Science.gov

Sample records for aspect ratio tokamaks

  1. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  2. Heavy ion beam probe systems for tight aspect ratio tokamaks

    SciTech Connect

    Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.

    1997-01-01

    We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}

  3. Omniclassical Diffusion in Low Aspect Ratio Tokamaks

    SciTech Connect

    H.E. Mynick; R.B. White; D.A. Gates

    2004-03-19

    Recently reported numerical results for axisymmetric devices with low aspect ratio A found radial transport enhanced over the expected neoclassical value by a factor of 2 to 3. In this paper, we provide an explanation for this enhancement. Transport theory in toroidal devices usually assumes large A, and that the ratio B{sub p}/B{sub t} of the poloidal to the toroidal magnetic field is small. These assumptions result in transport which, in the low collision limit, is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device one may have B{sub p}/B{sub t} {approx} 1, and the gyroradius may be larger than the banana excursion. Here, we develop an approximate analytic transport theory valid for devices with arbitrary A. For low A, we find that the enhanced transport, referred to as omniclassical, is a combination of neoclassical and properly generalized classical effects, which become dominant in the low-A, B{sub p}/B{sub t} {approx} 1 regime. Good agreement of the analytic theory with numerical simulations is obtained.

  4. Stability of high. beta. large aspect ratio tokamaks

    SciTech Connect

    Cowley, S.C.

    1991-10-01

    High {beta}({beta}{much gt} {epsilon}/q{sup 2}) large aspect ratio ({epsilon} {much gt} 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high {beta} large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs.

  5. Prospects and status of low-aspect-ratio tokamaks

    SciTech Connect

    Peng, Y.K.M.

    1994-12-31

    The prospects for the low-aspect-ratio (A) tokamak to fulfill the requirements of viable fusion power plants are considered relative to the present status in data and modeling. Desirable physics and design features for an attractive Blanket Test Facility and power reactors are estimated for low-A tokamaks based on calculations improved with the latest data from small pioneering experiments. While these experiments have confirmed some of the recent predictions for low-A, they also identify the remaining issues that require verification before reliable projections can be made for these deuterium-tritium applications. The results show that the low-A regime of small size, modest field, and high current offers a path complementary to the standard and high A tokamaks in developing the full potential of fusion power.

  6. Configuration studies for a small-aspect-ratio tokamak stellarator hybrid

    SciTech Connect

    Carreras, B.A.; Lynch, V.E.; Ware, A.

    1996-08-01

    The use of modulated toroidal coils offers a new path to the tokamak-stellarator hybrids. Low-aspect-ratio configurations can be found with robust vacuum flux surfaces and rotational transform close to the transform of a reverse-shear tokamak. These configurations have clear advantages in minimizing disruptions and their effect and in reducing tokamak current drive needs. They also allow the study of low-aspect-ratio effects on stellarator confinement in small devices.

  7. Physics Studies of a Proposed Small Aspect Ratio Torsatron-Tokamak Hybrid

    NASA Astrophysics Data System (ADS)

    Valanju, P. M.; Gentle, K. W.; McCool, S.; Miner, W. H., Jr.; Ross, D. W.; Wiley, J. C.; Wootton, A. J.

    1996-11-01

    Physics studies of a proposed small aspect ratio torsatron-tokamak hybrid (SMARTH) are presented. This small aspect ratio configuration attempts to remedy a major drawback of conventional stellarator reactors, viz. the large volume resulting from the large aspect ratio. Considering a small aspect ratio machine with 8 field periods (m=8) and with 8 or 16 modular coils, we investigate vacuum configurations and MHD equilibria to determine the optimum configuration which produces large rotational transform, large plasma volume, large beta, and small field ripple. Implications for particle confinement will also be discussed. Effects of radial electric fields on orbit losses and confinement will also be explored.

  8. All Metal Iron Core For A Low Aspect Ratio Tokamak

    SciTech Connect

    D.A. Gates, C. Jun, I. Zatz, A. Zolfaghari

    2010-06-02

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  9. Characterization of peeling modes in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  10. Transmutation of nuclear waste with a low-aspect-ratio tokamak neutron source

    NASA Astrophysics Data System (ADS)

    Hong, Bong Guen; Moon, Se Youn

    2014-10-01

    The transmutation characteristics of transuranics (TRUs) in a transmutation reactor based on a LAR (Low-aspect-ratio) tokamak as a neutron source are investigated. The optimum radial build of a transmutation reactor is found by using a coupled analysis of the tokamak systems and the neutron transport. The dependences of the transmutation characteristics on the aspect ratio A in the range of 1.5 to 2.5 and on the fusion power in the range of 150 to 500 MW are investigated. An equilibrium fuel cycle is developed for effective transmutation, and show that with one unit of the transmutation reactor based on the LAR tokamak producing fusion power in the range of a few hundred MWs, up to 3 PWRs (1.0 GWe capacity) can be supported with a burn-up fraction larger than 50%.

  11. Global gyrokinetic stability of collisionless microtearing modes in large aspect ratio tokamaks

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Chowdhury, J.; Brunner, S.; Vaclavik, J.; Villard, L.

    2014-08-15

    Linear full radius gyrokinetic calculations show the existence of unstable microtearing modes (MTMs) in purely collisionless, high temperature, large aspect ratio tokamak plasmas. The present study takes into account fully gyrokinetic highly passing ions and electrons. The global 2-D structures of the collisionless mode with full radius coupling of the poloidal modes is obtained and compared with another electromagnetic mode, namely, the Alfvén Ion Temperature Gradient (AITG) mode (or Kinetic Ballooning Mode, KBM) for the same equilibrium profile. Several important characteristics of the modes are brought out and compared, such as a clear signature in the symmetry properties of the two modes, the plasma–β dependence, and radial and poloidal length scales of the electrostatic and magnetic vector potential fluctuations. Extensive parameter scans for this collisionless microtearing mode reveal the scaling of the growth rate with β and the electron temperature gradient η{sub e}. Scans at different β values show an inverse relationship between the η{sub e} threshold and β, leading to a stability diagram, and implying that the mode might exist at moderate to strong temperature gradients for finite β plasmas in large aspect ratio tokamaks. In contrast to small aspect ratio tokamaks where the trapped electron magnetic drift resonance is found to be important, in large aspect ratio tokamaks, a strong destabilization due to the magnetic drift resonance of passing electrons is observed and is identified as a possible collisionless drive mechanism for the collisionless MTM.

  12. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    SciTech Connect

    R.D. Woolley

    2009-05-29

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  13. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    SciTech Connect

    Robert D. Woolley

    2009-06-11

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  14. Transport theory for energetic alpha particles in finite aspect ratio tokamaks with broken symmetry

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Schlutt, M.; Lai, A. L.

    2016-02-01

    Transport theory for the energetic alpha particles in finite aspect ratio tokamaks with broken symmetry is developed for the case where the slowing down collision operator dominates. The transport fluxes in the 1 /ν and superbanana plateau regimes are derived. Here, ν is the typical collision frequency. They can be used in modeling the energy loss of the alpha particles in thermonuclear fusion reactors. Numerical realizations of the superbanana orbits of alpha particles in tokamaks with broken symmetry are also presented. The existence of the superbananas corroborates the predictions of the theories presented here and elsewhere.

  15. Corrected Formulation for Estimation of Ripple in Large Aspect Ratio Tokamaks

    NASA Astrophysics Data System (ADS)

    Dini, F.; Khorasani, S.

    2012-04-01

    The finite number of toroidal field coils of a tokamak destroys the perfect axisymmetry of the device. The coils produce a short wavelength ripple in the toroidal magnetic field strength as a field line follows round the torus, which becomes important in transport and confinement properties of plasma. Hence, a quick and accurate estimation of ripple becomes important. We have noticed that a previously reported analytical formulation by Princeton Plasma Physics Laboratory team is not applicable to our large aspect ratio tokamak, and have devised a slightly modified form which has greatly improved the accuracy of the analytical fit.

  16. Configuration, Equilibrium, and Stability Studies for a Small-Aspect-Ratio Tokamak Stellarator Hybrid

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Batchelor, D. B.; Carreras, B. A.; Hirshman, S. P.; Leboeuf, J. N.; Lynch, V. E.; Whitson, J.

    1996-11-01

    A new class of small-aspect-ratio tokamak stellarator hybrids using modulated toroidal field coils(B. A. Carreras, et al, ORNL/TM-13252 (1996).) is investigated. A comprehensive study is underway to diagnose the vacuum, equilibrium, transport,(D. A. Spong, et al, this meeting.) and stability properties of these devices. These configurations have advantages in minimizing disruptions and reducing tokamak current drive needs, but they must also be optimized to reduce the amount of ripple transport and increase β_critical. Vacuum configurations have been found with robust flux surfaces and rotational transform close to that of a reverse-shear tokamak. With finite plasma current, equilibriums with <β > ~ 9% have been obtained. Results of these configuration and equilibrium studies will be reported along with initial stability studies using a 3D-ballooning code.

  17. Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma

    SciTech Connect

    Hahm, T.S.; Burrell, K.H.

    1995-01-01

    The suppression of turbulence by the E {times} B flow shear and parallel flow shear is studied in an arbitrary shape finite aspect ratio tokamak plasma using the two point nonlinear analysis previously utilized in a high aspect rat& tokamak plasma. The result shows that only the E {times} B flow shear is responsible for the suppression of flute-like fluctuations. This suppression occurs regardless of the plasma rotation direction and is therefore, relevant for the VH mode plasma core as well as for the H mode plasma edge. Experimentally observed in-out asymmetry of fluctuation reduction behavior can be addressed in the context of flux expansion and magnetic field pitch variation on a given flux surface. The adverse effect of neutral particles on confinement improvement is also discussed in the context of the charge exchange induced parallel momentum damping.

  18. First results from the small tight aspect ratio tokamak multifrequency pulse radar reflectometer

    SciTech Connect

    Shevchenko, V.F.; Walsh, M.J.

    1997-05-01

    A multifrequency pulse radar reflectometer (PRR) has been designed, commissioned, and is operating successfully on the small tight aspect ratio tokamak (START). The data obtained with this technique allow the study of the density profile evolution during the shot, revealing aspects of the plasma behavior during such events as the internal reconnection. A simple and effective profile-reconstruction algorithm using the stepwise profile approximation permits the monitoring of the plasma density profile immediately after each shot. Cross checks between the START hydrogen cyanide (HCN) interferometer and the line integral density determined by integrating the PRR generated data shows good agreement. {copyright} {ital 1997 American Institute of Physics.}

  19. First results from the small tight aspect ratio tokamak multifrequency pulse radar reflectometer

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. F.; Walsh, M. J.

    1997-05-01

    A multifrequency pulse radar reflectometer (PRR) has been designed, commissioned, and is operating successfully on the small tight aspect ratio tokamak (START). The data obtained with this technique allow the study of the density profile evolution during the shot, revealing aspects of the plasma behavior during such events as the internal reconnection. A simple and effective profile-reconstruction algorithm using the stepwise profile approximation permits the monitoring of the plasma density profile immediately after each shot. Cross checks between the START hydrogen cyanide (HCN) interferometer and the line integral density determined by integrating the PRR generated data shows good agreement.

  20. Neoclassical toroidal plasma viscosity with effects of finite banana width for finite aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Sabbagh, S. A.

    2016-07-01

    Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.

  1. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Schlossberg, D. J.

    2016-04-01

    Tokamak experiments at near-unity aspect ratio A ≲1.2 offer new insights into the self-organized H -mode plasma confinement regime. In contrast to conventional A ˜3 plasmas, the L -H power threshold PL H is ˜15 × higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible Jedge(R ,t ) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  2. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    PubMed

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament. PMID:27176526

  3. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE PAGESBeta

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymond J.; Kriete, David M.; Perry, Justin M.; Schlossberg, David J.

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold PLH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible Jedge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  4. Free boundary, high beta equilibrium in a large aspect ratio tokamak with nearly circular plasma boundary

    SciTech Connect

    Qin, H.; Reiman, A.

    1996-09-25

    An analytic solution is obtained for free-boundary, high-beta equilibria in large aspect ratio tokamaks with a nearly circular plasma boundary. In the absence of surface currents at the plasma-vacuum interface, the free-boundary equilibrium solution introduces constraints arising from the need to couple to an external vacuum field which is physically realizable with a reasonable set of external field coils. This places a strong constraint on the pressure profiles that are consistent with a given boundary shape at high {epsilon}{beta}{sub p}. The equilibrium solution also provides information on the flux surface topology. The plasma is bounded by a separatrix. Increasing the plasma pressure at fixed total current causes the plasma aperture to decrease in a manner that is described.

  5. Collisionless microtearing modes in large aspect ratio Tokamaks with weak reversed shear configurations

    NASA Astrophysics Data System (ADS)

    Krishna Swamy, Aditya; Ganesh, Rajaraman; Brunner, Stephan; Vaclavik, Jan; Villard, Laurent

    2015-11-01

    Gyrokinetic simulations have found Collisionless Microtearing Modes (MTM) to be linearly unstable in sharp temperature gradient regions of tokamaks, typically with high magnetic shear. The collisionless MTM is driven by the magnetic drift resonance of passing electrons, aided by the closeness of Mode Rational Surfaces (MRS) arising due to the high shear. Here, the role of global safety factor profile variation on the MTM instability and global mode structure is studied, in particular in weak reverse shear (WRS) configurations in large aspect ratio tokamaks. At lower shear profiles, multiple MTM branches are found with tearing parity as well as mixed parity. The linear growth rates of MTM is found to be weakened and linearly unstable modes are found whose global mode structures of φ~ and Ã∥ exhibit Mixed Parity. For the same equilibrium profiles and parameters, AITG instability is also studied and global mode structures are compared with MTM. The growth rate spectrum is found to extend to shorter/mesoscale wavelengths in WRS. Several other characteristics of MTMs and AITG are recovered in the WRS configuration, such as the dependency on free energy source and on plasma β.

  6. Shaping of the plasma column in a small aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Herrera, Julio; Arroyo, Ismael; Chavez, Esteban

    2015-11-01

    This is a follow-up to the work presented in last year's meeting, on the conceptual design of a small aspect ratio tokamak of variable configuration. The base parameters for this device would be similar to those in the START tokamak. The shaping of the plasma column is known to have important effects in the plasma performance, including the value of β, bootstrap currents, and intrinsic rotation. The main feature being explored here is the inclusion of independent control coils in the inboard and outboard sides; six in the first case, and up to seven in the latter. By varying the strength in their currents it is possible to achieve a wide variety of shapes: elliptical, conventional D-shape, inverse D-shape, and Bean-shape. As the control coils are activated, the strength of the toroidal magnetic field needs to he weakened, in order to keep reasonable values of the safety factor q . The study presented here is made by means of the 3D-MAPTOR code, which produces the Poincaré maps of the magnetic field lines, given the currents. For this purpose, a seed plasma current must be provided. All studies presented here assume equatorial symmetry, due to limitations in the code.

  7. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  8. Public Data Set: High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-04-27

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak,' Phys. Rev. Lett. 116, 175001 (2016).

  9. An analytic solution of high. beta. equilibrium in a large aspect ratio tokamak

    SciTech Connect

    Cowley, S.C.; Kaw, P.K.; Kelly, R.S.; Kulsrud, R.M.

    1991-03-01

    An analytic solution of the high {beta} ({epsilon}{bar {beta}}{sub p} {approximately} {beta}q{sup 2}/{epsilon} {much gt} 1) equilibrium of a large aspect ratio tokamak is presented. Two arbitrary flux functions, the pressure profile p({psi}) and the safety factor profile q({psi}), specify the equilibrium. The solution splits into two asymptotic regions: the core region where {psi} is a function of the major radius alone and a narrow boundary layer region adjoining the conducting wall. The solutions in the two regions are asymptotically matched to each other. For monotonic pressure profiles, the Shafranov shift is equal to the minor radius. For {beta} much bigger than one, the solution contains a region (in place of the magnetic axis) of zero magnetic field and constant pressure. At high {beta} the quantity {beta}{sub I}, which is essentially proportional to the pressure over the total current squared, is largely independent of pressure. We discuss the important ramifications of limited {beta}{sub I} for high {beta} reactors. Generalizations to shaped cross sections and hollow pressure profiles are outlined. We also consider the problem of equilibrium reconstruction in the high {beta} regime. 8 refs., 7 figs.

  10. Global two-fluid simulations of geodesic acoustic modes in strongly shaped tight aspect ratio tokamak plasmas

    SciTech Connect

    Robinson, J. R.; Hnat, B.; Thyagaraja, A.; McClements, K. G.; Knight, P. J.; Kirk, A. [EURATOM Collaboration: MAST Team

    2013-05-15

    Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matched to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.

  11. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

    SciTech Connect

    D.A. Gates; R.B. White

    2004-01-28

    Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.

  12. Exploration of low-aspect-ratio tokamak regimes in the CDX-U and TS-3 devices

    SciTech Connect

    Hwang, Y.S.; Yamada, M.; Jones, T.G.

    1994-12-31

    In the low-aspect-ratio tokamak regime, a lower q(a) regime (i.e. q(a) {le} 5, A = R/a {approx} 1.5) has been explored in CDX-U, and the ultra-low-aspect-ratio tokamak regime (1.05 {le} A {le} 1.5) has been explored in TS-3. Using a relatively low toroidal magnetic field, plasma discharges with I{sub p} {le} 53 kA, and q(a) {ge} 4 [q{sub cyl}(a) {ge}1] have been obtained in CDX-U. Low q(a), Ohmic plasmas in CDX-U show increasing MHD activity as the edge safety factor is lowered. These modes appear to reduce the current ramp-up rate and, at present, limit the access to even lower q(a) regimes. An experiment carried out in the ULART regime (A {approx} 1.05 {minus} 1.5) on the TS-3 device identifies a threshold of q(a) {ge} 3 with q{sub cyl}(a) < 1 for stability of global tilt/shift modes.

  13. RCD Large Aspect-Ratio Tokamak Equilibrium with Magnetic Islands: a Perturbed Approach

    NASA Astrophysics Data System (ADS)

    F. L., Braga

    2013-03-01

    Solutions of Grad-Shafranov (GS) equation with Reversed Current Density (RCD) profiles present magnetic islands when the magnetic flux is explicitly dependent on the poloidal angle. In this work it is shown that a typical cylindrical (large aspect-ratio) RCD equilibrium configuration perturbed by the magnetic field of a circular loop (simulating a divertor) is capable of generate magnetic islands, due to the poloidal symmetry break of the GS equilibrium solution.

  14. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  15. Comment on 'Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks'[Phys. Plasmas 18, 092103 (2011)

    SciTech Connect

    Goedbloed, J. P.

    2012-06-15

    It is shown that some of the main results of the recent paper by Lakhin and Ilgisonis [Phys. Plasmas 18, 092103 (2011)], viz. the derivation of the equations for the continuous spectra of poloidally and toroidally rotating plasmas and their special solution for large aspect ratio tokamaks with large parallel flows were obtained before by Goedbloed, Belieen, van der Holst, and Keppens [Phys. Plasmas 11, 28 (2004)]. A further rearrangement of the system of equations for the coupled Alfven and slow continuous spectra clearly exhibits: (a) coupling through a single tangential derivative, which is a generalization of the geodesic curvature; (b) the 'transonic' transitions of the equilibrium, which need to be carefully examined in order to avoid entering hyperbolic flow regimes where the stability formalism breaks down. A critical discussion is devoted to the implications of this failure, which is generally missed in the tokamak literature, possibly as a result of the wide-spread use of the sonic Mach number of gas dynamics, which is an irrelevant and misleading parameter in 'transonic' magnetohydrodynamics. Once this obstacle in understanding is removed, further application of the theory of trans-slow Alfven continuum instabilities to both tokamaks, with possible implications for the L-H transition, and astrophysical objects like 'fat' accretion disks, with a possible new route to magnetohydrodynamic turbulence, becomes feasible.

  16. High Aspect Ratio Wrinkles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Crosby, Alfred

    2015-03-01

    Buckling-induced surface undulations are widely found in living creatures, for instance, gut villi and the surface of flower petal cells. These undulations provide unique functionalities with their extremely high aspect ratios. For the synthetic systems, sinusoidal wrinkles that are induced by buckling a thin film attached on a soft substrate have been proposed to many applications. However, the impact of the synthetic wrinkles have been restricted by limited aspect ratios, ranging from 0 to 0.35. Within this range, wrinkle aspect ratio is known to increase with increasing compressive strain until a critical strain is reached, at which point wrinkles transition to localizations, such as folds or period doublings. Inspired by the living creatures, we propose that wrinkles can be stabilized in high aspect ratio by manipulating the strain energy in the substrate. We experimentally demonstrate this idea by forming a secondary crosslinking network in the wrinkled surface and successfully achieve aspect ratio as large as 0.8. This work not only provides insights for the mechanism of high aspect ratio structures seen in living creatures, but also demonstrates significant promise for future wrinkle-based applications.

  17. On virial analysis at low aspect ratio

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Fonck, R. J.; Reusch, J. A.; Thome, K. E.

    2016-07-01

    The validity of virial analysis to infer global MHD equilibrium poloidal beta βp and internal inductance ℓi from external magnetics measurements is examined for low aspect ratio configurations with A <2 . Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high- A approximations to low- A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2-10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low- A . Highly paramagnetic configurations are found to be inadequately represented through the virial mean radius parameter RT . Alternate formulations for inferring βp and ℓi that are independent of RT to avoid this difficulty are presented for the static isotropic limit. These formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.

  18. On virial analysis at low aspect ratio

    DOE PAGESBeta

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; Reusch, Joshua A.; Thome, Kathreen E.

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta βp and internal inductance ℓi from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately represented through themore » virial mean radius parameter RT. Alternate formulations for inferring βp and ℓi that are independent of RT to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  19. ITER physics design guidelines at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    1991-09-01

    The physics requirements for the International Thermonuclear Experimental Reactor (ITER) design are formulated in a set of physics design guidelines. These guidelines, established by the ITER Physics Group during the Conceptual Design Activity (CDA, 1988--90), were based on credible extrapolations of the tokamak physics database as assessed during the CDA, and defined a class of tokamak designs (with plasma current I is approximately 20 MA and aspect ratio A is approximately 2.5--3.5) that meet the ITER objectives. Recent U.S. studies have indicated that there may be significant benefits if the ITER-CDA design point is moved from the low aspect ratio, high current baseline (A = 2.79, I = 22 MA) to a high aspect ratio machine at Ais approximately 4, I is approximately 15 MA, especially regarding steady-state, technology-testing performance. To adequately assess the physics and technology testing capability of higher aspect ratio design options, several changes are proposed to the original ITER guidelines to reflect the latest developments in physics understanding at higher aspect ratios. The critical issues for higher aspect ratio design options are the uncertainty in scaling of confinement with aspect ratio, the variation of vertical stability with elongation and aspect ratio, plasma shaping requirements, ability to control and maintain plasma current and q-profiles for MHD stability (and volt-second consumption), access for current drive, restrictions on field ripple and divertor plate incident angles, etc.

  20. Extreme Low Aspect Ratio Stellarators

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    1997-11-01

    Recently proposed Spherical Stellarator (SS) concept [1] includes the devices with stellarator features and low aspect ratio, A <= 3.5, which is very unusual for stellarators (typical stellarators have A ≈ 7-10 or above). Strong bootstrap current and high-β equilibria are two distinguished elements of the SS concept leading to compact, steady-state, and efficient fusion reactor. Different coil configurations advantageous for the SS have been identified and analyzed [1-6]. In this report, we will present results on novel stellarator configurations which are unusual even for the SS approach. These are the extreme-low-aspect-ratio-stellarators (ELARS), with the aspect ratio A ≈ 1. We succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform (ι ≈ 0.1 - 0.15), large plasma volume, and good particle transport characteristics. [1] P.E. Moroz, Phys. Rev. Lett. 77, 651 (1996); [2] P.E. Moroz, Phys. Plasmas 3, 3055 (1996); [3] P.E. Moroz, D.B. Batchelor et al., Fusion Tech. 30, 1347 (1996); [4] P.E. Moroz, Stellarator News 48, 2 (1996); [5] P.E. Moroz, Plasma Phys. Reports 23, 502 (1997); [6] P.E. Moroz, Nucl. Fusion 37, No. 8 (1997). *Supported by DOE Grant No. DE-FG02-97ER54395.

  1. Physics aspects of the Compact Ignition Tokamak

    SciTech Connect

    Post, D.; Bateman, G.; Houlberg, W.; Bromberg, L.; Cohn, D.; Colestock, P.; Hughes, M.; Ignat, D.; Izzo, R.; Jardin, S.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ approx. 2 x 10/sup 20/ sec m/sup -3/ required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k approx. 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided.

  2. Effect of particle aspect ratio in magnetorheology

    NASA Astrophysics Data System (ADS)

    Morillas, Jose R.; Carreón-González, Elizabeth; de Vicente, Juan

    2015-12-01

    We investigate the influence of the aspect ratio of the dispersed particles in magnetorheology. Two systems are studied: conventional magnetorheological fluids prepared by dispersion of nickel nanowires, and inverse ferrofluids prepared by dispersion of glass fibers in a ferrofluid. In both cases the apparent yield stress is found to increase with aspect ratio in contradiction to available models in the literature. Experimental observations demonstrate that the particle volume fraction within the aggregates initially increases with increasing the aspect ratio of the dispersed particles. When the aspect ratio is further raised, a gel-like percolating structure forms inhibiting the formation of elongated clusters in the field direction.

  3. Study of Aspect Ratio Effects on Kinetic MHD Instabilities in NSTX and DIII-D

    SciTech Connect

    E.D. Fredrickson; W.W. Heidbrink; C.Z. Cheng; N.N. Gorelenkov; E. Belova; A.W. Hyatt; G.J. Kramer; J. Manickam; J. Menard; R. Nazikian; T.L. Rhodes; E. Ruskov

    2004-10-21

    We report general observations of kinetic instabilities on the low aspect-ratio National Spherical Torus Experiment (NSTX) and describe explicit aspect ratio scaling studies of kinetic instabilities using both the NSTX and the DIII-D tokamak. The NSTX and the DIII-D tokamak are nearly ideal for such experiments, having a factor of two difference in major radius but otherwise similar parameters. We also introduce new theoretical work on the physics of kinetic ballooning modes (KBM), toroidal Alfven eigenmodes (TAE), and compressional Alfven eigenmodes (CAE) with applications to NSTX.

  4. Optimal aspect ratio of endocytosed spherocylindrical nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Bing; Liu, Yan-Hui; Zeng, Yan; Mao, Wei; Hu, Lin; Mao, Zong-Liang; Xu, Hou-Qiang

    2015-02-01

    Recent simulations have demonstrated that bioparticle size and shape modulate the process of endocytosis, and studies have provided more quantitative information that the endocytosis efficiency of spherocylindrical bioparticles is decided by its aspect ratio. At the same time, the dimensions of the receptor-ligand complex have strong effects on the size-dependent exclusion of proteins within the cellular environment. However, these earlier theoretical works including simulations did not consider the effects of ligand-receptor complex dimension on the endocytosis process. Thus, it is necessary to resolve the effects of ligand-receptor complex dimension and determine the optimal aspect ratio of spherocylindrical bioparticles in the process of endocytosis. Accordingly, we proposed a continuum elastic model, of which the results indicate that the aspect ratio depends on the ligand-receptor complex dimension and the radius of the spherocylindrical bioparticle. This model provides a phase diagram of the aspect ratio of endocytosed spherocylindrical bioparticles, the larger aspect ratio of which appears in the phase diagram with increasing ligand density, and highlights the bioparticle design.

  5. Busbar for the low aspect ratio device

    SciTech Connect

    Bromberg, L.; Sidorov, M.

    1996-12-31

    The high current required to drive the toroidal field coil of Low Aspect Ratio reactor-size devices (due to the single turn design) results in difficult choices for the electrical bus. In this paper, the implications of both superconducting and resistive busbar are investigated. Special attention is given to the possibility of using a high-Tc busbar. 14 refs., 5 figs.

  6. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  7. Noise of Embedded High Aspect Ratio Nozzles

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2011-01-01

    A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch diameter equivalent area throat." ! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated above." Because it is the objective of the Supersonics Project that

  8. High aspect ratio, remote controlled pumping assembly

    DOEpatents

    Brown, S.B.; Milanovich, F.P.

    1995-11-14

    A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

  9. High aspect ratio, remote controlled pumping assembly

    DOEpatents

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  10. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  11. High aspect ratio silicon etch: A review

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Pamarthy, Sharma

    2010-09-01

    High aspect ratio (HAR) silicon etch is reviewed, including commonly used terms, history, main applications, different technological methods, critical challenges, and main theories of the technologies. Chronologically, HAR silicon etch has been conducted using wet etch in solution, reactive ion etch (RIE) in low density plasma, single-step etch at cryogenic conditions in inductively coupled plasma (ICP) combined with RIE, time-multiplexed deep silicon etch in ICP-RIE configuration reactor, and single-step etch in high density plasma at room or near room temperature. Key specifications are HAR, high etch rate, good trench sidewall profile with smooth surface, low aspect ratio dependent etch, and low etch loading effects. Till now, time-multiplexed etch process is a popular industrial practice but the intrinsic scalloped profile of a time-multiplexed etch process, resulting from alternating between passivation and etch, poses a challenge. Previously, HAR silicon etch was an application associated primarily with microelectromechanical systems. In recent years, through-silicon-via (TSV) etch applications for three-dimensional integrated circuit stacking technology has spurred research and development of this enabling technology. This potential large scale application requires HAR etch with high and stable throughput, controllable profile and surface properties, and low costs.

  12. Stability of Small Aspect Ratio Toroidal Hybrid Devices

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Batchelor, D. B.; Carreras, B. A.; Hirshman, S. P.; Lynch, V. E.; Spong, D. A.; Whitson, J.

    1997-11-01

    The stability properties of small aspect ratio toroidal hybrid (SMARTH) devices are investigated. SMARTH configurations are a hybrid between a stellarator and a tokamak: the poloidal field is provided by both external modulated coils as well as plasma current. Initial studies of these devices focused on configurations with a simple set of modulated circular toroidal field coils.(B. A. Carreras, V. E. Lynch, and A. S. Ware, ORNL/TM-13252, 1996) These configurations have a magnetic well throughout the plasma volume and β limits for these devices are set by ideal ballooning modes. Here, we focus on the effect of finite plasma current on the ideal ballooning stability limit for SMARTH configurations. Preliminary results indicate that adding plasma current raises the stability β threshhold. More recent investigation have focused on configurations optimized solely for maximal particle confinement.(D. A. Spong, et al., 1997 Sherwood Theory Meeting, Poster 3C08) Confinement optimization, however, was deleterious to stability. We will report on progress to include a `stability criteria' in further confinement optimization studies.

  13. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  14. Key Aspects of EBW Heating and Current Drive in Tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Preinhaelter, Josef; Taylor, Gary; Vahala, Linda; Vahala, George

    2010-11-01

    Electron Bernstein wave (EBW) heating and current drive is modeled by coupled mode conversion, ray-tracing (AMR) and Fokker-Planck (LUKE) codes. Deposition and current drive profiles are determined for EBW with various injection parameters under realistic spherical tokamak conditions. There parameters are varied to investigate the robustness of the applied scenarios. The importance of relativistic corrections to EBW absorption is considered. The differences between various relativistic models are explored.

  15. Nuclear aspects of tokamak fusion test reactor (TFTR) diagnostics and instrumentation

    SciTech Connect

    Young, K.M.

    1982-01-01

    There are five principal aspects of the nuclear radiation from the high temperature plasmas of TFTR on its plasma diagnostic equipment. i) Important information about the plasma properties to be obtained from measurement of the neutrons, or other fusion reaction products. ii) Experimental studies to give design data for future tokamak devices and their instrumentation. iii) Transient noise or damage effects on the array of detectors for the collection of physics data about the plasma. iv) The effect of tritium on detectors that necessarily are in vacuum, directly connected to the tokamak vacuum vessel. v) Damage of diagnostic components mounted close to the vacuum vessel. Each of these topics will be addressed after a brief description of the TFTR tokamak and its radiation environment.

  16. Aspect ratio effects on limited scrape-off layer plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo

    2014-02-01

    The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.

  17. Aspect ratio effects on limited scrape-off layer plasma turbulence

    SciTech Connect

    Jolliet, Sébastien Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo

    2014-02-15

    The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.

  18. Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kaye, S. M.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; LeBlanc, B. P.; Lee, K. C.; Lynch, S.; Sabbagh, S. A.

    2006-10-01

    Statistical and systematic studies have been conducted in order to develop an understanding of the parametric dependences of both the global and thermal energy confinement times at low aspect ratio in high power National Spherical Torus Experiment (NSTX) discharges. The global and thermal confinement times of both L- and H-mode discharges can exceed values given by H-mode scalings developed for conventional aspect ratio. Results of systematic scans in the H-mode indicate that the confinement times exhibit a nearly linear dependence on plasma current and a power degradation weaker than that observed at conventional aspect ratio. In addition, the dependence on the toroidal magnetic field is stronger than that seen in conventional aspect ratio tokamaks. Also, this latter trend is evident in statistical analyses of the available dataset. These statistical studies also indicate a weaker parametric dependence on plasma current than found in the systematic scans, due to correlations among the predictor variables. Regressions based on engineering variables, when transformed to dimensionless physics variables, indicate that the dependence of BτE on βt can range from being negative to null. Regressions based directly on the dimensionless physics variables are inexact because of large correlations among these variables. Scatter in the confinement data, at otherwise fixed operating parameters, is found to be due to variations in ELM activity, low frequency density fluctuations and plasma shaping.

  19. Physics Basis for High-Beta, Low-Aspect-Ratio Stellarator Experiments

    SciTech Connect

    A. Brooks; A.H. Reiman; G.H. Neilson; M.C. Zarnstorff; et al

    1999-11-01

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.

  20. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    SciTech Connect

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  1. The unsteady lift of a wing of finite aspect ratio

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1940-01-01

    Unsteady-lift functions for wings of finite aspect ratio have been calculated by correcting the aerodynamic inertia and the angle of attack of the infinite wing. The calculations are based on the operational method.

  2. Aeroacoustics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. This jet sheet is essentially a high aspect-ratio rectangular jet. Thus, to fully understand the noise of a circulation control wing, the noise of high aspect-ratio rectangular jets must also be understood. A high aspect-ratio nozzle was fabricated to study the general characteristics of high aspect-ratio jets with aspect ratios from 100 to 3000. The jet noise of this nozzle was proportional to the 8" power of the jet velocity. It was also found that the jet noise was proportional to the slot height to the 312 power and slot width to the 1/2 power.

  3. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  4. Aspect ratio effect on shock-accelerated elliptic gas cylinders

    NASA Astrophysics Data System (ADS)

    Zou, Liyong; Liao, Shenfei; Liu, Cangli; Wang, Yanping; Zhai, Zhigang

    2016-03-01

    The evolution of an elliptic heavy-gas (SF6) cylinder accelerated by a planar weak shock wave is investigated experimentally using particle image velocimetry (PIV) diagnostics, and the emphasis is on the aspect ratio effect on shock-elliptic cylinder interaction. Experiments are conducted at five different aspect ratios (the ratio of length in streamwise and spanwise directions) varied from 0.25 to 4.0. PIV raw images and quantitative flow field data are obtained at t = 0.6 ms after the shock impact. As the aspect ratio increases, the interface morphology develops faster owing to more vorticity produced along the interface and smaller vortex spacing between the two vortex cores. For each case in this study, the maximal fluctuating velocity locates at the middle point of the two counter-vortices. The histograms of fluctuating velocity reveal that a distinct double-peak structure appears in the largest aspect ratio case in comparison with a single-peak structure in the smallest aspect ratio case. The vortex velocities predicted by the theoretical model [G. Rudinger and L. M. Somers, "Behaviour of small regions of different gases carried in accelerated gas flows," J. Fluid Mech. 7, 161-176 (1960)] agree well with the experimental ones. With the increase of aspect ratio, the maximal value of vorticity increases as well as the circulation, and more low-magnitude quantities are generated, which indicates the formation of multi-scale flow structure in the late mixing process. It is found that the experimental circulation of the vortex motion is reasonably estimated by the ideal point vortex-pair model.

  5. Fabrication and characterization of plasmonic nanorods with high aspect ratios

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoxiao; Hu, Sheng; Li, Zhigang; Lv, Jiangtao; Si, Guangyuan

    2016-08-01

    Metallic nanostructures with high aspect ratios are important for developing devices in photonics and integrated optics. However, fabricating well-aligned plasmonic arrays is challenging due to the difficulties of etching metals. In this work, we investigate the feasibility of constructing high aspect ratio nanorods with desired shapes and controllable geometric parameters using direct focused ion beam etching. The whole fabrication process only involves a metal-deposition step and a single milling of designed patterns. Detailed characterizations of the fabricated devices are also experimentally demonstrated.

  6. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  7. The Vortices Trapped above Low-aspect-ratio Wings

    NASA Astrophysics Data System (ADS)

    Tang, Jian

    2007-11-01

    A stationary vortex trapped above the nondelta, low-aspect-ratio wings was first obtained in 3D unsteady numerical simulation. Flow visualization was conducted in water-channel using hydrogen bubble. The results verify that there is a vortex trapped above the low-aspect-ratio wings and the stationary vortex is consisted of two semi-ball, anti-rotation vortices which are different from the leading edge vortices on the delta wing. This stationary vortex trapped above the nondelta, low-aspect-ratio wings is a new phenomenon, which is different from the leading edge vortex on the delta wing. The numerical results show that lift coefficient increase to 0.8 when incidence increases form 0^o to 30^o, the lift coefficient keeps this value up to 45^o--a very high stall angle. The numerical results indicate that the trapped vortex might be the source of the high stall angle of attack and nonlinear lift at high incidence. Accompanied with the low-aspect-ratio wing, the existence of the stationary vortex is thought to be related to the strong effects of tip vortices. Further experimental and numerical works have been undertaken, the results show that trapped vortices have variant shapes and different critical angels of attack.

  8. Averaged equilibrium and stability in low-aspect-ratio stellarators

    SciTech Connect

    Garcia, L.; Carreras, B.A.; Dominguez, N.

    1989-01-01

    The MHD equilibrium and stability calculations or stellarators are complex because of the intrinsic three-dimensional (3-D) character of these configurations. The stellarators expansion simplifies the equilibrium calculation by reducing it to a two-dimensional (2-D) problem. The classical stellarator expansion includes terms up to order epsilon/sup 2/, and the vacuum magnetic field is also included up to this order. For large-aspect-ratio configurations, the results of the stellarator expansion agree well with 3-D numerical equilibrium results. But for low-aspect-ratio configurations, these are significant discrepancies with 3-D equilibrium calculations. The main reason for these discrepancies is the approximation in the vacuum field contributions. This problem can be avoided by applying the average method in a vacuum flux coordinate system. In this way, the exact vacuum magnetic field contribution is included and the results agree well with 3-D equilibrium calculations even for low-aspect-ratio configurations. Using the average method in a vacuum flux coordinate system also permit the accurate calculation of local stability properties with the Mercier criterion. The main improvement is in the accurate calculation of the geodesic curvature term. In this paper, we discuss the application of the average method in flux coordinates to the calculation of the Mercier criterion for low-aspect-ratio stellarator configurations. 12 refs., 3 figs.

  9. Transitions in Dynamo Modes Controlled by the Domain Aspect Ratio

    NASA Astrophysics Data System (ADS)

    Goudard, L.; Dormy, E.

    2007-12-01

    Magnetic fields of internal origin are observed on many planets in the solar system. The Sun itself acts as a dynamo. While these natural objects are very different in their composition, when it comes to dynamo modeling the governing equations are remarkably similar. One of the controlling parameters to distinguish between these objects is the aspect ratio of the convecting domain. Comparing the Sun to the Earth raises the issue of the nature of reversals. A challenging issue is to determine why the geomagnetic field reverses polarity on an irregular basis, whereas the Sun --which is a much larger object, governed by stronger nonlinearities-- reverses its magnetic polarity on a quasi-periodic timescale of 11 yrs. We use a three-dimensional Boussinesq model (the Parody code) to investigate the transition between these two types of behavior. We show that the aspect ratio of the convecting domain controls the nature of the dynamo field. We report a butterfly-like diagram at large aspect ratio, with magnetic activity near 30° of latitudes, which migrates with time toward the equator. We trace the existence of the dynamo wave solution at various aspect ratio and suggest possible consequences for the geomagnetic secular variation.

  10. Fluid Dynamics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. High aspect-ratio jet acoustic results (aspect-ratios from 100 to 3,000) from a related study showed that the jet noise of this type of jet was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were performed in the present study on the high aspect-ratio nozzle to gain understanding of the flow characteristics in an effort to relate the acoustic results to flow parameters. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation measurements were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  11. CFD assessment of orifice aspect ratio and mass flow ratio on jet mixing in rectangular ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  12. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  13. Evolution of cooling-channel properties for varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Pizzarelli, M.; Nasuti, F.; Onofri, M.

    2016-07-01

    A trade-off analysis is performed on a cooling channel system representative of liquid rocket engine cooling systems. This analysis requires multiple cooling channel flow calculations which are performed by means of a proper numerical approach, referred to as quasi-two-dimensional (2D) model. This model, which is suited to high-aspect-ratio cooling channels (HARCC), permits to have a fast prediction of both the coolant flow evolution and the temperature distribution along the whole cooling channel structure. Before using the quasi-2D model for the trade-off analysis, its validation by comparison with computational fluid dynamics (CFD) results is presented and discussed. The results show that the pump power required to overcome losses in the cooling circuit can be minimized selecting a channel shaped with a suitably high aspect ratio.

  14. Nanorod Aspect Ratios Determined by the Nano-Impact Technique.

    PubMed

    Plowman, Blake J; Young, Neil P; Batchelor-McAuley, Christopher; Compton, Richard G

    2016-06-01

    The in situ electrochemical sizing of individual gold nanorods is reported. Through the combination of electrochemical dissolution and the use of a surface-bound redox tag, the volume and surface area of the nanorods are measured, and provide the aspect ratio and the size of the nanorods. Excellent independent agreement is found with electron microscopy analysis of the nanorods, establishing the application of nano-impact experiments for the sizing of anisotropic nanomaterials. PMID:27106096

  15. High-aspect-ratio fine-line metallization

    NASA Astrophysics Data System (ADS)

    Chang, Chienliu; Chang, Peizen; Yen, Kaihsiang; Lu, Sheyshi

    1998-08-01

    This study is aimed at making metallic fine lines characterized with high aspect ratio. There are two methods we have developed. One is the trilevel lift-off method with submicron lithography, and the other is the lift-off method by using the commercial negative photoresist SU-8 made by IBM. First, the trilevel lift-off method is described. A pre- imidized, soluble polyimide layer of OCG Probimide 293 A is spun on a wafer with thickness 4 micrometer. A 120 nm thick layer of silicon oxynitride was formed on the polyimide by PECVD. A layer photoresist layer was applied and patterned. This photoresist layer is used as the etching mask of silicon oxynitride by RIE with the gas CF4 plasma. Similarly, the silicon oxynitride is used as the etching mask of the thick polyimide layers by RIE with the gas O2 plasma. After metallization the pre-imidized polyimide is dissolved in methylene chloride lifting off the oxynitride and metal layers. Following this way, the submicron lithography, such as silylation technology, is suitable to make the aspect ratio up to 10 and the metal line will still have 3 micrometer height. The other is the lift-off method by using negative photoresist SU-8. This SU-8 is originally used as high aspect ratio molding. The linewidth of SU-8 is reduced to 2 micrometer linewidth with 12 micrometer height, and used as the remover to lift off after metallization. This SU-8 makes the fine-line metallization of 2 micrometer linewidth to achieve the aspect- ratio up to 5.

  16. Instability of low viscosity elliptic jets with varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun

    2011-11-01

    In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.

  17. Micromilling of thin ribs with high aspect ratios

    NASA Astrophysics Data System (ADS)

    Li, P.; Zdebski, D.; Langen, H. H.; Hoogstrate, A. M.; Oosterling, J. A. J.; Munnig Schmidt, R. H.; Allen, D. M.

    2010-11-01

    Micro features with high aspect ratios are one of the commonly encountered geometries found in micro products. In the literature, these structures are often used in demonstrator products machined by a micromilling process. In this paper, the challenges in micromilling thin ribs with high aspect ratios have been studied. Due to the scaling effect, micro-ribs have relatively low stiffness but high natural frequency. Therefore, on the one hand, average forces have to be controlled well to avoid structural bending or even damage, while on the other hand, micro features are unlikely to be excited by the dynamic forces. The characteristics of micromilling forces and their relationships to the machining parameters, namely, feed per tooth, depth of cut and width of cut, were studied theoretically by force models. In addition, the effects of different milling strategies (up-/down-milling) and tool paths on the quality of thin features have been investigated using FEM. The results allow measures to be taken to minimize the force effects and support the micro features during machining. The experimental results verify the theoretical studies. Thin ribs about 15 µm wide and with an aspect ratio of more than 50 were machined with good form and surface quality.

  18. Evolution of turbulent jets in low aspect ratio containers

    NASA Astrophysics Data System (ADS)

    Pol, S.; Nath, C.; Gest, D.; Voropayev, S.; Fernando, H. J. S.; Webb, S.

    2009-11-01

    The evolution of homogeneous and buoyant turbulent jets released into a low aspect ratio (width/height) container was investigated experimentally using PIV, MSCT probing and digital imaging. The motivation was to understand mixing process occurring in U.S. Strategic Petroleum Reserves (SPR), where crude oil is stored in salt caverns of low aspect ratio. During maintenance or filling, oil is introduced as a jet from the top of the caverns. This study is focussed on mean and turbulent flow characteristics as well as global flow instability and periodic oscillations intrinsic to jets in low aspect ratio containers. Scaling arguments were advanced for salient flow parameters, which included the characteristic length (container width D) and velocity (for homogeneous jets, J^1/2D, where J is the momentum flux at the jet exit) scales. For buoyant jets, the buoyancy flux B needs to be introduced as an additional parameter. Such jet flows do not reach a steady state, but bifurcate periodically with a frequency scale J^1/2/ D^2 while enhancing global mixing.

  19. High-aspect ratio magnetic nanocomposite polymer cilium

    NASA Astrophysics Data System (ADS)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  20. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  1. Formation of High Aspect Ratio Microcoil Using Dipping Method

    NASA Astrophysics Data System (ADS)

    Noda, Daiji; Yamashita, Shuhei; Matsumoto, Yoshifumi; Setomoto, Masaru; Hattori, Tadashi

    Coils are used in many electronic devices as inductors in mobile units such as mobile phone, digital cameras, etc. Inductance and quality factor of coils are very important value of the performance. Therefore, the requests for coils are small size, high inductance, low power consumption, etc. However, coils are unsuitable for miniaturization because of its structure. Therefore, we have proposed and developed the microcoils of high aspect ratio with the dipping method and an X-ray lithography technique. In dipping method, centrifugal force and highly viscous photoresist solution were key points to evenly apply resist in the form of thick film on metal bar. The film thickness of resist on bar was achieved about 50 μm after single coating. Using these techniques, we succeeded in creating threaded groove structure with 10 μm lines and spaces on 1 mm brass bar. In this case, the aspect ratio was achieved five. It is very expected the high performance microcoil with high aspect ratio lines could be manufactured in spite of the miniature size.

  2. Study of blade aspect ratio on a compressor front stage

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.

    1980-01-01

    A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.

  3. Dependence of the ac loss on the aspect ratio in a cable in conduit conductor

    NASA Astrophysics Data System (ADS)

    Cau, F.; Bruzzone, P.

    2010-04-01

    The coupling current loss in rectangular superconducting cables is strictly dependent on their aspect ratio, which has an impact on the area linked by the field variation and consequently on the currents induced between strands. The relation between the ac loss and aspect ratio is studied with reference to the testing of three short cable in conduit conductor (CICC) samples at the SULTAN test facility. The first conductor is a 25 kA NbTi cable for the JT60-SA tokamak; the second is a 20 kA Nb3Sn cable for the HZB hybrid magnet. The last CICC is a 68 kA Nb3Sn cable with layout similar to that of the ITER toroidal field (TF) conductor (called the 'European toroidal field (EUTF) alternate'). All the samples are assembled with two conductor sections differing only in their orientation with respect to the external variable field. In the first and third samples, the cable of one leg is rotated by 90°, while in the HZB sample it is rotated by 45° with respect to the other leg. The ac loss is measured at the SULTAN test facility using a gas flow calorimetric method. A sample length of 39 cm is exposed to a sinusoidal field with an amplitude of ± 0.3 or ± 0.2 T (depending on the superconductor) and frequency variable in the range 0.1-0.8 Hz. A background field of 2 T perpendicular both to the sinusoidal field and to the sample axis is also applied. The ac loss is assessed by measuring the variation of the He enthalpy, assuming the metal enthalpy to be negligible. The loss curve for both legs is discussed in terms of the respective aspect ratios and the results, including data from former test campaigns, are compared with the aim of finding an analytical relation between the loss and the conductor dimensions.

  4. Fluid overpressure estimates from the aspect ratios of mineral veins

    NASA Astrophysics Data System (ADS)

    Philipp, Sonja L.

    2012-12-01

    Several hundred calcite veins and (mostly) normal faults were studied in limestone and shale layers of a Mesozoic sedimentary basin next to the village of Kilve at the Bristol Channel (SW-England). The veins strike mostly E-W (239 measurements), that is, parallel with the associated normal faults. The mean vein dip is 73°N (44 measurements). Field observations indicate that these faults transported the fluids up into the limestone layers. The vein outcrop (trace) length (0.025-10.3 m) and thickness (0.1-28 mm) size distributions are log-normal. Taking the thickness as the dependent variable and the outcrop length as the independent variable, linear regression gives a coefficient of determination (goodness of fit) of R2 = 0.74 (significant with 99% confidence), but natural logarithmic transformation of the thickness-length data increases the coefficient of determination to R2 = 0.98, indicating that nearly all the variation in thickness can be explained in terms of variation in trace length. The geometric mean of the aspect (length/thickness) ratio, 451, gives the best representation of the data set. With 95% confidence, the true geometric mean of the aspect ratios of the veins lies in the interval 409-497. Using elastic crack theory, appropriate elastic properties of the host rock, and the mean aspect ratio, the fluid overpressure (that is, the total fluid pressure minus the normal stress on the fracture plane) at the time of vein formation is estimated at around 18 MPa. From these results, and using the average host rock and water densities, the depth to the sources of the fluids (below the present exposures) forming the veins is estimated at between around 300 m and 1200 m. These results are in agreement to those obtained by independent isotopic studies and indicate that the fluids were of rather local origin, probably injected from sill-like sources (water sills) inside the sedimentary basin.

  5. Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay.

    PubMed

    Rawat, Kamla; Agarwal, Shweta; Tyagi, Aakriti; Verma, Anita K; Bohidar, H B

    2014-10-01

    Nanoclays may enter human body through various routes such as through the respiratory and gastrointestinal tract, skin, blood, etc. There is dearth of such studies evaluating the interaction of clay nanoparticles with human cells. In particular, the interaction of proteins and nucleic acids with nanoparticles of different aspect ratio remains a domain that is very poorly probed and understood. In the present study, we address the issue of cytotoxicity and antimicrobial attributes of two distinct nanoclay platelets namely, laponite (diameter = 25 nm and thickness = 1 nm) and montmorillonite (MMT, diameter = 300 nm and thickness = 1 nm), having different aspect ratio (25:1 vs 300:1). Cytotoxicity was assessed in both prokatyotes: Escherichia coli, eukaryotes-human embryonic kidney (HEK), and cervical cancer SiHa cell lines, and a comparative size-based analysis of the toxicity were made at different exposure time points by MTT assay. The antimicrobial activity of the nanoclays was evaluated by disc diffusion method (Kirbey-Bauer protocol). Laponite exhibited maximum efficacy as an antimicrobial agent against E. coli. Comparatively smaller size laponite could preferentially enter the cells, leading to relatively wider or larger zone of inhibition. On contradictory; laponite showed 74.67 % survival while MMT showed 89.02 % survival in eukaryotic cells at 0.00001 % (w/v) concentration. In summary, both MMT and laponite indicated cytotoxicity at 0.05 % concentration within 24 h of exposure on HEK and cervical cancer (SiHa) cell lines. The toxicity was possibly dependent on size, aspect ratio, and concentration. PMID:24894661

  6. Nonconservative dynamics of optically trapped high-aspect-ratio nanowires

    NASA Astrophysics Data System (ADS)

    Toe, Wen Jun; Ortega-Piwonka, Ignacio; Angstmann, Christopher N.; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati; Henry, Bruce I.; Reece, Peter J.

    2016-02-01

    We investigate the dynamics of high-aspect-ratio nanowires trapped axially in a single gradient force optical tweezers. A power spectrum analysis of the dynamics reveals a broad spectral resonance of the order of kHz with peak properties that are strongly dependent on the input trapping power. A dynamical model incorporating linear restoring optical forces, a nonconservative asymmetric coupling between translational and rotational degrees of freedom, viscous drag, and white noise provides an excellent fit to experimental observations. A persistent low-frequency cyclical motion around the equilibrium trapping position, with a frequency distinct from the spectral resonance, is observed from the time series data.

  7. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  8. Tunable high aspect ratio polymer nanostructures for cell interfaces

    NASA Astrophysics Data System (ADS)

    Beckwith, Kai Sandvold; Cooil, Simon P.; Wells, Justin W.; Sikorski, Pawel

    2015-04-01

    Nanoscale topographies and chemical patterns can be used as synthetic cell interfaces with a range of applications including the study and control of cellular processes. Herein, we describe the fabrication of high aspect ratio nanostructures using electron beam lithography in the epoxy-based polymer SU-8. We show how nanostructure geometry, position and fluorescence properties can be tuned, allowing flexible device design. Further, thiol-epoxide reactions were developed to give effective and specific modification of SU-8 surface chemistry. SU-8 nanostructures were made directly on glass cover slips, enabling the use of high resolution optical techniques such as live-cell confocal, total internal reflection and 3D structured illumination microscopy to investigate cell interactions with the nanostructures. Details of cell adherence and spreading, plasma membrane conformation and actin organization in response to high aspect ratio nanopillars and nanolines were investigated. The versatile structural and chemical properties combined with the high resolution cell imaging capabilities of this system are an important step towards the better understanding and control of cell interactions with nanomaterials.Nanoscale topographies and chemical patterns can be used as synthetic cell interfaces with a range of applications including the study and control of cellular processes. Herein, we describe the fabrication of high aspect ratio nanostructures using electron beam lithography in the epoxy-based polymer SU-8. We show how nanostructure geometry, position and fluorescence properties can be tuned, allowing flexible device design. Further, thiol-epoxide reactions were developed to give effective and specific modification of SU-8 surface chemistry. SU-8 nanostructures were made directly on glass cover slips, enabling the use of high resolution optical techniques such as live-cell confocal, total internal reflection and 3D structured illumination microscopy to investigate cell

  9. Primary response of high-aspect-ratio thermoresistive sensors

    NASA Astrophysics Data System (ADS)

    Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.

    1997-07-01

    There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio

  10. Masks for high aspect ratio x-ray lithography

    SciTech Connect

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-04-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding.

  11. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  12. Compressional Alfvin Eigenmode Dispersion in Low Aspect Ratio Plasmas

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng; E. Fredrickson

    2002-01-29

    Recent observations of new fast ion beam driven instabilities in MHz frequency range in National Spherical Torus experiments (NSTX) are suggested to be Compressional Alfvin Eigenmodes (CAEs). A new theory of CAEs applicable to low aspect ratio toroidal plasmas is developed based on the ballooning representation for the poloidal dependence of the perturbed quantities. In agreement with observations, the analytical theory predicts that CAEs are discrete modes with frequencies correlated with the characteristic Alfvin velocity of the plasma. Plasma equilibrium structure is essential to determine accurately the dispersion of CAEs. The mode structure is localized in both the minor radius and the poloidal directions on the low magnetic field side.

  13. Aspect ratio effects in turbulent duct flows studied with DNS

    NASA Astrophysics Data System (ADS)

    Vinuesa, R.; Noorani, A.; Lozano-Durán, A.; Schlatter, P.; Fischer, P.; Nagib, H.

    2012-11-01

    Three-dimensional effects present in turbulent duct flows, i.e., side-wall boundary layers and secondary motions, are studied by means of direct numerical simulations (DNS). The spectral element code Nek5000, developed by Fischer et. al. (2008), is used to compute turbulent duct flows with aspect ratios 1 and 3 in streamwise-periodic boxes of length 25 h (long enough to capture the longest streamwise structures). The total number of grid points is 28 and 62 million respectively, and the inflow conditions were adjusted iteratively in order to keep the same bulk Reynolds number at the centerplane (Reb , c = 2800) in both cases. Spanwise variations in wall shear, mean-flow profiles and turbulence statistics were analyzed with aspect ratio, and also compared with the 2D channel. The simulations were started from a laminar duct profile, and transition to turbulence was triggered by means of trip-forcing in the wall-normal direction, applied at the two horizontal walls. In addition, we developed a convergence criterion aimed at assessing the necessary averaging time TA for converged statistics. We find that econdary motions present in duct flows require longer averaging times and the total shear-stress profile is not necessarily linear.

  14. THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY

    SciTech Connect

    WONG,SK; CHAN,VS

    2002-11-01

    OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  15. Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    SciTech Connect

    Alford, M.; Drummond, I. T.; Horgan, R. R.; Shanahan, H.; Peardon, M.

    2001-04-01

    Using tadpole-improved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios {chi}{sub 0}=4,6,10 and inverse lattice spacing in the range a{sub s}{sup -1}=660--840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in the Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L={infinity}. The renormalized anisotropy {chi}{sub R} was measured using both the torelon dispersion relation and the sideways potential method. There is general agreement between these approaches, but there are discrepancies which are evidence for the presence of lattice artifact contributions. For the torelon these are estimated to be O({alpha}{sub S}a{sub s}{sup 2}/R{sup 2}), where R is the flux-tube radius. We also present some new data that suggest that rotational invariance is established more accurately for the mean-link action than the plaquette action.

  16. Piezoresistance in polymer nanocomposites with high aspect ratio particles.

    PubMed

    Cattin, Cyrill; Hubert, Pascal

    2014-02-12

    In this paper, we address the problem of positive piezoresistance in high aspect ratio particle based polymer nanocomposites, a hybrid system at the center of research on flexible piezoresistive materials. We introduce a percolation theory based model relating the variation in electrical resistance to compressive strain and show that it gives accurate theoretical fits to experimental data presented in this paper, as well as to much of the available data in the literature. In contrast to existing theories, the model captures the characteristics of the particle network through experimentally definable parameters and does not rely on assumptions regarding the nature of the particles and/or the configuration of the network. It is further demonstrated that the presented theoretical framework is not limited to polymer nanocomposites with high aspect ratio particle but that it can explain piezoresistance in bulk electroconductive polymer nanocomposites in general. We find that the piezoresistive effect in such materials is rooted in a mechanical deformation induced change in the distribution of local conductances within the particle network, and we show that this change in the distribution of local conductances is well described by a strain dependent conductivity exponent, which scales with the magnitude of mechanical deformation. Besides, we demonstrate that these findings can be applied to the experimentally observed concentration dependence of the piezoresistance in polymer nanocomposites and, thus, to predicting the electric response to mechanical deformation at any particle concentration, which is expected to be highly instrumental in applied materials selection and performance evaluation. PMID:24410147

  17. HAREM: high aspect ratio etching and metallization for microsystems fabrication

    NASA Astrophysics Data System (ADS)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Collard, Dominique; Fujita, Hiroyuki

    2008-07-01

    We report a simple bulk micromachining method for the fabrication of high aspect ratio monocrystalline silicon MEMS (microelectromechanical systems) in a standard silicon wafer. We call this two-mask microfabrication process high aspect ratio etching and metallization or HAREM: it combines double-side etching and metallization to create suspended micromechanical structures with electrically 'insulating walls' on their backside. The insulating walls ensure a proper electrical insulation between the different actuation and sensing elements situated on either fixed or movable parts of the device. To demonstrate the high potential of this simple microfabrication method, we have designed and characterized electrostatically actuated microtweezers that integrate a differential capacitive sensor. The prototype showed an electrical insulation better than 1 GΩ between the different elements of the device. Furthermore, using a lock-in amplifier circuit, we could measure the position of the moving probe with few nanometers resolution for a displacement range of about 3 µm. This work was presented in part at the 21st IEEE MEMS Conference (Tucson, AZ, USA, 13-17 January, 2008) (doi:10.1109/MEMSYS.2008.4443656).

  18. Alternative lithographic methods for variable aspect ratio vias

    NASA Astrophysics Data System (ADS)

    Schepis, Anthony R.

    The foundation of semiconductor industry has historically been driven by scaling. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Aggressive reductions in memory cell size have resulted in systems with diminishing area between parallel bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area, a product of their two domain critical dimension image. To accommodate these trends there has been a shift toward the implementation of elliptical contact features. This empowers designers to maximize the use of free space between bit/word lines and gate stacks while preserving contact area; effectively reducing the minor via axis dimension while maintaining a patternable threshold in increasingly dense circuitry. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. This work separately investigates two unique, non-traditional lithographic techniques in the integration of an optical vortex mask as well as a polymer assembly system as means to augment ellipticity while facilitating contact feature scaling. This document affords a fundamental overview of imaging theory, details previous literature as to the technological trends enabling the resolving of contact features and demonstrates simulated & empirical evidence that the described methods have great potential to extend the resolution of variable aspect ratio vias using lithographic technologies.

  19. Aspect Ratio Effects in the Driven, Flux-Core Spheromak

    SciTech Connect

    Hooper, E B; Romero-Talam?s, C A; LoDestro, L L; Wood, R D; McLean, H S

    2009-03-02

    Resistive magneto-hydrodynamic simulations are used to evaluate the effects of the aspect ratio, A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood, et al., Nucl. Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias ('gun') poloidal flux is fit well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations the n = 1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly-driven helicity injection at A {le} 1.4 in simulations generates reconnection events which open the magnetic field lines; this state is characteristic of SSPX. Near the spheromak tilt-mode limit, A {approx} 1.67 for a cylindrical flux conserver, the tilt approaches 90{sup o}; reconnection events are not generated up to the strongest drives simulated. The time-sequence of these events suggests that they are representative of a chaotic process. Implications for spheromak experiments are discussed.

  20. Flexible replication technique for high-aspect-ratio nanostructures.

    PubMed

    Szeghalmi, Adriana; Sklarek, Kornelia; Helgert, Michael; Brunner, Robert; Erfurth, Wilfried; Gosele, Ulrich; Knez, Mato

    2010-12-01

    A flexible, nondestructive, and cost-effective replication technique for nanostructures is presented. The advantages of the process are: 1) it allows for tailoring structural parameters of the replica (e.g., line width) nearly independent of the structural geometry of the master; 2) it allows for replication of high-aspect-ratio structures also in polymer materials from solution (especially noncurable polymers) such as polystyrene and polymethylmethacrylate; 3) it includes an easy separation process, thus preserving the master for repeated use. Linear grating replicas with line widths ranging from 88 to 300 nm are obtained using a single nanostructured master. Nanofibers and complex nanopatterned replicas are achievable. The presented technique and its flexibility show that atomic layer deposition is a unique tool for the preparation of high-efficiency polarizer diffractive optics, photonics, electronics, and catalysts. PMID:21069891

  1. Vortex Interaction on Low Aspect Ratio Membrane Wings

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Breuer, Kenneth S.

    2013-11-01

    Inspired by the flight of bats and by recent interest in Micro Air Vehicles, we present measurements on the steady and unsteady behavior of low aspect ratio membrane wings. We conduct wind tunnel experiments with coupled force, kinematic, and flow field measurements, both on the wing and in the near wake. Membrane wings interact strongly with the vortices shed from the leading- and trailing-edges and the wing tips, and the details of the membrane support play an important role in the fluid-structure interaction. Membranes that are supported at the wing tip exhibit less membrane flutter, more coherent tip vortices, and enhanced lift. The interior wake can exhibit organized spanwise vortex shedding, and shows little influence from the tip vortex. In contrast, membranes with an unsupported wing tip show exaggerated static deformation, significant membrane fluttering and a diffuse, unsteady tip vortex. The unsteady tip vortex modifies the behavior of the interior wake, disrupting the wake coherence.

  2. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  3. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  4. Aerodynamic performance of a transonic low aspect ratio turbine nozzle

    SciTech Connect

    Moustapha, S.H. . Turbine Aerodynamics); Carscallen, W.E. . Combustion and Fluids Engineering Lab.); McGeachy, J.D. . Dept. of Mechanical Engineering)

    1993-07-01

    This paper presents detailed information of the three-dimensional flow field in a realistic turbine nozzle with an aspect ratio of 0.65 and a turning angle of 76 deg. The nozzle has been tested in a large-scale planar cascade over a range of exit Mach numbers from 0.3 to 1.3. The experimental results are presented in the form of nozzle passage Mach number distributions and spanwise distribution of losses and exit flow angle. Details of the flow field inside the nozzle passage are examined by means of surface flow visualization and Schlieren pictures. The performance of the nozzle is compared to the data obtained for the same nozzle tested in an annular cascade and a stage environment. Excellent agreement is found between the measured pressure distribution and the prediction of a three-dimensional Euler flow solver.

  5. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Abbassi, Hina; Amir, Shahid

    2015-03-01

    High aspect ratio graphene nanosheets (GNS), prepared via liquid exfoliation, are homogeneously dispersed in thermoplastic polyurethane (TPU). Dielectric spectroscopy results are reported for these nanocomposites (up to 0.55 vol. % GNS) in the frequency range of 100 Hz to 5 MHz. The as-prepared GNS increased the AC conductivity 10-1000 times across the given frequency range. The dielectric constant is increased 5-6 times at 100 Hz for the maximum loading of GNS when compared with the pristine TPU, with subsequently high dielectric loss making them a suitable candidate for high energy dissipation applications such as EMI shielding. The temperature effects on the dielectric characteristics of 0.55 vol. % GNS/TPU nanocomposites beyond 400 K are more pronounced due to the interfacial and orientation polarization. Mechanical characteristics evaluation of GNS/TPU composites shows a marked increase in the ultimate tensile strength without compromising their ductility and stiffness. [Figure not available: see fulltext.

  6. Fabrication of high aspect ratio micro electrode by using EDM

    NASA Astrophysics Data System (ADS)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Umar Alkali, Adam

    2016-02-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated.

  7. Photoimageable Polyimide: A Dielectric Material For High Aspect Ratio Structures

    NASA Astrophysics Data System (ADS)

    Cech, Jay M.; Oprysko, Modest M.; Young, Peter L.; Li, Kin

    1986-07-01

    Polyimide has been identified as a useful material for microelectronic packaging because of its low dielectric constant and high temperature stability. Difficulties involved with reactive ion etching (RIE), a conventional technique for patterning thick polyimide films (thickness greater than 5 microns) with vertical walls, can be overcome by using photimageable polyimide precursors. The processing steps are similar to those used with negative photoresists. EM Chemical's HTR-3 photosensitive polyimide has been spun on up to a thickness of 12 microns. Exposure with a dose of 780 mJcm-2 of ultraviolet light, followed by spin development produces clean patterns as small as 5 microns corresponding to an aspect ratio of 2.4. When the patterned precursor is heated, an imidization reaction occurs converting the patterned film to polyimide. Baking to ca. 400 degrees C results in substantial loss in the thickness and in line width. However, shrinkage occurs reproducibly so useful rules for mask design can be formulated. Near vertical wall structures can be fabricated by taking advantage of the optical and shrinkage properties of the polyimide precursor. After development, an undercut wall profile can be produced since the bottom of the film receives less exposure and is hence more soluble in the developer. During heating, lateral shrinkage pulls the top of the film inward producing a vertical wall since the bottom is fixed to the substrate by adhesion. As a result, fully cured polyimide structures with straight walls and aspect ratios greater than one can be obtained. Dielectric properties of the fully imidized films were investigated with capacitor test structures. A relative dielectric constant of 3.3 and a loss tangent of .002 were measured at 20 kHz. It was also found that the dielectric constant increases as a linear function of relative humidity.

  8. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly proposed for embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side ('bevel') did produce up to 3dB more noise in all directions, while extending the lip on the narrow side ('slant') produced up to 2dB more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron ('notch') produced up to 2dB increase in the noise. Having internal walls ('septae') within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  9. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  10. H-mode Characteristics and ELM Dynamics at Near-Unity Aspect Ratio

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Schlossberg, D. J.

    2014-10-01

    Ohmic H-mode is achieved at near-unity aspect ratio in the Pegasus Toroidal Experiment through the use of high-field-side fueling in both limited and diverted geometries. This regime is characterized by: increased edge rotation shear; increased central heating; and measured energy confinement consistent with the ITER98pb(y,2) scaling. In limited plasmas the power threshold is ~ 10 × higher than predicted by the high- A empirical tokamak scaling for nG = 0 . 1- 0 . 6 . No significant reduction in the power threshold has been observed in favorable ∇B SN plasma when compared to limited plasmas. Two classes of ELMs have been identified to date by their proximity to the power threshold and measured n spectra. Small, Type III-like ELMs are present at input power POH ~Pth and have n <= 4 . At POH >>Pth , they transition to large, Type-I-like ELMs with intermediate 5 < n < 15. These general mode numbers are opposite those seen at large A and reflect the increased peeling drive present at low A . The unique operating characteristics available at A ~ 1 in Pegasus allow long-sought measurements of the time evolution of the Jedge (R) pedestal collapse during an ELM event. They show a complex, multimodal pedestal collapse and the subsequent ejection of a current-carrying filament. Work supported by US DOE Grant DE-FG02-96ER54375.

  11. Influence of Ground Effect on Low Aspect Ratio Membrane Wings

    NASA Astrophysics Data System (ADS)

    Bleischwitz, Robert; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Inspired by the current interest of membrane wings for Micro Air Vehicles (MAVs) and hard limits in aerodynamic performance for wings in moderate Reynolds number regimes, an experimental wind tunnel study is conducted at a Reynolds number of approximately 65,000 to determine the aeromechanics of flexible, low aspect ratio (AR) membrane wings (AR <= 2) in the vicinity of the ground. Pitch angle α and height over ground h / c is varied with a traverse system. Flexible membrane wings are compared with rigid flat plates. A rolling road is used to impose the ground effect and the boundary layer leading up to the road is removed using a suction system. Time-averaged lift, drag and pitch moment changes are captured with a 6-axis force transducer and its effects are interpreted in terms of the membrane motions obtained using Direct-Image-Correlation (DIC) technique. Flow-structure-ground interactions are examined and the membrane dynamics are compared to results obtained outside of ground effect. Ultimately, understanding the ground effect on flexible membrane wings at moderate Reynolds numbers could help to design Wing-in-Ground MAVs with extended range and reduced energy consumption.

  12. Double-Diffusive Convection in Low-Aspect Ratio Containers

    NASA Astrophysics Data System (ADS)

    Pol, S.; Fernando, H. J. S.; Webb, S.

    2008-11-01

    Laboratory experiments and phenomenological modeling were undertaken to investigate the influence of container sidewalls on the evolution of diffusive layering in confined double-diffusive systems. Such flow configurations are common in engineering situations, including underground storage caverns of national strategic petroleum reserves. The laboratory flow configuration consisted of a linearly salt stratified fluid subjected to either heating from below or uniform heating from both the bottom and sidewalls. A number of different containers were used, allowing investigations over a range of governing parameters. The growth of the lowest mixed layer as well as multiple convecting layers aloft separated by diffusive interfaces were monitored using LIF, PIV and traversing temperature/conductivity probe techniques. The aspect ratio for side walls to become important was inferred by the bottom-layer growth measurements, which undergoes a transition of the growth law upon onset of side-wall effects. The combined side and bottom wall heating case was strikingly different from the bottom heating case, wherein layers of approximately equal heights are generated rather rapidly in the former as a result of convective plumes rising along the sidewalls and their arrest by the background stable density gradient. Theoretical arguments were advanced to explain and parameterize experimental observations.

  13. Aspect ratio effects on revolving wings with Rossby number consideration.

    PubMed

    Lee, Y J; Lua, K B; Lim, T T

    2016-01-01

    Numerical simulations have been conducted to investigate the effect of aspect ratio (AR) on the mean lift generation of a revolving flat rectangular wing. The purpose of the study is to address some discrepancies reported in the literature regarding the influence of AR on mean lift coefficient. Here, we consider a range of AR from 1 to 10 and Rossby number (Ro) from 0.58 to 7.57, and our results show that different degrees of coupling between AR and Ro yield different trends of a mean lift coefficient with respect to increasing AR. The choice of reference velocity for the normalisation of mean lift forces also has a significant effect on the perceived AR effect. By isolating the effect of Ro, we found that higher AR produces higher mean lift coefficient until it plateaus at a sufficiently high AR. This finding is consistent with conventional fixed wing aerodynamics. Additionally, our results show that increasing AR reduces the three-dimensional wing tip effect and is beneficial to mean lift generation while higher Ro increases leading-edge vortex instability, which is detrimental to mean lift generation. Therefore, mean lift generation on revolving wings is dictated by the competition between these two factors, which represent two fundamentally independent phenomena. PMID:27608653

  14. Determination of sub-micrometer high aspect ratio grating profiles

    NASA Astrophysics Data System (ADS)

    Garnaes, J.; Hansen, P.-E.; Agersnap, N.; Davi, I.; Petersen, J. C.; Kuehle, A.; Holm, J.; Christensen, L. H.

    2005-08-01

    Atomic force microscopy (AFM) and optical diffraction microscopy (ODM) are used to measure the profiles of grating grooves with depths much larger than their widths. Gratings with these features are essential in numerous optical devices such as spectrometers, monochromators and for the production of many fibre Bragg gratings. However, measurement of the physical shape is inherently difficult but necessary for the understanding of their function and in order to improve the manufacturing process. After a thorough calibration of an AFM and by tilting the plane of the grating by up to 17° relative to the symmetry axis of the sensing probe we measured accurately and traceably the sidewall angle and the sidewall profile in a non-destructive way. ODM is a new method where the intensity of the optical field diffracted is measured as a function of the frequency and an inverse algorithm is used to reconstruct the surface profile. It is fast, non-destructive, and it gives height and filling degree of a grating very accurately. As example a high aspect ratio grating with period p of 220 nm, depths d of ≈300 nm, and sidewall angles γ of approximately ≈90° and filling degree f of ≈40 % were examined. Standard uncertainties as low as u(d) = 3 nm, u( α) = 0.4° and u(f) = 3.1 % were achieved. Despite the fact that the AFM responds to the physical surface and ODM responds to the optical properties of the material we find that the results are in very good agreement and consistent with (destructive) scanning electron microscopy measurements of the filling degree.

  15. Capillary force in high aspect-ratio micropillar arrays

    NASA Astrophysics Data System (ADS)

    Chandra, Dinesh

    High aspect-ratio (HAR) micropillar arrays are important for many applications including, mechanical sensors and actuators, tunable wetting surfaces and substrates for living cell studies. However, due to their mechanical compliance and large surface area, the micropillars are susceptible to deformation due to surface forces, such as adhesive force and capillary force. In this thesis we have explored the capillary force driven mechanical instability of HAR micropillar arrays. We have shown that when a liquid is evaporated off the micropillar arrays, the pillars bend and cluster together due to a much smaller capillary meniscus interaction force while still surrounded by a continuous liquid body, rather than due to often reported Laplace pressure difference because of isolated capillary bridges. We have studied both theoretically and experimentally, the capillary force induced clustering behavior of micropillar arrays as a function of their elastic modulus. To this end, we have developed a modified replica molding process to fabricate a wide range of hydrogel micropillar arrays, whose elastic modulus in the wet state could be tuned by simply varying the hydrogel monomer composition. By minimizing the sum of capillary meniscus interaction energy and bending energy of the pillars in a cluster, we have derived a critical micropillar cluster size, which is inversely proportional to elastic modulus of micropillars. The estimated cluster size as a function of elastic modulus agrees well with our experimental observation. We have also explored the utility of the clustered micropillar arrays as ultrathin whitening layers mimicking the structural whitening mechanism found in some insects in nature. Finally, we have theoretically studied the capillary force induced imbibition of a liquid droplet on a model rough surface consisting of micropillar arrays. Our theoretical model suggests that due to shrinking liquid droplet, the imbibition dynamics does not follow the diffusive

  16. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns

  17. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns

  18. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L

  19. High Beta Tokamaks

    SciTech Connect

    Cowley, S.

    1998-11-14

    Perhaps the ideal tokamak would have high {beta} ({beta} {approx}> 1) and classical confinement. Such a tokamak has not been found, and we do not know if one does exist. We have searched for such a possibility, so far without success. In 1990, we obtained analytic equilibrium solutions for large aspect ratio tokamaks at {beta} {approx} {Omicron}(1) [1]. These solutions and the extension at high {beta} poloidal to finite aspect ratio [2] provided a basis for the study of high {beta} tokamaks. We have shown that these configurations can be stable to short scale MHD modes [3], and that they have reduced neoclassical transport [4]. Microinstabilities (such as the {del}T{sub i} mode) seem to be stabilized at high {beta} [5] - this is due to the large local shear [3] and the magnetic well. We have some concerns about modes associated with the compressional branch which may appear at high {beta}. Bill Dorland and Mike Kotschenreuther have studied this issue and our concerns may be unfounded. It is certainly tantalizing, especially given the lowered neoclassical transport values, that these configurations could have no microinstabilities and, one could assume, no anomalous transport. Unfortunately, while this work is encouraging, the key question for high {beta} tokamaks is the stability to large scale kink modes. The MHD {beta} limit (Troyon limit) for kink modes at large aspect ratio is problematically low. There is ample evidence from computations that the limit exists. However, it is not known if stable equilibria exist at much higher {beta}--none have been found. We have explored this question in the asymptotic high {beta} poloidal limit. Unfortunately, we are unable to find stable equilibrium and also unable to show that they don't exist. The results of these calculations will be published when a more definitive answer is found.

  20. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  1. The effect of aspect ratio and fluid flow on crystal growth

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.

    1986-01-01

    Supersaturated solutions were conditioned at different aspect ratios before crystal growth. The conditioned solutions were poured out into a dish to initiate crystal nucleation and growth. The rate of growth was measured microscopically and found to depend upon the aspect ratio. Secondly, the number and size of crystals formed was found to depend upon the aspect ratio. The data support the above conclusion, but do not prove it.

  2. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  3. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  4. THE RAYLEIGH-TAYLOR INSTABILITY IN SMALL ASPECT RATIO CONTAINERS

    SciTech Connect

    RIVERA, MICHAEL K.; ECKE, ROBERT E.

    2007-01-22

    We present experimental measurements of density and velocity obtained from the mixing zone of buoyancy driven turbulence initiated by the Rayleigh-Taylor instability in a small aspect ration chamber (a chamber who's vertical height is significantly larger than its lateral dimesion). The mixing front propogates at a slightly slower rate than the expected t{sup 2} behavior obtained from earlier experiments and numerics. Once the front has propogated significantly far away, we observe that the mixing zone develops to a statistically stationary state. In this stationary state, the spectral distributions of energy and density deviate from the familiar k{sup -5/3} ubiquitous to turbulence in three dimensions.

  5. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    PubMed

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity. PMID:24674643

  6. The Effect of Cooling Passage Aspect Ratio on Curvature Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1997-01-01

    A series of electrically heated tube experiments was performed to investigate the effect of high aspect ratio on curvature heat transfer enhancement in uniformly heated rectangular cooling passages. Three hardware geometries were tested: a baseline straight aspect ratio 10 tube, an aspect ratio 1 (square) tube with a 45 deg. curve, and an aspect ratio 10 tube with a 45 deg. curve. Gaseous nitrogen with the following properties was used as the coolant: ambient inlet temperature, pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds numbers based on hydraulic diameter ranging from 250,000 to 1,600,000. The measured curvature enhancement factors were compared to values predicted by three previously published models which had been developed for low aspect ratio tubes. The models were shown to be valid for the high aspect ratio tube as well the low aspect ratio tube, indicating that aspect ratio had little impact on the curvature heat transfer enhancement in these tests.

  7. Gelation effect on the synthesis of high-aspect-ratio gold nanorods.

    PubMed

    Takenaka, Yoshiko; Kitahata, Hiroyuki; Yamada, Norifumi L; Seto, Hideki; Hara, Masahiko

    2012-01-01

    The growth process of high-aspect-ratio gold nanorods in gelled surfactant solution was studied. As for the application of gold nanorods, the surface plasmon is quite useful, whose absorption depends on their aspect ratio. Hence it is important to synthesize gold nanorods with favorable aspect ratio in high yield. For shorter nanorods (aspect ratio < -10), the synthesis and the growth mechanism have been studied well. For the longer nanorods (aspect ratio > -30), however, the growth mechanism has not yet been understood well, although it has been known that the high-aspect-ratio gold nanorods could be synthesized in high yield in gelled surfactant solution. In this paper, we studied the relationship between the growth process of high-aspect-ratio gold nanorods and the gelation of surfactant growth-solution. Small angle X-ray scattering (SAXS) revealed the microscopic feature of gelation as the structural transition of self-assembly of surfactant molecules from micellar to lamellar. These results will be helpful for better understanding on the growth mechanism of high-aspect-ratio gold nanorods. PMID:22524045

  8. New Vehicle Detection Method with Aspect Ratio Estimation for Hypothesized Windows

    PubMed Central

    Kim, Jisu; Baek, Jeonghyun; Park, Yongseo; Kim, Euntai

    2015-01-01

    All kinds of vehicles have different ratios of width to height, which are called the aspect ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD). The use of a fixed vehicle aspect ratio for VD degrades the performance. Thus, the estimation of a vehicle aspect ratio is an important part of robust VD. Taking this idea into account, a new on-road vehicle detection system is proposed in this paper. The proposed method estimates the aspect ratio of the hypothesized windows to improve the VD performance. Our proposed method uses an Aggregate Channel Feature (ACF) and a support vector machine (SVM) to verify the hypothesized windows with the estimated aspect ratio. The contribution of this paper is threefold. First, the estimation of vehicle aspect ratio is inserted between the HG (hypothesis generation) and the HV (hypothesis verification). Second, a simple HG method named a signed horizontal edge map is proposed to speed up VD. Third, a new measure is proposed to represent the overlapping ratio between the ground truth and the detection results. This new measure is used to show that the proposed method is better than previous works in terms of robust VD. Finally, the Pittsburgh dataset is used to verify the performance of the proposed method. PMID:26690177

  9. Effect of Stator and Rotor Aspect Ratio on Transonic-Turbine Performance

    NASA Technical Reports Server (NTRS)

    Wong, Robert Y.; Monroe, Daniel E.

    1959-01-01

    The effect of stator and rotor aspect ratio on transonic-turbine performance was experimentally investigated. The stator aspect ratios covered were 1.6. 0.8, and 0.4, while the rotor aspect ratios investigated were 1.46 and 0.73. It was found that the observed variation in turbine design-point efficiency was negligible. Thus, within the range of aspect ratio investigated, these results verify for turbines operating in the transonic flow range the finding of a reference report, which showed analytically that, if blade shape and solidity are held constant, the aspect ratio may be varied over a wide range without appreciable change in turbine efficiency.

  10. Aspect Ratio Effects on Fluid Flow Fluctuations in Rectangular Cavities

    NASA Astrophysics Data System (ADS)

    Kalter, Rudi; Tummers, Mark J.; Wefers Bettink, Jeroen B.; Righolt, Bernhard W.; Kenjereš, Sasa; Kleijn, Chris R.

    2014-12-01

    The flow from a submerged bifurcated nozzle into rectangular liquid-filled cavities with width-to-thickness ratios W/ T = 6.5, 11, and 18 has been studied using free surface visualization and particle tracking. When W/ T = 11 and when W/ T = 18, self-sustained oscillations of the submerged jets and the free surface are present. When W/ T = 6.5, the self-sustained oscillations are no longer present, but oscillations with the frequency of gravity waves occur. We propose a critical value of W/ T above which self-sustained jet oscillations occur, based on the spreading angle of turbulent jets. When W/ T is larger than this critical value, the shear layers of the jet reach the front and back wall of the cavity before the jet can impinge the side wall, resulting in semi two-dimensional flow in the plane between the front and the back wall. Two-dimensional recirculation zones form alongside the jet leading to the jet oscillations. When W/ T is smaller than this critical value, the jet can develop like a free turbulent jet up to an impingement point at the narrow side wall. When the jet impinges the side wall, flow in the directions parallel and perpendicular to the front and back walls is possible, resulting in complex three-dimensional flow patterns. The critical value for W/ T, based on the known 12 deg spreading angle of turbulent jets is W/ T = 10, which is in good agreement with the experimental results.

  11. Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: influence of geometrical aspect ratio

    NASA Astrophysics Data System (ADS)

    Lappa, M.; Savino, R.; Monti, R.

    2001-05-01

    Oscillatory Marangoni convection in silicone oil-liquid bridges with different geometrical aspect ratios is investigated by three-dimensional and time-dependent numerical simulations, based on control volume methods in staggered cylindrical non-uniform grids. The three-dimensional oscillatory flow regimes are studied and compared with previous experimental and theoretical results. The results show that the critical wavenumber (m), related to the azimuthal spatio-temporal flow structure, is a monotonically decreasing function of the geometrical aspect ratio of the liquid bridge (defined as the ratio of length to diameter). For this function, a general correlation formula is found, which is in agreement with the previous experimental findings. The critical Marangoni number and the oscillation frequency are decreasing functions of the aspect ratio; however, the critical Marangoni number, based on the axial length of the bridge, does not change much with the aspect ratio. For each aspect ratio investigated, the onset of the instability from the axisymmetric steady state to the three-dimensional oscillatory one is characterized by the appearance of a standing wave regime that exhibits, after a certain time, a second transition to a travelling wave regime. The standing wave regime is more stable for lower aspect ratios since it lasts for a long time. This behaviour is explained on the basis of the propagation velocity of the disturbances in the liquid phase. For this velocity, a general correlation law is found as a function of the aspect ratio and of the Marangoni number. Copyright

  12. Performance of a transonic compressor rotor with an aspect ratio of 6.5

    NASA Technical Reports Server (NTRS)

    Reid, L.; Tysl, E. R.

    1974-01-01

    The overall and blade-element performances and the aerodynamic design parameters of a transonic rotor with an aspect ratio of 6.5, designed to investigate the effects of aspect ratio on range and performance are presented. The rotor was designed for a total-pressure ratio of 1.53, an efficiency of 0.898, and a weight flow of 67.76 pounds per second.

  13. Flow visualization study in high aspect ratio cooling channels for rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1993-01-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  14. Modular Coil Design for the Ultra-low Aspect Ratio Quasi-axially Symmetric Stellarator MHH2

    SciTech Connect

    Ku LP, the ARIES-CS Team

    2005-09-27

    A family of two field-period quasi-axisymmetric stellarators generally known as MHH2 with aspect ratios of only {approx}2.5 was found. These configurations have low field ripples and excellent confinement of {alpha} particles. This discovery raises the hope that a compact stellarator reactor may eventually be designed with the property of tokamak transport and stellarator stability. In this paper we demonstrate that smooth modular coils may be designed for this family of configurations that not only yield plasmas with good physics properties but also possess engineering properties desirable for compact power producing reactors. We show designs featuring 16 modular coils with ratios of major radius to minimum coil-plasma separation {approx}5.5, major radius to minimum coil-coil separation {approx}10 and the maximum field in coil bodies to the field on axis {approx}2 for 0.2 m{sup 2} conductors. These coils is expected to allow plasmas operated at 5% {beta} with {alpha} energy loss < 10% for a reactor of major radius <9 m at 5 T.

  15. Distribution over pore radii in random and isotropic systems of polydisperse rods with finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik P.

    2016-06-01

    Excluded-volume arguments are applied toward modeling the pore-size distribution in systems of randomly arranged cylindrical rods with finite and nonuniform aspect ratios. An explicit expression for the pore-size distribution is obtained by way of an analogy to a hypothetical system of fully penetrable objects, through a mapping that is designed to preserve the volume fraction occupied by the particle cores and the specific surface area. Results are presented for the mean value and standard deviation of the pore radius as functions of the rod aspect ratio, volume fraction, and polydispersity (degree of nonuniformity in the aspect ratios of the particles).

  16. Aspect ratio control and sensing applications for a slot waveguide with a multimode stub

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Peng, Yongyi; Li, Boxun; Chen, Zhiquan; Xu, Hui; Zheng, Mingfei; Li, Hongjian

    2016-07-01

    We report the aspect ratio control and sensing applications for metal–dielectric–metal (MDM) slot waveguides with a multimode stub. By adjusting the aspect ratio r = h/w of the stub, five types of optical evolutions in various aspect ratio r ranges are defined. We can realize a single or double plasmon-induced transparency (PIT) as well as Fano resonances. In addition, the figure of merit (FOM), which can describe the sensing performance of structures, is discussed in our paper. We can find up to three FOM peaks in our proposed structure. These findings provide guidance for the fundamental research of integrated plasmonic sensors.

  17. High aspect ratio composite structures with 48.5% thermal neutron detection efficiency

    SciTech Connect

    Shao, Q.; Voss, L. F.; Conway, A. M.; Nikolic, R. J.; Dar, M. A.; Cheung, C. L.

    2013-02-11

    The pillar structured thermal neutron detector is based on the combination of high aspect ratio silicon p-i-n pillars surrounded by the neutron converter material {sup 10}B. By etching high aspect ratio pillar structures into silicon, the result is a device that efficiently absorbs the thermal neutron flux by accommodating a large volume fraction of {sup 10}B within the silicon pillar array. Here, we report a thermal neutron detection efficiency of 48.5% using a 50 {mu}m pillar array with an aspect ratio of 25:1.

  18. Effect of tip vortices on flow over NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Genç, Mustafa Serdar; Özkan, Gökhan; Hakan Açikel, Halil; Sadık Kiriş, Mehmet; Yildiz, Rahime

    2016-03-01

    Effect of tip vortices on flow and laminar separation bubble over NACA4412 aerofoil at low Reynolds numbers and different angles of attack was investigated in detail by performing force and flow visualization via smoke wire technique. Experiments have been done at Reynolds number of 50000 and the wing model of aspect-ratio was 1 and 3, respectively. From the experimental results, the flow visualization results showed that tip vortices effect on the laminar separation bubble and the bubble reduces over the wing with low aspect ratio as the angle of attack increased. Moreover, it was noticed that stall angles decreased as aspect-ratio increased at the same Reynolds number.

  19. Accessibility of second regions of stability in tokamaks

    SciTech Connect

    Manickam, J.

    1985-12-01

    Second regions of stability to the ideal ballooning modes have been shown to exist in large-aspect-ratio circular and small-aspect-ratio bean-shaped tokamaks. We report on the existence of these second stability regions in finite-aspect-ratio dee-shaped tokamaks. We also report on the discovery of a second-stable region with respect to the n = 1 external kink mode in a bean-shaped plasma. The role of the shear and current profile in determining these regions of parameter space are discussed. 13 refs., 6 figs.

  20. Template-mediated Synthesis of Hollow Microporous Organic Nanorods with Tunable Aspect Ratio

    NASA Astrophysics Data System (ADS)

    Li, Qingyin; Jin, Shangbin; Tan, Bien

    2016-08-01

    Hollow microporous organic nanorods (HMORs) with hypercrosslinked polymer (HCPs) shells were synthesized through emulsion polymerization followed by hypercrosslinking. The HMORs have tunable aspect ratios, high BET surface areas and monodispersed morphologies, showing good performance in gas adsorpion.

  1. Development of a Prediction Scheme for High Aspect-Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. This jet sheet is essentially a high aspect-ratio rectangular jet. A recent study on high aspect-ratio jet noise was performed on a nozzle with aspect-ratios ranging from 100 to 3,000. In addition to the acoustic data, fluid dynamic measurements were made as well. This paper uses the results of these two studies and attempts to develop a prediction scheme for high aspect-ratio jet noise

  2. Template-mediated Synthesis of Hollow Microporous Organic Nanorods with Tunable Aspect Ratio

    PubMed Central

    Li, Qingyin; Jin, Shangbin; Tan, Bien

    2016-01-01

    Hollow microporous organic nanorods (HMORs) with hypercrosslinked polymer (HCPs) shells were synthesized through emulsion polymerization followed by hypercrosslinking. The HMORs have tunable aspect ratios, high BET surface areas and monodispersed morphologies, showing good performance in gas adsorpion. PMID:27506370

  3. Approximate quasi-isodynamicity at a finite aspect ratio in a stellarator vacuum magnetic field

    SciTech Connect

    Mikhailov, M. I.; Nührenberg, J. Zille, R.

    2015-12-15

    A stellarator vacuum field is found in which, at a finite aspect ratio (A ≈ 40), the contours of the second adiabatic invariant of nearly all particles reflected inside that surface are poloidally closed.

  4. Aspect ratio dependent fluorescence quenching of eosin Y by gold nanorods.

    PubMed

    Weng, Guojun; Li, Jianjun; Zhang, Li; Zhao, Junwu

    2014-06-01

    Gold nanorods of different aspect ratios had been synthesized using seed mediated growth method. The formed gold nanorods had been characterized by the absorption and transmission electron microscopy (TEM) measurements. The obtained gold nanorods were used to study the quenched effect on fluorescence of Eosin Y. Experimental results revealed that Eosin Y molecules adsorbed on the metallic surfaces, suffering strong quenching of their fluorescence and the quenching efficiency was different for different aspect ratio. Using dielectric coated gold nanorods model, the probable mechanism of aspect ratio dependent quenching efficiency was obtained by numerical calculation based on fluorescence resonance energy transfer and quasi-static theory. The calculation results showed that the non-monotonic changing of fluorescence quenching was attributed to competing effects of aspect ratio and the dielectric constant of coated shell on surface plasmon resonance. PMID:24738353

  5. Tractor tire aspect ratio effects on soil bulk density and cone index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 580/70R38 tractor drive tire with an aspect ratio of 0.756 and a 650/75R32 tire with an aspect ratio of 0.804 were operated at two dynamic loads and two inflation pressures on a sandy loam and a clay loam with loose soil above a hardpan. Soil bulk density and cone index were measured just above t...

  6. Fidelity of reduced and realistic electron mass ratio multi-scale gyrokinetic simulations of tokamak discharges

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2015-06-01

    The first study using multi-scale (coupled ITG/TEM/ETG) gyrokinetic simulations at both reduced and realistic electron mass ratios, μ = (mD/me).5 = 20.0, 40.0 and 60.0, has been performed on a standard, Alcator C-Mod, L-mode discharge. Ion-scale (kθρs  ∼  1.0) and multi-scale (up to kθρe  ∼  0.8) gyrokinetic simulations are compared at different simulated mass ratios to investigate the fidelity of reduced electron mass ratio, multi-scale simulation through direct comparison with realistic mass ratio, multi-scale simulation. Detailed description of both the numerical setup and the turbulent scales required to obtain meaningful coupled ITG/TEM/ETG simulation is presented. Significant high-k driven (TEM/ETG) heat flux is found to exist at scales of approximately kθρe  ∼  0.1 at all mass ratios but can only be obtained by simulation capturing turbulence up to kθρe  ∼  1.0. At slightly reduced mass ratio, μ = 40.0, qualitative agreement with realistic mass simulation can be obtained in the studied discharge, consistent with intuition obtained from linear stability analysis. However, realistic electron mass is required for any robust quantitative comparison with experimental heat fluxes for the condition studied, as significant differences are observed at even slightly reduced electron mass ratio. The details of this numerical study are presented to provide a basis for future studies utilizing coupled ITG/TEM/ETG gyrokinetic simulation.

  7. A micro powder injection molding apparatus for high aspect ratio metal micro-structure production

    NASA Astrophysics Data System (ADS)

    Fu, Gang; Tor, Shubeng; Loh, Ngiaphiang; Tay, Beeyen; Hardt, David E.

    2007-09-01

    A new variotherm molding apparatus is presented in this paper for the fabrication of high aspect ratio 316L stainless steel micro-structures using micro powder injection molding (μPIM) technology. The molding apparatus prototype includes an injection mold in which a silicon insert with an array of 24 × 24 (576) microcavities is mounted, a set of rapid tempering systems for the mold and a set of vacuum systems. The key advantage of this molding apparatus lies in the real-time monitoring and rapid adjustment of the mold cavity temperature during injection molding and part ejection, which makes molding and demolding of high aspect ratio green micro-structures possible. For example, incomplete filling occurs while injection molding micro-structures of 60 µm × height 191 µm with an aspect ratio of 3.2 using a conventional mold. In comparison, smaller micro-structures with higher aspect ratio are produced successfully in the case of the new molding apparatus, e.g. micro-structures of 40 µm × height 174 µm with an aspect ratio of 4.35 and 20 µm × height 160 µm with an aspect ratio of 8 were molded successfully.

  8. Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods.

    PubMed

    Leelavathi, A; Madras, Giridhar; Ravishankar, N

    2013-07-14

    Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn(2+) sites is higher on the {1010} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment. PMID:23694926

  9. Variable aspect ratio method in the Xu-White model for shear-wave velocity estimation

    NASA Astrophysics Data System (ADS)

    Bai, Jun-Yu; Yue, Cheng-Qi; Liang, Yi-Qiang; Song, Zhi-Xiang; Ling, Su; Zhang, Yang; Wu, Wei

    2013-06-01

    Shear-wave velocity logs are useful for various seismic interpretation applications, including bright spot analyses, amplitude-versus-offset analyses and multicomponent seismic interpretations. This paper presents a method for predicting the shear-wave velocity of argillaceous sandstone from conventional log data and experimental data, based on Gassmann's equations and the Xu-White model. This variable aspect ratio method takes into account all the influences of the matrix nature, shale content, porosity size and pore geometry, and the properties of pore fluid of argillaceous sandstone, replacing the fixed aspect ratio assumption in the conventional Xu-White model. To achieve this, we first use the Xu-White model to derive the bulk and shear modulus of dry rock in a sand-clay mixture. Secondly, we use Gassmann's equations to calculate the fluid-saturated elastic properties, including compressional and shear-wave velocities. Finally, we use the variable aspect ratio method to estimate the shear-wave velocity. The numerical results indicate that the variable aspect ratio method provides an important improvement in the application of the Xu-White model for sand-clay mixtures and allows for a variable aspect ratio log to be introduced into the Xu-White model instead of the constant aspect ratio assumption. This method shows a significant improvement in predicting velocities over the conventional Xu-White model.

  10. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Genç, Mustafa Serdar; Hakan Açikel, Halil; Demir, Hacımurat; Özden, Mustafa; Çağdaş, Mücahit; Isabekov, Iliasbek

    2016-03-01

    In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3) is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC) is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  11. Vortex formation and drag on low aspect ratio, normal flat plates

    NASA Astrophysics Data System (ADS)

    Ringuette, Matthew James

    Experiments were done to investigate the role of vortex formation in the drag force generation of low aspect ratio, normal flat plates starting from rest. This very simplified case is a first, fundamental step toward understanding the more complicated flow of hovering flight, which relies primarily on drag for propulsion. The relative importance of the plate's free end, or tip, with varying aspect ratio was also studied. Identifying the relationship among aspect ratio, vortex formation, and drag force can provide insight into the wing aspect ratios and kinematics found nature, with the eventual goal of designing man-made flapping wing micro air vehicles. The experiments were carried out using flat plate models in a towing tank at a moderate Reynolds number of 3000. Two aspect ratios, 6 and 2, were considered, the latter in order to have a highly tip-dominated case. A force balance measured the time-varying drag, and multiple, perpendicular sections of the flow velocity were measured quantitatively using digital particle image velocimetry. Vorticity fields were calculated from the velocity data, and features in the drag force for different aspect ratios were related to the vortex dynamics. Finally, since the flow is highly three-dimensional, dye flow visualization was done to characterize its structure and to augment the two-dimensional digital particle image velocimetry data.

  12. Neoclassical transport in high [beta] tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  13. Static investigation of circular-to-rectangular transition ducts for high-aspect-ratio nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Burley, J. R., II; Bangert, L. S.; Carlson, J. R.

    1986-01-01

    An investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a high-aspect-ratio nonaxisymmetric nozzle with five circular-to-rectangular transition ducts of varying design. Nozzle pressure ratio was varied from 1.5 to 5.3, and nozzle performance parameters were recorded.

  14. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  15. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    PubMed

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  16. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  17. Size Dependent Cellular Uptake of Rod-like Bionanoparticles with Different Aspect Ratios.

    PubMed

    Liu, Xiangxiang; Wu, Fengchi; Tian, Ye; Wu, Man; Zhou, Quan; Jiang, Shidong; Niu, Zhongwei

    2016-01-01

    Understanding the cellular internalization mechanism of nanoparticles is essential to study their biological fate. Especially, due to the anisotropic properties, rod-like nanoparticles have attracted growing interest for the enhanced internalization efficiency with respect to spherical nanoparticles. Here, to elucidate the effect of aspect ratio of rod-like nanoparticles on cellular uptake, tobacco mosaic virus (TMV), a typical rod-like bionanoparticle, is developed as a model. Nanorods with different aspect ratios can be obtained by ultrasound treatment and sucrose density gradient centrifugation. By incubating with epithelial and endothelial cells, we found that the rod-like bionanoparticles with various aspect ratios had different internalization pathways in different cell lines: microtubules transport in HeLa and clathrin-mediated uptake in HUVEC for TMV4 and TMV8; caveolae-mediated pathway and microtubules transport in HeLa and HUVEC for TMV17. Differently from most nanoparticles, for all the three TMV nano-rods with different aspect ratios, macropinocytosis takes no effect on the internalization in both cell types. This work provides a fundamental understanding of the influence of aspect ratio on cellular uptake decoupled from charge and material composition. PMID:27080246

  18. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Nishizawa, S.; Yashiro, H.; Sato, Y.; Miyamoto, Y.; Tomita, H.

    2015-10-01

    We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL) in a large-eddy simulation (LES). In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical -5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  19. Size Dependent Cellular Uptake of Rod-like Bionanoparticles with Different Aspect Ratios

    PubMed Central

    Liu, Xiangxiang; Wu, Fengchi; Tian, Ye; Wu, Man; Zhou, Quan; Jiang, Shidong; Niu, Zhongwei

    2016-01-01

    Understanding the cellular internalization mechanism of nanoparticles is essential to study their biological fate. Especially, due to the anisotropic properties, rod-like nanoparticles have attracted growing interest for the enhanced internalization efficiency with respect to spherical nanoparticles. Here, to elucidate the effect of aspect ratio of rod-like nanoparticles on cellular uptake, tobacco mosaic virus (TMV), a typical rod-like bionanoparticle, is developed as a model. Nanorods with different aspect ratios can be obtained by ultrasound treatment and sucrose density gradient centrifugation. By incubating with epithelial and endothelial cells, we found that the rod-like bionanoparticles with various aspect ratios had different internalization pathways in different cell lines: microtubules transport in HeLa and clathrin-mediated uptake in HUVEC for TMV4 and TMV8; caveolae-mediated pathway and microtubules transport in HeLa and HUVEC for TMV17. Differently from most nanoparticles, for all the three TMV nano-rods with different aspect ratios, macropinocytosis takes no effect on the internalization in both cell types. This work provides a fundamental understanding of the influence of aspect ratio on cellular uptake decoupled from charge and material composition. PMID:27080246

  20. Effects of Aspect Ratio on Water Immersion into Deep Silica Nanoholes.

    PubMed

    Zheng, Jing; Zhang, Junqiao; Tan, Lu; Li, Debing; Huang, Liangliang; Wang, Qi; Liu, Yingchun

    2016-08-30

    Understanding the influence of aspect ratio on water immersion into silica nanoholes is of significant importance to the etching process of semiconductor fabrication and other water immersion-related physical and biological processes. In this work, the processes of water immersion into silica nanoholes with different height/width aspect ratios (ϕ = 0.87, 1.92, 2.97, 4.01, 5.06) and different numbers of water molecules (N = 9986, 19972, 29958, 39944) were studied by molecular dynamics simulations. A comprehensive analysis has been conducted about the detailed process of water immersion and the influence of aspect ratios on water immersion rates. Five distinguishable stages were identified for the immersion process with all studied models. The results reveal that water can easily immerse into the silica nanoholes with larger ϕ and smaller N. The calculation also suggests that aspect ratios have a greater effect on water immersion rates for larger N numbers. The mechanism of the water immersion process is discussed in this work. We also propose a mathematical model to correlate the complete water immersion process for different aspect ratios. PMID:27506253

  1. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles.

    PubMed

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-06-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq(-1) and an optical transmittance of 85.4%. PMID:27187802

  2. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  3. Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio.

    PubMed

    Polverino, Giovanni; Porfiri, Maurizio

    2013-08-01

    In this study, we explore the feasibility of using bioinspired robotics to influence the behaviour of mosquitofish (Gambusia affinis), a social freshwater fish species that is extensively studied for the ecological issues associated with its diffusion in non-native environments. Specifically, in a dichotomous choice test, we investigate the behavioural response of small shoals of mosquitofish to a robotic fish inspired by mosquitofish in its colouration, shape, aspect ratio, and locomotion. Our results indicate that the swimming depth and the aspect ratio of the robotic fish are both determinants of mosquitofish preference. In particular, we find that mosquitofish are never attracted by a robotic fish whose colouration and shape are inspired by live subjects and that the degree of repulsion varies as a function of the swimming depth and the aspect ratio. PMID:23684918

  4. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Rivera-Fernández, Sara; de La Fuente, Jesús M.

    2015-04-01

    High aspect ratio magnetic nanomaterials possess anisotropic properties that make them attractive for biological applications. Their elongated shape enables multivalent interactions with receptors through the introduction of multiple targeting units on their surface, thus enhancing cell internalization. Moreover, due to their magnetic anisotropy, high aspect ratio nanomaterials can outperform their spherical analogues as contrast agents for magnetic resonance imaging (MRI) applications. In this review, we first describe the two main synthetic routes for the preparation of anisotropic magnetic nanomaterials: (i) direct synthesis (in which the anisotropic growth is directed by tuning the reaction conditions or by using templates) and (ii) assembly methods (in which the high aspect ratio is achieved by assembly from individual building blocks). We then provide an overview of the biomedical applications of anisotropic magnetic nanomaterials: magnetic separation and detection, targeted delivery and magnetic resonance imaging.

  5. On the aspect ratio of Rayleigh-Benard convection cells. [in earth mantle

    NASA Technical Reports Server (NTRS)

    Christensen, Ulrich; Yuen, David

    1988-01-01

    Numerical model calculations of isoviscous bottom-heated convection in a two-dimensional box with aspect ratio twelve are reported. The aim was to determine the preferred aspect ratio of convection cells. Time-dependent runs were started from two widely different initial conditions. At Rayleigh numbers in the range 10 to the 5th to 10 to the 6th about eight cells with a mean aspect ratio of 1.5 formed eventually in each case. Thus neither the preference for approximately square cells nor the stability of very elongated cells could be confirmed. The existence of large-scale convective structures in the earth's mantle must be due to deviations from the simple Rayleigh-Benard model of convection.

  6. SML resist processing for high-aspect-ratio and high-sensitivity electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mohammad, Mohammad Ali; Dew, Steven K.; Stepanova, Maria

    2013-03-01

    A detailed process characterization of SML electron beam resist for high-aspect-ratio nanopatterning at high sensitivity is presented. SML contrast curves were generated for methyl isobutyl ketone (MIBK), MIBK/isopropyl alcohol (IPA) (1:3), IPA/water (7:3), n-amyl acetate, xylene, and xylene/methanol (3:1) developers. Using IPA/water developer, the sensitivity of SML was improved considerably and found to be comparable to benchmark polymethylmethacrylate (PMMA) resist without affecting the aspect ratio performance. Employing 30-keV exposures and ultrasonic IPA/water development, an aspect ratio of 9:1 in 50-nm half-pitch dense grating patterns was achieved representing a greater than two times improvement over PMMA. Through demonstration of 25-nm lift-off features, the pattern transfer performance of SML is also addressed.

  7. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    PubMed

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  8. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout

    PubMed Central

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  9. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    PubMed

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications. PMID:19235805

  10. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  11. ECH tokamak

    SciTech Connect

    Firestone, M.A.; Mau, T.K.; Conn, R.W.

    1985-04-01

    A small steady-state tokamak capable of producing power in the 100 to 300 MWe range and relying on electron cyclotron RF heating (ECH) for both heating and current drive is described. Working in the first MHD stability regime for tokamaks, the approach adheres to the recently discovered maximum beta limit. An appropriate figure of merit is the ratio of the fusion power to absorbed RF power. Efficient devices are feasible at both small and large values of fusion power, thereby pointing to a development path for an attractive commercial fusion reactor.

  12. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Xue, Yanan; Yu, Pengfei; Zhang, Bing; Wang, Limin; Liu, Riping

    2014-01-01

    ZnO, aside from TiO2, has been considered as a promising material for purification and disinfection of water and air, and remediation of hazardous waste, owing to its high activity, environment-friendly feature and lower cost. However, their poor visible light utilization greatly limited their practical applications. Herein, we demonstrate the fabrication of different aspect ratios of the ZnO nanorods with surface defects by mechanical-assisted thermal decomposition method. The experiments revealed that ZnO nanorods with higher aspect ratio and surface defects show significantly higher photocatalytic performances. PMID:24699790

  13. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for

  14. Simple Systematic Synthesis of Periodic Mesoporous Organosilica Nanoparticles with Adjustable Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Mohanty, Paritosh; Landskron, Kai

    2009-12-01

    One-dimensional periodic mesoporous organosilica (PMO) nanoparticles with tunable aspect ratios are obtained from a chain-type molecular precursor octaethoxy-1,3,5-trisilapentane. The aspect ratio can be tuned from 2:1 to >20:1 simply by variation in the precursor concentration in acidic aqueous solutions containing constant amounts of triblock copolymer Pluronic P123. The mesochannels are highly ordered and are oriented parallel to the longitudinal axis of the PMO particles. No significant Si-C bond cleavage occurs during the synthesis according to 29Si MAS NMR. The materials exhibit surface areas between 181 and 936 m2 g-1.

  15. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  16. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-09-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites.

  17. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser.

    PubMed

    Chervinskii, S; Drevinskas, R; Karpov, D V; Beresna, M; Lipovskii, A A; Svirko, Yu P; Kazansky, P G

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  18. Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma

    SciTech Connect

    N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White

    2003-06-27

    New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.

  19. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Qin, Jiaqian; Xue, Yanan; Yu, Pengfei; Zhang, Bing; Wang, Limin; Liu, Riping

    2014-04-01

    ZnO, aside from TiO2, has been considered as a promising material for purification and disinfection of water and air, and remediation of hazardous waste, owing to its high activity, environment-friendly feature and lower cost. However, their poor visible light utilization greatly limited their practical applications. Herein, we demonstrate the fabrication of different aspect ratios of the ZnO nanorods with surface defects by mechanical-assisted thermal decomposition method. The experiments revealed that ZnO nanorods with higher aspect ratio and surface defects show significantly higher photocatalytic performances.

  20. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  1. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  2. The neoclassical angular momentum flux in the large aspect ratio limit

    SciTech Connect

    Wong, S.K.; Chan, V.S.

    2005-09-15

    The small rotation version of the neoclassical angular momentum flux is calculated in the large aspect ratio limit and in the banana regime. The method relies on solving an adjoint equation to the customary linearized drift kinetic equation, circumventing the difficulty of obtaining the ion distribution function that is second order in the ratio of poloidal gyroradius over plasma scale length. The result differs significantly from a long-standing result for circular cross-section flux surfaces.

  3. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions

    NASA Astrophysics Data System (ADS)

    Qaid, Adeb; Ossen, Dilshan R.

    2015-06-01

    Asymmetrical street aspect ratios, i.e. different height-to-width (H1/W-H2/W) ratios, have not received much attention in the study of urban climates. Putrajaya Boulevard (northeast to southwest orientation) in Malaysia was selected to study the influence of six asymmetrical aspect ratio scenarios on the street microclimate using the Envi-met three-dimensional microclimate model (V3.1 Beta). Putrajaya Boulevard suffers from high surface and air temperature during the day due to the orientation, the low aspect ratio and the wide sky view factor. These issues are a common dilemma in many boulevards. Further, low and high symmetrical streets are incompatible with tropical regions as they offer conflicting properties during the day and at night. These scenarios are examined, therefore, to find asymmetrical streets which are able to reduce the impact of the day microclimate on boulevards, and as an alternative strategy fulfilling tropical day and night climatic conditions. Asymmetrical streets are better than low symmetrical streets in enhancing wind flow and blocking solar radiation, when tall buildings confront winds direction or solar altitudes. Therefore, mitigating heat islands or improving microclimates in asymmetrical streets based on tall buildings position which captures wind or caste shades. In northeast to southwest direction, aspect ratios of 0.8-2 reduce the morning microclimate and night heat islands yet the negative effects during the day are greater than the positive effects in the night. An aspect ratio of 2-0.8 reduces the temperature of surfaces by 10 to 14 °C and the air by 4.7 °C, recommended for enhancing boulevard microclimates and mitigating tropical heat islands.

  4. Selecting the aspect ratio of a scatter plot based on its delaunay triangulation.

    PubMed

    Fink, Martin; Haunert, Jan-Henrik; Spoerhase, Joachim; Wolff, Alexander

    2013-12-01

    Scatter plots are diagrams that visualize two-dimensional data as sets of points in the plane. They allow users to detect correlations and clusters in the data. Whether or not a user can accomplish these tasks highly depends on the aspect ratio selected for the plot, i.e., the ratio between the horizontal and the vertical extent of the diagram. We argue that an aspect ratio is good if the Delaunay triangulation of the scatter plot at this aspect ratio has some nice geometric property, e.g., a large minimum angle or a small total edge length. More precisely, we consider the following optimization problem. Given a set Q of points in the plane, find a scale factor s such that scaling the x-coordinates of the points in Q by s and the y-coordinates by 1=s yields a point set P(s) that optimizes a property of the Delaunay triangulation of P(s), over all choices of s. We present an algorithm that solves this problem efficiently and demonstrate its usefulness on real-world instances. Moreover, we discuss an empirical test in which we asked 64 participants to choose the aspect ratios of 18 scatter plots. We tested six different quality measures that our algorithm can optimize. In conclusion, minimizing the total edge length and minimizing what we call the 'uncompactness' of the triangles of the Delaunay triangulation yielded the aspect ratios that were most similar to those chosen by the participants in the test. PMID:24051799

  5. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions.

    PubMed

    Qaid, Adeb; Ossen, Dilshan R

    2015-06-01

    Asymmetrical street aspect ratios, i.e. different height-to-width (H1/W-H2/W) ratios, have not received much attention in the study of urban climates. Putrajaya Boulevard (northeast to southwest orientation) in Malaysia was selected to study the influence of six asymmetrical aspect ratio scenarios on the street microclimate using the Envi-met three-dimensional microclimate model (V3.1 Beta). Putrajaya Boulevard suffers from high surface and air temperature during the day due to the orientation, the low aspect ratio and the wide sky view factor. These issues are a common dilemma in many boulevards. Further, low and high symmetrical streets are incompatible with tropical regions as they offer conflicting properties during the day and at night. These scenarios are examined, therefore, to find asymmetrical streets which are able to reduce the impact of the day microclimate on boulevards, and as an alternative strategy fulfilling tropical day and night climatic conditions. Asymmetrical streets are better than low symmetrical streets in enhancing wind flow and blocking solar radiation, when tall buildings confront winds direction or solar altitudes. Therefore, mitigating heat islands or improving microclimates in asymmetrical streets based on tall buildings position which captures wind or caste shades. In northeast to southwest direction, aspect ratios of 0.8-2 reduce the morning microclimate and night heat islands yet the negative effects during the day are greater than the positive effects in the night. An aspect ratio of 2-0.8 reduces the temperature of surfaces by 10 to 14 °C and the air by 4.7 °C, recommended for enhancing boulevard microclimates and mitigating tropical heat islands. PMID:25108376

  6. Friction factors and heat transfer coefficients in turbulated cooling passages of different aspect ratios. I - Experimental results

    NASA Astrophysics Data System (ADS)

    Taslim, M. E.; Spring, S. D.

    1987-06-01

    In advanced turbine airfoil cooling designs where multiple-pass cooling circuits are used, a range of cooling passage aspect ratios (height/width) are encountered. The objective of this experimental investigation was to determine the effect that increasing aspect ratios have on friction factors and Nusselt numbers in internal cooling passages with rib-roughened (turbulated) surfaces. Aspect ratios ranging from 0.5 to 3.5 were tested over a Reynolds number range of 30,000 to 190,000. Each aspect ratio was tested at three different turbulator-height/hydraulic-diameter ratios and at a constant turbulator-height/pitch ratio of 0.10.

  7. Computer simulation of transport driven current in tokamaks

    NASA Astrophysics Data System (ADS)

    Nunan, W. J.; Dawson, J. M.

    1994-09-01

    We have investigated transport driven current in tokamaks via 2+1/2 dimensional, electromagnetic, particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio, but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that a centrally fueled and heated tokamak may sustain its toroidal current, even without the ``seed current'' which the neoclassical bootstrap theory requires.

  8. Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio.

    PubMed

    Noh, Jungchul; Yoon, Chang-Min; Jang, Jyongsik

    2016-05-15

    Polyaniline-coated mesoporous silica (PANI/mSiO2) materials with different aspect ratios (L/D=1, 5, and 10) were fabricated by a vapor deposition polymerization (VDP) method to investigate the geometric effect on electrorheological (ER) activity. The PANI/mSiO2 materials were dedoped by a facile NH4OH treatment to reduce the conductivity to a level appropriate for ER applications. Notably, the PANI/mSiO2-based ER fluids exhibited enhanced ER performance with increasing aspect ratio. In particular, the PANI/mSiO2 material with the highest aspect ratio manifested the highest ER activity, which was attributed to geometric effects on flow resistance and mechanical stability. Moreover, the ER materials with higher aspect ratios showed improved dielectric properties of large achievable polarizability and short relaxation time. Hence, the synergistic contribution of geometric effects and dielectric properties resulted in enhanced ER activity. Consequently, this study provides insight into an effective method to improve ER performance by simple manipulation of the particle geometry. PMID:26950396

  9. Out-of-plane Block Copolymer Microdomains in High Aspect-Ratio Templates

    NASA Astrophysics Data System (ADS)

    Gadelrab, Karim; Bai, Wubin; Alexander-Katz, Alfredo; Ross, Caroline

    Directed self-assembly DSA of block copolymers BCP proved to be a power approach for nanoscale fabrication. In addition, BCP with highly incompatible blocks (high Flory-Huggins interaction parameter (χ)) offer improvement in resolution of the BCP patterns. Unfortunately, high- χ BCPs usually exhibit large differences in surface affinity between the two blocks, forming a surface layer of the lower surface energy block and favoring in-plane orientation of lamellae or cylindrical microdomains. Here, we explore the conditions under which a high χ BCP creates an out-of-plane lamellar structure using high aspect ratio trenches with preferential walls. We employ self-consistent field theory SCFT and single mode expansion of Ginzburg-Landau free energy expression in the weak segregation limit to analytically construct a phase diagram of the in- and out-of-plane lamellae as a function of aspect ratio and surface affinity. It is found that achieving an out of plane lamellar structure necessitates a coupling between aspect ratio and surface functionality. In particular, strong side wall attraction results in out-of-plane lamellae when the trench aspect ratio is greater than unity. The results are validated for a polystyrene-block-polydimethylsiloxane (PS-b-PDMS) system within trenches made using interference lithography.

  10. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models. PMID:22760437

  11. Electrohydrodynamic pressure enhanced by free space charge for electrically induced structure formation with high aspect ratio.

    PubMed

    Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming

    2014-10-28

    Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant. PMID:25268463

  12. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  13. Fine and high-aspect-ratio screen printing combined with an imprinting technique

    NASA Astrophysics Data System (ADS)

    Hokari, Ryohei; Kurihara, Kazuma; Takada, Naoki; Matsumoto, Junichi; Matsumoto, Sohei; Hiroshima, Hiroshi

    2016-03-01

    The development of screen-printing techniques in order to obtain fine patterns with a high aspect ratio is an important task in the advancement of printed electronics. To this end, we propose a new printing concept in this study that consists of a combination of the screen-printing process with an imprinting technique. We show that fine and high-aspect-ratio patterns are realized by the capillary force of parallel-walled structures (PWSs) on the material to be printed. The PWS is fabricated by an imprinting method using an ultra-violet curable resin. In order to obtain finer patterns with a higher aspect ratio, printed patterns according to the pitch and the height of the PWSs were assessed. A printed pattern with a line width of 6.3 μm was obtained at a PWS, with a pitch of 20 μm and at a height of 110 μm, when a screen mask with a 100 μm-wide resist opening was used. The line width of the printed patterns was well controlled by the pitch of the PWSs. Moreover, an aspect ratio of up to 7.4 was achieved. Furthermore, we expect this screen-printing process to implement submicron patterns as well as more complex patterns, including curves and rings, through well-designed microstructures.

  14. Role of substrate aspect ratio on the robustness of capillary alignment

    NASA Astrophysics Data System (ADS)

    Broesch, David J.; Shiang, Edward; Frechette, Joelle

    2014-02-01

    Capillary forces associated with liquid bridges formed across solid substrates are routinely exploited to align and assemble micro- and nanoscale devices. The magnitude of these forces plays a critical role in minimizing substrate misalignment and therefore should be controlled for robust and reliable fabrication process. We explore through simulations and experiments the role of the substrate aspect ratio (L/W) on capillary restoring forces and torques. Simulations show that increasing the aspect ratio of the substrates increases the capillary torques and forces when the substrates are misaligned through either lateral or rotational perturbations. The effect of substrate area, perimeter, and liquid volume are also systematically explored to show that the increase in restoring torque is caused by an increase in aspect ratio. A simple theoretical model based on the geometry of the system shows excellent agreement with Surface Evolver simulations. Finally, parameters from experimental flip-chip devices [Josell, D. Wallace, W.E. Warren, J.A. Wheeler, D. Powell, A.C. J. Electron. Packag. 124, 227, (2002)] are used in our simulations to show how current capillary self-alignment schemes could benefit from using rectangular substrate shapes with aspect ratio greater than one.

  15. ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES

    SciTech Connect

    Pon, Andy; Johnstone, Doug; Toala, Jesus A.; Heitsch, Fabian E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca E-mail: e.vazquez@crya.unam.mx E-mail: fheitsch@unc.edu

    2012-09-10

    We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.

  16. Simplified lifting-surface theory for flaps on wings of low and moderate aspect ratios

    NASA Technical Reports Server (NTRS)

    Wick, B. H.

    1975-01-01

    A modification of the simplified lifting-surface theory for wings with deflected flaps is presented and evaluated. The modification is simple and straightforward in application, and is shown to overcome the deficiency in the theory that results in an underestimation of flap lift effectiveness for wings that have low or moderate aspect ratios.

  17. Role of substrate aspect ratio on the robustness of capillary alignment

    SciTech Connect

    Broesch, David J.; Shiang, Edward; Frechette, Joelle

    2014-02-24

    Capillary forces associated with liquid bridges formed across solid substrates are routinely exploited to align and assemble micro- and nanoscale devices. The magnitude of these forces plays a critical role in minimizing substrate misalignment and therefore should be controlled for robust and reliable fabrication process. We explore through simulations and experiments the role of the substrate aspect ratio (L/W) on capillary restoring forces and torques. Simulations show that increasing the aspect ratio of the substrates increases the capillary torques and forces when the substrates are misaligned through either lateral or rotational perturbations. The effect of substrate area, perimeter, and liquid volume are also systematically explored to show that the increase in restoring torque is caused by an increase in aspect ratio. A simple theoretical model based on the geometry of the system shows excellent agreement with Surface Evolver simulations. Finally, parameters from experimental flip-chip devices [Josell, D. Wallace, W.E. Warren, J.A. Wheeler, D. Powell, A.C. J. Electron. Packag. 124, 227, (2002)] are used in our simulations to show how current capillary self-alignment schemes could benefit from using rectangular substrate shapes with aspect ratio greater than one.

  18. Nonlinear aeroelastic analysis of high-aspect-ratio wings in low subsonic flow

    NASA Astrophysics Data System (ADS)

    Eskandary, K.; Dardel, M.; Pashaei, M. H.; Moosavi, A. K.

    2012-01-01

    In this study, aeroelastic characteristics of high-aspect-ratio wing models with structural nonlinearities in quasi-steady aerodynamics flows are investigated. The studied wing model is a cantilever wing with double bending and torsional vibrations and with large deflection ability in accordance with Hodges-Dowell wing model. This wing model is valid for long, straight and thin homogeneous isotropic beams. The aerodynamics model is based on quasi-steady aerodynamic which is valid for aerodynamic flows without wake, viscosity and compressibility effects. The effect of different parameters such as mass ratios and stiffness ratios on flutter and divergence velocities and limit cycle oscillation amplitudes are carefully studied.

  19. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  20. Selective aspect ratio of CNTs based on annealing temperature by TCVD method

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    Various aspect ratios of CNTs reported based on alteration of annealing temperature using thermal-chemical vapor deposition (TCVD) method. Also the growth dependent and independent parameters of the carbon nanotube (CNTs) array were studied as a function of synthesis method. The FESEM images indicate that the nanotubes are approximately perpendicular to the surface of the silicon substrate and form carbon nanotubes in different aspect ratios according to the applied annealing temperature. Furthermore, due to the optimized results it can be observed that, the mechanism of the CNTs growth is still present in the annealing step as well as deposition process and the most CNTs with crystalline aspect, produced in the annealing temperature, which was optimized at 700 - 900 ˚C. This result demonstrates that the growth rate, mass production, diameter, density, and crystallinity of CNT can be controlled by the annealing temperature.

  1. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    SciTech Connect

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor. 15 references.

  2. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost

  3. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1997-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. The design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop cooling can now be done in relatively short periods of time with multiple iterations.

  4. Geometry effects on aerodynamics performance of a low aspect ratio turbine nozzle

    NASA Astrophysics Data System (ADS)

    Chen, Naixing; Zhang, Hongwu; Xu, Yanji; Huang, Weiguang

    2004-11-01

    This paper describes the influence of some geometric parameters on aerodynamics performance of a low-aspect-ratio turbine blading designed by a novel method developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. This is a part of the study on aerodynamics optimization of turbomachinery. It follows the development of the basic ideas in the turbomachinery aerodynamics research project at the institute. The present paper concentrates mainly on the effects of geometry, such as stagger angle, leading and trailing edge thickness, maximum thickness and its location on adiabatic efficiency, total pressure ratio and mass flow rate. The study was performed and assessed for a low-aspect ratio turbine nozzle using 3D steady Reynolds-averaged N.S. solver. Using the knowledge of the flow physics analysis an optimized turbine nozzle was obtained.

  5. Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.

    1975-01-01

    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components.

  6. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    NASA Technical Reports Server (NTRS)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  7. Generation of liquid metal structures of high aspect ratio by application of an ac magnetic field

    NASA Astrophysics Data System (ADS)

    Andreev, Oleg; Pothérat, Alban; Thess, André

    2010-06-01

    We study how the shape of parts obtained through the LASER cladding process can be controlled by application of an ac magnetic field by means of two simple physical models: a numerical and an experimental one. More specifically, we show that straight metallic joints of high aspect ratio can be obtained by using inductors of triangular cross-section that concentrate electromagnetic forces at the bottom of the joint. The effect is first demonstrated on a numerical model for an infinitely long joint such as: we illustrate how the joint shape can be controlled by varying the inclination of the inductor and for a magnetic Bond number Bom=60 (which measures the ratio of electromagnetic to capillary forces), we obtain a joint of aspect ratio up to 7.2. We further find that inductor angles in the range 15°-25° lead to joint side faces that are close to vertical. These findings are then verified experimentally by placing a liquid metal drop in a purpose built inductor of triangular cross-section. We find a good agreement between the theoretical prediction of our two-dimensional model and the real three-dimensional drop. For the highest magnetic Bond number our generator could deliver, Bom=20.19, we achieved a drop aspect ratio of 2.73.

  8. Time-dependent large aspect-ratio thermal convection in the earth's mantle

    NASA Astrophysics Data System (ADS)

    Weinstein, Stuart A.; Olson, Peter L.; Yuen, David A.

    Numerical simulations of two-dimensional time-dependent thermal convection in a Boussinesq, isoviscous, infinite Prandtl number fluid with isothermal, stress-free boundaries have been performed in large aspect-ratio configurations, in which the fluid is heated from below as well as internally. The value of the basal heated Rayleigh number ranged from 16000 to 800 000 and the Rayleigh number based on internal heat generation was varied from zero to 4 500 000. Large aspect-ratio cells are found to exist, however, they are time-dependent even at small values of the Rayleigh number. In the absence of internal heating, the onset of time-dependence occurs as a regular oscillation in the flow characteristics (Nusselt number, kinetic energy), and is accompanied by the presence of boundary layer instabilities (BLI) which exist within a large aspect-ratio circulation. At high values of the Rayleigh number the BLI are powerful features which leave the confines of the boundary layer and strongly perturb the large aspect-ratio circulation giving the flow a multi-scale character. Convective mixing of these powerful BLI results in heterogeneity in the cell interior which plays a role in the excitation of new BLI and establishes a negative temperature gradient in the cell interior. We have developed a fluid loop model which gives a qualitative explanation for the variation of the onset of time-dependence with aspect-ratio. The addition of internal heating tends to destabilize the large aspect-ratio cell configuration. Multi-cellular states last longer and occur more frequently with increasing amounts of internal heating. These calculations shed new light on a variety of time-dependent phenomena in geodynamics such as subduction, back-arc spreading, intraplate deformation, and the average geotherm. Recently, Jeanloz and Morris proposed that the seismic inhomogeneity parameter () can be used to measure the importance of internal heating in mantle convection. However, our

  9. Some Divergence Characteristics of Low-Aspect-Ratio Wings at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Woolston, Donald S.; Gibson, Frederick W.; Cunningham, Herbert J.

    1960-01-01

    The problem of chordwise, or camber, divergence at transonic and supersonic speeds is treated with primary emphasis on slender delta wings having a cantilever support at the trailing edge. Experimental and analytical results are presented for four wing models having apex half-angles of 5 deg, 10 deg, 15 deg, and 20 deg. A Mach number range from 0.8 to 7.3 is covered. The analytical results include calculations based on small-aspect-ratio theory, lifting-surface theory, and strip theory. A closed-form solution of the equilibrium equation is given, which is based on low-aspect-ratio theory but which applies only to certain stiffness distributions. Also presented is an iterative procedure for use with other aerodynamic theories and with arbitrary stiffness distribution.

  10. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    PubMed

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography. PMID:27458188

  11. High-aspect-ratio line focus for an x-ray laser by a deformable mirror

    SciTech Connect

    Yoon, G.; Jitsuno, T.; Kato, Y.; Nakatsuka, M.

    1997-02-01

    A high-aspect-ratio line focus is required on a plane target in x-ray laser experiments for obtaining a high gain-length product. Inherent wave-front aberrations in line-focusing optics, which consist of a cylindrical lens and a spherical lens, are discussed with respect to beam diameter. The nonuniformity of the linewidth that is due to the aberrations is also calculated by the ABCD matrix method. A deformable mirror of a continuous plate type with a diameter of 185 mm provides an adequate wave-front distribution for compensating for the wave-front aberration. The wave-front control by the deformable mirror realizes a fine linewidth of 25 {mu}m and 18.2 mm long, corresponding to the aspect ratio of 728. The linewidth is three times the diffraction limit. The intensity distribution along the line focus is also improved. {copyright} 1997 Optical Society of America

  12. High-aspect-ratio line focus for an x-ray laser by a deformable mirror.

    PubMed

    Yoon, G Y; Jitsuno, T; Kato, Y; Nakatsuka, M

    1997-02-01

    A high-aspect-ratio line focus is required on a plane target in x-ray laser experiments for obtaining a high gain-length product. Inherent wave-front aberrations in line-focusing optics, which consist of a cylindrical lens and a spherical lens, are discussed with respect to beam diameter. The nonuniformity of the linewidth that is due to the aberrations is also calculated by the ABCD matrix method. A deformable mirror of a continuous plate type with a diameter of 185 mm provides an adequate wave-front distribution for compensating for the wave-front aberration. The wave-front control by the deformable mirror realizes a fine linewidth of 25 microm and 18.2 mm long, corresponding to the aspect ratio of 728. The linewidth is three times the diffraction limit. The intensity distribution along the line focus is also improved. PMID:18250748

  13. Fabrication of Very-High-Aspect-Ratio Microstructures in Complex Patterns by Photoelectrochemical Etching

    SciTech Connect

    Sun, GY; Zhao, X; Kim, CJ

    2012-12-01

    We have fabricated very-high-aspect-ratio (VHAR) silicon and metal microstructures in complex geometric patterns. The recently developed surfactant-added tetramethylammonium hydroxide etching allows the formation of V-grooves in any pattern, i.e., not limited by the crystal direction, on a silicon surface. As the resulting sharp pits allow very deep photoelectrochemical etching, VHAR silicon microstructures (4-mu m-wide and over-300-mu m-deep trenches) are successfully fabricated in complex patterns (spiral and zigzag demonstrated), overcoming the prevailing limitations of simple pores and straight trenches. Furthermore, by filling the VHAR silicon mold with nickel and removing the silicon, high-aspect-ratio metal microstructures of complex patterns are also obtained. These VHAR microstructures in complex patterns, which are structurally much stronger than the simple posts and straight plates, overcome the stiction problem even when densely populated. [2012-0042

  14. Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires

    SciTech Connect

    Liu, Nuo; Lu, Ning; Yao, Yong-Xin; Zhang, Gui-Ping; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-02-28

    Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role in modulating the electronic properties of the NWs.

  15. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  16. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography.

    SciTech Connect

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-08-13

    Soft x-ray lithography technology has been applied to fabrication of phase shifting Fresnel Zone Plate (FZP's) for hard x-rays. Effects of the exposure conditions, developing system, and electroplating process parameters on line width and aspect ratio have been analyzed. The process has been optimized and an aspect ratio of 11 has been achieved for 110 nm outermost zone width. SEM and AFM have been used for preliminary metrology of the FZPs. The FZP optical performance was characterized at 8 keV photon energy at the 2-ID-D beam line at the Advanced Photon Source. Focusing efficiencies of 23% for FZPs apertures to 100 microns and 18% for 150-micron-diameter apertures have been obtained. The parameters of the fabricated FZP are in good agreement with the predicted values.

  17. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Flow visualization is used to interrogate the wake structure produced by a rigid flat panel of aspect ratio (span/chord) 0.54 pitching in a free stream at a Strouhal number of 0.23. At such a low aspect ratio, the streamwise vorticity generated by the plate tends to dominate the formation of the wake. Nevertheless, the wake has the appearance of a three-dimensional von Kármán vortex street, as observed in a wide range of other experiments, and consists of horseshoe vortices of alternating sign shed twice per flapping cycle. The legs of each horseshoe interact with the two subsequent horseshoes in an opposite-sign, then like-sign interaction in which they become entrained. A detailed vortex skeleton model is proposed for the wake formation. PMID:19746198

  18. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.

    PubMed

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-05-24

    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials. PMID:27135862

  19. Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells

    NASA Technical Reports Server (NTRS)

    Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.

    1993-01-01

    The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions

  20. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams

    SciTech Connect

    Bhuyan, M. K.; Courvoisier, F.; Lacourt, P. A.; Jacquot, M.; Salut, R.; Furfaro, L.; Dudley, J. M.

    2010-08-23

    We report high aspect ratio nanochannel fabrication in glass using single-shot femtosecond Bessel beams of sub-3 {mu}J pulse energies at 800 nm. We obtain near-parallel nanochannels with diameters in the range 200-800 nm, and aspect ratios that can exceed 100. An array of 230 nm diameter channels with 1.6 {mu}m pitch illustrates the reproducibility of this approach and the potential for writing periodic structures. We also report proof-of-principle machining of a through-channel of 400 nm diameter in a 43 {mu}m thick membrane. These results represent a significant advance of femtosecond laser ablation technology into the nanometric regime.

  1. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis

    NASA Astrophysics Data System (ADS)

    Sainiemi, Lauri; Keskinen, Helmi; Aromaa, Mikko; Luosujärvi, Laura; Grigoras, Kestas; Kotiaho, Tapio; Mäkelä, Jyrki M.; Franssila, Sami

    2007-12-01

    In this study, a method for fabrication of high aspect ratio silicon nanopillars is presented. The method combines liquid flame spray production of silica nanoparticle agglomerates with cryogenic deep reactive ion etching. First, the nanoparticle agglomerates, having a diameter of about 100 nm, are deposited on a silicon wafer. Then, during the subsequent cryogenic deep reactive ion etching process, the particle agglomerates act as etch masks and silicon nanopillars are formed. Aspect ratios of up to 20:1 are demonstrated. The masking process is rapid, cheap and has the potential to be scaled up for large areas. Three other structured silicon surfaces were fabricated for comparison. All four surfaces were utilized as desorption/ionization on silicon (DIOS) sample plates. The mass spectrometry results indicate that nanopillar surfaces masked with the liquid flame spray technique are well suited as DIOS sample plates.

  4. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A.; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-01

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy.

  5. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.

    PubMed

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-16

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy. PMID:20562479

  6. Synthesis of High-Aspect-Ratio Nickel Nanowires by Dropping Method.

    PubMed

    Zhang, Jiaqi; Xiang, Wenfeng; Liu, Yuan; Hu, Minghao; Zhao, Kun

    2016-12-01

    A facile and high-yield route, dropping method, has been used to synthesize Ni nanowires (NWs) with a high aspect ratio. Compared to the conventional chemical reduction method, the diameter of Ni NWs prepared by the dropping method distinctively decreased and the surface roughness was improved. After optimizing the process parameters such as the Ni ion concentration and volume of the dropped NiCl2·6H2O solution, the diameter and aspect ratio of the NWs are 70 nm and ~600, respectively. The possible synthesized process of the dropping method was discussed. This work presents a preferred approach to fabricate high-quality one-dimensional magnetic materials which have potential applications in electrochemical devices, magnetic sensors, and catalytic agents. PMID:26925866

  7. Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells

    NASA Astrophysics Data System (ADS)

    Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.

    1993-07-01

    The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions

  8. Maintaining high-Q in an optical microresonator coated with high-aspect-ratio gold nanorods

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2013-10-01

    We report methods to coat fused-silica microresonators with solution-grown high-aspect-ratio (AR) gold nanorods (NRs). Microresonators coated using our method maintain an optical quality factor (Q) greater than 107 after coating. The more successful method involves silanization of the surface of the microresonator with 3-mercaptopropylmethyldimethoxysilane (MPMDMS), to enable the adhesion of gold NRs. The high-AR NR-coated microresonator combines the field enhancement of localized surface plasmon resonances with the cavity-enhanced evanescent components of high-Q whispering-gallery modes, making it useful for plasmonic sensing applications in the infrared. By coating with NRs having a different aspect ratio, the enhancement regime can be selected within a wide range of wavelengths.

  9. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  10. Alternative method for variable aspect ratio vias using a vortex mask

    NASA Astrophysics Data System (ADS)

    Schepis, Anthony R.; Levinson, Zac; Burbine, Andrew; Smith, Bruce W.

    2014-03-01

    Historically IC (integrated circuit) device scaling has bridged the gap between technology nodes. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Exemplifying this trend are aggressive reductions in memory cell sizes that have resulted in systems with diminishing area between bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area and complex aerial image. To accommodate these trends, semiconductor device design has shifted toward the implementation of elliptical contact features. This empowers designers to maximize the use of free device space, preserving contact area and effectively reducing the via dimension just along a single axis. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. Vortex masks, characterized by their helically induced propagation of light and consequent dark core, afford great potential for the patterning of such features when coupled with a high resolution negative tone resist system. This study investigates the integration of a vortex mask in a 193nm immersion (193i) lithography system and qualifies its ability to augment aspect ratio through feature density using aerial image vector simulation. It was found that vortex fabricated vias provide a distinct resolution advantage over traditionally patterned contact features employing a 6% attenuated phase shift mask (APM). 1:1 features were resolvable at 110nm pitch with a 38nm critical dimension (CD) and 110nm depth of focus (DOF) at 10% exposure latitude (EL). Furthermore, iterative source-mask optimization was executed as means to augment aspect ratio. By employing mask asymmetries and directionally biased sources aspect ratios ranging between 1:1 and 2:1 were achievable, however, this

  11. Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera)

    PubMed Central

    2015-01-01

    Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648

  12. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  13. Out-of-plane Block Copolymer Microdomains in High Aspect-Ratio Templates

    NASA Astrophysics Data System (ADS)

    Gadelrab, Karim; Bai, Wubin; Alexander-Katz, Alfredo; Ross, Caroline

    The use of directed self-assembly DSA of block copolymers BCP proved to be a power approach for nanoscale fabrication. It combines the ability of BCPs to self-assemble into nanoscale features with the use of lithographic tools to create controlled long range order. In addition, BCP with highly incompatible blocks (high Flory-Huggins interaction parameter (χ)) offer improvement in resolution, and line edge fluctuations of the self-assembled patterns. Unfortunately, high- χ BCPs usually exhibit large differences in surface affinity between the two blocks, leading to the formation of a surface layer of the lower surface energy block and favoring in-plane orientation of lamellae or cylindrical microdomains. Here, we explore the conditions under which a high χ BCP creates an out-of-plane lamellar structure using functionalized high aspect ratio trenches with preferential walls. We employ the free energy analysis of self-consistent field theory SCFT to identify whether an in-plane or out-of-plane structure is stable for a particular trench width. In addition, we employ the single mode expansion of Ginzburg-Landau free energy expression in the weak segregation limit to analytically construct a phase diagram of the in-plane and out-of-plane lamellae as a function of aspect ratio and surface attraction strength. It is found that achieving an out of plane lamellar structure necessitates a coupling between aspect ratio and surface functionality. In particular, strong side wall attraction results in out-of-plane lamellae when the trench aspect ratio is greater than unity. The results are validated for a lamellar forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) within trenches made using interference lithography.

  14. Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera).

    PubMed

    Hassall, Christopher

    2015-01-01

    Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648

  15. Nanoscale-Tipped High-Aspect-Ratio Vertical Microneedle Electrodes for Intracellular Recordings.

    PubMed

    Kubota, Yoshihiro; Oi, Hideo; Sawahata, Hirohito; Goryu, Akihiro; Ando, Yoriko; Numano, Rika; Ishida, Makoto; Kawano, Takeshi

    2016-06-01

    Intracellular recording nanoscale electrode devices provide the advantages of a high spatial resolution and high sensitivity. However, the length of nanowire/nanotube-based nanoelectrodes is currently limited to <10 μm long due to fabrication issues for high-aspect-ratio nanoelectrodes. The concept reported here can address the technological limitations by fabricating >100 μm long nanoscale-tipped electrodes, which show intracellular recording capability. PMID:27062044

  16. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality.

    PubMed

    Cao, Changyong; Chan, Hon Fai; Zang, Jianfeng; Leong, Kam W; Zhao, Xuanhe

    2014-03-19

    A simple method for fabricating high-aspect-ratio, hierarchical, and dynamically tunable surface patterns is invented by harnessing localized-ridge instabilities in gold nanofilms coated on elastomer substrates (a); a theoretical model to calculate the critical parameters (e.g., wavelength and amplitude) for designing the new patterns is developed (b); and novel applications of the patterns as super-hydrophobic coatings (c) and biomimetic cell-culture substrates (d) capable of on-demand tunability are demonstrated. PMID:24339233

  17. Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds.

    PubMed

    Driscoll, Tristan P; Nerurkar, Nandan L; Jacobs, Nathan T; Elliott, Dawn M; Mauck, Robert L

    2011-11-01

    Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2-4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that

  18. Convective heat transfer in a high aspect ratio minichannel heated on one side

    SciTech Connect

    Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2015-10-21

    Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusselt numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.

  19. Relation between self-organized criticality and grain aspect ratio in granular piles

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.

    2012-05-01

    We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.

  20. Evolution of Double-Diffusive Convection in Low-Aspect Ratio Containers

    NASA Astrophysics Data System (ADS)

    Pol, Suhas; Fernando, Harindra; Webb, Stephen

    2010-11-01

    Laboratory experiments and phenomenological modeling were undertaken to investigate the influence of container sidewalls on the evolution of diffusive layering in confined double-diffusive systems. Such flow configurations are common in engineering situations, including underground storage caverns of national strategic petroleum reserves. The laboratory flow configuration consisted of a linearly salt stratified fluid subjected to either heating from below or uniform heating from both the bottom and sidewalls. The growth of the mixed layers separated by diffusive interfaces was monitored using PIV and traversing temperature/conductivity probe techniques. The importance of aspect ratio effects was inferred from the bottom-layer growth measurements, which undergoes a transition upon onset of side-wall effects (aspect ratio ˜ 1). A second transition was noticed at an aspect ratio ˜ 2 when elongated eddies break down in to smaller sizes. The combined side and bottom wall heating case was strikingly different from the bottom heating case, wherein layers of approximately equal heights are generated rather rapidly in the former as a result of convective plumes rising along the sidewalls and their arrest by the background stable density gradient. Theoretical arguments were advanced to explain and parameterize experimental observations.

  1. Is aspect ratio sufficient to classify intra-aneurysmal hemodynamics- a parametric approach

    NASA Astrophysics Data System (ADS)

    Durka, Michael; Robertson, Anne

    2013-11-01

    Intracranial aneurysms are a vascular pathology in which a localized bulge is formed in the arterial wall, most often in a saccular shape. It is believed that the blood flow field within the aneurysm plays a critical role in the degradation of the wall. Aneurysm rupture has a high mortality risk. Since only a small fracture of aneurysms rupture, and common treatments have their own risks, it is desirable to identify a useful means of assessing rupture risk. Therefore, numerous groups have endeavored to identify a correlation between rupture risk and sac geometry or flow dynamics. However, no clinically useful parameters have been identified to date. Prior work has suggested that the aspect ratio (sac height/neck) could be useful for risk stratification due to its influence on the sac hemodynamics. In this work, we make of a previously developed parametric model of the aneurysm geometry to evaluate the influence of aspect ratio (sac height/sac neck) on flow dynamics, using computational fluid dynamics. In particular, we assess the influence of aspect ratio on the number of vortices in the aneurysm sac over a wide range of sac geometries. The conclusions obtained for the parametric model are then assessed in 20 clinical cases.

  2. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  3. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios.

    PubMed

    Das, Paramita; Malho, Jani-Markus; Rahimi, Khosrow; Schacher, Felix H; Wang, Baochun; Demco, Dan Eugen; Walther, Andreas

    2015-01-01

    Nacre-mimetics hold great promise as mechanical high-performance and functional materials. Here we demonstrate large progress of mechanical and functional properties of self-assembled polymer/nanoclay nacre-mimetics by using synthetic nanoclays with aspect ratios covering three orders in magnitude (25-3,500). We establish comprehensive relationships among structure formation, nanostructuration, deformation mechanisms and mechanical properties as a function of nanoclay aspect ratio, and by tuning the viscoelastic properties of the soft phase via hydration. Highly ordered, large-scale nacre-mimetics are obtained even for low aspect ratio nanoplatelets and show pronounced inelastic deformation with very high toughness, while those formed by ultralarge nanoplatelets exhibit superb stiffness and strength, previously only reachable for highly crosslinked materials. Regarding functionalities, we report formerly impossible glass-like transparency, and excellent gas barrier considerably exceeding earlier nacre-mimetics based on natural nanoclay. Our study enables rational design of future high-performance nacre-mimetic materials and opens avenues for ecofriendly, transparent, self-standing and strong advanced barrier materials. PMID:25601360

  4. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Malho, Jani-Markus; Rahimi, Khosrow; Schacher, Felix H.; Wang, Baochun; Demco, Dan Eugen; Walther, Andreas

    2015-01-01

    Nacre-mimetics hold great promise as mechanical high-performance and functional materials. Here we demonstrate large progress of mechanical and functional properties of self-assembled polymer/nanoclay nacre-mimetics by using synthetic nanoclays with aspect ratios covering three orders in magnitude (25-3,500). We establish comprehensive relationships among structure formation, nanostructuration, deformation mechanisms and mechanical properties as a function of nanoclay aspect ratio, and by tuning the viscoelastic properties of the soft phase via hydration. Highly ordered, large-scale nacre-mimetics are obtained even for low aspect ratio nanoplatelets and show pronounced inelastic deformation with very high toughness, while those formed by ultralarge nanoplatelets exhibit superb stiffness and strength, previously only reachable for highly crosslinked materials. Regarding functionalities, we report formerly impossible glass-like transparency, and excellent gas barrier considerably exceeding earlier nacre-mimetics based on natural nanoclay. Our study enables rational design of future high-performance nacre-mimetic materials and opens avenues for ecofriendly, transparent, self-standing and strong advanced barrier materials.

  5. A high-output-voltage micro-thermoelectric generator having high-aspect-ratio structure

    NASA Astrophysics Data System (ADS)

    Kouma, N.; Nishino, T.; Tsuboi, O.

    2013-11-01

    A high-output-voltage micro-thermoelectric generator (µTEG) has been developed by fabricating thermocouples having a high aspect ratio (HAR) with a high integration density. They have been made by a novel and simple fabrication method, in which thermoelectric nanopowders are filled in a photosensitive glass mold by using aerosol deposition. It is followed by hot isostatic pressing to improve the thermoelectric property. This method has the possibility of increasing the aspect ratio of thermocouples drastically while increasing their toughness. We have fabricated thermocouples with an aspect ratio of 3.5 and a high integration density of 620 TCs cm-2. Their Seebeck coefficient and electrical resistivity are 290 µV K-1 and 1.5 mΩ cm, respectively, which make them as good as the thermocouples fabricated by hot pressing. By using the method, we have fabricated a µTEG chip having an area of 25 mm2 in which 56 thermocouples are arranged in an area of 9 mm2. The µTEG reaches a thermal resistance of 17.1 K W-1, output voltage efficiency of 0.16 V cm-2 K-1 and output power efficiency of 9.3 µW cm-2 K-2. These HAR thermocouples have an advantage for energy harvesting from a human body because they can result in a high temperature difference because of their high thermal resistance.

  6. Malignant mesothelioma caused by childhood exposure to long-fiber low aspect ratio tremolite.

    PubMed

    Magee, F; Wright, J L; Chan, N; Lawson, L; Churg, A

    1986-01-01

    A 41-year-old man was found to have a malignant mesothelioma of the pleura. During childhood in Corsica, he had been exposed at home to chrysotile ore from the Canari mine. Analysis of lung mineral content revealed background levels of chrysotile but an elevated level of tremolite and actinolite asbestos. The latter had a geometric mean length of 3.7 microns, a value considerably longer than we have found for tremolite and actinolite from Quebec chrysotile miners but roughly the same as the mean length of amosite and crocidolite in workers with occupational amphibole exposure. No tremolite or actinolite fibers of length greater than 8 microns microns and width less than 0.25 micron were observed. The mean aspect ratio of the tremolite and actinolite fibers was 7, a value similar to that found in chrysotile miners with mesothelioma but considerably less than the mean aspect ratio of amosite and crocidolite from those with occupational exposure. These data suggest that long-fiber tremolite is a potential mesothelial carcinogen in humans, and that fiber length is more important than fiber aspect ratio in this regard. PMID:3017103

  7. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as

  8. Tokamak and RFP ignition requirements

    SciTech Connect

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.

  9. Effects of fluid behavior around low aspect ratio, low Reynolds number wings on aerodynamic stability

    NASA Astrophysics Data System (ADS)

    Shields, Matthew; Mohseni, Kamran

    2011-11-01

    The innovation of micro aerial vehicles (MAVs) has brought to attention the unique flow regime associated with low aspect ratio (LAR), low Reynolds number fliers. The dominant effects of developing tip vortices and leading edge vortices create a fundamentally different flow regime than that of conventional aircraft. An improved knowledge of low aspect ratio, low Reynolds number aerodynamics can be greatly beneficial for future MAV design. A little investigated but vital aspect of LAR aerodynamics is the behavior of the fluid as the wing yaws. Flow visualization experiments undertaken in the group for the canonical case of varying AR flat plates indicate that the propagation of the tip vortex keeps the flow attached over the upstream portion of the wing, while the downstream vortex is convected away from the wing. This induces asymmetric, destabilizing loading on the wing which has been observed to adversely affect MAV flight. In addition, experimental load measurements indicate significant nonlinearities in forces and moments which can be attributed to the development and propagation of these vortical structures. A non-dimensional analysis of the rigid body equations of motion indicates that these nonlinearities create dependencies which dramatically change the conventional linearization process. These flow phenomena are investigated with intent to apply to future MAV design.

  10. Some Effects of Sweep and Aspect Ratio on the Transonic Flutter Characteristics of a Series of Thin Cantilever Wings Having a Taper Ratio of 0.6

    NASA Technical Reports Server (NTRS)

    Jones, G. W., Jr.; Unangst, J. R.

    1963-01-01

    An investigation of the flutter characteristics of a series of thin cantilever wings having taper ratios of 0.6 was conducted in the Langley transonic blowdown tunnel at Mach numbers between 0.76 and 1.42. The angle of sweepback was varied from 0 degrees to 60 degrees on wings of aspect ratio 4, and the aspect ratio was varied from 2.4 to 6.4 on wings with 45 degrees of sweepback. The results are presented as ratios between the experimental flutter speeds and the reference flutter speeds calculated on the basis of incompressible two-dimensional flow. These ratios, designated the flutter-speed ratios, are given as functions of Mach number for the various wings. The flutter-speed ratios were characterized, in most cases, by values near 1.0 at subsonic speeds with large increases in the speed ratios in the range of supersonic speeds investigated. Increasing the sweep effected increases in the flutter-speed ratios between 0 degrees and 30 degrees followed by progressive reductions of the speed ratios to nearly 1.0 as the sweep was increased from 30 degrees to 60 degrees. Reducing the aspect ratio from 6.4 to 2.4 resulted in progressively larger values of the flutter-speed ratios throughout the Mach number range investigated.