Fonseca, Fernando; López-Moreno, Jose Antonio

    2012-11-01

    Naltrexone is a clinically approved medication for alcoholism. We aimed to investigate the effectiveness of naltrexone co-administered with cocaine and the association of these substances with immediate-early gene expression in the rat prefrontal cortex. We used chronic operant ethanol self-administration and oral treatments prescribed for alcoholism and available in pharmacies to maximise the predictive validity in humans. We performed real-time PCR analysis to determine gene expression levels in the prefrontal cortex. Only the highest dose of naltrexone (1, 3, and 10 mg/kg, p.o.) reduced the response to ethanol. Cocaine increased ethanol self-administration in a dose-dependent manner (2.5, 10, 20 mg/kg, i.p.) and reversed the naltrexone-induced reduction. Naltrexone failed to prevent the cocaine-induced increase in locomotor activity observed in these animals. Chronic self-administration of ethanol reduced the expression of the C-fos gene 4- to 12-fold and increased expression of the COX-2 (up to 4-fold) and Homer1a genes in the rat prefrontal cortex. Chronic ethanol self-administration is prevented by naltrexone, but cocaine fully reverses this effect. This result suggests that cocaine may overcome naltrexone's effectiveness as a treatment for alcoholism. The ethanol-induced reduction in C-fos gene expression in the prefrontal cortex reveals an abnormal activity of these neurons, which may be relevant in the compulsive consumption of ethanol, the control of reward-related areas and the behavioural phenotype of ethanol addiction. PMID:22749946

  20. The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: a critical update.

    PubMed

    Nyhus, Erika; Barceló, Francisco

    2009-12-01

    For over four decades the Wisconsin Card Sorting Test (WCST) has been one of the most distinctive tests of prefrontal function. Clinical research and recent brain imaging have brought into question the validity and specificity of this test as a marker of frontal dysfunction. Clinical studies with neurological patients have confirmed that, in its traditional form, the WCST fails to discriminate between frontal and non-frontal lesions. In addition, functional brain imaging studies show rapid and widespread activation across frontal and non-frontal brain regions during WCST performance. These studies suggest that the concept of an anatomically pure test of prefrontal function is not only empirically unattainable, but also theoretically inaccurate. The aim of the present review is to examine the causes of these criticisms and to resolve them by incorporating new methodological and conceptual advances in order to improve the construct validity of WCST scores and their relationship to prefrontal executive functions. We conclude that these objectives can be achieved by drawing on theory-guided experimental design, and on precise spatial and temporal sampling of brain activity, and then exemplify this using an integrative model of prefrontal function [i.e., Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59-65.] combined with the formal information theoretical approach to cognitive control [Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229-235.]. PMID:19375839

  1. Effects of Physical Exercise on Working Memory and Prefrontal Cortex Function in Post-Stroke Patients.

    PubMed

    Moriya, M; Aoki, C; Sakatani, K

    2016-01-01

    Physical exercise enhances prefrontal cortex activity and improves working memory performance in healthy older adults, but it is not clear whether this remains the case in post-stroke patients. Therefore, the aim of this study was to examine the acute effect of physical exercise on prefrontal cortex activity in post-stroke patients using near-infrared spectroscopy (NIRS). We studied 11 post-stroke patients. The patients performed Sternberg-type working memory tasks before and after moderate intensity aerobic exercise (40 % of maximal oxygen uptake) with a cycling ergometer for 15 min. We measured the NIRS response at the prefrontal cortex during the working memory task. We evaluated behavioral performance (response time and accuracy) of the working memory task. It was found that physical exercise improved behavioral performance of the working memory task compared with the control condition (p < 0.01). In addition, NIRS analysis indicated that physical exercise enhanced prefrontal cortex activation, particularly in the right prefrontal cortex (p < 0.05), during the working memory task compared with the control condition. These findings suggest that the moderate-intensity aerobic exercise enhances prefrontal cortex activity and improves working memory performance in post-stroke patients. PMID:27526144

  2. Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions

    PubMed Central

    Ryu, Jihye; Golfinos, John G.; Blackmon, Karen E.

    2014-01-01

    Humans have the capacity to evaluate the success of cognitive processes, known as metacognition. Convergent evidence supports a role for anterior prefrontal cortex in metacognitive judgements of perceptual processes. However, it is unknown whether metacognition is a global phenomenon, with anterior prefrontal cortex supporting metacognition across domains, or whether it relies on domain-specific neural substrates. To address this question, we measured metacognitive accuracy in patients with lesions to anterior prefrontal cortex (n = 7) in two distinct domains, perception and memory, by assessing the correspondence between objective performance and subjective ratings of performance. Despite performing equivalently to a comparison group with temporal lobe lesions (n = 11) and healthy controls (n = 19), patients with lesions to the anterior prefrontal cortex showed a selective deficit in perceptual metacognitive accuracy (meta-d’/d’, 95% confidence interval 0.28–0.64). Crucially, however, the anterior prefrontal cortex lesion group’s metacognitive accuracy on an equivalent memory task remained unimpaired (meta-d’/d’, 95% confidence interval 0.78–1.29). Metacognitive accuracy in the temporal lobe group was intact in both domains. Our results support a causal role for anterior prefrontal cortex in perceptual metacognition, and indicate that the neural architecture of metacognition, while often considered global and domain-general, comprises domain-specific components that may be differentially affected by neurological insult. PMID:25100039

  3. Working memory coding of analog stimulus properties in the human prefrontal cortex.

    PubMed

    Spitzer, Bernhard; Gloel, Matthias; Schmidt, Timo T; Blankenburg, Felix

    2014-08-01

    Building on evidence for working memory (WM) coding of vibrotactile frequency information in monkey prefrontal cortex, recent electroencephalography studies found frequency processing in human WM to be reflected by quantitative modulations of prefrontal upper beta activity (20-30 Hz) as a function of the to-be-maintained stimulus attribute. This kind of stimulus-dependent activity has been observed across different sensory modalities, suggesting a generalized role of prefrontal beta during abstract WM processing of quantitative magnitude information. However, until now the available empirical evidence for such quantitative WM representation remains critically limited to the retention of periodic stimulus frequencies. In the present experiment, we used retrospective cueing to examine the quantitative WM processing of stationary (intensity) and temporal (duration) attributes of a previously presented tactile stimulus. We found parametric modulations of prefrontal beta activity during cued WM processing of each type of quantitative information, in a very similar manner as had before been observed only for periodic frequency information. In particular, delayed prefrontal beta modulations systematically reflected the magnitude of the retrospectively selected stimulus attribute and were functionally linked to successful behavioral task performance. Together, these findings converge on a generalized role of stimulus-dependent prefrontal beta-band oscillations during abstract scaling of analog quantity information in human WM. PMID:23547134

  4. Schizophrenia: a tale of two critical periods for prefrontal cortical development.

    PubMed

    Selemon, L D; Zecevic, N

    2015-01-01

    Schizophrenia is a disease of abnormal brain development. Considerable evidence now indicates that environmental factors have a causative role in schizophrenia. Elevated incidence of the disease has been linked to a wide range of disturbances in the prenatal environment and to social factors and drug intake during adolescence. Here we examine neurodevelopment of the prefrontal cortex in the first trimester of gestation and during adolescence to gain further insight into the neurodevelopmental processes that may be vulnerable in schizophrenia. Early embryonic development of the prefrontal cortex is characterized by cell proliferation, including renewal of progenitor cells, generation of early transient cell populations and neurogenesis of subcortical populations. Animal models show that curtailing early gestational cell proliferation produces schizophrenia-like pathology in the prefrontal cortex and mimics key behavioral and cognitive symptoms of the disease. At the other end of the spectrum, elimination of excitatory synapses is the fundamental process occurring during adolescent maturation in the prefrontal cortex. Adverse social situations that elevate stress increase dopamine stimulation of the mesocortical pathway and may lead to exaggerated synaptic pruning during adolescence. In a non-human primate model, dopamine hyperstimulation has been shown to decrease prefrontal pyramidal cell spine density and to be associated with profound cognitive dysfunction. Development of the prefrontal cortex in its earliest stage in gestation and in its final stage in adolescence represents two critical periods of vulnerability for schizophrenia in which cell proliferation and synaptic elimination, respectively, may be influenced by environmental factors. PMID:26285133

  5. Schizophrenia: a tale of two critical periods for prefrontal cortical development

    PubMed Central

    Selemon, L D; Zecevic, N

    2015-01-01

    Schizophrenia is a disease of abnormal brain development. Considerable evidence now indicates that environmental factors have a causative role in schizophrenia. Elevated incidence of the disease has been linked to a wide range of disturbances in the prenatal environment and to social factors and drug intake during adolescence. Here we examine neurodevelopment of the prefrontal cortex in the first trimester of gestation and during adolescence to gain further insight into the neurodevelopmental processes that may be vulnerable in schizophrenia. Early embryonic development of the prefrontal cortex is characterized by cell proliferation, including renewal of progenitor cells, generation of early transient cell populations and neurogenesis of subcortical populations. Animal models show that curtailing early gestational cell proliferation produces schizophrenia-like pathology in the prefrontal cortex and mimics key behavioral and cognitive symptoms of the disease. At the other end of the spectrum, elimination of excitatory synapses is the fundamental process occurring during adolescent maturation in the prefrontal cortex. Adverse social situations that elevate stress increase dopamine stimulation of the mesocortical pathway and may lead to exaggerated synaptic pruning during adolescence. In a non-human primate model, dopamine hyperstimulation has been shown to decrease prefrontal pyramidal cell spine density and to be associated with profound cognitive dysfunction. Development of the prefrontal cortex in its earliest stage in gestation and in its final stage in adolescence represents two critical periods of vulnerability for schizophrenia in which cell proliferation and synaptic elimination, respectively, may be influenced by environmental factors. PMID:26285133

  6. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks.

    PubMed

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  7. Interactions between dorsolateral and ventromedial prefrontal cortex underlie context-dependent stimulus valuation in goal-directed choice.

    PubMed

    Rudorf, Sarah; Hare, Todd A

    2014-11-26

    External circumstances and internal bodily states often change and require organisms to flexibly adapt valuation processes to select the optimal action in a given context. Here, we investigate the neurobiology of context-dependent valuation in 22 human subjects using functional magnetic resonance imaging. Subjects made binary choices between visual stimuli with three attributes (shape, color, and pattern) that were associated with monetary values. Context changes required subjects to deviate from the default shape valuation and to integrate a second attribute to comply with the goal to maximize rewards. Critically, this binary choice task did not involve any conflict between opposing monetary, temporal, or social preferences. We tested the hypothesis that interactions between regions of dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) implicated in self-control choices would also underlie the more general function of context-dependent valuation. Consistent with this idea, we found that the degree to which stimulus attributes were reflected in vmPFC activity varied as a function of context. In addition, activity in dlPFC increased when context changes required a reweighting of stimulus attribute values. Moreover, the strength of the functional connectivity between dlPFC and vmPFC was associated with the degree of context-specific attribute valuation in vmPFC at the time of choice. Our findings suggest that functional interactions between dlPFC and vmPFC are a key aspect of context-dependent valuation and that the role of this network during choices that require self-control to adjudicate between competing outcome preferences is a specific application of this more general neural mechanism. PMID:25429140

  8. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    PubMed Central

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  9. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    PubMed

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. PMID:27208492

  10. Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants.

    PubMed

    Steketee, Jeffery D

    2003-03-01

    The mesocorticolimbic dopamine system, which arises in the ventral tegmental area and innervates the nucleus accumbens, among numerous other regions, has been implicated in processes associated with drug addiction, including behavioral sensitization. Behavioral sensitization is the enhanced motor-stimulant response that occurs with repeated exposure to psychostimulants. The medial prefrontal cortex (mPFC), defined as the cortical region that has a reciprocal innervation with the mediodorsal nucleus of the thalamus, is also a terminal region of the mesocorticolimbic dopamine system. The mPFC contains pyramidal glutamatergic neurons that serve as the primary output of this region. These pyramidal neurons are modulated by numerous neurotransmitter systems, including gamma-aminobutyric acidergic interneurons and dopaminergic, noradrenergic, serotonergic, glutamatergic, cholinergic and peptidergic afferents. Changes in interactions between these various neurotransmitter systems in the mPFC may lead to alterations in behavioral responses. For example, recent studies have demonstrated a role for decreased mPFC dopaminergic transmission in the development of psychostimulant-induced behavioral sensitization. The present review will discuss the anatomical organization of the mPFC including descriptions of innervation patterns and receptor localization of the various neurotransmitter systems of this region. Data supporting or suggesting a role for each of these mPFC transmitter systems in the development of behavioral sensitization to cocaine and amphetamine will be presented. Finally a model of the mPFC that may be useful in directing future research efforts on the cortical mechanisms involved in the development of sensitization will be proposed. PMID:12663081

  11. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    PubMed

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. PMID:24837477

  12. Differential Effects of Homotypic vs. Heterotypic Chronic Stress Regimens on Microglial Activation in the Prefrontal Cortex

    PubMed Central

    Kopp, Brittany L.; Wick, Dayna; Herman, James P.

    2013-01-01

    Stress pathology is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and aberrant glucocorticoid responses. Recent studies indicate increases in prefrontal cortical ionized calcium-binding adapter molecule 1 (Iba-1) staining following repeated restraint, reflecting increased microglial densities. Our experiments tested expression of Iba-1 staining in the prelimbic cortex (PL), infralimbic cortex (IL) and the hypothalamic paraventricular nucleus (PVN) following two-week exposure to repeated restraint (RR) and chronic variable stress (CVS), representing homotypic and heterotypic regimens, respectively. Unstressed animals served as controls. We specifically examined Iba-1 immunofluorescence in layers 2 and 3 versus layers 5 and 6 of the PL and IL, using both cell number and field staining density. Iba-1 field staining density was increased in both the PL and IL following RR in comparison to controls. This effect was not observed following CVS. Furthermore, PVN Iba-1 immunoreactivity was not affected by either stress regimen. Cell number did not vary within any brain areas or across stress exposures. Changes in microglial field density did not reflect changes in vascular density. Increases in PL and IL microglial density indicate selective microglial activation during RR, perhaps due to mild stress in the context of limited elevations in anti-inflammatory glucocorticoid actions. Supported by NIH grants [MH049698 and MH069860]. PMID:23707717

  13. The Plasticity of Extinction: Contribution of the Prefrontal Cortex in Treating Addiction through Inhibitory Learning.

    PubMed

    Gass, J T; Chandler, L J

    2013-01-01

    Theories of drug addiction that incorporate various concepts from the fields of learning and memory have led to the idea that classical and operant conditioning principles underlie the compulsiveness of addictive behaviors. Relapse often results from exposure to drug-associated cues, and the ability to extinguish these conditioned behaviors through inhibitory learning could serve as a potential therapeutic approach for those who suffer from addiction. This review will examine the evidence that extinction learning alters neuronal plasticity in specific brain regions and pathways. In particular, subregions of the prefrontal cortex (PFC) and their projections to other brain regions have been shown to differentially modulate drug-seeking and extinction behavior. Additionally, there is a growing body of research demonstrating that manipulation of neuronal plasticity can alter extinction learning. Therefore, the ability to alter plasticity within areas of the PFC through pharmacological manipulation could facilitate the acquisition of extinction and provide a novel intervention to aid in the extinction of drug-related memories. PMID:23750137

  14. The role of the medial prefrontal cortex in regulating interanimal coordination of movements.

    PubMed

    Himmler, Brett T; Bell, Heather C; Horwood, Lewis; Harker, Allonna; Kolb, Bryan; Pellis, Sergio M

    2014-10-01

    Rats with juvenile play experience display a greater ability in coordinating their movements with social partners than those deprived of such experience, and this may be due to the play-induced neural restructuring of the medial prefrontal cortex (mPFC). The present study investigates the role of the mPFC in interanimal coordination. Rats with and without bilateral mPFC lesions were tested on a robbing-and-dodging task. This food protection task measures the ability of rats to protect pieces of food by gaining and maintaining an interanimal distance between themselves and the rat attempting to rob the food. Given that mPFC lesions have been associated with sensory and motor deficits, the same rats were also subjected to a task to measure skilled motor movements. Rats with bilateral mPFC lesions had more food stolen and displayed an inability to maintain interanimal distance with partner, but did not exhibit any motor or sensory deficits. These findings suggest that the mPFC is involved in interanimal coordination and that the play-induced neural restructuring of this area may account for the enhanced coordination seen in rats with prior play experience. PMID:25111337

  15. Transcriptional profiling in the human prefrontal cortex: evidence for two activational states associated with cocaine abuse.

    PubMed

    Lehrmann, E; Oyler, J; Vawter, M P; Hyde, T M; Kolachana, B; Kleinman, J E; Huestis, M A; Becker, K G; Freed, W J

    2003-01-01

    CNS-focused cDNA microarrays were used to examine gene expression profiles in dorsolateral prefrontal cortex (dlPFC, Area 46) from seven individual sets of age- and post-mortem interval-matched male cocaine abusers and controls. The presence of cocaine and related metabolites was confirmed by gas chromatography-mass spectrometry. Sixty-five transcripts were differentially expressed, indicating alterations in energy metabolism, mitochondria and oligodendrocyte function, cytoskeleton and related signaling, and neuronal plasticity. There was evidence for two distinct states of transcriptional regulation, with increases in gene expression predominating in subjects testing positive for a metabolite indicative of recent 'crack' cocaine abuse and decreased expression profiles in the remaining cocaine subjects. This pattern was confirmed by quantitative polymerase chain reaction for select transcripts. These data suggest that cocaine abuse targets a distinct subset of genes in the dlPFC, resulting in either a state of acute activation in which increased gene expression predominates, or a relatively destimulated, refractory phase. PMID:12629581

  16. Functional differences in face processing between the amygdala and ventrolateral prefrontal cortex in monkeys.

    PubMed

    Kuraoka, K; Konoike, N; Nakamura, K

    2015-09-24

    The ability to categorize social information is essential to survive in a primate's social group. In the monkey brain, there are neural systems to categorize social information. Among these, the relationship between the amygdala and the ventrolateral prefrontal cortex (vlPFC) has recently gained focus with regard to emotion regulation. However, the processing of facial information and the functional differences in these two areas remain unclear. Thus, in this study, we examined the response properties of single neurons in the amygdala and vlPFC while presenting video clips of three types of facial emotions (aggressive threat, coo, and scream) in Macaca mulatta. Neurons in the amygdala were preferentially activated upon presentation of a scream facial expression, which is strongly negative, whereas the neurons in the vlPFC were activated upon presentation of coo, a facial expression with multiple meanings depending on the social context. Information analyses revealed that the amount of information conveyed by the amygdala neurons about the type of emotion transiently increased immediately after stimulus presentation. In contrast, the information conveyed by the vlPFC neurons showed sustained elevation during stimulus presentation. Therefore, our results suggest that the amygdala processes strong emotion roughly but rapidly, whereas the vlPFC spends a great deal of time processing ambiguous facial information in communication, and make an accurate decision from multiple possibilities based on memory. PMID:26208842

  17. Controllability modulates the anticipatory response in the human ventromedial prefrontal cortex.

    PubMed

    Kerr, Deborah L; McLaren, Donald G; Mathy, Robin M; Nitschke, Jack B

    2012-01-01

    Research has consistently shown that control is critical to psychological functioning, with perceived lack of control considered to play a crucial role in the manifestation of symptoms in psychiatric disorders. In a model of behavioral control based on non-human animal work, Maier et al. (2006) posited that the presence of control activates areas of the ventromedial prefrontal cortex (vmPFC), which in turn inhibit the normative stress response in the dorsal raphe nucleus and amygdala. To test Maier's model in humans, we investigated the effects of control over potent aversive stimuli by presenting video clips of snakes to 21 snake phobics who were otherwise healthy with no comorbid psychopathologies. Based on prior research documenting that disrupted neural processing during the anticipation of adverse events can be influenced by different forms of cognitive processing such as perceptions of control, analyses focused on the anticipatory activity preceding the videos. We found that phobics exhibited greater vmPFC activity during the anticipation of snake videos when they had control over whether the videos were presented as compared to when they had no control over the presentation of the videos. In addition, observed functional connectivity between the vmPFC and the amygdala is consistent with previous work documenting vmPFC inhibition of the amygdala. Our results provide evidence to support the extension of Maier's model of behavioral control to include anticipatory function in humans. PMID:23550176

  18. Dorsolateral and dorsomedial prefrontal gray matter density changes associated with bipolar depression

    PubMed Central

    Brooks, John O.; Bonner, Julie C.; Rosen, Allyson C.; Wang, Po W.; Hoblyn, Jennifer C.; Hill, Shelley J.; Ketter, Terence A.

    2009-01-01

    Mood states are associated with alterations in cerebral blood flow and metabolism, yet changes in cerebral structure are typically viewed in the context of enduring traits, genetic predispositions, or the outcome of chronic psychiatric illness. Magnetic resonance imaging (MRI) scans were obtained from two groups of patients with bipolar disorder. In one group, patients met criteria for a current major depressive episode whereas in the other no patient did. No patient in either group met criteria for a current manic, hypomanic, or mixed episode. Groups were matched with respect to age and illness severity. Analyses of gray matter density were performed with Statistical Parametric Mapping software (SPM5). Compared with non-depressed bipolar subjects, depressed bipolar subjects exhibited lower gray matter density in the right dorsolateral and bilateral dorsomedial prefrontal cortices and portions of the left parietal lobe. In addition, gray matter density was greater in the left temporal lobe and right posterior cingulate cortex/parahippocampal gyrus in depressed than in non-depressed subjects. Our findings highlight the importance of mood state in structural studies of the brain—an issue that has received insufficient attention to date. Moreover, our observed differences in gray matter density overlap metabolic areas of change and thus have implications for the conceptualization and treatment of affective disorders. PMID:19351579

  19. The role of the medial prefrontal cortex in updating reward value and avoiding perseveration.

    PubMed

    Laskowski, C S; Williams, R J; Martens, K M; Gruber, A J; Fisher, K G; Euston, D R

    2016-06-01

    The medial prefrontal cortex (mPFC) plays a major role in goal-directed behaviours, but it is unclear whether it plays a role in breaking away from a high-value reward in order to explore for better options. To address this question, we designed a novel 3-arm Bandit Task in which rats were required to choose one of three potential reward arms, each of which was associated with a different amount of food reward and time-out punishment. After a variable number of choice trials the reward locations were shuffled and animals had to disengage from the now devalued arm and explore the other options in order to optimise payout. Lesion and control groups' behaviours on the task were then analysed by fitting data with a reinforcement learning model. As expected, lesioned animals obtained less reward overall due to an inability to flexibly adapt their behaviours after a change in reward location. However, modelling results showed that lesioned animals were no more likely to explore than control animals. We also discovered that all animals showed a strong preference for certain maze arms, at the expense of reward. This tendency was exacerbated in the lesioned animals, with the strongest effects seen in a subset of animals with damage to dorsal mPFC. The results confirm a role for mPFC in goal-directed behaviours but suggest that rats rely on other areas to resolve the explore-exploit dilemma. PMID:26965571

  20. Fatty acid composition of the postmortem prefrontal cortex of adolescent male and female suicide victims.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Dwivedi, Yogesh; Roberts, Rosalinda C; Conley, Robert R; Pandey, Ghanshyam N

    2009-01-01

    Prior epidemiological, prospective intervention, and peripheral and central fatty acid composition studies suggest that omega-3 fatty acid deficiency may be associated with the pathoaetiology of depression and suicide. In the present study, we determined the fatty acid composition of the postmortem prefrontal cortex (PFC) of adolescent male and female suicide victims and age-matched controls. Fatty acid composition (wt% total fatty acids) and concentrations (micromol/g) were determined in the postmortem PFC (Brodmann area 10) of male and female adolescent (aged 13-20 years) suicide victims (n=20) and age-matched controls (n=20) by gas chromatography. None of the major polyunsaturated fatty acids including the principle brain omega-3 fatty acid, docosahexaenoic acid (DHA), monounsaturated fatty acids, or saturated fatty acids differed significantly between adolescent suicide victims and controls before or after segregation by gender. The arachidonic acid (AA, 20:4n-6): DHA ratio and adrenic acid (22:4n-6) composition were negatively correlated with age at death in controls but not in suicides, and males exhibited a greater AA:DHA ratio irrespective of cause-of-death. These results demonstrate that adolescent male and female suicide victims do not exhibit DHA deficits in the postmortem PFC relative to age-matched controls, and suggest that suicide victims do not exhibit the normal age-related decrease in adrenic acid composition and the AA:DHA ratio. PMID:19064316

  1. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  2. The role of the medial prefrontal cortex in trace fear extinction.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Helmstetter, Fred J

    2014-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576

  3. Donepezil effects on hippocampal and prefrontal functional connectivity in Alzheimer's disease: preliminary report.

    PubMed

    Zaidel, Liam; Allen, Greg; Cullum, C Munro; Briggs, Richard W; Hynan, Linda S; Weiner, Myron F; McColl, Roderick; Gopinath, Kaundinya S; McDonald, Elizabeth; Rubin, Craig D

    2012-01-01

    We used functional connectivity magnetic resonance imaging (fcMRI) to investigate changes in interhemispheric brain connectivity in 11 patients with mild Alzheimer's disease (AD) following eight weeks of treatment with the cholinesterase inhibitor donepezil. We examined functional connectivity between four homologous temporal, frontal, and occipital regions. These regions were selected to represent sites of AD neuropathology, sites of donepezil-related brain activation change in prior studies, and sites that are minimally affected by the pathologic changes of AD. Based on previous findings of selective, localized frontal responses to donepezil, we predicted that frontal connectivity would be most strongly impacted by treatment. Of the areas examined, we found that treatment had a significant effect only on functional connectivity between right and left dorsolateral prefrontal cortices. Implications for understanding the impact of donepezil treatment on brain functioning and behavior in patients with AD are discussed. This preliminary report suggests that fcMRI may provide a useful index of treatment outcome in diseases affecting brain connectivity. Future research should investigate these treatment-related changes in larger samples of patients and age-matched controls. PMID:22886013

  4. Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards.

    PubMed

    Cho, Sang Soo; Koshimori, Yuko; Aminian, Kelly; Obeso, Ignacio; Rusjan, Pablo; Lang, Anthony E; Daskalakis, Zafiris J; Houle, Sylvain; Strafella, Antonio P

    2015-02-01

    Generally, rewards that are received sooner are often preferred over future rewards, and the time between the choice and the reception of the reward is an important factor that influences our decisions, a phenomenon called delay discounting (DD). In DD, the medial prefrontal cortex (MePFC) and striatal dopamine neurotransmission both play an important role. We used repetitive transcranial magnetic stimulation (rTMS) to transiently activate the MePFC to evaluate its behavioral effect on the DD paradigm, and subsequently to measure its effect on striatal dopamine. Twenty-four right-handed young healthy subjects (11 females; age: 22.1±2.9 years) underwent DD following 10 Hz-rTMS of the MePFC and vertex stimulation (control condition). Thereafter, 11 subjects (5 females; age: 22.2±2.87 years) completed the PET study at rest using [(11)C]-(+)-PHNO following 10 Hz-rTMS of the MePFC and vertex. Modulation of the MePFC excitability influenced the subjective level of DD for delayed rewards and interfered with synaptic dopamine level in the striatum. The present study yielded findings that might reconcile the role of these areas in inter-temporal decision making and dopamine modulation, suggesting that the subjective sense of time and value of reward are critically controlled by these important regions. PMID:25168685

  5. Phasic activation of ventral tegmental neurons increases response and pattern similarity in prefrontal cortex neurons

    PubMed Central

    Iwashita, Motoko

    2014-01-01

    Dopamine is critical for higher neural processes and modifying the activity of the prefrontal cortex (PFC). However, the mechanism of dopamine contribution to the modification of neural representation is unclear. Using in vivo two-photon population Ca2+ imaging in awake mice, this study investigated how neural representation of visual input to PFC neurons is regulated by dopamine. Phasic stimulation of dopaminergic neurons in the ventral tegmental area (VTA) evoked prolonged Ca2+ transients, lasting ∼30 s in layer 2/3 neurons of the PFC, which are regulated by a dopamine D1 receptor-dependent pathway. Furthermore, only a conditioning protocol with visual sensory input applied 0.5 s before the VTA dopaminergic input could evoke enhanced Ca2+ transients and increased pattern similarity (or establish a neural representation) of PFC neurons to the same sensory input. By increasing both the level of neuronal response and pattern similarity, dopaminergic input may establish robust and reliable cortical representation. DOI: http://dx.doi.org/10.7554/eLife.02726.001 PMID:25269147

  6. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality.

    PubMed

    Buckholtz, J W; Callicott, J H; Kolachana, B; Hariri, A R; Goldberg, T E; Genderson, M; Egan, M F; Mattay, V S; Weinberger, D R; Meyer-Lindenberg, A

    2008-03-01

    Little is known about neural mechanisms underlying human personality and temperament, despite their considerable importance as highly heritable risk mediators for somatic and psychiatric disorders. To identify these circuits, we used a combined genetic and imaging approach focused on Monoamine Oxidase A (MAOA), encoding a key enzyme for monoamine metabolism previously associated with temperament and antisocial behavior. Male carriers of a low-expressing genetic variant exhibited dysregulated amygdala activation and increased functional coupling with ventromedial prefrontal cortex (vmPFC). Stronger coupling predicted increased harm avoidance and decreased reward dependence scores, suggesting that this circuitry mediates a part of the association of MAOA with these traits. We utilized path analysis to parse the effective connectivity within this system, and provide evidence that vmPFC regulates amygdala indirectly by influencing rostral cingulate cortex function. Our data implicate a neural circuit for variation in human personality under genetic control, provide an anatomically consistent mechanism for vmPFC-amygdala interactions underlying this variation, and suggest a role for vmPFC as a superordinate regulatory area for emotional arousal and social behavior. PMID:17519928

  7. Unilateral prefrontal lesions impair memory-guided comparisons of contralateral visual motion.

    PubMed

    Pasternak, Tatiana; Lui, Leo L; Spinelli, Philip M

    2015-05-01

    The contribution of the lateral prefrontal cortex (LPFC) to working memory is the topic of active debate. On the one hand, it has been argued that the persistent delay activity in LPFC recorded during some working memory tasks is a reflection of sensory storage, the notion supported by some lesion studies. On the other hand, there is emerging evidence that the LPFC plays a key role in the maintenance of sensory information not by storing relevant visual signals but by allocating visual attention to such stimuli. In this study, we addressed this question by examining the effects of unilateral LPFC lesions during a working memory task requiring monkeys to compare directions of two moving stimuli, separated by a delay. The lesions resulted in impaired thresholds for contralesional stimuli at longer delays, and these deficits were most dramatic when the task required rapid reallocation of spatial attention. In addition, these effects were equally pronounced when the remembered stimuli were at threshold or moved coherently. The contralesional nature of the deficits points to the importance of the interactions between the LPFC and the motion processing neurons residing in extrastriate area MT. Delay-specificity of the deficit supports LPFC involvement in the maintenance stage of the comparison task. However, because this deficit was independent of stimulus features giving rise to the remembered direction and was most pronounced during rapid shifts of attention, its role is more likely to be attending and accessing the preserved motion signals rather than their storage. PMID:25948260

  8. Neuropsychiatric effects of neurodegeneration of the medial versus lateral ventral prefrontal cortex in humans.

    PubMed

    Huey, Edward D; Lee, Seonjoo; Brickman, Adam M; Manoochehri, Masood; Griffith, Erica; Devanand, D P; Stern, Yaakov; Grafman, Jordan

    2015-12-01

    Animal evidence suggests that a brain network involving the medial and rostral ventral prefrontal cortex (PFC) is central for threat response and arousal and a network involving the lateral and caudal PFC plays an important role in reward learning and behavioral control. In this study, we contrasted the neuropsychiatric effects of degeneration of the medial versus lateral PFC in 43 patients with Frontotemporal dementia (FTD) and 11 patients with Corticobasal Syndrome (CBS) using MRI, the Neuropsychiatric Inventory (NPI), and the Sorting, Tower, Twenty Questions, and Fluency tests of the Delis-Kaplan Executive Function System (D-KEFS). Deviations in MRI grey matter volume from 86 age-matched healthy control subjects were determined for the patients using FreeSurfer. Multivariate regression was used to determine which brain areas were associated with specific neuropsychiatric and cognitive symptoms. Decreased grey matter volume of the right medial ventral PFC was associated with increased anxiety and apathy, decreased volume of the right lateral ventral PFC with apathy and inappropriate repetitive behaviors, and of the left lateral ventral PFC with poor performance on the sorting and Twenty Questions task in patients with FTD and CBS. Similar to in animal studies, damage to the medial OFC appears to be associated with a disruption of arousal, and damage to the lateral OFC appears to be associated with deficits in trial-and-error learning and behavioral dysregulation. Studies of brain dysfunction in humans are valuable to bridge animal and human neuropsychiatric research. PMID:26343341

  9. Early-Course Unmedicated Schizophrenia Patients Exhibit Elevated Prefrontal Connectivity Associated with Longitudinal Change

    PubMed Central

    Anticevic, Alan; Hu, Xinyu; Xiao, Yuan; Hu, Junmei; Li, Fei; Bi, Feng; Cole, Michael W.; Savic, Aleksandar; Yang, Genevieve J.; Repovs, Grega; Murray, John D.; Wang, Xiao-Jing; Huang, Xiaoqi; Lui, Su; Krystal, John H.

    2015-01-01

    Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for “hypoconnectivity.” At the whole-brain level, we observed “hyperconnectivity” around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications. PMID:25568120

  10. Estimating causal interaction between prefrontal cortex and striatum by transfer entropy.

    PubMed

    Ma, Chaofei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2013-06-01

    Transfer entropy (TE) is an information-theoretic measure for the investigation of causal interaction between two systems without a requirement of pre-specific interaction model (such as: linear or nonlinear). We introduced an efficient algorithm to calculate TE values between two systems based on observed time signals. By this method, we demonstrated that the TE correctly estimated the coupling strength and the direction of information transmission of two nonlinearly coupled systems. We also calculated TE values of real local field potentials (LFPs) recorded simultaneously in the lateral prefrontal cortex (LPFC) and the striatum of the behavioral monkey, and observed that the TE value from the LPFC to the striatum was stronger than that from the striatum to the LPFC, consistent with anatomical structure between the two areas. Moreover, the TE value dynamically varied dependent on behavior stages of the monkey. These results from simulated and real LFPs data suggested that the TE was able to effectively estimate functional connectivity between different brain regions and characterized their dynamical properties. PMID:24427205

  11. Connectivity of Mouse Somatosensory and Prefrontal Cortex Examined with Trans-synaptic Tracing

    PubMed Central

    DeLoach, Katherine; Luo, Liqun

    2015-01-01

    Information processing in neocortical circuits requires integrating inputs over a wide range of spatial scales, from local microcircuits to long-range cortical and subcortical connections. We used rabies virus-based trans-synaptic tracing to analyze the laminar distribution of local and long-range inputs to pyramidal neurons in the mouse barrel cortex and medial prefrontal cortex (mPFC). New findings in barrel cortex include substantial inputs from layer 3 (L3) to L6, prevalent translaminar inhibitory inputs, and long-range inputs to L2/3 or L5/6 preferentially from L2/3 or L5/6 of input cortical areas, respectively. These layer-specific input patterns are largely independent of NMDA receptor function in the recipient neurons. mPFC L5 receive proportionally more long-range inputs and more local inhibitory inputs than barrel cortex L5. These results provide new insight into the organization and development of neocortical networks and identify important differences in the circuit organization in sensory and association cortices. PMID:26457553

  12. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    PubMed

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings. PMID:27063068

  13. Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.

    PubMed

    Popescu, Andrei T; Zhou, Michael R; Poo, Mu-Ming

    2016-05-31

    Phasic dopamine (DA) release is believed to guide associative learning. Most studies have focused on projections from the ventral tegmental area (VTA) to the striatum, and the action of DA in other VTA target regions remains unclear. Using optogenetic activation of VTA projections, we examined DA function in the medial prefrontal cortex (mPFC). We found that mice perceived optogenetically induced DA release in mPFC as neither rewarding nor aversive, and did not change their previously learned behavior in response to DA transients. However, repetitive temporal pairing of an auditory conditioned stimulus (CS) with mPFC DA release resulted in faster learning of a subsequent task involving discrimination of the same CS against unpaired stimuli. Similar results were obtained using both appetitive and aversive unconditioned stimuli, supporting the notion that DA transients in mPFC do not represent valence. Using extracellular recordings, we found that CS-DA pairings increased firing of mPFC neurons in response to CSs, and administration of D1 or D2 DA-receptor antagonists in mPFC during learning impaired stimulus discrimination. We conclude that DA transients tune mPFC neurons for the recognition of behaviorally relevant events during learning. PMID:27185946

  14. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment

    PubMed Central

    Foster, Chris M.; Addis, Donna Rose; Ford, Jaclyn H.; Kaufer, Daniel I.; Burke, James R.; Browndyke, Jeffrey N.; Welsh-Bohmer, Kathleen A.; Giovanello, Kelly S.

    2016-01-01

    Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI). Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and bin