Sample records for aspergillus flavus aflatoxins

  1. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F

    2015-05-01

    The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression. © 2015 The Authors.

  2. Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize

    USDA-ARS?s Scientific Manuscript database

    Effective biological control of aflatoxin­producing Aspergillus flavus with atoxigenic members of that species requires suitable A. flavus well adapted to and resident in target agroecosystems. Eighteen atoxigenic isolates of A. flavus endemic in Italy were compared for ability to reduce aflatoxin c...

  3. RNA interference reduces aflatoxin accumulation by Aspergillus flavus in peanut seeds

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are among the most powerful carcinogens in nature. They are produced by the fungal pathogen Aspergillus flavus Link and other Aspergillus species. Aflatoxins accumulate in many crops, including rice, wheat, oats, pecans, pistachios, soybean, cassava, almonds, peanuts, beans, corn and cot...

  4. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production

    USDA-ARS?s Scientific Manuscript database

    The transcription factors NsdC and NsdD have been shown to be necessary for sexual development in Aspergillus nidulans. Herein we examine the role of these proteins in development and aflatoxin production of the agriculturally important, aflatoxin-producing fungus, Aspergillus flavus. We found tha...

  5. Aspergillus flavus secondary metabolites: more than just aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  6. Lysine Succinylation Contributes to Aflatoxin Production and Pathogenicity in Aspergillus flavus*

    PubMed Central

    Ren, Silin; Yang, Mingkun; Yue, Yuewei; Ge, Feng; Li, Yu; Guo, Xiaodong; Zhang, Jia; Zhang, Feng; Nie, Xinyi; Wang, Shihua

    2018-01-01

    Aspergillus flavus (A. flavus) is a ubiquitous saprophytic and pathogenic fungus that produces the aflatoxin carcinogen, and A. flavus can have tremendous economic and health impacts worldwide. Increasing evidence demonstrates that lysine succinylation plays an important regulatory role in metabolic processes in both bacterial and human cells. However, little is known about the extent and function of lysine succinylation in A. flavus. Here, we performed a global succinylome analysis of A. flavus using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 985 succinylation sites on 349 succinylated proteins were identified in this pathogen. Bioinformatics analysis revealed that the succinylated proteins were involved in various biological processes and were particularly enriched in the aflatoxin biosynthesis process. Site-specific mutagenesis and biochemical studies showed that lysine succinylation on the norsolorinic acid reductase NorA (AflE), a key enzyme in aflatoxins biosynthesis, can affect the production of sclerotia and aflatoxins biosynthesis in A. flavus. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and aflatoxins biosynthesis in A. flavus. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this pathogen. PMID:29298838

  7. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A; Fabbri, Anna A; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.

  8. Non-aflatoxigenic Aspergillus flavus isolates reduce aflatoxins, cyclopiazonic acid and fumonisin in corn (maize)

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus strains vary widely in their production of aflatoxins and cyclopiazonic acid (CPA). A total of 500 Aspergillus strains isolated from a variety of sources showed 16.4% were negative for both aflatoxin and CPA, 41.3% were positive for both mycotoxins, 13.0% were positive only fo...

  9. RNAseq analysis reveals oxidative stress responses of Aspergillus flavus related to stress tolerance and aflatoxin production

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination by Aspergillus flavus is exacerbated by drought stress in the field. Given that reactive oxygen species (ROS) both accumulate in plant tissues during drought and can stimulate aflatoxin production in vitro, we examined the responses of toxigenic isolates of A. flavus to oxida...

  10. Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil.

    PubMed

    Accinelli, Cesare; Abbas, H K; Zablotowicz, R M; Wilkinson, J R

    2008-05-01

    The carcinogen aflatoxin B1 (AFB1) produced by Aspergillus flavus is a major food safety concern in crops. However, information on AFB1 occurrence in soil and crop residue is scarce. A series of experiments investigated the occurrence of AFB1 in soil and corn residues and ascertained the ecology of A. flavus in a Dundee silt loam soil. Samples of untilled soil (0-2 cm) and residues were collected in March 2007 from plots previously planted with a corn isoline containing the Bacillus thuringiensis (Bt) endotoxin gene or the parental non-Bt isoline. AFB1 levels were significantly different in various corn residues. The highest AFB1 levels were observed in cobs containing grain, with 145 and 275 ng.g-1 in Bt and non-Bt, respectively (P > or = F = 0.001). Aflatoxin levels averaged 3.3 and 9.6 ng.g-1 in leaves and (or) stalks and cobs without grain, respectively. All soils had AFB1 ranging from 0.6 to 5.5 ng.g-1 with similar levels in plots from Bt and non-Bt corn. Based on cultural methods, soil contained from log10 3.1 to 4.5 A. flavus cfu.g-1 with about 60% of isolates producing aflatoxin. Laboratory experiments demonstrated that AFB1 is rapidly degraded in soil at 28 degrees C (half-life < or = 5 days). The potential of the soil A. flavus to produce aflatoxins was confirmed by molecular methods. Transcription of 5 aflatoxin biosynthesis genes, including aflD, aflG, aflP, aflR, and aflS, were detected by reverse transcription - polymerase chain reaction analysis in soil. Although AFB1 appears to be transient in soils, it is clear that AFB1 is produced in surface soil in the presence of corn residues, as indicated by A. flavus cfu levels, AFB1 detection, and expression of aflatoxin biosynthetic genes.

  11. Evaluation of different genotypes of nontoxigenic Aspergillus flavus for their ability to reduce aflatoxin contamination in peanuts

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins thro...

  12. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is an opportunistic pathogen that infects host plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress is known to exacerbate aflatoxin production by A. flavus. The object...

  13. Genome-Wide Association Mapping of and Aspergillus flavus Aflatoxin Accumulation Resistance in Maize

    Treesearch

    Marilyn L. Warburton; Juliet D. Tang; Gary L. Windham; Leigh K. Hawkins; Seth C. Murray; Wenwei Xu; Debbie Boykin; Andy Perkins; W. Paul Williams

    2015-01-01

    Contamination of maize (Zea mays L.) with aflatoxin, produced by the fungus Aspergillus flavus Link, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with significantly...

  14. Aspergillus flavus Infection and Aflatoxin Production in Corn: Influence of Trace Elements

    PubMed Central

    Lillehoj, E. B.; Garcia, W. J.; Lambrow, M.

    1974-01-01

    Distribution of trace element levels in corn germ fractions from kernels naturally infected with Aspergillus flavus and from kernels free of the fungus demonstrated an association between the presence of A. flavus and higher levels of metals. A. flavus production of aflatoxin on various autoclaved corn media showed that ground, whole corn was an excellent substrate; similar high levels of toxin were observed on full-fat corn germ but endosperm and defatted corn germ supported reduced yields. The influence of trace elements and their availability in defatted corn germ to A. flavus-mediated aflatoxin biosynthesis were measured. Enrichment of the substrate with 5 to 10 μg of manganese, copper, cadmium, or chromium per g of germ increased toxin yields. Addition of lead or zinc (50 to 250 μg/g) also enhanced toxin accumulation. Aflatoxin elaboration was reduced by the addition of 25 μg of cadmium per g or 500 μg of copper per g of germ. PMID:4216287

  15. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins (AFs) in crops worldwide. Recent efforts to reduce AF concentrations in crops have focused on the use of two non-aflatoxigenic A. flavus strains, AF36 and NRRL 21882 (Afla-Guard), as biological control agents. These products are a...

  16. Inhibition of aflatoxin B production of Aspergillus flavus, isolated from soybean seeds by certain natural plant products.

    PubMed

    Krishnamurthy, Y L; Shashikala, J

    2006-11-01

    The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.

  17. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contaminati...

  18. Genome sequences of three strains of Aspergillus flavus for the biological control of Aflatoxin

    USDA-ARS?s Scientific Manuscript database

    The genomes of three strains of Aspergillus flavus with demonstrated utility for the biological control of aflatoxin were sequenced. These sequences were assembled with MIRA and annotated with Augustus using A. flavus strain 3357 (NCBI EQ963472) as a reference. Each strain had a genome of 36.3 to ...

  19. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems.

    PubMed

    Peromingo, Belén; Rodríguez, Alicia; Bernáldez, Victoria; Delgado, Josué; Rodríguez, Mar

    2016-12-01

    Dry-cured hams may be colonised by aflatoxin-producing Aspergillus flavus and Aspergillus parasiticus during the ripening process. The objective of this study was to evaluate the interaction between non-ionic water stress and temperatures may have on lag phases prior to growth, growth rates and aflatoxin production by two strains of each A. parasiticus and A. flavus on meat matrices over a period of 12days. Results showed that A. flavus CBS 573.65 had shorter lag phases than A. parasiticus CECT 2688, however the growth rates were quite similar. For both species, no growth occurred at 10°C and all aw tested and optimum growth happened at 25°C and 0.95 aw. Similar aflatoxin B1 production profiles between both species were found, however A. flavus produced much higher concentration of such toxin than A. parasiticus. Both species produced aflatoxins when the temperature and the aw were ≥15°C and ≥0.90. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  1. Genome Sequences of Three Strains of Aspergillus flavus for the Biological Control of Aflatoxin

    PubMed Central

    Scheffler, Brian E.; Duke, Mary; Ballard, Linda; Abbas, Hamed K.; Grodowitz, Michael J.

    2017-01-01

    ABSTRACT Aflatoxin is a carcinogenic contaminant of many commodities that are infected by Aspergillus flavus. Nonaflatoxigenic strains of A. flavus have been utilized as biological control agents. Here, we report the genome sequences from three biocontrol strains. This information will be useful in developing markers for postrelease monitoring of these fungi. PMID:29097466

  2. Effect of gamma-irradiation on aflatoxin B1 production by Aspergillus flavus and chemical composition of three crop seeds.

    PubMed

    Aziz, Nagy H; Mahrous, Souzan R

    2004-06-01

    The effect of gamma-irradiation on aflatoxin B1 production by Aspergillus flavus, and the chemical composition of some different crop seeds were investigated. A. flavus infected seeds behaved differently according to their principal constituents. A. flavus caused an increase in protein and decrease in lipids and carbohydrate contents of wheat, soyabean and fababean seeds. Growth of A. flavus and production of aflatoxin B1 was inhibited at a dose level of 5 kGy. A. flavus utilizes carbohydrates of seeds for its growth and aflatoxin production. Crops were arranged, in descending order, according to aflatoxin produced in seeds as wheat > soyabean > fababean. There were no changes in chemical constituents of irradiated seeds, such as protein, lipids, and carbohydrates.

  3. Nuclear heterogeneity in conidial populations of Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a major producer of aflatoxin and an opportunistic pathogen for a wide range of hosts. Understanding genotypic and phenotypic variations within strains of A. flavus is important for controlling disease and reducing aflatoxin contamination. A. flavus is multinucleate and predomi...

  4. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus (A. flavus) is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. Contamination of maize with aflatoxin poses a serious threat to human health in addit...

  5. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures.

    PubMed

    Ehrlich, Kenneth C; Chang, Perng-Kuang; Scharfenstein, Leslie L; Cary, Jeffrey W; Crawford, Jason M; Townsend, Craig A

    2010-04-01

    Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in Aspergillus flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B(1) (AFB(1)), but elevated quantities of a new metabolite, deoxyAFB(1). To explain this result, we suggest that, in the absence of NorA, the AFB(1) reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB(1) in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus.

  6. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins and as a result, threaten human health, food security, and farmers’ income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the...

  7. Reduction of aflatoxins, cyclopiazonic acid and fumonisins in corn by biocontrol strains of non-aflatoxigenic Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    A series of field studies in corn (maize) evaluated the ability of non-aflatoxigenic biocontrol strains of Aspergillus flavus to reduce, through competitive exclusion, production in kernels of aflatoxins and cyclopiazonic acid (CPA) by A. flavus and fumonisins by Fusarium verticillioides. The abili...

  8. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    PubMed

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  9. The master transcription factor mtfA governs aflatoxin production, morphological development, and pathogenicity in the fungus Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus produces a variety of toxic secondary metabolites, among them the aflatoxins (AFs) are the most well-known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing economically important crops contaminating them with AFs. Molecu...

  10. Evaluation of Atoxigenic Strains of Aspergillus flavus as Potential Biocontrol Agents for Aflatoxin in Maize

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic concern and public health concern. Therefore, strategies for controlling maize contamination are being investigated. Abilities of 11 naturally occurring atoxigenic strains in Nigeria to reduce aflatox...

  11. Effect of water activity, temperature, and carbon dioxide on the Aspergillus flavus transcriptome and aflatoxin B1 production

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a opportunistic fungus that has the potential to colonize several crops, including maize, peanuts and cotton. A. flavus colonization may result in the secretion of mycotoxins, of which the most prominent is aflatoxin. Temperature, water availability and carbon dioxide levels ar...

  12. Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster.

    PubMed Central

    Prieto, R; Yousibova, G L; Woloshuk, C P

    1996-01-01

    Aspergillus flavus mutant strain 649, which has a genomic DNA deletion of at least 120 kb covering the aflatoxin biosynthesis cluster, was transformed with a series of overlapping cosmids that contained DNA harboring the cluster of genes. The mutant phenotype of strain 649 was rescued by transformation with a combination of cosmid clones 5E6, 8B9, and 13B9, indicating that the cluster of genes involved in aflatoxin biosynthesis resides in the 90 kb of A. flavus genomic DNA carried by these clones. Transformants 5E6 and 20B11 and transformants 5E6 and 8B9 accumulated intermediate metabolites of the aflatoxin pathway, which were identified as averufanin and/or averufin, respectively.These data suggest that avf1, which is involved in the conversion of averufin to versiconal hemiacetal acetate, was present in the cosmid 13B9. Deletion analysis of 13B9 located the gene on a 7-kb DNA fragment of the cosmid. Transformants containing cosmid 8B9 converted exogenously supplied O-methylsterigmatocystin to aflatoxin, indicating that the oxidoreductase gene (ord1), which mediates the conversion of O-methylsterigmatocystin to aflatoxin, is carried by this cosmid. The analysis of transformants containing deletions of 8B9 led to the localization of ord1 on a 3.3-kb A. flavus genomic DNA fragment of the cosmid. PMID:8967772

  13. Evaluation of the expression genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines.

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  14. Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed.

    PubMed

    Nierman, William C; Yu, Jiujiang; Fedorova-Abrams, Natalie D; Losada, Liliana; Cleveland, Thomas E; Bhatnagar, Deepak; Bennett, Joan W; Dean, Ralph; Payne, Gary A

    2015-04-16

    Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A. flavus is the second leading cause of aspergillosis in immunocompromised human patients. Here, we report the genome sequence of strain NRRL 3357. Copyright © 2015 Nierman et al.

  15. Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients.

    PubMed

    Mauro, Antonio; Garcia-Cela, Esther; Pietri, Amedeo; Cotty, Peter J; Battilani, Paola

    2018-01-05

    Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development. The displacement results in lower aflatoxin concentrations in harvested grain. The current study evaluated in field performances of two atoxigenic strains of A . flavus endemic to Italy in artificially inoculated maize ears and in naturally contaminated maize. Co-inoculation of atoxigenic strains with aflatoxin producers resulted in highly significant reductions in aflatoxin concentrations (>90%) in both years only with atoxigenic strain A2085. The average percent reduction in aflatoxin B₁ concentration in naturally contaminated maize fields was 92.3%, without significant differences in fumonisins between treated and control maize. The vegetative compatibility group of A2085 was the most frequently recovered A. flavus in both treated and control plots (average 61.9% and 53.5% of the A. flavus , respectively). A2085 was therefore selected as an active ingredient for biocontrol products and deposited under provisions of the Budapest Treaty in the Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/MUCL) collection (accession MUCL54911). Further work on development of A2085 as a tool for preventing aflatoxin contamination in maize produced in Italy is ongoing with the commercial product named AF-X1™.

  16. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid

    USDA-ARS?s Scientific Manuscript database

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene, the ortholog of Saccharomyces cerevisiae MSN2 associated with multi-stress response, of the two species was disrupted....

  17. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain

    USDA-ARS?s Scientific Manuscript database

    Evaluation of resistance or susceptibility of corn inbreds to infection by Aspergillus flavus was evaluated by a kernel screening assay. A GFP-expressing strain of A. flavus was used to accomplish this study to measure fungal spread and aflatoxin levels in real time. Among the four inbreds tested, ...

  18. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  19. Biological control of aflatoxin contamination in U.S. crops and the use of bioplastic formulations of Aspergillus flavus biocontrol strains to optimize application strategies

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination has a major economic impact on crop production in southern USA. Reduction of aflatoxin contamination in harvested crops has been achieved by applying non-aflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their num...

  20. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields.

    PubMed

    Sebők, Flóra; Dobolyi, Csaba; Zágoni, Dóra; Risa, Anita; Krifaton, Csilla; Hartman, Mátyás; Cserháti, Mátyás; Szoboszlay, Sándor; Kriszt, Balázs

    2016-12-01

    Due to the climate change, aflatoxigenic Aspergillus species and strains have appeared in several European countries, contaminating different agricultural commodities with aflatoxin. Our aim was to screen the presence of aflatoxigenic fungi in maize fields throughout the seven geographic regions of Hungary. Fungi belonging to Aspergillus section Flavi were isolated in the ratio of 26.9% and 42.3% from soil and maize samples in 2013, and these ratios decreased to 16.1% and 34.7% in 2014. Based on morphological characteristics and the sequence analysis of the partial calmodulin gene, all isolates proved to be Aspergillus flavus, except four strains, which were identified as Aspergillus parasiticus. About half of the A. flavus strains and all the A. parasiticus strains were able to synthesize aflatoxins. Aflatoxigenic Aspergillus strains were isolated from all the seven regions of Hungary. A. parasiticus strains were found in the soil of the regions Southern Great Plain and Southern Transdanubia and in a maize sample of the region Western Transdanubia. In spite of the fact that aflatoxins have rarely been detected in feeds and foods in Hungary, aflatoxigenic A. flavus and A. parasiticus strains are present in the maize culture throughout Hungary posing a potential threat to food safety.

  1. Efficacy of water-dispersible formulations of biological control strains of Aspergillus flavus for aflatoxin management in corn.

    PubMed

    Weaver, Mark A; Abbas, Hamed K; Jin, Xixuan; Elliott, Brad

    2016-01-01

    Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water-dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, there was no WDG treatment that could provide significant protection against aflatoxin contamination. The following year a new WDG formulation was tested that resulted in 100% reduction in aflatoxin in one field experiment and ≥ 49% reduction in all five WDG treatments with biocontrol strain 21882. Large sampling error, however, limited the resolution of various treatment effects. Corn samples were also subjected to microbial analysis to understand better the mechanisms of successful biocontrol. In the samples examined here, the size of the A. flavus population on the grain was associated with the amount of aflatoxin, but the toxigenic status of that population was a poor predictor of aflatoxin concentration.

  2. Evaluation of the expression of genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  3. In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production.

    PubMed

    Verheecke, C; Liboz, T; Darriet, M; Sabaou, N; Mathieu, F

    2014-06-01

    This work aimed to study the interaction between Actinomycetal isolates and Aspergillus flavus to promote mutual antagonism in contact. Thirty-seven soilborn Streptomyces spp. isolates were chosen as potential candidates. After a 10-day in vitro co-incubation period, 27 isolates respond to the criteria, that is, mutual antagonism in contact. Further aflatoxins B1 and B2 analysis revealed that those 27 isolates reduced aflatoxin B1 residual concentration from 38·6 to 4·4%, depending on the isolate. We selected 12 isolates and tested their capacity to reduce AFB1 in pure culture to start identifying the mechanisms involved in its reduction. AFB1 was reduced by eight isolates. The remaining AFB1 concentration varied between 82·2 and 15·6%. These findings led us to suggest that these eight isolates could be used as biocontrol agents against AFB1 and B2 with low risk of impacting the natural microbial equilibrium. Interaction between Aspergillus flavus and Actinomycetes isolates was conducted in vitro. Actinomycetes isolates having a mutual antagonism in contact with A. flavus were chosen for further aflatoxins production study. This is a new approach based to develop biocontrol against aflatoxins accumulation in maize while respecting natural microbial equilibrium. © 2014 The Society for Applied Microbiology.

  4. Comparison of the side-needle and knife techniques for inducing Aspergillus flavus infection and aflatoxin accumulation in corn hybrids

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin in corn grain is a problem in many areas of the world. Any combination of environmentally stressful or agronomically unfavorable conditions can increase the likelihood of Aspergillus flavus infection and production of aflatoxin in the corn grain. In the absence of a consistent natural A....

  5. The inhibitory effect of Bacillus megaterium on aflatoxin biosynthetic pathway gene expression in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is one of the major fungal mold that colonize peanut in the field and during storage. The impacts to human and animal health and to economy in agriculture and commerce are significant since this mould produces the most potent natural toxins, aflatoxins, which are carcinogenic, mut...

  6. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.

    PubMed

    Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan

    2018-06-01

    Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.

  8. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production.

    PubMed

    Cary, Jeffrey W; Harris-Coward, Pamela; Scharfenstein, Leslie; Mack, Brian M; Chang, Perng-Kuang; Wei, Qijian; Lebar, Matthew; Carter-Wientjes, Carol; Majumdar, Rajtilak; Mitra, Chandrani; Banerjee, Sourav; Chanda, Anindya

    2017-10-12

    Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox ( hbx ) genes in the aflatoxin-producing ascomycete, Aspergillus flavus , and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1 , in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B₁ and B₂, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δ hbx1 mutants did not produce conidiophores. The inability of Δ hbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC , aflD , aflM and the cluster-specific regulatory gene, aflR . Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  9. Survey of candidate genes for maize resistance to infection by Aspergillus flavus and/or aflatoxin contamination

    Treesearch

    Leigh Hawkins; Marilyn Warburton; Juliet Tang; John Tomashek; Dafne Alves Oliveira; Oluwaseun Ogunola; J. Smith; W. Williams

    2018-01-01

    Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to...

  10. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.

  11. Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn.

    PubMed

    Accinelli, Cesare; Abbas, Hamed K; Vicari, Alberto; Shier, W Thomas

    2016-08-01

    Applying non-aflatoxin-producing Aspergillus flavus isolates to the soil has been shown to be effective in reducing aflatoxin levels in harvested crops, including peanuts, cotton and corn. The aim of this study was to evaluate the possibility of controlling aflatoxin contamination using a novel sprayable formulation consisting of a partially gelatinized starch-based bioplastic dispersion embedded with spores of biocontrol A. flavus strains, which is applied to the leaf surfaces of corn plants. The formulation was shown to be adherent, resulting in colonization of leaf surfaces with the biocontrol strain of A. flavus, and to reduce aflatoxin contamination of harvested kernels by up to 80% in Northern Italy and by up to 89% in the Mississippi Delta. The percentage of aflatoxin-producing isolates in the soil reservoir under leaf-treated corn was not significantly changed, even when the soil was amended with additional A. flavus as a model of changes to the soil reservoir that occur in no-till agriculture. This study indicated that it is not necessary to treat the soil reservoir in order to achieve effective biocontrol of aflatoxin contamination in kernel corn. Spraying this novel bioplastic-based formulation to leaves can be an effective alternative in the biocontrol of A. flavus in corn. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. What Does Genetic Diversity of Aspergillus flavus Tell Us About Aspergillus oryzae?

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and Aspergillus oryzae belong to Aspergillus section Flavi. They are closely related and are of significant economic importance. The former species has the ability to produce harmful aflatoxins while the latter is widely used in food fermentation and industrial enzyme production. ...

  13. Drought stress and aflatoxin contamination: Transcriptional responses of Aspergillus flavus to oxidative stress are related to stress tolerance and aflatoxin production capability

    USDA-ARS?s Scientific Manuscript database

    Oilseed crops such as maize and peanut are staple food crops which are vital for global food security. The contamination of these crops with carcinogenic aflatoxins during infection by Aspergillus flavus under drought stress conditions is a serious threat to the safety of these commodities. In order...

  14. Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are fungal secondary metabolites that often contaminate foodstuffs and crops, the major producer of which is Aspergillus flavus. Use of non-aflatoxigenic strains of A. flavus to compete against aflatoxin-producing strains has emerged as one of the best management practices for reducing af...

  15. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

    PubMed Central

    Mannaa, Mohamed; Oh, Ji Yeon

    2017-01-01

    In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles. PMID:29138628

  16. Effect of inoculum concentrations of Aspergillus flavus and A. parasiticus on aflatoxin accumulation and kernel infection in resistant and susceptible maize hybrids

    USDA-ARS?s Scientific Manuscript database

    Over a three year period, we compared aflatoxin accumulation and kernel infection in maize hybrids inoculated with six inoculum concentrations of Aspergillus flavus isolate NRRL 3357 or A. parasiticus isolate NRRL 6111 which is a norsolorinic acid producer. Aflatoxin resistant and susceptible mai...

  17. Influence of gamma-irradiation and maize lipids on the production of aflatoxin B1 by Aspergillus flavus.

    PubMed

    Aziz, Nagy H; el-Zeany, Samia A; Moussa, Lotfy A A

    2002-10-01

    The effect of gamma-irradiation and maize lipids on aflatoxin B1 production by Aspergillus flavus artificially inoculated into sterilized maize at reduced water activity (aw 0.84) was investigated. By increasing the irradiation doses the total viable population of A. flavus decreased and the fungus was completely inhibited at 3.0 kGy. The amounts of aflatoxin B1 were enhanced at irradiation dose levels 1.0 and 1.5 kGy in both full-fat maize (FM) and defatted maize (DM) media and no aflatoxin B1 production at 3.0 kGy gamma-irradiation over 45 days of storage was observed. The level in free lipids of FM decreased gradually, whereas free fatty acid values and fungal lipase activity increased markedly by increasing the storage periods. The free fatty acid values decreased by increasing the irradiation dose levels and there was a significant enhancement of fungal lipase activity at doses of 1.0 and 1.50 kGy. The ability of A. flavus to grow at aw 0.84 and produce aflatoxin B1 is related to the lipid composition of maize. The enhancement of aflatoxin B1 at low doses was correlated to the enhancement of fungal lipase activity.

  18. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to examine the effects of Aspergillus flavus colonization of maize kernels under different water activity (aw; 0.99 and 0.91) and temperature (30 and 37°C) conditions on (a) aflatoxin B1 (AFB1) production and (b) impacts on the transcriptome using RNAseq. This study...

  19. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon ...

  20. Integrated database for identifying candate genes for Aspergillus flavus resistance in maize

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent af...

  1. Evidence of aneuploidy modulating aflatoxigenicity in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a well-known pathogen of many important agricultural commodities and is a major producer of aflatoxins, which are carcinogenic polyketides that pose a serious health risk to humans and animals. Aflatoxin contamination in peanut exports worldwide accounts for as much as $450 mi...

  2. Aspergillus flavus growth and aflatoxin production as influenced by total lipid content during growth and development of cottonseed

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus infects several food and feed crops such as corn, cotton, peanuts and tree nut crops and contaminates the seed with carcinogenic aflatoxins. These susceptible crops contain rich reserves of lipids and fatty acids. The nature of relationship between lipids and the ability of the f...

  3. Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B₁ accumulation in pistachio (Pistacia vera L.) fruit.

    PubMed

    Panahirad, Sima; Zaare-Nahandi, Fariborz; Mohammadi, Nilufar; Alizadeh-Salteh, Saeedeh; Safaie, Naser

    2014-07-01

    One of the most important saprophytic infections in fresh pistachio fruits after harvesting is Aspergillus flavus colonization, which significantly reduces fruit quality. Salicylic acid plays a crucial role in plant tissues and has a suppression effect on some fungi. The inhibitory effect of salicylic acid on the growth of A. flavus was assessed in vitro and in vivo. For this purpose, seven concentrations (0, 1, 3, 5, 7, 9 and 11 mmol L(-1)) of salicylic acid were used in both experiments. Also, aflatoxin B1 contents of the samples were analysed using immunoaffinity chromatography. The results obtained from in vitro experiments showed that salicylic acid significantly reduced Aspergillus growth at all concentrations, and at 9 mmol L(-1) growth was completely suppressed. In vivo evaluation showed relatively high levels of inhibition, though the intact treated fruits as compared with the injured treated fruits demonstrated higher inhibitory effects. Regarding the inhibitory effects of salicylic acid on the control of A. flavus contamination, its application on pistachio fruits after harvesting could be a promising approach to control the fungus infection and reduce aflatoxin production in treated fruits. © 2013 Society of Chemical Industry.

  4. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.

    PubMed

    Sobolev, Victor; Arias, Renee; Goodman, Kerestin; Walk, Travis; Orner, Valerie; Faustinelli, Paola; Massa, Alicia

    2018-01-10

    Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut-fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins.

  5. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture.

    PubMed

    Masanga, Joel Okoyo; Matheka, Jonathan Mutie; Omer, Rasha Adam; Ommeh, Sheila Cecily; Monda, Ethel Oranga; Alakonya, Amos Emitati

    2015-08-01

    We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.

  6. Formation of Aspergillus flavus sclerotia on corn grown under different drought stress conditions

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a major producer of carcinogenic aflatoxins worldwide in corn, peanuts, tree nuts, cottonseed, spices and other crops. Many countries have strict limits on the amount of aflatoxins permitted in human commodities and animal feed. Sclerotia produced by A. flavus serve several f...

  7. Heritability study of eGFP-transformed Aspergillus flavus strains

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest prevention of aflatoxin contamination of corn, cottonseed, and peanut through field inoculation with non-aflatoxigenic Aspergillus flavus appears to be the only method for biocontrol currently being used. Until recently, evidence for out-crossing in A. flavus was observed in agar slants...

  8. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related proteins serve as a first line of defense against invading pathogens by confer...

  9. Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media.

    PubMed Central

    Payne, G A; Hagler, W M

    1983-01-01

    Four amino acids were used as sole nitrogen sources or as supplements to ammonium sulfate, and casein and ammonium sulfate were used as sole nitrogen sources to examine their effects on aflatoxin production by Aspergillus parasiticus NRRL 2999 and Aspergillus flavus 3357 grown on synthetic liquid media. In general, when proline, asparagine, casein, and ammonium sulfate were used as sole nitrogen sources, they supported more growth and toxin production than tryptophan or methionine. However, proline stimulated more toxin production per gram of mycelium in stationary cultures than the other nitrogen sources, including the amino acid asparagine, which is generally recognized as supporting good aflatoxin production. The exact responses to individual nitrogen sources were influenced by the species of fungus and whether cultures were stationary or shaken. In shake cultures, but not in stationary cultures, increased growth was generally associated with increased toxin production. PMID:6416168

  10. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  11. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins worldwide in crops. Populations of A. flavus are characterized by high genetic variation and the source of this variation is likely sexual reproduction. The fungus is heterothallic and laboratory crosses produce ascospore-bearing ...

  12. Detecting peanuts inoculated with toxigenic and atoxienic Aspergillus flavus strains with fluorescence hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescen...

  13. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  14. Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene.

    PubMed

    Abdel-Hadi, Ahmed M; Caley, Daniel P; Carter, David R F; Magan, Naresh

    2011-06-01

    Aspergillus flavus and Aspergillus parasiticus are important pathogens of cotton, corn, peanuts and other oil-seed crops, producing toxins both in the field and during storage. We have designed three siRNA sequences (Nor-Ia, Nor-Ib, Nor-Ic) to target the mRNA sequence of the aflD gene to examine the potential for using RNA silencing technology to control aflatoxin production. Thus, the effect of siRNAs targeting of two key genes in the aflatoxin biosynthetic pathway, aflD (structural) and aflR (regulatory gene) and on aflatoxin B(1 )(AFB(1)), and aflatoxin G(1) (AFG(1)) production was examined. The study showed that Nor-Ib gave a significant decrease in aflD mRNA, aflR mRNA abundance, and AFB(1) production (98, 97 and 97% when compared to the controls) in A. flavus NRRL3357, respectively. Reduction in aflD and aflR mRNA abundance and AFB(1 )production increased with concentration of siRNA tested. There was a significant inhibition in aflD and AFB(1) production by A. flavus EGP9 and AFG(1 )production by A. parasiticus NRRL 13005. However, there was no significant decrease in AFG(1) production by A. parasiticus SSWT 2999. Changes in AFB(1) production in relation to mRNA levels of aflD showed a good correlation (R = 0.88; P = 0.00001); changes in aflR mRNA level in relation to mRNA level of aflD also showed good correlation (R = 0.82; P = 0.0001). The correlations between changes in aflR and aflD gene expression suggests a strong relationship between these structural and regulatory genes, and that aflD could be used as a target gene to develop efficient means for aflatoxin control using RNA silencing technology.

  15. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection.

    PubMed

    Hanano, Abdulsamie; Almousally, Ibrahem; Shaban, Mouhnad; Blee, Elizabeth

    2015-09-01

    Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Effect of Various Compounds Blocking the Colony Pigmentation on the Aflatoxin B1 Production by Aspergillus flavus.

    PubMed

    Dzhavakhiya, Vitaly G; Voinova, Tatiana M; Popletaeva, Sofya B; Statsyuk, Natalia V; Limantseva, Lyudmila A; Shcherbakova, Larisa A

    2016-10-28

    Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds-three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)-were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus . All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 μg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 μg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed.

  17. Aspergillus flavus: human pathogen, allergen and mycotoxin producer.

    PubMed

    Hedayati, M T; Pasqualotto, A C; Warn, P A; Bowyer, P; Denning, D W

    2007-06-01

    Aspergillus infections have grown in importance in the last years. However, most of the studies have focused on Aspergillus fumigatus, the most prevalent species in the genus. In certain locales and hospitals, Aspergillus flavus is more common in air than A. fumigatus, for unclear reasons. After A. fumigatus, A. flavus is the second leading cause of invasive aspergillosis and it is the most common cause of superficial infection. Experimental invasive infections in mice show A. flavus to be 100-fold more virulent than A. fumigatus in terms of inoculum required. Particularly common clinical syndromes associated with A. flavus include chronic granulomatous sinusitis, keratitis, cutaneous aspergillosis, wound infections and osteomyelitis following trauma and inoculation. Outbreaks associated with A. flavus appear to be associated with single or closely related strains, in contrast to those associated with A. fumigatus. In addition, A. flavus produces aflatoxins, the most toxic and potent hepatocarcinogenic natural compounds ever characterized. Accurate species identification within Aspergillus flavus complex remains difficult due to overlapping morphological and biochemical characteristics, and much taxonomic and population genetics work is necessary to better understand the species and related species. The flavus complex currently includes 23 species or varieties, including two sexual species, Petromyces alliaceus and P. albertensis. The genome of the highly related Aspergillus oryzae is completed and available; that of A. flavus in the final stages of annotation. Our understanding of A. flavus lags far behind that of A. fumigatus. Studies of the genomics, taxonomy, population genetics, pathogenicity, allergenicity and antifungal susceptibility of A. flavus are all required.

  18. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes.

    PubMed

    Hong, Seung-Beom; Lee, Mina; Kim, Dae-Ho; Chung, Soo-Hyun; Shin, Hyeon-Dong; Samson, Robert A

    2013-12-01

    Strains of the Aspergillus flavus/oryzae complex are frequently isolated from meju, a fermented soybean product, that is used as the starting material for ganjang (soy sauce) and doenjang (soybean paste) production. In this study, we examined the aflatoxin producing capacity of A. flavus/oryzae strains isolated from meju. 192 strains of A. flavus/oryzae were isolated from more than 100 meju samples collected from diverse regions of Korea from 2008 to 2011, and the norB-cypA, omtA, and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 178 strains (92.7%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and 14 strains (7.3%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). Only 7 strains (3.6%) in the aflatoxin-producible group produced aflatoxins on Czapek yeast-extract medium. The aflatoxin-producing capability of A. flavus/oryzae strains from other sources in Korea were also investigated, and 92.9% (52/56) strains from air, 93.9% (31/33) strains from rice straw, 91.7% (11/12) strains from soybean, 81.3% (13/16) strains from corn, 82% (41/50) strains from peanut, and 73.2% (41/56) strains from arable soil were included in the non-aflatoxigenic group. The proportion of non-aflatoxigenicity of meju strains was similar to that of strains from soybean, air and rice straw, all of which have an effect on the fermentation of meju. The data suggest that meju does not have a preference for non-aflatoxigenic or aflatoxin-producible strains of A. flavus/oryzae from the environment of meju. The non-aflatoxigenic meju strains are proposed to be named A. oryzae, while the meju strains that can produce aflatoxins should be referred to A. flavus in this study.

  19. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  20. Spread of Aspergillus flavus by navel orangeworm (Amyelois transitella) on almonds

    USDA-ARS?s Scientific Manuscript database

    Navel orangeworm (NOW) damage to almonds is correlated with increased incidence of aflatoxin contamination caused by Aspergillus flavus. However, no reports demonstrate a causative relationship between NOW feeding and A. flavus infection. To demonstrate the potential of NOW to act as a vector of A. ...

  1. [Morphological characteristics and physiological properties of aflatoxin B1 producing and non-producing Aspergillus flavus strains].

    PubMed

    Kogbo, W; Lemarinier, S; Boutibonnes, P

    1985-09-01

    Comparison between about 80 strains of Aspergillus flavus, belonging to the series flavus and oryzae, obtained from international collections but also isolated from French or African substrates revealed the following observations: 1. Cultural and morphological characteristics of toxicogenic and atoxicogenic strains of A. flavus are similar. However, the former produce a diffusible yellow pigment in 83% of isolates. 2. The two groups of conidiospores have the same resistance to UV irradiation (254 nm, 5 and 10 min). All the strains are equally sensitive to 4 antifungal antibiotics: nystatine, ketoconazole, clotrimazole and amphotericine. 3. A difference was seen in the capacity to produce enzymes as alpha-galactosidase, beta-galactosidase and beta-glucosidase, implicated in the glucid metabolism. The specific hydrolytic activity has been confirmed by the characterization of a large amount of beta-galactosidase and by a diauxic growth on glucose medium supplemented by lactose. Possible relationship between these characters and aflatoxin B1 production by A. flavus strains is discussed.

  2. Interactions of Saprophytic Yeasts with a nor Mutant of Aspergillus flavus

    PubMed Central

    Hua, Sui-Sheng T.; Baker, James L.; Flores-Espiritu, Melanie

    1999-01-01

    The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities. PMID:10347069

  3. Enhanced diversity and aflatoxigenicity in interspecific hybrids of Aspergillus flavus and Aspergillus parasiticus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and A. parasiticus are two of the most important aflatoxin-producing species that contaminate agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here, we examine the possibility of interspecific matings betwe...

  4. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana.

    PubMed

    Perrone, Giancarlo; Haidukowski, Miriam; Stea, Gaetano; Epifani, Filomena; Bandyopadhyay, Ranajit; Leslie, John F; Logrieco, Antonio

    2014-08-01

    Aflatoxins are highly toxic carcinogens that contaminate crops worldwide. Previous studies conducted in Nigeria and Ghana found high concentrations of aflatoxins in pre- and post-harvest maize. However, little information is available on the population structure of Aspergillus Sect. Flavi in West Africa. We determined the incidence of Aspergillus Sect. Flavi and the level of aflatoxin contamination in 91 maize samples from farms and markets in Nigeria and Ghana. Aspergillus spp. were recovered from 61/91 maize samples and aflatoxins B1 and/or B2 occurred in 36/91 samples. Three samples from the farms also contained aflatoxin G1 and/or G2. Farm samples were more highly contaminated than were samples from the market, in terms of both the percentage of the samples contaminated and the level of mycotoxin contamination. One-hundred-and-thirty-five strains representative of the 1163 strains collected were identified by using a multilocus sequence analysis of portions of the genes encoding calmodulin, β-tubulin and actin, and evaluated for aflatoxin production. Of the 135 strains, there were 110 - Aspergillus flavus, 20 - Aspergillus tamarii, 2 - Aspergillus wentii, 2 - Aspergillus flavofurcatus, and 1 - Aspergillus parvisclerotigenus. Twenty-five of the A. flavus strains and the A. parvisclerotigenus strain were the only strains that produced aflatoxins. The higher contamination of the farm than the market samples suggests that the aflatoxin exposure of rural farmers is even higher than previously estimated based on reported contamination of market samples. The relative infrequency of the A. flavus SBG strains, producing small sclerotia and high levels of both aflatoxins (B and G), suggests that long-term chronic exposure to this mycotoxin are a much higher health risk in West Africa than is the acute toxicity due to very highly contaminated maize in east Africa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sexual recombination and the possibility of cryptic heterokaryosis in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus infects both plants and animals and is of toxicological importance due to its production of aflatoxins (AFs). Recent efforts to reduce AF concentrations have focused on the use of the biocontrols AF36 and Afla-Guard®, both of which contain nonaflatoxigenic A. flavus strains as an ...

  6. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut.

    PubMed

    Kachapulula, Paul W; Akello, Juliet; Bandyopadhyay, Ranajit; Cotty, Peter J

    2017-11-16

    Aflatoxins are cancer-causing, immuno-suppressive mycotoxins that frequently contaminate important staples in Zambia including maize and groundnut. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination in Africa. However, Aspergillus populations associated with aflatoxin contamination in Zambia have not been adequately detailed. Most of Zambia's arable land is non-cultivated and Aspergillus communities in crops may originate in non-cultivated soil. However, relationships between Aspergillus populations on crops and those resident in non-cultivated soils have not been explored. Because characterization of similar fungal populations outside of Zambia have resulted in strategies to prevent aflatoxins, the current study sought to improve understanding of fungal communities in cultivated and non-cultivated soils and in crops. Crops (n=412) and soils from cultivated (n=160) and non-cultivated land (n=60) were assayed for Aspergillus section Flavi from 2012 to 2016. The L-strain morphotype of Aspergillus flavus and A. parasiticus were dominant on maize and groundnut (60% and 42% of Aspergillus section Flavi, respectively). Incidences of A. flavus L-morphotype were negatively correlated with aflatoxin in groundnut (log y=2.4990935-0.09966x, R 2 =0.79, P=0.001) but not in maize. Incidences of A. parasiticus partially explained groundnut aflatoxin concentrations in all agroecologies and maize aflatoxin in agroecology III (log y=0.1956034+0.510379x, R 2 =0.57, P<0.001) supporting A. parasiticus as the dominant etiologic agent of aflatoxin contamination in Zambia. Communities in both non-cultivated and cultivated soils were dominated by A. parasiticus (69% and 58%, respectively). Aspergillus parasiticus from cultivated and non-cultivated land produced statistically similar concentrations of aflatoxins. Aflatoxin-producers causing contamination of crops in Zambia may be native and, originate from non-cultivated areas

  7. Transcriptomic responses of the biocontrol yeast Pichia anomala to aflatoxigenic Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of Aspergillus flavus. The molecular mechanism of biological control was further characterized by the temporal transcriptome response of P. anomala to A. flavus in...

  8. Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic A.flavus active ingredients

    USDA-ARS?s Scientific Manuscript database

    Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development. The disp...

  9. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize.

    PubMed

    Atehnkeng, J; Ojiambo, P S; Ikotun, T; Sikora, R A; Cotty, P J; Bandyopadhyay, R

    2008-10-01

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic and a public health concern. Therefore, strategies for controlling aflatoxin contamination in maize are being investigated. The abilities of eleven naturally occurring atoxigenic isolates in Nigeria to reduce aflatoxin contamination in maize were evaluated in grain competition experiments and in field studies during the 2005 and 2006 growing seasons. Treatments consisted of inoculation of either grains in vials or ears at mid-silking stage in field plots, with the toxigenic isolate (La3228) or atoxigenic isolate alone and co-inoculation of each atoxigenic isolate and La3328. Aflatoxin B(1) + B(2) concentrations were significantly (p < 0.05) lower in the co-inoculation treatments compared with the treatment in which the aflatoxin-producing isolate La3228 was inoculated alone. Relative levels of aflatoxin B(1) + B(2) reduction ranged from 70.1% to 99.9%. Among the atoxigenics, two isolates from Lafia, La3279 and La3303, were most effective at reducing aflatoxin B(1) + B(2) concentrations in both laboratory and field trials. These two isolates have potential value as agents for the biocontrol of aflatoxin contamination in maize. Because these isolates are endemic to West Africa, they are both more likely than introduced isolates to be well adapted to West African environments and to meet regulatory concerns over their use throughout that region.

  10. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus can colonize important food staples and produces aflatoxins, toxic and carcinogenic secondary metabolites. In silico analysis of the A. flavus genome revealed 56 gene clusters encoding for secondary metabolites. How these many of these metabolites affect fungal development, surviv...

  11. Potential involvement of Aspergillus flavus laccases in peanut invasion at low water potential

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus (Link) accumulates aflatoxins in peanuts, mainly affecting immature kernels during drought. Peanut invasion by A. flavus induces synthesis of phytoalexins, mostly stilbenoids, as a plant defense mechanism. Fungal laccases are often related to pathogenicity, and among other subst...

  12. Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus.

    PubMed

    Xing, Fuguo; Wang, Limin; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Liu, Yang

    2017-09-01

    Twenty Aspergillus niger strains were isolated from peanuts and 14 strains were able to completely inhibit AFB 1 production with co-cultivation. By using a Spin-X centrifuge system, it was confirmed that there are some soluble signal molecules or antibiotics involved in the inhibition by A. niger, although they are absent during the initial 24h of A. flavus growth when it is sensitive to inhibition. In A. flavus, 19 of 20 aflatoxin biosynthetic genes were down-regulated by A. niger. Importantly, the expression of aflS was significantly down-regulated, resulting in a reduction of AflS/AflR ratio. The results suggest that A. niger could directly inhibit AFB 1 biosynthesis through reducing the abundance of aflS to aflR mRNAs. Interestingly, atoxigenic A. flavus JZ2 and GZ15 effectively degrade AFB 1 . Two new metabolites were identified and the key toxic lactone and furofuran rings both were destroyed and hydrogenated, meaning that lactonase and reductase might be involved in the degradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biological Control of Aflatoxin Contamination in U.S. Crops and the Use of Bioplastic Formulations of Aspergillus flavus Biocontrol Strains To Optimize Application Strategies.

    PubMed

    Abbas, Hamed K; Accinelli, Cesare; Shier, W Thomas

    2017-08-23

    Aflatoxin contamination has a major economic impact on crop production in the southern United States. Reduction of aflatoxin contamination in harvested crops has been achieved by applying nonaflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their numbers at the site of application. Currently, the standard method for applying biocontrol A. flavus strains to soil is using a nutrient-supplying carrier (e.g., pearled barley for Afla-Guard). Granules of Bioplastic (partially acetylated corn starch) have been investigated as an alternative nutritive carrier for biocontrol agents. Bioplastic granules have also been used to prepare a sprayable biocontrol formulation that gives effective reduction of aflatoxin contamination in harvested corn kernels with application of much smaller amounts to leaves later in the growing season. The ultimate goal of biocontrol research is to produce biocontrol systems that can be applied to crops only when long-range weather forecasting indicates they will be needed.

  14. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov.

    PubMed

    Frisvad, Jens C; Skouboe, Pernille; Samson, Robert A

    2005-07-01

    Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded

  15. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize

    USDA-ARS?s Scientific Manuscript database

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of any maize gene sequence with resistance under field conditions. Reso...

  16. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The zinc finger transcription factor nsdC is required for both sexual development and aflatoxin production in the saprophytic fungus Aspergillus flavus. While previous work with an nsdC knockout mutant was conducted in Aspergillus nidulans and A. flavus strain 3357, here we demonstrate perturbations...

  17. Hyperspectral image classification and development of fluorescence index for single corn kernels infected with Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites predominantly produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  18. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production.

    PubMed

    Sindhu, S; Chempakam, B; Leela, N K; Suseela Bhai, R

    2011-05-01

    Turmeric is well known for a wide range of medicinal properties. Essential oil of turmeric leaves (Curcuma longa L.) were evaluated at varying concentrations of 0.01, 0.05, 0.1, 0.5, 0.75, 1.0 and 1.5% (v/v) in Yeast Extract Sucrose (YES) broth inoculated with spore suspension of Aspergillus flavus of 10(6)conidia/ml. These were evaluated for their potential in the control of aflatoxigenic fungus A. flavus and aflatoxin production. Turmeric leaf oil exhibited 95.3% and 100% inhibition of toxin production respectively at 1.0% and 1.5%. The extent of inhibition of fungal growth and aflatoxin production was dependent on the concentration of essential oil used. The oil exhibited significant inhibition of fungal growth as well as aflatoxins B(1) and G(1) production. The LD(50) and LD(90) were also determined. GC-MS analysis of the oil showed α-phellandrene, p-cymene and terpinolene as the major components in turmeric leaf oil. The possibility of using these phytochemical components as bio-preservatives for storage of spices is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.

    PubMed

    Yin, Hsin-Bai; Chen, Chi-Hung; Kollanoor-Johny, Anup; Darre, Michael J; Venkitanarayanan, Kumar

    2015-09-01

    Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed. © 2015 Poultry Science Association Inc.

  20. A two-dimensional proteome map of the aflatoxigenic fungus Aspergillus flavus.

    PubMed

    Pechanova, Olga; Pechan, Tibor; Rodriguez, Jose M; Williams, W Paul; Brown, Ashli E

    2013-05-01

    The filamentous fungus Aspergillus flavus is an opportunistic soil-borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel-based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI-TOF-MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative transcriptome analysis of Aspergillus flavus isolates under different oxidative stresses and culture media

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...

  2. Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin B1 production by Aspergillus flavus.

    PubMed

    Ismaiel, Ahmed A; Ghaly, Mohamed F; El-Naggar, Ayman K

    2011-05-01

    The association of kefir microbiota was observed by electron microscopic examination. Scanning electron microscopic (SEM) observations revealed that kefir grain surface is very rough and the inner portions had scattered irregular holes on its surface. The interior of the grain comprised fibrillar materials which were interpreted as protein, lipid and a soluble polysaccharide, the kefiran complex that surrounds yeast and bacteria in the grain. Yeast was observed more clearly than bacteria on the outer portion of the grain. Transmission electron microscopic (TEM) observations of kefir revealed that the grain comprised a mixed culture of yeast and bacteria growing in close association with each other. Microbiota is dominated by budded and long-flattened yeast cells growing together with lactobacilli and lactococci bacteria. Bacterial cells with rounded ends were also observed in this mixed culture. Kefir grains, kefir suspensions, and kefiran were tested for antimicrobial activities against several bacterial and fungal species. The highest activity was obtained against Streptococcus faecalis KR6 and Fusarium graminearum CZ1. Growth of Aspergillus flavus AH3 producing for aflatoxin B1 for 10 days in broth medium supplemented with varying concentrations of kefir filtrate (%, v/v) showed that sporulation was completely inhibited at the higher concentrations of kefir filtrate (7-10%, v/v). The average values of both mycelial dry weights and aflatoxin B1 were completely inhibited at 10% (v/v). This is the first in vitro study about the antifungal characteristics of kefir against filamentous fungi which was manifested by applying its inhibitory effect on the productivity of aflatoxin B1 by A. flavus AH3.

  3. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability.

    PubMed

    Fountain, Jake C; Koh, Jin; Yang, Liming; Pandey, Manish K; Nayak, Spurthi N; Bajaj, Prasad; Zhuang, Wei-Jian; Chen, Zhi-Yuan; Kemerait, Robert C; Lee, R Dewey; Chen, Sixue; Varshney, Rajeev K; Guo, Baozhu

    2018-02-21

    Aspergillus flavus is an opportunistic pathogen of plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress also exacerbates aflatoxin production by A. flavus. The objectives of this study were to use proteomics to provide insights into the pathogen responses to H 2 O 2 -derived oxidative stress, and to identify potential biomarkers and targets for host resistance breeding. Three isolates, AF13, NRRL3357, and K54A with high, moderate, and no aflatoxin production, were cultured in medium supplemented with varying levels of H 2 O 2 , and examined using an iTRAQ (Isobaric Tags for Relative and Absolute Quantification) approach. Overall, 1,173 proteins were identified and 220 were differentially expressed (DEPs). Observed DEPs encompassed metabolic pathways including antioxidants, carbohydrates, pathogenicity, and secondary metabolism. Increased lytic enzyme, secondary metabolite, and developmental pathway expression in AF13 was correlated with oxidative stress tolerance, likely assisting in plant infection and microbial competition. Elevated expression of energy and cellular component production in NRRL3357 and K54A implies a focus on oxidative damage remediation. These trends explain isolate-to-isolate variation in oxidative stress tolerance and provide insights into mechanisms relevant to host plant interactions under drought stress allowing for more targeted efforts in host resistance research.

  4. Recombination and cryptic heterokaryosis in experimental populations of Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus infects both plants and animals, and is of toxicological importance due to its production of aflatoxins (AFs) and other mycotoxins. Mycotoxins can cause agricultural losses totaling upwards of $1.4 billion annually. Recent efforts to reduce AF concentrations have focused on the us...

  5. Characterization of toxigenic and atoxigenic Aspergillus flavus isolates from pistachio

    USDA-ARS?s Scientific Manuscript database

    Thirty eight Aspergillus flavus isolates collected from a pistachio orchard in California were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs) and mating types. All toxigenic isolates produced both AFB1 and CPA. Twenty-one percent of the i...

  6. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production

    USDA-ARS?s Scientific Manuscript database

    Contamination of crops with aflatoxin is a serious threat to global food safety. Aflatoxin production by Aspergillus flavus has been shown to be exacerbated by drought stress in the field and by oxidative stress in vitro. We examined the transcriptomes of three toxigenic and three atoxigenic isolate...

  7. RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  8. Gene expression profiles of Aspergillus flavus isolates responding to oxidative stress in different culture media

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut by Aspergillus flavus is exacerbated by drought stress. Drought also stimulates the production of reactive oxygen species (ROS) in plant tissues implying a correlation between ROS and aflatoxin production. Here, we performed gene expression analysis by RNAseq of tox...

  9. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.

    PubMed

    Alaniz Zanon, María Silvina; Clemente, María Paz; Chulze, Sofía Noemí

    2018-07-20

    Aspergillus flavus is an opportunistic pathogen and may produce aflatoxins in maize, one of the most important crops in Argentina. A promising strategy to reduce aflatoxin accumulation is the biological control based on competitive exclusion. In order to select potential biocontrol agents among isolates from the maize growing region in Argentina, a total of 512 A. flavus strains were isolated from maize kernels and soil samples. Thirty-six per cent of the isolates from maize kernels did not produce detectable levels of aflatoxins, while 73% of the isolates from soil were characterized as non-aflatoxin producers. Forty percent and 49% of the isolates from maize kernels and soil samples, respectively, were not producers of cyclopiazonic acid (CPA). Sclerotia morphology was evaluated using Czapek Dox media. Eighty-six per cent of the isolates from maize kernels and 85% of the isolates from soil samples were L sclerotia morphotype (average diameter > 400 μm). The remaining isolates did not produce sclerotia. All isolates had MAT 1-1 idiomorph. The competitive ability of 9 non aflatoxigenic strains, 4 CPA(+) and 5 CPA(-), was evaluated in co-inoculations of maize kernels with an aflatoxigenic strain. All evaluated strains significantly (p < 0.05) reduced aflatoxin contamination in maize kernels. The aflatoxin B 1 (AFB 1 ) reduction ranged from 6 to 60%. The strain A. flavus ARG5/30 isolated from maize kernels would be a good candidate as a potential biocontrol agent to be used in maize, since it was characterized as neither aflatoxin nor CPA producer, morphotype L, MAT 1-1 idiomorph, and reduced AFB 1 content in maize kernels by 59%. This study showed the competitive ability of potential aflatoxin biocontrol agents to be evaluated under field trials in a maize agro-ecosystem in Argentina. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    PubMed

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents. Copyright © 2016. Published by Elsevier B.V.

  11. Stimulation by Hyphopichia burtonii and Bacillus amyloliquefaciens of aflatoxin production by Aspergillus flavus in irradiated maize and rice grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuero, R.G.; Smith, J.E.; Lacey, J.

    Aspergillus flavus was grown on maize and rice extract agars and on irradiated viable cracked maize and rice grains, either in pure culture or in dual culture with wild strains of either Hyphopichia burtonii or Bacillus amyloliquefaciens. Aflatoxin production by A. flavus and its growth and interactions with the other microorganisms were studied at three water activities (a/sub w/) (0.98, 0.95, and 0.90) and two temperatures (25 and 16/sup 0/C). Both H. burtonii and B. amyloliquefaciens markedly stimulated growth and aflotoxin production by A. flavus on cracked maize, especially at 25/sup 0/C and 0.95 and 0.98 a/sub w/. No aflatoxinmore » was detected in pure cultures of A. flavus on cracked rice after 12 days of incubation at 25/sup 0/C, but some was produced by mixed cultures at 16/sup 0/C and 0.98 a/sub w/. The morphological interactions among A. flavus, H. burtonii, and B. amyloliquefaciens were also examined on maize and rice extract agars under similar controlled conditions.« less

  12. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae.

    PubMed

    Kim, Nam Yeun; Lee, Jin Hee; Lee, Inhyung; Ji, Geun Eog

    2014-06-01

    To date, edible fungi such as Aspergillus flavus var. oryzae (A. oryzae) has been considered as safe. However, some strains can produce mycotoxins. Thus, the biosynthetic ability to produce mycotoxins should be reevaluated to determine the safety of edible fungi. We analyzed the production of aflatoxins and cyclopiazonic acid (CPA) from edible fungi such as A. oryzae isolated from various Korean foods using multiplex PCR, enzyme-linked immunosorbent assay, and high-performance liquid chromatography (HPLC). In the multiplex PCR analysis of aflatoxin biosynthetic genes omtB, aflR, ver-1, and omtA, 5 of 19 Aspergillus strains produced all PCR products. Among them, aflatoxin B1 and aflatoxin B2 were detected from only A. flavus KACC 41403 by HPLC. Aflatoxins were not detected from the other four strains that produced all positive PCR bands. Aflatoxin also was not detected from 12 strains that had PCR patterns without aflR or ver-1 and from 2 strains that did not produce any of the expected PCR products. Only the seven A. oryzae strains that produced all of the positive PCR bands including the CPA biosynthetic genes maoA, dmaT, and pks-nrps produced CPA. CPA and aflatoxin production must be evaluated before A. oryzae strains are used for the development of fermented foods.

  13. Integrated transcriptome and proteome analyses reveal a close association between secondary metabolite production capabilities and Aspergillus flavus isolate oxidative stress tolerance

    USDA-ARS?s Scientific Manuscript database

    The contamination of crops with aflatoxins during Aspergillus flavus infection is exacerbated by drought stress. Reactive oxygen species have been shown to be produced in plant tissues in response to drought and to stimulate the production of aflatoxin by A. flavus in vitro. To better understand the...

  14. Field Assessment of Non-toxigenic Aspergillus flavus Strain K49 in Competitive Displacement of Toxigenic Isolates

    USDA-ARS?s Scientific Manuscript database

    Non-toxigenic strains of Aspergillus flavus offer the potential to control aflatoxin contamination by competitive displacement of indigenous populations of A. flavus colonizing corn grain. Two sets of experiments were conducted to assess the competitiveness of strain K49 when challenged against two...

  15. Sexual reproduction in Aspergillus flavus sclerotia: acquisition of novel alleles from soil populations and uniparental mitochondrial inheritance

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. ...

  16. Occupational exposure to airborne fungi among rice mill workers with special reference to aflatoxin producing A. flavus strains.

    PubMed

    Desai, Manisha Rajib; Ghosh, Sandip

    2003-01-01

    A study was undertaken on environmental mycoflora of rice mills situated in Bawla town, Ahmedabad district. The airborne fungal communities were isolated and identified quantitatively by using Andersen-6-stage viable sampler, midget impinger and high volume samplers (Cone and Hexhlet for total and respirable dusts respectively). Of all the isolates, genus Aspergillus was predominant and among the Aspergillus species, A. flavus was the common isolate, irrespective of the method applied for sample collection. Number of isolates recovered from the working place was significantly greater (p < 0.01) compared to control. Total percentage of aflatoxin positive strains of A. flavus was 8 %. These aflatoxin producing strains were identified on various media, such as Czapek agar (Cz) with 0.05 % anisaldehyde, APA and CAM. Surface morphology of aflatoxin positive strains was studied by SEM. Highly significant total and respirable dust concentrations were found in the work place (p < 0.01) whereas in the store, only the total dust concentration was significantly higher (p < 0.05) than the control site. The study indicates that the rice mill workers are occupationally exposed to airborne aflatoxin producing strains of A. flavus. Thus, they require protective mask for their safety.

  17. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.

    PubMed

    Bhatnagar-Mathur, Pooja; Sunkara, Sowmini; Bhatnagar-Panwar, Madhurima; Waliyar, Farid; Sharma, Kiran Kumar

    2015-05-01

    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Sequence of host contact influences the outcome of competition among Aspergillus flavus isolates during host tissue invasion

    USDA-ARS?s Scientific Manuscript database

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved by competitive exclusion of aflatoxin producers by atoxigenic strains. However, factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of preemptive exclusion in...

  19. RNA-seq analysis of an nsdC mutant in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The C2H2-type transcription factor NsdC (Never in Sexual Development C) has been shown to play a role in asexual development and secondary metabolite production in Aspergillus flavus, an agriculturally relevant, aflatoxin-producing species. The nsdC knoackout mutant demonstrates perturbed morphologi...

  20. Analysis of genetic and aflatoxin diversity among Aspergillus flavus isolates collected from sorghum seeds

    USDA-ARS?s Scientific Manuscript database

    A total of 34 A. flavus isolates were recovered from sorghum seeds sampled across five states in India. Our study included (1) species confirmation through PCR assay, (2) an aflatoxin cluster genotype assay using developed multiplex PCR, (3) quantification of total aflatoxin concentrations by the iC...

  1. Testing the efficacy of eGFP-transformed Aspergillus flavus as biocontrol strains

    USDA-ARS?s Scientific Manuscript database

    Current biological control methods to prevent pre-harvest aflatoxin contamination of corn, cottonseed, and ground and tree nuts involve field inoculation of non-aflatoxigenic Aspergillus flavus. To date, the efficacy of this approach requires annual reapplication of the biocontrol agent. The reason ...

  2. Direct genetic evidence to support the presence of sexual recombination within the life cycle of Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus contaminates many important crops worldwide and is the major producer of aflatoxins, which are cancer-causing secondary metabolites. In the United States, mycotoxins have been estimated to cause agricultural losses totaling upwards of $1.4 billion annually, with aflatoxin contamin...

  3. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The fungus Aspergillus flavus is known for its ability to produce the toxic and carcinogenic aflatoxins in food and feed. While aflatoxins are of most concern, A. flavus is predicted to be capable of producing many more metabolites based on a study of its complete genome sequence. Some of these meta...

  4. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  5. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection.

    PubMed

    Chang, Perng-Kuang; Zhang, Qi; Scharfenstein, Leslie; Mack, Brian; Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2018-06-01

    Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B 2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 μg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 μg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.

  6. The 14-3-3 homolog, ArtA, regulates development and secondary metabolism in the opportunistic plant pathogen Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The opportunistic plant pathogenic fungus Aspergillus flavus produces carcinogenic mycotoxins denominated aflatoxins (AFs). Aflatoxin contamination of agriculturally important crops such as maize, peanut, sorghum and tree nuts is responsible for serious adverse health and economic impacts worldwide....

  7. Use of response surface methodology to study the effect of media composition on aflatoxin production by Aspergillus flavus.

    PubMed

    Ahmad, Mahboob; Ahmad, Malik M; Hamid, Rifat; Abdin, M Z; Javed, Saleem

    2013-02-01

    Aflatoxins are one of the most important secondary metabolites. These extrolites are produced by a number of Aspergillus fungi. In this study, we demonstrate the effect of media components and enhanced aflatoxin yield shown by A. flavus using response surface methodology in response to different nutrients. Different components of a chemically defined media that influence the aflatoxin production were monitored using Plackett-Burman experimental design and further optimized by Box-Behnken factorial design of response surface methodology in liquid culture. Interactions were studied with five variables, namely sorbitol, fructose, ammonium sulfate, KH(2)PO(4), and MgSO(4).7H(2)O. Maximum aflatoxin production was envisaged in medium containing 4.94 g/l sorbitol, 5.56 g/l fructose, 0.62 g/l ammonium sulfate, 1.33 g/l KH(2)PO(4), and 0.65 g/l MgSO(4)·7H(2)O using response surface plots and the point prediction tool of the DESIGN EXPERT 8.1.0 (Stat-Ease, USA) software. However, a production of 5.25 μg/ml aflatoxin production was obtained, which was in agreement with the prediction observed in verification experiment. The other component (MgSO(4).7H(2)O) was found to be an insignificant variable.

  8. FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments.

    PubMed

    Garon, David; El Kaddoumi, Anne; Carayon, Alexandra; Amiel, Caroline

    2010-08-01

    In agricultural areas, Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus are commonly identified in various feedstuffs and bioaerosols originated from feed handling. Some isolates belonging to these fungal species could produce mycotoxins and constitute a risk factor for human and animal health. In this study, Fourier-transform infrared spectroscopy was used for a rapid detection and characterization of 99 isolates collected from agricultural areas. The results showed a first cluster corresponding to strains previously attributed to the A. fumigatus group according to current taxonomic concepts, and a second cluster divided in 2 groups around reference strains of A. flavus and A. parasiticus species. The toxigenic capacity of isolates was evaluated by high performance liquid chromatography coupled to mass spectrometry. In the A. flavus group, only 6 strains of A. parasiticus and 4 strains of A. flavus were able to produce aflatoxins on culture media. FT-IR spectroscopy, respectively, allowed the differentiation of non-toxigenic and toxigenic A. flavus and A. parasiticus isolates at 75 and 100%. Discrimination between toxigenic and non-toxigenic A. fumigatus was not possible because all of the isolates produced at least one mycotoxin.

  9. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    PubMed

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-13

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  10. Multilocus variable-number tandem-repeat analysis of clinical isolates of Aspergillus flavus from Iran reveals the first cases of Aspergillus minisclerotigenes associated with human infection

    PubMed Central

    2014-01-01

    Background Aspergillus flavus is intensively studied for its role in infecting crop plants and contaminating produce with aflatoxin, but its role as a human pathogen is less well understood. In parts of the Middle East and India, A. flavus surpasses A. fumigatus as a cause of invasive aspergillosis and is a significant cause of cutaneous, sinus, nasal and nail infections. Methods A collection of 45 clinical and 10 environmental A. flavus isolates from Iran were analysed using Variable-Number Tandem-Repeat (VNTR) markers with MICROSAT and goeBURST to determine their genetic diversity and their relatedness to clinical and environmental A. flavus isolates from Australia. Phylogeny was assessed using partial β-tubulin and calmodulin gene sequencing, and mating type was determined by PCR. Antifungal susceptibility testing was performed on selected isolates using a reference microbroth dilution method. Results There was considerable diversity in the A. flavus collection, with no segregation on goeBURST networks according to source or geographic location. Three Iranian isolates, two from sinus infections and one from a paranasal infection grouped with Aspergillus minisclerotigenes, and all produced B and G aflatoxin. Phylogenic analysis using partial β-tubulin and calmodulin sequencing confirmed two of these as A. minisclerotigenes, while the third could not be differentiated from A. flavus and related species within Aspergillus section flavi. Based on epidemiological cut-off values, the A. minisclerotigens and A. flavus isolates tested were susceptible to commonly used antifungal drugs. Conclusions This is the first report of human infection due to A. minisclerotigenes, and it raises the possiblity that other species within Aspergillus section flavi may also cause clinical disease. Clinical isolates of A. flavus from Iran are not distinct from Australian isolates, indicating local environmental, climatic or host features, rather than fungal features, govern the high

  11. Transcriptome analysis of Aspergillus flavus reveals isolate specific gene profiles in the response to oxidative stresses and carbon sources in vitro

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut and maize is exacerbated by drought stress. Reactive oxygen species (ROS) are produced in host plants during drought/heat stress, and are hypothesized to stimulate aflatoxin production. In order to better understand why Aspergillus flavus produces aflatoxin and the ...

  12. Toxigenic Aspergillus flavus and other fungi of public health concern in food and organic matter in southwest Nigeria

    USDA-ARS?s Scientific Manuscript database

    Six Aspergillus flavus isolates out of 17 fungal isolates were sampled from diverse food and organic matter in southwest Nigeria. All the A. flavus samples produced aflatoxin and cyclopiazonic acid. These six isolates constitute a ready mycobank of toxigenic species for analytical research involving...

  13. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    NASA Astrophysics Data System (ADS)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  14. Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation.

    PubMed

    Pechanova, Olga; Pechan, Tibor; Williams, W Paul; Luthe, Dawn S

    2011-01-01

    Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear that delivers essential nutrients to the developing kernels and A. flavus spreads through the rachis to infect kernels within the ear. Therefore, rachis plays an important role in fungal proliferation and subsequent kernel contamination. We used proteomic approaches and investigated the rachis tissue from aflatoxin accumulation resistant (Mp313E and Mp420) and susceptible (B73 and SC212m) maize inbred lines. First, we compared rachis proteins from resistant and susceptible inbred lines, which revealed that the young resistant rachis contains higher levels of abiotic stress-related proteins and proteins from phenylpropanoid metabolism, whereas susceptible young rachis contains pathogenesis-related proteins, which are generally inducible upon biotic stress. Second, we identified A. flavus-responsive proteins in rachis of both resistant and susceptible genotypes after 10- and 35-day infection. Differential expression of many stress/defense proteins during rachis juvenility, maturation and after A. flavus challenge demonstrates that resistant rachis relies on constitutive defenses, while susceptible rachis is more dependent on inducible defenses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards

    USDA-ARS?s Scientific Manuscript database

    The atoxigenic strain Aspergillus flavus AF36, which has been extensively used as a biocontrol agent in commercial corn and cotton fields to reduce aflatoxin contamination, was applied in research pistachio orchards from 2002 to 2005 and in commercial pistachio orchards from 2008 to 2011. AF36 was a...

  16. Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon ...

  17. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize

    PubMed Central

    2010-01-01

    Background Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. Results In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. Conclusions CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query

  18. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize.

    PubMed

    Kelley, Rowena Y; Gresham, Cathy; Harper, Jonathan; Bridges, Susan M; Warburton, Marilyn L; Hawkins, Leigh K; Pechanova, Olga; Peethambaran, Bela; Pechan, Tibor; Luthe, Dawn S; Mylroie, J E; Ankala, Arunkanth; Ozkan, Seval; Henry, W B; Williams, W P

    2010-10-07

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database

  19. Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a saprophytic fungus that infects corn, peanuts, tree nuts and other agriculturally important crops. Once the crop is infected the fungus has the potential to secrete one or more mycotoxins, the most carcinogenic of which is aflatoxin. Aflatoxin contaminated crops are deemed un...

  20. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.

    PubMed

    Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D

    2010-05-01

    The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to

  1. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination

  2. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus

    PubMed Central

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination

  3. Comparative histological and transcriptional analysis of maize kernels infected with Aspergillus flavus and Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin and fumonisin, respectively. Combined histological examination of fungal colonization and transcriptional changes in maize kernels at 4, 12, 24, 48, and 72 hours post inoculation (...

  4. Environmental interactions that influence secondary metabolism and development in the saprophytic crop pathogen Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a pathogenic and opportunistic fungus that can infect several crops of agricultural importance and has the potential to produce carcinogenic mycotoxins such as aflatoxin. Predicted changes in global temperatures, precipitation patterns and carbon dioxide levels are expected to ...

  5. Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AF). Besides AF, A. flavus makes many more secondary metabolites (SMs), whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hos...

  6. Inhibition of aflatoxin metabolism and growth of Aspergillus flavus in liquid culture by a DNA methylation inhibitor.

    PubMed

    Yang, Kunlong; Zhuang, Zhenhong; Zhang, Feng; Song, Fengqin; Zhong, Hong; Ran, Fanlei; Yu, Song; Xu, Gaopo; Lan, Faxiu; Wang, Shihua

    2015-01-01

    Aflatoxins (AFs) are a group of highly oxygenated polyketidese-derived toxins mainly produced by Aspergillus flavus and A. parasiticus, whose biosynthesis mechanisms are extremely sophisticated. Methylation is known as the major form of epigenetic regulation, which is correlated with gene expression. As the DNA methylation inhibitor 5-azacytidine (5-AC) blocks AF production, we studied AFB1 metabolism and morphological changes of A. flavus by treatment with 5-AC in liquid culture. The results show that 5-AC caused a decrease in AF production and concurrent changes in morphology. In addition, we isolated a non-aflatoxigenic mutant of A. flavus, showing a significant reduction in pigment production, after 5-AC treatment. This mutant showed significant reduction in the expression of genes in the AF biosynthesis pathway, and conidia formation. Furthermore, as AF biosynthesis and oxidative stress are intimately related events, we assessed the viability of A. flavus to oxidative stress after treatment with 5-AC, which showed that the mutant was more sensitive to the strong oxidant hydrogen peroxide. We found that the non-aflatoxigenic mutant showed a decrease in reactive oxygen species (ROS) and metabolites indicative of oxidative stress, which may be caused by the disruption of the defence system against excessive ROS formation after 5-AC treatment. These data indicate that 5-AC, as an inactivator of DNA methyltransferase, plays a very important role in AFB1 metabolism and the development of A. flavus, which might provide an effective strategy to pre- or post-harvest control of AFs.

  7. The Master Transcription Factor mtfA Governs Aflatoxin Production, Morphological Development and Pathogenicity in the Fungus Aspergillus flavus.

    PubMed

    Zhuang, Zhenhong; Lohmar, Jessica M; Satterlee, Timothy; Cary, Jeffrey W; Calvo, Ana M

    2016-01-20

    Aspergillus flavus produces a variety of toxic secondary metabolites; among them, the aflatoxins (AFs) are the most well known. These compounds are highly mutagenic and carcinogenic, particularly AFB₁. A. flavus is capable of colonizing a number of economically-important crops, such as corn, cotton, peanut and tree nuts, and contaminating them with AFs. Molecular genetic studies in A. flavus could identify novel gene targets for use in strategies to reduce AF contamination and its adverse impact on food and feed supplies worldwide. In the current study, we investigated the role of the master transcription factor gene mtfA in A. flavus. Our results revealed that forced overexpression of mtfA results in a drastic decrease or elimination of several secondary metabolites, among them AFB₁. The reduction in AFB₁ was accompanied by a decrease in aflR expression. Furthermore, mtfA also regulates development; conidiation was influenced differently by this gene depending on the type of colonized substrate. In addition to its effect on conidiation, mtfA is necessary for the normal maturation of sclerotia. Importantly, mtfA positively affects the pathogenicity of A. flavus when colonizing peanut seeds. AF production in colonized seeds was decreased in the deletion mtfA strain and particularly in the overexpression strain, where only trace amounts were detected. Interestingly, a more rapid colonization of the seed tissue occurred when mtfA was overexpressed, coinciding with an increase in lipase activity and faster maceration of the oily part of the seed.

  8. Suppression of aflatoxin production in Aspergillus species by selected peanut (Arachis hypogaea) stilbenoids

    USDA-ARS?s Scientific Manuscript database

    Aspergillus (A.) flavus is a soil fungus that commonly invades peanut seeds and often produces the carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such invasion. These prenylate...

  9. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by phenolic compounds extracted of Piper betle L.

    PubMed

    Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar

    2013-12-01

    Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.

  10. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds.

    PubMed

    Lahouar, Amani; Marin, Sonia; Crespo-Sempere, Ana; Saïd, Salem; Sanchis, Vicente

    2016-01-01

    Sorghum, which is consumed in Tunisia as human food, suffers from severe colonization by several toxigenic fungi and contamination by mycotoxins. The Tunisian climate is characterized by high temperature and humidity that stimulates mold proliferation and mycotoxin accumulation in foodstuffs. This study investigated the effects of temperature (15, 25 and 37°C), water activity (aw, between 0.85 and 0.99) and incubation time (7, 14, 21 and 28 d) on fungal growth and aflatoxin B1 (AFB1) production by three Aspergillus flavus isolates (8, 10 and 14) inoculated on sorghum grains. The Baranyi model was applied to identify the limits of growth and mycotoxin production. Maximum diameter growth rates were observed at 0.99 a(w) at 37°C for two of the isolates. The minimum aw needed for mycelial growth was 0.91 at 25 and 37°C. At 15°C, only isolate 8 grew at 0.99 a(w). Aflatoxin B1 accumulation could be avoided by storing sorghum at low water activity levels (≤0.91 a(w)). Aflatoxin production was not observed at 15°C. This is the first work on the effects of water activity and temperature on A. flavus growth and AFB1 production by A. flavus isolates on sorghum grains. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. An attempt to model the probability of growth and aflatoxin B1 production of Aspergillus flavus under non-isothermal conditions in pistachio nuts.

    PubMed

    Aldars-García, Laila; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2015-10-01

    Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four theoretical temperature scenarios, including temperature levels observed in pistachio nuts during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. Logistic models, with temperature and time as explanatory variables, were fitted to the probability of growth and AFB1 production under a constant temperature. Subsequently, they were used to predict probabilities under non-isothermal scenarios, with levels of concordance from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information obtained in the present work could be used by producers and processors to predict the time for AFB1 production by A. flavus on pistachio nuts during transport and storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Aspergillus and aflatoxin in groundnut (Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia.

    PubMed

    Mohammed, Abdi; Chala, Alemayehu; Dejene, Mashilla; Fininsa, Chemeda; Hoisington, David A; Sobolev, Victor S; Arias, Renee S

    2016-12-01

    This study was conducted to assess major Aspergillus species and aflatoxins associated with groundnut seeds and cake in Eastern Ethiopia and evaluate growers' management practices. A total of 160 groundnut seed samples from farmers' stores and 50 groundnut cake samples from cafe and restaurants were collected. Fungal isolation was done from groundnut seed samples. Aspergillus flavus was the dominant species followed by Aspergillus parasiticus. Aflatoxin analyses of groundnut seed samples were performed using ultra performance liquid chromatography; 22.5% and 41.3% of samples were positive, with total aflatoxin concentrations of 786 and 3135 ng g -1 from 2013/2014 and 2014/2015 samples, respectively. The level of specific aflatoxin concentration varied between 0.1 and 2526 ng g -1 for B 2 and B 1 , respectively. Among contaminated samples of groundnut cake, 68% exhibited aflatoxin concentration below 20 ng g -1 , while as high as 158 ng g -1 aflatoxin B 1 was recorded. The study confirms high contamination of groundnut products in East Ethiopia.

  13. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize.

    PubMed

    Warburton, Marilyn L; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J Erik; Shan, Xueyan

    2011-07-01

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  14. Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action.

    PubMed

    Kedia, Akash; Dwivedy, Abhishek Kumar; Jha, Dhruva Kumar; Dubey, Nawal Kishore

    2016-05-01

    The present study reports in vivo antifungal and antiaflatoxigenic efficacy of Mentha spicata essential oil (EO) against toxigenic Aspergillus flavus strain LHP(C)-D6 in chickpea food system up to 12 months of storage. In addition, the mode of antifungal action of EO was also determined to understand the mechanism of fungal growth inhibition. The in vivo study with different concentrations of M. spicata EO showed dose-dependent decrease in fungal colony count as well as aflatoxin B1 concentration. The EO caused >50% protection in inoculated sets and >70% protection in uninoculated sets of chickpea food system against A. flavus at 1.0 μL mL(-1) air concentration. However, at the same concentration, EO caused 100% inhibition to aflatoxin B1 production in both sets when analyzed through high-performance liquid chromatography (HPLC). The antifungal target of EO in fumigated cells of A. flavus was found to be the plasma membrane when analyzed through electron microscopic observations and ions leakage test. The EO fumigated chickpea seeds showed 100% seed germination and seedling growth after 12 months of storage. Based on these observations, M. spicata EO can be recommended as plant-based preservative for safe protection of food commodities during storage conditions against fungal and most importantly mycotoxin contaminations.

  15. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  16. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  17. Genotypic regulation of aflatoxin accumulation but not Aspergillus fungal growth upon post-harvest infection of peanut (Arachis hypogaea L.) seeds

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, Ten genotypes were infected with green fluorescent protein (GFP) - expression Aspergillus flavus strain. Per...

  18. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in S. cerevisiae and rtfA in A. nidulans. Interestingly, rtfA has multiple ...

  19. Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.

    PubMed

    Yogendrarajah, Pratheeba; Devlieghere, Frank; Njumbe Ediage, Emmanuel; Jacxsens, Liesbeth; De Meulenaer, Bruno; De Saeger, Sarah

    2015-12-01

    A liquid chromatography triple quadrupole tandem mass spectrometry method was developed and validated to determine mycotoxins, produced by fungal isolates grown on malt extract agar (MEA). All twenty metabolites produced by different fungal species were extracted using acetonitrile/1% formic acid. The developed method was applied to assess the toxigenic potentiality of Aspergillus flavus (n = 11) and Aspergillus parasiticus (n = 6) strains isolated from black peppers (Piper nigrum L.) following their growth at 22, 30 and 37 °C. Highest mean radial colony growth rates were observed at 30 °C for A. flavus (5.21 ± 0.68 mm/day) and A. parasiticus (4.97 ± 0.33 mm/day). All of the A. flavus isolates produced aflatoxin B1 and O-methyl sterigmatocystin (OMST) while 91% produced aflatoxin B2 (AFB2) and 82% of them produced sterigmatocystin (STERIG) at 30 °C. Except one, all the A. parasiticus isolates produced all the four aflatoxins, STERIG and OMST at 30 °C. Remarkably high AFB1 was produced by some A. flavus isolates at 22 °C (max 16-40 mg/kg). Production of mycotoxins followed a different trend than that of growth rate of both species. Notable correlations were found between different secondary metabolites of both species; R(2) 0.87 between AFB1 and AFB2 production. Occurrence of OMST could be used as a predictor for AFB1 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    PubMed Central

    Mossini, Simone Aparecida Galerani; Ferreira, Francine Maery Dias; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski Junior, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α-turmerone (23.5%) and β-turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants. PMID:24367241

  1. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus link growth and morphology.

    PubMed

    Dias Ferreira, Flávio; Mossini, Simone Aparecida Galerani; Dias Ferreira, Francine Maery; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01-0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  2. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are among the most powerful carcinogens in nature. The major aflatoxin-producing fungi are Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin contamination by these fungi. There has been an increased use of RNA interference (RNAi) technol...

  3. The high-affinity phosphodiesterase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Yang, Kunlong; Liu, Yinghang; Liang, Linlin; Li, Zhenguo; Qin, Qiuping; Nie, Xinyi; Wang, Shihua

    2017-04-01

    Cyclic AMP signaling controls a range of physiological processes in response to extracellular stimuli in organisms. Among the signaling cascades, cAMP, as a second messenger, is orchestrated by adenylate cyclase (biosynthesis) and cAMP phosphodiesterases (PDEs) (hydrolysis). In this study, we investigated the function of the high-affinity (PdeH) and low-affinity (PdeL) cAMP phosphodiesterase from the carcinogenic aflatoxin producing fungus Aspergillus flavus, and found that instead of PdeL, inactivation of PdeH exhibited a reduction in conidiation and sclerotia formation. However, the ΔpdeL/ΔpdeH mutant exhibited an enhanced phenotype defects, a similar phenotype defects to wild-type strain treated with exogenous cAMP. The activation of PKA activity was inhibited in the ΔpdeH or ΔpdeL/ΔpdeH mutant, both of whom exhibited increasing AF production. Further analysis by qRT-PCR revealed that pdeH had a high transcriptional level compared to pdeL in wild-type strain, and affected pdeL transcription. Green fluorescent protein tagging at the C-terminus of PDEs showed that PdeH-GFP is broadly compartmentalized in the cytosol, while PdeL-GFP localized mainly to the nucleus. Overall, our results indicated that PdeH plays a major role, but has overlapping function with PdeL, in vegetative growth, development and AF biosynthesis in A. flavus. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expr...

  5. Community structure of Aspergillus flavus and A. parasiticus in major almond producing areas of California, United States

    USDA-ARS?s Scientific Manuscript database

    Several nut crops including almonds, pistachios, and walnuts can become contaminated with mycotoxins. Of greatest economic significance are aflatoxins, which are mainly produced by members of Aspergillus section Flavi. The distribution of the two sclerotial-size morphotypes of A. flavus (i.e. S and ...

  6. Host-Induced Gene Silencing (HIGS) of aflatoxin synthesis genes in peanut and maize: use of RNA interference and genetic diversity of Aspergillus

    USDA-ARS?s Scientific Manuscript database

    Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...

  7. Detecting peanuts inoculated with toxigenic and atoxienic Aspergillus flavus strains with fluorescence hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang

    2017-05-01

    Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.

  8. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    PubMed

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice. © 2015 Institute of Food Technologists®

  9. Single Aflatoxin Contaminated Corn Kernel Analysis with Fluorescence Hyperspectral Image

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  10. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  11. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance.

    PubMed

    Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.

  12. Developing an in vitro method to assess aflatoxin biosynthesis suppression in Aspergillus flavus through RNAi technologies

    USDA-ARS?s Scientific Manuscript database

    The soil-inhabitant fungus Aspergillus flavus is consistently associated with agronomical fields, where it promptly colonizes important crops such as corn (Zea mays) and peanuts (Arachis hypogaea). The consumption of A. flavus-contaminated of food grains poses a potential threat for human and animal...

  13. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  14. Analysis of the Aspergillus flavus transcriptome reveals a key role of secondary metabolite production in isolate oxidative stress responses

    USDA-ARS?s Scientific Manuscript database

    The purpose of the production of secondary metabolites in fungi are various and include stress responses, competitive antimicrobial activity, and the elimination of toxic compounds. However, the purpose of the production of aflatoxin, a carcinogenic mycotoxin, by Aspergillus flavus, is unknown. Prev...

  15. Inhibitory Effects of Thai Essential Oils on Potentially Aflatoxigenic Aspergillus parasiticus and Aspergillus flavus.

    PubMed

    Jantapan, Kittika; Poapolathep, Amnart; Imsilp, Kanjana; Poapolathep, Saranya; Tanhan, Phanwimol; Kumagai, Susumu; Jermnak, Usuma

    2017-01-01

     The antiaflatoxigenic and antifungal activities of essential oils (EOs) of finger root (Boesenbergia rotunda (L.) Mansf.), pine (Pinus pinaster), rosewood (Aniba rosaedora), Siam benzoin (Styrax tonkinensis), Thai moringa (Moringa oleifera), and ylang ylang (Cananga odorata) were tested for Aspergillus parasiticus and Aspergillus flavus in potato dextrose broth. Aflatoxin B 1 (AFB 1 ) was extracted from culture using a QuEChERS-based extraction procedure and analyzed with high performance liquid chromatography (HPLC) coupled to a fluorescence detector. EO of pine showed the greatest inhibition of growth and AFB 1 production of A. parasiticus, followed by EOs of rosewood, finger root, Siam benzoin, and ylang ylang. EO of finger root gave the best inhibitory effects on A. flavus, followed by EOs of rosewood, pine, ylang ylang, and Siam benzoin. EO of Thai moringa did not show any significant inhibition of aflatoxigenic fungi. The antiaflatoxigenic activities of EOs correlated with their antifungal activities in the dosedependent manner. Comparison of the application of the five selected EOs in peanut pods by direct and vapor exposure indicated that the AFB 1 production inhibitory effects of the five EOs by direct exposure were faster and more effective than by vapor exposure. EO of finger root showed the best inhibition of AFB 1 production of A. flavus in peanut pods by direct exposure, followed by EOs of pine, rosewood, ylang ylang, and Siam benzoin.

  16. Crop stress and aflatoxin contamination: perspectives and prevention strategies.

    USDA-ARS?s Scientific Manuscript database

    The fungal metabolites called aflatoxins are potent naturally occurring carcinogens, produced primarily by Aspergillus flavus and A. parasiticus. A. flavus affects many agricultural crops such as maize, cotton, peanuts, and tree nuts. It can contaminate these crops with aflatoxins in the field befor...

  17. Seed mycoflora of Ephedra aphylla and amino acid profile of seed-borne Aspergillus flavus.

    PubMed

    Al-Qarawi, Abdulaziz A; Hashem, Abeer; Abd-Allah, Elsayed F

    2012-09-01

    Twenty-seven seed samples of Ephedra aphylla were collected from different rangelands in Riyadh region, Saudi Arabia during seed production season of 2010. They were assessed to determine the incidence of seedborne fungal flora using both agar plate and blotter paper methods. The investigation of the seeds yielded thirty four fungal species belonging to twelve genera, which are new record to seed-brone mycoflora of E. aphylla in Saudi Arabia. The agar plate method was found superior over blotter methods. The genus Aspergillus was the most prevalent one followed by Fusarium, Penicillium, Alternaria, and Chaetomium. Only eighteen isolates of A. flavus (∼ 28.6% of total isolates) were able to produce aflatoxins. Mycelial amino acids profile of selected aflatoxigenic isolates of A. flavus was investigated and five amino acids, namely cystein, lysine, praline, tryptophan and valine were common in mycelia and all of them were aflatoxins producers. Based on the dissimilarity coefficient between the isolates and their amino acids patterns, high diversity among the population of A. flavus has been recorded.

  18. Ethylene Inhibits Aflatoxin Biosynthesis in Aspergillus parasiticus Grown on Peanuts

    PubMed Central

    Gunterus, A.; Roze, L.V.; Beaudry, R.; Linz, J. E.

    2007-01-01

    The filamentous fungi Aspergillus parasiticus and A. flavus synthesize aflatoxins when they grow on a variety of susceptible food and feed crops. These mycotoxins are among the most carcinogenic naturally occurring compounds known and they pose significant health risks to humans and animals. We previously demonstrated that ethylene and CO2 act alone and together to reduce aflatoxin synthesis by A. parasiticus grown on laboratory media. To demonstrate the potential efficacy of treatment of stored seeds and grains with these gases, we tested ethylene and CO2 for ability to inhibit aflatoxin accumulation on Georgia Green peanuts stored for up to 5 days. We demonstrated an inverse relationship between A. parasiticus spore inoculum size and the level of toxin accumulation. We showed that ethylene inhibits aflatoxin synthesis in a dose-dependent manner on peanuts; CO2 also inhibits aflatoxin synthesis over a narrow dose range. Treatments had not discernable effect on mold growth. These observations support further exploration of this technology to reduce aflatoxin contamination of susceptible crops in the field and during storage. PMID:17418318

  19. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize.

    PubMed

    Abbas, H K; Zablotowicz, R M; Horn, B W; Phillips, N A; Johnson, B J; Jin, X; Abel, C A

    2011-02-01

    Biological control of toxigenic Aspergillus flavus in maize through competitive displacement by non-aflatoxigenic strains was evaluated in a series of field studies. Four sets of experiments were conducted between 2007 and 2009 to assess the competitiveness of non-aflatoxigenic strains when challenged against toxigenic strains using a pin-bar inoculation technique. In three sets of experiments the non-aflatoxigenic strain K49 effectively displaced toxigenic strains at various concentrations or combinations. The fourth study compared the relative competitiveness of three non-aflatoxigenic strains (K49, NRRL 21882 from Afla-Guard®, and AF36) when challenged on maize against two aflatoxin- and cyclopiazonic acid (CPA)-producing strains (K54 and F3W4). These studies indicate that K49 and NRRL 21882 are superior to AF36 in reducing total aflatoxin contamination. Neither K49 nor NRRL 21882 produce CPA and when challenged with K54 and F3W4, CPA and aflatoxins were reduced by 84-97% and 83-98%, respectively. In contrast, AF36 reduced aflatoxins by 20% with F3W4 and 93% with K54 and showed no reduction in CPA with F3W4 and only a 62% reduction in CPA with K54. Because AF36 produces CPA, high levels of CPA accumulate when maize is inoculated with AF36 alone or in combination with F3W4 or K54. These results indicate that K49 may be equally effective as NRRL 21882 in reducing both aflatoxins and CPA in maize.

  20. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.

    PubMed

    Jørgensen, Thomas R

    2007-12-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds are associated with the carcinogenic aflatoxins. Thus, reliable identification of individual strains is very important for application purposes. This review considers the pheno- and genotypic markers used in the classification of A. flavus group strains and specifically in the identification of A. oryzae and A. sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability to produce aflatoxins or other toxic metabolites. Toxigenic potential must be determined specifically for individual strains. The species taxa, A. oryzae and A. sojae, are currently conserved by societal issues.

  1. A Survey of Aflatoxin-Producing Aspergillus sp. from Peanut Field Soils in Four Agroecological Zones of China

    PubMed Central

    Zhang, Chushu; Selvaraj, Jonathan Nimal; Yang, Qingli; Liu, Yang

    2017-01-01

    Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone (SEC), the Yangtze River zone (YZR), the Yellow River zone (YR) and the Northeast zone (NE)). Nearly 94.2% (324/344) of strains were A. flavus and 5.8% (20/344) of strains were A. parasiticus. YZR had the highest population density of Aspergillus sp. and positive rate of aflatoxin production in isolated strains (1039.3 cfu·g−1, 80.7%), the second was SEC (191.5 cfu·g−1, 48.7%), the third was YR (26.5 cfu·g−1, 22.7%), and the last was NE (2.4 cfu·g−1, 6.6%). The highest risk of AFB1 contamination on peanut was in YZR which had the largest number of AFB1 producing isolates in 1g soil, followed by SEC and YR, and the lowest was NE. The potential risk of AFB1 contamination in peanuts can increase with increasing population density and a positive rate of aflatoxin-producing Aspergillus sp. in field soils, suggesting that reducing aflatoxigenic Aspergillus sp. in field soils could prevent AFB1 contamination in peanuts. PMID:28117685

  2. A Survey of Aflatoxin-Producing Aspergillus sp. from Peanut Field Soils in Four Agroecological Zones of China.

    PubMed

    Zhang, Chushu; Selvaraj, Jonathan Nimal; Yang, Qingli; Liu, Yang

    2017-01-20

    Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone (SEC), the Yangtze River zone (YZR), the Yellow River zone (YR) and the Northeast zone (NE)). Nearly 94.2% (324/344) of strains were A. flavus and 5.8% (20/344) of strains were A. parasiticus . YZR had the highest population density of Aspergillus sp. and positive rate of aflatoxin production in isolated strains (1039.3 cfu·g -1 , 80.7%), the second was SEC (191.5 cfu·g -1 , 48.7%), the third was YR (26.5 cfu·g -1 , 22.7%), and the last was NE (2.4 cfu·g -1 , 6.6%). The highest risk of AFB₁ contamination on peanut was in YZR which had the largest number of AFB₁ producing isolates in 1g soil, followed by SEC and YR, and the lowest was NE. The potential risk of AFB₁ contamination in peanuts can increase with increasing population density and a positive rate of aflatoxin-producing Aspergillus sp. in field soils, suggesting that reducing aflatoxigenic Aspergillus sp. in field soils could prevent AFB₁ contamination in peanuts.

  3. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle.

    PubMed

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-10-23

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  4. Lack of Host Specialization in Aspergillus flavus

    PubMed Central

    St. Leger, Raymond J.; Screen, Steven E.; Shams-Pirzadeh, Bijan

    2000-01-01

    Aspergillus spp. cause disease in a broad range of organisms, but it is unknown if strains are specialized for particular hosts. We evaluated isolates of Aspergillus flavus, Aspergillus fumigatus, and Aspergillus nidulans for their ability to infect bean leaves, corn kernels, and insects (Galleria mellonella). Strains of A. flavus did not affect nonwounded bean leaves, corn kernels, or insects at 22°C, but they killed insects following hemocoelic challenge and caused symptoms ranging from moderate to severe in corn kernels and bean leaves injured during inoculation. The pectinase P2c, implicated in aggressive colonization of cotton bolls, is produced by most A. flavus isolates, but its absence did not prevent colonization of bean leaves. Proteases have been implicated in colonization of animal hosts. All A. flavus strains produced very similar patterns of protease isozymes when cultured on horse lung polymers. Quantitative differences in protease levels did not correlate with the ability to colonize insects. In contrast to A. flavus, strains of A. nidulans and A. fumigatus could not invade living insect or plant tissues or resist digestion by insect hemocytes. Our results indicate that A. flavus has parasitic attributes that are lacking in A. fumigatus and A. nidulans but that individual strains of A. flavus are not specialized to particular hosts. PMID:10618242

  5. A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments.

    PubMed

    Sepahvand, Asghar; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Jahanshiri, Zahra; Jamali, Mojdeh; Razzaghi-Abyaneh, Mehdi

    2011-11-01

    In the present study, genetic diversity and mycotoxin profiles of Aspergillus flavus isolated from air (indoors and outdoors), levels (surfaces), and soils of five hospitals in Southwest Iran were examined. From a total of 146 Aspergillus colonies, 63 isolates were finally identified as A. flavus by a combination of colony morphology, microscopic criteria, and mycotoxin profiles. No Aspergillus parasiticus was isolated from examined samples. Chromatographic analyses of A. flavus isolates cultured on yeast extract-sucrose broth by tip culture method showed that approximately 10% and 45% of the isolates were able to produce aflatoxin B(1) (AFB(1)) and cyclopiazonic acid (CPA), respectively. Around 40% of the isolates produced sclerotia on Czapek-Dox agar. The isolates were classified into four chemotypes based on the ability to produce AF and CPA that majority of them (55.5%) belonged to chemotype IV comprising non-mycotoxigenic isolates. Random amplified polymorphic DNA (RAPD) profiles generated by a combination of four selected primers were used to assess genetic relatedness of 16 selected toxigenic and non-toxigenic isolates. The resulting dendrogram demonstrated the formation of two separate clusters for the A. flavus comprised both mycotoxigenic and non-toxigenic isolates in a random distribution. The obtained results in this study showed that RAPD profiling is a promising and efficient tool to determine intra-specific genetic variation among A. flavus populations from hospital environments. A. flavus isolates, either toxigenic or non-toxigenic, should be considered as potential threats for hospitalized patients due to their obvious role in the etiology of nosocomial aspergillosis.

  6. Aspergillus: introduction

    USDA-ARS?s Scientific Manuscript database

    Species in the genus Aspergillus possess versatile metabolic activities that impact our daily life both positively and negatively. Aspergillus flavus and Aspergillus oryzae are closely related fungi. While the former is able to produce carcinogenic aflatoxins and is an etiological agent of aspergill...

  7. An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins

    USDA-ARS?s Scientific Manuscript database

    The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 55 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins....

  8. Aflatoxin variability in pistachios.

    PubMed Central

    Mahoney, N E; Rodriguez, S B

    1996-01-01

    Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781

  9. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    PubMed Central

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-01-01

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693

  10. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market.

    PubMed

    Katsurayama, Aline M; Martins, Ligia M; Iamanaka, Beatriz T; Fungaro, Maria Helena P; Silva, Josué J; Frisvad, Jens C; Pitt, John I; Taniwaki, Marta H

    2018-02-02

    The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production systems, wetland from the state of Rio Grande do Sul, dryland, from the state of Maranhão and market samples from the state of São Paulo, were analyzed for fungi belonging to Aspergillus section Flavi and the presence of aflatoxins. Twenty-three soil samples from wetland and dryland were also analyzed. A total of 383 Aspergillus section Flavi strains were isolated from rice and soil samples. Using a polyphasic approach, with phenotypic (morphology and extrolite profiles) and molecular data (beta-tubulin gene sequences), five species were identified: A. flavus, A. caelatus, A. novoparasiticus, A. arachidicola and A. pseudocaelatus. This is the first report of these last three species from rice and rice plantation soil. Only seven (17%) of the A. flavus isolates produced type B aflatoxins, but 95% produced kojic acid and 69% cyclopiazonic acid. Less than 14% of the rice samples were contaminated with aflatoxins, but two of the market samples were well above the maximum tolerable limit (5μg/kg), established by the Brazilian National Health Surveillance Agency. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Responses of Aspergillus flavus to oxidative stress are related to fungal development regulator, antioxidant enzyme, and secondary metabolite biosynthetic gene expression

    USDA-ARS?s Scientific Manuscript database

    The infection of maize and peanut with Aspergillus flavus and subsequent contamination with aflatoxin pose a threat to global food safety and human health, and is exacerbated by drought stress. Drought stress-responding compounds such as reactive oxygen species (ROS) are associated with fungal stres...

  12. Use of Selected Essential Oils to Control Aflatoxin Contaminated Stored Cashew and Detection of Aflatoxin Biosynthesis Gene

    PubMed Central

    Abd El-Aziz, Abeer R. M.; Mahmoud, Mohamed A.; Al-Othman, Monira R.; Al-Gahtani, Munirah F.

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method. PMID:25705718

  13. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene.

    PubMed

    Abd El-Aziz, Abeer R M; Mahmoud, Mohamed A; Al-Othman, Monira R; Al-Gahtani, Munirah F

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method.

  14. Aflatoxin biosynthesis control produced by Aspergillus flavus in layer hens feed during storage period of six months.

    PubMed

    Hassan, S M; Sultana, B; Iqbal, M

    2017-06-01

    Aflatoxins (AFTs) are a group of closely related toxins that are produced by different fungus species. Food and feed contamination with AFT is a worldwide health-related problem. As a result of fungal attack, the food and feed resulted in a principal socioeconomic loss and toxins produced in feed and food items harm the humans and animals in different ways. The anti-aflatoxigenic effect Psidium guajava, Ficus benghalensis, Gardenia radicans, Punica granatum and Ziziphus jujuba leaves were evaluated against aflatoxins (AFTs), produced by Aspergillus flavus in layer feed during storage. Among the investigated medicinal plant leaves, P. granatum showed highly promising anti-aflatoxigenic activity and completely inhibited the AFTs (B1 and B2) production over storage period without compromising the nutritive quality of feed (ash, protein, fat, fiber, Fe, Ca, P and K contents). Leaves of F. benghalensis and Z. jujuba were also effective however, higher concentration (15%) inhibited the AFTs production up to 99% and also maintained nutritive quality of feed. G. radicans was found least effective in controlling the AFTs production. Results revealed that all plant leaves were effective in controlling AFTs production in layer feed over the storage period of six months and these plants are potential candidate to replace the fungicides used to protect feed and other agricultural commodities from AFTs production during storage. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    PubMed

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus , a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays , and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays , there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus . Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus .

  16. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    PubMed Central

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  17. Fungi, aflatoxins, and cyclopiazonic acid associated with peanut retailing in Botswana.

    PubMed

    Mphande, Fingani A; Siame, Bupe A; Taylor, Joanne E

    2004-01-01

    Peanuts are important food commodities, but they are susceptible to fungal infestation and mycotoxin contamination. Raw peanuts were purchased from retail outlets in Botswana and examined for fungi and mycotoxin (aflatoxins and cyclopiazonic acid) contamination. Zygomycetes were the most common fungi isolated; they accounted for 41% of all the isolates and were found on 98% of the peanut samples. Among the Zygomycetes, Absidia corymbifera and Rhizopus stolonifer were the most common. Aspergillus spp. accounted for 35% of all the isolates, with Aspergillus niger being the most prevalent (20.4%). Aspergillus flavus/parasiticus were also present and accounted for 8.5% of all the isolates, with A. flavus accounting for the majority of the A. flavus/parasiticus identified. Of the 32 isolates of A. flavus screened for mycotoxin production, 11 did not produce detectable aflatoxins, 8 produced only aflatoxins B1 and B2, and 13 produced all four aflatoxins (B1, B2, G1, and G2) in varying amounts. Only 6 of the A. flavus isolates produced cyclopiazonic acid at concentrations ranging from 1 to 55 microg/kg. The one A. parasiticus isolate screened also produced all the four aflatoxins (1,200 microg/kg) but did not produce cyclopiazonic acid. When the raw peanut samples (n = 120) were analyzed for total aflatoxins, 78% contained aflatoxins at concentrations ranging from 12 to 329 microg/kg. Many of the samples (49%) contained total aflatoxins at concentrations above the 20 microg/kg limit set by the World Health Organization. Only 21% (n = 83) of the samples contained cyclopiazonic acid with concentrations ranging from 1 to 10 microg/kg. The results show that mycotoxins and toxigenic fungi are common contaminants of peanuts sold at retail in Botswana.

  18. Comparative genomics analysis of field isolates of Aspergillus flavus and A. parasiticus to explain phenotypic variation in oxidative stress tolerance and host preference

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut and other crops is a major concern for producers globally, and has been shown to be exacerbated by drought stress. Previous transcriptomic and proteomic examination of the responses of isolates of Aspergillus flavus to drought-related oxidative stress in vitro have ...

  19. Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.)

    NASA Astrophysics Data System (ADS)

    Kanapitsas, Alexandros; Batrinou, Anthimia; Aravantinos, Athanasios; Markaki, Panagiota

    2015-01-01

    Aflatoxin B1 (AFB1) mostly produced by Aspergillus flavus and Aspergillus parasiticus, is an extremely toxic and carcinogenic metabolite. The effect of gamma irradiation at dose of 10 kGy on the production of aflatoxin B1 (AFB1) inoculated by Aspergillus parasiticus in raisins (Vitis vinifera L.) and on AFB1 in contaminated samples, was investigated. Values of the amount of aflatoxin B1 produced on the 12th day of incubation, after irradiation, showed that gamma radiation exposure at 10 kGy decreased AFB1 production at 65% compared with the non-irradiated sample, on the same day. The application of 10 kGy gamma radiation directly on 100 ng of AFB1 which were spiked in raisins resulted in ~29% reduction of AFB1. According to the risk assessment analysis the Provisional Maximum Tolerable Daily Intake (PMTDI) of 1.0 ng AFB1 kg-1bw, indicates that consumers are less exposed to AFB1 from the irradiated raisins.

  20. Regulation of aflatoxin biosynthesis and branched-chain amino acids metabolism in Aspergillus flavus by 2-phenylethanol reveal biocontrol mechanism of Pichia anomala

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of A. flavus. Using the SPME-GC/MS analysis we identified that the volatile, 2-phenylethanol (2-PE) produced by this yeast and demonstrated that the compound inhibited aflatoxin production. W...

  1. Clonality and sex impact aflatoxigenicity in Aspergillus populations

    USDA-ARS?s Scientific Manuscript database

    Species in Aspergillus section Flavi commonly infect agricultural staples such as corn, peanuts, cottonseed, and tree nuts and produce an array of mycotoxins, the most potent of which are aflatoxins. Aspergillus flavus is the dominant aflatoxin-producing species in the majority of crops. Populatio...

  2. Molecular Characterization of Atoxigenic Strains for Biological Control of Aflatoxins in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are highly toxic, carcinogens produced by several species in Aspergillus section Flavi. Strains of A. flavus that do not produce aflatoxins, called atoxigenic strains, have been used commercially in North America as tools for limiting aflatoxin contamination. A similar aflatoxin manage...

  3. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  4. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  5. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.

    PubMed

    Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P

    2016-07-01

    In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.

  6. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis.

    PubMed Central

    Chang, P K; Ehrlich, K C; Yu, J; Bhatnagar, D; Cleveland, T E

    1995-01-01

    The aflR gene from Aspergillus parasiticus and Aspergillus flavus may be involved in the regulation of aflatoxin biosynthesis. The aflR gene product, AFLR, possesses a GAL4-type binuclear zinc finger DNA-binding domain. A transformant, SU1-N3 (pHSP), containing an additional copy of aflR, showed increased transcription of aflR and the aflatoxin pathway structural genes, nor-1, ver-1, and omt-1, when cells were grown in nitrate medium, which normally suppresses aflatoxin production. Electrophoretic mobility shift assays showed that the recombinant protein containing the DNA-binding domain, AFLR1, bound specifically to the palindromic sequence, TTAGGCCTAA, 120 bp upstream of the AFLR translation start site. Expression of aflR thus appears to be autoregulated. Increased expression of aflatoxin biosynthetic genes in the transformant might result from an elevated basal level of AFLR, allowing it to overcome nitrate inhibition and to bind to the aflR promotor region, thereby initiating aflatoxin biosynthesis. Results further suggest that aflR is involved in the regulation of multiple parts of the aflatoxin biosynthetic pathway. PMID:7793958

  7. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production....

  8. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasicitus, which frequently contaminate chicken feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased chicken performance and reduced egg producti...

  9. Investigations on the Antifungal Effect of Nerol against Aspergillus flavus Causing Food Spoilage

    PubMed Central

    Tian, Jun; Zeng, Xiaobin; Zeng, Hong; Feng, Zhaozhong; Miao, Xiangmin; Peng, Xue

    2013-01-01

    The antifungal efficacy of nerol (NEL) has been proved against Aspergillus flavus by using in vitro and in vivo tests. The mycelial growth of A. flavus was completely inhibited at concentrations of 0.8 μL/mL and 0.1 μL/mL NEL in the air at contact and vapor conditions, respectively. The NEL also had an evident inhibitory effect on spore germination in A. flavus along with NEL concentration as well as time-dependent kinetic inhibition. The NEL presented noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B1 (AFB1) by A. flavus, totally restraining AFB1 production at 0.6 μL/mL. In real food system, the efficacy of the NEL on resistance to decay development in cherry tomatoes was investigated in vivo by exposing inoculated and control fruit groups to NEL vapor at different concentration. NEL vapors at 0.1 μL/mL air concentration significantly reduced artificially contaminated A. flavus and a broad spectrum of fungal microbiota. Results obtained from presented study showed that the NEL had a great antifungal activity and could be considered as a benefit and safe tool to control food spoilage. PMID:24453813

  10. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.

    PubMed

    Lee, Chao-Zong; Liou, Guey-Yuh; Yuan, Gwo-Fang

    2006-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus parasiticus, Aspergillus flavus, Aspergillus nomius and a few other species. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. Although Aspergillus oryzae and Aspergillus sojae, which are used in fermented foods and in ingredient manufacture, have no record of producing aflatoxin, they have been shown to possess an aflR gene. This study examined 34 strains of Aspergillus section Flavi. The aflR gene of 23 of these strains was successfully amplified and sequenced. No aflR PCR products were found in five A. sojae strains or six strains of A. oryzae. These PCR results suggested that the aflR gene is absent or significantly different in some A. sojae and A. oryzae strains. The sequenced aflR genes from the 23 positive strains had greater than 96.6 % similarity, which was particularly conserved in the zinc-finger DNA-binding domain. The aflR gene of A. sojae has two obvious characteristics: an extra CTCATG sequence fragment and a C to T transition that causes premature termination of AFLR protein synthesis. Differences between A. parasiticus/A. sojae and A. flavus/A. oryzae aflR genes were also identified. Some strains of A. flavus as well as A. flavus var. viridis, A. oryzae var. viridis and A. oryzae var. effuses have an A. oryzae-type aflR gene. For all strains with the A. oryzae-type aflR gene, there was no evidence of aflatoxin production. It is suggested that for safety reasons, the aflR gene could be examined to assess possible aflatoxin production by Aspergillus section Flavi strains.

  11. Optimal pcr primers for rapid and accurate detection of Aspergillus flavus isolates.

    PubMed

    Al-Shuhaib, Mohammed Baqur S; Albakri, Ali H; Alwan, Sabah H; Almandil, Noor B; AbdulAzeez, Sayed; Borgio, J Francis

    2018-03-01

    Aspergillus flavus is among the most devastating opportunistic pathogens of several food crops including rice, due to its high production of carcinogenic aflatoxins. The presence of these organisms in economically important rice strip farming is a serious food safety concern. Several polymerase chain reaction (PCR) primers have been designed to detect this species; however, a comparative assessment of their accuracy has not been conducted. This study aims to identify the optimal diagnostic PCR primers for the identification of A. flavus, among widely available primers. We isolated 122 A. flavus native isolates from randomly collected rice strips (N = 300). We identified 109 isolates to the genus level using universal fungal PCR primer pairs. Nine pairs of primers were examined for their PCR diagnostic specificity on the 109 isolates. FLA PCR was found to be the optimal PCR primer pair for specific identification of the native isolates, over aflP(1), aflM, aflA, aflD, aflP(3), aflP(2), and aflR. The PEP primer pair was found to be the most unsuitable for A. flavus identification. In conclusion, the present study indicates the powerful specificity of the FLA PCR primer over other commonly available diagnostic primers for accurate, rapid, and large-scale identification of A. flavus native isolates. This study provides the first simple, practical comparative guide to PCR-based screening of A. flavus infection in rice strips. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions.

    PubMed

    Abbas, Hamed K; Accinelli, Cesare; Zablotowicz, Robert M; Abel, Craig A; Bruns, H Arnold; Dong, Yanhong; Shier, W Thomas

    2008-08-27

    Mycotoxin and Aspergillus flavus levels in soil-surface corn debris left by no-till agriculture methods (stover, cobs, and cobs with grain) were determined during the December-March fallow period for near-isogenic Bt and non-Bt hybrid corn. By December, average mycotoxin levels in non-Bt corn were many times higher in cobs with grain than in grain harvested in September (total aflatoxins, 774 vs 211 ng/g; total fumonisins, 216 vs 3.5 microg/g; cyclopiazonic acid, 4102 vs 72.2 microg/g; zearalenone, 0.2 vs < 0.1 microg/g). No trichothecenes were detected. Levels of mycotoxins and A. flavus propagules were approximately 10- to 50-fold lower in cobs without grain and stover, respectively, for all mycotoxins except zearalenone. Mycotoxin levels in corn debris fractions decreased during winter but began to rise in March. Levels of all mycotoxins and A. flavus propagules were lower in harvested grain and debris from Bt than non-Bt corn, but differences were significant (p < 0.05) only for aflatoxins.

  13. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn.

    PubMed

    Gordon, S H; Schudy, R B; Wheeler, B C; Wicklow, D T; Greene, R V

    1997-04-01

    Aspergillus flavus and other pathogenic fungi display typical infrared spectra which differ significantly from spectra of substrate materials such as corn. On this basis, specific spectral features have been identified which permit detection of fungal infection on the surface of corn kernels by photoacoustic infrared spectroscopy. In a blind study, ten corn kernels showing bright greenish yellow fluorescence (BGYF) in the germ or endosperm and ten BGYF-negative kernels were correctly classified as infected or not infected by Fourier transform infrared photoacoustic spectroscopy. Earlier studies have shown that BGYF-positive kernels contain the bulk of the aflatoxin contaminating grain at harvest. Ten major spectral features, identified by visual inspection of the photoacoustic spectra of A. flavus mycelium grown in culture versus uninfected corn, were interpreted and assigned by theoretical comparisons of the relative chemical compositions of fungi and corn. The spectral features can be built into either empirical or knowledge-based computer models (expert systems) for automatic infrared detection and segregation of grains or kernels containing aflatoxin from the food and feed supply.

  14. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  15. Aflatoxin Control in Maize by Trametes versicolor

    PubMed Central

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A.; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-01-01

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1. PMID:25525683

  16. Aflatoxin control in maize by Trametes versicolor.

    PubMed

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-12-17

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1.

  17. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    PubMed

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  18. Quantitative proteomics reveals new insights into calcium-mediated resistance mechanisms in Aspergillus flavus against the antifungal protein PgAFP in cheese.

    PubMed

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Núñez, Félix; Asensio, Miguel A

    2017-09-01

    The ability of Aspergillus flavus to produce aflatoxins in dairy products presents a potential hazard. The antifungal protein PgAFP from Penicillium chrysogenum inhibits various foodborne toxigenic fungi, including Aspergillus flavus. However, PgAFP did not inhibit A. flavus growth in cheese, which was related to the associated cation content. CaCl 2 increased A. flavus permeability and prevented PgAFP-mediated inhibition in potato dextrose broth (PDB). PgAFP did not elicit any additional increase in permeability of CaCl 2 -incubated A. flavus. Furthermore, PgAFP did not alter metabolic capability, chitin deposition, or hyphal viability of A. flavus grown with CaCl 2 . Comparative proteomic analysis after PgAFP treatment of A. flavus in calcium-enriched PDB revealed increased abundance of 125 proteins, including oxidative stress-related proteins, as determined by label-free mass spectrometry (MS)-based proteomics. Seventy proteins were found at lower abundance, with most involved in metabolic pathways and biosynthesis of secondary metabolites. These changes do not support the blockage of potential PgAFP receptors in A. flavus by calcium as the main cause of the protective role. A. flavus resistance appears to be mediated by calcineurin, G-protein, and γ-glutamyltranspeptidase that combat oxidative stress and impede apoptosis. These findings could serve to design strategies to improve PgAFP activity against aflatoxigenic moulds in dairy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterizing small RNA populations in non-transgenic and aflatoxin-reducing-transgenic peanut lines

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination is a major constraint in the food production worlwide. In peanut these aflatoxins are mainly produced by Aspergillus flavus (Link) and A. parasiticus (Speare). The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in pean...

  20. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae

    USDA-ARS?s Scientific Manuscript database

    Aspergillus oryzae and Aspergillus flavus are closely related fungal species. The A. flavus population that produces numerous small sclerotia (S strain) and aflatoxin has a unique 1.5 kb deletion in the norB-cypA region of the aflatoxin gene cluster (the S genotype). Phylogenetic studies have indica...

  1. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem

    PubMed Central

    Arias, Renée S.; Dang, Phat M.; Sobolev, Victor S.

    2015-01-01

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p≤0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng.g-1 of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng.g-1. This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major

  2. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem.

    PubMed

    Arias, Renée S; Dang, Phat M; Sobolev, Victor S

    2015-12-21

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p ≤ 0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng · g(-1) of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng · g(-1). This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other

  3. Aspergillus Volatiles Regulate Aflatoxin Synthesis and Asexual Sporulation in Aspergillus parasiticus▿

    PubMed Central

    Roze, Ludmila V.; Beaudry, Randolph M.; Arthur, Anna E.; Calvo, Ana M.; Linz, John E.

    2007-01-01

    Aspergillus parasiticus is one primary source of aflatoxin contamination in economically important crops. To prevent the potential health and economic impacts of aflatoxin contamination, our goal is to develop practical strategies to reduce aflatoxin synthesis on susceptible crops. One focus is to identify biological and environmental factors that regulate aflatoxin synthesis and to manipulate these factors to control aflatoxin biosynthesis in the field or during crop storage. In the current study, we analyzed the effects of aspergillus volatiles on growth, development, aflatoxin biosynthesis, and promoter activity in the filamentous fungus A. parasiticus. When colonies of Aspergillus nidulans and A. parasiticus were incubated in the same growth chamber, we observed a significant reduction in aflatoxin synthesis and asexual sporulation by A. parasiticus. Analysis of the headspace gases demonstrated that A. nidulans produced much larger quantities of 2-buten-1-ol (CA) and 2-ethyl-1-hexanol (EH) than A. parasiticus. In its pure form, EH inhibited growth and increased aflatoxin accumulation in A. parasiticus at all doses tested; EH also stimulated aflatoxin transcript accumulation. In contrast, CA exerted dose-dependent up-regulatory or down-regulatory effects on aflatoxin accumulation, conidiation, and aflatoxin transcript accumulation. Experiments with reporter strains carrying nor-1 promoter deletions and mutations suggested that the differential effects of CA were mediated through separate regulatory regions in the nor-1 promoter. The potential efficacy of CA as a tool for analysis of transcriptional regulation of aflatoxin biosynthesis is discussed. We also identify a novel, rapid, and reliable method to assess norsolorinic acid accumulation in solid culture using a Chroma Meter CR-300 apparatus. PMID:17890344

  4. Improved method of screening for aflatoxin with a coconut agar medium.

    PubMed Central

    Davis, N D; Iyer, S K; Diener, U L

    1987-01-01

    Nine isolates of Aspergillus flavus and Aspergillus parasiticus were screened for aflatoxin production on a coconut extract agar medium. Aflatoxin-producing colonies were detected under long-wave UV light (365 nm) by blue fluorescence on the reverse side after 2 to 5 days of growth. Aflatoxin production was verified by chemical analysis. Several types of shredded coconut available in the United States were tested and found to be satisfactory. No additives were required. Various parameters affecting the test were investigated. PMID:3116928

  5. Biodiversity of Aspergillus species in some important agricultural products.

    PubMed

    Perrone, G; Susca, A; Cozzi, G; Ehrlich, K; Varga, J; Frisvad, J C; Meijer, M; Noonim, P; Mahakarnchanakul, W; Samson, R A

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  6. Occurrence of Aspergillus spp. and aflatoxin B1 in Malaysian foods used for human consumption.

    PubMed

    Reddy, Kasa R N; Farhana, Nazira I; Salleh, Baharuddin

    2011-05-01

    Malaysian population widely consumes the cereal-based foods, oilseeds, nuts, and spices in their daily diet. Mycotoxigenic fungi are well known to invade food products under storage conditions and produce mycotoxins that have threat to human and animal health. Therefore, determining toxigenic fungi and aflatoxin B(1) (AFB1) in foods used for human consumption is of prime importance to develop suitable management strategies and to minimize risk. Ninety-five food products marketed in Penang, Malaysia were randomly collected from different supermarkets and were analyzed for presence of Aspergillus spp. by agar plate assay and AFB1 by enzyme-linked immunosorbent assay (ELISA). A. flavus was the dominant fungi in all foods followed by A. niger. Fifty-five A. flavus strains were tested for their ability to produce aflatoxins on rice grain substrate. Thirty-six (65.4%) strains out of 55 produced AFB1 ranging from 1700 to 4400 μg/kg and 17 strains (31%) produced AFB2 ranging from 620 to 1670 μg/kg. Natural occurrence of AFB1 could be detected in 72.6% food products ranging from 0.54 to 15.33 μg/kg with a mean of 1.95 μg/kg. Maximum AFB1 levels were detected in peanut products ranging from 1.47 to 15.33 μg/kg. AFB1 levels detected in all food products were below the Malaysian permissible limits (<35 μg/kg). Aspergillus spp. and AFB1 was not detected in any cookies tested. Although this survey was not comprehensive, it provides valuable information on aflatoxin levels in foods marketed in Malaysia. © 2011 Institute of Food Technologists®

  7. Aspergillus flavus mycetoma and epidural abscess successfully treated with itraconazole.

    PubMed

    Witzig, R S; Greer, D L; Hyslop, N E

    1996-01-01

    Aspergillus spp. rarely cause mycetomata. We report a patient with diabetes and nephrotic syndrome with Aspergillus flavus mycetoma of the back, with the development of an epidural abscess, diskitis and vertebral osteomyelitis. The patient was successfully treated with decompressive laminectomy and a 14-month itraconazole regimen. Serial serum itraconazole levels and quantitative Aspergillus antigen levels were performed. This is the second reported and first extrapedal case of mycetoma caused by A. flavus.

  8. Peanuts that keep aflatoxin at bay: a threshold that matters.

    PubMed

    Sharma, Kiran K; Pothana, Arunima; Prasad, Kalyani; Shah, Dilip; Kaur, Jagdeep; Bhatnagar, Deepak; Chen, Zhi-Yuan; Raruang, Yenjit; Cary, Jeffrey W; Rajasekaran, Kanniah; Sudini, Hari Kishan; Bhatnagar-Mathur, Pooja

    2018-05-01

    Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.2, and through host-induced gene silencing (HIGS) of aflM and aflP genes from the aflatoxin biosynthetic pathway. While the former improves genetic resistance to A. flavus infection, the latter inhibits aflatoxin production in the event of infection providing durable resistance against different Aspergillus flavus morphotypes and negligible aflatoxin content in several peanut events/lines well. A strong positive correlation was observed between aflatoxin accumulation and decline in transcription of the aflatoxin biosynthetic pathway genes in both OE-Def and HIGS lines. Transcriptomic signatures in the resistant lines revealed key mechanisms such as regulation of aflatoxin synthesis, its packaging and export control, besides the role of reactive oxygen species-scavenging enzymes that render enhanced protection in the OE and HIGS lines. This is the first study to demonstrate highly effective biotechnological strategies for successfully generating peanuts that are near-immune to aflatoxin contamination, offering a panacea for serious food safety, health and trade issues in the semi-arid regions. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization.

    PubMed

    Nayak, Spurthi N; Agarwal, Gaurav; Pandey, Manish K; Sudini, Hari K; Jayale, Ashwin S; Purohit, Shilp; Desai, Aarthi; Wan, Liyun; Guo, Baozhu; Liao, Boshou; Varshney, Rajeev K

    2017-08-29

    Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut. About 1,344.04 million sequencing reads have been generated from sixteen libraries representing four stages in control and infected conditions. About 64% and 67% of quality filtered reads (1,148.09 million) were mapped onto A (A. duranensis) and B (A. ipaёnsis) subgenomes of groundnut respectively. About 101 million unaligned reads each from J 11 and JL 24 were used to map onto A. flavus genome. As a result, 4,445 DEGs including defense-related genes like senescence-associated proteins, resveratrol synthase, 9s-lipoxygenase, pathogenesis-related proteins were identified. In A. flavus, about 578 DEGs coding for growth and development of fungus, aflatoxin biosynthesis, binding, transport, and signaling were identified in compatible interaction. Besides identifying candidate genes for IVSC resistance in groundnut, the study identified the genes involved in host-pathogen cross-talks and markers that can be used in breeding resistant varieties.

  10. Area-wide programs for aflatoxin mitigation: treatment to cotton can be cost effective

    USDA-ARS?s Scientific Manuscript database

    Biological control of aflatoxin contamination with atoxigenic genotypes of Aspergillus flavus is currently used commercially on several crops including corn, peanut, and pistachio. However, biopesticides utilizing this technology were first developed and registered for use in preventing aflatoxin co...

  11. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels.

    PubMed

    Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2014-01-01

    A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.

  12. Non-aflatoxigenicity of commercial Aspergillus oryzae strains due to genetic defects compared to aflatoxigenic Aspergillus flavus.

    PubMed

    Tao, Lin; Chung, Soo Hyun

    2014-08-01

    Aspergillus oryzae is generally recognized as safe, but it is closely related to A. flavus in morphology and genetic characteristics. In this study, we tested the aflatoxigenicity and genetic analysis of nine commercial A. oryzae strains that were used in Korean soybean fermented products. Cultural and HPLC analyses showed that none of the commercial strains produced detectable amount of aflatoxins. According to the molecular analysis of 17 genes in the aflatoxin (AF) biosynthetic pathway, the commercial strains could be classified into three groups. The group I strains contained all the 17 AF biosynthetic genes tested in this study; the group II strains deleted nine AF biosynthetic genes and possessed eight genes, including aflG, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ; the group III strains only had six AF biosynthetic genes, including aflG, aflI, aflK, aflO, aflP, and aflQ. With the reverse transcription polymerase chain reaction, the group I A. oryzae strains showed no expression of aflG, aflQ and/or aflM genes, which resulted in the lack of AF-producing ability. Group II and group III strains could not produce AF owing to the deletion of more than half of the AF biosynthetic genes. In addition, the sequence data of polyketide synthase A (pksA) of group I strains of A. oryzae showed that there were three point mutations (two silent mutations and one missense mutation) compared with aflatoxigenic A. flavus used as the positive control in this study.

  13. Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus.

    PubMed

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2015-10-01

    Antifungal proteins produced by molds are generally small, highly basic, and cysteine-rich. The best known effects of these proteins include morphological changes, metabolic inactivation, and membrane perturbation on sensitive fungi. Reactive oxygen species (ROS) generation leads to apoptosis, with G -protein playing a key role in transduction of cell death signals. The antifungal protein PgAFP from Penicillium chrysogenum inhibits growth of some toxigenic molds. Here we analyzed the effect of the antifungal protein PgAFP on the growth of Aspergillus flavus. For this, comparative proteomic analysis was used to identify the whole protein profile and protein change in abundance after PgAFP treatment. PgAFP provoked metabolic changes related to reduced energy metabolism, cell wall integrity alteration, and increased stress response due to higher levels of ROS. The observed changes in protein abundance, favoring a higher glutathione concentration as well as the increased abundance in heat shock proteins, do not seem to be enough to avoid necrosis. The decreased chitin deposition observed in PgAFP-treated A. flavus is attributed to a lower relative quantity of Rho1. The reduced relative abundance of a β subunit of G -protein seems to be the underlying reason for modulation of apoptosis in PgAFP-treated A. flavus hyphae. We propose Rho1 and G -protein subunit β CpcB to be the main factors in the mode of action of PgAFP in A. flavus. Additionally, enzymes essential for the biosynthesis of aflatoxin were no longer detectable in A. flavus hyphae at 24 h, following treatment with PgAFP. This presents a promising effect of PgAFP, which may prevent A. flavus from producing mycotoxins. However, the impact of PgAFP on actual aflatoxin production requires further study.

  14. Biological control of aflatoxin is effective and economical in Mississippi field trials

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of corn is a major grain quality issue and can be a major economic limiting factor to Mississippi corn farmers. Biological control products based on aflatoxin non-producing strains of Aspergillus flavus are commercially available to prevent the contamination of corn with afl...

  15. NITRIFICATION BY ASPERGILLUS FLAVUS1

    PubMed Central

    Marshall, K. C.; Alexander, M.

    1962-01-01

    Marshall, K. C. (Cornell University, Ithaca, N. Y.) and M. Alexander. Nitrification by Aspergillus flavus. J. Bacteriol. 83:572–578. 1962.—Aspergillus flavus has been shown to produce bound hydroxylamine, nitrite, and nitrate when grown in peptone, amino acid, or buffered ammonium media. Free hydroxylamine was not detected in these cultures, but it was found in an unbuffered ammonium medium in which neither nitrite nor nitrate was formed. Evidence was obtained for the presence of β-nitropropionic acid in the filtrate of an actively nitrifying culture. Alumina treatment of an ammonium medium prevented the formation by growing cultures of nitrite and nitrate but not bound hydroxylamine. The effect of alumina treatment was reversed by the addition of 10−3m CeCl3 to the medium. Extracts of the fungus contained peroxidase and an enzyme capable of catalyzing the production of nitrite from β-nitropropionic acid. The nitrite-forming enzyme is apparently specific for β-nitropropionate; no activity was found with nitromethane, nitroethane, and nitropropane as substrates. Nitrate was not reduced to nitrite nor was nitrite oxidized to nitrate by the hyphal extracts. The significance of these observations in nitrification by A. flavus is discussed. PMID:14470254

  16. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.

    PubMed

    Korani, Walid Ahmed; Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-07-12

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  17. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds

    PubMed Central

    Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-01-01

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)—expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production. PMID:28704974

  18. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are powerful carcinogenic secondary metabolites produced mainly by Aspergillus flavus and A. parasiticus. These mycotoxins accumulate in crops and pose a serious risk to food safety and human health. No consistently effective method exists to control aflatoxins in crops. RNA interferen...

  19. The vegetative compatibility group to which the US biocontrol agent Aspergillus flavus AF36 belongs is also endemic to Mexico.

    PubMed

    Ortega-Beltran, A; Grubisha, L C; Callicott, K A; Cotty, P J

    2016-04-01

    To assess frequencies of the Aspergillus flavus atoxigenic vegetative compatibility group (VCG) YV36, to which the biocontrol agent AF36 belongs, in maize-growing regions of Mexico. Over 3500 A. flavus isolates recovered from maize agroecosystems in four states of Mexico during 2005 through 2008 were subjected to vegetative compatibility analyses based on nitrate nonutilizing mutants. Results revealed that 59 (1·6%) isolates belong to VCG YV36. All 59 isolates had the MAT1-2 idiomorph at the mating-type locus and the single nucleotide polymorphism in the polyketide synthase gene that confers atoxigenicity. Additional degradation of the aflatoxin gene cluster was detected in three isolates. Microsatellite loci analyses revealed low levels of genetic diversity and no linkage disequilibrium within VCG YV36. The VCG to which the biocontrol agent AF36 belongs, YV36, is also native to Mexico. The North American Free Trade Agreement should facilitate adoption of AF36 for use by Mexico in aflatoxin prevention programs. An USEPA registered biocontrol agent effective at preventing aflatoxin contamination of crops in the US, is also native to Mexico. This should facilitate the path to registration of AF36 as the first biopesticide for aflatoxin mitigation of maize in Mexico. Economic and health benefits to the population of Mexico should result once aflatoxin mitigation programs based on AF36 applications are implemented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature.

    PubMed

    Schmidt-Heydt, Markus; Abdel-Hadi, Ahmed; Magan, Naresh; Geisen, Rolf

    2009-11-15

    A microarray analysis was performed to study the effect of varying combinations of water activity and temperature on the activation of aflatoxin biosynthesis genes in Aspergillusflavus grown on YES medium. Generally A. flavus showed expression of the aflatoxin biosynthetic genes at all parameter combinations tested. Certain combinations of a(w) and temperature, especially combinations which imposed stress on the fungus resulted in a significant reduction of the growth rate. At these conditions induction of the whole aflatoxin biosynthesis gene cluster occurred, however the produced aflatoxin B(1) was low. At all other combinations (25 degrees C/0.95 and 0.99; 30 degrees C/0.95 and 0.99; 35 degrees C/0.95 and 0.99) a reduced basal level of cluster gene expression occurred. At these combinations a high growth rate was obtained as well as high aflatoxin production. When single genes were compared, two groups with different expression profiles in relation to water activity/temperature combinations occurred. These two groups were co-ordinately localized within the aflatoxin gene cluster. The ratio of aflR/aflJ expression was correlated with increased aflatoxin biosynthesis.

  1. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster

    PubMed Central

    Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.

    2015-01-01

    The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694

  2. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance

    Treesearch

    Oluwaseun F. Ogunola; Leigh K. Hawkins; Erik Mylroie; Michael V. Kolomiets; Eli Borrego; Juliet D. Tang; Paul W. Williams; Marilyn L. Warburton

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin...

  3. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale

    USDA-ARS?s Scientific Manuscript database

    The worldwide costs associated with aflatoxin monitoring and crop losses are in the hundreds of millions of dollars. Aflatoxins also account for considerable health risks, even in countries where food contamination is regulated. Aspergillus flavus and A. parasiticus are the most common agents of af...

  4. Cyclo(l-Leucyl-l-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Yan, Pei-Sheng; Song, Yuan; Sakuno, Emi; Nakajima, Hiromitsu; Nakagawa, Hiroyuki; Yabe, Kimiko

    2004-01-01

    Aflatoxins are potent carcinogenic and toxic substances that are produced primarily by Aspergillus flavus and Aspergillus parasiticus. We found that a bacterium remarkably inhibited production of norsolorinic acid, a precursor of aflatoxin, by A. parasiticus. This bacterium was identified as Achromobacter xylosoxidans based on its 16S ribosomal DNA sequence and was designated A. xylosoxidans NFRI-A1. A. xylosoxidans strains commonly showed similar inhibition. The inhibitory substance(s) was excreted into the medium and was stable after heat, acid, or alkaline treatment. Although the bacterium appeared to produce several inhibitory substances, we finally succeeded in purifying a major inhibitory substance from the culture medium using Diaion HP20 column chromatography, thin-layer chromatography, and high-performance liquid chromatography. The purified inhibitory substance was identified as cyclo(l-leucyl-l-prolyl) based on physicochemical methods. The 50% inhibitory concentration for aflatoxin production by A. parasiticus SYS-4 (= NRRL2999) was 0.20 mg ml−1, as determined by the tip culture method. High concentrations (more than 6.0 mg ml−1) of cyclo(l-leucyl-l-prolyl) further inhibited fungal growth. Similar inhibitory activities were observed with cyclo(d-leucyl-d-prolyl) and cyclo(l-valyl-l-prolyl), whereas cyclo(d-prolyl-l-leucyl) and cyclo(l-prolyl-d-leucyl) showed weaker activities. Reverse transcription-PCR analyses showed that cyclo(l-leucyl-l-prolyl) repressed transcription of the aflatoxin-related genes aflR, hexB, pksL1, and dmtA. This is the first report of a cyclodipeptide that affects aflatoxin production. PMID:15574949

  5. Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS

    PubMed Central

    Uka, Valdet; Moore, Geromy G.; Arroyo-Manzanares, Natalia; Nebija, Dashnor; De Saeger, Sarah; Diana Di Mavungu, José

    2017-01-01

    Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem. PMID:28098779

  6. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection

    USDA-ARS?s Scientific Manuscript database

    Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptomes for the GPI-AP gene family and identified AFLA_040110, AFLA_063860 and AFLA_113120 to be among ...

  7. Assessment of aflatoxigenic Aspergillus and other fungi in millet and sesame from Plateau State, Nigeria

    PubMed Central

    Ezekiel, C.N.; Udom, I.E.; Frisvad, J.C.; Adetunji, M.C.; Houbraken, J.; Fapohunda, S.O.; Samson, R.A.; Atanda, O.O.; Agi-Otto, M.C.; Onashile, O.A.

    2014-01-01

    Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = −0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame. PMID:24772370

  8. Influence of the Host Contact Sequence on the Outcome of Competition among Aspergillus flavus Isolates during Host Tissue Invasion▿

    PubMed Central

    Mehl, H. L.; Cotty, P. J.

    2011-01-01

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion. PMID:21216896

  9. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels

    PubMed Central

    Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2014-01-01

    A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus. PMID:24734028

  10. Effect of Carum copticum essential oil on growth and aflatoxin formation by Aspergillus strains.

    PubMed

    Kazemi, M

    2015-01-01

    The objectives of this study were to determine the antiaflatoxin B1 activity in vitro of the essential oil (EO) extracted from the seeds of Carum copticum and to evaluate its antifungal activity in vivo as a potential food preservative. The C. copticum EO exhibited noticeable inhibition on dry mycelium and synthesis of aflatoxin B1 (AFB1) by Aspergillus flavus, completely inhibiting AFB1 production at 4 μL/mL. C. copticum EOs showed the lowest percentages of decayed cherry tomatoes for all fungi compared with the control at 100 μL/mL with values of 5.01 ± 67% for A. flavus and 5.98 ± 54% for Aspergillus niger. The results indicated that the percentage of infected fruits is significantly (p < 0.01) reduced by the EO at 16°C for 30 days. In this case, the oil at 100 μL/mL concentration showed the highest inhibition of fungal infection with a value of 80.45% compared with the control. Thus, the EO of dill could be used to control food spoilage and as a potential source of food preservative.

  11. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States.

    PubMed

    Wang, Xinwang; Wadl, Phillip A; Wood-Jones, Alicia; Windham, Gary; Trigiano, Robert N; Scruggs, Mary; Pilgrim, Candace; Baird, Richard

    2012-12-01

    Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.

  12. Frequent Shifts in Aspergillus flavus Populations Associated with Maize Production in Sonora, Mexico.

    PubMed

    Ortega-Beltran, A; Cotty, P J

    2018-03-01

    Aspergillus flavus frequently contaminates maize, a critical staple for billions of people, with aflatoxins. Diversity among A. flavus L morphotype populations associated with maize in Sonora, Mexico was assessed and, in total, 869 isolates from 83 fields were placed into 136 vegetative compatibility groups (VCGs) using nitrate-nonutilizing mutants. VCG diversity indices did not differ in four agroecosystems (AES) but diversity significantly differed among years. Frequencies of certain VCGs changed manyfold over single years in both multiple fields and multiple AES. Certain VCGs were highly frequent (>1%) in 2006 but frequencies declined repeatedly in each of the two subsequent years. Other VCGs that had low frequencies in 2006 increased in 2007 and subsequently declined. None of the VCGs were consistently associated with any AES. Fourteen VCGs were considered dominant in at least a single year. However, frequencies often varied significantly among years. Only 9% of VCGs were detected all 3 years whereas 66% were detected in only 1 year. Results suggest that the most realistic measurements of both genetic diversity and the frequency of A. flavus VCGs are obtained by sampling multiple locations in multiple years. Single-season sampling in many locations should not be substituted for sampling over multiple years.

  13. Genetic characterization of the maize lipoxygenase gene family in relation to aflatoxin accumuation resistance.

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) is a globally important staple food crop. It is prone to contamination by aflatoxin, a secondary carcinogenic metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat the accumulation of aflatoxin is the development of germplasm resistant to infection...

  14. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus

    USDA-ARS?s Scientific Manuscript database

    In an effort to address the aflatoxin problem in grain, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from two different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to n...

  15. Aflatoxins, hepatocellular carcinoma and public health.

    PubMed

    Magnussen, Arvin; Parsi, Mansour A

    2013-03-14

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, primarily affecting populations in the developing countries. Aflatoxin, a food contaminant produced by the fungi Aspergillus flavus and Aspergillus parasiticus, is a known human carcinogen that has been shown to be a causative agent in the pathogenesis of HCC. Aflatoxin can affect a wide range of food commodities including corns, oilseeds, spices, and tree nuts as well as milk, meat, and dried fruit. Many factors affect the growth of Aspergillus fungi and the level of aflatoxin contamination in food. Drought stress is one of the factors that increase susceptibility of plants to Aspergillus and thus aflatoxin contamination. A recent drought is thought to be responsible for finding of trace amounts of aflatoxin in some of the corn harvested in the United States. Although it's too soon to know whether aflatoxin will be a significant problem, since United States is the world's largest corn producer and exporter, this has raised alarm bells. Strict regulations and testing of finished foods and feeds in the United States should prevent a major health scare, and prevent human exposure to deleterious levels of aflatoxin. Unfortunately, such regulations and testing are not in place in many countries. The purpose of this editorial is to summarize the current knowledge on association of aflatoxin and HCC, encourage future research and draw attention to this global public health issue.

  16. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    PubMed Central

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg. PMID:22666128

  17. Nutritional changes in powdered red pepper upon in vitro infection of Aspergillus flavus

    PubMed Central

    Tripathi, Smita; Mishra, H.N.

    2009-01-01

    Quantitative losses in various biochemical constituents like capsaicin, carotenes, ascorbic acid, polyphenols, mineral matter, sugars (soluble and insoluble), protein and fat were estimated after the successful growth of Aspergillus flavus for 30 days on powdered red pepper. The fungal biomass was measured by ergosterol content and Aflatoxin B1 by HPLC. Amongst the various nutritional constituents evaluated for nutritional losses and changes the highest nutritional loss was reported in total carotenoids (88.55%) followed by total sugars (85.5%). The protein content of the infected sample increased from 18.01% to 23%. The nutritional profile of chilli powder (Capsicum annum var. sannam L.) shows highest share of total soluble sugars (32.89%) and fiber content (21.05%), followed by protein (18.01%) and fat (13.32%) making it an ideal solid- substrate for mould growth. At the end of incubation the fungal biomass was 192. 25 mg / 100 gram powder, total plate count 17.5 X 10 4 CFU/g and Aflatoxin B1 content was 30.06 μg / kg. PMID:24031333

  18. Aflatoxin formation and gene expression in response to carbon source media shift in Aspergillus parasiticus.

    PubMed

    Wilkinson, J R; Yu, J; Abbas, H K; Scheffler, B E; Kim, H S; Nierman, W C; Bhatnagar, D; Cleveland, T E

    2007-10-01

    Aflatoxins are toxic and carcinogenic polyketide metabolites produced by fungal species, including Aspergillus flavus and A. parasiticus. The biosynthesis of aflatoxins is modulated by many environmental factors, including the availability of a carbon source. The gene expression profile of A. parasiticus was evaluated during a shift from a medium with low concentration of simple sugars, yeast extract (YE), to a similar medium with sucrose, yeast extract sucrose (YES). Gene expression and aflatoxins (B1, B2, G1, and G2) were quantified from fungal mycelia harvested pre- and post-shifting. When compared with YE media, YES caused temporary reduction of the aflatoxin levels detected at 3-h post-shifting and they remained low well past 12 h post-shift. Aflatoxin levels did not exceed the levels in YE until 24 h post-shift, at which time point a tenfold increase was observed over YE. Microarray analysis comparing the RNA samples from the 48-h YE culture to the YES samples identified a total of 2120 genes that were expressed across all experiments, including most of the aflatoxin biosynthesis genes. One-way analysis of variance (ANOVA) identified 56 genes that were expressed with significant variation across all time points. Three genes responsible for converting norsolorinic acid to averantin were identified among these significantly expressed genes. The potential involvement of these genes in the regulation of aflatoxin biosynthesis is discussed.

  19. Comparative study of qualitative and quantitative methods to determine toxicity level of Aspergillus flavus isolates in maize.

    PubMed

    Shekhar, Meena; Singh, Nirupma; Dutta, Ram; Kumar, Shrvan; Mahajan, Vinay

    2017-01-01

    An attempt was made to compare between easy and inexpensive qualitative method (ammonia vapour test) and analytical methods (thin layer chromatography and enzyme-linked immunosorbent assay) for identification of aflatoxigenic isolates of Aspergillus flavus in maize. In this comparative study the toxicity level of A. flavus isolates exhibited 100% agreement among ammonia vapour test, ELISA and TLC for highly toxigenic (>2000 ppb) and toxigenic (501-2000 ppb) isolates while 88.5% agreement observed for least toxic (<20 ppb) isolates. In ammonia vapour test 51% of A. flavus isolates showed creamish or no colour change corresponding to least toxic/atoxic (<20ppb) category estimated by ELISA. Similarly 22% highly toxic isolates exhibited plum red colour, 12% moderately toxic indicated pink colour and 10% toxic isolates showed red colour. However, 11.5% isolates were found to be false positive in cream colour category (least toxic) and 28.5% false negatives in pink colour (moderately toxic) category. The isolates from different agroclimatic zones of maize in India showed high variability for aflatoxin B1 (AFB1) production potential ranging from 0.214-8116.61 ppb. Toxigenic potential of Aspergillus flavus isolates in culture was further validated by inoculating maize grain sample with four different isolates with varied toxin producing ability. With good agreement percentage between cultural and analytical methods the study concludes the ammonia vapour test to be easy, inexpensive, reliable and time saving method that can be used for segregating or pre-screening of contaminated samples from bulk food/feed stock.

  20. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    USDA-ARS?s Scientific Manuscript database

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  1. Influence of Bacillus spp. isolated from maize agroecosystem on growth and aflatoxin B(1) production by Aspergillus section Flavi.

    PubMed

    Bluma, Romina V; Etcheverry, Miriam G

    2006-03-01

    A total of 59 bacteria of the Bacillus genus were isolated from different components of a maize agroecosystem and their antifungal activity against Aspergillus section Flavi was evaluated. Thirty-three and 46% of these bacteria were able to inhibit Aspergillus flavus Link and A. parasiticus Speare respectively at water activity (a(w)) 0.982; however, when a(w) was 0.955, these percentages were decreased and only three isolates were able to inhibit Aspergillus section Flavi. The majority of bacilli acted as contact antagonists, while a small number of isolates were able to form inhibition zones. In maize meal extract agar, Aspergillus section Flavi growth rate and aflatoxin B(1) (AFB(1)) production were significantly reduced when these strains were paired at a(w) 0.982 with bacilli at all inoculum levels studied. However, two bacilli isolated were able to reduce growth rate and aflatoxin production when a(w) was 0.955. Lag phase increase followed the same general pattern as growth rate reduction. When Aspergillus section Flavi was grown in sterile maize in the presence of three Bacillus strains at a(w) 0.982, the reduction in count (colony-forming units (cfu) g(-1) maize) was less than 30%, except when Aspergillus section Flavi grew with Bacillus amyloliquefaciens UNRCLR. However, levels of detectable AFB(1) were significantly reduced in these interactions at a(w) 0.982.

  2. Molecular strategy for identification in Aspergillus section Flavi.

    PubMed

    Godet, Marie; Munaut, Françoise

    2010-03-01

    Aspergillus flavus is one of the most common contaminants that produces aflatoxins in foodstuffs. It is also a human allergen and a pathogen of animals and plants. Aspergillus flavus is included in the Aspergillus section Flavi that comprises 11 closely related species producing different profiles of secondary metabolites. A six-step strategy has been developed that allows identification of nine of the 11 species. First, three real-time PCR reactions allowed us to discriminate four groups within the section: (1) A. flavus/Aspergillus oryzae/Aspergillus minisclerotigenes/Aspergillus parvisclerotigenus; (2) Aspergillus parasiticus/Aspergillus sojae/Aspergillus arachidicola; (3) Aspergillus tamarii/Aspergillus bombycis/Aspergillus pseudotamarii; and (4) Aspergillus nomius. Secondly, random amplification of polymorphic DNA (RAPD) amplifications or SmaI digestion allowed us to differentiate (1) A. flavus, A. oryzae and A. minisclerotigenes; (2) A. parasiticus, A. sojae and A. arachidicola; (3) A. tamarii, A. bombycis and A. pseudotamarii. Among the 11 species, only A. parvisclerotigenus cannot be differentiated from A. flavus. Using the results of real-time PCR, RAPD and SmaI digestion, a decision-making tree was drawn up to identify nine of the 11 species of section Flavi. In contrast to conventional morphological methods, which are often time-consuming, the molecular strategy proposed here is based mainly on real-time PCR, which is rapid and requires minimal handling.

  3. Assessment of biocontrol strains for reduction of mycotoxins (aflatoxin and CPA) in maize

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus strains K49, NRRL 21882 (from Afla-Guard®) and AF36 are being developed as biocontrol agents for the control of aflatoxin in maize. In this study, the three non-aflatoxigenic strains were compared to evaluate which is most effective in reducing aflatoxin. Also, we tested these st...

  4. Mating-type heterokaryosis and population shifts in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a fungal pathogen of many agronomically important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, NC. This field was planted in 2010 and plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Afla-Guard) biocontrol strains, both of...

  5. Population shifts and mating-type heterokaryosis in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a fungal pathogen of many agronomically important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, NC. This field was planted in 2010 and plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Afla-Guard) biocontrol strains, both of...

  6. Serum Cytokine Profile in Patients with Chronic Rhinosinusitis with Nasal Polyposis Infected by Aspergillus flavus.

    PubMed

    Rai, Gargi; Ansari, Mohammad Ahmad; Dar, Sajad Ahmad; Datt, Shyama; Gupta, Neelima; Sharma, Sonal; Haque, Shafiul; Ramachandran, Vishnampettai Ganapathysubramanian; Mazumdar, Arpeeta; Rudramurthy, Shivprakash; Chakrabarti, Arunaloke; Das, Shukla

    2018-03-01

    Fungi, especially Aspergillus flavus, can cause chronic rhinosinusitis with nasal polyposis and modulate host innate immune components. The objective of this study was to examine the serum levels of T helper (Th) cell subset Th1, Th2, and Th17 cytokines and total IgE in patients having chronic rhinosinusitis with nasal polyposis and Aspergillus flavus infection. A case-control study including 40 patients with chronic rhinosinusitis with nasal polyposis and 20 healthy controls was conducted. Aspergillus flavus infection was confirmed by standard potassium hydroxide (KOH) testing, culture, and PCR. Serum samples of all patients and controls were analyzed for various cytokines (interleukins [IL]-1β, IL-2, IL-4, IL-6, IL-17, IL-21, IL-27, TGF-β) and total IgE by ELISA. Data from patients with Aspergillus flavus infection and healthy volunteers were compared using the independent t-test and non-parametric Mann-Whitney U test. Aspergillus flavus infection was found in 31 (77.5%) patients with chronic rhinosinusitis with nasal polyposis. IL-1β, IL-17, IL-21, and TGF-β serum levels were significantly higher in these patients than in controls; however, IL-2, IL-4, IL-6, and IL-27 levels were lower. Compared with nine (22.5%) patients without Aspergillus flavus infection, IL-17 level was higher while IL-2 level was lower in patients with Aspergillus flavus infection. Total IgE was significantly higher in patients with Aspergillus flavus infection than in controls. High levels of IL-17 and its regulatory cytokines in patients with chronic rhinosinusitis with nasal polyposis infected by Aspergillus flavus raise a concern about effective disease management and therapeutic recovery. Surgical removal of the nasal polyp being the chief management option, the choice of post-operative drugs may differ in eosinophilic vs. non-eosinophilic nasal polyposis. The prognosis is likely poor, warranting extended care. © The Korean Society for Laboratory Medicine

  7. Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils.

    PubMed

    Bluma, R; Amaiden, M R; Daghero, J; Etcheverry, M

    2008-07-01

    The antifungal effect of Pimpinella anisum (anise), Pëumus boldus (boldus), Mentha piperita (peppermint), Origanum vulgare (oregano) and Minthosthachys verticillata (peperina) essential oils against Aspergillus section Flavi (two isolates of Aspergillus parasiticus and two isolates of Aspergillus flavus) was evaluated in maize meal extract agar at 0.982 and 0.955 water activities, at 25 degrees C. The percentage of germination, germ-tube elongation rate, growth rate and aflatoxin B(1) (AFB(1)) accumulation at different essential oils concentrations were evaluated. Anise and boldus essential oils were the most inhibitory at 500 mg kg(-1) to all growth parameters of the fungus. These essential oils inhibited the percentage of germination, germ-tube elongation rate and fungal growth. AFB(1) accumulation was completely inhibited by anise, boldus and oregano essential oils. Peperina and peppermint essential oils inhibited AFB(1) production by 85-90% in all concentrations assayed. Anise and boldus essential oils could be considered as effective fungitoxicans for Aspergillus section flavi. Our results suggest that these phytochemical compounds could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.

  8. Cyclopiazonic acid biosynthesis by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA) is an indole-tetramic acid mycotoxin produced by some strains of Aspergillus flavus. Characterization of the CPA biosynthesis gene cluster confirmed that formation of CPA is via a three-enzyme pathway. This review examines the structure and organization of the CPA genes, elu...

  9. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize

    USDA-ARS?s Scientific Manuscript database

    Biological control of toxigenic Aspergillus flavus in maize through competitive displacement by non-aflatoxigenic strains was evaluated in a series of field studies. Four sets of experiments were conducted between 2007 to 2009 to assess the competitiveness of non-aflatoxigenic strains when challen...

  10. Period of susceptibility of almonds to aflatoxin contamination during development in the orchard

    USDA-ARS?s Scientific Manuscript database

    Almonds can be contaminated by aflatoxins, mainly produced by Aspergillus flavus and A. parasiticus. Infection by Aspergillus species can be facilitated by insect damage to the kernel during hull split, which occurs 4 to 6 weeks before harvest. Within this period of time, it is unknown which kernel ...

  11. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus

    PubMed Central

    El Khoury, Rhoda; Caceres, Isaura; Puel, Olivier; Bailly, Sylviane; Atoui, Ali; Oswald, Isabelle P.; El Khoury, André; Bailly, Jean-Denis

    2017-01-01

    Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca—known as hyssop—completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination. PMID:28257049

  12. Efficacy of a biopesticide for control of aflatoxins in corn.

    PubMed

    Dorner, Joe W

    2010-03-01

    A 2-year study was carried out to determine the efficacy of a biopesticide in reducing aflatoxin contamination in corn. The biopesticide, afla-guard, delivers a nontoxigenic strain of Aspergillus flavus to the field where it competes with naturally occurring toxigenic strains of the fungus. Afla-guard was applied to entire fields in two areas of Texas at either 11.2 or 22.4 kg/ha. Specific nontreated fields in close proximity to treated fields were designated as controls. Samples of corn were collected at harvest and analyzed for aflatoxins and density of toxigenic and nontoxigenic isolates of A. flavus. Aflatoxin concentrations were generally quite low in 2007, but the mean concentration in treated samples (0.5 ppb) was reduced by 85% compared with controls (3.4 ppb). In 2008, samples from treated and control fields averaged 1.5 and 12.4 ppb, respectively, an 88% reduction. There were no significant differences between the two afla-guard application rates. In conjunction with the reductions in aflatoxin contamination, treatments produced significant reductions in the incidence of toxigenic isolates of A. flavus in corn.

  13. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast Pichia anomala for aflatoxin reduction

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of mycotoxin in the food chain...

  14. Aflatoxin Production in Peanut Varieties by aspergillus flavus Link and Aspergillus parasiticus Speare

    PubMed Central

    Nagarajan, V.; Bhat, Ramesh V.

    1973-01-01

    Levels of aflatoxin produced in peanuts differed with the genetic variety of plant and with the species and strain of invading fungus. Possibilities for identifying groundnut varieties partially resistant to aflatoxin production are discussed. PMID:4632857

  15. Coconut as a Medium for the Experimental Production of Aflatoxin

    PubMed Central

    Arseculeratne, S. N.; De Silva, L. M.; Wijesundera, S.; Bandunatha, C. H. S. R.

    1969-01-01

    Fresh, grated coconut has been found to be an excellent medium for aflatoxin production by Aspergillus flavus. Under optimal conditions, yields of 8 mg of total aflatoxin per g of substrate were obtained. Continuous agitation of the growth medium under moist conditions at 24 C produced highest yields. Aflatoxin was assayed both biologically and chromatographically. The aflatoxin content of cultures varied biphasically with the duration of incubation. It is suggested that this pattern could result from the sequential operation of factors promoting aflatoxin formation on the one hand and a detoxifying mechanism on the other. Images PMID:5803632

  16. Delivery systems for biological control agents to manage aflatoxin contamination of pre-harvest maize.

    PubMed

    Lyn, M E; Abbas, H K; Zablotowicz, R M; Johnson, B J

    2009-03-01

    While soil application of a competitive non-toxigenic Aspergillus flavus strains is successful in reducing aflatoxin contamination in certain crops, direct application to aerial reproductive structures could be more effective for maize. A sprayable, clay-based water-dispersible granule formulation was developed to deliver non-toxigenic A. flavus strain K49 directly to maize ears. The efficacy of the K49 water-dispersible granule in mitigating aflatoxin in maize (Zea mays L.) was evaluated. Field studies were conducted to compare K49 colonization and effectiveness in reducing aflatoxin contamination when applied either as a soil inoculant or as a directed spray in plots infested with toxigenic strain F3W4. Fifty percent of non-toxigenic A. flavus was recovered from non-treated controls and from plots soil inoculated with K49 on wheat. In spray treatments with formulated or unformulated K49 conidia, over 90% of A. flavus recovered was non-toxigenic. Soil-applied K49 reduced aflatoxin contamination by 65% and spray applications reduced contamination by 97%. These findings suggest direct spray application of non-toxigenic A. flavus strains may be better than soil inoculation at controlling maize aflatoxin contamination and that a water-dispersible granule is a viable delivery system for maintaining viability and efficacy of the biological control agent, K49.

  17. The maize rachis affects Aspergillus flavus movement during ear development

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus expressing green fluorescent protein (GFP) was used to follow infection in ears of maize hybrids resistant and susceptible to the fungus. Developing ears were needle-inoculated with GFP-transformed A. flavus 20 days after silk emergence, and GFP fluorescence in the pith was evalu...

  18. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice.

    PubMed

    Paranagama, P A; Abeysekera, K H T; Abeywickrama, K; Nugaliyadde, L

    2003-01-01

    To develop a natural fungicide against aflatoxigenic fungi, to protect stored rice, using the essential oil of lemongrass. Aspergillus flavus Link. was isolated from stored rice and identified as an aflatoxigenic strain. Lemongrass oil was tested against A. flavus and the test oil was fungistatic and fungicidal against the test pathogen at 0.6 and 1.0 mg ml(-1), respectively. Aflatoxin production was completely inhibited at 0.1 mg ml(-1). The results obtained from the thin layer chromatographic bioassay and gas chromatography indicated citral a and b as the fungicidal constituents in lemongrass oil. During the fumigant toxicity assay of lemongrass oil, the sporulation and the mycelial growth of the test pathogen were inhibited at the concentrations of 2.80 and 3.46 mg ml(-1), respectively. Lemongrass oil could be used to manage aflatoxin formation and fungal growth of A. flavus in stored rice. Currently, fungicides are not used to control fungal pests or mycotoxin production on stored rice. Rice treated with the essential oil of lemongrass could be used to manage fungal pests as well as the insect pests in stored rice. The essential oil is chemically safe and acceptable to consumers, as synthetic chemical fungicides can cause adverse health effects to consumers.

  19. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.

    PubMed

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Mack, Brian; Yu, Jiujiang; Ehrlich, Kenneth C

    2014-07-01

    Aspergillus flavus is a ubiquitous saprophyte and is capable of producing many secondary metabolites including the carcinogenic aflatoxins. The A. flavus population that produces small sclerotia (S strain) has been implicated as the culprit for persistent aflatoxin contamination in field crops. We investigated how the plant volatile decanal, a C10 fatty aldehyde, affected the growth and development of the S strain A. flavus. Decanal treatment yielded fluffy variants lacking sclerotia and conidia and exhibiting a dosage-dependent radial colony growth. We used RNA-Seq analysis to examine transcriptomic changes caused by decanal and after removal of decanal. Mature sclerotia contained only 80% of the total transcripts detected in all samples in comparison to 94% for the decanal treated culture. Gene ontology (GO) analysis showed that decanal treatment increased expression of genes involved in oxidoreductase activity, cellular carbohydrate metabolism, alcohol metabolism and aflatoxin biosynthesis. The treatment affected cellular components associated with cell wall, and gene expression of glucanases, α-amylases, pectinesterase and peptidase required for its biosynthesis was increased. After decanal was removed, the culture resumed sclerotial production. Moreover, its GO terms significantly overlapped with those of the untreated culture; five of the enriched molecular functions, oxidoreductase activity, monooxygenase activity, electron carrier activity, heme binding, and iron binding were found in the untreated culture. The GO term of cellular component enriched was mainly integral protein constituents of the membrane. The results suggested that decanal halted development at the vegetative state rendering the fungus unable to produce conidia and sclerotia. The induced fluffy phenotype could be related to lower transcript abundance of flbB, flbD, and flbE but not to veA expression. Increased abundance of the laeA transcript in the treated culture correlated with early

  20. Redox systems are a potential link between drought stress susceptibility and the exacerbation of aflatoxin contamination in crops

    USDA-ARS?s Scientific Manuscript database

    Drought stress aggravates Aspergillus flavus infection and aflatoxin contamination in oilseed crops such as peanut and maize. Reactive oxygen species (ROS) are produced in plants in response to abiotic and biotic stresses as a means of defense. In the host plant-A. flavus interaction under drought c...

  1. Metabolism of aflatoxin B-1 in cotton bolls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellon, J.E.; Lee, L.S.

    Aspergillus flavus is a fungus capable of producing the potent carcinogen aflatoxin (AFB-1) when it infects developing cotton seed. Although high levels of toxin can readily be isolated from internal tissues of infected seeds, very low toxin levels are observed in the fiber-linter matrix. In order to test the hypothesis that constituents associated with the lint of the host plant are metabolizing aflatoxin, {sup 14}C-AFB-1 was introduced into cotton bolls (30 days postanthesis). Other sets of bolls received inoculations of toxigenic or nontoxigenic strains of A. flavus plus exogenous {sup 14}C-AFB-1. In addition to the exogenously applied {sup 14}C-AFB-1, atmore » least two new labelled metabolites were recovered from the test bolls. One of these metabolites was very polar and remained on the origin of the thin layer analysis system. Test bolls which received both A. flavus and AFB-1 produced significantly lower levels of this polar metabolite. Results indicated that some constituent(s) associated with cotton fiber may metabolize fungal-produced aflatoxin, rather than inhibit its formation.« less

  2. Fungal communities associated with almond throughout crop development: Implications for aflatoxin biocontrol management in California.

    PubMed

    Ortega-Beltran, Alejandro; Moral, Juan; Puckett, Ryan D; Morgan, David P; Cotty, Peter J; Michailides, Themis J

    2018-01-01

    Interactions between pathogenic and nonpathogenic fungal species in the tree canopy are complex and can determine if disease will manifest in the plant and in other organisms such as honey bees. Seasonal dynamics of fungi were studied in an almond orchard in California where experimental release of the atoxigenic biopesticide Aspergillus flavus AF36 to displace toxigenic Aspergillus strains has been conducted for five years. The presence of the vegetative compatibility group (VCG) YV36, to which AF36 belongs, in the blossoms, and the honey bees that attend these blossoms, was assessed. In blossoms, A. flavus frequencies ranged from 0 to 4.5%, depending on the year of study. Frequencies of honey bees carrying A. flavus ranged from 6.5 to 10%. Only one A. flavus isolate recovered from a blossom in 2016 belonged to YV36, while members of the VCG were not detected contaminating honey bees. Exposure of pollinator honey bees to AF36 was detected to be very low. The density of several Aspergillus species was found to increase during almond hull split and throughout the final stages of maturation; this also occurred in pistachio orchards during the maturation period. Additionally, we found that AF36 effectively limited almond aflatoxin contamination in laboratory assays. This study provides knowledge and understanding of the seasonal dynamics of Aspergillus fungi and will help design aflatoxin management strategies for almond. The evidence of the low levels of VCG YV36 encountered on almond blossoms and bees during pollination and AF36's effectiveness in limiting aflatoxin contamination in almond provided additional support for the registration of AF36 with USEPA to use in almond in California.

  3. Population dynamics of Aspergillus flavus following biocontrol treatment of corn

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a fungal pathogen of many agronomically important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, North Carolina, over a period of two years. The field was planted in 2010 and plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Af...

  4. Population structure of Aspergillus flavus before and after biocontrol treatment

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a fungal pathogen of many important crops worldwide. We sampled A. flavus strains from a cornfield in Rocky Mount, North Carolina, over a period of two years. Plots were inoculated at tasselling with either AF36 or NRRL 21882 (=Afla-Guard) biocontrol strains, both of which are ...

  5. Investigation of Aspergillus flavus in animal virulence.

    PubMed

    Lan, Huahui; Wu, Lianghuan; Sun, Ruilin; Yang, Kunlong; Liu, Yinghang; Wu, Jiefei; Geng, Longpo; Huang, Chuanzhong; Wang, Shihua

    2018-04-01

    Aspergillus flavus is a common fungal pathogen of plants, animals and humans. Recently, many genes of A. flavus have been reported involving in regulation of pathogenesis in crops, but whether these genes are involved in animal virulence is still unknown. Here, we used a previous easy-to-use infection model for A. flavus based on mouse model by intravenous inoculation of A. flavus conidia. The outcome of infections in mice model showed that A. flavus NRRL3357 and laboratory strain CA14 PTS were both in dose dependent manner and highly reproducible. The progress of disease could be monitored by mice survival and histology analysis. Fungal burden analysis indicated it was gradually decreased within 7 days after infection. Moreover, aspergillosis caused by A. flavus significantly up-regulated gene expression levels of immune response mediators, including INF-γ, TNF-α, Dectin-1 and TLR2. Furthermore, the defined deletion A. flavus strains that previously displayed virulence in crop infection were also determined in this mouse model, and the results showed comparable degrees of infection in mice. Our results suggested that intravenous inoculation of conidia could be a suitable model for testing different A. flavus mutants in animal virulence. We hope to use this model to determine distinct A. flavus strains virulence in animals and study novel therapeutic methods to help control fungus diseases in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Molecular identification of Aspergillus and Eurotium species isolated from rice and their toxin-producing ability.

    PubMed

    Yazdani, D; Zainal Abidin, M A; Tan, Y H; Kamaruzaman, S

    2011-01-01

    Thirty milled rice samples were collected from retailers in 4 provinces of Malaysia. These samples were evaluated for Aspergillus spp. infection by direct plating on malt extract salt agar (MESA). All Aspergillus holomorphs were isolated and identified using nucleotide sequences of ITS 1 and ITS 2 of rDNA. Five anamorphs (Aspergillus flavus, A. oryzae, A. tamarii, A. fumigatus and A. niger) and 5 teleomorphs (Eurotium rubrum, E. amstelodami, E. chevalieri, E. cristatum and E. tonophilum) were identified. The PCR-sequencing based technique for sequences of ITS 1 and ITS 2 is a fast technique for identification of Aspergillus and Eurotium species, although it doesn't work flawlessly for differentiation of Eurotium species. All Aspergillus and Eurotium isolates were screened for their ability to produce aflatoxin and ochratoxin A (OTA) by HPLC and TLC techniques. Only A. flavus isolate UPM 89 was able to produce aflatoxins B1 and B2.

  7. Aflatoxin and sterigmatocystin contamination of pistachio nuts in orchards.

    PubMed Central

    Sommer, N F; Buchanan, J R; Fortlage, R J

    1976-01-01

    Aspergillus flavus and A. versicolor were both shown to be weak pathogens of developing pistachio fruits, producing aflatoxin and sterigmatocystin, respectively. Aflatoxin concentrations approached those reported in cereal and legume seeds. Fungus lesions on the first hulls were followed by invasion of seeds despite the sclerified shell. Infections and mycotoxins present before harvest would presumably lead to further build-up after harvest if drying was slow or storage was under high humidity. PMID:823868

  8. HRAS: a webserver for early warning of human health risk brought by aflatoxin.

    PubMed

    Hu, Ruifeng; Zeng, Xu; Gao, Weiwei; Wang, Qian; Liu, Zhihua

    2013-02-01

    Most people are aware that outdoor air pollution can damage their health, but many do not know that indoor air pollution can also exhibit significant negative health effects. Fungi parasitizing in air conditioning and ventilation systems can be one of indoor air pollution sources. Aflatoxin produced by Aspergillus flavus (A. flavus) became a central focus of indoor air pollution, especially in farmer markets. Therefore we developed an early warning system, Health Risk Assessment System, to estimate the growth rate of A. flavus, predict the amount of aflatoxin and provide early warning information. Firstly, the growth of A. flavus and the production of aflatoxin under different conditions were widely obtained through a comprehensive literature review. Secondly, three mathematical models were established to predict the A. flavus colony growth rate, lag phase duration and aflatoxin content, as functions of temperature and water activity based on present studies. Finally, all the results were evaluated by the user-supplied data using PHP programming language. We utilized the web page to show the results and display warning information. The JpGraph library was used to create a dynamic line chart, refreshing the warning information dynamically in real-time. The HARS provides accurate information for early warning purposes to let us take timely steps to protect ourselves.

  9. Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus

    PubMed Central

    Fountain, Jake C.; Scully, Brian T.; Chen, Zhi-Yuan; Gold, Scott E.; Glenn, Anthony E.; Abbas, Hamed K.; Lee, R. Dewey; Kemerait, Robert C.; Guo, Baozhu

    2015-01-01

    Drought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, the objectives of this study were to examine the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the growth of different toxigenic (+) and atoxigenic (−) isolates of Aspergillus flavus and to test whether aflatoxin production affects the H2O2 concentrations that the isolates could survive. Ten isolates were tested: NRRL3357 (+), A9 (+), AF13 (+), Tox4 (+), A1 (−), K49 (−), K54A (−), AF36 (−), and Aflaguard (−); and one A. parasiticus isolate, NRRL2999 (+). These isolates were cultured under a H2O2 gradient ranging from 0 to 50 mM in two different media, aflatoxin-conducive yeast extract-sucrose (YES) and non-conducive yeast extract-peptone (YEP). Fungal growth was inhibited at a high H2O2 concentration, but specific isolates grew well at different H2O2 concentrations. Generally the toxigenic isolates tolerated higher concentrations than did atoxigenic isolates. Increasing H2O2 concentrations in the media resulted in elevated aflatoxin production in toxigenic isolates. In YEP media, the higher concentration of peptone (15%) partially inactivated the H2O2 in the media. In the 1% peptone media, YEP did not affect the H2O2 concentrations that the isolates could survive in comparison with YES media, without aflatoxin production. It is interesting to note that the commercial biocontrol isolates, AF36 (−), and Aflaguard (−), survived at higher levels of stress than other atoxigenic isolates, suggesting that this testing method could potentially be of use in the selection of biocontrol isolates. Further studies will be needed to investigate the mechanisms behind the variability among isolates with regard to their degree of oxidative stress

  10. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices.

    PubMed

    Yin, M C; Cheng, W S

    1998-01-01

    The inhibitory effect of water-soluble extracts of garlic bulbs, green garlic, green onions, hot peppers, ginger, Chinese parsley, and basil on the growth of Aspergillus niger and Aspergillus flavus was examined. Garlic bulbs, green garlic, and green onions showed an inhibitory effect against these two fungi. The influence of heat, acid, and salt upon the inhibitory effect of these three herbs was further studied. Increasing the temperature from 60 to 100 degrees C resulted in a significant (P < 0.05) decrease in the inhibitory effect of garlic bulbs against the fungi tested. Green garlic and green onion lost their antifungal activity against A. niger after being treated at 80 and 60 degrees, respectively. For A. flavus, the inhibitory effect of green garlic declined significantly (P < 0.05) with an increase in temperature. However, the antifungal activity of green onions against A. flavus was heat stable. For both fungi tested in this study, the antifungal activity of these spice plants was not affected by acid treatments at pH values 2, 4, or 6, or salt by treatments at concentrations of 0.1, 0.2, 0.3, and 0.4 M (P > 0.05).

  11. Using Predictions Based on Geostatistics to Monitor Trends in Aspergillus flavus Strain Composition.

    PubMed

    Orum, T V; Bigelow, D M; Cotty, P J; Nelson, M R

    1999-09-01

    ABSTRACT Aspergillus flavus is a soil-inhabiting fungus that frequently produces aflatoxins, potent carcinogens, in cottonseed and other seed crops. A. flavus S strain isolates, characterized on the basis of sclerotial morphology, are highly toxigenic. Spatial and temporal characteristics of the percentage of the A. flavus isolates that are S strain (S strain incidence) were used to predict patterns across areas of more than 30 km(2). Spatial autocorrelation in S strain incidence in Yuma County, AZ, was shown to extend beyond field boundaries to adjacent fields. Variograms revealed both short-range (2 to 6 km) and long-range (20 to 30 km) spatial structure in S strain incidence. S strain incidence at 36 locations sampled in July 1997 was predicted with a high correlation between expected and observed values (R = 0.85, P = 0.0001) by kriging data from July 1995 and July 1996. S strain incidence at locations sampled in October 1997 and March 1998 was markedly less than predicted by kriging data from the same months in prior years. Temporal analysis of four locations repeatedly sampled from April 1995 through July 1998 also indicated a major reduction in S strain incidence in the Texas Hill area after July 1997. Surface maps generated by kriging point data indicated a similarity in the spatial pattern of S strain incidence among all sampling dates despite temporal changes in the overall S strain incidence. Geostatistics provided useful descriptions of variability in S strain incidence over space and time.

  12. Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products.

    PubMed

    el-Kady, I; el-Maraghy, S; Zohri, A N

    1994-09-01

    All strains (92) of A. flavus group proved to be positive for production of aflatoxin (45 to 1200 micrograms/50 ml medium) on potato dextrose liquid medium, while 59 strains only proved to be positive (35-310 micrograms/50 ml) on 15% NaCl potato-dextrose liquid medium. Most of the strains tested of A. flavus, A. flavus var. columnaris and A. oryzae produced aflatoxins B1, B2, G1 & G2. All positive strains of A. tamarii produced aflatoxins G1 & G2 while the tested isolate of A. zonatus produced aflatoxins B1 & G1. Of 95 strains tested of Eurotium, aflatoxins B1 & G1 were produced by one strain of each of E. chevalieri var. intermedium, E. repens and E. rubrum. Gliotoxin was detected in the extract of two strains of E. chevalieri and one strain of each of E. chevalieri var. intermedium and E. pseudoglaucum on the salt-free medium, and two strains of each of E. chevalieri, E. chevalieri var. intermedium and one of E. pseudoglaucum on 15% NaCl medium. Sterigmatocystin was produced by some strains of E. chevalieri, E. chevalieri var. intermedium, E. amstelodami, E. pseudoglaucum and E. rubrum on the two experimental media. One strain only of E. repens produced ochratoxin A while citrinin was detected in the extract of one strain of E. pseudoglaucum.

  13. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in several important food and feed crops such as maize, peanut, cottonseed and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs)...

  14. Global population structure and adaptive evolution of aflatoxin-producing fungi.

    PubMed

    Moore, Geromy G; Olarte, Rodrigo A; Horn, Bruce W; Elliott, Jacalyn L; Singh, Rakhi; O'Neal, Carolyn J; Carbone, Ignazio

    2017-11-01

    Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi , a total of 1,304 isolates were sampled across six species ( A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus ) from single fields in major peanut-growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum-likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions ( aflM/alfN and aflW/aflX ) and four noncluster regions ( amdS, trpC, mfs and MAT ), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans-speciation within two noncluster regions, whereby A. flavus S BG strains from Australia share haplotypes with either A. flavus or A. parasiticus , was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi , other region-specific environmental and genetic parameters must also be considered.

  15. Occurrence of Aflatoxins and Aflatoxin-Producing Strains of Aspergillus spp. in Soybeans 1

    PubMed Central

    Bean, George A.; Schillinger, John A.; Klarman, William L.

    1972-01-01

    Above average rainfall in Maryland during August, September, and October 1971 resulted in heavy mold growth in soybeans while still in the field. Of 28 samples of soybean seed, aflatoxins were found in 14, 2 of which had been used in poultry feed. Aflatoxins were identified by thin-layer chromatography, spectrophotometry, and chicken embryo bioassay. Aspergillus spp. were isolated from 11 samples, and 5 of these isolates produced aflatoxins when grown in liquid culture. PMID:4673021

  16. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.

    PubMed

    Chalivendra, Subbaiah C; DeRobertis, Catherine; Chang, Perng-Kuang; Damann, Kenneth E

    2017-05-01

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene

  17. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels.

    PubMed

    Falade, Titilayo D O; Chrysanthopoulos, Panagiotis K; Hodson, Mark P; Sultanbawa, Yasmina; Fletcher, Mary; Darnell, Ross; Korie, Sam; Fox, Glen

    2018-05-07

    Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol ( R = 0.48) and turanose and ( R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.

  18. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  19. RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most potent naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and b...

  20. Dietary Factors and Hepatoma in Rainbow Trout (Salmo gairdneri). I. Aflatoxins in Vegetable Protein Feedstuffs

    USGS Publications Warehouse

    Sinnhuber, R.O.; Wales, J.H.; Ayers, J.L.; Engebrecht, R.H.; Amend, D.F.

    1968-01-01

    Aflatoxins (toxic metabolites of the mold Aspergillus flavus) were present in a commercial trout ration causing hepatoma in rainbow trout. Cottonseed meal and solvent extracts of cottonseed meal and of rations containing cottonseed meal and peanut meal were found by chemical assay and confirmed by duckling assay to contain aflatoxins. Diets containing these materials and a purified test diet to which aflatoxins had been added produced microscopic tumors in 6 months and gross lesions of hepatocarcinoma in 9 months. Similar diets without aflatoxin were negative.

  1. RNA Sequencing of Contaminated Seeds Reveals the State of the Seed Permissive for Pre-Harvest Aflatoxin Contamination and Points to a Potential Susceptibility Factor

    PubMed Central

    Clevenger, Josh; Marasigan, Kathleen; Liakos, Vasileios; Sobolev, Victor; Vellidis, George; Holbrook, Corley; Ozias-Akins, Peggy

    2016-01-01

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and breeding for PAC resistance has been slow. It has been shown that aflatoxin production can be induced by applying drought stress as peanut seeds mature. We have implemented an automated rainout shelter that controls temperature and moisture in the root and peg zone to induce aflatoxin production. Using polymerase chain reaction (PCR) and high performance liquid chromatography (HPLC), seeds meeting the following conditions were selected: infected with Aspergillus flavus and contaminated with aflatoxin; and not contaminated with aflatoxin. RNA sequencing analysis revealed groups of genes that describe the transcriptional state of contaminated vs. uncontaminated seed. These data suggest that fatty acid biosynthesis and abscisic acid (ABA) signaling are altered in contaminated seeds and point to a potential susceptibility factor, ABR1, as a repressor of ABA signaling that may play a role in permitting PAC. PMID:27827875

  2. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance

    PubMed Central

    Horn, Bruce W.; Gell, Richard M.; Singh, Rakhi; Sorensen, Ronald B.; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing. PMID:26731416

  3. Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels

    USDA-ARS?s Scientific Manuscript database

    The feasibility of detecting the Aflatoxin B1 in maize kernels inoculated with Aspergillus flavus conidia in the field was assessed using near-infrared hyperspectral imaging technique. After pixel-level calibration, wavelength dependent offset, the masking method was adopted to reduce the noise and ...

  4. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

    PubMed

    Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua

    2017-04-01

    The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Identification of Maize Breeding Markers through Investigations of Proteins Associated with Aflatoxin-Resistance

    USDA-ARS?s Scientific Manuscript database

    The goal of a collaborative research project between International Institute of Tropical Agriculture (IITA) in Nigeria and ARS-Southern Regional Research Center (SRRC) in New Orleans is to develop maize inbred lines with resistance against aflatoxin contamination by Aspergillus flavus. A second goal...

  6. Probability models for growth and aflatoxin B1 production as affected by intraspecies variability in Aspergillus flavus.

    PubMed

    Aldars-García, Laila; Berman, María; Ortiz, Jordi; Ramos, Antonio J; Marín, Sonia

    2018-06-01

    The probability of growth and aflatoxin B 1 (AFB 1 ) production of 20 isolates of Aspergillus flavus were studied using a full factorial design with eight water activity levels (0.84-0.98 a w ) and six temperature levels (15-40 °C). Binary data obtained from growth studies were modelled using linear logistic regression analysis as a function of temperature, water activity and time for each isolate. In parallel, AFB 1 was extracted at different times from newly formed colonies (up to 20 mm in diameter). Although a total of 950 AFB 1 values over time for all conditions studied were recorded, they were not considered to be enough to build probability models over time, and therefore, only models at 30 days were built. The confidence intervals of the regression coefficients of the probability of growth models showed some differences among the 20 growth models. Further, to assess the growth/no growth and AFB 1 /no- AFB 1 production boundaries, 0.05 and 0.5 probabilities were plotted at 30 days for all of the isolates. The boundaries for growth and AFB 1 showed that, in general, the conditions for growth were wider than those for AFB 1 production. The probability of growth and AFB 1 production seemed to be less variable among isolates than AFB 1 accumulation. Apart from the AFB 1 production probability models, using growth probability models for AFB 1 probability predictions could be, although conservative, a suitable alternative. Predictive mycology should include a number of isolates to generate data to build predictive models and take into account the genetic diversity of the species and thus make predictions as similar as possible to real fungal food contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination

    USDA-ARS?s Scientific Manuscript database

    Worldwide recognition that aflatoxin contamination of agricultural commodities by the fungus Aspergillus flavus is a global problem which has significantly benefitted from global collaboration for understanding the contaminating fungus as well as for developing and implementing solutions against the...

  8. Mycobiota and Natural Incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian Spices Confirmed by LC-MS/MS

    PubMed Central

    Jeswal, Punam; Kumar, Dhiraj

    2015-01-01

    Nine different Indian spices (red chilli, black pepper, turmeric, coriander, cumin, fennel, caraway, fenugreek, and dry ginger) commonly cultivated and highly used in India were analysed for natural occurrence of toxigenic mycoflora and aflatoxins (AFs), ochratoxin A (OTA), and citrinin (CTN) contamination. Aspergillus flavus and Aspergillus niger were the most dominant species isolated from all types of spices. Red chilli samples were highly contaminated with aflatoxins (85.4%) followed by dry ginger (77.7%). 56% Aspergillus flavus from red chilli and 45% Aspergillus ochraceus from black pepper were toxigenic and produced aflatoxins and ochratoxin A, respectively. Qualitative detection and quantitative detection of mycotoxins in spices were analyzed by ELISA and further confirmed by LC-MS/MS. Penicillium citrinum produced citrinin in red chilli, black pepper, coriander, cumin, fenugreek, and dry ginger samples. The highest amount of AFs was found in red chilli (219.6 ng/g), OTA was in black pepper (154.1 ng/g), and CTN was in dry ginger samples (85.1 ng/g). The results of this study suggest that the spices are susceptible substrate for growth of mycotoxigenic fungi and further mycotoxin production. This is the first report of natural occurrence of citrinin in black pepper and dry ginger from India. PMID:26229535

  9. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    PubMed Central

    Varga, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented. PMID:21892243

  10. Acute effects of aflatoxin on northern bobwhites (Colinus virginianus).

    PubMed

    Moore, Deana L; Henke, Scott E; Fedynich, Alan M; Laurenz, Jamie C; Morgan, Robert

    2013-07-01

    Aflatoxin is a widely occurring and harmful mycotoxin produced by strains of Aspergillus spp. growing on vegetable matter. We investigated the concentration of aflatoxin needed to impair normal physiologic responses and induce acute morbidity and mortality in Northern Bobwhites (Colinus virginianus). Ten wild-caught adult bobwhites (five males and five females) from southern Texas were randomly assigned to each treatment group (0, 100, 500, 1,000, and 2,000 parts per billion (ppb) aflatoxin; n=50). We orally administered 100 μL of aflatoxin, derived from Aspergillus flavus, once per week for 4 wk and monitored bird mass, daily feed consumption, liver histology, and blood chemistries. An in vitro white blood cell proliferation test was conducted using spleen tissue to determine the effect of aflatoxin on the immune system. There was no mortality in the control groups, whereas mortalities occurred in all treatment groups except in the 100 ppb aflatoxin treatment. Immunosuppression, reduction in gamma-globulin, glucose, and gamma-glutamyltransferase blood levels, and abnormal liver histology were observed in aflatoxin-exposed quail. Blood chemistry indicated cellular damage to the liver and kidneys. We concluded that short-term, acute doses of aflatoxin as low as 100 ppb can be detrimental to the health of Northern Bobwhites.

  11. Natural postharvest aflatoxin occurrence in food legumes in the smallholder farming sector of Zimbabwe.

    PubMed

    Maringe, David Tinayeshe; Chidewe, Cathrine; Benhura, Mudadi Albert; Mvumi, Brighton Marimanzi; Murashiki, Tatenda Clive; Dembedza, Mavis Precious; Siziba, Lucia; Nyanga, Loveness Kuziwa

    2017-03-01

    Aflatoxins, mainly produced by Aspergillus flavus and Aspergillus parasiticus, are highly toxic and may lead to health problems such as liver cancer. Exposure to aflatoxins may result from ingestion of contaminated foods. Levels of AFB 1 , AFB 2 , AFG 1 and AFG 2 in samples of groundnuts (Arachis hypogaea), beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata) and bambara nuts (Vigna subterranean) grown by smallholder farmers in Shamva and Makoni districts, Zimbabwe, were determined at harvesting, using high performance liquid chromatography after immunoaffinity clean-up. Aflatoxins were detected in 12.5% of groundnut samples with concentrations ranging up to 175.9 µg/kg. Aflatoxins were present in 4.3% of the cowpea samples with concentrations ranging from 1.4 to 103.4 µg/kg. Due to alarming levels of aflatoxins detected in legumes versus maximum permissible levels, there is a need to assist smallholder farmers to develop harvest control strategies to reduce contamination of aflatoxins in legumes.

  12. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels

    PubMed Central

    Chrysanthopoulos, Panagiotis K.; Hodson, Mark P.; Darnell, Ross; Korie, Sam

    2018-01-01

    Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. PMID:29735944

  13. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of Maize and Groundnut

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are cancer-causing, immuno-suppressive mycotoxins that frequently contaminate important staples in Zambia including maize and groundnut. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination in Africa. However, Aspergillus popula...

  14. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates.

    PubMed

    Duran, Rocio M; Gregersen, Scott; Smith, Timothy D; Bhetariya, Preetida J; Cary, Jeffrey W; Harris-Coward, Pamela Y; Mattison, Christopher P; Grimm, Casey; Calvo, Ana M

    2014-06-01

    The aflatoxin-producer and opportunistic plant pathogenic, filamentous fungus Aspergillus flavus is responsible for the contamination of corn and other important agricultural commodities. In order to obtain nutrients from the host A. flavus produces a variety of extracellular hydrolytic enzymes. Interestingly, A. flavus amylase and protease activity are dependent on the global regulator veA, a gene known to regulate morphogenesis and secondary metabolism in numerous fungi. Analysis of starch degradation by fungal enzymes secreted into broths of starch- or corn kernel-based media showed a notable accumulation of glucose in samples of the A. flavus control strain while the deletion veA sample accumulated high levels of maltose and maltotriose and only a small amount of glucose. Furthermore, SDS-PAGE and proteomics analysis of culture broths from starch- or corn kernel-based media demonstrated differential production of a number of proteins that included a reduction in the amount of a glucoamylase protein in the veA mutant compared to the control strain, while an alpha-amylase was produced in greater quantities in the veA mutant. Quantitative real-time PCR and western blot analyses using anti-glucoamylase or alpha-amylase antisera supported the proteomics results. Additionally, an overall reduction in protease activity was observed in the veA mutant including production of the alkaline protease, oryzin, compared to the control strain. These findings contribute to our knowledge of mechanisms controlling production of hydrolases and other extracellular proteins during growth of A. flavus on natural starch-based substrates.

  15. Variation in polygalacturonase production among Aspergillus flavus isolates.

    PubMed Central

    Cotty, P J; Cleveland, T E; Brown, R L; Mellon, J E

    1990-01-01

    Pectinase production by Aspergillus flavus was determined by measuring clear zones formed around colonies stained with ruthenium red. Several isolates produced red zones instead of clear zones. Red zones were reproduced with pectinesterase and correlated with absence of specific polygalacturonases. Of 87 isolates tested, 15 produced red zones. Images PMID:2128015

  16. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus

    PubMed Central

    Abdel-Hadi, Ahmed; Schmidt-Heydt, Markus; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2012-01-01

    A microarray analysis was used to examine the effect of combinations of water activity (aw, 0.995–0.90) and temperature (20–42°C) on the activation of aflatoxin biosynthetic genes (30 genes) in Aspergillus flavus grown on a conducive YES (20 g yeast extract, 150 g sucrose, 1 g MgSO4·7H2O) medium. The relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR and aflS) in the biosynthetic pathway was examined in relation to different environmental factors and phenotypic aflatoxin B1 (AFB1) production. These data, plus data on relative growth rates and AFB1 production under different aw × temperature conditions were used to develop a mixed-growth-associated product formation model. The gene expression data were normalized and then used as a linear combination of the data for all 10 genes and combined with the physical model. This was used to relate gene expression to aw and temperature conditions to predict AFB1 production. The relationship between the observed AFB1 production provided a good linear regression fit to the predicted production based in the model. The model was then validated by examining datasets outside the model fitting conditions used (37°C, 40°C and different aw levels). The relationship between structural genes (aflD, aflM) in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in relation to aw and temperature by developing ternary diagrams of relative expression. These findings are important in developing a more integrated systems approach by combining gene expression, ecophysiological influences and growth data to predict mycotoxin production. This could help in developing a more targeted approach to develop prevention strategies to control such carcinogenic natural metabolites that are prevalent in many staple food products. The model could also be used to predict the impact of climate change on toxin production. PMID:21880616

  17. Confirming QTL for aflatoxin resistance from Mp313E in different genetic backgrounds

    USDA-ARS?s Scientific Manuscript database

    The fungus Aspergillus flavus (Link:Fr) causes ear rot of maize (Zea mays L.) and produces the toxic metabolic product aflatoxin. One particularly effective method to control the fungus is via host plant resistance, but while several resistant breeding lines have been identified, transferring the r...

  18. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  19. Susceptibility to aflatoxin contamination among maize landraces from Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Guerrero-Herrera, Manuel D J; Ortega-Corona, Alejandro; Vidal-Martinez, Victor A; Cotty, Peter J

    2014-09-01

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize landraces (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before the establishment of the modern state. MLRs have been selected over hundreds of generations by ethnic groups for adaptation to diverse environmental settings. The genetic diversity of MLRs in Mexico is an outstanding resource for development of maize cultivars with beneficial traits. Maize is frequently contaminated with aflatoxins by Aspergillus flavus, and resistance to accumulation of these potent carcinogens has been sought for over three decades. However, MLRs from Mexico have not been evaluated as potential sources of resistance. Variation in susceptibility to both A. flavus reproduction and aflatoxin contamination was evaluated on viable maize kernels in laboratory experiments that included 74 MLR accessions collected from 2006 to 2008 in the central west and northwest regions of Mexico. Resistant and susceptible MLR accessions were detected in both regions. The most resistant accessions accumulated over 99 % less aflatoxin B1 than did the commercial hybrid control Pioneer P33B50. Accessions supporting lower aflatoxin accumulation also supported reduced A. flavus sporulation. Sporulation on the MLRs was positively correlated with aflatoxin accumulation (R = 0.5336, P < 0.0001), suggesting that resistance to fungal reproduction is associated with MLR aflatoxin resistance. Results of the current study indicate that MLRs from Mexico are potentially important sources of aflatoxin resistance that may contribute to the breeding of commercially acceptable and safe maize hybrids and/or open pollinated cultivars for human and animal consumption.

  20. Occupational exposure to Aspergillus and aflatoxins among food-grain workers in India.

    PubMed

    Malik, Abida; Ali, Sana; Shahid, Mohd; Bhargava, Rakesh

    2014-01-01

    Aflatoxins are a metabolite of Aspergillus molds and are widespread in the natural environment. Workers who handle food grains are at increased risk of exposure to aflatoxins and subsequently certain respiratory conditions. In India, more than half of the employed population is engaged in some type of agricultural work, yet little known about the respiratory problems as a result of exposure to aflatoxins among workers who handle food grains in India. The aim of this study was to determine the risk of occupational exposure to aflatoxins in food-grain workers compared to workers who are not occupationally exposed to food grains. Bronchoalveolar lavage (BAL) and serum samples from 46 food-grain workers and 44 non-food-grain workers were analyzed for the presence of aflatoxins. Microscopy and culture of BAL samples were performed to detect Aspergillus species. Aflatoxins were detected in 32·6% of the food-grain workers and 9·1% of non food grain workers (P<0·01). A significant difference was also found in BAL culture for Aspergillus (P<0·01) between the two groups. About 47·8% of the food-grain workers and 11·4% of non-food-grain workers had chronic respiratory symptoms. Occupational exposure to aflatoxins in food-grain workers was found to be associated with the increased presence of respiratory symptoms.

  1. Breeding aflatoxin resistant maize lines using recent advances in technologies-a review

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ppb or higher (as regulated by the FDA) by this toxin and potent carcinogen makes the crop unsalable. This review focu...

  2. Sexual reproduction in aflatoxin-producing Aspergillus nomius

    USDA-ARS?s Scientific Manuscript database

    Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in the genus Petromyces. Ascocarp and ascospore morphology in...

  3. Facing the problem of "false positives": re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers.

    PubMed

    Degola, F; Berni, E; Spotti, E; Ferrero, I; Restivo, F M

    2009-02-28

    The aim of our research project was to consolidate a multiplex RT-PCR protocol to detect aflatoxigenic strains of Aspergillus flavus. Several independent A. flavus strains were isolated from corn and flour samples from the North of Italy and from three European countries. Aflatoxin producing/not producing phenotype was assessed by qualitative and quantitative assays at day five of growth in aflatoxin inducing conditions. Expression of 16 genes belonging to the aflatoxin cluster was assayed by multiplex or monomeric RT-PCR. There is a good correlation between gene expression and aflatoxin production. Strains that apparently transcribed all the relevant genes but did not release aflatoxin in the medium ("false positives") were re-assessed for mycotoxin production after extended growth in inducing condition. All the "false positive" strains in actual fact were positive when aflatoxin determination was performed after 10 days of growth. These strains should then be re-classified as "slow aflatoxin accumulators". To optimise the diagnostic procedure, a quintuplex RT-PCR procedure was designed consisting of a primer set directed against four informative aflatoxin cluster genes and the beta-tubulin gene as an internal amplification control. In conclusion we have provided evidence for the robustness and reliability of our RT-PCR protocol in discriminating mycotoxin producer from non-producer strains of A. flavus. and the molecular procedure we devised is a promising tool with which to screen and control the endemic population of A. flavus colonising different areas of the World.

  4. Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    The feasibility of detecting Aflatoxin B1 (AFB1) in single maize kernel inoculated with Aspergillus flavus conidia in the field, as well as its spatial distribution in the kernels, was assessed using near-infrared hyperspectral imaging (HSI) technique. Firstly, an image mask was applied to a pixel-b...

  5. Introduction to the Toxin Reviews Special Issue "Aspergillus, Aflatoxin, Cyclopiazonic Acid, and Biological Control"

    USDA-ARS?s Scientific Manuscript database

    This special issue of Toxin Reviews, “Aspergillus, Aflatoxin, CPA and Biological Control of Aflatoxin", is different from previous publications because it focuses on solving the problem of mycotoxin contamination through the use of biological control strains of Aspergillus, which is applicable to th...

  6. The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer.

    PubMed

    Calderari, Thaiane O; Iamanaka, Beatriz T; Frisvad, Jens C; Pitt, John I; Sartori, Daniele; Pereira, Jose Luiz; Fungaro, Maria Helena P; Taniwaki, Marta H

    2013-01-01

    A total of 288 brazil nut samples (173 kernel and 115 shell) from the Amazon rainforest region and São Paulo State, Brazil were collected at different stages of brazil nut production. Samples were analysed for: percentages of aflatoxigenic fungal species and potential for aflatoxin production and presence of aflatoxins. Aspergillus nomius was the most common species found (1235 isolates) which amounted to 30% of the total species with potential to produce aflatoxins. This species is of concern since 100% of all isolates produced aflatoxins B(1), B(2), G(1) and G(2). Aspergillus flavus was almost equally common (1212 isolates) although only 46% produced aflatoxins under laboratory conditions, and only aflatoxins B(1) and B(2). Low number of other species with the potential to produce aflatoxins was isolated: Aspergillus arachidicola and Aspergillus bombycis produced B and G aflatoxins whilst Aspergillus pseudotamarii produced only aflatoxin B(1). The total aflatoxin levels found in samples taken from the rainforests was 0.7 μg/kg, from processing plants before and after sorting 8.0 and 0.1 μg/kg respectively, from street markets in the Amazon region 6.3 μg/kg and from supermarkets in São Paulo State 0.2 μg/kg. Processing, which included manual or mechanical sorting and drying at 60°C for 30 to 36 h, eliminated on average more than 98% of total aflatoxins. These results showed that sorting is a very effective way to decrease aflatoxin content in brazil nuts. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Analysis of secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  8. Efficacy of Some Essential Oils Against Aspergillus flavus with Special Reference to Lippia alba Oil an Inhibitor of Fungal Proliferation and Aflatoxin B1 Production in Green Gram Seeds during Storage.

    PubMed

    Pandey, Abhay K; Sonker, Nivedita; Singh, Pooja

    2016-04-01

    During mycofloral analysis of green gram (Vigna radiata (L.) R. Wilczek) seed samples taken from different grocery stores by agar and standard blotter paper methods, 5 fungal species were identified, of which Aspergillus flavus exhibited higher relative frequency (75.20% to 80.60%) and was found to produce aflatoxin B1 . On screening of 11 plant essential oils against this mycotoxigenic fungi, Lippia alba essential oil was found to be most effective and showed absolute inhibition of mycelia growth at 0.28 μL/mL. The oil of L. alba was fungistatic and fungicidal at 0.14 and 0.28 μL/mL, respectively. Oil had broad range of fungitoxicity at its MIC value and was absolutely inhibited the AFB1 production level at 2.0 μL/mL. Chemical analysis of this oil revealed geranial (36.9%) and neral (29.3%) as major components followed by myrcene (18.6%). Application of a dose of 80 μL/0.25 L air of Lippia oil in the storage system significantly inhibited the fungal proliferation and aflatoxin production without affecting the seed germination rate. By the virtue of fungicidal, antiaflatoxigenic nature and potent efficacy in storage food system, L. alba oil can be commercialized as botanical fungicide for the protection of green gram seeds during storage. © 2016 Institute of Food Technologists®

  9. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn

    USDA-ARS?s Scientific Manuscript database

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, m...

  10. Sexuality Generates Diversity in the Aflatoxin Gene Cluster: Evidence on a Global Scale

    PubMed Central

    Moore, Geromy G.; Elliott, Jacalyn L.; Singh, Rakhi; Horn, Bruce W.; Dorner, Joe W.; Stone, Eric A.; Chulze, Sofia N.; Barros, German G.; Naik, Manjunath K.; Wright, Graeme C.; Hell, Kerstin; Carbone, Ignazio

    2013-01-01

    Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more

  11. Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter.

    PubMed

    Lee, Kyu Ri; Yang, Sun Min; Cho, Sung Min; Kim, Myunghee; Hong, Sung-Yong; Chung, Soo Hyun

    2016-11-04

    Aflatoxins are classified as Group 1 (carcinogenic to humans) by the International Agency for Research on Cancer (IARC). In this study, a total of 134 fungal strains were isolated from 65 meju samples, and two fungal isolates were selected as potential aflatoxin B₁ (AFB₁)-biodetoxification fungi. These fungi were identified as Aspergillus oryzae MAO103 and A. oryzae MAO104 by sequencing the beta-tubulin gene. The two A. oryzae strains were able to degrade more than 90% of AFB1 (initial concentration: 40 µg/L) in a culture broth in 14 days. The mutagenic effects of AFB₁ treated with A. oryzae MAO103 and MAO104 significantly decreased to 5.7% and 6.4%, respectively, in the frame-shift mutation of Ames tests using Salmonella typhimurium TA 98. The base-substituting mutagenicity of AFB₁ was also decreased by the two fungi. Moreover, AFB1 production by A. flavus was significantly decreased by the two A. oryzae strains on soybean-based agar plates. Our data suggest that the two AFB1-detoxification A. oryzae strains have potential application to control AFB₁ in foods and feeds.

  12. Biological control of aflatoxin contamination and pests in U.S. crops using formulations of corn starch-based bioplastic

    USDA-ARS?s Scientific Manuscript database

    For many years, these laboratories have studied the use of biological control methods to reduce aflatoxin contamination in harvested corn using non-aflatoxigenic Aspergillus flavus isolates in grain-based granule and liquid formulations. More recently, research has focused on using various formulat...

  13. Toxigenic Potential of Aspergillus Species Occurring on Maize Kernels from Two Agro-Ecological Zones in Kenya

    PubMed Central

    Okoth, Sheila; Nyongesa, Beatrice; Ayugi, Vincent; Kang’ethe, Erastus; Korhonen, Hannu; Joutsjoki, Vesa

    2012-01-01

    Two agro-ecological zones in Kenya were selected to compare the distribution in maize of Aspergillus spp. and their toxigenicity. These were Nandi County, which is the main maize growing region in the country but where no human aflatoxicoses have been reported, and Makueni County where most of the aflatoxicosis cases have occurred. Two hundred and fifty-five households were sampled in Nandi and 258 in Makueni, and Aspergillus was isolated from maize. Aspergillus flavus and A. parasiticus isolates were tested for the presence of aflD and aflQ genes. Positive strains were induced to produce aflatoxins on yeast extract sucrose and quantified using liquid chromatography-tandem mass spectrometry (LCMSMS). Aspergillus flavus was the most common contaminant, and the incidence of occurrence in Nandi and Makueni was not significantly different (82.33% and 73.26%, respectively). Toxigenic strains were more prevalent than non-toxigenic strains. All the toxigenic strains from Makueni were of the S-type while those from Nandi belonged to the L-type. Quantitative differences in aflatoxin production in vitro between isolates and between strains were detected with S strains producing relatively larger amounts of total aflatoxins, B toxins and lower values for G toxins. This was in accord with the frequent aflatoxicosis outbreaks in Makueni. However some L strains produced considerable amounts of B toxins. Given the widespread distribution of toxigenic strains in both regions, the risk of aflatoxin poisoning is high when favorable conditions for toxin production occur. PMID:23202303

  14. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    PubMed

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  15. Assay for Aflatoxin Production by the Genera Aspergillus and Penicillium1

    PubMed Central

    Mislivec, Philip B.; Hunter, J. H.; Tuite, John

    1968-01-01

    A total of 260 isolates, including 43 species of Penicillium and 7 species of Aspergillus, were screened for their ability to produce aflatoxin on rice. Chloroform extracts were analyzed by thin-layer chromatography. None of the isolates produced aflatoxin. Certain species of Penicillium produced fluorescent substances that either were similar in RF or were of similar color to B and G aflatoxins. These substances were subsequently proved not to be aflatoxin by two-dimensional chromatography, by reaction with iodine fumes, or by both methods. PMID:5664121

  16. Identification of resistance to Aspergillus flavus infection in cotton germplasm

    USDA-ARS?s Scientific Manuscript database

    Natural resistance of in cottonseed to Aspergillus flavus infection has not been explored to date. A green fluorescent protein (GFP) expressing -70 strain was used to assess the resistance of seed from thirty five35 cotton varieties including representatives from Gossypium arboreum, G. barbadense, a...

  17. Dynamic variation of bioactive compounds and aflatoxins in contaminated Radix Astragali during extraction process.

    PubMed

    Hu, Yichen; Kong, Weijun; Luo, Hongli; Zhao, Lianhua; Yang, Meihua

    2016-03-30

    Although increasing attention has been paid to the health threat caused by mycotoxins in commodities such as food or medicines, mycotoxin transfer processes from crude material to products have raised little concern so far. Radix Astragali is a commonly used edible and medicinal herbal plant that is susceptible to contamination with aflatoxins from Aspergillus flavus. There have been no studies on mycotoxin transfer into pharmaceutical preparations or derivative products. To facilitate the aflatoxin reduction and bioactivity retention, the dynamic variations of aflatoxins as well as herbal compounds, namely calycosin-7-glucoside, astragaloside and formononetin, in Radix Astragali contaminated by A. flavus during water decoction and ethanol refluxing treatments were evaluated simultaneously by an ultra-fast liquid chromatography-triple quadrupole linear ion trap mass spectrometry method. After the extraction processes, although the amount of alfatoxins was reduced remarkably, aflatoxin residuals in preparation still exceed recommended limits, manifesting the great need to establish a limit for aflatoxins in herbal extractions or derivative products. Meanwhile, due to the hydrolysis of glucoside, water decoction period should be no longer than 4 h. This investigation would benefit from the determination of the dynamic variation of aflatoxins in infected herbs in preparation treatments, in order to further develop aflatoxin limits in herbal preparations. © 2015 Society of Chemical Industry.

  18. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    PubMed

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of ELISA screening test for detecting aflatoxin in biogenic dust samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durant, J.T.

    Aflatoxin is a carcinogenic chemical that is sometimes produced when agricultural commodities are infested by the fungi Aspergillus flavus and A. Parasiticus. Aflatoxin has been found to be present in air samples taken around persons handling materials likely to be contaminated. The purpose of this investigation was to demonstrate the feasibility of using an Enzyme Linked Immunosorbent Assay (ELISA) test kit that was developed to screen for aflatoxin in bulk agricultural commodities, to an air sample. Samples were taken from two environments likely to be contaminated with aflatoxin, a dairy farm feed mixing operation and a peanut bagging operation. Themore » dust collected from these environments was considered to be biogenic, in that it originated primarily from biological materials.« less

  20. Mycoflora and aflatoxin production in pigeon pea stored in jute sacks and iron bins.

    PubMed

    Bankole, S A; Eseigbe, D A; Enikuomehin, O A

    The mycoflora, moisture content and aflatoxin contamination of pigeon pea (Cajanus cajan (L.) Millisp) stored in jute sacks and iron bins were determined at monthly intervals for a year. The predominant fungi on freshly harvested seeds were Alternaria spp., Botryodiplodia theobromae, Fusarium spp. and Phoma spp. These fungi gradually disappeared from stored seeds with time and by 5-6 months, most were not isolated. The fungi that succeeded the initially dominant ones were mainly members of the general Aspergillus, Penicillium and Rhizopus. Population of these fungi increased up to the end of one year storage. Higher incidence of mycoflora and Aspergillus flavus were recorded in jute-sack samples throughout the storage period. The moisture content of stored seeds was found to fluctuate with the prevailing weather conditions, being low during the dry season and slightly high during the wet season. The stored seeds were free of aflatoxins for 3 and 5 months in jute sacks and iron bins respectively. The level of aflatoxins detected in jute-sack storage system was considerably higher than that occurring in the iron bin system. Of 196 isolates of A. flavus screened, 48% were toxigenic in liquid culture (54% from jute sacks and 41% from iron bins).

  1. Volatile profiles of toxigenic and non-toxigenic Aspergillus flavus using SPME for solid phase extraction

    USDA-ARS?s Scientific Manuscript database

    Toxigenic and atoxigenic strains of Aspergillus flavus were grown on potato dextrose agar (PDA) and wetted sterile, cracked corn for 21 and 14 days, respectively. Volatile compounds produced by A. flavus, as well as those present in the PDA controls and sterile cracked corn, were collected using sol...

  2. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut.

    PubMed

    Power, Imana L; Dang, Phat M; Sobolev, Victor S; Orner, Valerie A; Powell, Joseph L; Lamb, Marshall C; Arias, Renee S

    2017-04-01

    Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B 1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Control of Aspergillus growth and aflatoxin production using antioxidants at different conditions of water activity and pH.

    PubMed

    Nesci, A; Rodriguez, M; Etcheverry, M

    2003-01-01

    The effect of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), trihydroxybutyrophenone (THB) and propyl paraben (PP) (at concentrations of 1, 10 and 20 mmol l(-1)) on germination, growth and aflatoxin B1 production by Aspergillus section Flavi was evaluated. Studies on the percentage of spore germination, elongation rate, growth rate and aflatoxin B1 production were carried out in vitro in relation to water activity (aw) at 0.982, 0.937, 0.809 and 0.747 values. At 0.809 and 0.747aw values none of the isolates was able to germinate. Overall, PP and BHA were the antioxidants most effective at inhibiting germination of both species. In the presence of the lowest concentration of BHA and PP (1 mmol l(-1)) the conidial germination percentage ranged from 2 to 19% after 15 h of incubation at the highest water activity tested. BHA and PP at 10-20 mmol l(-1) completely inhibited conidial germination. The antioxidants more efficient in controlling Aspergillus elongation rate were PP, BHT and BHA. All strains were much more sensitive to all antioxidants tested on the percentage of spore germination and growth rate at 0.937aw. The antioxidants PP and BHA completely inhibited aflatoxin B1 production by all strains when added at 1 mmol l(-1). Decreased aflatoxin B1 levels in comparison with the control, were observed with BHT at 1, 10 and 20 mmol(-1) with the strain T20 at 0.982aw. In contrast, stimulation was observed with the antioxidant THB at 10 and 20 mmol l(-1) at 0.937aw with the strains T20 and T23. The effect of BHA and PP at 1 mmol l(-1) on lag phase and growth rate was maintained in the pH range between 6 and 8. At all pH values the inhibitory effect of BHA was higher than PP. No aflatoxin B1 was detected at all pH values. The data show that BHA and PP could be considered as effective fungitoxicants for A. flavus and A. parasiticus. The information obtained show promise for controlling growth and aflatoxin B1 in stored maize. Futher studies should be

  4. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    USDA-ARS?s Scientific Manuscript database

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  5. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  6. Detection of aflatoxin B1 (AFB1) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Short wave infrared hyperspectral imaging (SWIR) (1000-2500 nm) was used to detect aflatoxin B1 (AFB1) in individual maize kernels. A total of 120 kernels of four varieties (or 30 kernels per variety) that had been artificially inoculated with a toxigenic strain of Aspergillus flavus and harvested f...

  7. Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina.

    PubMed

    Nesci, Andrea; Montemarani, Analía; Etcheverry, Miriam

    2011-02-01

    The occurrence of spoilage fungi and Aspergillus section Flavi populations, the aflatoxins incidence, the role of insects as vectors of mycotoxin-producing fungi and the AFs-producing ability of the isolated species throughout the peanut (Arachis hypogaea L.) storage period were evaluated. Analyses of fungal populations from 95 peanut seed samples did not demonstrate significant differences between the incidences in each sampling period. Aspergillus section Flavi were isolated during all incubation periods. Cryptolestes spp. (Coleoptera: Cucujidae) were collected in August, September and October with 18, 16 and 28% of peanut samples contaminated, respectively. Insects isolated during August showed 69% of Aspergillus section Flavi contamination. A. flavus was the most frequently isolated (79%) from peanut seeds and from insect (59%). The greater levels of AFB1 were detected in September and October with a mean of 68.86 μg/kg and 69.12 μg/kg respectively. The highest proportion of A. flavus toxigenic strains (87.5%) was obtained in June. The presence of Aspergillus section Flavi and insect vectors of aflatoxigenic fungi presented a potential risk for aflatoxin production during the peanut storage period. Integrated management of fungi and insect vectors is in progress.

  8. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    PubMed Central

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  9. Correlation of Zn2+ content with aflatoxin content of corn.

    PubMed Central

    Failla, L J; Lynn, D; Niehaus, W G

    1986-01-01

    Forty-nine samples from the 1983 Virginia corn harvest were analyzed for aflatoxin, zinc, copper, iron, and manganese content. Values (mean +/- standard deviation) were as follows: aflatoxin, 117 +/- 360 micrograms/kg; zinc, 22.5 +/- 3.4 mg/kg; copper, 2.27 +/- 0.56 mg/kg; iron, 40.8 +/- 18.7 mg/kg; and manganese, 5.1 +/- 1.1 mg/kg. Aflatoxin levels positively correlated with zinc (Spearman correlation coefficient, 0.385; P less than 0.006) and copper levels (Spearman correlation coefficient, 0.573; P less than 0.0001). Based on biochemical data in the literature, we believe that the correlation with zinc is important and that there may be a cause-and-effect relationship between zinc levels in corn and aflatoxin levels which are produced upon infection with Aspergillus flavus or A. parasiticus. Control of aflatoxin contamination in field corn by decreasing the zinc levels may be feasible, but no methods to decrease zinc levels are currently available. PMID:3729406

  10. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-Tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Tam, Emily W T; Chen, Jonathan H K; Lau, Eunice C L; Ngan, Antonio H Y; Fung, Kitty S C; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2014-04-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability.

  11. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Tam, Emily W. T.; Chen, Jonathan H. K.; Lau, Eunice C. L.; Ngan, Antonio H. Y.; Fung, Kitty S. C.; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung

    2014-01-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability. PMID:24452174

  12. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance.

    PubMed

    Ogunola, Oluwaseun F; Hawkins, Leigh K; Mylroie, Erik; Kolomiets, Michael V; Borrego, Eli; Tang, Juliet D; Williams, W Paul; Warburton, Marilyn L

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin production by A. flavus. Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxylipins play critical roles in plant defense against pathogens including A. flavus. The objectives of this study were to summarize sequence diversity and expression patterns for all LOX genes in the maize genome, and map their effect on aflatoxin accumulation via linkage and association mapping. In total, 13 LOX genes were identified, characterized, and mapped. The sequence of one gene, ZmLOX10, is reported from 5 inbred lines. Genes ZmLOX1/2, 5, 8, 9, 10 and 12 (GRMZM2G156861, or V4 numbers ZM00001D042541 and Zm00001D042540, GRMZM2G102760, GRMZM2G104843, GRMZM2G017616, GRMZM2G015419, and GRMZM2G106748, respectively) fell under previously published QTL in one or more mapping populations and are linked to a measurable reduction of aflatoxin in maize grains. Association mapping results found 28 of the 726 SNPs tested were associated with reduced aflatoxin levels at p ≤ 9.71 x 10-4 according to association statistics. These fell within or near nine of the ZmLOX genes. This work confirms the importance of some lipoxygenases for resistance to aflatoxin accumulation and may be used to direct future genetic selection in maize.

  13. Isolation and identification of fungi from a meju contaminated with aflatoxins.

    PubMed

    Jung, Yu Jung; Chung, Soo Hyun; Lee, Hyo Ku; Chun, Hyang Sook; Hong, Seung Beom

    2012-12-01

    A home-made meju sample contaminated naturally with aflatoxins was used for isolation of fungal strains. Overall, 230 fungal isolates were obtained on dichloran rosebengal chloramphenicol (DRBC) and dichloran 18% glycerol (DG18) agar plates. Morphological characteristics and molecular analysis of a partial beta-tubulin gene and the internal transcribed spacer (ITS) of rDNA were used for the identification of the isolates. The fungal isolates were divided into 7 genera: Aspergillus, Eurotium, Penicillium, Eupenicillium, Mucor, Lichtheimia, and Curvularia. Three strains from 56 isolates of the A. oryzae/flavus group were found to be aflatoxigenic A. flavus, by the presence of the aflatoxin biosynthesis genes and confirmatory aflatoxin production by high-performance liquid chromatography (HPLC). The predominant isolate from DRBC plates was A. oryzae (42 strains, 36.2%), whereas that from DG18 was A. candidus (61 strains, 53.5%). Out of the 230 isolates, the most common species was A. candidus (34.3%) followed by A. oryzae (22.2%), Mucor circinelloides (13.0%), P. polonicum (10.0%), A. tubingensis (4.8%), and L. ramosa (3.5%). A. flavus and E. chevalieri presented occurrence levels of 2.2%, respectively. The remaining isolates of A. unguis, P. oxalicum, Eupenicillium cinnamopurpureum, A. acidus, E. rubrum, P. chrysogenum, M. racemosus, and C. inaequalis had lower occurrence levels of < 2.0%.

  14. Action of phosphine on production of aflatoxins by various Aspergillus strains isolated from foodstuffs.

    PubMed Central

    Leitao, J; de Saint-Blanquat, G; Bailly, J R

    1987-01-01

    Phosphine is a food fumigant, used until now as an insecticide and rodenticide. The present work researches the action of phosphine treatment on growth and aflatoxin production of 23 Aspergillus strains. Production of aflatoxins B1, B2, G1, and G2 decreased in almost all cases by a ratio of 10 to 100. Phosphine treatment therefore seems favorable to prevent growth of various Aspergillus strains, in the context of keeping food safe. PMID:3426212

  15. Characterization of Aspergillus flavus strains from Brazilian Brazil nuts and cashew by RAPD and ribosomal DNA analysis.

    PubMed

    Midorikawa, G E O; Pinheiro, M R R; Vidigal, B S; Arruda, M C; Costa, F F; Pappas, G J; Ribeiro, S G; Freire, F; Miller, R N G

    2008-07-01

    The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method. Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus-specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi. RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus, with a detection limit of 10 fg. Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.

  16. Characterization of the Critical Amino Acids of an Aspergillus parasiticus Cytochrome P-450 Monooxygenase Encoded by ordA That Is Involved in the Biosynthesis of Aflatoxins B1, G1, B2, and G2

    PubMed Central

    Yu, Jiujiang; Chang, Perng-Kuang; Ehrlich, Kenneth C.; Cary, Jeffrey W.; Montalbano, Beverly; Dyer, John M.; Bhatnagar, Deepak; Cleveland, Thomas E.

    1998-01-01

    The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee. PMID:9835571

  17. Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations.

    PubMed

    Kachapulula, P W; Akello, J; Bandyopadhyay, R; Cotty, P J

    2017-06-01

    The aims of the study were to quantify aflatoxins, the potent carcinogens associated with stunting and immune suppression, in maize and groundnut across Zambia's three agroecologies and to determine the vulnerability to aflatoxin increases after purchase. Aflatoxin concentrations were determined for 334 maize and groundnut samples from 27 districts using lateral-flow immunochromatography. Seventeen per cent of crops from markets contained aflatoxin concentrations above allowable levels in Zambia (10 μg kg -1 ). Proportions of crops unsafe for human consumption differed significantly (P < 0·001) among agroecologies with more contamination (38%) in the warmest (Agroecology I) and the least (8%) in cool, wet Agroecology III. Aflatoxin in groundnut (39 μg kg -1 ) and maize (16 μg kg -1 ) differed (P = 0·032). Poor storage (31°C, 100% RH, 1 week) increased aflatoxin in safe crops by over 1000-fold in both maize and groundnut. The L morphotype of Aspergillus flavus was negatively correlated with postharvest increases in groundnut. Aflatoxins are common in Zambia's food staples with proportions of unsafe crops dependent on agroecology. Fungal community structure influences contamination suggesting Zambia would benefit from biocontrol with atoxigenic A. flavus. Aflatoxin contamination across the three agroecologies of Zambia is detailed and the case for aflatoxin management with atoxigenic biocontrol agents provided. The first method for evaluating the potential for aflatoxin increase after purchase is presented. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  18. Seventeen years of subcutaneous infection by Aspergillus flavus; eumycetoma confirmed by immunohistochemistry.

    PubMed

    Ahmed, Sarah A; Abbas, Manal A; Jouvion, Gregory; Al-Hatmi, Abdullah M S; de Hoog, G Sybren; Kolecka, Anna; Mahgoub, El Sheikh

    2015-12-01

    Chronic subcutaneous infections caused by Aspergillus species are considered to be extremely rare. Because these fungi are among the most common laboratory contaminants, their role as eumycetoma causative agents is difficult to ascertain. Here, we report the first case of A. flavus eumycetoma confirmed by isolation, molecular identification and immunohistochemical analysis. Patient was a 55-year-old male from Sudan suffering from eumycetoma on his left foot for a period of 17 years. He developed swelling, sinuses and white grain discharge was observed. He has been operated nine times and was treated with several regimens of ketoconazole and itraconazole without improvement. Initial diagnosis based on histology and radiology was Scedosporium eumycetoma. However, examination of the biopsy revealed A. flavus, which was identified by molecular analysis and MALDI-TOF MS. Immunohistochemistry using antibody directed against Aspergillus species was positive. Because of the earlier treatment failures with ketoconazole and itraconazole, therapy with voriconazole was initiated. However, in vitro susceptibility testing yielded a lower Minimum Inhibitory Concentration (MIC) value for itraconazole (0.25 μg ml(-1) ) than for voriconazole (1 μg ml(-1) ). Based on the presented results, A. flavus can be considered as one of the agents of white-grain eumycetoma. © 2015 Blackwell Verlag GmbH.

  19. Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus.

    PubMed

    Hua, Sui-Sheng T; Tarun, Alice S; Pandey, Sonal N; Chang, Leo; Chang, Perng-Kuang

    2007-02-01

    The plasmid, pAF28, a genomic clone from Aspergillus flavus NRRL 6541, has been used as a hybridization probe to fingerprint A. flavus strains isolated in corn and peanut fields. The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cloned into pCR 4-TOPO. Sequence analysis confirmed that this region encoded putative domains of partial reverse transcriptase, RNase H, and integrase of the predicted retrotransposon. The two flanking long terminal repeats (LTRs) and the sequence between them comprise a putative full-length LTR retrotransposon of 7799 bp in length. This intact retrotransposon sequence is named AFLAV (A. flavus Retrotransposon). The order of the predicted catalytic domains in the polyprotein (Pol) placed AFLAV in the Tf1/sushi subgroup of the Ty3/gypsy retrotransposon family. Primers derived from AFLAV sequence were used to screen this retrotransposon in other strains of A. flavus. More than fifty strains of A. flavus isolated from different geological origins were surveyed and the results show that many strains have extensive deletions in the regions encoding the capsid (Gag) and Pol.

  20. Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling.

    PubMed

    Korani, Walid; Chu, Ye; Holbrook, C Corley; Ozias-Akins, Peggy

    2018-05-01

    Postharvest aflatoxin contamination is a challenging issue that affects peanut quality. Aflatoxin is produced by fungi belonging to the Aspergilli group, and is known as an acutely toxic, carcinogenic, and immune-suppressing class of mycotoxins. Evidence for several host genetic factors that may impact aflatoxin contamination has been reported, e.g. , genes for lipoxygenase (PnLOX1 and PnLOX2/PnLOX3 that showed either positive or negative regulation with Aspergillus infection), reactive oxygen species, and WRKY (highly associated with or differentially expressed upon infection of maize with Aspergillus flavus ); however, their roles remain unclear. Therefore, we conducted an RNA-sequencing experiment to differentiate gene response to the infection by A. flavus between resistant (ICG 1471) and susceptible (Florida-07) cultivated peanut genotypes. The gene expression profiling analysis was designed to reveal differentially expressed genes in response to the infection (infected vs. mock-treated seeds). In addition, the differential expression of the fungal genes was profiled. The study revealed the complexity of the interaction between the fungus and peanut seeds as the expression of a large number of genes was altered, including some in the process of plant defense to aflatoxin accumulation. Analysis of the experimental data with "keggseq," a novel designed tool for Kyoto Encyclopedia of Genes and Genomes enrichment analysis, showed the importance of α-linolenic acid metabolism, protein processing in the endoplasmic reticulum, spliceosome, and carbon fixation and metabolism pathways in conditioning resistance to aflatoxin accumulation. In addition, coexpression network analysis was carried out to reveal the correlation of gene expression among peanut and fungal genes. The results showed the importance of WRKY, toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR), ethylene, and heat shock proteins in the resistance mechanism. Copyright

  1. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides.

    PubMed

    Abhishek, R U; Thippeswamy, S; Manjunath, K; Mohana, D C

    2015-12-01

    The main objective of this study was to investigate the antifungal effect of Solanum torvum leaves against different field and storage fungi, and to identify its active compound. In addition, to evaluate in vitro and in vivo inhibitory efficacy on toxigenic strains of Aspergillus flavus and Fusarium verticillioides. Leaves of S. torvum were sequentially extracted with petroleum ether, toluene, chloroform, methanol and ethanol. The antifungal compound isolated from chloroform extract was identified as torvoside K based on spectral analysis. The antifungal activity of chloroform extract and torvoside K was determined by broth microdilution and poisoned food techniques. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and zone of inhibition (ZOI) were recorded. Further, inhibitory effects of chloroform extract and torvoside K on growth of A. flavus and F. verticillioides, and their toxin productions were evaluated using in vitro and in vivo assays. Torvoside K showed the significant activity against tested fungi with ZOIs and MICs ranging from 33·4 to 87·4% and 31·25-250 μg ml(-1) , respectively. Further, torvoside K showed concentration-dependent antimycotoxigenic activity against aflatoxin B1 and fumonisin B1 production by A. flavus and F. verticillioides, respectively. It was observed that the compound torvoside K significantly inhibited the growth of all fungi tested. Growth of A. flavus and F. verticillioides, and aflatoxin B1 and fumonisin B1 productions were completely inhibited in vitro and in vivo by torvoside K with increasing concentration. Control of mycotoxigenic fungi requires compounds that able to inhibit both fungal growth and mycotoxin production. The antimycotoxigenic potential of torvoside K of S. torvum is described in this study for the first time. The results indicate the possible use of S. torvum as source of antifungal agents against postharvest fungal infestation of food commodities and

  2. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus.

    PubMed

    Devipriya, Duraipandi; Roopan, Selvaraj Mohana

    2017-11-01

    Recently, non-toxic source mediated synthesis of metal and a metal oxide nanoparticle attains more attention due to key applicational responsibilities. This present report stated that the eco-friendly synthesis of copper oxide nanoparticles (CuO NPs) using Cissus quadrangularis (C. quadrangularis) plant extract. Further the eco-friendly synthesized CuO NPs were characterized using a number of analytical techniques. The observed results stated that the synthesized CuO NPs were spherical in shape with 30±2nm. Then the eco-friendly synthesized CuO NPs were subjected for anti-fungal against two strains namely Aspergillus niger (A. niger) resulted in 83% at 500ppm, 86% of inhibition at 1000ppm and Aspergillus flavus (A. flavus) resulted in 81% at 500ppm, 85% of inhibition at 1000ppm respectively. Despite the fact that compared to standard Carbendazim, eco-friendly synthesized CuO NPs exhibits better results were discussed in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Unravelling the diversity of the cyclopiazonic acid family of mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (a-cyclopiazonic acid, a-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures, approximately 40 years ago, its contribution to the...

  4. Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor

    NASA Astrophysics Data System (ADS)

    Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.

    2017-07-01

    Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.

  5. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water

    PubMed Central

    Jardon-Xicotencatl, Samantha; Díaz-Torres, Roberto; Marroquín-Cardona, Alicia; Villarreal-Barajas, Tania; Méndez-Albores, Abraham

    2015-01-01

    Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize. PMID:26512692

  6. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: a three year study in Sonora, Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Jaime, Ramon; Cotty, Peter J

    2015-04-01

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed. Published by Elsevier Ltd.

  7. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins.

    PubMed

    Siciliano, Ilenia; Spadaro, Davide; Prelle, Ambra; Vallauri, Dario; Cavallero, Maria Chiara; Garibaldi, Angelo; Gullino, Maria Lodovica

    2016-04-26

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N₂, 0.1% O₂ and 1% O₂, 21% O₂), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB₁ of over 70% was obtained. Aflatoxins B₁ and G₁ were more sensitive to plasma treatments compared to aflatoxins B₂ and G₂, respectively. Under plasma treatment, aflatoxin B₁ was more sensitive compared to aflatoxin G₁. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics.

  8. Activation of Aflatoxin Biosynthesis Alleviates Total ROS in Aspergillus parasiticus

    PubMed Central

    Kenne, Gabriel J.; Gummadidala, Phani M.; Omebeyinje, Mayomi H.; Mondal, Ananda M.; Bett, Dominic K.; McFadden, Sandra; Bromfield, Sydney; Banaszek, Nora; Velez-Martinez, Michelle; Mitra, Chandrani; Mikell, Isabelle; Chatterjee, Saurabh; Wee, Josephine; Chanda, Anindya

    2018-01-01

    An aspect of mycotoxin biosynthesis that remains unclear is its relationship with the cellular management of reactive oxygen species (ROS). Here we conduct a comparative study of the total ROS production in the wild-type strain (SU-1) of the plant pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in which the aflatoxin biosynthesis pathway is blocked by disruption of its pathway regulator, aflR. We show that SU-1 demonstrates a significantly faster decrease in total ROS than AFS10 between 24 h to 48 h, a time window within which aflatoxin synthesis is activated and reaches peak levels in SU-1. The impact of aflatoxin synthesis in alleviation of ROS correlated well with the transcriptional activation of five superoxide dismutases (SOD), a group of enzymes that protect cells from elevated levels of a class of ROS, the superoxide radicals (O2−). Finally, we show that aflatoxin supplementation to AFS10 growth medium results in a significant reduction of total ROS only in 24 h cultures, without resulting in significant changes in SOD gene expression. Our findings show that the activation of aflatoxin biosynthesis in A. parasiticus alleviates ROS generation, which in turn, can be both aflR dependent and aflatoxin dependent. PMID:29382166

  9. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.

    PubMed

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Solorzano, Cesar D; Abbas, Hamed K; Hua, Sui-Sheng T; Jones, Walker A; Zablotowicz, Robert M

    2015-05-04

    Aspergillus oryzae and Aspergillus flavus are closely related fungal species. The A. flavus morphotype that produces numerous small sclerotia (S strain) and aflatoxin has a unique 1.5 kb deletion in the norB-cypA region of the aflatoxin gene cluster (i.e. the S genotype). Phylogenetic studies have indicated that an isolate of the nonaflatoxigenic A. flavus with the S genotype is the ancestor of A. oryzae. Genome sequence comparison between A. flavus NRRL3357, which produces large sclerotia (L strain), and S-strain A. flavus 70S identified a region (samA-rosA) that was highly variable in the two morphotypes. A third type of samA-rosA region was found in A. oryzae RIB40. The three samA-rosA types were later revealed to be commonly present in A. flavus L-strain populations. Of the 182 L-strain A. flavus field isolates examined, 46%, 15% and 39% had the samA-rosA type of NRRL3357, 70S and RIB40, respectively. The three types also were found in 18 S-strain A. flavus isolates with different proportions. For A. oryzae, however, the majority (80%) of the 16 strains examined had the RIB40 type and none had the NRRL3357 type. The results suggested that A. oryzae strains in the current culture collections were mostly derived from the samA-rosA/RIB40 lineage of the nonaflatoxigenic A. flavus with the S genotype. Published by Elsevier B.V.

  10. Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    PubMed Central

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj; Kildgaard, Sara; Frisvad, Jens Christian; Gotfredsen, Charlotte Held; Larsen, Thomas Ostenfeld

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15 growth conditions. Contrary to previous studies we found the aflatrem precursor 13-desoxypaxilline to be a major metabolite from A. oryzae under certain growth conditions. For the first time, we additionally report A. oryzae to produce parasiticolide A and two new analogues hereof, along with four new alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus. PMID:24957367

  11. Occurrence of aflatoxins in milk thistle herbal supplements.

    PubMed

    Tournas, V H; Sapp, C; Trucksess, M W

    2012-01-01

    Milk thistle (MT) dietary supplements are widely consumed due to their possible liver-health-promoting properties. As botanicals they can be contaminated with a variety of fungi and their secondary metabolites, mycotoxins. The aflatoxigenic fungus Aspergillus flavus has been previously isolated from these commodities. Currently, there is no published method for determining aflatoxins (AFs) in MT. Therefore, a liquid chromatography (LC) method validated for aflatoxin analysis in botanicals was evaluated and applied to MT. The method consisted of acetonitrile/water extraction, immunoaffinity column clean-up, LC separation, post-column photochemical reaction derivatisation and fluorescence detection. The average recoveries for AFs added to MT seeds, herb, oil-based liquid extract and alcohol-based liquid extract were 76% or higher. The mean relative standard deviation was <10%. The limit of detection (LOD) was 0.01 µg kg(-1) and the limit of quantification (LOQ) was 0.03 µg kg(-1). The method was used to conduct a small survey. A total of 83 MT samples from the US market were analysed. AFs were detected in 19% of the samples with levels ranging from 0.04 to 2.0 µg kg(-1). Additionally, an aflatoxigenic A. flavus strain from ATTC and an A. parasiticus strain isolated from MT herb powder were found to produce high amounts of aflatoxins (11,200 and 49,100 µg kg(-1), respectively) when cultured in MT seed powder. This is the first study reporting on aflatoxin contamination of MT botanical supplements and identifying methodology for AF analysis of these commodities.

  12. Aspergillus and aflatoxin in groundnuts (Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Groundnut (Arachis hypogaea L.) is an important cash and food crop in eastern Ethiopia. The lack of awareness and data on Aspergillus and aflatoxin contamination of groundnut and groundnut food products in the area are lacking. Therefore, this study was conducted to: i) assess major Aspergillus spec...

  13. Blocking aflatoxins in corn by using non-toxigenic strains of Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    There are over 500 previously reported mycotoxins. However, only a few have been identified as important for food safety, including aflatoxins, fumonisins, cyclopiazonic acid (CPA), trichothecenes, zearalenone, ochratoxins, and patulin. Mycotoxins contaminate plant materials, causing acute and ch...

  14. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated From Peanut Seeds in Georgia

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and A. parasiticus fungi, carcinogen-mycotoxins producers, infect peanut seeds, causing considerable impact on both human health and the economy. Here we report 9 genome sequences of Aspergillus spp. isolated from peanut seeds. The information obtained will allow conducting biodiv...

  15. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    PubMed

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  16. Influence of Modified Atmosphere Storage on Aflatoxin Production in High Moisture Corn

    PubMed Central

    Wilson, David M.; Jay, Edward

    1975-01-01

    Samples of freshly harvested corn and remoistened corn were inoculated with Aspergillus flavus and stored for 4 weeks at about 27 C in air and three modified atmospheres. Aflatoxins and fat acidity were determined weekly. Corn stored in the modified atmospheres did not accumulate over 15 μg of aflatoxin B1 per kg and 20 μg of total aflatoxins per kg. Corn from the high CO2 treatment (61.7% CO2, 8.7% O2, and 29.6% N2) was visibly molded at 4 weeks and had a higher fat acidity than the other treatments. In the N2 (99.7% N2 and 0.3% O2) and controlled atmosphere (13.5% CO2, 0.5% O2, 84.8% N2) treatments, a fermentation-like odor was detected. When the corn was removed from the modified atmospheres it deteriorated rapidly and was soon contaminated with aflatoxins. PMID:803817

  17. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  18. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

    PubMed Central

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B1, B2, G1 and G2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB1, B2, G1 and G2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species. PMID:28077976

  19. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus.

    PubMed

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB ) against growth and aflatoxin production of toxigenic Aspergillus parasiticus . The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B 1 , B 2 , G 1 and G 2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB 1 , B 2 , G 1 and G 2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species.

  20. Orientation of navel orangeworm larvae and adults (Amyelois transitella: Lepidoptera: Pyralidae) toward Aspergillus flavus.

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella), a pest of California tree nuts, is associated with the fungus Aspergillus flavus, and mounting evidence suggests that these two species are facultative mutualists. Navel orangeworm larvae exhibit improved growth and survival on diets containing this fungu...

  1. Occurrence of aflatoxin B1 in natural products

    PubMed Central

    Prado, Guilherme; Altoé, Aline F.; Gomes, Tatiana C. B.; Leal, Alexandre S.; Morais, Vanessa A. D.; Oliveira, Marize S.; Ferreira, Marli B.; Gomes, Mateus B.; Paschoal, Fabiano N.; von S. Souza, Rafael; Silva, Daniela A.; Cruz Madeira, Jovita E. G.

    2012-01-01

    The media claims for the consumption of natural resource-based food have gradually increased in both developing and developed countries. The interest in the safety of these products is partially due to the possible presence of toxigenic fungi acting as mycotoxin producers, such as aflatoxins produced during the secondary metabolism of Aspergillus flavus, A. parasiticus and A. nomius. Aflatoxins, mainly aflatoxin B1, are directly associated with liver cancer in human beings. This paper is aimed at evaluating the presence of aflatoxin B1 in a few vegetable drugs, dried plant extracts and industrialized products traded in 2010 in the city of Belo Horizonte, State of Minas Gerais, Brazil. The method used for the quantification of aflatoxin B1 was based on extraction through acetone:water (85:15), immunoaffinity column purification followed by separation and detection in high efficiency liquid chromatography. Under the conditions of analysis, the Limits of Detection and Quantification were 0.6 µg kg-1 and 1.0 µg kg-1 respectively. The complete sets of analyses were carried out in duplicate. Aflatoxin B1 was noticed in a single sample (< 1.0 µg kg-1). The results revealed low aflatoxin B1 contamination in the products under analysis. However, it is required to establish a broad monitoring program in order to obtain additional data and check up on the actual extension of contamination. PMID:24031973

  2. Aspergillus flavus genetic diversity of corn fields treated with non-toxigenic strain afla-guard in the southern U.S

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus genetic diversity of corn fields treated with the non-toxigenic strain Afla-Guard (NRRL 21882) was determined for 384 A. flavus isolates from 14 locations within 6 states in the southern U.S. ELISA test has determined low levels of toxigenic strains (only 91 positive). Nearly hal...

  3. Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery

    NASA Astrophysics Data System (ADS)

    Ononye, Ambrose E.; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Cleveland, Thomas E.

    2009-05-01

    Aflatoxin is a mycotoxin predominantly produced by Aspergillus flavus and Aspergillus parasitiucus fungi that grow naturally in corn, peanuts and in a wide variety of other grain products. Corn, like other grains is used as food for human and feed for animal consumption. It is known that aflatoxin is carcinogenic; therefore, ingestion of corn infected with the toxin can lead to very serious health problems such as liver damage if the level of the contamination is high. The US Food and Drug Administration (FDA) has strict guidelines for permissible levels in the grain products for both humans and animals. The conventional approach used to determine these contamination levels is one of the destructive and invasive methods that require corn kernels to be ground and then chemically analyzed. Unfortunately, each of the analytical methods can take several hours depending on the quantity, to yield a result. The development of high spectral and spatial resolution imaging sensors has created an opportunity for hyperspectral image analysis to be employed for aflatoxin detection. However, this brings about a high dimensionality problem as a setback. In this paper, we propose a technique that automatically detects aflatoxin contaminated corn kernels by using dual-band imagery. The method exploits the fluorescence emission spectra from corn kernels captured under 365 nm ultra-violet light excitation. Our approach could lead to a non-destructive and non-invasive way of quantifying the levels of aflatoxin contamination. The preliminary results shown here, demonstrate the potential of our technique for aflatoxin detection.

  4. Effects of airborne Aspergillus on serum aflatoxin B1 and liver enzymes in workers handling wheat flour.

    PubMed

    Saad-Hussein, A; Taha, M M; Fadl, N N; Awad, A-H; Mahdy-Abdallah, H; Moubarz, G; Aziz, H; El-Shamy, K A

    2016-01-01

    The present work aimed to investigate the relationship between occupational exposure to airborne molds, serum aflatoxin B1 (AFB1), and liver enzymes of workers handling wheat flour. The study included 90 bakers, 100 flour milling workers, and 100 controls with no exposure to flour dust. Workplace aspects such as temperature and relative humidity were measured. Airborne fungi were collected and identified. In all subjects included, the serum levels of AFB1, serum albumin (Alb), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were measured. Air temperature and relative humidity were found to be higher in bakeries than in flour mill sections. Airborne Aspergillus species were isolated in dust particles <8 µm in size. The concentration of Aspergillus flavus and Aspergillus niger were higher in bakeries than in the flour mill sections. They were higher in the grinding section than in other mill sections. The serum AFB1-Alb adduct and ALP levels were significantly higher in bakers compared to milling workers (p < 0.0001, p = 0.05), respectively. The liver enzymes AST and ALT were significantly higher among milling workers and bakers than controls (p < 0.05, p < 0.0001), respectively. The duration of exposure was significantly correlated with serum AFB1 in bakers. Moreover, there was significant correlation between serum AFB1, each of ALT and AST levels in bakers. chronic occupational exposure to high concentrations of Aspergillus in workplaces may cause elevations in serum levels of AFB1 and liver enzymes in workers exposed to flour dust. Hence, worker protection measures should be consistently adopted and enforced at the workplace. © The Author(s) 2015.

  5. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins

    PubMed Central

    Siciliano, Ilenia; Spadaro, Davide; Prelle, Ambra; Vallauri, Dario; Cavallero, Maria Chiara; Garibaldi, Angelo; Gullino, Maria Lodovica

    2016-01-01

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N2, 0.1% O2 and 1% O2, 21% O2), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB1 of over 70% was obtained. Aflatoxins B1 and G1 were more sensitive to plasma treatments compared to aflatoxins B2 and G2, respectively. Under plasma treatment, aflatoxin B1 was more sensitive compared to aflatoxin G1. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics. PMID:27128939

  6. Microsatellite Typing of Aspergillus flavus Strains in a Tunisian Onco-hematology Unit.

    PubMed

    Gheith, Soukeina; Saghrouni, Fatma; Normand, Anne-Cécile; Bannour, Wadiaa; Khelif, Abderrahim; Piarroux, Renaud; Ben Said, Moncef; Njah, Mansour; Ranque, Stéphane

    2016-04-01

    Aspergillus flavus is the most common species associated with invasive aspergillosis in Tunisia. The molecular epidemiology of the species is poorly documented. We used five highly discriminative microsatellite markers for the genotyping of clinical and hospital environmental A. flavus strains to assess whether IA could be hospital-acquired in the onco-hematology unit of the Farhat Hached teaching hospital of Sousse, Tunisia. The genotyping of 18 clinical isolates, collected from sputa of 17 acute leukemia patients, and 81 isolates, collected in these patients' hospital environment and food, identified 57 isolates that were grouped in 10 clones, each of them including 2-17 isolates. The remaining 42 isolates showed a unique genotype. Two main transmission scenarios were observed: (1) the same clone was isolated from different patients; (2) the same clone was isolated from a patient, its hospital environment and/or food. These findings strongly suggest the occurrence of hospital-acquired A. flavus infection/colonization in the investigated onco-hematology unit.

  7. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts.

    PubMed

    Gonçalves, Juliana Soares; Ferracin, Lara Munique; Carneiro Vieira, Maria Lucia; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Pelegrinelli Fungaro, Maria Helena

    2012-04-01

    Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within β-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles.

  8. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  9. Aflatoxin contamination of developing corn kernels.

    PubMed

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  10. Effects of Trace Metals on the Production of Aflatoxins by Aspergillus parasiticus

    PubMed Central

    Marsh, Paul B.; Simpson, Marion E.; Trucksess, Mary W.

    1975-01-01

    Certain metals added as salts to a defined basal culture medium influenced the level of aflatoxin production by Aspergillus parasiticus in the low microgramsper-milliliter range of the added metal. In many cases no change or a relatively small change in mat weight and final pH of the medium accompanied this effect. With zinc at added levels of 0 to 10 μg/ml in the medium, aflatoxin increased 30-to 1,000-fold with increasing of zinc, whereas mat weight increased less than threefold. At 25 μg of added zinc per ml, aflatoxin decreased, but mat weight did not. At an added level of 25 μg or less of the metal per ml, salts of iron, manganese, copper, cadmium, trivalent chromium, silver, and mercury partly or completely inhibited aflatoxin production, without influencing mat weight. PMID:238471

  11. Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L).

    PubMed

    Yogendrarajah, Pratheeba; Vermeulen, An; Jacxsens, Liesbeth; Mavromichali, Evangelia; De Saeger, Sarah; De Meulenaer, Bruno; Devlieghere, Frank

    2016-07-02

    The growth and mycotoxin production of three Aspergillus flavus isolates and an Aspergillus parasiticus isolate were studied in whole black peppercorns (Piper nigrum L.) using a full factorial design with seven water activity (aw) (0.826-0.984) levels and three temperatures (22, 30 and 37°C). Growth rates and lag phases were estimated using linear regression. Diverse secondary models were assessed for their ability to describe the radial growth rate as a function of individual and combined effect of aw and temperature. Optimum radial growth rate ranged from 0.75±0.04 to 2.65±0.02mm/day for A. flavus and 1.77±0.10 to 2.50±0.10mm/day for A. parasiticus based on the Rosso cardinal estimations. Despite the growth failure of some isolates at marginal conditions, all the studied models showed good performance to predict the growth rates. Validation of the models was performed on independently derived data. The bias factors (0.73-1.03), accuracy factors (0.97-1.36) and root mean square error (0.050-0.278) show that the examined models are conservative predictors of the colony growth rate of both fungal species in black peppers. The Rosso cardinal model can be recommended to describe the individual aw effect while the extended Gibson model was the best model for describing the combined effect of aw and temperature on the growth rate of both fungal species in peppercorns. Temperature optimum ranged from 30 to 33°C, while aw optimum was 0.87-0.92 as estimated by multi-factorial cardinal model for both species. The estimated minimum temperature and aw for A. flavus and A. parasiticus for growth were 11-16°C and 0.73-0.76, respectively, hence, achieving these conditions should be considered during storage to prevent the growth of these mycotoxigenic fungal species in black peppercorns. Following the growth study, production of mycotoxins (aflatoxins B1, B2, G1, G2, sterigmatocystin and O-methyl sterigmatocystin (OMST)) was quantified using LC-MS/MS. Very small

  12. New monomeric stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus flavus strain

    USDA-ARS?s Scientific Manuscript database

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B that has not been reported from peanuts, as well as a stilbenoid that has been known as a synthetic product. The structures of these new putative phytoalexins were d...

  13. Demonstration of Aflatoxin Inhibitory Activity in a Cotton Seed Coat Xylan

    PubMed Central

    Mellon, J. E.; Cotty, P. J.; Godshall, M. A.; Roberts, E.

    1995-01-01

    An inhibitor of aflatoxin biosynthesis localized in the seed coats of developing cotton was partially purified and characterized. Aqueous extracts from 25-day postanthesis seed coat tissue inhibited aflatoxin (B(inf1)) production in liquid cultures of Aspergillus flavus AF13. Inhibition was concentration dependent, with a 50% effective dose of 173 (mu)g of crude extract per ml of medium. The inhibitor was neutral in charge. Two active fractions were obtained from crude preparations by gel filtration chromatography (BioGel P-100). The purest fraction eluted in the void volume. Carbohydrate composition analysis of this void volume inhibitor indicated a composition of xylose (>90%) and mannose. Aflatoxin production in vitro was inversely related to inhibitor concentration in the fermentation medium (log of aflatoxin versus log of [inhibitor]; r(sup2) = 0.82; P < 0.002). The void volume inhibitor had a 50% effective dose of 6.2 (mu)g/ml, a 28-fold purification of the inhibitor material. These data support the hypothesis that seed coat inhibitory activity is associated with a cottonseed-specific xylan. PMID:16535194

  14. Copper induction and differential expression of laccase in Aspergillus flavus

    PubMed Central

    Gomaa, Ola M.; Momtaz, Osama A.

    2015-01-01

    Aspergillus flavus was isolated from soil and exhibited laccase activity under both constitutive and copper induced conditions. Spiking the medium with 1 mM copper sulfate resulted in an increase in the activity which reached 51.84 U/mL, a distinctive protein band was detected at 60 kDa. The extracellular enzyme was purified 81 fold using gel filtration chromatography and resulted in two different laccase fractions L1 and L2, the latter had a higher enzymatic activity which reached 79.57 U/mL and specific activity of 64.17 U/μg protein. The analysis of the spectrum of the L2 fraction showed a shoulder at 330 nm which is characteristic for T2/T3 copper centers; both copper and zinc were detected suggesting that this is an unconventional white laccase. Primers of laccase gene were designed and synthesized to recover specific gene from A. flavus . Sequence analysis indicated putative laccase (Genbank ID: JF683612) at the amino acid level suggesting a close identity to laccases from other genera containing the copper binding site. Decolorization of textile waste water under different conditions showed possible application in bioremediation within a short period of time. The effect of copper on A. flavus was concentration dependent. PMID:26221119

  15. Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia.

    PubMed

    Norlia, M; Jinap, S; Nor-Khaizura, M A R; Son, R; Chin, C K; Sardjono

    2018-05-31

    Peanuts are widely consumed as the main ingredient in many local dishes in Malaysia. However, the tropical climate in Malaysia (high temperature and humidity) favours the growth of fungi from Aspergillus section Flavi, especially during storage. Most of the species from this section, such as A. flavus, A. parasiticus and A. nomius, are natural producers of aflatoxins. Precise identification of local isolates and information regarding their ability to produce aflatoxins are very important to evaluate the safety of food marketed in Malaysia. Therefore, this study aimed to identify and characterize the aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi in peanuts and peanut-based products. A polyphasic approach, consisting of morphological and chemical characterizations was applied to 128 isolates originating from raw peanuts and peanut-based products. On the basis of morphological characters, 127 positively identified as Aspergillus flavus, and the other as A. nomius. Chemical characterization revealed six chemotype profiles which indicates diversity of toxigenic potential. About 58.6%, 68.5%, and 100% of the isolates are positive for aflatoxins, cyclopiazonic acid and aspergillic acid productions respectively. The majority of the isolates originating from raw peanut samples (64.8%) were aflatoxigenic, while those from peanut-based products were less toxigenic (39.1%). The precise identification of these species may help in developing control strategies for aflatoxigenic fungi and aflatoxin contamination in peanuts, especially during storage. These findings also highlight the possibility of the co-occurrence of other toxins, which could increase the potential toxic effects of peanuts. Copyright © 2018. Published by Elsevier B.V.

  16. Development of a droplet digital PCR assay for population analysis of aflatoxigenic and atoxigenic Aspergillus flavus mixtures in soil

    USDA-ARS?s Scientific Manuscript database

    Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus strains has emerged as one of the practical strategy for reducing aflatoxins contamination in food. Droplet digital PCR (ddPCR) is a new DNA quantification platform without an external DNA calibrator. For ddPCR, ...

  17. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1).

    PubMed

    Zhao, Wei; Wang, Lei; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Yang, Guang; Qi, Cancan; Wang, Baojie

    2017-09-01

    Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Assessment of total aflatoxin level in red pepper obtained from Istanbul.

    PubMed

    Alpsoy, Lokman; Kiren, Artin; Can, Sevde Nur; Koprubasi, Ayşenur

    2013-10-01

    Aflatoxins (Aspergillus flavus toxins (AFT)) are biologically active secondary metabolites mostly produced by some Aspergillus species that causes hepatotoxicity, teratogenicity, immunotoxicity, and cancers in human. The aim of this study is to determine the level of total AFT in powdered red pepper in the retail markets in 40 district of Istanbul using enzyme-linked immunosorbent assay. Of the 36 unpacked powdered red pepper samples, 32 samples (88%) contained AFT in the range of 0.2-106.4 µg/kg; 16 samples (44.4%) were above the regulatory limit which is at 10 µg/kg for total AFT in Turkey. More precautions on the production, transport, harvest, and storage of red pepper should be taken on hygiene to prevent toxic and carcinogenic effects of AFT.

  19. Survival of Aspergillus flavus and Fusarium moniliforme in High-Moisture Corn Stored Under Modified Atmospheres

    PubMed Central

    Wilson, David M.; Huang, L. H.; Jay, Edward

    1975-01-01

    Freshly harvested high-moisture corn with 29.4% moisture and corn remoistened to 19.6% moisture were inoculated with Aspergillus flavus Link ex Fr. and stored for 4 weeks at about 27 C in air (0.03% CO2, 21% O2, and 78% N2) and three modified atmospheres: (i) 99.7% N2 and 0.3% O2; (ii) 61.7% CO2, 8.7% O2, and 29.6% N2; and (iii) 13.5% CO2, 0.5% O2, and 84.8% N2. Kernel infections by A. flavus, Fusarium moniliforme (Sheld.) Snyd. et Hans., and other fungi were monitored weekly. The modified-atmosphere treatments delayed deterioration by A. flavus and F. moniliforme, but their growth was not completely stopped. A. flavus survived better in the remoistened than in the freshly harvested corn. F. moniliforme survived in both. A. flavus and F. moniliforme were the dominant fungi in corn removed from the modified atmospheres and exposed to normal air for 1 week. PMID:811165

  20. Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut.

    PubMed

    Deng, Y; Chen, H; Zhang, C; Cai, T; Zhang, B; Zhou, S; Fountain, J C; Pan, R-L; Guo, B; Zhuang, W-J

    2018-03-30

    Aflatoxin contamination in peanut is a serious food safety issue to human health around the world. Finding disease resistance genes is a key strategy for genetic improvement in breeding to deal with this issue. We identified an Aspergillus flavus-induced NBS-LRR gene, AhRAF4, using a microarray-based approach. By comparison of 23 sequences from three species using phytogenetics, protein secondary structure and three-dimensional structural analyses, AhRAF4 was revealed to be derived from Arachis duranensis by recombination, and has newly evolved into a family of several members, characterised by duplications and point mutations. However, the members of the family descended from A. ipaensis were lost following tetraploidisation. AhRAF4 was slightly up-regulated by low temperature, drought, salicylic acid and ethylene, but down-regulated by methyl jasmonate. The distinct responses upon As. flavus inoculation and the differential reactions between resistant and susceptible varieties indicate that AhRAF4 might play a role in defence responses. Temporal and spatial expression and the phenotype of transformed protoplasts suggest that AhRAF4 may also be associated with pericarp development. Because tetraploid cultivated peanuts are vulnerable to many pathogens, an exploration of R-genes may provide an effective method for genetic improvement of peanut cultivars. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production.

    PubMed

    Reverberi, M; Fabbri, A A; Zjalic, S; Ricelli, A; Punelli, F; Fanelli, C

    2005-11-01

    Biosynthesis of aflatoxins, toxic metabolites produced by Aspergillus parasiticus, is correlated to the fungal oxidative stress and cell ageing. In this paper, the mechanism underlying the aflatoxin-inhibiting effect of the Lentinula edodes culture filtrates was studied by analysing their anti-oxidant activity and beta-glucan content. Mushroom beta-glucans are pharmacologically active compounds stimulating anti-oxidant responses in animal cells. L. edodes lyophilised filtrates stimulate A. parasiticus anti-oxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and aflatoxin inhibition was better correlated with beta-glucan content than with anti-oxidant activity of the filtrates. RT-PCR analyses on treated mycelia showed a delay in the activation of aflR, and norA, genes of aflatoxin cluster and a synchronous activation of hsf2-like, a homologue of a yeast transcription factor involved in oxidative stress responses. The first evidence of hsf2-like in A. parasiticus and its activation during aflatoxin biosynthesis is reported. L. edodes filtrates could play a role as external stimulus affecting the anti-oxidant status in the fungal cell that, in turn, leads to aflatoxin inhibition. In the fungal cell, beta-glucans present in the filtrates could stimulate the activation of transcription factors related to anti-oxidant response and anti-oxidant enzyme activity with a contemporaneous delay of aflatoxin genes transcription, which led to a marked reduction of aflatoxin production. This research suggests new perspectives to set suitable strategies against aflatoxins and L. edodes could be considered a promising tool.

  2. An integrated approach for the reduction of aflatoxin contamination in chilli (Capsicum annuum L.).

    PubMed

    Sudha, S; Naik, M K; Ajithkumar, K

    2013-02-01

    An integrated approach for management of aflatoxin contamination in chilli was undertaken by evaluating the fungicides, bioagents and plant extracts against Aspergillus flavus under both in vitro and field condition. Maximum inhibition of radial growth (91.1%) was observed with 0.3% mancozeb followed by captan (85.2%). Carbendazim (73%) was effective and superior over other systemic fungicides. A complete inhibition (100%) of A. flavus was observed in neem seed kernel extract (NSKE), nimbicidin and pongamia oil at 5%. An indigenous Pseudomonas fluorescens bioagent isolate inhibited (74.9%) the growth of A. flavus over Trichoderma harzianum (70.4%). The superior performing fungicides, plant extracts and bioagents identified under in vitro were used for challenge inoculation on chilli fruits and so also for field evaluation. The captan treated fruits recorded the least infection of A. flavus (1.6%) followed by P. fluorescens (2.0%), NSKE (2.2%) and nimbicidin treated fruits (7.8%) as against control (38.3%). As regards to field evaluation, the least incidence was recorded in NSKE sprayed chilli plot (1.6%) and was on par with captan (2.2%), P. fluorescens (2.4%) and T. harzianum (2.6%) compared to control (7.4%). Hence, a pre-harvest spray of NSKE (5%) or mancozeb (0.3%) or P. fluorescens (1 × 10(8) cfu/ml) 10 days before harvest of chilli is recommended for field level management of aflatoxin.

  3. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  4. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  5. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  6. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tolerance is established for residues of Aspergillus flavus AF36 in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, field, aspirated grain fractions; corn, sweet, kernel plus cob with husk removed; corn, sweet, forage; corn, sweet, stover; corn, pop, grain; and corn, pop, stover, when...

  7. Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus.

    PubMed Central

    Whitehead, M P; Shieh, M T; Cleveland, T E; Cary, J W; Dean, R A

    1995-01-01

    Two genes, pecA and pecB, encoding endopolyglacturonases were cloned from a highly aggressive strain of Aspergillus flavus. The pecA gene consisted of 1,228 bp encoding a protein of 363 amino acids with a predicted molecular mass of 37.6 kDa, interrupted by two introns of 58 and 81 bp in length. Accumulation of pecA mRNA in both pectin- or glucose-grown mycelia in the highly aggressive strain matched the activity profile of a pectinase previously identified as P2c. Transformants of a weakly aggressive strain containing a functional copy of the pecA gene produced P2c in vitro, confirming that pecA encodes P2c. The coding region of pecB was determined to be 1,217 bp in length interrupted by two introns of 65 and 54 bp in length. The predicted protein of 366 amino acids had an estimated molecular mass of 38 kDa. Transcripts of this gene accumulated in mycelia grown in medium containing pectin alone, never in mycelia grown in glucose-containing medium, for both highly and weakly aggressive strains. Thus, pecB encodes the activity previously identified as P1 or P3. pecA and pecB share a high degree of sequence identity with polygalacturonase genes from Aspergillus parasiticus and Aspergillus oryzae, further establishing the close relationships between members of the A. flavus group. Conservation of intron positions in these genes also indicates that they share a common ancestor with genes encoding endopolyglacturonases of Aspergillus niger. PMID:7574642

  8. Influence of inoculum size of Aspergillus parasiticus spores on aflatoxin production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, A.; Behere, A.G.; Padwal-Desai, S.R.

    The influence of the inoculum size on growth and aflatoxin production was examined in Aspergillus parasiticus (NRRL 3145) by using a synthetic medium. The reduction in the number of spores by 4 to 5 log cycles either by serial dilution or by gamma irradiation caused a two fold increase in the toxin production. The decrease in the inoculum size induced a lag in growth of the culture, though the final yield of the mycelium over the 28-day experimental period was the same. The maximal accumulation of aflatoxin was observed on day 14 of incubation. A transition from the biphasic tomore » monophasic pattern in aflatoxin production could be correlated with the size of the inoculum. The enhanced toxin production from dilute inocula was similar to that obtained with the surviving fraction of the spores after gamma irradiation (0 to 150 krads).« less

  9. An insight into the distribution, genetic diversity, and mycotoxin production of Aspergillus section Flavi in soils of pistachio orchards.

    PubMed

    Jamali, Mojdeh; Ebrahimi, Mohammad-Ali; Karimipour, Morteza; Shams-Ghahfarokhi, Masoomeh; Dinparast-Djadid, Navid; Kalantari, Sanaz; Pilehvar-Soltanahmadi, Yones; Amani, Akram; Razzaghi-Abyaneh, Mehdi

    2012-01-01

    In the present study, 193 Aspergillus strains were isolated from a total of 100 soil samples of pistachio orchards, which all of them were identified as Aspergillus flavus as the most abundant species of Aspergillus section Flavi existing in the environment. Approximately 59%, 81%, and 61% of the isolates were capable of producing aflatoxins (AFs), cyclopiazonic acid (CPA), and sclerotia, respectively. The isolates were classified into four chemotypes (I to IV) based on the ability to produce AFs and CPA. The resulting dendrogram of random amplified polymorphic DNA (RAPD) analysis of 24 selected A. flavus isolates demonstrated the formation of two separate clusters. Cluster 1 contained both aflatoxigenic and non-aflatoxigenic isolates (17 isolates), whereas cluster 2 comprised only aflatoxigenic isolates (7 isolates). All the isolates of cluster 2 produced significantly higher levels of AFs than those of cluster 1 and the isolates that produced both AFB(1) and AFB(2) were found only in cluster 2. RAPD genotyping allowed the differentiation of A. flavus from Aspergillus parasiticus as a closely related species within section Flavi. The present study has provided for the first time the relevant information on distribution and genetic diversity of different A. flavus populations from nontoxigenic to highly toxigenic enable to produce hazardous amounts of AFB(1) and CPA in soils of pistachio orchards. These fungi, either toxigenic or not-toxigenic, should be considered as potential threats for agriculture and public health.

  10. Characterization of the chitinase gene family and the effect on A. flavus and aflatoxin resistance in maize.

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) is a crop of global importance, but is prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need ...

  11. Identification of candidate resistance genes of cotton against Aspergillus flavus infection using a comparative transcriptomics approach

    USDA-ARS?s Scientific Manuscript database

    Nine hundred twenty two differentially expressed transcripts of cotton in non-inoculated pericarp (NIP) and seed (NIS), pericarp (NTP) and seed (NTS) of cotton inoculated with atoxigenic strain (AF13), and pericarp (TP) and seed (TS) inoculated with toxigenic strain (AF36) of Aspergillus flavus were...

  12. A case of bilateral otomycosis associated with Aspergillus flavus and A. terreus in Taiwan.

    PubMed

    Kirschner, R; Sun, P-L; Huang, S-L; Chen, C-L; Yang, C-P

    2017-09-01

    Otitis externa caused by fungi (otomycosis) occurs more commonly in tropical areas with high moisture than in temperate regions. Bilateral otomycosis is, however, rarely reported. In a case of bilateral otitis externa in a 56-year-old male patient in Taiwan, direct microscopic examination of the cerumen as well as isolation of strains indicated the presence of two Aspergillus species being different in each of both ears. The species were identified by DNA sequence comparisons and additional morphological confirmation of diagnostic characteristics as Aspergillus flavus and Aspergillus terreus. The rarely reported occurrence of two Aspergillus species in otitis of the same patient deserves attention in other cases of otomycosis, particularly with respect to potentially different resistances of different species against antifungals. Treatment with nystatin/neomycin was not successful, but with clotrimazole was effective. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application - A review.

    PubMed

    Udomkun, Patchimaporn; Wiredu, Alexander Nimo; Nagle, Marcus; Müller, Joachim; Vanlauwe, Bernard; Bandyopadhyay, Ranajit

    2017-06-01

    Aflatoxins are mainly produced by certain strains of Aspergillus flavus , which are found in diverse agricultural crops. In many lower-income countries, aflatoxins pose serious public health issues since the occurrence of these toxins can be considerably common and even extreme. Aflatoxins can negatively affect health of livestock and poultry due to contaminated feeds. Additionally, they significantly limit the development of international trade as a result of strict regulation in high-value markets. Due to their high stability, aflatoxins are not only a problem during cropping, but also during storage, transport, processing, and handling steps. Consequently, innovative evidence-based technologies are urgently required to minimize aflatoxin exposure. Thus far, biological control has been developed as the most innovative potential technology of controlling aflatoxin contamination in crops, which uses competitive exclusion of toxigenic strains by non-toxigenic ones. This technology is commercially applied in groundnuts maize, cottonseed, and pistachios during pre-harvest stages. Some other effective technologies such as irradiation, ozone fumigation, chemical and biological control agents, and improved packaging materials can also minimize post-harvest aflatoxins contamination in agricultural products. However, integrated adoption of these pre- and post-harvest technologies is still required for sustainable solutions to reduce aflatoxins contamination, which enhances food security, alleviates malnutrition, and strengthens economic sustainability.

  14. Evaluation of recycled bioplastic pellets and a sprayable formulation for application of an Aspergillus flavus biocontrol strain

    USDA-ARS?s Scientific Manuscript database

    Biocontrol of Aspergillus flavus using inoculated bioplastic granules has been proven to be effective under laboratory and field conditions. In the present study, the use of low-density pellets from recycled bioplastic as a biocontrol strain carrier was evaluated. Applying recycled bioplastic pell...

  15. Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review.

    PubMed

    Brown, Robert L; Menkir, Abebe; Chen, Zhi-Yuan; Bhatnagar, Deepak; Yu, Jiujiang; Yao, Haibo; Cleveland, Thomas E

    2013-01-01

    Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.

  16. Potential roles of WRKY transcription factors in resistance to Aspergillus flavus colonization of immature maize kernels

    USDA-ARS?s Scientific Manuscript database

    Resistance to Aspergillus flavus by maize (Zea mays L.) is mediated by several defense proteins; however the mechanism regulating the expression of these defenses is poorly understood. This study examined the potential roles of six maize WRKY transcription factors, ZmWRKY19, ZmWRKY21, ZmWRKY53, ZmW...

  17. Aflatoxin effect on erythrocyte profile and histopathology of broilers given different additives

    NASA Astrophysics Data System (ADS)

    Karimy, M. F.; Sutrisno, B.; Agus, A.; Suryani, A. E.; Istiqomah, L.; Damayanti, E.

    2017-12-01

    The aim of this study was to evaluate erythrocyte profile and microscopic changes effect of AF induces by low level (57.18 ppb) and chronic exposure (34 days) with administration of additive (Lactobacillus plantarum G7 and methionine). Aflatoxin-contaminated corn was prepared by inoculate Aspergillus flavus FNCC 6002 on corn. Total number of 576 broiler Lohman strain (MB202) unsexed DOC were allocated completely randomized into four treatments and 12 replicates, with 12 broiler chicks each. The treatments as follows: T1 = aflatoxin-contaminated diet, T2 = aflatoxin-contaminated diet + 1% of LAB (w/w), T3 = aflatoxin-contaminated diet + 0.8% of methionine (w/w), and T4 = aflatoxin-contaminated diet + 1% of LAB + 0.8% of methionine (w/w). The effect of treatments was evaluated using ANOVA and the difference among mean treatments were analyzed using DMRT. The result showed that administration of additives had no significant effect (P>0.05) on erythrocyte profile, liver, and bursa of Fabricius. The dose of additive in each treatment (T2, T3, T4) were insufficient to reduce adverse effect of chronic aflatoxicosis. It was concluded that the LAB dose for binding AF (57.18%) should be evaluated and the dose for methionine should be reduced for chronic treatment of aflatoxicosis.

  18. MicroCommentary: A New Role for Coenzyme F420 in Aflatoxin Reduction by Soil Mycobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, David E

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxalamine 5 -phosphate oxidases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced deazaflavin to the electron-deficient ring systems of their substrates.

  19. Antifungal activity of extracts of Rosmarinus officinalis and Thymus vulgaris against Aspergillus flavus and A. ochraceus.

    PubMed

    Centeno, S; Calvo, M A; Adelantado, C; Figueroa, S

    2010-05-01

    The antifungal activity of ethanolic extracts of Rosmarinus officinalis and Thymus vulgaris were tested against strains of Aspergillus flavus and A. ochraceus, since these two species are common contaminants of cereals and grains and are able to produce and accumulate mycotoxins. The methodology used is based on measuring the inhibition halos produced by discs impregnated with the extracts and establishing their Minimum Inhibitory Concentration (MIC) as well as the Minimum Fungicide Concentration (MFC). The results obtained suggest that the assayed extracts affect the proper development of A. flavus and A. ochraceus; leading to a lower MIC (1200 ppm) and MFC (2400 ppm) for T. vulgaris extract against A. ochraceus than against A. flavus. The results show, that the extracts of Rosmarinus officinalis and Thymus vulgaris used at low concentrations could have significant potential for the biological control of fungi in foodstuffs.

  20. Assessing airborne aflatoxin B1 during on-farm grain handling activities.

    PubMed

    Selim, M I; Juchems, A M; Popendorf, W

    1998-04-01

    The presence of aflatoxin in corn and corn dust during relatively normal years and the increased risk of Aspergillus flavus infestation during drought conditions suggest that airborne agricultural exposures should be of considerable concern. Liquid extraction, thin layer chromatography, and high pressure liquid chromatography were used for the analysis of aflatoxin B1 in grain dust and bulk corn samples. A total of 24 samples of airborne dust were collected from 8 farms during harvest, 22 samples from 9 farms during animal feeding, and 14 sets of Andersen samples from 11 farms during bin cleaning. A total of 14 samples of settled dust and 18 samples of bulk corn were also collected and analyzed. The airborne concentration of aflatoxin B1 found in dust collected during harvest and grain unloading ranged from 0.04 to 92 ng/m3. Higher levels of aflatoxin B1 were found in the airborne dust samples collected from enclosed animal feeding buildings (5-421 ng/m3) and during bin cleaning (124-4849 ng/m3). Aflatoxin B1 up to 5100 ng/g were detected in settled dust collected from an enclosed animal feeding building; however, no apparent correlation was found between the airborne concentration of aflatoxin B1 and its concentration in settled dust or bulk corn. The data demonstrate that farmers and farm workers may be exposed to potentially hazardous concentrations of aflatoxin B1, particularly during bin cleaning and animal feeding in enclosed buildings.

  1. Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia.

    PubMed

    Wicklow, D T; Joshi, B K; Gamble, W R; Gloer, J B; Dowd, P F

    1998-11-01

    The mycoparasite Humicola fuscoatra NRRL 22980 was isolated from a sclerotium of Aspergillus flavus that had been buried in a cornfield near Tifton, Ga. When grown on autoclaved rice, this fungus produced the antifungal metabolites monorden, monocillin IV, and a new monorden analog. Each metabolite produced a clear zone of inhibition surrounding paper assay disks on agar plates seeded with conidia of A. flavus. Monorden was twice as inhibitory to A. flavus mycelium extension (MIC > 28 microg/ml) as monocillin IV (MIC > 56 microg/ml). Cerebrosides C and D, metabolites known to potentiate the activity of cell wall-active antibiotics, were separated from the ethyl acetate extract but were not inhibitory to A. flavus when tested as pure compounds. This is the first report of natural products from H. fuscoatra.

  2. Antifungal Metabolites (Monorden, Monocillin IV, and Cerebrosides) from Humicola fuscoatra Traaen NRRL 22980, a Mycoparasite of Aspergillus flavus Sclerotia

    PubMed Central

    Wicklow, Donald T.; Joshi, Biren K.; Gamble, William R.; Gloer, James B.; Dowd, Patrick F.

    1998-01-01

    The mycoparasite Humicola fuscoatra NRRL 22980 was isolated from a sclerotium of Aspergillus flavus that had been buried in a cornfield near Tifton, Ga. When grown on autoclaved rice, this fungus produced the antifungal metabolites monorden, monocillin IV, and a new monorden analog. Each metabolite produced a clear zone of inhibition surrounding paper assay disks on agar plates seeded with conidia of A. flavus. Monorden was twice as inhibitory to A. flavus mycelium extension (MIC > 28 μg/ml) as monocillin IV (MIC > 56 μg/ml). Cerebrosides C and D, metabolites known to potentiate the activity of cell wall-active antibiotics, were separated from the ethyl acetate extract but were not inhibitory to A. flavus when tested as pure compounds. This is the first report of natural products from H. fuscoatra. PMID:9797310

  3. Spinal osteomyelitis due to Aspergillus flavus in a child: a rare complication after haematopoietic stem cell transplantation.

    PubMed

    Beluffi, Giampiero; Bernardo, Maria Ester; Meloni, Giulia; Spinazzola, Angelo; Locatelli, Franco

    2008-06-01

    We report the case of a child affected by acute myeloid leukaemia who was treated with allogeneic haematopoietic stem cell transplantation and developed cervicothoracic spinal osteomyelitis due to Aspergillus flavus. The diagnosis was difficult on a clinical basis, but made possible by conventional radiography and MRI.

  4. LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection.

    PubMed

    Niessen, Ludwig; Bechtner, Julia; Fodil, Sihem; Taniwaki, Marta H; Vogel, Rudi F

    2018-02-02

    Aflatoxins can be produced by 21 species within sections Flavi (16 species), Ochraceorosei (2), and Nidulantes (3) of the fungal genus Aspergillus. They pose risks to human and animal health due to high toxicity and carcinogenicity. Detecting aflatoxin producers can help to assess toxicological risks associated with contaminated commodities. Species specific molecular assays (PCR and LAMP) are available for detection of major producers, but fail to detect species of minor importance. To enable rapid and sensitive detection of several aflatoxin producing species in a single analysis, a nor1 gene-specific LAMP assay was developed. Specificity testing showed that among 128 fungal species from 28 genera, 15 aflatoxigenic species in section Flavi were detected, including synonyms of A. flavus and A. parasiticus. No cross reactions were found with other tested species. The detection limit of the assay was 9.03pg of A. parasiticus genomic DNA per reaction. Visual detection of positive LAMP reactions under daylight conditions was facilitated using neutral red to allow unambiguous distinction between positive and negative assay results. Application of the assay to the detection of A. parasiticus conidia revealed a detection limit of 211 conidia per reaction after minimal sample preparation. The usefulness of the assay was demonstrated in the analysis of aflatoxinogenic species in samples of rice, nuts, raisins, dried figs, as well as powdered spices. Comparison of LAMP results with presence/absence of aflatoxins and aflatoxin producing fungi in 50 rice samples showed good correlation between these parameters. Our study suggests that the developed LAMP assay is a rapid, sensitive and user-friendly tool for surveillance and quality control in our food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria.

    PubMed

    Graham, David E

    2010-11-01

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxal 5'-phosphate synthases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced, low-potential deazaflavin to the electron-deficient ring systems of their substrates. © 2010 Blackwell Publishing Ltd.

  6. Mycobiota of ground red pepper and their aflatoxigenic potential.

    PubMed

    Ham, Hyeonheui; Kim, Sosoo; Kim, Min-Hee; Lee, Soohyung; Hong, Sung Kee; Ryu, Jae-Gee; Lee, Theresa

    2016-12-01

    To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 10 3 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03‒2.08 μg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88‒909.53 μg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.

  7. Aspergillus flavus epidural abscess and osteomyelitis in a diabetic patient.

    PubMed

    Chi, Chih-Yu; Fung, Chang-Phone; Liu, Cheng-Yi

    2003-06-01

    A 63-year-old man had a history of diabetes mellitus for more than 10 years and took oral hypoglycemic agents regularly. He visited Taipei Veterans General Hospital with the complaint of progressive weakness in all 4 limbs and neck pain for 6 months. Computed tomography of the cervical spine revealed increased soft tissue density in the epidural space from C2 to C5 with cord compression. Surgical decompression was done and Aspergillus flavus was isolated from the inflammatory tissue. He was initially treated with oral itraconazole 200 mg 3 times per day for 4 days and then twice daily. Later, the treatment regimen was shifted to intravenous amphotericin B 25 mg/d. He died of intraventricular hemorrhage and complicated fungal meningoencephalitis 2 weeks postlaminectomy. This case reminds us that a prolonged history of back pain accompanied with peripheral neuropathy in diabetic patients should raise the suspicion of Aspergillus epidural abscess. Prompt aggressive diagnostic testing and management is needed to improve the likelihood of a good outcome of these patients.

  8. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides.

    PubMed

    Mohammadipour, Matin; Mousivand, Maryam; Salehi Jouzani, Gholamreza; Abbasalizadeh, Saeed

    2009-04-01

    The characterization of surfactin-producing Bacillus subtilis isolates collected from different ecological zones of Iran is presented. Characterization was performed using blood agar, PCR, drop-collapse, and reverse-phase high-performance liquid chromatography (HPLC) analyses, and the isolates' biocontrol effects against the aflatoxin-producing agent Aspergillus flavus and the citrus antracnosis agent Colletotrichum gloeosporioides were studied. In total, 290 B. subtilis isolates were isolated from phylosphere and rhizosphere samples collected from fields and gardens of 5 provinces of Iran. Blood agar assays showed that 185 isolates produced different biosurfactants. Isolates containing the sfp gene, coding for surfactin, were detected using the PCR method. It was found that 14 different isolates contained the sfp gene. Drop-collapse assays, which detect isolates with high production of surfactin, showed that 7 isolates produced high levels of surfactin. It was found from HPLC analysis that the isolates containin the sfp gene produced between 55 and 1610 mg of surfactin per litre of broth medium. Four isolates, named BS119m, BS116l, N3dn, and BS113c, produced more than 1000 mg of surfactin per litre of broth. The highest surfactin production level was observed for isolate BS119m (1610 mg/L). The antagonistic potential of the sfp gene-containing isolates was determined using dual culture and chloroform vapour methods. Our bioassay results indicated that isolate BS119m showed high inhibitory effects against A. flavus (100%) and C. gloeosporioides (88%). Furthermore, the effect of purified surfactin on the growth of A. flavus was evaluated. Mycelia growth was considerably reduced with increasing concentration of surfactin, and 36%, 54%, 84%, and 100% inhibitions of mycelia growth were, respectively, observed at 20, 40, 80, and 160 mg/L after 7 days of incubation.

  9. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  10. Optimization of the production of thermostable endo-beta-1,4 mannanases from a newly isolated Aspergillus niger gr and Aspergillus flavus gr.

    PubMed

    Kote, Naganagouda V; Patil, Aravind Goud G; Mulimani, V H

    2009-02-01

    The aim of this work was to establish optimal conditions for the maximum production of endo-beta-1,4 mannanases using cheaper sources. Eight thermotolerant fungal strains were isolated from garden soil and compost samples collected in and around the Gulbarga University campus, India. Two strains were selected based on their ability to produce considerable endo-beta-1,4 mannanases activity while growing in liquid medium at 37 degrees C with locust bean gum (LBG) as the only carbon source. They were identified as Aspergillus niger gr and Aspergillus flavus gr. The experiment to evaluate the effect of different carbon sources, nitrogen sources, temperatures and initial pH of the medium on maximal enzyme production was studied. Enzyme productivity was influenced by the type of polysaccharide used as the carbon source. Copra meal defatted with n-hexane showed to be a better substrate than LBG and guar gum for endo-beta-1,4 mannanases production by A. niger gr (40.011 U/ml), but for A. flavus gr (33.532 U/ml), the difference was not significant. Endo-beta-1,4 mannanases produced from A. niger gr and A. flavus gr have high optimum temperature (65 and 60 degrees C) and good thermostability in the absence of any stabilizers (maintaining 50% of residual activity for 8 and 6 h, respectively, at 60 degrees C) and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for the food and feed processing industries.

  11. Efficacy of probiotic bacteria in reducing Aspergillus parasiticus aflatoxin production and hepatic cytotoxicity in vitro

    USDA-ARS?s Scientific Manuscript database

    Aspergillus parasiticus produces highly hepatocarcinogenic aflatoxins (AF) in grains, which are used as poultry feed ingredients. Contamination of poultry feed with AF is a major concern to the poultry industry due to serious economic losses stemming from poor performance and diminished egg hatchabi...

  12. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    PubMed

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  13. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    PubMed Central

    Yahyaraeyat, R.; Khosravi, A.R.; Shahbazzadeh, D.; Khalaj, V.

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity. PMID:24294264

  14. Identification of O-methylsterigmatocystin as an aflatoxin B1 and G1 precursor in Aspergillus parasiticus.

    PubMed Central

    Bhatnagar, D; McCormick, S P; Lee, L S; Hill, R A

    1987-01-01

    An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously. PMID:3111363

  15. Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level

    PubMed Central

    2014-01-01

    Background Brazil nut is a protein-rich extractivist tree crop in the Amazon region. Fungal contamination of shells and kernel material frequently includes the presence of aflatoxigenic Aspergillus species from the section Flavi. Aflatoxins are polyketide secondary metabolites, which are hepatotoxic carcinogens in mammals. The objectives of this study were to identify Aspergillus species occurring on Brazil nut grown in different states in the Brazilian Amazon region and develop a specific PCR method for collective identification of member species of the genus Aspergillus. Results Polyphasic identification of 137 Aspergillus strains isolated from Brazil nut shell material from cooperatives across the Brazilian Amazon states of Acre, Amapá and Amazonas revealed five species, with Aspergillus section Flavi species A. nomius and A. flavus the most abundant. PCR primers ASP_GEN_MTSSU_F1 and ASP_GEN_MTSSU_R1 were designed for the genus Aspergillus, targeting a portion of the mitochondrial small subunit ribosomal RNA gene. Primer specificity was validated through both electronic PCR against target gene sequences at Genbank and in PCR reactions against DNA from Aspergillus species and other fungal genera common on Brazil nut. Collective differentiation of the observed section Flavi species A. flavus, A. nomius and A. tamarii from other Aspergillus species was possible on the basis of RFLP polymorphism. Conclusions Given the abundance of Aspergillus section Flavi species A. nomius and A. flavus observed on Brazil nut, and associated risk of mycotoxin accumulation, simple identification methods for such mycotoxigenic species are of importance for Hazard Analysis Critical Control Point system implementation. The assay for the genus Aspergillus represents progress towards specific PCR identification and detection of mycotoxigenic species. PMID:24885088

  16. Aflatoxin, proximate composition and mineral profile of stored broiler feed treated with medicinal plant leaves.

    PubMed

    Hassan, S M; Sultana, B; Atta, A; Qureshi, N; Iqbal, M; Abbas, M

    2017-09-01

    In the present investigation, the Morus alba (M. alba), Vitis vinifera (V. vinifera), Ficus religiosa (F. religiosa) and Citrus paradisi (C. paradisi) leaves anti-aflatoxigenic activities were evaluated in Aspergillus flavus (A. flavus) inoculated feed. The broiler feed inoculated with A. flavus was treated with selected medicinal plant leaf powder (5%, 10% and 15% w/w) and stored for the period of six months at 28°C and 16% moisture. The aflatoxins (AFTs) were estimated at the end of each month by Reversed Phase High Performance Liquid Chromatography (RP-HPLC) method along with proximate composition and mineral contents. Plant leaves controlled AFTs efficiently without affecting the feed proximate composition and mineral contents. The M. alba leaves completely inhibition (100%) the AFTs (B 1 and B 2 ) in feed at very low concentration (5%). Other plants also showed significant (P<0.05) inhibition of AFTs production without affecting the feed quality over the storage period of six months. Based on promising efficiency of selected medicinal plant leaves, A. flavus produced AFTs could possibly be controlled in stored poultry feed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: a potential source of botanical food preservative

    PubMed Central

    Gemeda, Negero; Woldeamanuel, Yimtubezinash; Asrat, Daniel; Debella, Asfaw

    2014-01-01

    Objective To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production. Method In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species. Results Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations. Conclusions In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi. PMID:25183114

  18. Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity.

    PubMed

    Ammar, Hala A M; Ezzat, Saeid M; Houseny, Asmaa M

    2017-10-01

    Two wild-type (WT) Aspergillus strains, A. flavus HAk1 and A. oryzae HAk2, were selected for kojic acid (KA) biosynthesis. Malt extract sucrose culture medium (MES) was the best culture medium for maximum production of KA. The maximum production of KA has been estimated at pH 4 after 7 days of incubation at 30 °C. Overproduction of KA was attained by mutagenesis of both A. flavus HAk1 and A. oryzae HAk2 through their exposer to different doses of gamma irradiation. The mutant strains (MT) A. flavus HAk1-M2 and A. oryzae HAk2-M26 were the most stable mutants for maximum production of KA through four generations. Yield of KA by A. oryzae HAk2-M26 and A. flavus HAk1-M2 has been 2.03-fold and 1.9-fold, respectively, higher than their wild-type strains. All WT and MT strains were used for KA production from different agricultural raw materials. Apple peel was the best waste for KA production by WT strains of A. flavus and A. oryzae, while orange peel and rice stalk are best material for KA production by MT strains, A. flavus HAk1-M2 and A. oryzae HAk2-M26, respectively. All experimental strains have the ability to produce considerable amounts of KA from sugarcane molasse (SCM) and sugar-beet molasse (SBM). SBM was better than SCM for KA production by all strains. The antioxidant activity of biosynthesizing KA was strongly affected with production conditions, where the highest antioxidant activity of all strains was recorded at the optimum environmental and nutritional conditions for KA production.

  19. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    PubMed Central

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  20. Epidural mass due to aspergillus flavus causing spinal cord compression--a case report and brief update.

    PubMed

    Tendolkar, U; Sharma, A; Mathur, M; Ranadive, N; Sachdev, M

    2005-07-01

    Aspergillus infection of the central nervous system (CNS) is an uncommon disease. Most of the reported cases are of sinocranial spread and cases with contiguous spread to spinal cord from lung and other organs are uncommon. A case of pulmonary aspergillosis with extension to thoracic vertebrae forming a paraspinal mass resulting in neurological deficit due to Aspergillus flavus, is reported. The 43 year old patient did not have any obvious predisposing condition. He presented with loss of motor function and succumbed to the infection despite operative intervention and antifungal therapy. A brief update on CNS aspergillosis is presented along with detailed clinical, radiological and laboratory work up of the patient.

  1. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The use of powder and essential oil of Cymbopogon citratus against mould deterioration and aflatoxin contamination of "egusi" melon seeds.

    PubMed

    Bankole, S A; Joda, A O; Ashidi, J S

    2005-01-01

    Experiments were carried out to determine the potential of using the powder and essential oil from dried ground leaves of Cymbopogon citratus (lemon grass) to control storage deterioration and aflatoxin contamination of melon seeds. Four mould species: Aspergillus flavus, A. niger, A. tamarii and Penicillium citrinum were inoculated in the form of conidia suspension (approx. 10(6) conidia per ml) unto shelled melon seeds. The powdered dry leaves and essential oil from lemon grass were mixed with the inoculated seeds at levels ranging from 1-10 g/100 g seeds and 0.1 to 1.0 ml/100 g seeds respectively. The ground leaves significantly reduced the extent of deterioration in melon seeds inoculated with different fungi compared to the untreated inoculated seeds. The essential oil at 0.1 and 0.25 ml/100 g seeds and ground leaves at 10 g/100 g seeds significantly reduced deterioration and aflatoxin production in shelled melon seeds inoculated with toxigenic A. flavus. At higher dosages (0.5 and 1.0 ml/100 g seeds), the essential oil completely prevented aflatoxin production. After 6 months in farmers' stores, unshelled melon seeds treated with 0.5 ml/ 100 g seeds of essential oil and 10 g/100 g seeds of powdered leaves of C. citratus had significantly lower proportion of visibly diseased seeds and Aspergillus spp. infestation levels and significantly higher seed germination compared to the untreated seeds. The oil content, free fatty acid and peroxide values in seeds protected with essential oil after 6 months did not significantly differ from the values in seeds before storage. The efficacy of the essential oil in preserving the quality of melon seeds in stores was statistically at par with that of fungicide (iprodione) treatment. ((c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  3. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus.

    PubMed

    Tian, Jun; Ban, Xiaoquan; Zeng, Hong; He, Jingsheng; Chen, Yuxin; Wang, Youwei

    2012-01-01

    The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus.

  4. Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: a strategy for identifying potential antagonists

    USDA-ARS?s Scientific Manuscript database

    To identify predominant isolates for potential use as biocontrol agents, Aspergillus flavus isolates collected soils of almond, pistachio and fig orchard in the Central Valley of California were tested for their membership to 16 atoxigenic vegetative compatibility groups(VCGs), including YV36, the V...

  5. Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link.

    PubMed

    Ferreira, Flavio Dias; Kemmelmeier, Carlos; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Mallmann, Carlos Augusto; Janeiro, Vanderly; Ferreira, Francine Maery Dias; Mossini, Simone Aparecida Galerani; Silva, Expedito Leite; Machinski, Miguel

    2013-01-15

    Aflatoxins are highly toxic, mutagenic, teratogenic and carcinogenic mycotoxins. Consumption of aflatoxin-contaminated food and commodities poses serious hazards to the health of humans and animals. Turmeric, Curcuma longa L., is a native plant of Southeast Asia and has antimicrobial, antioxidant and antifungal properties. This paper reports the antiaflatoxigenic activities of the essential oil of C. longa and curcumin. The medium tests were prepared with the oil of C. longa, and the curcumin standard at concentrations varied from 0.01% to 5.0%. All doses of the essential oil of the plant and the curcumin standard interfered with mycotoxin production. Both the essential oil and curcumin significantly inhibited the production of aflatoxins; the 0.5% level had a greater than 96% inhibitory effect. The levels of aflatoxin B(1) (AFB(1)) production were 1.0 and 42.7 μg/mL, respectively, for the samples treated with the essential oil of C. longa L. and curcumin at a concentration of 0.5%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Biological contamination by micromycetes in dried Boletus edulis: research of aflatoxin B1, B2 G1, G2 and ochratoxin A].

    PubMed

    Lorini, C; Rossetti, F; Palazzoni, S; Comodo, N; Bonaccorsi, G

    2008-01-01

    Aim of this survey is to identify those filamentous fungi which parasite Boletus edulis and its group and check the potential presence of secondary metabolites, specifically aflatoxin B1, total aflatoxins and ochratoxin A, in order to assess the risk to consumers' health. Forty samples of dried Boletus edulis, collected by two food industries which distribute the product in many Italian regions, have been analysed. The sampling plan has been conducted from November 2005 to March 2006, collecting 50 g from each commercial category of dried Boletus edulis available in the factory at the time of sampling. All the samples have been tested by visual macroscopic and stereoscopic assays; for some samples--those referred to commercial category presumably at higher risk--we have performed cultural assays as well, typization of isolated micromycetes, extraction and quantification of aflatoxins and ochratoxin A. Mycotoxin detection has been made by HPLC, using the UNI EN 14123 and UNI EN 14132 standard methods, respectively applied to aflatoxins determination in peanuts, pistachios, figs and paprika and to ochratoxin A in barley and coffee. Non pathogenic micromycetes, common in food products, have been frequently observed in cultural assays, while Aspergillus flavus and Aspergillus niger have been found in some samples. However the concentration of aflatoxins was always under the quantification limit. The survey confirm that, if the cold chain is kept throughout the process and the distribution, Boletus edulis and analogue mycetes are not a favourable substratum for the growth and the development of moulds.

  7. Hepatotoxic mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are produced by Aspergillus species including A. flavus and A. parasiticus. Fumonisins are produced by Fusarium species, mainly F. verticillioides and F. parasiticus. These mycotoxins are common contaminants of commodities and have been shown to co-contaminate corn. Aflatoxins are know...

  8. Comparison of Gene Expressions of Maize Kernel Pathogenesis-Related Proteins in Different Maize Genotypes

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus during infection of various grain crops including maize (Zea mays). Contamination of maize with aflatoxins has been shown to be exasperated by late season drought stress. Previous studies have identified numerous resist...

  9. Efficacy of chemically characterized Foeniculum vulgare Mill seed essential oil in protection of raw tobacco leaves during storage against fungal and aflatoxin contamination.

    PubMed

    Kedia, A; Dwivedy, A K; Pandey, A K; Kumar, R R; Regmi, P; Dubey, N K

    2015-10-01

    To report fungal and aflatoxin contamination in stored tobacco leaves and the potential of Foeniculum vulgare (fennel) seed essential oil (EO) as a plant-based preservative in protection of tobacco during storage. Mycological analysis of tobacco samples was done by surface sterilization and serial dilution tests. The Aspergillus flavus isolates were screened for their toxigenicity. Both in vivo and in vitro tests were done to evaluate antifungal and antiaflatoxigenic efficacy of chemically characterized EO. The mycoflora analysis revealed 108 fungal colonies belonging to five genera and nine species. All A. flavus isolates were found aflatoxigenic during screening. Gas chromatography and mass spectrometry analysis of EO identified 19 components (99·66%); estragole being the major component (47·49%). The EO showed broad fungitoxicity at 1·25 μl ml(-1) and 100% inhibition to AFB1 production as well as ergosterol synthesis at 1·0 μl ml(-1) concentration. EO showed 100% protection of stored tobacco samples from aflatoxin B1 contamination. The fennel EO can thus be formulated as a plant-based preservative for food items. The present investigation comprises the first report on antiaflatoxin efficacy of fennel oil and its potency in the protection of tobacco leaves from fungal and aflatoxin contamination during storage. © 2015 The Society for Applied Microbiology.

  10. Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa.

    PubMed

    Iheanacho, Henry E; Njobeh, Patrick B; Dutton, Francis M; Steenkamp, Paul A; Steenkamp, Lucia; Mthombeni, Julian Q; Daru, Barnabas H; Makun, Anthony H

    2014-12-01

    Isolation of filamentous species of two Aspergillum genera from compound feeds produced in South Africa, and subsequent extraction of their individual DNA in this study, presents a simple but rapid molecular procedure for high through-put analysis of the individual morphological forms. DNA was successfully isolated from the Aspergillus spp. from agar cultures by use of a commercial kit. Agarose gel electrophoresis fractionation of the fungi DNA, showed distinct bands. The DNA extracted by this procedure appears to be relatively pure with a ratio absorbance at 260 and 280 nm. However, the overall morphological and molecular data indicated that 67.5 and 51.1% of feed samples were found to be contaminated with Aspergillus flavus and Aspergillus parasiticus, respectively, with poultry feed having the highest contamination mean level of 5.7 × 105 CFU/g when compared to cattle (mean: 4.0 × 106 CFU/g), pig (mean: 2.7 × 104 CFU/g) and horse (1.0 × 102 CFU) feed. This technique presents a readily achievable, easy to use method in the extraction of filamentous fungal DNA and it's identification. Hence serves as an important tool towards molecular study of these organisms for routine analysis check in monitoring and improving compound feed quality against fungal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inhibition of growth and aflatoxin production in Aspergillus parasiticus by essential oils of selected plant materials.

    PubMed

    Tantaoui-Elaraki, A; Beraoud, L

    1994-01-01

    We studied the effect of 13 chemically different essential oils (EO) on the mycelial growth of and aflatoxin synthesis by Aspergillus parasiticus. Cinnamon, thyme, oregano, and cumin EO were able to stop mycelial growth at only 0.1% in the medium, while curcumin, ginger, lemon, and orange EO were unable to inhibit totally the growth even at 1% concentration. Coriander, black pepper, mugwort, bay, and rosemary EO caused the growth to stop at concentrations between 0.2 and 1%. The EO most active upon mycelial growth were also the most active against aflatoxinogenesis. However, aflatoxin synthesis was inhibited by all the EO at higher extent than the mycelial growth.

  12. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    PubMed Central

    El-Soud, Neveen Helmy Abou; Deabes, Mohamed; El-Kassem, Lamia Abou; Khalil, Mona

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC). RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%). The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm). CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production. PMID:27275253

  13. Peanuts that keep aflatoxin at bay: a threshold that matters

    USDA-ARS?s Scientific Manuscript database

    High levels of aflatoxin in peanuts pose major health hazards for vulnerable populations of Sub-Saharan Africa (SSA) and South Asia. We used two independent approaches to generate peanuts that exhibit strong resistance to both A. flavus seed infection and aflatoxin production. A high level of geneti...

  14. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  15. Monoclonal Antibodies to Prevent Use of Mycotoxins as Biological Weapons

    DTIC Science & Technology

    2007-07-01

    conjugate to immunize rats. We found that vaccination by either the intraperitoneal or subcutaneous route induced very high aflatoxin B1-binding antibody...are small molecule secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus that are potent hepatic carcinogens and have a...their potential for use in the event of bioterrorism has been highlighted (1). Immunization with an aflatoxin B1 (AF-B1)-BSA conjugate previously

  16. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-06-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  17. Biological interactions to select biocontrol agents against toxigenic strains of Aspergillus flavus and Fusarium verticillioides from maize.

    PubMed

    Etcheverry, Miriam G; Scandolara, Andrea; Nesci, Andrea; Vilas Boas Ribeiro, Marta Sofia; Pereira, Paola; Battilani, Paola

    2009-05-01

    Biological control represent an alternative to the use of pesticides in crop protection. A key to progress in biological control to protect maize against Fusarium verticillioides and Aspergillus flavus maize pathogens are, to select in vitro, the best agent to be applied in the field. The aim of this study was to examine the antagonistic activity of bacterial and yeast isolates against F.verticillioides and A. flavus toxigenic strains. The first study showed the impact of Bacillus amyloliquefaciens BA-S13, Microbacterium oleovorans DMS 16091, Enterobacter hormomaechei EM-562T, and Kluyveromyces spp. L14 and L16 isolates on mycelial growth of two strains of A. flavus MPVPA 2092, 2094 and three strains of F. verticillioides MPVPA 285, 289, and 294 on 3% maize meal extract agar at different water activities (0.99, 0.97, 0.95, and 0.93). From this first assay antagonistics isolates M. oleovorans, B. amyloliquefaciens and Kluyveromyces sp. (L16) produced an increase of lag phase of growth and decreased a growth rate of all fungal strains. These isolates were selected for futher studies. In vitro non-rhizospheric maize soil (centrally and sprayed inoculated) and in vitro maize (ears apex and base inoculated) were treated with antagonistics and pathogenic strains alone in co-inoculated cultures. Bacillus amyloliquefaciens significantly reduced F. verticillioides and A. flavus count in maize soil inoculated centrally. Kluyveromyces sp. L16 reduced F. verticillioides and A. flavus count in maize soil inoculated by spray. Kluyveromyces sp. L16 was the most effective treatment limiting percent infections by F. verticillioides on the maize ears.

  18. Occurrence of Toxigenic Fungi and Aflatoxin Potential of Aspergillus spp. Strains Associated with Subsistence Farmed Crops in Haiti.

    PubMed

    Aristil, Junior; Venturini, Giovanni; Spada, Alberto

    2017-04-01

    Subsistence farming and poor storage facilities favor toxigenic fungal contamination and mycotoxin accumulation in staple foods from tropical countries such as Haiti. The present preliminary study was designed to evaluate the occurrence of toxigenic fungi in Haitian foodstuffs to define the mycotoxin risk associated with Haitian crops. The objectives of this research were to determine the distribution of toxigenic fungi in the Haitian crops maize, moringa, and peanut seeds and to screen Aspergillus section Flavi (ASF) isolates for production of aflatoxins B 1 and G 1 in vitro. Maize, moringa, and peanut samples were contaminated by potential toxigenic fungal taxa, mainly ASF and Fusarium spp. The isolation frequency of Aspergillus spp. and Fusarium spp. was influenced by locality and thus by farming systems, storage systems, and weather conditions. Particularly for ASF in peanut and maize samples, isolation frequencies were directly related to the growing season length. The present study represents the first report of contamination by toxigenic fungi and aflatoxin in moringa seeds, posing concerns about the safety of these seeds, which people in Haiti commonly consume. Most (80%) of the Haitian ASF strains were capable of producing aflatoxins, indicating that Haitian conditions clearly favor the colonization of toxigenic ASF strains over atoxigenic strains. ASF strains producing both aflatoxins B 1 and G 1 were found. Understanding the distribution of toxigenic ASF in Haitian crops and foodstuffs is important for determining accurate toxicological risks because the toxic profile of ASF is species specific. The occurrence of toxigenic fungi and the profiles of the ASF found in various crops highlight the need to prevent formation of aflatoxins in Haitian crops. This study provides relevant preliminary baseline data for guiding the development of legislation regulating the quality and safety of crops in this low-income country.

  19. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.

    PubMed

    Aljuboori, Ahmad H Rajab; Idris, Azni; Al-Joubory, Hamid Hussain Rijab; Uemura, Yoshimitsu; Ibn Abubakar, B S U

    2015-03-01

    In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Aspergillus parasiticus growth and aflatoxin production on black and white pepper and the inhibitory action of their chemical constituents.

    PubMed Central

    Madhyastha, M S; Bhat, R V

    1984-01-01

    Aspergillus parasiticus Speare NRRL 2999 growth and aflatoxin production in black and white pepper and the penetration of the fungus in black pepper corn over various incubation periods were studied. Also, the effects of piperine and pepper oil on growth and aflatoxin production were studied. Under laboratory conditions, black and white pepper supported aflatoxin production (62.5 and 44 ppb (ng/g), respectively) over 30 days of incubation. Fungal growth measured in terms of chitin was considerably less in white pepper than in black pepper. A histological study of black pepper corn showed the fungus penetrating up to the inner mesocarp and establishing itself in the middle mesocarp. Piperine and pepper oil were found to inhibit fungal growth and toxin production in a dose-dependent manner. Thus, both black and white pepper could be considered as poor substrates for fungal growth and aflatoxin production. Images PMID:6435523

  1. Effects of microwaves on the reduction of Aspergillus flavus and Aspergillus parasiticus on brown rice (Oryza sativa L.) and barley (Hordeum vulgare L.).

    PubMed

    Lee, Seung-Hun; Park, Shin Young; Byun, Kye-Hwan; Chun, Hyang Sook; Ha, Sang-Do

    2017-07-01

    Aspergillus flavus and Aspergillus parasiticus are primary pathogen moulds on brown rice and barley. This study investigated the effects of microwave irradiation (MWI) (2450 MHz, 700 W, 10-50 s) on inactivation of A. flavus and A. parasiticus on brown rice and barley and the quality of these samples. The counts of both strains were significantly (p < 0.05) reduced by the stepwise increase in MWI treatment time. The log reductions of A. flavus on brown rice and barley were 0.05 and 0.04 after 10 s; 1.06 and 1.05 after 20 s; 1.59 and 1.52 after 30 s; and 3.04 and 2.78 after 40 s. The log reductions of A. parasiticus on brown rice and barley were 0.06 and 0.10 after 10 s; 1.20 and 1.00 after 20 s; 2.04 and 1.61 after 30 s; and 2.89 and 2.90 after 40 s. Moreover, neither strain survived after 50 s of MWI. The Hunter colour 'L' gradually increased with increasing MWI treatment time. However, there were no significant differences in the 'L' of brown rice after 10-40 s of MWI treatment and of barley after 10-30 s of MWI treatment. The Hunter colour 'a' and 'b' gradually increased with increasing microwave time. No significant change was observed in the moisture content of either cereal treated with 10-20 s of MWI. The differences in the sensory quality (colour, appearance, flavour, texture and overall acceptability) after 0-30 s of MWI were not significant. However, values for colour, appearance, texture and overall acceptability were significantly reduced when treated with 40-50 s of MWI. Therefore, with 20 s of MWI at 2450 MHz, 700 W could be effective for > 90% reduction of mould without causing deleterious changes to the colour, moisture content and sensory qualities of these cereals.

  2. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  3. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.

    PubMed

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A

    2011-07-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.

  4. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    PubMed Central

    Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.

    2011-01-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID

  5. A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus.

    PubMed

    Hedayati, Mohammad T; Mayahi, Sabah; Denning, David W

    2010-09-01

    To study the distribution of Aspergillus spp. in outdoor and indoor air of asthmatic patients' houses, as well as a review on the health effects of exposure to indoor Aspergillus. Open plates containing malt extract agar media were used to isolate fungi from the indoor (n = 360) and outdoor (n = 180) air of 90 asthmatic patients' houses living in Sari City, Iran. Plates were incubated at room temperature for 7-14 days. Cultured Aspergillus spp. were identified by standard mycological techniques. All culture plates grew fungi, a testament to the ubiquitous nature of fungal exposure. Cladosporium spp. (29.2%), Aspergillus spp. (19.0%), and Penicillium spp. (18.3%) were most common inside the houses while Cladosporium spp. (44.5%), Aspergillus spp. (12.4%), and Alternaria spp. (11.1%) were most common outside the houses. Aspergillus flavus (30.1%) and A. fumigatus (23.1%) are the most commonly isolated species in indoor air. Aspergillus flavus (44.5%) and A. fumigatus (42.6%) were the most prevalent Aspergillus spp. outside. The most colony numbers of Aspergillus were isolated from kitchens (30.4%) and the least from bedrooms (21.1%). Aspergillus flavus was the most prevalent species in all sampled rooms except in the kitchen where A. fumigatus was the most common. Aspergillus flavus is the most prevalent species among the Aspergillus spp. in the indoor and outdoor of a warm climate area. In these areas, A. flavus can be a major source of allergen in the air. Therefore, minimizing indoor fungal exposure could play an important role in reducing allergic symptoms in susceptible persons.

  6. Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production.

    PubMed

    Rasooli, Iraj; Owlia, Parviz

    2005-12-01

    The essential oils from Thymus eriocalyx and Thymus X-porlock obtained by hydrodistillation were analyzed by GC/MS. The major components of T. eriocalyx and T. X-porlock oils were thymol (63.8, 31.7%), beta-phellandrene (13.30, 38.7%), cis-sabinene hydroxide (8.1, 9.6%), 1,8-cineole (2, 1.7%), and beta-pinene (1.31, 2%), respectively. Antifungal activities of the oils were studied with special reference to the inhibition of Aspergillus parasiticus growth and aflatoxin production. Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of the oils were determined. Static effects of the above oils against A. parasiticus were at 250 ppm and lethal effects of T. eriocalyx and T. X-porlock were 500 and 1000 ppm of the oils, respectively. Aflatoxin production was inhibited at 250 ppm of both oils with that of T. eriocalyx being stronger inhibitor. Transmission electron microscopy (TEM) of A. parasiticus exposed to MIC level (250 ppm) of the oils showed irreversible damage to cell wall, cell membrane, and cellular organelles. It is concluded that the essential oils could be safely used as preservative materials on some kinds of foods at low concentrations to protect them from fungal infections.

  7. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties.

    PubMed

    Pukkasorn, Parawee; Ratphitagsanti, Wannasawat; Haruthaitanasan, Vichai

    2018-06-01

    Aflatoxins are carcinogenic toxins produced by Aspergillus flavus and Aspergillus parasiticus that are found naturally in peanut. It requires extremely high temperatures to eliminate aflatoxins from the nuts. The aims of this study were to investigate the effect of ultra-superheated steam (USS) on the reduction of aflatoxin B 1 (AFB 1 ) accompanying the roasting process and to determine roasted peanut qualities that affected consumer acceptance. Whole peanut kernels were intentionally contaminated by AFB 1 standard solution at the level of 50 ± 10 µg kg -1 before subjecting to USS treatment at 300-400 °C between 10 and 80 s. The high temperature of USS could significantly decrease AFB 1 level to 9.83 ± 3.51, 15.33 ± 2.23 and 8.95 ± 2.32 µg kg -1 when 300 °C for 80 s, 350 °C for 40 s and 400 °C for 40 s were employed, respectively. AFB 1 was reduced as much as 83.86 ± 2.66% when 400 °C for 40 s was applied. The moisture content of treated peanuts was decreased to less than 3% and browning index was developed from 30.96 ± 1.59 to 95.76 ± 7.23. Higher roasting degree was obtained according to the increase in browning index. Oil quality showed that peroxide values and acid values were greatly below the allowance level. USS could effectively decrease AFB 1 and render expectable roasting qualities of peanut. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Production of Aflatoxin on Soybeans

    PubMed Central

    Gupta, S. K.; Venkitasubramanian, T. A.

    1975-01-01

    Probable factors influencing resistance to aflatoxin synthesis in soybeans have been investigated by using cultures of Aspergillus parasiticus NRRL 3240. Soybeans contain a small amount of zinc (0.01 μg/g) bound to phytic acid. Autoclaving soybeans at 15 pounds (6803.88 g) for 15 min increases the aflatoxin production, probably by making zinc available. Addition of zinc to both autoclaved and nonautoclaved soybeans promotes aflatoxin production. However, addition of varying levels of phytic acid at a constant concentration of zinc depresses aflatoxin synthesis with an increase in the added phytic acid. In a synthetic medium known to give good yields of aflatoxin, the addition of phytic acid (10 mM) decreases aflatoxin synthesis. PMID:1171654

  9. A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract.

    PubMed

    Tripathi, Vinayak R; Kumar, Shailendra; Garg, Satyendra K

    2011-07-12

    Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, Cassia tora (Senna tora) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, Aspergillus flavus and Bacillus sp. proteases. The crushed seeds of Cassia tora were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools. The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, Aspergillus flavus and Bacillus sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml-1 seed protein extract for 60 min. The

  10. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus.

    PubMed

    Mitra, Chandrani; Gummadidala, Phani M; Afshinnia, Kamelia; Merrifield, Ruth C; Baalousha, Mohammed; Lead, Jamie R; Chanda, Anindya

    2017-07-18

    Manufactured silver nanoparticles (Ag NPs) have long been used as antimicrobials. However, little is known about how these NPs affect fungal cell functions. While multiple previous studies reveal that Ag NPs inhibit secondary metabolite syntheses in several mycotoxin producing filamentous fungi, these effects are associated with growth repression and hence need sublethal to lethal NP doses, which besides stopping fungal growth, can potentially accumulate in the environment. Here we demonstrate that citrate-coated Ag NPs of size 20 nm, when applied at a selected nonlethal dose, can result in a >2 fold inhibition of biosynthesis of the carcinogenic mycotoxin and secondary metabolite, aflatoxin B 1 in the filamentous fungus and an important plant pathogen, Aspergillus parasiticus, without inhibiting fungal growth. We also show that the observed inhibition was not due to Ag ions, but was specifically associated with the mycelial uptake of Ag NPs. The NP exposure resulted in a significant decrease in transcript levels of five aflatoxin genes and at least two key global regulators of secondary metabolism, laeA and veA, with a concomitant reduction of total reactive oxygen species (ROS). Finally, the depletion of Ag NPs in the growth medium allowed the fungus to regain completely its ability of aflatoxin biosynthesis. Our results therefore demonstrate the feasibility of Ag NPs to inhibit fungal secondary metabolism at nonlethal concentrations, hence providing a novel starting point for discovery of custom designed engineered nanoparticles that can efficiently prevent mycotoxins with minimal risk to health and environment.

  11. Production and characterization of a bioflocculant produced by Aspergillus flavus.

    PubMed

    Aljuboori, Ahmad H Rajab; Idris, Azni; Abdullah, Norhafizah; Mohamad, Rosfarizan

    2013-01-01

    The production and characterization of a bioflocculant, IH-7, by Aspergillus flavus was investigated. About 0.4 g of purified bioflocculant with an average molecular weight of 2.574 × 10(4)Da could be obtained from 1L of fermentation medium. The bioflocculant mainly consisted of protein (28.5%) and sugar (69.7%), including 40% of neutral sugar, 2.48% of uronic acid and 1.8% amino sugar. The neutral sugar components are sucrose, lactose, glucose, xylose, galactose, mannose and fructose at a molar ratio of 2.4:4.4:4.1:5.8:9.9:0.8:3.1. Fourier-transform infrared spectroscopy analysis revealed that purified IH-7 contained hydroxyl, amide, carboxyl and methoxyl groups. The elemental analysis of purified IH-7 showed that the weight fractions of the elements C, H, O, N and S were 29.9%, 4.8%, 34.7%, 3.3%, and 2.0%, respectively. IH-7 had good flocculating rate in kaolin suspension without cation addition and stable over wide range of pH and temperature. Copyright © 2012. Published by Elsevier Ltd.

  12. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2013-08-01

    In an effort to address the problem of rapid detection of aflatoxin in grain, particularly oilseeds, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from 2 different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to natural infestation was also assessed. A small corn plot in Baton Rouge, La., U.S.A., was used during the 2008-growing season. Two groups of 400 plants were inoculated with 2 different inocula and 1 group of 400 plants was designated as controls. Any contamination detected in the controls was attributed to natural infestation. A subset of each group was imaged with a visible near infra red (VNIR) hyperspectral system under ultra violet (UV) excitation and subsequently analyzed for aflatoxin using affinity column fluorometry. Group differences were statistically analyzed. Results indicate that when all the spectral data across all groups were averaged, any potential differences between groups (treated and untreated) were obscured. However, spectral analysis based on contaminated "hot" pixel classification showed a distinct spectral shift/separation between contaminated and clean ears with fluorescence peaks at 501 and 478 nm, respectively. All inoculated and naturally infected control ears had fluorescence peaks at 501 nm that differed from uninfected corn ears. Results from this study may be useful in evaluating rapid, noninvasive instrumentation and/or methodology for aflatoxin detection in grain. © 2013 Institute of Food Technologists®

  13. Effects of Pistacia atlantica subsp. kurdica on Growth and Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Khodavaisy, Sadegh; Rezaie, Sassan; Noorbakhsh, Fatemeh; Baghdadi, Elham; Sharifynia, Somayeh; Aala, Farzad

    2016-01-01

    Background Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. Objectives In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. Materials and Methods In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. Results The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. Conclusions Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture. PMID:27800127

  14. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  15. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Occurrence of aflatoxins in oilseeds providing cocoa-butter substitutes.

    PubMed Central

    Kershaw, S J

    1982-01-01

    Four oilseeds providing cocoa-butter substitutes--shea, pentadecima, illipe, and salseed--when tested as substrates for aflatoxin production by two strains of Aspergillus parasiticus, gave varying levels of aflatoxin. Aflatoxins were found at low levels occurring naturally in moldy shea-nuts, but none of 21 commercial shea-nut samples contained greater than 20 micrograms of aflatoxin B1 per kg. PMID:6808919

  17. Occurrence of aflatoxins in oilseeds providing cocoa-butter substitutes.

    PubMed

    Kershaw, S J

    1982-05-01

    Four oilseeds providing cocoa-butter substitutes--shea, pentadecima, illipe, and salseed--when tested as substrates for aflatoxin production by two strains of Aspergillus parasiticus, gave varying levels of aflatoxin. Aflatoxins were found at low levels occurring naturally in moldy shea-nuts, but none of 21 commercial shea-nut samples contained greater than 20 micrograms of aflatoxin B1 per kg.

  18. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus

    PubMed Central

    Pfannenstiel, Brandon T.; Zhao, Xixi; Wortman, Jennifer; Throckmorton, Kurt; Spraker, Joseph E.; Luo, Xingyu; Lindner, Daniel L.; Lim, Fang Yun; Knox, Benjamin P.; Haas, Brian; Fischer, Gregory J.; Choera, Tsokyi; Butchko, Robert A. E.; Bok, Jin-Woo; Affeldt, Katharyn J.

    2017-01-01

    ABSTRACT The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin’s carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus. Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique. PMID:28874473

  19. Variation in fungal microbiome (mycobiome) and aflatoxins during simulated storage of in-shell peanuts and peanut kernels.

    PubMed

    Xing, Fuguo; Ding, Ning; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Limin; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2016-05-16

    Internal transcribed spacer 2 (ITS2) sequencing was used to characterize the peanut mycobiome during 90 days storage at five conditions. The fungal diversity in in-shell peanuts was higher with 110 operational taxonomic units (OTUs) and 41 genera than peanut kernels (91 OTUs and 37 genera). This means that the micro-environment in shell is more suitable for maintaining fungal diversity. At 20-30 d, Rhizopus, Eurotium and Wallemia were predominant in in-shell peanuts. In peanut kernels, Rhizopus (>30%) and Eurotium (>20%) were predominant at 10-20 d and 30 d, respectively. The relative abundances of Rhizopus, Eurotium and Wallemia were higher than Aspergillus, because they were xerophilic and grew well on substrates with low water activity (aw). During growth, they released metabolic water, thereby favoring the growth of Aspergillus. Therefore, from 30 to 90 d, the relative abundance of Aspergillus increased while that of Rhizopus, Eurotium and Wallemia decreased. Principal Coordinate Analysis (PCoA) revealed that peanuts stored for 60-90 days and for 10-30 days clustered differently from each other. Due to low aw values (0.34-0.72) and low levels of A. flavus, nine of 51 samples were contaminated with aflatoxins.

  20. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus.

    PubMed

    Gupta, Saurabh; Bector, Shruti

    2013-05-01

    Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.

  1. MYCOLOGICAL ANALYSIS AND AFLATOXIN B1 CONTAMINANT ESTIMATION OF HERBAL DRUG RAW MATERIALS

    PubMed Central

    Rajeshwari, Puttaswamy; Raveesha, KoteshwarAnandrao

    2016-01-01

    Background: The present study explores the fungal contamination of important herbal drug raw materials (HDRM), which are widely used in the preparation of many herbal drugs. Understanding of the microbial contamination status of HDRM is one of the important steps to ensure the safety and efficacy of herbal drugs. Materials and Methods: Eighteen samples of six herbal drug raw materials (HDRM) viz., Acorus calamus Linn., Cassia angustifolia Vahl., Centella asiatica (Linn.) Urban, Myristica fragrans Houtt., Tinospora cardifolia (Wild) Miers and Withania somnifera (Linn.) Dunal, were screened for fungal contamination, by employing serial dilution method. All the isolates of Aspergillus flavus were screened for their ability to produce aflatoxin B1 (AB1) and highly contaminated samples were subjected to AB1 estimation by using Thin Layer Chromatography (TLC), spectrophotometric method and occurrence of Aflatoxin B1 was confirmed by Liquid Chromatography-Mass Spectrometry analysis (LCMS). Results: A total of 302 isolates of 42 fungal species belonging to 17 genera were found in association with test the samples. More than 61% of A. flavus isolates tested positive for production of AB1 and highest yield recorded was 5008.20 ppb from the isolates of T. cordifolia. Amongthesix highly contaminated samples three samples tested positive for AB1. Highest AB1 was recorded from T. cordifolia (104.19 μg/kg), followed by A. calamus (13.73 μg/kg) and M. fragrans (12.02 μg/kg). Conclusion: Assessment of fungal and mycotoxin contamination should be a part of the quality check while selecting HDRM for manufacture of herbal products. Safe processing and storage practices are necessary. PMID:28487902

  2. Occurrence of mycotoxin producing fungi in bee pollen.

    PubMed

    González, G; Hinojo, M J; Mateo, R; Medina, A; Jiménez, M

    2005-11-15

    The natural mycobiota occurring in bee pollen is studied in the present report with special attention to analyze the incidence of fungal species that are potential producers of mycotoxins. A total of 90 ready-to-eat bee pollen samples were analyzed. Eighty-seven samples were collected in stores placed in different Spanish areas and three were from Buenos Aires (Argentina). The statistical results (ANOVA) showed that yeasts and Penicillium spp. were the predominant fungi. With regard to the potential mycotoxin producing species, Penicillium verrucosum, Aspergillus niger aggregate, Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus flavus, Aspergillus parasiticus and Alternaria spp. were found. The last genus was isolated very frequently. The potential ability for producing ochratoxin A (OTA) and aflatoxins B(1), B(2), G(1) and G(2) was studied by culturing in vitro the isolates followed by analysis of these mycotoxins in culture extracts by HPLC with fluorescent detection. It was found that 100%, 53.3%, 33.3% and 25% of the isolates of A. carbonarius, A. ochraceus, P. verrucosum and A. niger aggregate, respectively, produced OTA. Moreover, 28.6% of the isolates from the A. flavus plus A. parasiticus group were able to produce aflatoxin B(1). Aflatoxin B(2) was detected in only 10% of the cultures. Aflatoxins G(1) and G(2) were not detected in cultures under the assayed conditions. This is the first report carried out on the natural mycobiota occurring in bee pollen in general and on the toxigenic capability of these isolates in particular.

  3. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare.

    PubMed

    Markoglou, Anastasios N; Doukas, Eleftherios G; Malandrakis, Anastasios A

    2011-03-30

    Mutants of Aspergillus parasiticus resistant to the anilinopyrimidine fungicides were isolated at a high mutation frequency after UV-mutagenesis and selection on media containing cyprodinil. In vitro fungitoxicity tests resulted in the identification of two predominant resistant phenotypes that were highly (R(1)-phenotype) and moderately (R(2)-phenotype) resistant to the anilinopyrimidines cyprodinil, pyrimethanil and mepanipyrim. Cross-resistance studies with fungicides from other chemical groups showed that the highly resistance mutation(s) did not affect the sensitivity of R(1)-mutant strains to fungicides affecting other cellular pathways. Contrary to that, a reduction in the sensitivity to the triazoles epoxiconazole and flusilazole, the benzimidazole carbendazim, the phenylpyrrole fludioxonil, the dicarboximide iprodione and to the strobilurin-type fungicide pyraclostrobin was observed in R(2)-mutant strains. Study of fitness parameters of anilinopyrimidine-resistant strains of both phenotypic classes showed that all R(1) mutant strains had mycelial growth rate, sporulation and conidial germination similar to or even higher than the wild-type parent strain, while these fitness parameters were negatively affected in R(2) mutant strains. Analysis of the aflatoxin production showed that most R(1) mutant strains produced aflatoxins at concentrations markedly higher than the wild-type parent strain. A considerable reduction in the aflatoxin production was observed on cultured medium and on wheat grains by all R(2) mutant strains, indicating a possible correlation between fitness penalties and aflatoxigenic ability of A. parasiticus. The potential risk of increased aflatoxin contamination of agricultural products and their byproducts by the appearance and predominance of highly aflatoxigenic mutant strains of A. parasiticus resistant to the anilinopyrimidines is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Identification of the Predominant Volatile Compounds Produced by Aspergillus flavus

    PubMed Central

    Kaminśki, E.; Libbey, L. M.; Stawicki, S.; Wasowicz, E.

    1972-01-01

    A culture of Aspergillus flavus grown on moistened wheat meal was homogenized with a blendor, and the resulting slurry was vacuum-distilled at 5 mm of Hg and 35 C. The aqueous distillate was collected in traps cooled to -10 to -80 C. The culture volatiles were extracted from the distillate with CH2Cl2, and, after removal of the bulk of the solvent, the concentrated volatiles were examined by packed-column gas chromatography. Nineteen peaks were observed, and coupled gas chromatography-mass spectrometry was employed to identify the larger components. The compounds identified were: 3-methyl-butanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and cis-2-octen-1-ol. The two octenols were the predominant compounds, and sufficient sample was trapped from the gas chromatograph for infrared analyses; this confirmed the mass spectral identifications and permitted the assignment of the cis designation to 2-octen-1-ol. Both oct-1-en-3-ol and cis-2-octen-1-ol are thought to be responsible for the characteristic musty-fungal odor of certain fungi; the latter compound may be a useful chemical index of fungal growth. PMID:4629700

  5. Identification of the predominant volatile compounds produced by Aspergillus flavus.

    PubMed

    Kamiński, E; Libbey, L M; Stawicki, S; Wasowicz, E

    1972-11-01

    A culture of Aspergillus flavus grown on moistened wheat meal was homogenized with a blendor, and the resulting slurry was vacuum-distilled at 5 mm of Hg and 35 C. The aqueous distillate was collected in traps cooled to -10 to -80 C. The culture volatiles were extracted from the distillate with CH(2)Cl(2), and, after removal of the bulk of the solvent, the concentrated volatiles were examined by packed-column gas chromatography. Nineteen peaks were observed, and coupled gas chromatography-mass spectrometry was employed to identify the larger components. The compounds identified were: 3-methyl-butanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and cis-2-octen-1-ol. The two octenols were the predominant compounds, and sufficient sample was trapped from the gas chromatograph for infrared analyses; this confirmed the mass spectral identifications and permitted the assignment of the cis designation to 2-octen-1-ol. Both oct-1-en-3-ol and cis-2-octen-1-ol are thought to be responsible for the characteristic musty-fungal odor of certain fungi; the latter compound may be a useful chemical index of fungal growth.

  6. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity.

    PubMed

    Prakash, Bhanu; Shukla, Ravindra; Singh, Priyanka; Kumar, Ashok; Mishra, Prashant Kumar; Dubey, Nawal Kishore

    2010-08-15

    The study investigates fungal contamination in some dry fruits, spices and areca nut and evaluation of the essential oil (EO) of Piper betle var. magahi for its antifungal, antiaflatoxigenic and antioxidant properties. A total of 1651 fungal isolates belonging to 14 species were isolated from the samples and Aspergillus was recorded as the dominant genus with 6 species. Eleven aflatoxin B(1) (AFB(1)) producing strains of A. flavus were recorded from the samples. Eugenol (63.39%) and acetyleugenol (14.05%) were the major components of 32 constituents identified from the Piper betle EO through GC and GC-MS analysis. The minimum inhibitory concentration (MIC) of P. betle EO was found 0.7 microl/ml against A.flavus. The EO reduced AFB(1) production in a dose dependent manner and completely inhibited at 0.6 microl/ml. This is the first report on efficacy of P. betle EO as aflatoxin suppressor. EO also exhibited strong antioxidant potential as its IC(50) value (3.6 microg/ml) was close to that of ascorbic acid (3.2 microg/ml) and lower than that of the synthetic antioxidants such as butylated hydroxytouene (BHT) (7.4 microg/ml) and butylated hydroxyanisole (BHA) (4.5 microg/ml). P. betle EO thus exhibited special merits possessing antifungal, aflatoxin suppressive and antioxidant characters which are desirable for an ideal preservative. Hence, its application as a plant based food additive in protection and enhancement of shelf life of edible commodities during storage and processing is strongly recommended in view of the toxicological implications by synthetic preservatives. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Reduction of aflatoxins by Korean soybean paste and its effect on cytotoxicity and reproductive toxicity--part 1. Inhibition of growth and aflatoxin production of Aspergillus parasiticus by Korean soybean paste (Doen-jang) and identification of the active component.

    PubMed

    Kim, J G; Lee, Y W; Kim, P G; Roh, W S; Shintani, H

    2000-09-01

    The inhibitory effect of methanol extract of Korean soybean paste on the mold growth and aflatoxin production of a toxigenic strain of Aspergillus parasiticus ATCC 15517 was studied using different concentrations of the extract in yeast-extract sucrose broth. While inhibition in mold growth due to increasing the concentration of the extract was observed, the more remarkable effect was the inhibition of aflatoxin production. Reduction of mycelial weight as a result of addition of the extract was observed to range between 1.5 to 12.9% while reduction of aflatoxin production quantified by high-performance liquid chromatography ranged from 14.3 to 41.7%. Five percent of the extract significantly reduced aflatoxin production at the end of the incubation period (P < 0.05), although the effect on mycelial growth was less pronounced. This study indicates that soybean paste could also be an effective inhibitor of aflatoxin production even though mycelial growth may be permitted. The main active component identified by gas chromatography-mass spectroscopy was linoleic acid.

  8. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. LAMP-PCR detection of ochratoxigenic Aspergillus species collected from peanut kernel.

    PubMed

    Al-Sheikh, H M

    2015-01-30

    Over the last decade, ochratoxin A (OTA) has been widely described and is ubiquitous in several agricultural products. Ochratoxins represent the second-most important mycotoxin group after aflatoxins. A total of 34 samples were surveyed from 3 locations, including Mecca, Madina, and Riyadh, Saudi Arabia, during 2012. Fungal contamination frequency was determined for surface-sterilized peanut seeds, which were seeded onto malt extract agar media. Aspergillus niger (35%), Aspergillus ochraceus (30%), and Aspergillus carbonarius (25%) were the most frequently observed Aspergillius species, while Aspergillus flavus and Aspergillus phoenicis isolates were only infrequently recovered and in small numbers (10%). OTA production was evaluated on yeast extract sucrose medium, which revealed that 57% of the isolates were A. niger and 60% of A. carbonarius isolates were OTA producers; 100% belonged to A. ochraceus. Only one isolate, morphologically identified as A. carbonarius, and 3 A. niger isolates unstably produced OTA. A polymerase chain reaction (PCR)-based identification and detection assay was used to identify A. ochraceus isolates. Using the primer sets OCRA1/OCRA2, 400-base pair PCR fragments were produced only when genomic DNA from A. ochraceus isolates was used. Recently, the loop-mediated isothermal amplification assay using recombinase polymerase amplification chemistry was used for A. carbonarius and A. niger DNA identification. As a non-gel-based technique, the amplification product was directly visualized in the reaction tube after adding calcein for naked-eye examination.

  10. The potential hazards of Aspergillus sp. in foods and feeds, and the role of biological treatment: a review.

    PubMed

    Sheikh-Ali, Sheikh Imranudin; Ahmad, Akil; Mohd-Setapar, Siti-Hamidah; Zakaria, Zainul Akmal; Abdul-Talib, Norfahana; Khamis, Aidee Kamal; Hoque, Md Enamul

    2014-10-01

    The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.

  11. Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating

    USDA-ARS?s Scientific Manuscript database

    Since its first introduction in the early 1990s, tremendous progress has been made in the application of biocontrol techniques for reducing aflatoxin contamination in corn. In almost three decades, the basic concept has remained centered on massive application of propagules of non-aflatoxigenic A. f...

  12. In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp.

    PubMed

    Jain, Rachna; Garg, Veena; Yadav, Deepak

    2014-06-01

    Fungal degradation is emerging as a new powerful tool for the removal of potent neurotoxin pesticide, monocrotophos. Therefore, the present study is aimed at comparative characterization of monocrotophos degrading ability of three different fungal strains. Fungal strains were isolated from local agricultural soil by enrichment culture method, screened by gradient culture and identified as Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Growth kinetics revealed a direct positive influence of monocrotophos on the viability of fungal isolates. Fungal degradation was studied in phosphorus free liquid culture medium supplemented with 150 mg L(-1) concentration of monocrotophos for a period of 15 days under optimized culture conditions. Degradation of MCP followed first order kinetics with kdeg of 0.007, 0.002 and 0.005 day(-1) and half life (t1/2) of 4.21, 12.64 and 6.32 days for A. flavus, F. pallidoroseum and Macrophomina sp. respectively. To the best of our knowledge, it is the first report signifying the potential of monocrotophos degradation by Fusarium and Macrophomina sp. The results were further confirmed by HPTLC and FTIR which indicates disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. Degradation of monocrotophos by fungal isolates was accompanied by the release of extracellular alkaline phosphatases, inorganic phosphates and ammonia. The overall comparative analysis followed the order of A. flavus > Macrophomina sp. > F. pallidoroseum. Therefore, it could be concluded from the study that these three different fungal strains could be effectively used as a potential candidate for the removal of monocrotophos from contaminated sites.

  13. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio.

    PubMed

    Siahmoshteh, Fatemeh; Siciliano, Ilenia; Banani, Houda; Hamidi-Esfahani, Zohreh; Razzaghi-Abyaneh, Mehdi; Gullino, Maria Lodovica; Spadaro, Davide

    2017-08-02

    Pistachio (Pistacia vera) is an important nut for its economic, nutritional and health aspects but it can be contaminated by aflatoxigenic fungi in the field and during storage. Biological control could be considered as an alternative to chemical treatment. In this study, we evaluated the antifungal and anti-mycotoxigenic capability of two Bacillus spp. both in vitro and on pistachio kernels. In in vitro conditions, both strains were able to reduce the mycelial growth and they were able to degrade the four aflatoxins during the first three days after inoculation. AFG 1 and AFG 2 were rapidly degraded within two days of incubation with the bacterial strains. No aflatoxin was found in the bacterial cell walls, permitting exclusion of mycotoxin adsorption and hypothesis of an in vitro biodegradation as a mode of action. The cultivar of pistachio most susceptible to fungal colonization was 'Ahmad-Aghaei', selected among four main Iranian cultivars. A. parasiticus was able to grow and produce aflatoxins on pistachios, but at longer inoculation periods, a natural decrease of aflatoxins was registered. Both strains were able to reduce the fungal incidence and number of spores on pistachio with a stronger effect during the first 5dpi. The effect on aflatoxin content in vivo was less pronounced than in vitro, with a maximum effect at 8dpi. At longer times, there was a contrasting effect due to the lower activity of Bacillus spp. in stationary phase and higher growth of Aspergillus species. This consideration could explain the lack of aflatoxin reduction at 12dpi. Both bacterial strains showed good antifungal activity and aflatoxin reduction in in vitro conditions and on pistachio kernels. Altogether, these results indicate that Bacillus species could be considered as potential biocontrol agents to combat toxigenic fungal growth and subsequent aflatoxin contamination of nuts and agricultural crops in practice. Copyright © 2017. Published by Elsevier B.V.

  14. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain.

    PubMed

    Alborch, L; Bragulat, M R; Castellá, G; Abarca, M L; Cabañes, F J

    2012-10-01

    Mycobiota and co-occurrence of aflatoxins, citrinin, ochratoxin A and zearalenone in 30 samples of maize flours and 30 of popcorn kernels purchased in Spain for human consumption were determined. The mycotoxin-producing ability of Aspergillus, Fusarium and Penicillium spp. was also studied. Total fungal counts of maize flours ranged from <10 to 8.4 × 10(4) CFU/g and predominant mycobiota belonged to Aspergillus spp. and Penicillium spp. In popcorn kernels samples the most frequent species were Aspergillus spp., Mucorales, Fusarium spp. and Penicillium spp. Aflatoxins were produced by Aspergillus flavus and Aspergillus parasiticus, citrinin by Penicillium citrinum and Penicillium verrucosum, ochratoxin A by Aspergillus niger and patulin by Aspergillus clavatus and Penicillium griseofulvum. Identification of all the mycotoxin-producing strains as well as some Aspergillus spp. difficult to identify using phenotypic characters only was also performed by molecular methods. Aflatoxins were detected in 14 maize flours and 2 popcorn kernels samples, while ochratoxin A was detected in 4 maize flours and 10 popcorn samples. Co-occurrence of aflatoxins and ochratoxin A was found in the 4 ochratoxin-positive maize flour samples. Citrinin and zearalenone were not detected. This is the first report of aflatoxins and ochratoxin A contamination in maize flours and popcorn kernels commercialized in Spain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species.

    PubMed

    Oliveira, Manuela; Pereira, Clara; Bessa, Cláudia; Araujo, Ricardo; Saraiva, Lucília

    2015-11-01

    Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.

  16. First Report of an Atypical New Aspergillus parasiticus Isolates with Nucleotides Insertion in aflR Gene Identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus favus and Aspergillus parasitic and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional prep...

  17. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds

    PubMed Central

    Moon, Young-Sun; Choi, Won-Sik; Park, Eun-Sil; Bae, In Kyung; Choi, Sung-Deuk; Paek, Ockjin; Kim, Sheen-Hee; Chun, Hyang Sook; Lee, Sung-Eun

    2016-01-01

    Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. PMID:27537912

  18. X-ray based irradiation of navel orangeworm for sterile insect control

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (NOW) is a pest of California tree nuts, including almonds, pistachios, and walnuts. NOW damage is also correlated with infection by Aspergillus flavus and subsequent mycotoxin contamination, primarily aflatoxins. These potential carcinogens / animal toxins are strictly regulate...

  19. In silico analysis of β-mannanases and β-mannosidase from Aspergillus flavus and Trichoderma virens UKM1

    NASA Astrophysics Data System (ADS)

    Yee, Chai Sin; Murad, Abdul Munir Abdul; Bakar, Farah Diba Abu

    2013-11-01

    A gene encoding an endo-β-1,4-mannanase from Trichoderma virens UKM1 (manTV) and Aspergillus flavus UKM1 (manAF) was analysed with bioinformatic tools. In addition, A. flavus NRRL 3357 genome database was screened for a β-mannosidase gene and analysed (mndA-AF). These three genes were analysed to understand their gene properties. manTV and manAF both consists of 1,332-bp and 1,386-bp nucleotides encoding 443 and 461 amino acid residues, respectively. Both the endo-β-1,4-mannanases belong to the glycosyl hydrolase family 5 and contain a carbohydrate-binding module family 1 (CBM1). On the other hand, mndA-AF which is a 2,745-bp gene encodes a protein sequence of 914 amino acid residues. This β-mannosidase belongs to the glycosyl hydrolase family 2. Predicted molecular weight of manTV, manAF and mndA-AF are 47.74 kDa, 49.71 kDa and 103 kDa, respectively. All three predicted protein sequences possessed signal peptide sequence and are highly conserved among other fungal β-mannanases and β-mannosidases.

  20. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review.

    PubMed

    Wogan, Gerald N; Kensler, Thomas W; Groopman, John D

    2012-01-01

    The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental