Science.gov

Sample records for aspergillus niger isolated

  1. [Aspergillus niger alpha-N-acetylgalactosaminidase: isolation, purification and properties].

    PubMed

    Borzova, N V; Varbanets, L D

    2006-01-01

    alpha-N-acetylgalactosaminidase has been isolated from liquid culture of micromycete Aspergillus niger and purified 600 times by ammonium sulphate precipitation followed by ion exchange and gel-filtration chromatography on TSK-gels with specific activity 10.5 U/mg of protein. The preparation was homogenic: its molecular mass by the data of gel-filtration on Sepharose 6B was 430 kDa, on PAAGE in the system of DDSNa--70 kDa. That gives every reason to suppose oligomeric structure of the enzyme molecule. The carbohydrate component, including mannose, galactose, glucosamine and two nonidentified hexosamines was observed in alpha-N-acetylgalactosaminidase. Thermo- and pH- optima were 60 degrees C and pH 3.5, respectively. The enzyme was thermo- and pH-stable, resistant in storage. The enzyme was found to exhibit strict specificity in respect ofglycon. It was shown that enzyme was competitively inhibited by substrate and reaction product. Km and Vmax with respect to nitrophenyl substrate were 1.25 mM and 10.5 mkmole/min/mg of protein. The activity of glycosidase tested was independent of the presence of metal ions. The presence of carboxylic group of C-terminal aminoacid and imidazol group of hystidine in active centre of molecule was established. A number of natural and synthetic substrates were able to activate (50-200%) production of A. niger alpha-N-acetylgalactosaminidase. PMID:17290780

  2. Glucoamylase production by a newly isolated strain of Aspergillus niger

    SciTech Connect

    Sinkar, V.P.; Lewis, N.F.

    1982-01-01

    Glucoamylase production by Aspergillus niger 57 was studied in complex and synthetic media under stationary vs. submerged conditions. Stationary cultivation resulted in significantly greater yields than did submerged culture. Crude enzyme activity was optimum at 60 degrees and pH 4.0.

  3. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    PubMed Central

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization. PMID:6784672

  4. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    SciTech Connect

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  5. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger.

    PubMed

    Weenink, Xavier O; Punt, Peter J; van den Hondel, Cees A M J J; Ram, Arthur F J

    2006-02-01

    Although filamentous fungi have a unique property of secreting a large amount of homologous extracellular proteins, the use of filamentous fungi as hosts for the production of heterologous proteins is limited because of the low production levels that are generally reached. Here, we report a general screening method for the isolation of mutants with increased protein production levels. The screening method makes use of an Aspergillus niger strain that lacks the two major amylolytic enzymes, glucoamylase (GlaA) and acid amylase (AamA). The double-mutant strain grows poorly on starch and its growth is restored after reintroducing the catalytic part of the glucoamylase gene (GlaA512). We show that the fusion of a heterologous protein, a laccase from Pleurotus ostreatus (Pox2), to the catalytic part of glucoamylase (GlaA512-Pox2) severely hampers efficient production of the glucoamylase protein, resulting in a slow-growth phenotype on starch. Laccase-hypersecreting mutants were obtained by isolating mutants that displayed improved growth on starch plates. The mutant with the highest growth rate on starch displayed the highest laccase activity, indicating that increased glucoamylase protein levels are correlated with higher laccase production levels. In principle, our method can be applied to any low-produced heterologous protein that is secreted as a fusion with the glucoamylase protein. PMID:16021486

  6. Production and characterization of alpha-amylase from Aspergillus niger JGI 24 isolated in Bangalore.

    PubMed

    Varalakshmi, K N; Kumudini, B S; Nandini, B N; Solomon, J; Suhas, R; Mahesh, B; Kavitha, A P

    2009-01-01

    Five fungal isolates were screened for the production of alpha-amylase using both solid-state and submerged fermentations. The best amylase producer among them, Aspergillus niger JGI 24, was selected for enzyme production by solid-state fermentation (SSF) on wheat bran. Different carbon and nitrogen supplements were used to enhance enzyme production and maximum amount of enzyme was obtained when SSF was carried out with soluble starch and beef extract (1% each) as supplements. Further attempts to enhance enzyme production by UV induced mutagenesis were carried out. Survival rate decreased with increase in duration of UV exposure. Partial purification of the enzyme using ammonium sulphate fractionation resulted in 1.49 fold increase in the enzyme activity. The enzyme showed a molecular weight of 43 kDa by SDS-PAGE. Metal ions Ca2+ and Co2+ increased the enzyme activity. The enzyme was optimally active at 30 degrees C and pH 9.5. PMID:19469283

  7. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both specie...

  8. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance.

    PubMed

    Monteiro, Paulo S; Guimarães, Valéria M; de Melo, Ricardo R; de Rezende, Sebastião T

    2015-03-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  9. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    PubMed Central

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  10. Biotransformation of Stypotriol triacetate by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Areche, Carlos; Vaca, Inmaculada; Labbe, Pamela; Soto-Delgado, Jorge; Astudillo, Luis; Silva, Mario; Rovirosa, Juana; San-Martin, Aurelio

    2011-07-01

    Biological transformation of the meroditerpenoid, stypotriol triacetate ( 1) by the fungi Aspergillus niger, Cunninghamella elegans, Gibberella fujikuroi and Mucor plumbeus was studied. The incubation of 1 with A. niger yielded the new compound 6',14-diacetoxy-stypol-4,5-dione ( 2) whose structure was established by 1H, 13C and 2D NMR and supported by DFT/GIAO.

  11. A tyrosinase inhibitor from Aspergillus niger.

    PubMed

    Vasantha, K Y; Murugesh, C S; Sattur, A P

    2014-10-01

    Tyrosinase, in the presence of oxygen, is the main culprit in post harvest browning of food products, resulting in the drop in its commercial value. In an effort to seek natural tyrosinase inhibitors for food applications, a screening programme was undertaken. Of the 26 fungal cultures isolated from soil samples of Agumbe forest, India, one isolate S16, identified as Aspergillus niger, gave an inhibition of 84 % against the enzyme. The inhibitor was isolated by following an enzyme inhibition assay guided purification protocol. The structure of the inhibitor was elucidated and found to be kojic acid. The IC50 of the Competitive inhibitor was found to be 8.8 μg with a Ki of 0.085 mM. PMID:25328242

  12. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  13. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  14. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    PubMed

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied. PMID:26380164

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    SciTech Connect

    Woon, J. S. K. Murad, A. M. A. Abu Bakar, F. D.

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  16. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  17. Structure elucidation of metabolites of swertiamarin produced by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Jun, Chang; Xue-Ming, Zhao; Chang-Xiao, Liu; Tie-Jun, Zhang

    2008-04-01

    The in vitro metabolism of swertiamarin was carried out in preparative scale using the fungus Aspergillus niger and the metabolites were isolated by semi-preparative HPLC combined with liquid-liquid extraction. Two metabolites, erythrocentaurin and one new compound were obtained and identified by 1H, 13C and 2D NMR and high resolution MS. The anti-inflammatory activity of the novel metabolite was tested and compared with that of swertiamarin in a mice model.

  18. Mutagenesis and genetic characterisation of amylolytic Aspergillus niger.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-07-01

    Aspergillus niger FCBP-198 was genetically modified for its ability to reveal extra cellular alpha-amylase enzyme activity. From 76 efficient mutants isolated after ultraviolet (UV) irradiation, An-UV-5.6 was selected as the most efficient UV mutant, with 76.41 units mL(-1) of alpha-amylase activity compared to wild (34.45 units mL(-1)). In case of ethyl methane sulphonate (EMS), among 242 survivors, 74 were assayed quantitatively and An-Ch-4.7 was found to be the most competent, as it exhibited a three-fold increase in alpha-amylase activity (89.38 units mL(-1)) than the parental strain. Genetic relationships of the mutants of A. niger FCBP-198 were analysed with a randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Results obtained from the comparison between genotypes of A. niger FCBP-198 showed differences in the sizes and numbers of amplified fragments per primer for each isolate. The dendrogram showed that genotypes An-Ch-4.7 and An-Ch-4.2 were distinctly classified into one category, while the isolates An-UV-5.6, An-UV-5.1 and A. niger FCBP-198 have the nearest genetic relationship. The five isolates from A. niger FCBP-198 genotypes shared an average of 65% bands. PMID:19764004

  19. Shedding light on Aspergillus niger volatile exometabolome

    PubMed Central

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M.

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  20. Shedding light on Aspergillus niger volatile exometabolome.

    PubMed

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  1. Fingernail Onychomycosis Due to Aspergillus niger.

    PubMed

    Kim, Dong Min; Suh, Moo Kyu; Ha, Gyoung Yim; Sohng, Seung Hyun

    2012-11-01

    Onychomycosis is usually caused by dermatophytes, but some species of nondermatophytic molds and yeasts are also associated with nail invasion. Aspergillus niger is a nondermatophytic mold which exists as an opportunistic filamentous fungus in all environments. Here, we report a case of onychomycosis caused by A. niger in a 66-year-old female. The patient presented with a black discoloration and a milky white base and onycholysis on the proximal portion of the right thumb nail. Direct microscopic examination of scrapings after potassium hydroxide (KOH) preparation revealed dichotomous septate hyphae. Repeated cultures on Sabouraud's dextrose agar (SDA) without cycloheximide produced the same black velvety colonies. No colony growth occurred on SDA with cycloheximide slants. Biseriate phialides covering the entire vesicle with radiate conidial heads were observed on the slide culture. The DNA sequence of the internal transcribed spacer region of the clinical sample was a 100% match to that of A. niger strain ATCC 16888 (GenBank accession number AY373852). A. niger was confirmed by KOH mount, colony identification, light microscopic morphology, and DNA sequence analysis. The patient was treated orally with 250 mg terbinafine daily and topical amorolfine 5% nail lacquer for 3 months. As a result, the patient was completely cured clinically and mycologically. PMID:23197914

  2. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    PubMed

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-01

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment. PMID:25401962

  3. Microbial transformation of curcumol by Aspergillus niger.

    PubMed

    Chen, Li-Xia; Zhang, Hui; Zhao, Qian; Yin, Shi-Yu; Zhang, Zhong; Li, Tian-Xian; Qiu, Feng

    2013-02-01

    Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling, an antivirus and anticancer drug in China. Microbial transformation of curcumol (1) by Aspergillus niger AS 3.739 yielded two products. Their structures were elucidated as 3alpha-hydroxycurcumol (2) and 3alpha-(4'-methoxy-succinyloxy)-curcumol (3) by extensive spectroscopic methods including 2D-NMR and HRESI-MS. Among them, 3 is a new compound. Esterification of the substrate with succinic acid is a novel reaction in the field of microbial transformation of natural products. Compound 2, the major transformation product of 1, was a high regio- and stereo-specific hydroxylation product and showed significant antiviral effects. PMID:23513713

  4. Draft Genome Sequence of Aspergillus niger Strain An76

    PubMed Central

    Gong, Weili; Cheng, Zhi; Zhang, Huaiqiang; Liu, Lin; Gao, Peiji

    2016-01-01

    The filamentous fungus Aspergillus niger has become one of the most important fungi in industrial biotechnology, and it can efficiently secrete both polysaccharide-degrading enzymes and organic acids. We report here the 6,074,961,332-bp draft sequence of A. niger strain An76, and the findings provide important information related to its lignocellulose-degrading ability. PMID:26893421

  5. Putative Aspergillus niger-induced oxalate nephrosis in sheep.

    PubMed

    Botha, C J; Truter, M; Bredell, T; Lange, L; Mülders, M S G

    2009-03-01

    A sheep farmer provided a maize-based brewer's grain (mieliemaroek) and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC). Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy. PMID:19653520

  6. Heterogeneity of Aspergillus niger Microcolonies in Liquid Shaken Cultures▿ †

    PubMed Central

    de Bekker, Charissa; van Veluw, G. Jerre; Vinck, Arman; Wiebenga, L. Ad; Wösten, Han A. B.

    2011-01-01

    The fungus Aspergillus niger forms (sub)millimeter microcolonies within a liquid shaken culture. Here, we show that such microcolonies are heterogeneous with respect to size and gene expression. Microcolonies of strains expressing green fluorescent protein (GFP) from the promoter of the glucoamlyase gene glaA or the ferulic acid esterase gene faeA were sorted on the basis of diameter and fluorescence using the Complex Object Parametric Analyzer and Sorter (COPAS) technology. Statistical analysis revealed that the liquid shaken culture consisted of two populations of microcolonies that differ by 90 μm in diameter. The population of small microcolonies of strains expressing GFP from the glaA or faeA promoter comprised 39% and 25% of the culture, respectively. Two populations of microcolonies could also be distinguished when the expression of GFP in these strains was analyzed. The population expressing a low level of GFP consisted of 68% and 44% of the culture, respectively. We also show that mRNA accumulation is heterogeneous within microcolonies of A. niger. Central and peripheral parts of the mycelium were isolated with laser microdissection and pressure catapulting (LMPC), and RNA from these samples was used for quantitative PCR analysis. This analysis showed that the RNA content per hypha was about 45 times higher at the periphery than in the center of the microcolony. Our data imply that the protein production of A. niger can be improved in industrial fermentations by reducing the heterogeneity within the culture. PMID:21169437

  7. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations.

    PubMed

    Hodgkins, M; Mead, D; Ballance, D J; Goodey, A; Sudbery, P

    1993-06-01

    The glucose oxidase gene (god) from Aspergillus niger was expressed in Hansenula polymorpha using the methanol oxidase promoter and transcription termination region and the MF-alpha leader sequence from Saccharomyces cerevisiae to direct secretion. The expression cassette was cloned into the S. cerevisiae vector YEp13 and used to transform H. polymorpha strain A16. In the initial transformants plasmid replication was unstable, but was stabilized by a growth regime consisting of alternating cycles of selective and non-selective growth. The stabilized strain was grown to high cell density by fed-batch fermentation. Upon induction of the MOX promoter, glucose oxidase synthesis was initiated. At the end of the fermentation, the culture density was 76 g dry weight/1 and 108 IU/ml (0.5 g/1 or 0.65% dry weight) glucose oxidase was found in the culture medium; a further 86 IU/ml (0.43 g/1 or 0.56% dry weight) was recovered from the cell lysate. A plate assay was used to monitor glucose oxidase levels in individual colonies. This was then used to isolate mutants which showed abnormal regulation of god expression or which showed an altered pattern of secretion. One mutant, which showed increased production of glucose oxidase, was grown to high cell density by fed-batch fermentation (100.6 g/l) and produced 445 IU/ml(2.25 g/l or 2.2% dry weight) extracellularly and 76 IU/ml (0.38 g/l or 0.4% dry weight) intracellularly. The mutant thus not only increased total production but exported 83% of the total enzyme made compared to 55% in the parent strain. PMID:8346679

  8. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  9. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  10. Aspergillus Niger Genomics: Past, Present and into the Future

    SciTech Connect

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently, there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.

  11. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; de Souza Ferranti, Larissa; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-03-16

    Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing

  12. QM/MM investigation of the reaction rates of substrates of 2,3-dimethylmalate lyase: A catabolic protein isolated from Aspergillus niger.

    PubMed

    Chotpatiwetchkul, Warot; Jongkon, Nathjanan; Hannongbua, Supa; Gleeson, M Paul

    2016-07-01

    Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target. PMID:27343740

  13. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    SciTech Connect

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  14. Production of cellulase and xylanase in a bubble gum column using immobilized Aspergillus niger KKS

    SciTech Connect

    Kang, Seong-Woo; Kim, Seung-Woo; Lee, Jin-Suk

    1995-05-01

    Aspergillus niger KKS, isolated from a farmland near Suwon, was immobilized on Celite and polyurethane foams. Enzyme activities produced by the immobilized cell system in a bubble column were higher than that of shake-flask culture. The enzyme productivities were twice as high. {Beta}-Glucosidase, {Beta}-xylosidase, and xylanase activities obtained in a bubble column were significant when the ground rice straw was used as a substrate. 9 refs., 2 figs., 3 tabs.

  15. Purification and immobilization of Aspergillus niger. beta. -xylosidase

    SciTech Connect

    Oguntimein, G.B.; Reilly, P.J.

    1980-01-01

    ..beta..-Xylosidase from a commercial Aspergillus niger preparation was purified by differential ammonium sulfate precipitation and either gel permeation or cation exchange chromatography, giving 16-fold purification in 32% yield for the first technique or 27-fold purification in 19% yield for the second. Enzyme prepared by this method was immobilized to 10 different carriers, but only when it was bound to alumina with TiCl/sub 4/ and to alkylamine porous silica with glutaraldehyde were substantial efficiencies and stabilities achieved.

  16. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.

    PubMed

    Magyarosy, A; Laidlaw, R D; Kilaas, R; Echer, C; Clark, D S; Keasling, J D

    2002-07-01

    A strain of Aspergillus niger isolated from a metal-contaminated soil was able to grow in the presence of cadmium, chromium, cobalt, copper, and unusually high levels of nickel on solid (8.0 mM) and in liquid (6.5 mM) media. This fungus removed >98% of the nickel from liquid medium after 100 h of growth but did not remove the other metals, as determined by inductively coupled plasma spectroscopy. Experiments with non-growing, live fungal biomass showed that nickel removal was not due to biosorption alone, as little nickel was bound to the biomass at the pH values tested. Furthermore, when the protonophore carbonyl cyanide p-(trifluoremetoxy) phenyl hydrazone (FCCP) was added to the actively growing fungus nickel removal was inhibited, supporting the hypothesis that energy metabolism is essential for metal removal. Analytical electron microscopy of thin-sectioned fungal biomass revealed that metal removed from the broth was localized in the form of small rectangular crystals associated with the cell walls and also inside the cell. X-ray and electron diffraction analysis showed that these crystals were nickel oxalate dihydrate. PMID:12111174

  17. Analytical and computational approaches to define the Aspergillus niger secretome

    SciTech Connect

    Tsang, Adrian; Butler, Gregory D.; Powlowski, Justin; Panisko, Ellen A.; Baker, Scott E.

    2009-03-01

    We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome. The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used to guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected.

  18. Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger.

    PubMed Central

    Suykerbuyk, M E; Kester, H C; Schaap, P J; Stam, H; Musters, W; Visser, J

    1997-01-01

    A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed. PMID:9212401

  19. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    PubMed Central

    2011-01-01

    Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol. PMID:22008461

  20. Characterization of novel thermostable polygalacturonases from Penicillium brasilianum and Aspergillus niger.

    PubMed

    Zeni, Jamile; Pili, Jonaina; Cence, Karine; Toniazzo, Geciane; Treichel, Helen; Valduga, Eunice

    2015-12-01

    The aim of this research was the partial characterization of polygalacturonase (PG) extracts produced by a newly isolated Penicillium brasilianum and Aspergillus niger in submerged fermentation. The partial characterization of the crude enzymatic extracts showed optimum activity at pH 5.5 and 37 °C for both extracts. The results of temperature stability showed that PG from both microorganisms were more stable at 55 °C. However, the enzyme obtained by P. brasilianum presents a half-life time (t 1/2 = 693.10 h), about one order of magnitude higher than those observed in for A. niger at 55 °C. In terms of pH stability, the PG produced by P. brasilianum presented higher stability at pH 4.0 and 5.0, while the PG from A. niger showed higher stability at pH 5.0. PMID:26341112

  1. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  2. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used... the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for use as...

  3. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  4. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  5. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  6. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability. PMID:26679485

  7. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Woodling, Kellie A; Sutherland, John B

    2015-09-01

    Many different organic compounds may be converted by microbial biotransformation to high-value products for the chemical and pharmaceutical industries. This review summarizes the use of strains of Aspergillus niger, a well-known filamentous fungus used in numerous biotechnological processes, for biochemical transformations of organic compounds. The substrates transformed include monocyclic, bicyclic, and polycyclic aromatic hydrocarbons; azaarenes, epoxides, chlorinated hydrocarbons, and other aliphatic and aromatic compounds. The types of reactions performed by A. niger, although not unique to this species, are extremely diverse. They include hydroxylation, oxidation of various functional groups, reduction of double bonds, demethylation, sulfation, epoxide hydrolysis, dechlorination, ring cleavage, and conjugation. Some of the products may be useful as new investigational drugs or chemical intermediates. PMID:26162670

  8. Steady-state shear characteristics of Aspergillus niger broths

    SciTech Connect

    Svihla, C.K.; Dronawat, S.N.; Hanley, T.R.

    1995-12-31

    It can be difficult to obtain reliable rheological data for filamentous fermentation broths using conventional instruments. One common approach is to measure the torque drawn by an impeller rotating in the suspension. Many previous workers have assumed that the applicable shear rate in such a device is related to the impeller speed by a fluid-independent constant determined by calibration with Newtonian and non-Newtonian fluids. The rheology of Aspergillus niger broths have been characterized using the impeller viscometer approach. The changes in the broth rheology were measured, and used to interpret the growth of biomass and the evolution of the microorganism morphology.

  9. Cloning and Expression of Gumboro VP2 Antigen in Aspergillus niger

    PubMed Central

    Azizi, Mohammad; Yakhchali, Bagher; Ghamarian, Abdolreza; Enayati, Somayeh; Khodabandeh, Mahvash; Khalaj, Vahid

    2013-01-01

    Background Infectious Bursal Disease Virus (IBDV) causes a highly immunosuppressive disease in chickens and is a pathogen of major economic importance to the poultry industry worldwide. The VP2 protein is the major host-protective immunogen of IBDV and has been considered as a potential subunit vaccine against the disease. VP2 coding sequence was cloned in an inducible fungal vector and the protein was expressed in Aspergillus niger (A. niger). Methods Aiming at a high level of expression, a multicopy AMA1-pyrG-based episomal construct driven by a strong inducible promoter, glaA, was prepared and used in transformation of A. niger pyrG-protoplasts. SDS-PAGE and western blot analysis was carried out to confirm the expression of the protein. Results A number of pyrG + positive transformants were isolated and the presence of expression cassette was confirmed. Western blot analysis of one of these recombinant strains using monospecific anti-VP2 antibodies demonstrated the successful expression of the protein. The recombinant protein was also detected by serum obtained from immunized chicken. Conclusion In the present study, we have generated a recombinant A. niger strain expressing VP2 protein intracellulary. This recombinant strain of A. niger may have potential applications in oral vaccination against IBDV in poultry industry. PMID:23626875

  10. The Aspergillus niger acuA and acuB genes correspond to the facA and facB genes in Aspergillus nidulans.

    PubMed

    Papadopoulou, S; Sealy-Lewis, H M

    1999-09-01

    Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene. PMID:10483720

  11. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R.; et al.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  12. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  13. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  14. Morphology engineering of Aspergillus niger for improved enzyme production.

    PubMed

    Driouch, Habib; Sommer, Becky; Wittmann, Christoph

    2010-04-15

    Supplementation with silicate microparticles was used as novel approach to control the morphological development of Aspergillus niger, important as the major world source of citric acid and higher-value enzymes, in submerged culture. With careful variation of size and concentration of the micromaterial added, a number of distinct morphological forms including pellets of different size, free dispersed mycelium, and short hyphae fragments could be reproducibly created. Aluminum oxide particles similarly affected morphology, showing that this effect is largely independent of the chemical particle composition. Image analysis of morphological development of A. niger during the cultivation process showed that the microparticles influence the morphology by collision-induced disruption of conidia aggregates and probably also the hindrance of new spore-spore interactions in the very early stage of the process. Exemplified for different recombinant A. niger strains enzyme production could be strongly enhanced by the addition of microparticles. Linked to the formation of freely dispersed mycelium, titers for glucoamylase (GA) expressed as intracellular enzyme (88 U/mL) and fructofuranosidase secreted into the supernatant (77 U/mL), were up to fourfold higher in shake flasks. Moreover, accumulation of the undesired by-product oxalate was suppressed by up to 90%. The microparticle strategy could be successfully transferred to fructofuranosidase production in bioreactor, where a final titer of 160 U/mL could be reached. Using co-expression of GA with green fluorescent protein, enzyme production was localized in the cellular aggregates of A. niger. For pelleted growth, protein production was maximal only within a thin layer at the pellet surface and markedly decreased in the pellet interior, whereas the interaction with the microparticles created a highly active biocatalyst with the dominant fraction of cells contributing to production. PMID:19953678

  15. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  16. ADOPTING SELECTED HYDROGEN BONDING AND IONIC INTERACTIONS FROM ASPERGILLUS FUMIGATUS PHYTASE STRUCTURE IMPROVES THE THERMOSTABILITY OF ASPERGILLUS NIGER PHYA PHYTASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatu...

  17. Distribution and conformation of crystalline nigeran in hyphal walls of Aspergillus niger and Aspergillus awamori.

    PubMed Central

    Bobbitt, T F; Nordin, J H; Roux, M; Revol, J F; Marchessault, R H

    1977-01-01

    Hyphal walls of Aspergillus awamori containing increased amount of the alpha-glucan, nigeran, became correspondingly more opaque when viewed in the electron microscope as shadowed preparations. However, increased polymer deposition was not accompanied by any significant change in wall thickness. The nigeran of both A. awamori and Aspergillus niger occurred in situ in a crystalline conformation identical to that of single crystals prepared with pure polysaccharide. Furthermore, this polymer was the dominant crystalline material in the hyphae whether or not they were enriched in nigeran. Enzymic digestion of nigeran in A. niger and A. awamori revealed that the bulk of the polymer was exposed to the cell's exterior. However, a certain fraction was accessible to enzymic attack only after the wall was treated with boiling water. A third portion, detectable only by x-ray diffraction, was associated with other components and could not be extracted, even with prolonged boiling. It was removed by hot, dilute alkali and was associated in the wall with another glucan fraction. Dry heating of A. niger walls altered their susceptibility to enzymic digestion of nigeran in situ. It is proposed that this treatment introduces interstices in the crystal surface that facilitate attack. Images PMID:914782

  18. Biotransformation of 6-dehydroprogesterone with Aspergillus niger and Gibberella fujikuroi.

    PubMed

    Ahmad, Malik Shoaib; Zafar, Salman; Yousuf, Sammar; Wahab, Atia-Tul-; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2016-08-01

    Microbial transformation of 6-dehydroprogesterone (1) with Aspergillus niger yielded three new metabolites, including 6β-chloro-7α,11α-dihydroxypregna-4-ene-3,20-dione (2), 7α-chloro-6β,11α-dihydroxypregna-4-ene-3,20-dione (3), and 6α,7α-epoxy-11α-hydroxypregna-4-ene-3,20-dione (4), and two known metabolites; 6α,7α-epoxypregna-4-ene-3,20-dione (5), and 11α-hydroxypregna-4,6-diene-3,20-dione (6). Compounds 2, and 3 contain chlorohydrin moiety at C-6, and C-7, respectively. The biotransformation of 1 with Gibberella fujikuroi yielded a known compound, 11α,17β-dihydroxyandrosta-4,6-dien-3-one (7). PMID:27133903

  19. In-silico analysis of Aspergillus niger beta-glucosidases

    NASA Astrophysics Data System (ADS)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  20. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Choudhury, Samrat Roy; Nair, Kishore K.; Kumar, Rajesh; Gogoi, Robin; Srivastava, Chitra; Gopal, Madhuban; Subhramanyam, B. S.; devakumar, C.; Goswami, Arunava

    2010-10-01

    Elemental sulfur (S0), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  1. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Sutherland, John B

    2015-06-01

    Steroids are derivatives of the triterpenoid squalene, containing three fused cyclohexane rings and a cyclopentane ring, and flavonoids are derivatives of L-phenylalanine, containing two aromatic rings joined by a three-carbon bridge that may form part of a heterocyclic ring. A great variety of steroids and flavonoids are produced by plants, and many additional steroids are produced by animals or fungi. Because these compounds have many nutritional and pharmaceutical values, and many of them cannot be produced by chemical synthesis, biotechnological processes are being developed that use cultures of Aspergillus niger and other fungi to transform steroids and flavonoids to a variety of metabolites. These biochemical reactions, including hydroxylation, dehydrogenation, O-methylation, demethylation, cleavage of rings, epoxide hydrolysis, double bond reduction, and others, may be used for the production of higher-value compounds. PMID:25951777

  2. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger.

    PubMed

    Esmaeili, Akbar; Moazami, Nasrin; Rustaiyan, Abdolhossein

    2012-01-01

    Terpenes are present in the essential oils obtained from herbs and spices. They are produced by these plant species as a chemical defense mechanism against phytopathogenic microorganisms. Therefore, terpenes have attracted great attention in the food industry, e.g., they have been used in foods such as cheese as natural preservatives to prevent fungal growth. Herein, we describe the microbial transformation of onopordopicrin (1) by Aspergillus niger. Four product 11α H-dihydroonopordopicrin (2), 11β H-dihydroonopordopicrin (3), 3β-hydroxy-11β H-dihydroonopordopicrin (4), and 14-hydroxy-11β H-dihydroonopordopicrin (5) were obtained. Their structures were identified on the basis of chemical and spectroscopic data. All the four compounds were novel. PMID:22186324

  3. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    SciTech Connect

    Choudhury, Samrat Roy; Goswami, Arunava; Nair, Kishore K.; Kumar, Rajesh; Gopal, Madhuban; Devakumar, C.; Gogoi, Robin; Srivastava, Chitra; Subhramanyam, B. S.

    2010-10-04

    Elemental sulfur (S{sup 0}), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  4. New pathway for the biodegradation of indole in Aspergillus niger

    SciTech Connect

    Kamath, A.; Vaidyanathan, C.S. )

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  5. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    PubMed

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  6. Tandem shock waves to enhance genetic transformation of Aspergillus niger.

    PubMed

    Loske, Achim M; Fernández, Francisco; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel A

    2014-08-01

    Filamentous fungi are used in several industries and in academia to produce antibiotics, metabolites, proteins and pharmaceutical compounds. The development of valuable strains usually requires the insertion of recombinant deoxyribonucleic acid; however, the protocols to transfer DNA to fungal cells are highly inefficient. Recently, underwater shock waves were successfully used to genetically transform filamentous fungi. The purpose of this research was to demonstrate that the efficiency of transformation can be improved significantly by enhancing acoustic cavitation using tandem (dual-pulse) shock waves. Results revealed that tandem pressure pulses, generated at a delay of 300 μs, increased the transformation efficiency of Aspergillus niger up to 84% in comparison with conventional (single-pulse) shock waves. This methodology may also be useful to obtain new strains required in basic research and biotechnology. PMID:24680880

  7. Identification of Genes Associated with Morphology in Aspergillus Niger by Using Suppression Subtractive Hybridization

    SciTech Connect

    Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.; Lasure, Linda L.

    2004-04-01

    The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grown in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.

  8. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  9. Induced Autolysis of Aspergillus oryzae (A. niger group)

    PubMed Central

    Emiliani, Ezio; de Davie, I. Ucha

    1962-01-01

    The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623

  10. [Conditions for splitting protodioscine--the main glycoside from Tribulus terrestris L. by the enzymatic preparation from Aspergillus niger BKMt-33].

    PubMed

    Prepelitsa, E D; Razumovsky, P N; Kintya, P K

    1975-01-01

    The conditions for splitting protodioscine--the main steroid saponine isolated from Tribulus terrestris L. by the enzymic preparation of Aspergillus niger str. BKMt-33 were investigated. The optimal conditions were found to be as follows: pH 4-5, temperature 30-37 degrees (the substrate concentration--5 mg%, concentration of the enzymic preparation--1%). Under these conditions the enzymolysis continued 24 hours. Mg+2 and K+ ions accelerated the reaction twice. As a result of the enzymic hydrolysis dioscine and trilline were obtained. This indicates beta-glucosidase and alpha-rhamnosidase activities of the enzymic complex isolated from Aspergillus niger str. BKMt-33. PMID:1743

  11. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    PubMed

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals. PMID:20082377

  12. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    PubMed Central

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  13. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-06-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, "Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae" [1]. PMID:27054181

  14. Aspergillus niger aortitis after aortic valve replacement diagnosed by transesophageal echocardiography.

    PubMed

    Duygu, Hamza; Nalbantgil, Sanem; Ozerkan, Filiz; Kirilmaz, Bahadir; Yagdi, Tahir

    2006-05-01

    Aspergillus aortitis following cardiac surgery has an important role among the cardiac infections as almost all affected cases result in death. Survival of the patient with Aspergillus aortitis is dependent on early initiation of aggressive medical and surgical treatment. Transesophageal echocardiography proved very useful in the diagnosis of this uncommon case of aortitis. In this paper, we present a patient with aortitis caused by Aspergillus niger that hasn't been reported previously diagnosed by transesophageal echocardiography following cardiac surgery. PMID:16686625

  15. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  16. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  17. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    PubMed

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue. PMID:26321727

  18. The composition of the cell wall of Aspergillus niger

    PubMed Central

    Johnston, I. R.

    1965-01-01

    1. The cell-wall composition of Aspergillus niger has been investigated. Analysis shows the presence of six sugars, glucose, galactose, mannose, arabinose, glucosamine and galactosamine, all in the d-configuration, except that a small amount of l-galactose may be present. Sixteen common amino acids are also present. 2. The wall consists chiefly of neutral carbohydrate (73–83%) and hexosamine (9–13%), with smaller amounts of lipid (2–7%), protein (0·5–2·5%) and phosphorus (less than 0·1%). The acetyl content (3·0–3·4%) corresponds to 1·0mole/mole of hexosamine nitrogen. 3. A fractionation of the cell-wall complex was achieved, with or without a preliminary phenol extraction, by using n-sodium hydroxide. Though this caused some degradation, 30–60% of the wall could be solubilized (depending on the preparation). Analyses on several fractions suggest that fractionation procedures bring about some separation of components although not in a clear-cut fashion. 4. Cell-wall preparations were shown to yield a fraction having [α]D approx. +240° (in n-sodium hydroxide) and consisting largely of glucose. This was separated into two subfractions, one of which had [α]D+281° (in n-sodium hydroxide) and had properties resembling the polysaccharide nigeran; the other had [α]D +231° (in n-sodium hydroxide). It is suggested that nigeran is a cell-wall component. PMID:5862404

  19. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  20. Localization of growth and secretion of proteins in Aspergillus niger.

    PubMed

    Wösten, H A; Moukha, S M; Sietsma, J H; Wessels, J G

    1991-08-01

    Hyphal growth and secretion of proteins in Aspergillus niger were studied using a new method of culturing the fungus between perforated membranes which allows visualization of both parameters. At the colony level the sites of occurrence of growth and general protein secretion were correlated. In 4-d-old colonies both growth and secretion were localized at the periphery of the colony, whereas in a 5-d-old colony growth and secretion also occurred in a more central zone of the colony where conidiophore differentiation was observed. However, in both cases glucoamylase secretion was mainly detected at the periphery of the colonies. At the hyphal level immunogold labelling showed glucoamylase secretion at the tips of leading hyphae only. Microautoradiography after labelling with N-acetylglucosamine showed that these hyphae were probably all growing. Glucoamylase secretion could not be demonstrated immediately after a temperature shock which stopped growth. These results indicate that glucoamylase secretion is located at the tips of growing hyphae only. PMID:1955876

  1. Cloning and characterization of three Aspergillus niger promoters.

    PubMed

    Luo, X

    1995-09-22

    An Aspergillus niger (An) genomic library was constructed using the promoter-trap vector, pLX2A, which contains a hygromycin B (Hy) phosphotransferase-encoding gene (hph) for selection of DNA fragments with promoter activity. This library was transformed in Escherichia coli and 80,000 colonies were obtained, 94% of which contained inserts. Transformations of plasmid DNA from the library into An resulted in 53 Hy-resistant (HyR) colonies. Southern blot analysis of 21 transformants confirmed the integration of hph into the An genome. Using the sib selection procedure, three functional promoters, PX6, PX18 and PX21, were identified from this library. Both DNA strands of all three fragments were sequenced and their sequences showed no significant homology to those in the database. Comparison of the sequences of all known promoters from An suggested that C+T-rich stretches are probably important for promoter structures. The promoter activity was analysed further using beta-galactosidase (beta Gal) as a quantitative marker. The results suggest that while PX21 is a much stronger promoter than the known alpha-amylase promoter of A. oryzae, PX6 promotes only weak expression of beta Gal. PMID:7557461

  2. Review of secondary metabolites and mycotoxins from the Aspergillus niger group.

    PubMed

    Nielsen, Kristian Fog; Mogensen, Jesper Mølgaard; Johansen, Maria; Larsen, Thomas O; Frisvad, Jens Christian

    2009-11-01

    Filamentous fungi in the Aspergillus section Nigri (the black aspergilli) represent some of the most widespread food and feed contaminants known but they are also some of the most important workhorses used by the biotechnological industry. The Nigri section consists of six commonly found species (excluding A. aculeatus and its close relatives) from which currently 145 different secondary metabolites have been isolated and/or detected. From a human and animal safety point of view, the mycotoxins ochratoxin A (from A. carbonarius and less frequently A. niger) and fumonisin B(2) (from A. niger) are currently the most problematic compounds. Especially in foods and feeds such as coffee, nuts, dried fruits, and grape-based products where fumonisin-producing fusaria are not a problem, fumonisins pose a risk. Moreover, compounds such as malformins, naptho-gamma-pyrones, and bicoumarins (kotanins) call for monitoring in food, feed, and biotechnology products as well as for a better toxicological evaluation, since they are often produced in large amounts by the black aspergilli. For chemical differentiation/identification of the less toxic species the diketopiperazine asperazine can be used as a positive marker since it is consistently produced by A. tubingensis (177 of 177 strains tested) and A. acidus (47 of 47 strains tested) but never by A. niger (140 strains tested). Naptho-gamma-pyrones are the compounds produced in the highest quantities and are produced by all six common species in the group (A. niger 134 of 140; A. tubingensis 169 of 177; A. acidus 44 of 47; A. carbonarius 40 of 40, A. brasiliensis 18 of 18; and A. ibericus three of three). PMID:19756540

  3. Phosphate solubilization and promotion of maize growth in a calcareous soil by Penicillium oxalicum P4 and Aspergillus niger P85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  4. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  5. Fumonisin B2 production by Aspergillus niger in Thai coffee beans.

    PubMed

    Noonim, P; Mahakarnchanakul, W; Nielsen, K F; Frisvad, J C; Samson, R A

    2009-01-01

    During 2006 and 2007, a total of 64 Thai dried coffee bean samples (Coffea arabica) from two growing sites in Chiangmai Province and 32 Thai dried coffee bean samples (Coffea canephora) from two growing sites in Chumporn Province, Thailand, were collected and assessed for fumonisin contamination by black Aspergilli. No Fusarium species known to produce fumonisin were detected, but black Aspergilli had high incidences on both Arabica and Robusta Thai coffee beans. Liquid chromatography (LC) with high-resolution mass spectrometric (HRMS) detection showed that 67% of Aspergillus niger isolates from coffee beans were capable of producing fumonisins B(2) (FB(2)) and B(4) when grown on Czapek Yeast Agar with 5% NaCl. Small amounts (1-9.7 ng g(-1)) of FB(2) were detected in seven of 12 selected coffee samples after ion-exchange purification and LC-MS/MS detection. Two samples also contained FB(4). This is the first record of freshly isolated A. niger strains producing fumonisins and the first report on the natural occurrence of FB(2) and FB(4) in coffee. PMID:19680876

  6. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend

  7. Aspergillus niger-mediated biotransformation of methenolone enanthate, and immunomodulatory activity of its transformed products.

    PubMed

    Hussain, Zahid; Dastagir, Nida; Hussain, Shabbir; Jabeen, Almas; Zafar, Salman; Malik, Rizwana; Bano, Saira; Wajid, Abdul; Choudhary, M Iqbal

    2016-08-01

    Two fungal cultures Aspergillus niger and Cunninghamella blakesleeana were used for the biotransformation of methenolone enanthate (1). Biotransformation with A. niger led to the synthesis of three new (2-4), and three known (5-7) metabolites, while fermentation with C. blakesleeana yielded metabolite 6. Substrate 1 and the resulting metabolites were evaluated for their immunomodulatory activities. Substrate 1 was found to be inactive, while metabolites 2 and 3 showed a potent inhibition of ROS generation by whole blood (IC50=8.60 and 7.05μg/mL), as well as from isolated polymorphonuclear leukocytes (PMNs) (IC50=14.0 and 4.70μg/mL), respectively. Moreover, compound 3 (34.21%) moderately inhibited the production of TNF-α, whereas 2 (88.63%) showed a potent inhibition of TNF-α produced by the THP-1 cells. These activities indicated immunomodulatory potential of compounds 2 and 3. All products were found to be non-toxic to 3T3 mouse fibroblast cells. PMID:27133901

  8. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  9. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  10. Hydrolytic properties of a beta-mannosidase purified from Aspergillus niger.

    PubMed

    Ademark, P; Lundqvist, J; Hägglund, P; Tenkanen, M; Torto, N; Tjerneld, F; Stålbrand, H

    1999-10-01

    A beta-mannosidase was purified to homogeneity from the culture filtrate of Aspergillus niger. A specific activity of 500 nkat mg-1 and a 53-fold purification was achieved using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The isolated enzyme has an isoelectric point of 5.0 and appears to be a dimer composed of two 135-kDa subunits. It is a glycoprotein and contains 17% N-linked carbohydrate by weight. Maximal activity was observed at pH 2.4 5.0 and at 70 degrees C. The beta-mannosidase hydrolyzed beta-1,4-linked manno-oligosaccharides of degree of polymerization (DP) 2-6 and also released mannose from polymeric ivory nut mannan and galactomannan. The Km and Vmax values for p-nitrophenyl-beta-D-mannopyranoside were 0.30 mM and 500 nkat mg-1, respectively. Hydrolysis of D-galactose substituted manno-oligosaccharides showed that the beta-mannosidase was able to cleave up to, but not beyond, a side group. An internal peptide sequence of 15 amino acids was highly similar to that of an Aspergillus aculeatus beta-mannosidase belonging to family 2 of glycosyl hydrolases. PMID:10553664

  11. Molecular detection of ochratoxigenic Aspergillus species isolated from coffee beans in Saudi Arabia.

    PubMed

    Moslem, M A; Mashraqi, A; Abd-Elsalam, K A; Bahkali, A H; Elnagaer, M A

    2010-01-01

    Ten fungal isolates from coffee beans were morphologically identified as Aspergillus niger, A. ochraceus and A. carbonari-us (N = 5, 3, and 2, respectively). Only one isolate, morphologically identified as A. niger, was unable to produce ochratoxin A (OTA). This may be a new species in the Aspergillus section Nigri. OTA levels in all the other isolates were above the limit of detection (0.15 mg/kg). Based on microsatellite-primed PCR (MP-PCR) profiles, using three microsatellite primers, three main groups were obtained by UPGMA cluster analysis: A. niger, A. ochraceus and A. carbonarius. A clear-cut association was found between the MP-PCR genotype and the ability to produce OTA. Using the primer pairs OCRA1/OCRA2, a single fragment of about 400 bp was amplified only when genomic DNA from the A. ochraceus isolates was used. PMID:21128209

  12. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  13. SORPTION OF HEAVY METALS BY THE SOIL FUNGI ASPERGILLUS NIGER AND MUCOR ROUXII

    EPA Science Inventory

    Sorption of the nitrate salts of cadmium(II), copper (II), lanthanum(III) and silver (I) by two fungi, Aspergillus niger and Mucor rouxii, was evaluated using Fruendlich adsorption isotherms and energy dispersive X-ray electron microscopy. The linearized Freundlich isotherm descr...

  14. Enzymatic Comparisons of Aspergillus niger PhyA and Escherichia coli AppA2 Phytases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  15. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  16. Effect of polyols on heat inactivation of Aspergillus niger van Teighem inulinase.

    PubMed

    Viswanathan, P; Kulkarni, P R

    1995-11-01

    The effect of polyols (ethylene glycol, glycerol, erythritol, xylitol and sorbitol) on partially purified inulinase from Aspergillus niger van Teighem mutant grown on Kuth (Saussurea lappa) root as source of inulin was determined. Seventy per cent of inulinase activity was retained in the presence of 4 mol l-1 sorbitol at 75 degrees C. PMID:7576522

  17. Aspergillus niger PA2: a novel strain for extracellular biotransformation of L-tyrosine into L-DOPA.

    PubMed

    Agarwal, Pragati; Pareek, Nidhi; Dubey, Swati; Singh, Jyoti; Singh, R P

    2016-05-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), an amino acid derivative is the most widely used drug of choice for the treatment of Parkinson's disease and other neurologic injuries. The present study deals with the elevated biochemical transformation of L-tyrosine to L-DOPA by Aspergillus niger PA2, a potent tyrosinase producer, isolated from decomposed food wastes. This appears to be the first report on A. niger as a notable extracellular tyrosinase producer. The extracellular tyrosinase activity produced remarkably higher levels of L-DOPA, i.e. 2.44 mg mL(-1) when the media was supplemented with 5 mg mL(-1) L-tyrosine. The optimum pH for tyrosinase production was 6.0, with the maximal L-DOPA production at the same pH. The product thus produced was analyzed by thin-layer chromatography, UV spectroscopy, high-performance liquid chromatography and Fourier transform infrared spectroscopy, that had denoted this to be L-DOPA. Kinetic parameters viz. Y p/s, Q s and Q p had further indicated the notable levels of production. Thus, Aspergillus niger PA2 could be a promising resource and may be further exploited for large-scale production of L-DOPA. PMID:26781225

  18. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].

    PubMed

    Li, Lianwei; Lu, Hongzhong; Xia, Jianye; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2015-07-01

    Carbon-limited continuous culture was used to study the relationship between the growth of Aspergillus niger and the production of glucoamylase. The result showed that when the specific growth rate was lower than 0.068 h(-1), the production of glucoamylase was growth-associated, when the specific growth rate was higher than 0.068 h(-1), the production of glucoamylase was not growth-associated. Based on the result of continuous culture, the Monod dynamics model of glucose consumption of A. niger was constructed, Combining Herbert-Pirt equation of glucose and oxygen consumption with Luedeking-Piret equation of enzyme production, the black-box model of Aspergillus niger for enzyme production was established. The exponential fed-batch culture was designed to control the specific growth rate at 0.05 h(-1) by using this model and the highest yield for glucoamylase production by A. niger reached 0.127 g glucoamylase/g glucose. The black-box model constructed in this study successfully described the glucoamylase production by A. niger and the result of the model fitted the measured value well. The black-box model could guide the design and optimization of glucoamylase production by A. niger. PMID:26647584

  19. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material. PMID:24664515

  20. Characterization of filamentous fungi isolated from Moroccan olive and olive cake: toxinogenic potential of Aspergillus strains.

    PubMed

    Roussos, Sevastianos; Zaouia, Nabila; Salih, Ghislane; Tantaoui-Elaraki, Abdelrhafour; Lamrani, Khadija; Cheheb, Mostafa; Hassouni, Hicham; Verhé, Fréderic; Perraud-Gaime, Isabelle; Augur, Christopher; Ismaili-Alaoui, Mustapha

    2006-05-01

    During the 2003 and 2004 olive oil production campaigns in Morocco, 136 samples from spoiled olive and olive cake were analyzed and 285 strains were isolated in pure culture. Strains included 167 mesophilic strains belonging to ten genera: Penicillium, Aspergillus, Geotrichum, Mucor, Rhizopus, Trichoderma, Alternaria, Acremonium, Humicola, Ulocladium as well as 118 thermophilic strains isolated in 2003 and 2004, mainly belonging to six species: Aspergillus fumigatus, Paecilomyces variotii, Mucor pusillus, Thermomyces lanuginosus, Humicola grisea, and Thermoascus aurantiacus. Penicillium and Aspergillus, respectively, 32.3 and 26.9% of total isolates represented the majority of mesophilic fungi isolated. When considering total strains (including thermotolerant strains) Aspergillus were the predominant strains isolated; follow-up studies on mycotoxins therefore focused primarily on aflatoxins (AFs) and ochratoxin A (OTA) from the latter strains. All isolated Aspergillus flavus strains (9) and Aspergillus niger strains (36) were studied in order to evaluate their capacity to produce AFs and OTA, respectively, when grown on starch-based culture media. Seven of the nine tested A. flavus strains isolated from olive and olive cake produced AF B1 at concentrations between 48 and 95 microg/kg of dry rice weight. As for the A. niger strains, 27 of the 36 strains produced OTA. PMID:16715545

  1. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry.

    PubMed

    Rajesh, N; Imelda-Joseph; Raj, R Paul

    2010-11-01

    Vegetable waste typically has high moisture content and high levels of protein, vitamins and minerals. Its value as an agricultural feed can be enhanced through solid-state fermentation (SSF). Two experiments were conducted to evaluate the nutritional status of the products derived by SSF of a mixture of dried vegetable waste powder and oil cake mixture (soybean flour, wheat flour, groundnut oil cake and sesame oil cake at 4:3:2:1 ratio) using fungi Aspergillus niger S(1)4, a mangrove isolate, and A. niger NCIM 616. Fermentation was carried out for 9 days at 35% moisture level and neutral pH. Significant (p<0.05) increase in crude protein and amino acids were obtained in both the trials. The crude fat and crude fibre content showed significant reduction at the end of fermentation. Nitrogen free extract (NFE) showed a gradual decrease during the fermentation process. The results of the study suggest that the fermented product obtained on days 6 and 9 in case of A. niger S(1)4 and A. niger NCIM 616 respectively contained the highest levels of crude protein. PMID:20100652

  2. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger.

    PubMed

    Kamilla, L; Mansor, S M; Ramanathan, S; Sasidharan, S

    2009-08-01

    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract. PMID:19575837

  3. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger

    SciTech Connect

    Dronawat, S.N.; Svihla, C.K.; Hanley, T.R.

    1995-12-31

    The effects of agitation and aeration in the production of gluconic acid by Aspergillus niger from a glucose medium were investigated. Experiments were conducted at aeration rates of 5.0 and 10.0 L/min. Four different agitation speeds were investigated for each aeration rate. Gluconic acid concentration and biomass concentration were analyzed, and the rate of consumption of substrate by A. niger was noted. The main purpose of this work was to find the optimal conditions of agitation and aeration for the growth of A. niger and production of gluconic acid in submerged culture in a batch fermentor at a bench-top scale. The oxygen-transfer rates at different agitation and aeration rates were calculated. The gluconic acid concentration and rate of growth of A. niger increased with increase in the agitation and aeration rates.

  4. [Isolation of several species of the genus Aspergillus from soil of intrahospital ornamental plants].

    PubMed

    Thompson, L; Castrillón, M A; Delgado, M; García, M

    1994-12-01

    The earth of ornamental plants is one of the main reservoirs of Aspergillus type of fungi in hospital areas. We studied 174 ornamental interior plants from a hospital at Santiago. Samples were obtained from the soil surface and sowed in Sabouraud-glucose agar, adding streptomycin and G-penicillin. After 72 h of culture, at least one strain of Aspergillus was isolated from 140 samples (80.5%). The most frequently isolated strain was A fumigatus (129 samples), followed by A niger (75 samples). A fumigatus and A niger were the only isolated strains in 65 and 11 samples respectively. These findings confirm that ornamental plants can be important reservoirs of Aspergillus strains, a potential infectious agent for immunocompromised patients, in hospital areas. PMID:7659910

  5. Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses.

    PubMed

    Singh, O V

    2006-10-01

    Aspergillus niger ORS-4.410, a mutant of A. niger ORS-4, was generated by repeated ultraviolet (UV) irradiation. Analysis of the UV treatment dose on wild-type (WT) A. niger ORS-4, conidial survival, and frequency of mutation showed that the maximum frequency of positive mutants (25.5%) was obtained with a 57% conidial survival rate after the second stage of UV irradiation. The level of glucose oxidase (GOX) production from mutant A. niger ORS-4.410 thus obtained was 149% higher than that for WT strain A. niger ORS-4 under liquid culture conditions using hexacyanoferrate (HCF)-treated sugarcane molasses (TM) as a cheaper carbohydrate source. When subcultured monthly for 24 mo, the mutant strain had consistent levels of GOX production (2.62 +/- 0.51 U/mL). Mutant A. niger ORS-4.410 was markedly different from the parent strain morphologically and was found to grow abundantly on sugarcane molasses. The mutant strain showed 3.43-fold increases in GOX levels (2.62 +/- 0.51 U/mL) using HCF-TM compared with the crude form of cane molasses (0.762 +/- 0.158 U/mL). PMID:17057255

  6. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible. PMID:19709342

  7. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  8. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. PMID:26916811

  9. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase.

    PubMed

    Ademark, P; Varga, A; Medve, J; Harjunpää, V; Drakenberg, T; Tjerneld, F; Stålbrand, H

    1998-08-27

    The enzymes needed for galactomannan hydrolysis, i.e., beta-mannanase, alpha-galactosidase and beta-mannosidase, were produced by the filamentous fungus Aspergillus niger. The beta-mannanase was purified to electrophoretic homogeneity in three steps using ammonium sulfate precipitation, anion-exchange chromatography and gel filtration. The purified enzyme had an isoelectric point of 3.7 and a molecular mass of 40 kDa. Ivory nut mannan was degraded mainly to mannobiose and mannotriose when incubated with the beta-mannanase. Analysis by 1H NMR spectroscopy during hydrolysis of mannopentaose showed that the enzyme acts by the retaining mechanism. The N-terminus of the purified A. niger beta-mannanase was sequenced by Edman degradation, and comparison with Aspergillus aculeatus beta-mannanase indicated high identity. The enzyme most probably lacks a cellulose binding domain since it was unable to adsorb on cellulose. PMID:9803534

  10. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-09-01

    The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.), glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis" C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016) [1]. PMID:27419196

  11. Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase.

    PubMed

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira; Jin, Fengxie

    2012-07-01

    A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13. PMID:22544243

  12. [Study of the topology of the active center of glycosidases of Aspergillus niger].

    PubMed

    Borzova, N V; Varbanets', L D

    2004-01-01

    Activity of alpha-N-acetylgalactosaminidase and alpha-galactosidase isolated from the culture medium of micromycete Aspergillus niger v. Tiegh F-16694 has been studied as affected by anions, cations and specific chemical reagents (n-chlormercurybenzoate, L-cysteine, dithiotreitol, beta-mercaptoethanol, EDTA, o-phenanthroline, sodium azide, hydrogen peroxide). It has been established that silver ions noncompetitively inhibit alpha-galactosidase at pH 5.2, the inhibition constant (Ki) being 2.5 x 10(-4) M. Galactose in concentration of 1-5 mM does not protect the enzyme from the negative action of silver ions, but this inhibitory effect is almost completely removed by the corresponding concentrations of L-cysteine. The same noncompetitive character was inherent in the inhibition of alpha-galactosidase reaction by mercury ions and n-chlormercurybenzoat (Ki is 4.5 x 10(-6) and 1.8 x 10(-4), respectively). The importance of sulphydryl groups for the support of active comformation of alpha-galactosidase molecule was established on the basis of inhibition and kinetic analysis. It has been shown that the enzyme molecule does not contain the groups which include metal atoms. PMID:15554293

  13. Characterization And Application Of Tannase Produced By Aspergillus Niger ITCC 6514.07 On Pomegranate Rind

    PubMed Central

    Srivastava, Anita; Kar, Rita

    2009-01-01

    Extracellular tannase and gallic acid were produced optimally under submerged fermentation at 37 0C, 72 h, pH 5.0, 10 %(v/v) inoculum and 4 %(w/v) of the agroresidue pomegranate rind (PR) powder by an Aspergillus niger isolate. Tannic acid (1 %) stimulated the enzyme production by 245.9 % while with 0.5 % glucose, increase was marginal. Tannase production was inhibited by gallic acid and nitrogen sources such as NH4NO3, NH4Cl, KNO3, asparatic acid, urea and EDTA. The partially purified enzyme showed temperature and pH optima of 35 0C and 6.2 respectively which shifted to 40 0C and 5.8 on immobilization in alginate beads. Activity of the enzyme was inhibited by Zn+2, Ca+, Mn+2, Mg+2, Ba+2and Ag+. The immobilized enzyme removed 68.8 % tannin from juice of aonla/myrobalan (Phyllanthus emblica), a tropical fruit, rich in vitamin C and other essential nutrients. The enzymatic treatment of the juice with minimum reduction in vitamin C is encouraging as non enzymatic treatments of myrobalan juice results in vitamin C removal. PMID:24031425

  14. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    SciTech Connect

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  15. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    PubMed

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

  16. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    PubMed Central

    2012-01-01

    Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst. PMID:23270588

  17. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    SciTech Connect

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H.

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  18. Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents.

    PubMed

    Jin, Huo-Xi; Hu, Zhong-Ce; Zheng, Yu-Guo

    2012-09-01

    The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports. PMID:22922194

  19. Infected Baerveldt Glaucoma Drainage Device by Aspergillus niger

    PubMed Central

    Salim, Nurul-Laila; Azhany, Yaakub; Abdul Rahman, Zaidah; Yusof, Roziawati; Liza-Sharmini, Ahmad Tajudin

    2015-01-01

    Fungal endophthalmitis is rare but may complicate glaucoma drainage device surgery. Management is challenging as the symptoms and signs may be subtle at initial presentation and the visual prognosis is usually poor due to its resistant nature to treatment. At present there is lesser experience with intravitreal injection of voriconazole as compared to Amphotericin B. We present a case of successfully treated Aspergillus endophthalmitis following Baerveldt glaucoma drainage device implantation with intravitreal and topical voriconazole. PMID:26064735

  20. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal.

    PubMed

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular

  1. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal

    PubMed Central

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization—time of flight—mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many

  2. Optimization of ellagitannase production by Aspergillus niger GH1 by solid-state fermentation.

    PubMed

    de la Cruz, Reynaldo; Ascacio, Juan A; Buenrostro, Juan; Sepúlveda, Leonardo; Rodríguez, Raúl; Prado-Barragán, Arely; Contreras, Juan C; Aguilera, Antonio; Aguilar, Cristóbal N

    2015-01-01

    Ellagic acid is one of the most bioactive antioxidants with important applications in pharmaceutical, cosmetic, and food industries. However, there are few biotechnological processes developed for its production, because it requires precursors (ellagitannins) and the corresponding biocatalyst (ellagitannase). The aim of this study was to optimize the culture conditions for ellagitannase production by Aspergillus niger in solid-state fermentation (SSF). The bioprocess was carried out into a column bioreactor packed with polyurethane foam impregnated with an ellagitannins solution as carbon source. Four strains of Aspergillus niger (PSH, GH1, HT4, and HC2) were evaluated for ellagitannase production. The study was performed in two experimental steps. A Plackett-Burman design was used to determine the influencing parameters on ellagitannase production. Ellagitannins concentration, KCl, and MgSO4 were determined to be the most significant parameters. Box-Behnken design was used to define the interaction of the selected parameters. The highest enzyme value was obtained by A. niger PSH at concentrations of 7.5 g/L ellagitannins, 3.04 g/L KCl, and 0.76 g/L MgSO4. The methodology followed here allowed increasing the ellagitannase activity 10 times over other researcher results (938.8 U/g ellagitannins). These results are significantly higher than those reported previously and represent an important contribution for the establishment of a new bioprocess for ellagic acid and ellagitannase production. PMID:25085574

  3. Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures.

    PubMed

    Gomaa, Ola M

    2014-06-01

    Silver nanoparticles (SNPs) are extensively used in many industrial and medical applications; however, the impact of their release in the environment is still considered an understudied field. In the present work, SNPs present in aqueous lab waste water (average size of 30 nm) were used to determine their impact on microflora if released in soil rhizosphere and sewage waste water. The results showed that 24 h incubation with different SNP concentrations resulted in a 2.6-fold decrease for soil rhizosphere microflora and 7.45-fold decrease for sewage waste water microflora, both at 24 ppm. Live and heat shock (50 and 70 °C) Aspergillus niger cultures were used to remove SNP waste, the results show 76.6, 81.74 and 90.8 % SNP removal, respectively after 3 h incubation. There was an increase in the log total bacterial count again after SNP removal by A. niger in the following order: live A. niger < 50 °C heat shock A. niger < 70 °C heat shock A. niger. The pH value decreased from 5.8 to 3.8 in the same order suggesting the production of an acid in the culture media. Scanning electron microscopy images showed agglomeration and/or complexation of SNP particles, in a micron size, in between the fungal mycelia, hence settling on and in between the mycelial network. The results suggest that silver was reduced again and agglomerated and/or chelated together in its oxidized form by an acid in A. niger media. More studies are recommended to determine the acid and the heat shock proteins to confirm the exact mode of action. PMID:24415500

  4. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection

    PubMed Central

    Semova, Natalia; Storms, Reginald; John, Tricia; Gaudet, Pascale; Ulycznyj, Peter; Min, Xiang Jia; Sun, Jian; Butler, Greg; Tsang, Adrian

    2006-01-01

    Background Aspergillus niger, a saprophyte commonly found on decaying vegetation, is widely used and studied for industrial purposes. Despite its place as one of the most important organisms for commercial applications, the lack of available information about its genetic makeup limits research with this filamentous fungus. Results We present here the analysis of 12,820 expressed sequence tags (ESTs) generated from A. niger cultured under seven different growth conditions. These ESTs identify about 5,108 genes of which 44.5% code for proteins sharing similarity (E ≤ 1e -5) with GenBank entries of known function, 38% code for proteins that only share similarity with GenBank entries of unknown function and 17.5% encode proteins that do not have a GenBank homolog. Using the Gene Ontology hierarchy, we present a first classification of the A. niger proteins encoded by these genes and compare its protein repertoire with other well-studied fungal species. We have established a searchable web-based database that includes the EST and derived contig sequences and their annotation. Details about this project and access to the annotated A. niger database are available. Conclusion This EST collection and its annotation provide a significant resource for fundamental and applied research with A. niger. The gene set identified in this manuscript will be highly useful in the annotation of the genome sequence of A. niger, the genes described in the manuscript, especially those encoding hydrolytic enzymes will provide a valuable source for researchers interested in enzyme properties and applications. PMID:16457709

  5. An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.

    PubMed

    Paun, Linda; Nitsche, Benjamin; Homan, Tim; Ram, Arthur F; Kempken, Frank

    2016-07-01

    The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background. PMID:27003267

  6. Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    PubMed Central

    Brandl, Maria T.; Carter, Michelle Q.; Parker, Craig T.; Chapman, Matthew R.; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  7. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  8. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens

    PubMed Central

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml-1 and 0.0461 FPU ml-1) compared to that produced by P. decumbens (0.1111 IU ml-1 and 0.153 FPU ml-1). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml-1 sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.

  9. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Geng, Yong; Li, Xiao-Jun

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils. PMID:19232463

  10. Human granulocyte colony stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger.

    PubMed

    Kraševec, Nada; Milunović, Tatjana; Lasnik, Marija Anžur; Lukančič, Irena; Komel, Radovan; Porekar, Vladka Gaberc

    2014-01-01

    For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast. PMID:25551710

  11. Synergistic action of starch and honey against Aspergillus niger in correlation with Diastase Number.

    PubMed

    Boukraâ, Laïd; Benbarek, Hama; Ahmed, Moussa

    2008-11-01

    To evaluate the synergistic action of starch on the antifungal activity of honey, a comparative method of adding honey with and without starch to culture media was used. Aspergillus niger was used to determine the minimum inhibitory concentration (MIC) of five varieties of honey. In the second step, lower concentrations of honey than the MIC were incubated with a set of concentrations of starch and then added to media to determine the minimum synergistic inhibitory concentration (MSIC). The MIC for the five varieties of honey without starch against A. niger ranged between 46% and 50% (v/v). When starch was incubated with honey and then added to media, an MIC drop was noticed with each variety and it ranged between 6% and 19.5%. Negative correlation has been established between the MIC drop and the Diastase Number. PMID:18331445

  12. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products. PMID:26961750

  13. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity. PMID:26490378

  14. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    PubMed

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-01-01

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported. PMID:27447606

  15. Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.

    PubMed

    Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

    2003-05-01

    Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of alpha-amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell-1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical. PMID:12882014

  16. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  17. Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride.

    PubMed

    Singh, S S; Dikshit, A K

    2010-04-15

    Molasses spentwash from distilleries is characterized by high COD and colour. The fungal decolourization of anaerobically digested molasses spentwash requires significant dilution. In this study, decolourization by Aspergillus niger isolate IITB-V8 was performed on polyaluminium chloride (PAC) treated anaerobically digested spentwash without dilution of wastewater. Optimization of parameters was studied using statistical experimental designs. In the first step, Plackett-Burman design was used for screening the important parameters. Glucose was taken as the carbon source for the growth of A. niger. KH(2)PO(4) and pH were found to be the important factors affecting decolourization. In the second step, Box-Behnken design was used to determine the optimum level of each of the significant parameters. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important factors to achieve maximum decolourization of 68.4% were 5.5 g/L Glucose, 1.2 g/L KH(2)PO(4) and 5 pH. The determination coefficient (R(2)) was 0.9973, which ensures adequate credibility of the model. The total decolourization obtained after fungal treatment was 86.8% which indicates fungal decolourization after pretreatment with PAC is a viable option for the treatment of digested molasses spentwash. PMID:20022424

  18. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  19. Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642.

    PubMed Central

    Aoki, H; Yopi; Sakano, Y

    1997-01-01

    Isopullulanase (IPU) from Aspergillus niger A.T.C.C. (American Type Culture Collection) 9642 hydrolyses pullulan to isopanose. IPU is important for the production of isopanose and is used in the structural analysis of oligosaccharides with alpha-1,4 and alpha-1,6 glucosidic linkages. We have isolated the ipuA gene encoding IPU from the filamentous fungi A. niger A.T.C.C. 9642. The ipuA gene encodes an open reading frame of 1695 bp (564 amino acids). IPU contained a signal sequence of 19 amino acids, and the molecular mass of the mature form was calculated to be 59 kDa. IPU has no amino-acid-sequence similarity with the other pullulan-hydrolysing enzymes, which are pullulanase, neopullulanase and glucoamylase. However, IPU showed a high amino-acid-sequence similarity with dextranases from Penicillium minioluteum (61%) and Arthrobacter sp. (56%). When the ipuA gene was expressed in Aspergillus oryzae, the expressed protein (recombinant IPU) had IPU activity and was immunologically reactive with antibodies raised against native IPU. The substrate specificity, thermostability and pH profile of recombinant IPU were identical with those of the native enzyme, but recombinant IPU (90 kDa) was larger than the native enzyme (69-71 kDa). After deglycosylation with peptide-N-glycosidase F, the deglycosylated recombinant IPU had the same molecular mass as deglycosylated native enzyme (59 kDa). This result suggests that the carbohydrate chain of recombinant IPU differed from that of the native enzyme. PMID:9169610

  20. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme.

    PubMed

    Dubey, A K; Suresh, C; Kavitha, R; Karanth, N G; Umesh-Kumar, S

    2000-04-14

    A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger. PMID:10767433

  1. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  2. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  3. Studies on influence of natural biowastes on cellulase production by Aspergillus niger.

    PubMed

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M; Krishna, P V

    2011-11-01

    The objective of this study was to determine the influence of natural biowaste substrates such as banana peel powder and coir powder at varying environmental parameters of pH (4-9) and temperature (20-50 degrees C) on the cellulase enzyme production by Aspergillus niger. The cellulase enzyme production was analyzed by measuring the amount of glucose liberated in IU ml(-1) by using the dinitrosalicylic acid assay method. The substrates were pretreated with 1% NaOH (alkaline treatment) and autoclaved. The maximum activity of the enzyme was assayed at varying pH with temperatures being constant and varying temperatures with pH being constant. The highest activity of the enzyme at varying pH was recorded at pH 6 for banana peel powder (0.068 +/- 0.002 IU ml) and coir powder (0.049 +/- 0.002 IU ml(-1)) and the maximum activity of the enzyme at varying temperature was recorded at 35 degrees C for both banana peel powder (0.072 +/- 0.001 IU ml(-1)) and coir powder (0.046 +/- 0.003 IU ml(-1)). At varying temperatures and pH the high level of enzyme production was obtained at 35 degrees C and pH 6 by using both the substrates, respectively. However among the two substrates used for the production of cellulases by Aspergillus niger banana peel powder showed maximum enzymatic activity than coir powder as substrate. PMID:22471203

  4. Effect of oxygen transfer rate on the composition of the pectolytic enzyme complex of Aspergillus niger

    SciTech Connect

    Zetelaki-Horvath, K.; Vas, K.

    1981-01-01

    Optimal agitation and aeration conditions (assuring O/sub 2/ transfer rates (OTR) of 12-179 mmol/L-h) were determined for pectin lyase (PL) synthesis of an Aspergillus niger strain. Components of the pectolytic enzyme complex were also investigated in order to determine whether their O/sub 2/ demand is identical with or different from that of pectin lyase. Should the latter be the case, a possibility would be given to produce enzyme complexes of different agitation and aeration conditions. The mycelium yield of Aspergillus niger was maximum at an OTR of 100 mmol/L-h. The yields of the various pectolytic enzymes reached maximum at different OTRs. PL production was highest (0.555 mumol/min-mL) at an OTR of 60 mmol/L-h. Endopolygalacturonase (PG) production has a maximum at OTR 49 mmol/L-h, with a 2nd peak at 100-135 mmol O2/L-h. Pectin esterase (PE) synthesis showed a maximum at an OTR of 12-14 mmol/L-h, while both apple juice clarifying and macerating activities gave 2 maximum at 14 and 60 mmol/L-h due to the optima of PE and endo-PG. Macerating activity showed a high value at OTR optimal for PL production as well.

  5. Physiological characterization of xylose metabolism in Aspergillus niger under oxygen-limited conditions.

    PubMed

    Meijer, S; Panagiotou, G; Olsson, L; Nielsen, J

    2007-10-01

    The physiology of Aspergillus niger was studied under different aeration conditions. Five different aeration rates were investigated in batch cultivations of A. niger grown on xylose. Biomass, intra- and extra-cellular metabolites profiles were determined and ten different enzyme activities in the central carbon metabolism were assessed. The focus was on organic acid production with a special interest in succinate production. The fermentations revealed that oxygen limitation significantly changes the physiology of the micro-organism. Changes in extra cellular metabolite profiles were observed, that is, there was a drastic increase in polyol production (erythritol, xylitol, glycerol, arabitol, and mannitol) and to a lesser extent in the production of reduced acids (malate and succinate). The intracellular metabolite profiles indicated changes in fluxes, since several primary metabolites, like the intermediates of the TCA cycle accumulated during oxygen limitation (on average three fold increase). Also the enzyme activities showed changes between the exponential growth phase and the oxygen limitation phase. In general, the oxygen availability has a significant impact on the physiology of this fungus causing dramatic alterations in the central carbon metabolism that should be taken into account in the design of A. niger as a succinate cell factory. PMID:17335061

  6. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  7. Molecular basis of glucoamylase overproduction by a mutagenised industrial strain of Aspergillus niger.

    PubMed

    MacKenzie; Jeenes; Gou; Archer

    2000-02-01

    We have compared a mutagenized strain of Aspergillus niger (S1), used industrially for glucoamylase production, and a related low glucoamylase-producing strain (S2) with a laboratory strain of A. niger (AB4.1). Our aim was to assess the properties of S1 in relation to the laboratory strain and to account at the molecular level for the basis of its glucoamylase overproduction. Both S1 and S2 have similar multiple copies of the glucoamylase-encoding gene (glaA) but only S1 has enhanced glaA transcript and glucoamylase levels compared to AB4.1 that has a single copy of the glaA gene. Glucoamylase production by S1 and AB4.1 was repressed by xylose and induced by starch but, in S2, remained unaffected by carbon source. S1 also secreted elevated levels of alpha-amylase relative to both S2 and AB4.1 but the production of alpha-glucosidase was low in all three strains. The gene encoding aspergillopepsin (pepA), an abundant secreted aspartyl protease, was present as a single copy in all strains but no aspergillopepsin could be detected by Western blotting in either S1 or S2 culture supernatants. We conclude that A. niger strain improvement by mutagenesis and screening for glucoamylase overproduction has led to glaA gene multiplication and an expression defect in the pepA gene. PMID:10689077

  8. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    PubMed

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. PMID:20722697

  9. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    SciTech Connect

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  10. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization

    PubMed Central

    2012-01-01

    Background Aspergillus niger was selected as a host for producing itaconic acid due to its versatile and tolerant character in various growth environments, and its extremely high capacity of accumulating the precursor of itaconic acid: citric acid. Expressing the CAD gene from Aspergillus terreus opened the metabolic pathway towards itaconic acid in A. niger. In order to increase the production level, we continued by modifying its genome and optimizing cultivation media. Results Based on the results of previous transcriptomics studies and research from other groups, two genes : gpdA encoding the glyceraldehyde −3-dehydrogenase (GPD) and hbd1 encoding a flavohemoglobin domain (HBD) were overexpressed in A. niger. Besides, new media were designed based on a reference medium for A. terreus. To analyze large numbers of cultures, we developed an approach for screening both fungal transformants and various media in 96-well micro-titer plates. The hbd1 transformants (HBD 2.2/2.5) did not improve itaconic acid titer while the gpdA transformant (GPD 4.3) decreased the itaconic acid production. Using 20 different media, copper was discovered to have a positive influence on itaconic acid production. Effects observed in the micro-titer plate screening were confirmed in controlled batch fermentation. Conclusions The performance of gpdA and hbd1 transformants was found not to be beneficial for itaconic acid production using the tested cultivation conditions. Medium optimization showed that, copper was positively correlated with improved itaconic acid production. Interestingly, the optimal conditions for itaconic acid clearly differ from conditions optimal for citric- and oxalic acid production. PMID:22925689

  11. First case report of isolated aspergillus dacryoadenitis

    PubMed Central

    Acharya, Ishan; Basa, Divya; Kavitha, M

    2016-01-01

    We report a case of isolated Aspergillus dacryoadenitis. A 23-year-old male presented with dull ache, diffuse swelling in superolateral quadrant of the right orbit and proptosis for 4 months. Ocular examination showed conjunctival congestion, discharge in the fornix and palpable lacrimal gland (LG) mass. Routine hematological investigations followed by computed tomography scan of orbits were done. He did not respond to a course of systemic and topical antibiotics. Lateral orbitotomy with extended lid crease incision was performed with excision biopsy of LG. Abundant blackish material was found in the LG intraoperatively. The specimen was sent for histopathological examination (HPE). HPE report showed Aspergillus. Thorough ENT and systemic evaluation ruled out any other site with the fungus. To the best of our knowledge, this is the first case report of Aspergillus infection in LG. PMID:27488157

  12. Presence of epoxide hydrolase activity in Aspergillus niger: Hydrolysis of 6', 7'-epoxybergamottin to 6', 7'-dihydroxybergamottin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 6', 7'-epoxybergamottin (EB) is one of major furanocoumarins in grapefruit. Previously, we have shown that Aspergillus niger has a capability of metabolizing EB into 6', 7'-dihydroxybergamottin (DHB), which is further metabolized to bergaptol and bergaptol-5-sulfate in vivo. In this study, we at...

  13. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    PubMed Central

    2013-01-01

    In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes. PMID:23369298

  14. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  15. Comparison of different inoculating methods to evaluate the pathogenicity and virulence of Aspergillus niger on two maize hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field study was conducted to determine the effects of inoculation techniques on the aggressiveness of Aspergillus niger kernel infection in A. flavus resistant and susceptible maize hybrids. Ears were inoculated with the silk-channel, side-needle, and spray techniques 7 days after midsilk...

  16. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater.

    PubMed

    He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei

    2015-12-01

    Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl. PMID:26208659

  17. Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity

    PubMed Central

    2011-01-01

    Background The filamentous fungus Aspergillus niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology, ranging from dense spherical pellets to viscous mycelia depending on culture conditions. Optimal productivity correlates strongly with a specific morphological form, thus making high demands on process control. Results In about 50 2L stirred tank cultivations the influence of osmolality on A. niger morphology and productivity was investigated. The specific productivity of fructofuranosidase producing strain A. niger SKAn 1015 could be increased notably from 0.5 to 9 U mg-1 h-1 around eighteen fold, by increasing the culture broth osmolality by addition of sodium chloride. The specific productivity of glucoamylase producing strain A. niger AB1.13, could be elevated using the same procedure. An optimal producing osmolality was shown to exist well over the standard osmolality at about 3.2 osmol kg-1 depending on the strain. Fungal morphology of all cultivations was examined by microscope and characterized by digital image analysis. Particle shape parameters were combined to a dimensionless Morphology number, which enabled a comprehensive characterization of fungal morphology correlating closely with productivity. A novel method for determination of germination time in submerged cultivations by laser diffraction, introduced in this study, revealed a decelerated germination process with increasing osmolality. Conclusions Through the introduction of the versatile Morphology number, this study provides the means for a desirable characterization of fungal morphology and demonstrates its relation to productivity. Furthermore, osmolality as a fairly new parameter in process engineering is introduced and found to affect fungal morphology and productivity. Osmolality might provide an auspicious and

  18. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    PubMed

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB. PMID:27582326

  19. Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae.

    PubMed

    Pabai, F; Kermasha, S; Morin, A

    1995-11-01

    Three extracellular lipases were produced by batch fermentation of Pseudomonas putida ATCC 795, Aspergillus niger CBS 131.52 and Rhizopus oryzae ATCC 34612 during the late phase of growth, at 72, 96 and 96 h, respectively. The lipases were partially purified by (NH4)2SO4 fractionation. The lipase of P. putida was optimal at pH 8.0 whereas those from A. niger and R. oryzae were optimal at pH 7.5. The A. niger lipase had the lowest V max value (0.51×10(-3) U/min) and R. oryzae the highest (1.86×10(-3) U/min). The K m values for P. putida, A. niger and R. oryzae lipases were 1.18, 0.97, and 0.98 mg/ml, respectively. Native PAGE of the partially-purified lipase extracts showed two to four major bands. The interesterification of butter fat by A. niger lipase decreased the water activity as well as the hydrolytic activity. The A. niger lipase had the highest interesterification yield value (26%) and the R. oryzae lipase the lowest (4%). In addition, A. niger lipase exhibited the highest decrease (17%) in long-chain hypercholesterolemic fatty acids (C12:0, C14:0 and C16:0) at the sn-2-position; the P. putida lipase demonstrated the least favourable changes in specificity at the same position. PMID:24415019

  20. Isolation and identification of Aspergillus spp. from brown kiwi (Apteryx mantelli) nocturnal houses in New Zealand.

    PubMed

    Glare, Travis R; Gartrell, Brett D; Brookes, Jenny J; Perrott, John K

    2014-03-01

    Aspergillosis, a disease caused by infection with Aspergillus spp., is a common cause of death in birds globally and is an irregular cause of mortality of captive kiwi (Apteryx spp.). Aspergillus spp. are often present in rotting plant material, including the litter and nesting material used for kiwi in captivity. The aim of this study was to survey nocturnal kiwi houses in New Zealand to assess the levels of Aspergillus currently present in leaf litter. Samples were received from 11 nocturnal kiwi houses from throughout New Zealand, with one site supplying multiple samples over time. Aspergillus was isolated and quantified by colony counts from litter samples using selective media and incubation temperatures. Isolates were identified to the species level by amplification and sequencing of ITS regions of the ribosomal. Aspergillus spp. were recovered from almost every sample; however, the levels in most kiwi houses were below 1000 colony-forming units (CFU)/g of wet material. The predominant species was Aspergillus fumigatus, with rare occurrences of Aspergillus niger, Aspergillus nidulans, and Aspergillus parasiticus. Only one site had no detectable Aspergillus. The limit of detection was around 50 CFU/g wet material. One site was repeatedly sampled as it had a high loading of A. fumigatus at the start of the survey and had two recent clinical cases of aspergillosis diagnosed in resident kiwi. Environmental loading at this site with Aspergillus spp. reduced but was not eliminated despite changes of the litter. The key finding of our study is that the background levels of Aspergillus spores in kiwi nocturnal houses in New Zealand are low, but occasional exceptions occur and are associated with the onset of aspergillosis in otherwise healthy birds. The predominant Aspergillus species present in the leaf litter was A. fumigatus, but other species were also present. Further research is needed to confirm the optimal management of leaf litter to minimize Aspergillus

  1. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    PubMed

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. PMID:25382689

  2. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  3. Amylolysis of raw corn by Aspergillus niger for simultaneous ethanol fermentation

    SciTech Connect

    Han, I.Y.; Steinberg, M.P.

    1987-01-01

    The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a nonsterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventing fermentation was estimated to be 8.3% by weight. (Refs. 96).

  4. Optimization of glucose oxidase production by Aspergillus niger using genetic- and process-engineering techniques.

    PubMed

    Hellmuth, K; Pluschkell, S; Jung, J K; Ruttkowski, E; Rinas, U

    1995-11-01

    Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpdA promoter of A. nidulans. For more efficient secretion the alpha-amylase signal peptide from A. oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 gl-1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures. PMID:8590664

  5. Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.

    PubMed

    Romero, Cintia M; Baigori, Mario D; Pera, Licia M

    2007-09-01

    A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0-6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4-8 degrees C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37 degrees C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported. PMID:17594086

  6. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger.

    PubMed

    Devarayan, Kesavan; Sathishkumar, Yesupatham; Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants. PMID:26468641

  7. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger

    PubMed Central

    Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants. PMID:26468641

  8. Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135.

    PubMed

    Colin, Veronica Leticia; Baigori, Mario Domingo; Pera, Licia Maria

    2010-02-01

    Under the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.0 g l(-1) FeCl(3)to the medium encouraged filamentous growth and increased the specific activity 6.6 fold after 4 days of incubation compared to the control. However, major novelty of this study was the satisfactory production of an acidic lipase at initial pH 3 of the culture medium (1.74 +/- 0.06 mU microg(-1)), since its potencial applications in food and pharmaceutical industry are highly promising. PMID:20082373

  9. Evaluation of oxygen mass transfer in Aspergillus niger fermentation using data reconciliation.

    PubMed

    Patel, Nilesh; Thibault, Jules

    2004-01-01

    Fermentation experiments using Aspergillus niger result in a very viscous broth due to the growth of filamentous microorganism. For viscous fermentation processes, it is difficult to estimate with confidence the volumetric oxygen mass transfer coefficient (K(L)a), which can be used for scale-up or design of bioreactors. In the present study, four methods based on dynamic and stationary approaches were used to measure K(L)a throughout the fermentation. Data reconciliation was used to obtain a more reliable and consistent K(L)a. The K(L)a value obtained by a data reconciliation technique was found to be more reliable since it takes into consideration both the reliability of all measured variables and the accuracy of all mass balance equations. PMID:14763848

  10. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.

    PubMed

    Santhiya, Deenan; Ting, Yen-Peng

    2005-03-16

    A spent refinery processing catalyst was physically and chemically characterized, and subjected to one-step and two-step bioleaching processes using Aspergillus niger. During bioleaching of the spent catalysts of various particle sizes ("as received", 100-150 microm, <37 microm, and x =2.97 (average) microm) and pulp densities, the biomass dry weight and pH were determined. The corresponding leach liquor was analysed for excreted organic acids along with heavy metal values extracted from the catalyst. Chemical characterization of the spent catalyst confirmed the presence of heavy metal including Al (33.3%), Ni (6.09%) and Mo (13.72%). In general, the presence of the spent catalyst caused a decrease in the biomass yield and an increase in oxalic acid secretion by A. niger. The increase in oxalic acid secretion with a decrease in the catalyst particle size (up to <37 microm) led to corresponding increase in the extraction of metal values. The highest extraction of metal values from the spent catalyst (at 1% w/v pulp density and particle size <37 microm) were found to be 54.5% Al, 58.2% Ni and 82.3% Mo in 60 days of bioleaching. Oxalic acid secretion by A. niger in the presence of the spent catalyst was stimulated using 2-[N-Morpholino]ethanesulfonic acid (MES) buffer (pH 6), which resulted in comparable metal extraction (58% Al, 62.8% Ni and 78.9% Mo) in half the time required by the fungus in the absence of the buffer. Spent medium of A. niger grown in the absence and in the presence of MES buffer were found to leach almost similar amounts of Al and Ni, except Mo for which the spent medium of buffered culture was significantly more effective than the non-buffered culture. Overall, this study shows the possible use of bioleaching for the extraction of metal resources from spent catalysts. It also demonstrated the advantages of buffer-stimulated excretion of organic acids by A. niger in bioleaching of the spent catalyst. PMID:15664081

  11. Regulation of the Feruloyl Esterase (faeA) Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    1999-01-01

    Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin. PMID:10584009

  12. Switching from a Unicellular to Multicellular Organization in an Aspergillus niger Hypha

    PubMed Central

    Bleichrodt, Robert-Jan; Hulsman, Marc

    2015-01-01

    ABSTRACT Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. PMID:25736883

  13. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  14. A benzoate-activated promoter from Aspergillus niger and regulation of its activity.

    PubMed

    Antunes, Mauricio S; Hodges, Thomas K; Carpita, Nicholas C

    2016-06-01

    The filamentous fungus Aspergillus niger is able to use benzoic acid as a sole carbon source by conversion to protocatechuic acid and subsequent metabolism. Synthesis of the first enzyme in this metabolic pathway, benzoate p-hydroxylase, is encoded by the bphA gene and positively regulated at the transcriptional level by benzoic acid. Methyl benzoate and para-aminobenzoate also act as inducers of the bphA gene. We show that bphA expression in A. niger in response to benzoate is confined to a 530-bp fragment from the bphA promoter region from -787 to -509 bp from the transcriptional start site. Electrophoretic mobility-shift assays show that a benzoate-response element, consisting of a single 6-bp sequence (5'-TAGTCA-3') within a 51-bp sequence in this region, is most likely to be involved in binding of one or more proteins that modulate the activity of the promoter in response to benzoic acid. We show through fusion of promoter fragments with the green fluorescent protein that the active sequences are located within a 200-bp sequence containing the TAGTCA benzoate-response element. Identification of the benzoate-response element in the bphA promoter region constitutes the first step in the development of a benzoate-inducible promoter system that could be used to control gene expression in fungi, and possibly in other organisms, such as plant and animal cells. PMID:26907094

  15. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology.

    PubMed

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  16. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    PubMed Central

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Maarten Altelaar, A. F.; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments. PMID:26314379

  17. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology

    PubMed Central

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  18. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism.

    PubMed

    Benoit, Isabelle; van den Esker, Marielle H; Patyshakuliyeva, Aleksandrina; Mattern, Derek J; Blei, Felix; Zhou, Miaomiao; Dijksterhuis, Jan; Brakhage, Axel A; Kuipers, Oscar P; de Vries, Ronald P; Kovács, Ákos T

    2015-06-01

    Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus. PMID:25040940

  19. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.

    PubMed

    Mulligan, Catherine N; Kamali, Mahtab; Gibbs, Bernard F

    2004-07-01

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low-grade ores and mining residues, these are potential viable sources of metals. In addition, they potentially endanger the environment, as the metals they contain may be released to the environment in hazardous form. Hence, mining industries are seeking an efficient, economic technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulfuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition, different auxiliary processes were evaluated in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron co-dissolution was minimized as only 7% removal occurred. PMID:15177728

  20. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate.

    PubMed

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2013-08-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  1. Shotgun Proteomics of Aspergillus niger Microsomes upon d-Xylose Induction▿ †

    PubMed Central

    de Oliveira, José Miguel P. Ferreira; van Passel, Mark W. J.; Schaap, Peter J.; de Graaff, Leo H.

    2010-01-01

    Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which—many of them hypothetical proteins—were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles. PMID:20453123

  2. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  3. Heterologous expression and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris.

    PubMed

    Yang, Hailin; Wang, Yitian; Zhang, Ling; Shen, Wei

    2016-01-25

    In this work, the cDNA encoding fructosyltransferase (FTase) from Aspergillus niger YZ59 (CICIM F0901) was obtained and expressed in the methylotrophic yeast Pichia pastoris strain GS115. The yield of recombinant FTase in a 5-L fermentor reached 1020.0 U/mL after 96 h of induction, which was 1160.4 times higher that of native FTase from A. niger YZ59. The specific activity of recombinant FTase was 6.8×10(4) U/mg. The optimum temperature and pH of the recombinant FTase were 55 °C and 5.5, respectively. The recombinant FTase was stable below 40 °C and at pH from 3.0 to 10.0. Using sucrose as the substrate, the Km and Vmax values of recombinant FTase were 159.8 g/L and 0.66 g/(L min), respectively. The turnover number (kcat) and catalytic efficiency (kcat/Km) of recombinant FTase was 1.1×10(4) min(-1) and 68.8 L/(g min), respectively. The recombinant FTase was slightly activated by 5mM Ni(2+), Mg(2+), K(+), Fe(3+), or Mn(2+), but inhibited by all other metal ions (Na(+), Li(+), Ba(2+), Ca(2+), Zn(2+), and Cu(2+)). The highest yield of fructooligosaccharides for purified FTase reached approximately 343.3 g/L (w/v). This is the first study reporting the heterologous expression of FTases from A. niger in P. pastoris. This study plays an important role in the fructooligosaccharide synthesis industry by recombinant FTases. PMID:25976629

  4. Heterologous Expression of Aspergillus Niger --beta--D-Xylosidase (XInD): Characterization on Lignocellulosic Substrates

    SciTech Connect

    Selig, M. J.; Knoshaug, E. P.; Decker, S. R.; Baker, J. O.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T{sub max} was determined using differential scanning microcalorimetry (DSC) to be 78.2 C; the K{sub m} and k{sub cat} were found to be 255 {micro}M and 13.7 s{sup -1}, respectively, using {rho}NP-{Beta}-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K{sub i} for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  5. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    PubMed

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  6. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described, Aspergillus mottae, Aspergillus sergii and Aspergillus transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examining morphology, extrolites and molecular data was...

  7. Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice.

    PubMed

    Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel

    2013-01-01

    Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol. PMID:23160922

  8. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.

    PubMed

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  9. Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis.

    PubMed

    Ottenheim, Christoph; Verdejo, Carl; Zimmermann, Wolfgang; Wu, Jin Chuan

    2014-12-01

    Palm oil empty fruit bunches (EFB) is an abundant and cheap lignocellulose material in Southeast Asia. Its use as the sole medium for producing lignocellulose-hydrolyzing enzymes would increase its commercial value. A newly isolated Aspergillus niger DSM 26641 was investigated for its capability of producing hemicellulases in EFB hydrolysate obtained by treatment with pressurized hot water (1-20%, w/v) at 120-180°C in a 1 L Parr reactor for 10-60 min. The optimal hydrolysate for the fungal growth and endoxylanase production was obtained when 10% (w/v) of empty fruit bunch was treated at 120°C or 150°C for 10 min, giving an endoxylanase activity of 24.5 mU ml(-1) on RBB-Xylan and a saccharification activity of 5 U ml(-1) on xylan (DNS assay). When the hydrolysates were produced at higher temperatures, longer treatment times or higher biomass contents, only less than 20% of the above maximal endoxylanase activity was detected, possibly due to the higher carbohydrate concentrations in the medium. Transcriptome analysis showed that 3 endoxylanases (expression levels 59-100%, the highest level was set as 100%), 2 β-xylosidases (4%), 4 side chain-cleaving arabinofuranosidases (1-95%), 1 acetyl xylan esterase (9%) and 2 ferulic acid esterases (0.3-9%) were produced together. PMID:24958131

  10. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing

    PubMed Central

    Gaddipati, Sanyasi; Kokolski, Matthew; Malla, Sunir; Blythe, Martin J.; Ibbett, Roger; Campbell, Maria; Liddell, Susan; Aboobaker, Aziz; Tucker, Gregory A.; Archer, David B.

    2012-01-01

    A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall–degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions. PMID:22912594

  11. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  12. Mycelium-bound lipase production from Aspergillus niger MYA 135, and its potential applications for the transesterification of ethanol.

    PubMed

    Colin, Verónica Leticia; Baigorí, Mario Domingo; Pera, Licia María

    2011-06-01

    The potential biotechnological applications of both constitutive and inducible lipase sources from Aspergillus niger MYA 135 were evaluated. To this end, the effect of environmental conditions on mycelium-bound lipase production from this strain was studied, when cultured either in the absence or presence of 2% olive oil. It was previously reported that mycelium-bound lipase from Aspergillus niger MYA 135 possess high stability in reaction mixtures containing ethanol; which could be especially important for their use in biodiesel synthesis. In this connection, the performance of the lipase sources produced in the transesterification of ethanol using p-nitrophenyl palmitate as acyl donor was also explored. Under our assay conditions, hydrolytic and synthetic activity of the mycelia produced in the absence or presence of olive oil were not highly correlated. While the hydrolytic activity was strongly increased by the addition of lipid to the culture medium, the best performance in the transesterification reactions of ethanol were associated with mycelia produced in absence of olive oil. Interestingly, the supplementation of the culture medium with Fe(+3) increased the transesterification activity by 71%, as compared to the activity previously reported for this strain. Therefore, the constitutive lipase sources from Aspergillus niger MYA 135 are considered to be promising for industrial biodiesel-fuel production. PMID:21298682

  13. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].

    PubMed

    Yang, Jie; Wang, Qun-Hui; Wang, Qi; Xue, Jun; Tian, Shu-Lei

    2008-03-01

    The bioleaching of municipal solid waste incinerator (MSWI) fly ash for metals extraction by Aspergillus niger was investigated. The influence of fly ash concentrations on the biomass concentration, the pH of suspension, the kinds of bio-produced organic acids and the metals extraction yield during the bioleaching process were studied and the leaching toxicities of fly ash before and after bioleaching were compared. The results showed that the decrease of pH was due to generated organic acids by Aspergillus niger during bioleaching, which resulted in the metals extraction from the fly ash. The alkaline and the heavy metals toxicities of fly ash inhibited the Aspergillus niger growth, which was shown as the "lag phase". When fly ash concentration was 20 g/L, the maximum biomass was 28.61 g/L (after bioleaching 192 h), and the minimum pH was 3.85 (after finished bioleaching). The bioleaching efficiency was the highest (i.e., 93.06% for Cd, around 70% for Mn, Pb and Zn, 22%, 33% and 47% for Fe, Cr and Cu, respectively). The TCLP results of the fly ash after bioleaching indicated that the leaching toxicities of the treated fly ash were far lower than the regulated levels of China. PMID:18649552

  14. Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment.

    PubMed

    Debing, Jing; Peijun, Li; Stagnitti, Frank; Xianzhe, Xiong; Li, Ling

    2006-06-01

    The Ordos Plateau in China is covered with up to 300,000 ha of peashrub (Caragana) which is the dominant natural vegetation and ideal for fodder production. To exploit peashrub fodder, it is crucially important to optimize the culture conditions, especially culture substrate to produce pectinase complex. In this study, a new prescription process was developed. The process, based on a uniform experimental design, first optimizes the solid substrate and second, after incubation, applies two different temperature treatments (30 degrees C for the first 30 h and 23 degrees C for the second 42 h) in the fermentation process. A multivariate regression analysis is applied to a number of independent variables (water, wheat bran, rice dextrose, ammonium sulfate, and Tween 80) to develop a predictive model of pectinase activity. A second-degree polynomial model is developed which accounts for an excellent proportion of the explained variation (R(2)=97.7%). Using unconstrained mathematical programming, an optimized substrate prescription for pectinase production is subsequently developed. The mathematical analysis revealed that the optimal formula for pectinase production from Aspergillus niger by solid fermentation under the conditions of natural aeration, natural substrate pH (about 6.5), and environmental humidity of 60% is rice dextrose 8%, wheat bran 24%, ammonium sulfate ((NH(4))(2)SO(4)) 6%, and water 61%. Tween 80 was found to have a negative effect on the production of pectinase in solid substrate. With this substrate prescription, pectinase produced by solid fermentation of A. niger reached 36.3 IU/(gDM). Goats fed on the pectinase complex obtain an incremental increase of 0.47 kg day(-1) during the initial 25 days of feeding, which is a very promising new feeding prospect for the local peashrub. It is concluded that the new formula may be very useful for the sustainable development of arid and semiarid pastures such as those of the Ordos Plateau. PMID:16406599

  15. Systemic analysis of the response of Aspergillus niger to ambient pH

    PubMed Central

    Andersen, Mikael R; Lehmann, Linda; Nielsen, Jens

    2009-01-01

    Background The filamentous fungus Aspergillus niger is an exceptionally efficient producer of organic acids, which is one of the reasons for its relevance to industrial processes and commercial importance. While it is known that the mechanisms regulating this production are tied to the levels of ambient pH, the reasons and mechanisms for this are poorly understood. Methods To cast light on the connection between extracellular pH and acid production, we integrate results from two genome-based strategies: A novel method of genome-scale modeling of the response, and transcriptome analysis across three levels of pH. Results With genome scale modeling with an optimization for extracellular proton-production, it was possible to reproduce the preferred pH levels for citrate and oxalate. Transcriptome analysis and clustering expanded upon these results and allowed the identification of 162 clusters with distinct transcription patterns across the different pH-levels examined. New and previously described pH-dependent cis-acting promoter elements were identified. Combining transcriptome data with genomic coordinates identified four pH-regulated secondary metabolite gene clusters. Integration of regulatory profiles with functional genomics led to the identification of candidate genes for all steps of the pal/pacC pH signalling pathway. Conclusions The combination of genome-scale modeling with comparative genomics and transcriptome analysis has provided systems-wide insights into the evolution of highly efficient acidification as well as production process applicable knowledge on the transcriptional regulation of pH response in the industrially important A. niger. It has also made clear that filamentous fungi have evolved to employ several offensive strategies for out-competing rival organisms. PMID:19409083

  16. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  17. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  18. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  19. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  20. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  1. Aspergillus niger β-Glucosidase Has a Cellulase-like Tadpole Molecular Shape

    PubMed Central

    Lima, Marisa A.; Oliveira-Neto, Mario; Kadowaki, Marco Antonio S.; Rosseto, Flavio R.; Prates, Erica T.; Squina, Fabio M.; Leme, Adriana F. P.; Skaf, Munir S.; Polikarpov, Igor

    2013-01-01

    Aspergillus niger is known to secrete large amounts of β-glucosidases, which have a variety of biotechnological and industrial applications. Here, we purified an A. niger β-glucosidase (AnBgl1) and conducted its biochemical and biophysical analyses. Purified enzyme with an apparent molecular mass of 116 kDa forms monomers in solution as judged by native gel electrophoresis and has a pI value of 4.55, as found for most of the fungi of β-glucosidases. Surprisingly, the small angle x-ray experiments reveal that AnBgl1 has a tadpole-like structure, with the N-terminal catalytic domain and C-terminal fibronectin III-like domain (FnIII) connected by the long linker peptide (∼100 amino acid residues) in an extended conformation. This molecular organization resembles the one adopted by other cellulases (such as cellobiohydrolases, for example) that frequently contain a catalytic domain linked to the cellulose-binding module that mediates their binding to insoluble and polymeric cellulose. The reasons why AnBgl1, which acts on the small soluble substrates, has a tadpole molecular shape are not entirely clear. However, our enzyme pulldown assays with different polymeric substrates suggest that AnBgl1 has little or no capacity to bind to and to adsorb cellulose, xylan, and starch, but it has high affinity to lignin. Molecular dynamics simulations suggested that clusters of residues located in the C-terminal FnIII domain interact strongly with lignin fragments. The simulations showed that numerous arginine residues scattered throughout the FnIII surface play an important role in the interaction with lignin by means of cation-π stacking with the lignin aromatic rings. These results indicate that the C-terminal FnIII domain could be operational for immobilization of the enzyme on the cell wall and for the prevention of unproductive binding of cellulase to the biomass lignin. PMID:24064212

  2. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  3. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase

    PubMed Central

    Rodríguez, Ángel Pereira; Leiro, Rafael Fernández; Trillo, M Cristina; Cerdán, M Esperanza; Siso, M Isabel González; Becerra, Manuel

    2006-01-01

    Background The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. Results The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature (40°C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence of Ni2+. The affinity for

  4. Characterization of aflatoxigenic Aspergillus flavus and A. parasiticus strain isolates from animal feedstuffs in northeastern Iran

    PubMed Central

    Davari, E; Mohsenzadeh, M; Mohammadi, Gh; Rezaeian-Doloei, R

    2015-01-01

    Aflatoxins are secondary toxic metabolites produced by some Aspergillus spp. particularly, Aspergillus flavus and A. parasiticus that contaminate food and feed. The objective of this study was to evaluate the contamination of feedstuffs with Aspergillus spp. and detect genes involved in the aflatoxin biosynthesis pathway of A. flavus and A. parasiticus isolates. A total of 110 cow feed samples (comprised of silage, concentrate, hay and total mixed ration) from 30 industrial and semi-industrial dairy farms of Khorasan Razavi province, northeastern Iran, were examined using cultural and PCR methods. 68 (61.82%) Aspergillus spp. were isolated from 110 samples of feedstuff. The predominant Aspergillus isolates were A. fumigates (21.81%), followed by A. flavus (17.27%), A. niger (10%), A. parasiticus (8.18%), and A. oryzae (4.54%). Fungal contamination levels of industrial and semi-industrial dairy farm samples were not significantly different (P>0.05). Using four sets of primers, a quadruplex PCR was developed to detect genes (nor1, ver1, omtA and aflR) at different loci coding enzymes in the aflatoxin biosynthesis pathway of A. flavus and A. parasiticus strains. Out of 28 strains of A. flavus and A. parasiticus, 10 isolates (35.71%) showed a quadruplet pattern indicating the important genes involved in the aflatoxin biosynthesis pathway, encoded for functional products. These isolates were confirmed to be aflatoxigenic by Thin Layer Chromatography. 18 isolates (64.29%) had three, two and single molecular patterns. The results obtained by this study show that rapid and specific detection of aflatoxigenic molds is important to ensure the microbiological safety of feedstuffs. PMID:27175167

  5. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    PubMed

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step. PMID:26837219

  6. Purification and characterization of endo-xylanases from Aspergillus Niger. III. An enzyme of PL 365

    SciTech Connect

    Fournier, R.A.; Frederick, M.M.; Frederick, J.R.; Reilly, P.J.

    1985-04-01

    An endo-xylanase (1,4-..beta..-D-xylan xylanohydrolase, EC 3.2.1.8) from Aspergillus niger was purified to homogeneity by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and DEAE-Sephadex A-25 at pH 5.15. The enzyme was active on soluble xylan, on insoluble xylan only after arabinosyl-initiated branch points were removed, and on xylooligosaccharides longer than xylotetraose. There was slight activity on carboxymethyl-cellulose, arabinogalactan, glucomannan, and p-nitrophenyl-..beta..-D- glucopyranoside. The main products of the hydrolysis of soluble and insoluble xylan were oligosaccharides of intermediate length, especially the tri- and pentasaccharides. The isolectric point of the enzyme was 3.65. It had a molecular weight of 2.8 x 10/sup 4/ by SDS-gel electrophoresis, and was high in acidic amino acids but low in those containing sulfur. Highest activity in a 20-min assay at pH 5 was between 40 and 45 degrees C, with an activation energy up to 40 degrees C of 11.1 kJ/mol. The optimum pH for activity was at 5.0. The enzyme was strongly activated by Ca/sup 2 +/. 15 references.

  7. Induction, purification and characterization of alpha-N-acetylgalactosaminidase from Aspergillus Niger.

    PubMed

    Weignerová, L; Filipi, T; Manglová, D; Kren, V

    2008-07-01

    A set of filamentous fungi (42 strains) was screened for alpha-N-acetylgalactosaminidase activity, and a series of inducers and different cultivation conditions were tested. Enzyme production by the best producer Aspergillus niger CCIM K2 was optimized and scaled up. alpha-N-Acetylgalactosaminidase was purified to apparent homogeneity by cation exchange chromatography, gel filtration, and chromatofocusing, and basic biochemical data of the enzyme were determined: The native molecular weight was estimated by gel filtration to be approximately 440 kDa, the molecular weight of the subunit was determined to be 76 kDa and the pI = 4.8. The K (M) was 0.73 mmol/l for o-nitrophenyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (o-NP-alpha-GalNAc), and optimum enzyme activity was achieved at pH 1.8 and 55 degrees C. This alpha-N-acetylgalactosaminidase is a retaining-type glycosidase, and it was N-deglycosylated without any loss of activity. PMID:18443780

  8. Facile production of Aspergillus niger α-N-acetylgalactosaminidase in yeast.

    PubMed

    Mrázek, Hynek; Benada, Oldřich; Man, Petr; Vaněk, Ondřej; Křen, Vladimír; Bezouška, Karel; Weignerová, Lenka

    2012-01-01

    α-N-Acetylgalactosaminidase (α-GalNAc-ase; EC.3.2.1.49) is an exoglycosidase specific for the hydrolysis of terminal α-linked N-acetylgalactosamine in various sugar chains. The cDNA corresponding to the α-GalNAc-ase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Saccharomyces cerevisiae. The α-GalNAc-ase gene contains an open reading frame which encodes a protein of 487 amino acid residues. The molecular mass of the mature protein deduced from the amino acid sequence of this reading frame is 54 kDa. The recombinant protein was purified to apparent homogeneity and biochemically characterized (pI4.4, K(M) 0.56 mmol/l for 2-nitrophenyl 2-acetamido-2-deoxy-α-d-galactopyranoside, and optimum enzyme activity was achieved at pH2.0-2.4 and 50-55°C). Its molecular weight was determined by analytical ultracentrifuge measurement and dynamic light scattering. Our experiments confirmed that the recombinant α-GalNAc-ase exists as two distinct species (70 and 130 kDa) compared to its native form, which is purely monomeric. N-Glycosylation was confirmed at six of the eight potential N-glycosylation sites in both wild type and recombinant α-GalNAc-ase. PMID:21982820

  9. Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris.

    PubMed

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1' residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1' site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  10. Chemical modification of Aspergillus niger β-glucosidase and its catalytic properties

    PubMed Central

    Ahmed, Samia A.; El-Shayeb, Nefisa M.A.; Hashem, Abdel-Gawad M.; Saleh, Shireen A.A.; Abdel-Fattah, Ahmed F.

    2015-01-01

    Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation). The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein). Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy), a higher K m (Michaelis constant) and Vmax (maximal reaction rate), and improved thermal stability. The calculated t 1/2 (half-life) values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t 1/2 of 200.0 and 49.5 min respectively). The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS) and p -Chloro Mercuri Benzoate ( p -CMB), while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively). The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications. PMID:26221085

  11. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.

    PubMed

    Ramos, Aline de Souza; Ribeiro, Joyce Benzaquem; Teixeira, Bruna Gomes; Ferreira, José Luiz Pinto; Silva, Jefferson Rocha de A; Ferreira, Alexandre do Amaral; de Souza, Rodrigo Octavio Mendonça Alves; Amaral, Ana Claudia F

    2015-03-01

    The monoterpenoid 1,8-cineole is obtained from the leaves of Eucalyptus globulus and it has important biological activities. It is a cheap natural substrate because it is a by-product of the Eucalyptus cultivation for wood and pulp production. In this study, it was evaluated the potential of three filamentous fungi in the biotransformation of 1,8-cineole. The study was divided in two steps: first, reactions were carried out with 1,8-cineole at 1 g/L for 24 h; afterwards, reactions were carried out with substrate at 5 g/L for 5 days. The substrate was hydroxylated into 2-exo-hydroxy-1,8-cineole and 3-exo-hydroxy-1,8-cineole by fungi Mucor ramannianus and Aspergillus niger with high stereoselectivity. Trichoderma harzianum was also tested but no transformation was detected. M. ramannianus led to higher than 99% of conversion within 24 h with a starting high substrate concentration (1 g/L). When substrate was added at 5 g/L, only M. ramannianus was able to catalyze the reaction, but the conversion level was 21.7% after 5 days. Both products have defined stereochemistry and could be used as chiral synthons. Furthermore, biological activity has been described for 3-exo-hydroxy-1,8-cineol. To the best of our knowledge, this is the first report on the use of M. ramannianus in this reaction. PMID:26221115

  12. Fluoride-Tolerant Mutants of Aspergillus niger Show Enhanced Phosphate Solubilization Capacity

    PubMed Central

    Silva, Ubiana de Cássia; Mendes, Gilberto de Oliveira; Silva, Nina Morena R. M.; Duarte, Josiane Leal; Silva, Ivo Ribeiro; Tótola, Marcos Rogério; Costa, Maurício Dutra

    2014-01-01

    P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F−). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F−. The mutant FS1-555 showed the highest solubilization in the presence of F−, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F−, indicating that mutagenesis allowed the acquisition of F− tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources. PMID:25310310

  13. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    PubMed

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. PMID:27378203

  14. Properties of a β-(1→4)-glucan hydrolase from Aspergillus niger

    PubMed Central

    Clarke, A. E.; Stone, B. A.

    1965-01-01

    1. A β-(1→4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4·5–6 and Km 0·25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as β-(1→4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw β-(1→4)-xylan, Lupinus albus β-(1→4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or β-(1→3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1·0mm-Hg2+, 0·7mm-phenylmercuric nitrate and 1·0mm-iodine. PMID:5862418

  15. Properties of a beta-(1-4)-glucan hydrolase from Aspergillus niger.

    PubMed

    Clarke, A E; Stone, B A

    1965-09-01

    1. A beta-(1-->4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4.5-6 and K(m) 0.25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as beta-(1-->4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw beta-(1-->4)-xylan, Lupinus albus beta-(1-->4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or beta-(1-->3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1.0mm-Hg(2+), 0.7mm-phenylmercuric nitrate and 1.0mm-iodine. PMID:5862418

  16. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    PubMed

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase. PMID:22644643

  17. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism.

    PubMed

    Diano, A; Bekker-Jensen, S; Dynesen, J; Nielsen, J

    2006-08-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium viscosity and hereby a decrease in mass transfer, especially oxygen transfer. The consequence was a decrease in DOT and the occurrence of a switch between fully aerobic conditions and oxygen-limited conditions. Metabolite quantification showed that polyols were the main metabolic products formed and represented up to 22% of the carbon consumed in oxygen-limited conditions. The polyol concentration and the polyol pattern depended strongly on the environmental conditions. This is due to a complex regulation of polyol production and to the fact that each polyol can fulfill different functions. In this study, erythritol, xylitol, and arabitol were produced as carbon storage compounds when the flux through the PP pathway exceeded the need in ribulose-5-phosphate for the biomass synthesis. Glycerol, erythritol, and xylitol seem to be involved in osmoregulation. Mannitol was produced when the catabolic reduction of charge was high. Its production involves the enzyme NAD-dependent mannitol-1-phosphate dehydrogenase and seems to be the main cytosolic route for the NADH reoxidation during oxygen limitation. PMID:16718677

  18. Continuous production of cheese by immobilized milk-clotting protease from aspergillus niger MC4

    PubMed

    Channe; Shewale

    1998-11-01

    Milk clotting protease from Aspergillus niger MC4 immobilized on glycidyl methacrylate-pentaerythritol triacrylate copolymer GP4 was used for continuous production of cheese using a packed bed reactor. Factors affecting the hydrolysis of kappa-casein and clot formation were studied. Acidified milk (pH 5.8) preincubated at 37 degreesC when passed through the column at a flow rate of 80 mL/min attained the required degree of hydrolysis of kappa-casein for the coagulation in a single pass. Fortification of the hydrolyzed milk with CaCl2 and FeCl3 to a final concentration of 0.01 and 0.02 M, respectively, and incubation of fortified milk at 60 degreesC for 2 h resulted in a hard cake of cheese. The yield of raw cheese was 28 g/100 mL of milk. The immobilized milk-clotting protease was used for 60 days (8 h/day) without any loss in productivity. PMID:9841651

  19. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    PubMed

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase. PMID:11149149

  20. Antifungal agents against Aspergillus niger for rearing rice leaffolder larvae (Lepidoptera: Pyralidae) on artificial diet.

    PubMed

    Su, Jianya; Wang, Ye-Cheng; Zhang, Shu-Kun; Ren, Xiu-Bei

    2014-06-01

    Mold contamination is an important issue in insect mass rearing. Frequently used antifungal agents such as sorbic acid and methylparaben have negative impact on many lepidopteran larvae, which might be one of the reasons for the difficulty in rearing rice leaffolder, Cnaphalocrocis medinalis (Güenée). In this study, 19 antifungal agents, including 7 food preservatives, 6 antifungal drugs, and 6 agricultural fungicides, were screened for their inhibitory activities on Aspergillus niger in diets. The results demonstrated that most of the tested chemicals are unsuitable as mold inhibitors in the diets of the rice leaffolder, and the rice leaffolder neonate is sensitive to sorbic acid and methylparaben. These two mold inhibitors at commonly used concentrations were shown to impact the survival of rice leaffolder larvae fed on artificial diets. Among the tested mold inhibitors, natamycin was the safest for the rice leaffolder larvae. Much higher larva survival was observed for the larvae fed on diets containing natamycin as an antifungal agent (59 and 72% at 200 and 400 ppm, respectively). Two agricultural fungicides, tebuconazole and azoxystrobin, are also potent as mold inhibitors when used in insect diets. The mixed use of natamycin and sorbic acid, or methylparaben, and the mixed use of sorbic acid and azoxystrobin resulted in significantly higher larva survival than sorbic acid + methylparaben. Natamycin + azoxystrobin and sorbic acid + tebuconazole resulted in larva survival similar to that of sorbic acid + methylparaben. The ternary combination of natamycin, sorbic acid, and methylparaben was the best combination for the rearing of rice leaffolder. PMID:25026669

  1. Multiple mycotic aneurysms with a rare fungus, Aspergillus niger: a complex case report.

    PubMed

    Parameswaran, Vatsala

    2008-03-01

    The term "mycotic aneurysm" was first used by William Osler in 1885 to describe a nonsyphilitic bacterial infection of the arterial wall. It is now known that mycotic aneurysm, a rare infectious condition, can arise from a wide variety of clinical causes. The aorta is most often affected; however, such aneurysms may arise in any artery. Mycotic aneurysms are classified as primary (direct extension from surrounding area of infection), secondary (septic embolization that lodges in peripheral arteries), and cryptogenic (unknown cause). A mycotic aneurysm is a threat to life, organs, and limbs. Mycotic aneurysms of the aorta caused by fungi are rare. William Osler used the term "mycotic," referring to all infected aneurysms excluding fungal infections. Yet, the term "mycotic" by definition is a disease caused by a fungus. Only seven cases of aneurysms caused by a fungus were reported from 1966 to 1999. This article will focus on the care of a young female patient with end-stage renal disease receiving peritoneal dialysis who developed a mycotic aneurysm. She was treated with high doses of antifungal medications for the fungus Aspergillus niger. She was switched to hemodialysis from peritoneal dialysis and was later diagnosed with a primary multiple mycotic aneurysms. This article will describe the complex medical, surgical, and nursing care provided to this patient. PMID:18295164

  2. Sorption of heavy metals by the soil fungi 'Aspergillus niger' and Mucor rouxii

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Beveridge, T.J.; Bailey, G.W.

    1992-01-01

    Sorption of the nitrate salts of cadmium(II), copper(II), lanthanum(III) and silver(I) by two fungi, Aspergillus niger and Mucor rouxii, was evaluated using Freundlich adsorption isotherms and energy dispersive X-ray electron microscopy. The linearized Freundlich isotherm described the metal sorption data well for metal concentrations of 5 microM-1 mM metal. Differences in metal binding were observed among metals, as well as between fungal species. Calculated Freundlich K values indicated that metal binding decreased in the order La(3+) > or = Ag(+) > Cu(2+) > Cd(2+). However, sorption of Ag(+) was greater than that of La(3+) from solutions of 0.1 and 1 mM metal and likely due to precipitation at the cell wall surface. At the 1 mM initial concentration, there were no significant differences between the two fungi in metal sorption, except for Ag(+) binding. At the 5 microM concentration, there was no difference between the fungi in their sorption capacities for the four metals. Electron microscopy-energy dispersive X-ray analysis indicated that silver precipitated onto cells as colloidal silver. The results indicate that Freundlich isotherms may be useful for describing short-term metal sorption by fungal biomass and for comparison with other soil constituents in standardized systems. (Copyright (c) 1992 Pergamon Press plc.)

  3. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  4. The effect of natamycin on the transcriptome of conidia of Aspergillus niger

    PubMed Central

    van Leeuwen, M.R.; Krijgsheld, P.; Wyatt, T.T.; Golovina, E.A.; Menke, H.; Dekker, A.; Stark, J.; Stam, H.; Bleichrodt, R.; Wösten, H.A.B.; Dijksterhuis, J.

    2013-01-01

    The impact of natamycin on Aspergillus niger was analysed during the first 8 h of germination of conidia. Polarisation, germ tube formation, and mitosis were inhibited in the presence of 3 and 10 μM of the anti-fungal compound, while at 10 μM also isotropic growth was affected. Natamycin did not have an effect on the decrease of microviscosity during germination and the concomitant reduction in mannitol and trehalose levels. However, it did abolish the increase of intracellular levels of glycerol and glucose during the 8 h period of germination. Natamycin hardly affected the changes that occur in the RNA profile during the first 2 h of germination. During this time period, genes related to transcription, protein synthesis, energy and cell cycle and DNA processing were particularly up-regulated. Differential expression of 280 and 2586 genes was observed when 8 h old germlings were compared with conidia that had been exposed to 3 μM and 10 μM natamycin, respectively. For instance, genes involved in ergosterol biosynthesis were down-regulated. On the other hand, genes involved in endocytosis and the metabolism of compatible solutes, and genes encoding protective proteins were up-regulated in natamycin treated conidia. PMID:23449730

  5. Degradation of phytates in distillers' grains and corn gluten feed by Aspergillus niger phytase.

    PubMed

    Noureddini, H; Dang, J

    2009-10-01

    Distillers' dried grains with solubles (DDGS) and corn gluten feed (CGF) are major coproducts of ethanol production from corn dry grind and wet milling facilities, respectively. These coproducts contain important nutrients and high levels of phytates. The phytates in these products cannot be digested by nonruminant animals; consequently, large quantities of phytate phosphorus (P) are deposited into the soil with the animal wastes which potentially could cause P pollution in soil and underground water resources. To reduce phytates in DDGS and CGF, a phytase from Aspergillus niger, PhyA, was investigated regarding its capability to catalyze the hydrolysis of phytates in light steep water (LSW) and whole stillage (WS). LSW and WS streams are the intermediate streams in the production of CGF and DDGS, respectively, and contribute to most of the P in these streams. Enzyme loadings with activity of 0.1, 1, 2, and 4 FTU/g substrate and temperatures of 35 and 45 degrees C were investigated regarding their influences on the degree of hydrolysis. The analysis of the hydrolyzate suggested to a sequentially degradation of phytates to lower order myo-inositol phosphate isomers. Approximately 90% phytate P of LSW and 66% phytate P of WS were released, suggesting myo-inositol monophosphate as the end product. The maximum amount of released P was 4.52 +/- 0.03 mg/g LSW and 0.86 +/- 0.01 mg/g WS. PMID:18815903

  6. Expression of an Aspergillus niger xylanase in yeast: Application in breadmaking and in vitro digestion.

    PubMed

    Elgharbi, Fatma; Hmida-Sayari, Aïda; Zaafouri, Youssef; Bejar, Samir

    2015-08-01

    The cDNA of the β-1,4-endoxylanase of Aspergillus niger US368 was cloned and expressed in Pichia pastoris under the constitutive GAP promoter. The maximum activity obtained was 41 U mL(-1), which was about 3-fold higher than that obtained with the native species. The purified enzyme showed a specific activity of 910 U mg(-1) and a molecular mass of 24 kDa. It had an optimal activity at pH 4 and 50 °C, stable in a wide range of pH and in the presence of some detergents and organic solvents. r-XAn11-His6 (recombinant xylanase) was used as an additive in breadmaking. A decrease in water absorption, an increase in dough rising and improvements in volume and specific volume of the bread were recorded. The r-XAn11-His6 was also used in in vitro digestion of barley and wheat bran leading to a decrease of the viscosities and an increase of the reducing sugars and total sugars contents. PMID:25936280

  7. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies.

    PubMed

    Daoud, Fatima Boukraa-Oulad; Kaddour, Samia; Sadoun, Tahar

    2010-01-01

    The adsorption kinetics of cellulase Aspergillus niger on a commercial activated carbon has been performed using a batch-adsorption technique. The effect of various experimental parameters such as initial enzyme concentration, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Langmuir model was more suitable for our data. The activation energy of adsorption was also evaluated for the adsorption of enzyme onto activated carbon. It was found 11.37 kJ mol(-1). Thermodynamic parameters Delta G(0), Delta H(0) and DeltaS(0) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found 11.12 kJ mol(-1) and 0.084 kJ mol(-1)K(-1), respectively. At 30 degrees C and at pH 4.8, 1g activated carbon adsorbed about 1565 mg of cellulase, with a retention of 70% of the native enzyme activity up to five cycles of repeated batch enzyme reactions. PMID:19744839

  8. Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori.

    PubMed

    Korman, D R; Bayliss, F T; Barnett, C C; Carmona, C L; Kodama, K H; Royer, T J; Thompson, S A; Ward, M; Wilson, L J; Berka, R M

    1990-03-01

    Using synthetic oligonucleotide probes, we cloned genomic DNA sequences encoding an alpha-amylase gene from Aspergillus niger var. awamori (A. awamori) on a 5.8 kb EcoRI fragment. Hybridization experiments, using a portion of this cloned fragment to probe DNA from A. awamori, suggested the presence of two alpha-amylase gene copies which were subsequently cloned as 7 kb (designated as amyA) and 4 kb (amyB) HindIII fragments. DNA sequence analysis of the amyA and amyB genes revealed the following: (1) Both genes are arranged as nine exons and eight introns; (2) The nucleotide sequences of amyA and amyB are identical throughout all but the last few nucleotides of their respective coding regions; (3) The amyA and amyB genes from A. awamori share extensive homology (greater than or equal to 98% identity) with the genes encoding Taka-amylase from A. oryzae. In order to test whether both amyA and amyB were functional in the genome, we constructed vectors containing gene fusions of either amyA and amyB to bovine prochymosin cDNA and used these vectors to transform A. awamori. Transformants which contained either the amyA- or amyB-prochymosin gene fusions produced extracellular chymosin, suggesting that both genes are functional. PMID:2340591

  9. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis. PMID:26658315

  10. Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger.

    PubMed

    Juge, N; Svensson, B; Williamson, G

    1998-04-01

    Efficient production of recombinant barley alpha-amylase has been achieved in Aspergillus niger. The cDNA encoding alpha-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for alpha-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44,960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley alpha-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol beta-D-maltoheptaoside and amylose (degree of polymerisation = 17). Barley alpha-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. PMID:9615479

  11. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger.

    PubMed

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2012-06-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid hydrolyzed biomass prior to inoculation in one set and after 3 days of inoculation in another set. Organisms used were T. reesei NCIM 992, and Aspergillus niger isolated in our laboratory. Cellulase yield obtained was 0.8 IU/ml on fourth day with T. reesei. Sugars were found to increase from fourth to fifth day, when hydrolysate was supplemented with nutrients and acid hydrolyzed biomass followed by inoculation with T. reesei. Phenolics were also found to decrease by 67%. PMID:23729891

  12. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  13. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    PubMed

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  14. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %. PMID:24052336

  15. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp.

    PubMed

    Ge, Xiang-Yang; Qian, He; Zhang, Wei-Guo

    2009-03-01

    Aspergillus niger SL-09 and Lactobacillus sp. G-02 were used as a mixed culture in a 7-l fermentor to directly form L-lactic acid from Jerusalem artichoke tubers. The synthesis of inulinase and invertase from A. niger SL-09 was enhanced significantly by the inoculation of Lactobacillus sp. G-02 at 12h of culture, which reached 275.6 and 571.8 U/ml in 60 h, over 5-folds higher than that of the culture using single strain. In the following simultaneous saccharification and fermentation procedure, the highest L-lactic acid concentration of 120.5 g/l was obtained in 36 h of the fed-batch fermentation with high conversion efficiency of 94.5%. PMID:18990562

  16. Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation.

    PubMed

    Benghazi, Lamiae; Record, Eric; Suárez, Antonio; Gomez-Vidal, José A; Martínez, José; de la Rubia, Teresa

    2014-01-01

    We investigated the expression of Phanerochaete flavido-alba laccase gene in Aspergillus niger and the physical and biochemical properties of the recombinant enzyme (rLac-LPFA) in order to test it for synthetic dye biotransformation. A. niger was able to produce high levels of active recombinant enzyme (30 mgL(-1)), whose identity was further confirmed by immunodetection using Western blot analysis and N-terminal sequencing. Interestingly, rLac-LPFA exhibited an improved stability at pH (2-9) and organic solvents tested. Furthermore, the percentage of decoloration and biotransformation of synthetic textile dyes, Remazol Brilliant Blue R (RBBR) and Acid Red 299 (NY1), was higher than for the native enzyme. Its high production, simple purification, high activity, stability and ability to transform textile dyes make rLac-LPFA a good candidate for industrial applications. PMID:23884844

  17. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121.

    PubMed

    Ushasree, Mrudula Vasudevan; Vidya, Jalaja; Pandey, Ashok

    2015-03-01

    Microbial phytase, a widely used animal feed enzyme, needs to be active and stable in the acidic milieu for better performance in the monogastric gut. Aspergillus niger phytases exhibit an activity dip in the pH range from 3.0 to 3.5. Replacement of amino acids, which changed the pKa of catalytic residues H82 and D362, resulted in alteration of the pH profile of a thermostable phytase from A. niger NII 08121. Substitution P212H in the protein loop at 14 Å distance to the active site amended the pH optimum from 2.5 to pH 3.2 nevertheless with a decrease in thermostability than the wild enzyme. This study described the utility of amino acid replacements based on pKa shifts of catalytic acid/base to modulate the pH profile of phytases. PMID:25595493

  18. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.

    PubMed

    Menezes-Blackburn, Daniel; Jorquera, Milko; Gianfreda, Liliana; Rao, Maria; Greiner, Ralf; Garrido, Elizabeth; de la Luz Mora, María

    2011-10-01

    The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity. PMID:21856150

  19. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition*

    PubMed Central

    Xu, Yao-xing; Li, Yan-li; Xu, Shao-chun; Liu, Yong; Wang, Xin; Tang, Jiang-wu

    2008-01-01

    Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization. Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each significant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by multiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x 1 (urea)=0.163 (41.63 g/L), x 2 (Na2CO3)=−1.68 (2.64 g/L), x 3 (MgSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization. PMID:18600786

  20. Purification and characterization of endo-xylanases from aspergillus Niger. II. An enzyme of PL 45

    SciTech Connect

    Shei, J.C.; Fratzke, A.R.; Frederick, M.M.; Frederick, J.R.; Reilly, P.J.

    1985-04-01

    A homogeneous endo-xylanase (1,4-..beta..-D-xylan xylano-hydrolase, EC 3.2.1.8) was obtained from a crude Aspergillus niger pentosanase by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and SP-Sephadex C-25 with a gradient from pH 2.8 to pH 4.6. It was much more active on soluble than on insoluble xylan yielding large amounts of unreacted xylan and a mixture of oligosaccharides with chain lengths from two to six. No xylose or L-arabinose was produced. There was high activity on a xylopentaose through xylononaose mixture, but not on xylobiose, xylotriose, or xylotetraose. The enzyme had slight activity on untreated cellulose, carboxymethylcellulose, and pectin. Molecular weight was ca. 1.4 x 10/sup 4/, with an isoelectric point of 4.5 and an amino acid profile high in acidic but low in sulfur-containing residues. In a 25-min assay at pH 4.7, this endo-xylanase was most active at 45 degrees C, with an activation energy from 5 to 35 degrees C of 33.3 kJ/mol. The optimum pH for activity was 4.9. Decay in buffer was first order, with an activation energy at pH 4.7 from 48 to 53 degrees C of 460 kJ/mol. Optimum pH for stability was about 5.6, where the half-life at 48 degrees C in buffer was ca. 40 h.

  1. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.

    PubMed

    Choengpanya, Khuanjarat; Arthornthurasuk, Siriphan; Wattana-amorn, Pakorn; Huang, Wan-Ting; Plengmuankhae, Wandee; Li, Yaw-Kuen; Kongsaeree, Prachumporn T

    2015-11-01

    β-Xylosidases catalyze the breakdown of β-1,4-xylooligosaccharides, which are produced from degradation of xylan by xylanases, to fermentable xylose. Due to their important role in xylan degradation, there is an interest in using these enzymes in biofuel production from lignocellulosic biomass. In this study, the coding sequence of a glycoside hydrolase family 3 β-xylosidase from Aspergillus niger ASKU28 (AnBX) was cloned and expressed in Pichia pastoris as an N-terminal fusion protein with the α-mating factor signal sequence (α-MF) and a poly-histidine tag. The expression level was increased to 5.7 g/l in a fermenter system as a result of optimization of only five codons near the 5' end of the α-MF sequence. The recombinant AnBX was purified to homogeneity through a single-step Phenyl Sepharose chromatography. The enzyme exhibited an optimal activity at 70°C and at pH 4.0-4.5, and a very high kinetic efficiency toward a xyloside substrate. AnBX demonstrated an exo-type activity with retention of the β-configuration, and a synergistic action with xylanase in hydrolysis of beechwood xylan. This study provides comprehensive data on characterization of a glycoside hydrolase family 3 β-xylosidase that have not been determined in any prior investigations. Our results suggested that AnBX may be useful for degradation of lignocellulosic biomass in bioethanol production, pulp bleaching process and beverage industry. PMID:26166179

  2. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp.

    PubMed

    Auta, Helen Shnada; Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol(-1), 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol(-1), 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol(-1), incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol(-1), and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol(-1). The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  3. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    SciTech Connect

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to produce 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.

  4. Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger

    PubMed Central

    Poulsen, Lars; Andersen, Mikael Rørdam; Lantz, Anna Eliasson; Thykaer, Jette

    2012-01-01

    Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis. PMID:23251373

  5. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation.

    PubMed

    Ascacio-Valdés, Juan A; Aguilera-Carbó, Antonio F; Buenrostro, José J; Prado-Barragán, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2016-04-01

    Our research group has found preliminary evidences of the fungal biodegradation pathway of ellagitannins, revealing first the existence of an enzyme responsible for ellagitannins degradation, which hydrolyzes pomegranate ellagitannins and it was called ellagitannase or elagitannin acyl hydrolase. However, it is necessary to generate new and clear information in order to understand the ellagitannin degradation mechanisms. This work describes the distinctive and unique features of ellagitannin metabolism in fungi. In this study, hydrolysis of pomegranate ellagitannins by Aspergillus niger GH1 was studied by solid-state culture using polyurethane foam as support and pomegranate ellagitannins as substrate. The experiment was performed during 36 h. Results showed that ellagitannin biodegradation started after 6 h of fermentation, reaching the maximal biodegradation value at 18 h. It was observed that ellagitannase activity appeared after 6 h of culture, then, the enzymatic activity was maintained up to 24 h of culture reaching 390.15 U/L, after this period the enzymatic activity decreased. Electrophoretic band for ellagitannase was observed at 18 h. A band obtained using non-denaturing electrophoresis was identified as ellagitannase, then, a tandem analysis to reveal the ellagitannase activity was performed using Petri plate with pomegranate ellagitannins. The extracts were analyzed by HPLC/MS to evaluate ellagitannins degradation. Punicalin, gallagic acid, and ellagic acid were obtained from punicalagin. HPLC/MS analysis identified the gallagic acid as an intermediate molecule and immediate precursor of ellagic acid. The potential application of catabolic metabolism of ellagitannin hydrolysis for ellagic acid production is outlined. PMID:26915983

  6. Application of kaolin to improve citric acid production by a thermophilic Aspergillus niger.

    PubMed

    Ali, Sikander

    2006-12-01

    Citric acid production by a thermophilic strain of the filamentous fungus Aspergillus niger IIB-6 in a medium containing blackstrap cane molasses was improved by the addition of kaolin to the fermentation medium. The fermentation was run in a 7.5-l stirred bioreactor (60% working volume). The optimal sugar concentration was found to be 150 g/l. Kaolin (1.0 ml) was added to the fermentation medium to enhance volumetric production. The best results in terms of product formation were observed when 15 parts per million (ppm) kaolin was added 24 h after inoculation. With added kaolin, citric acid production was enhanced 2.34-fold, compared to a control fermentation without added kaolin. The length of incubation to attain this product yield was shortened from 168 to 96 h. The comparison of kinetic parameters showed improved citrate synthase activity of the culture (Y (p/x)=7.046 g/g). When the culture grown at various kaolin concentrations was monitored for Q (p), Q (s), and q (p), there was significant improvement in these variables over the control. Specific production by the culture (q (p)=0.073 g/g cells/h) was improved several fold. The addition of kaolin substantially improved the enthalpy (DeltaH (D)=74.5 kJ/mol) and entropy of activation (DeltaS=-174 J/mol/K) for citric acid production, free energies for transition state formation, and substrate binding for sucrose hydrolysis. The performance of fuzzy logic control of the bioreactor was found to be very promising for an improvement ( approximately 4.2-fold) in the production of citric acid (96.88 g/l), which is of value in commercial applications. PMID:16871375

  7. Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles

    PubMed Central

    van Leeuwen, M.R.; Krijgsheld, P.; Bleichrodt, R.; Menke, H.; Stam, H.; Stark, J.; Wösten, H.A.B.; Dijksterhuis, J.

    2013-01-01

    The transcriptome of conidia of Aspergillus niger was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76–0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (e.g. heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination. PMID:23449598

  8. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  9. Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identity of nine clinical isolates from Czech patients presumably belonging to Aspergillus section Candidi based on morphology of colonies was revised using sequences of ß-tubulin, calmodulin, and internal transcribed spacer (ITS) rDNA. The set of isolates included six isolates from suspected (n...

  10. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    SciTech Connect

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.

  11. Comparison of glucose oxidases from Penicillium adametzii, Penicillium Funiculosum and Aspergillus Niger in the design of amperometric glucose biosensors.

    PubMed

    Ramanavicius, Arunas; Voronovic, Jaroslav; Semashko, Tatiana; Mikhailova, Raisa; Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira

    2014-01-01

    The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes. PMID:25492463

  12. Influence of environmental conditions on hyphal morphology in pellets of Aspergillus niger: role of beta-N-acetyl-D-glucosaminidase.

    PubMed

    Pera, L M; Baigorí, M D; Callieri, D

    1999-08-01

    The influence of modifications of the environmental conditions of growth on beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30) activity and on hyphal morphological patterns in pellets of Aspergillus niger was studied. It was found that changes in the degree of branching and, to a lesser extent, in the number of bulbous cells were directly related to the activity of the enzyme. Nevertheless, since beta-N-acetyl-D-glucosaminidase is not the only enzyme involved in the lytic potential of the fungus, these findings do not exclude the possibility that other enzymes may be involved. PMID:10398828

  13. Production and Optimization of Cellulase Enzyme Using Aspergillus niger USM AI 1 and Comparison with Trichoderma reesei via Solid State Fermentation System

    PubMed Central

    Lee, C. K.; Darah, I.; Ibrahim, C. O.

    2011-01-01

    Novel design solid state bioreactor, FERMSOSTAT, had been evaluated in cellulase production studies using local isolate Aspergillus niger USM AI 1 grown on sugarcane bagasse and palm kernel cake at 1 : 1 (w/w) ratio. Under optimised SSF conditions of 0.5 kg substrate; 70% (w/w) moisture content; 30°C; aeration at 4 L/h · g fermented substrate for 5 min and mixing at 0.5 rpm for 5 min, about 3.4 U/g of Filter paper activity (FPase) was obtained. At the same time, comparative studies of the enzymes production under the same SSF conditions indicated that FPase produced by A. niger USM AI 1 was about 35.3% higher compared to Trichoderma reesei. This shows that the performance of this newly designed SSF bioreactor is acceptable and potentially used as prototype for larger-scale bioreactor design. PMID:21350665

  14. Derepressed 2-deoxyglucose-resistant mutants of Aspergillus niger with altered hexokinase and acid phosphatase activity in hyperproduction of beta-fructofuranosidase.

    PubMed

    Ashokkumar, B; Senthilkumar, S R; Gunasekaran, P

    2004-01-01

    Aspergillus niger NRRL330 produces extracellular beta-fructofuranosidase (Ffase), and its production is subject to repression by hexoses in the medium. After ultraviolet mutagenization and selection, seven derepressed mutants resistant to 2-deoxyglucose (2-DG) were isolated on Czapek's minimal medium containing glycerol. One of the mutants, designated DGRA-1, produced higher levels of Ffase. A considerable difference occurred in the mutants with reference to hexokinase and intracellular acid phosphatase activities. The hexokinase activity of the mutant DGRA-1 (0.69 U/mg) was 1.8-fold higher than the wild type (0.38 U/mg). Intracellular acid phosphatase activity of the mutant DGRA-1 (0.83 U/g of mycelia) was twofold higher than that of the wild type (0.42 U/g of mycelia), suggesting that phosphorylation and dephosphorylation steps could attribute to the 2-DG resistance of A. niger. However, additional mutations could account for the increased production of Ffase in the mutant DGRA-1. PMID:15304742

  15. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis

    PubMed Central

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS–PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: kcat = 343 and 727 s−1, Km = 0.25 and 0.16 mg mL−1, kcat/Km (specificity constant) = 1374 and 4510 mg mL−1 s−1, respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme. PMID:24293795

  16. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation

    PubMed Central

    Ibrahim, Darah; Weloosamy, Haritharan; Lim, Sheh-Hong

    2015-01-01

    AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger (A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 mL of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/mL suspension and incubated at 30 °C with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper (Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 °C until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope. RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed (150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/mL. There were significant different (Duncan, P < 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the

  17. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.

    PubMed

    Xiao, Chunqiao; Zhang, Huaxiang; Fang, Yujuan; Chi, Ruan

    2013-01-01

    A strain WHAK1, identified as Aspergillus niger, was isolated from Yichang phosphate mines in Hubei province of China. The fungus developed a phosphate solubilization zone on modified National Botanical Research Institute's phosphate growth (NBRIP) agar medium, supplemented with tricalcium phosphate. The fungus was applied in a repeated-batch fermentation process in order to test its effect on solubilization of rock phosphate (RP). The results showed that A. niger WHAK1 could effectively solubilize RP in NBRIP liquid medium and released soluble phosphate in the broth, which can be illustrated by the observation of scanning electron microscope, energy-dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. Acidification of the broth seemed to be the major mechanism for RP solubilization by the fungus. Indeed, multiple organic acids (mainly gluconic acid) were detected in the broth by high-performance liquid chromatography analysis. These organic acids caused a significant drop of pH and an obvious rise of titratable acidity in the broth. The fungus also exhibited high levels of tolerance against temperature, pH, salinity, and desiccation stresses, although a significant decline in the fungal growth and release of soluble phosphate was marked under increasing intensity of stress parameters. Further, the fungus was introduced into the soil supplemented with RP to analyze its effect on plant growth and phosphate uptake of wheat plants. The result revealed that inoculation of A. niger WHAK1 significantly increased the growth and phosphate uptake of wheat plants in the RP-amended soil compared to the control soil. PMID:23229476

  18. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs.

    PubMed

    Shi, Changyou; He, Jun; Wang, Jianping; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-04-01

    The aim of the present study was to investigate the influences of Aspergillus niger fermented rapeseed meal (FRSM) on growth performance and nutrient digestibility of growing pigs. A total of 72 growing pigs (body weight = 40.8 ± 2.1 kg) were used in feeding trials, lasting for up to 42 days, and were randomly allotted to one of three diets, including a corn-soybean meal control diet as well as two experimental diets containing 10% unfermented rapeseed meal (RSM) or 10% FRSM. The results showed that average daily gain and feed conversion ratio of pigs fed FRSM were superior (P < 0.05) to that of pigs fed unfermented RSM and did not differ from the control. Pigs fed control diet had higher (P < 0.05) total tract apparent digestibility for dry matter, protein, calcium and phosphorus than pigs fed unfermented RSM diet and did not differ from the FRSM diet. Pigs fed FRSM had lower levels (P < 0.05) of serum aspartate transaminase compared to unfermented RSM. In conclusion, solid state fermentation using Aspergillus niger may improve the growth performance and nutrient digestibility of RSM for pigs and FRSM is a promising alternative protein for pig production. PMID:26434567

  19. Microbial conversion of ginsenoside Rd from Rb1 by the fungus mutant Aspergillus niger strain TH-10a.

    PubMed

    Feng, Li; Xu, Chunchun; Li, Zhuo; Li, Jing; Dai, Yulin; Han, Hongxiang; Yu, Shanshan; Liu, Shuying

    2016-05-18

    Ginsenoside Rd, one of the ginsenosides with significant pharmaceutical activities, is getting more and more attractions on its biotransformation. In this study, a novel fungus mutant, the Aspergillus niger strain TH-10a, which can efficiently convert ginsenoside Rd from Rb1, was obtained through screening survival library of LiCl and ultraviolet (UV) irradiation. The transformation product ginsenoside Rd, generated by removing the outer glucose residue from the position C20 of ginsenoside Rb1, was identified through high-performance liquid chromatography (HPLC) analysis. Factors for the microbial culture and biotransformation were investigated in terms of the carbon sources, the nitrogen sources, pH values, and temperatures. This showed that maximum mycelia growth could be obtained at 28°C and pH 6.0 with cellobiose and tryptone as the carbon source and the nitrogen source, respectively. The highest transformation rate (∼86%) has been achieved at 32°C and pH 5.0 with the feeding time of substrate 48 hr. Also, Aspergillus niger strain TH-10a could tolerate even 40 mg/mL ginseng root extract as substrate with 60% bioconversion rate after 72 hr of treatment at the optimal condition. Our results highlight a novel ginsenoside Rd transformation fungus and illuminate its potentially practical application in the pharmaceutical industries. PMID:25831478

  20. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system.

    PubMed

    Velasco-Alvarez, Nancy; González, Ignacio; Damian-Matsumura, Pablo; Gutiérrez-Rojas, Mariano

    2011-01-01

    The effects of an electric current on growth and hexadecane (HXD) degradation by Aspergillus niger growth were determined. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15 g of perlite (inert biomass support) was inoculated with A. niger (2.0×10(7) spores (g of dry inert support)(-1)) and incubated for 12 days (30 °C; constant ventilation). 4.5 days after starting culture a current of 0.42 mA cm(-2) was applied for 24h. The current reduced (52±11%) growth of the culture as compared to that of a culture not exposed to current. However, HXD degradation was 96±1.4% after 8 days whereas it was 81±1.2% after 12 days in control cultures. Carbon balances of cultures not exposed to current suggested an assimilative metabolism, but a non-assimilative metabolism when the current was applied. This change can be related to an increase in total ATP content. The study contributes to the knowledge on the effects of current on the mycelial growth phase of A. niger, and suggests the possibility of manipulating the metabolism of this organism with electric current. PMID:20739180

  1. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.

    PubMed

    Vakilchap, F; Mousavi, S M; Shojaosadati, S A

    2016-10-01

    Annual worldwide growth rate of red mud (RM) as a hazardous waste has caused serious environmental problems for its disposal in the mining and metallurgy industries. Accordingly, the aim of this study was to investigate biological leaching of RM and recovery of metals using organic acids exerted by Aspergillus niger. Experiments using A. niger were conducted in batch cultures with a pulp density of 2% (w/v) RM under one-step, two-step and spent-medium bioleaching. Based on HPLC results, the major lixiviant was the secretion of organic acids (citric, gluconic, oxalic and malic) by A. niger. Leaching efficiency of metals in the one-step process was the highest and the amounts of leached metals were 69.8%, 60% and 25.4% for Al, Ti and Fe, respectively. The fungal leaching technique demonstrated an adequate recovery of metals, with an efficient and cost-effective means and respect to a reuse of RM for economic and environmental purposes. PMID:27450129

  2. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  3. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    PubMed

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry. PMID:25039056

  4. Biosorption and solubilization of copper oxychloride fungicide by Aspergillus niger and the influence of calcium.

    PubMed

    Gharieb, Mohammed M

    2002-01-01

    The biosorption of copper oxychloride fungicide particulates (approximately 1 microm diameter), at concentrations ranging from 25 to 500 ppm active ingredient (ai), by pelleted mycelium of Aspergillus niger grown on Czapek Dox medium was evaluated. The concentration of the fungicide adsorbed to the mycelium, remaining suspended or solubilized in the medium, was determined by analysis of its copper content (CuF) using atomic absorption spectrophotometry (AAS). 2-day-old pellets exhibited high biosorption efficiency ranging from 97 +/- 1.0 to 88 +/- 1.2% of the initially added fungicide concentrations, respectively, within 10 min. However, under the same conditions, amounts of the removed fungicide by 6-day-old mycelial pellets were significantly lower and ranged from 0.5 +/- 0.03 to 0.15 +/- 0.01%. Scanning electron microscopy studies of 2-day-old pellets supplemented with the fungicide revealed predominant aggregations of clumps and dense particulates on the hyphal tips. The adsorbed CuF of 125 ppm ai fungicide subsequently decreased from 7.5 +/- 0.5 to 2.1 +/- 0.1 micromol Cu (mg dry wt)(-1) after 12 h incubation. Simultaneously, the soluble portion of CuF remaining in the medium increased from 0.9 +/- 0.6 to 4.9 +/- 0.2 micromol Cu ml(-1). The presence of 50 mM CaCl2 resulted in a decrease of the adsorbed CuF to 3.5 +/- 0.5 micromol Cu (mg dry wt)(-1) and solubilized copper in the medium increased to 5.9 +/- 0.8 micro mol Cu ml(-1). Additionally, the cellular copper contents attained after 2 h were 0.08 +/- 0.01 and 0.16 +/- 0.007 micromol Cu (mg dry wt)(-1) in absence and presence of calcium, respectively. The addition of calcium to glucose-starved pellets greatly increased the medium [H+] which was conclusively discussed in relation to Ca2+/H+ exchange capacity of the fungal cells. These results are of potential environmental, biotechnological and agricultural importance. PMID:12498216

  5. Production of β-Glucosidase from a Newly Isolated Aspergillus Species Using Response Surface Methodology

    PubMed Central

    Vaithanomsat, Pilanee; Songpim, Molnapat; Malapant, Taweesiri; Kosugi, Akihiko; Thanapase, Warunee; Mori, Yutaka

    2011-01-01

    A newly isolated fungus Aspergillus niger SOI017 was shown to be a good producer of β-glucosidase from all isolated fungal strains. Fermentation condition (pH, cellobiose concentration, yeast extract concentration, and ammonium sulfate concentration) was optimized for producing the enzyme in shake flask cultures. Response surface methodology was used to investigate the effects of 4 fermentation parameters (yeast extract concentration, cellobiose concentration, ammonium sulfate concentration, and pH) on β-glucosidase enzyme production. Production of β-glucosidase was most sensitive to the culture medium, especially the nitrogen source yeast extract. The optimized medium for producing maximum β-glucosidase specific activity consisted of 0.275% yeast extract, 1.125% cellobiose, and 2.6% ammonium sulfate at a pH value of 3. PMID:21716658

  6. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  7. Impact of Assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  8. Altering the Substrate Specificity Site of Aspergillus Niger PhyB shifts the pH optimum to pH 3.2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytases are of biotechnological importance as animal feed additives for their ability to catalyze the hydrolysis of phosphate from phytate for absorption by simple-stomached animals, and to reduce their fecal phosphorus excretion. Aspergillus niger PhyB has high catalytic activity at low pHs around...

  9. Correlation of Mycotoxin Fumonisin B2 Production and Presence of the Fumonisin Biosynthetic Gene fum8 in Aspergillus niger from Grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins associated with cancer and several other serious diseases in humans and animals. Production of the mycotoxins has been reported for over two decades in Fusarium species, but has been reported only recently in strains of Aspergillus niger. In addition, a homologue of the f...

  10. The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus niger through Intracellular Acidification

    PubMed Central

    Plumridge, Andrew; Hesse, Stephan J. A.; Watson, Adrian J.; Lowe, Kenneth C.; Stratford, Malcolm; Archer, David B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth. PMID:15184150

  11. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    SciTech Connect

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  12. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone

    PubMed Central

    Chiang, Yi-Ming; Meyer, Kristen M.; Praseuth, Michael; Baker, Scott E.; Bruno, Kenneth S.; Wang, Clay C. C.

    2011-01-01

    The genome sequencing of the fungus Aspergillus niger uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene we name albA is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of the naphtho-γ-pyrone precursor for the 1,8-dihydroxynaphthalene (DHN) melanin/spore pigment. Our results show that the A. nigeralbA PKS is responsible for both the production of the spore pigment precursor and a family of naphtho-γ-pyrones commonly found in significant quantity in A. niger culture extracts. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism. PMID:21176790

  13. Diversity of black Aspergilli isolated from raisins in Argentina: Polyphasic approach to species identification and development of SCAR markers for Aspergillus ibericus.

    PubMed

    Giaj Merlera, G; Muñoz, S; Coelho, I; Cavaglieri, L R; Torres, A M; Reynoso, M M

    2015-10-01

    Aspergillus section Nigri is a heterogeneous fungal group including some ochratoxin A producer species that usually contaminate raisins. The section contains the Series Carbonaria which includes the toxigenic species Aspergillus carbonarius and nontoxigenic Aspergillus ibericus that are phenotypically undistinguishable. The aim of this study was to examine the diversity of black aspergilli isolated from raisins and to develop a specific genetic marker to distinguish A. ibericus from A. carbonarius. The species most frequently found in raisins in this study were Aspergillus tubingensis (35.4%) and A. carbonarius (32.3%), followed by Aspergillus luchuensis (10.7%), Aspergillus japonicus (7.7%), Aspergillus niger (6.2%), Aspergillus welwitschiae (4.6%) and A. ibericus (3.1%). Based on inter-simple sequence repeat (ISSR) fingerprinting profiles of major Aspergillus section Nigri members, a sequence-characterized amplified region (SCAR) marker was identified. Primers were designed based on the conserved regions of the SCAR marker and were utilized in a PCR for simultaneous identification of A. carbonarius and A. ibericus. The detection level of the SCAR-PCR was found to be 0.01 ng of purified DNA. The present SCAR-PCR is rapid and less cumbersome than conventional identification techniques and could be a supplementary strategy and a reliable tool for high-throughput sample analysis. PMID:26114593

  14. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.

    PubMed

    Yin, Zhongwei; Shi, Fachao; Jiang, Hongmei; Roberts, Daniel P; Chen, Sanfeng; Fan, Bingquan

    2015-12-01

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere, as the overapplication of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in China that had been exposed to excessive application of phosphatic fertilizer for decades. Each isolate excreted a number of organic acids into, acidified, and solubilized phosphorus in a synthetic broth containing insoluble tricalcium phosphate or rock phosphate. Isolate P4, applied as a seed treatment, increased maize fresh mass per plant when rock phosphate was added to the calcareous soil in greenhouse pot studies. Isolate P85 did not increase maize fresh mass per plant but did significantly increase total phosphorus per plant when rock phosphate was added. Significant increases in 7 and 4 organic acids were detected in soil in association with isolates P4 and P85, respectively, relative to the soil-only control. The quantity and (or) number of organic acids produced by these isolates increased when rock phosphate was added to the soil. Both isolates also significantly increased available phosphorus in soil in the presence of added rock phosphate and effectively colonized the maize rhizosphere. Studies reported here indicate that isolate P4 is adapted to and capable of promoting maize growth in a calcareous soil. Plant-growth promotion by this isolate is likely due, at least in part, to increased phosphorus availability resulting from the excretion of organic acids into, and the resulting acidification of, this soil. PMID:26469739

  15. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate

    PubMed Central

    2010-01-01

    Background The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. Results The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and glucoamylase (multiple spots) was

  16. Characterization of toxigenic and atoxigenic Aspergillus flavus isolates from pistachio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty eight Aspergillus flavus isolates collected from a pistachio orchard in California were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs) and mating types. All toxigenic isolates produced both AFB1 and CPA. Twenty-one percent of the i...

  17. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    PubMed

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  18. [Effect of alcoholic extracts of wild plants on the inhibition of growth of Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme and Fusarium poae moulds].

    PubMed

    Tequida-Meneses, Martín; Cortez-Rocha, Mario; Rosas-Burgos, Ema Carina; López-Sandoval, Susana; Corrales-Maldonado, Consuelo

    2002-06-01

    Fungicidal activity of wild plants Larrea tridentata, Karwinskia humboldtiana, Ricinus communis, Eucalyptus globulus, Ambrosia ambrosioides, Nicotiana glauca, Ambrosia confertiflora, Datura discolor, Baccharis glutinosa, Proboscidea parviflora, Solanum rostratum, Jatropha cinerea, Salpianthus macrodonthus y Sarcostemma cynanchoides was evaluated against the moulds species Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium poae y Fusarium moniliforme moulds species. Alcoholic extracts 6% (w/v) were prepared using six grams of dried plant powders (leaves and stems) and alcohol (70% ethanol or 70% methanol). A spore suspension (1x10(6); ufc/ml) of each mould was prepared by adding saline solution (0.85%) and 0.1% tween 80. The extracts were mixed with Czapeck yeast agar (CYA) at 45-50 degrees C in 1:10 relation on Petri dishes. Triplicate Petri dishes of each treatment and for each mould were centrally inoculated and three Petri dishes were used without treatment as controls. The inoculated dishes and controls were incubated at 25 +/- 2 degrees C for eight days. The incubated dishes were examined each 48 h and after the colony diameter (radial growth) was measured. Two mould species were controlled by L. tridentata, B. glutinosa and P. parviflora. Extracts of L. tridentata in methanol or ethanol at 41.5-100% inhibited all six species of moulds. PMID:12828509

  19. Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611.

    PubMed

    Dorta, Claudia; Cruz, Rubens; de Oliva-Neto, Pedro; Moura, Danilo José Camargo

    2006-12-01

    Different concentrations of sucrose (3-25% w/v) and peptone (2-5% w/v) were studied in the formulation of media during the cultivation of Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Moreover, cane molasses (3.5-17.5% w/v total sugar) and yeast powder (1.5-5% w/v) were used as alternative nutrients for both strains' cultivation. These media were formulated for analysis of cellular growth, beta-Fructosyltransferase and Fructooligosaccharides (FOS) production. Transfructosylating activity (U ( t )) and FOS production were analyzed by HPLC. The highest enzyme production by both the strains was 3% (w/v) sucrose and 3% (w/v) peptone, or 3.5% (w/v) total sugars present in cane molasses and 1.5% (w/v) yeast powder. Cane molasses and yeast powder were as good as sucrose and peptone in the enzyme and FOS (around 60% w/w) production by studied strains. PMID:16835781

  20. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    PubMed Central

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes. PMID:25763058

  1. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    PubMed

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications. PMID:26724553

  2. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  3. Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast.

    PubMed

    Jin, Shuang; Luo, Meng; Wang, Wei; Zhao, Chun-jian; Gu, Cheng-bo; Li, Chun-ying; Zu, Yuan-gang; Fu, Yu-jie; Guan, Yue

    2013-05-01

    A new biotransformation method of producing resveratrol with co-immobilized edible Aspergillus niger and Yeast (AY) was investigated. The biotransformation conditions were optimized for the resveratrol production under 30 °C, pH 6.5, 2 days, liquid-solid ratio 12:1 (mL/g), the yield of resveratrol reached 33.45 mg/g, which increased 11-fold to that of untreated one. The conversion rate of polydatin reached 96.7%. The residual activity of immobilized microorganism was 83.2% after used for 15 runs. The developed method could be an effectively alternative biotransformation method for producing resveratrol from the plants. PMID:23566471

  4. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

    PubMed Central

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M.

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology. PMID:25937979

  5. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting.

    PubMed

    Nasir, Nurfarahana Mohd; Bakar, Nur Syuhada Abu; Lananan, Fathurrahman; Abdul Hamid, Siti Hajar; Lam, Su Shiung; Jusoh, Ahmad

    2015-08-01

    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment. PMID:25791330

  6. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus.

    PubMed

    Prathumpai, Wai; Flitter, Simon J; McIntyre, Mhairi; Nielsen, Jens

    2004-11-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y(xp total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7+/-0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3+/-0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60+/-0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10+/-0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall. PMID:15316684

  7. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger

    SciTech Connect

    Atkin, Kate E.; Reiss, Renate; Turner, Nicholas J.; Brzozowski, Andrzej M.; Grogan, Gideon

    2008-03-01

    Crystals of A. niger monoamine oxidase variants display P2{sub 1} or P4{sub 1}2{sub 1}2/P4{sub 3}2{sub 1}2 symmetry, with eight or two molecules in the asymmetric unit, respectively. Monoamine oxidase from Aspergillus niger (MAO-N) is an FAD-dependent enzyme that catalyses the conversion of terminal amines to their corresponding aldehydes. Variants of MAO-N produced by directed evolution have been shown to possess altered substrate specificity. Crystals of two of these variants (MAO-N-3 and MAO-N-5) have been obtained; the former displays P2{sub 1} symmetry with eight molecules per asymmetric unit and the latter has P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 symmetry and two molecules per asymmetric unit. Solution of these structures will help shed light on the molecular determinants of improved activity and high enantioselectivity towards a broad range of substrates.

  8. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger

    PubMed Central

    2014-01-01

    Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared. PMID:24949267

  9. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  10. Increased Hepatitis B surface antigen production by recombinant Aspergillus niger through the optimization of agitation and dissolved oxygen concentration.

    PubMed

    James, Emmanuel R; van Zyl, Willem H; Görgens, Johann F

    2007-05-01

    The capacity of the filamentous fungi Aspergillus niger to produce and assemble complex immunogenic viral proteins into virus-like particles (VLPs) in batch culture was enhanced by optimizing the bioprocessing parameters, agitation intensity and dissolved oxygen (dO(2)) concentration. Response surface methodology (RSM) and a two-factor-two-level central composite rotatable design (CCRD) were employed to evaluate the interactive response pattern between parameters and their optimum combination. The recombinant hepatitis B surface antigen (HBsAg) was used as a model VLP system to determine the effect of these parameters on biomass yield, fungal morphology, HBsAg production and bioreactor kinetics. The response surface model predicted optimum cultivation conditions at an agitation of rate of 100 rpm and a dO(2) concentration of 25%, obtaining highest intracellular membrane-associated HBsAg levels of [see text]. HBsAg production levels were increased tenfold compared to yields obtained in shake flask cultivation. Although hepatitis B VLPs mostly accumulated intracellularly, optimal bioreactor conditions resulted in significant HBsAg release in culture supernatant. These results compare favourably with other recombinant VLP systems in batch culture, and therefore, indicate a substantial potential for further engineering of the A. niger production system for the high level of intracellular and extracellular VLP production. PMID:17308907

  11. Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger.

    PubMed Central

    Meixner-Monori, B; Kubicek, C P; Habison, A; Kubicek-Pranz, E M; Röhr, M

    1985-01-01

    alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger. PMID:3968029

  12. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    PubMed

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction. PMID:18401753

  13. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain.

    PubMed

    Helal, G A; Sarhan, M M; Abu Shahla, A N K; Abou El-Khair, E K

    2006-01-01

    The mycelial growth of Aspergillus niger van Tieghem was completely inhibited using 1.5 (microl/ml or 2.0 (microl/ml of Cymbopogon citratus essential oil applied by fumigation or contact method in Czapek liquid medium, respectively. This oil was found also to be fungicidal at the same concentrations. The sublethal doses 1.0 and 1.5 (microl/ml inhibited about 70% of fungal growth after five days of incubation and delayed conidiation as compared with the control. Microscopic observations using Light Microscope (LM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were carried out to determine the ultra structural modifications of A. niger hyphae after treatment with C. citratus essential oil. The hyphal diameter and hyphal wall appeared markedly thinner. This oil also caused plasma membrane disruption and mitochondrial structure disorganization. Moreover, Ca+2, K+ and Mg+2 leakages increased from the fumigated mycelium and its total lipid content decreased, while the saturated fatty acids decreased and unsaturated fatty acids increased. These findings increase the possibility of exploiting C. citratus essential oil as an effective inhibitor of biodegrading and storage contaminating fungi and in fruit juice preservation. PMID:17139611

  14. Investigating the expression of F10 and G11 xylanases in Aspergillus niger A09 with qPCR.

    PubMed

    Cui, Shixiu; Wang, Tianwen; Hu, Hong; Liu, Liangwei; Song, Andong; Chen, Hongge

    2016-09-01

    There exist significant differences between the 2 main types of xylanases, family F10 and G11. A clear understanding of the expression pattern of microbial F10 and G11 under different culture conditions would facilitate better production and industrial application of xylanase. In this study, the fungal xylanase producer Aspergillus niger A09 was systematically investigated in terms of induced expression of xylanase F10 and G11. Results showed that carbon and nitrogen sources could influence xylanase F10 and G11 transcript abundance, with G11 more susceptible to changes in culture media composition. The most favorable carbon and nitrogen sources for high G11 and low F10 production by A. niger A09 were xylan (2%) and (NH4)2C2O4 (0.3%), respectively. Following cultivation at 33 °C for 60 h, the highest xylanase activity (1132 IU per gram of wet mycelia) was observed. On the basis of differential gene expression of F10 and G11, as well as their different properties, we deduced that the F10 protein initially targeted xylan and hydrolyzed it into fragments including xylose, after which xylose acted as the inducer of F10 and G11 gene expression. These speculations also accounted for our failure to identify conditions favoring the high production of F10 but a low production of G11. PMID:27348293

  15. Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger.

    PubMed

    de Billerbeck, V G; Roques, C G; Bessière, J M; Fonvieille, J L; Dargent, R

    2001-01-01

    The growth inhibitory effect of Cymbopogon nardus (L.) W. Watson var. nurdus essential oil on Aspergillus niger (Van Tieghem) mycelium was determined on agar medium. The mycelium growth was completely inhibited at 800 mg/L. This concentration was found to be lethal under the test conditions. Essential oil at 400 mg/L caused growth inhibition of 80% after 4 days of incubation, and a delay in conidiation of 4 days compared with the control. Microscopic observations were carried out to determine the ultrastructural modifications of A. niger hyphae after treatment with C. nardus essential oil. The main change observed by transmission electron microscopy concerned the hyphal diameter and the hyphal wall, which appeared markedly thinner. These modifications in cytological structure might be caused by the interference of the essential oil with the enzymes responsible for wall synthesis which disturb normal growth. Moreover, the essential oil caused plasma membrane disruption and mitochondrial structure disorganization. The findings thus indicate the possibility of exploiting Cymbopogon nardus essential oil as an effective inhibitor of biodegrading and storage-contaminating fungi. PMID:15049444

  16. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger.

    PubMed

    Kuivanen, Joosu; Dantas, Hugo; Mojzita, Dominik; Mallmann, Edgar; Biz, Alessandra; Krieger, Nadia; Mitchell, David; Richard, Peter

    2014-01-01

    Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared. PMID:24949267

  17. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungus Aspergillus niger.

    PubMed

    Burggraaf, Anne-Marie; Punt, Peter J; Ram, Arthur F J

    2016-08-01

    During unconventional protein secretion (UPS), proteins do not pass through the classical endoplasmic reticulum (ER)-Golgi-dependent pathway, but are transported to the cell membrane via alternative routes. One type of UPS is dependent on several autophagy-related (Atg) proteins in yeast and mammalian cells, but mechanisms for unconventional secretion are largely unknown for filamentous fungi. In this study, we investigated whether the autophagy machinery is used for UPS in the filamentous fungus Aspergillus niger An aspartic protease, which we called PepN, was identified as being likely to be secreted unconventionally, as this protein is highly abundant in culture filtrates during carbon starvation while it lacks a conventional N-terminal secretion sequence. We analysed the presence of PepN in the culture filtrates of carbon starved wild-type, atg1 and atg8 deletion mutant strains by Western blot analysis and by secretome analysis using nanoLC-ESI-MS/MS (wild-type and atg8 deletion mutant). Besides the presence of carbohydrate-active enzymes and other types of proteases, PepN was abundantly found in culture filtrates of both wild-type and atg deletion strains, indicating that the secretion of PepN is independent of the autophagy machinery in A. niger and hence most likely occurs via a different mechanism. PMID:27284019

  18. Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product.

    PubMed

    Gu, Yanling; Xu, Weihua; Liu, Yunguo; Zeng, Guangming; Huang, Jinhui; Tan, Xiaofei; Jian, Hao; Hu, Xi; Li, Fei; Wang, Dafei

    2015-04-01

    Bioremediation of hexavalent chromium by Aspergillus niger was attributed to the reduction product (trivalent chromium) that could be removed in precipitation and immobilized inside the fungal cells and on the surface of mycelium. The site location of reduction was conducted with assays of the permeabilized cells, cell-free extracts, and cell debris, which confirmed that the chromate reductase was mainly located in the soluble fraction of cells. The oxidation-reduction process was accompanied by the increase of reactive oxygen species and antioxidant levels after hexavalent chromium treatment. Michaelis-Menten constant (K(m)) and maximum reaction rate (V(max)), obtained from the Lineweaver-Burk plot were 14.68 μM and 434 μM min(-1) mg(-1) of protein, respectively. Scanning electron microscopy and Raman spectra analyses manifested that both Cr(VI) and Cr(III) species were present on the mycelium. Fourier transform-infrared spectroscopy analysis suggested that carboxyl, hydroxide, amine, amide, cyano-group, and phosphate groups from the fungal cell wall were involved in chromium binding by the complexation with the Cr(III) and Cr(VI) species. A Cr(VI) removal mechanism of Cr(VI) reduction followed by the surface immobilization and intracellular accumulation of Cr(III) in living A. niger was present. PMID:25408081

  19. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate

    PubMed Central

    Mrudula, Soma; Murugammal, Rangasamy

    2011-01-01

    Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF. PMID:24031730

  20. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on Escherichia coli.

    PubMed

    Ninganagouda, Shivaraj; Rathod, Vandana; Singh, Dattu; Hiremath, Jyoti; Singh, Ashish Kumar; Mathew, Jasmine; ul-Haq, Manzoor

    2014-01-01

    Silver Nanoparticles (AgNPs), the real silver bullet, are known to have good antibacterial properties against pathogenic microorganisms. In the present study AgNPs were prepared from extracellular filtrate of Aspergillus niger. Characterization of AgNPs by UV-Vis spectrum reveals specific surface plasmon resonance at peak 416 nm; TEM photographs revealed the size of the AgNPs to be 20-55 nm. Average diameter of the produced AgNPs was found to be 73 nm with a zeta potential that was -24 mV using Malvern Zetasizer. SEM micrographs showed AgNPs to be spherical with smooth morphology. EDS revealed the presence of pure metallic AgNPs along with carbon and oxygen signatures. Of the different concentrations (0, 2.5, 5, 10, and 15 μg/mL) used 10 μg/mL were sufficient to inhibit 10(7) CFU/mL of E. coli. ROS production was measured using DCFH-DA method and the the free radical generation effect of AgNPs on bacterial growth inhibition was investigated by ESR spectroscopy. This paper not only deals with the damage inflicted on microorganisms by AgNPs but also induces cell death through the production of ROS released by AgNPs and also growth kinetics of E. coli supplemented with AgNPs produced by A. niger. PMID:25028666

  1. Growth Kinetics and Mechanistic Action of Reactive Oxygen Species Released by Silver Nanoparticles from Aspergillus niger on Escherichia coli

    PubMed Central

    Ninganagouda, Shivaraj; Rathod, Vandana; Singh, Dattu; Hiremath, Jyoti; Singh, Ashish Kumar; Mathew, Jasmine; ul-Haq, Manzoor

    2014-01-01

    Silver Nanoparticles (AgNPs), the real silver bullet, are known to have good antibacterial properties against pathogenic microorganisms. In the present study AgNPs were prepared from extracellular filtrate of Aspergillus niger. Characterization of AgNPs by UV-Vis spectrum reveals specific surface plasmon resonance at peak 416 nm; TEM photographs revealed the size of the AgNPs to be 20–55 nm. Average diameter of the produced AgNPs was found to be 73 nm with a zeta potential that was −24 mV using Malvern Zetasizer. SEM micrographs showed AgNPs to be spherical with smooth morphology. EDS revealed the presence of pure metallic AgNPs along with carbon and oxygen signatures. Of the different concentrations (0, 2.5, 5, 10, and 15 μg/mL) used 10 μg/mL were sufficient to inhibit 107 CFU/mL of E. coli. ROS production was measured using DCFH-DA method and the the free radical generation effect of AgNPs on bacterial growth inhibition was investigated by ESR spectroscopy. This paper not only deals with the damage inflicted on microorganisms by AgNPs but also induces cell death through the production of ROS released by AgNPs and also growth kinetics of E. coli supplemented with AgNPs produced by A. niger. PMID:25028666

  2. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    PubMed Central

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co2+, increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  3. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment.

    PubMed

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co(2+), increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  4. Secretory expression and purification of Aspergillus niger glucose oxidase in Saccharomyces cerevisiae mutant deficient in PMR1 gene.

    PubMed

    Ko, Ji-Hyun; Hahm, Moon Sun; Kang, Hyun Ah; Nam, Soo Wan; Chung, Bong Hyun

    2002-08-01

    The gene encoding glucose oxidase (GOD) from Aspergillus niger was expressed as a secretory product in the yeast Saccharomyces cerevisiae. Six consecutive histidine residues were fused to the C-terminus of GOD to facilitate purification. The recombinant GOD-His(6) secreted by S. cerevisiae migrated as a broad diffuse band on SDS-PAGE, with an apparent molecular weight higher than that in natural A. niger GOD. To investigate the effects of hyperglycosylation on the secretion efficiency and enzyme properties, GOD-His(6) was expressed and secreted in a S. cerevisiae mutant in which the PMR1 gene encoding Ca(++)-ATPase was disrupted. The pmr1 null mutant strain secreted an amount of GOD-His(6) per unit cell mass higher than that in the wild-type strain. In contrast to the hyperglycosylated GOD-His(6) secreted in the wild-type strain, the pmr1 mutant strain secreted GOD-His(6) in a homogeneous form with a protein band pattern similar to that in natural A. niger GOD, based on SDS-PAGE. The hyperglycosylated and pmr1Delta mutant-derived GOD-His(6) enzymes were purified to homogeneity by immobilized metal ion-affinity chromatography and their specific activities and stabilities were compared. The specific activity of the pmr1Delta mutant-derived GOD-His(6) on a protein basis was very similar to that of the hyperglycosylated GOD-His(6), although its pH and thermal stabilities were lower than those of the hyperglycosylated GOD-His(6). PMID:12182830

  5. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    PubMed

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed. PMID:17496125

  6. The 53-kDa proteolytic product of precursor starch-hydrolyzing enzyme of Aspergillus niger has Taka-amylase-like activity.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2007-04-01

    The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions. PMID:17123073

  7. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods.

    PubMed

    Brady, R L; Brzozowski, A M; Derewenda, Z S; Dodson, E J; Dodson, G G

    1991-08-01

    The crystal structure of Aspergillus niger acid alpha-amylase was solved by a combination of multiple isomorphous replacement and molecular replacement methods. The atomic coordinates of Aspergillus oryzae (TAKA) alpha-amylase (entry 2TAA in the Protein Data Bank) and experimental diffraction data from a new monoclinic crystal form of TAKA alpha-amylase, were used during the procedure. Sequence identity between the two proteins is approximately 80%. The atomic parameters derived from the molecular replacement solution were too inaccurate to initiate least-squares crystallographic refinement. The molecular model was extensively revised against the experimental electron density map calculated at 3 A resolution. Subsequent crystallographic refinement of this model using synchrotron data to 2.1 A resolution led to a conventional R factor of 16.8%. The structure conforms well to expected stereochemistry with bond lengths deviating from target values by 0.031 A, and planar groups showing a root-mean-square deviation from ideal planes of 0.025 A. PMID:1930834

  8. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger

    PubMed Central

    Delmas, Stéphane; Ibbett, Roger; Kokolski, Matthew; Neiteler, Almar; van Munster, Jolanda M; Wilson, Raymond; Blythe, Martin J; Gaddipati, Sanyasi; Tucker, Gregory A; Archer, David B

    2015-01-01

    Background Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. Results In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw

  9. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    PubMed Central

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens C.; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F.J.

    2015-01-01

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations. PMID:26566947

  10. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    SciTech Connect

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens C.; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F. J.

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  11. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts.

    PubMed

    Gonçalves, Juliana Soares; Ferracin, Lara Munique; Carneiro Vieira, Maria Lucia; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Pelegrinelli Fungaro, Maria Helena

    2012-04-01

    Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within β-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles. PMID:22805966

  12. Verruculogen production in airborne and clinical isolates of Aspergillus fumigatus Fres.

    PubMed

    Kosalec, Ivan; Klarić, Maja Segvić; Pepeljnjak, Stjepan

    2005-12-01

    Among airborne aspergilli sampled in outdoor air of the Zagreb area (2002/2003), Aspergillus niger (v. Teigh.) and A. fumigatus (Fres.) were the most abundant species (20-30%), with low mean annual concentrations (0.21-1.04 CFU m-3). Higher concentrations of A. fumigatus were observed in autumn and winter (0.5-1.05 CFU m-3) than in spring and summer (0-0.4 CFU m-3). On the other hand, A. fumigatus was found to be the most frequent isolate from upper and/or lower respiratory tracts of imunocompromised patients in many studies. This species produces several mycotoxins, including the tremorgenic mycotoxin verruculogen that can be found in spores and during myceliar growth. Verruculogen production ability was tested on 30 airborne and 33 clinical isolates of A. fumigatus. In both groups, high percentage of verruculogen-producing strains was noticed (84% of airborne and 91% of clinical isolates). Verruculogen production was not significantly different in the groups of airborne isolates (0.34+/-0.16 mg mL-1), and clinical isolates (0.26+/-0.19 mg mL-1). PMID:16375825

  13. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2.

    PubMed

    Li, Xiaolong; Luo, Lijin; Yang, Jinshui; Li, Baozhen; Yuan, Hongli

    2015-03-01

    Mechanisms for solubilization of different types of phosphates and activation of immobilized phosphates in different types of soils by an efficient fungal strain An2 were explored and evaluated in this study. An2 was isolated from a Chinese cabbage rhizosphere soil and identified as Aspergillus niger. It could fast release up to 1722, 2066, and 2356 mg L(-1) of soluble phosphorus (P) from 1 % Ca3(PO4)2, Mg3(PO4)2, and AlPO4 (Ca-P, Mg-P, and Al-P) and 215 and 179 mg L(-1) from 0.5 % FePO4 and rock phosphate (Fe-P and RP), respectively. HPLC assay demonstrated that An2 mainly secreted oxalic acid to solubilize Ca-P, Mg-P, Al-P, and Fe-P whereas secreted tartaric acid to solubilize RP. Furthermore, An2 could tolerate salinity up to 4 % NaCl without impairing its phosphate-solubilizing ability. The simulation experiments validated that An2 was able to effectively activate immobilized phosphates in general calcareous, acidic, as well as saline-alkali soils with high total P content. This study shows new insights into the mechanisms for microbial solubilization of different types of phosphates and supports the future application of strain An2 in different types of soils to effectively activate P for plants. PMID:25561059

  14. Incidence of fumonisin B2 production within Aspergillus section Nigri populations isolated from California raisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi belonging to Aspergillus section Nigri occur frequently and in high populations on grapes. Species within this section include A. niger, A. tubingensis, and A. carbonarius, and are potential sources for mycotoxins including ochratoxin A and fumonisin B2 (FB2) in grapes and grape products. As...

  15. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris.

    PubMed

    Han, Y; Lei, X G

    1999-04-01

    Economical and thermostable phytase enzymes are needed to release phytate-phosphorus in plant foods for human and animal nutrition and to reduce phosphorus pollution of animal waste. Our objectives were to determine if a methylotrophic yeast, Pichia pastoris, was able to express a phytase gene (phyA) from Aspergillus niger efficiently and if suppression of glycosylation by tunicamycin affected its functional expression. The gene (1.4 kb) was inserted into an expression vector pPICZalphaA with a signal peptide alpha-factor, under the control of AOX1 promoter. The resulting plasmid was transformed into two P. pastoris strains: KM71 (methanol utilization slow) and X33 (wild-type). Both host strains produced high levels of active phytase (25-65 units/ml of medium) that were largely secreted into the medium. The expressed enzyme was cross-reacted with the polyclonal antibody raised against the wild-type enzyme and showed two pH optima, 2.5 and 5.5, and an optimal temperature at 60 degrees C. Compared with the phyA phytase overexpressed by A. niger, this phytase had identical capacity in hydrolyzing phytate-phosphorus from soybean meal and slightly better thermostability. Deglycosylation of the secreted phytase resulted in reduction in the size from 95 to 55 kDa and in thermostability by 34%. Tunicamycin (20 microg/ml of medium) resulted in significant reductions of both intracellular and extracellular phytase activity expression. Because there was no accumulation of intracellular phytase protein, the impairment did not seem to occur at the level of translocation of phytase. In conclusion, glycosylation was vital to the biosynthesis of the phyA phytase in P. pastoris and the thermostability of the expressed enzyme. PMID:10087168

  16. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger

    PubMed Central

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A. K.; Dickschat, Jeroen S.

    2015-01-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  17. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  18. An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies.

    PubMed

    Rawat, Rekha; Kumar, Sunil; Chadha, Bhupinder Singh; Kumar, Dinesh; Oberoi, Harinder Singh

    2015-01-01

    Endoglucanase (EG) from Aspergillus niger HO was sequentially purified through ultrafiltration, ion exchange and size exclusion chromatography to homogeneity, with an overall recovery of 18 %. The purified EG was a monomeric protein with a molecular weight of about 55 kDa. The enzyme was optimally active at pH 3.5 and 70 °C with a half life (t1/2) of 3 h and Km value of 2.5 mg/ml. Metal ions, such as Ca(2+) and Co(2+) helped in enzyme induction, while Hg(2+) and Cu(2+) strongly inhibited the enzyme activity. Peptide mass fingerprinting results revealed that the purified EG is a novel enzyme that belongs to family 12 of glycoside hydrolase (GH12). Molecular docking studies indicated the presence of Glu116 and Glu204 as important determinant residues for the functional interaction with carboxymethylcellulose and showed hydrogen bonding with Asp99, Glu116, Glu204 and hydrophobic interactions with Trp22, Val58, Tyr61, Phe101, Met118, Trp120, Pro129, Ile130, Thr160 and Phe206. Hydrolysis of 2 % CMC with purified acidothermophilic EG at its optimum temperature and pH resulted in complete hydrolysis within 2 h yielding 18 % cellotriose, 72 % cellobiose and 10 % glucose as evident from HPLC analysis. In comparison to most of the EGs reported in literature, EG from A. niger HO exhibited higher thermostability. The acidothermophilic nature of this enzyme makes it potentially useful for industrial applications. PMID:25331339

  19. Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 angstroms resolution.

    PubMed

    Vujicić-Zagar, A; Dijkstra, B W

    2006-08-01

    Aspergillus niger alpha-amylase catalyses the hydrolysis of alpha-1,4-glucosidic bonds in starch. It shows 100% sequence identity to the A. oryzae homologue (also called TAKA-amylase), three crystal structures of which have been published to date. Two of them belong to the orthorhombic space group P2(1)2(1)2(1) with one molecule per asymmetric unit and one belongs to the monoclinic space group P2(1) with three molecules per asymmetric unit. Here, the purification, crystallization and structure determination of A. niger alpha-amylase crystallized in the monoclinic space group P2(1) with two molecules per asymmetric unit in complex with maltose at 1.8 angstroms resolution is reported. Furthermore, a novel 1.6 angstroms resolution orthorhombic crystal form (space group P2(1)2(1)2) of the native enzyme is presented. Four maltose molecules are observed in the maltose-alpha-amylase complex. Three of these occupy active-site subsites -2 and -1, +1 and +2 and the hitherto unobserved subsites +4 (Asp233, Gly234) and +5 (Asp235). The fourth maltose molecule binds at the distant binding sites d1 (Tyr382) and d2 (Trp385), also previously unobserved. Furthermore, it is shown that the active-site groove permits different binding modes of sugar units at subsites +1 and +2. This flexibility of the active-site cleft close to the catalytic centre might be needed for a productive binding of substrate chains and/or release of products. PMID:16880540

  20. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags

    PubMed Central

    2014-01-01

    Background Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. Results Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. Conclusion Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein

  1. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

    PubMed Central

    Jørgensen, Thomas R; Goosen, Theo; van den Hondel, Cees AMJJ; Ram, Arthur FJ; Iversen, Jens JL

    2009-01-01

    Background The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger genome sequence and availability of microarrays allow high resolution studies of transcriptional regulation of basal cellular processes, like those of glycoprotein synthesis and secretion. It is known that the activities of certain secretory pathway enzymes involved N-glycosylation are elevated in response to carbon source induced secretion of the glycoprotein glucoamylase. We have investigated whether carbon source dependent enhancement of protein secretion can lead to upregulation of secretory pathway elements extending beyond those involved in N-glycosylation. Results This study compares the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h-1) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources. The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular functions. This included elements in the secretory pathway and central metabolic pathways. Increased protein secretion on maltose was accompanied by induced transcription of > 90 genes related to protein secretion. The upregulated genes encode key elements in protein translocation to the endoplasmic reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response

  2. Sexual origins of British Aspergillus nidulans isolates.

    PubMed Central

    Geiser, D M; Arnold, M L; Timberlake, W E

    1994-01-01

    Aspergillus nidulans is a holomorphic fungus, capable of producing both meiotically and mitotically derived spores. Meiosis may be an evolutionary relic in this species because it is potentially capable of mitotic recombination and because most Aspergilli lack the ability to produce meiotic spores. We tested the null hypothesis that meiosis has been a major factor in the origin of strains of A. nidulans from Great Britain by estimating linkage disequilibrium among restriction fragment length polymorphisms. These strains belong to different heterokaryon compatibility groups and are thus incapable of undergoing mitotic recombination with one another, so any recombination evidenced by linkage equilibrium is assumed to be the result of meiosis. Eleven cosmid clones of known chromosomal origin were used to generate multilocus genotypes based on restriction-pattern differences for each heterokaryon compatibility group. Low levels of genetic variation and little linkage disequilibrium were found, indicating that the heterokaryon compatibility groups represent recently diverged lineages that arose via meiotic recombination. The null hypothesis that loci are independent could not be rejected. Additionally, low levels of electrophoretic karyotype variation were indicative of meiosis. We conclude that although A. nidulans probably propagates in a primarily clonal fashion, recombination events are frequent enough to disrupt the stable maintenance of clonal genotypes. We further conclude that the British heterokaryon compatibility groups arose via recombination and not through novel mutation. Images PMID:7907796

  3. Molecular characterization of atoxigenic Aspergillus flavus isolates collected in China.

    PubMed

    Wei, Dandan; Zhou, Lu; Selvaraj, Jonathan Nimal; Zhang, Chushu; Xing, Fuguo; Zhao, Yueju; Wang, Yan; Liu, Yang

    2014-07-01

    Aspergillus flavus strains were isolated from peanut fields of Liaoning, Shandong, Hubei and Guangdong Provinces in China, and identified through phenotypic and molecular approaches. Of the 323 A. flavus strains isolated, 76 strains did not produce aflatoxins detectable by UPLC. The incidence of atoxigenic A. flavus strains decreased with increase in temperature and increased with increase in latitude in different geographical locations. Amplification of all the aflatoxin genes in the aflatoxin gene cluster in the atoxigenic isolates showed that there were 25 deletion patterns (A-Y), with 22 deletion patterns identified for the first time. Most of the atoxigenic A. flavus isolates with gene deletions (97%) had deletions in at least one of the four genes (aflT, nor-1, aflR, and hypB), indicating that these four genes could be targeted for rapid identification of atoxigenic strains. The atoxigenic isolates with gene deletions, especially the isolates with large deletions, are potential candidates for aflatoxin control. PMID:24879349

  4. Biodegradation of high concentrations of hexadecane by Aspergillus niger in a solid-state system: kinetic analysis.

    PubMed

    Volke-Sepúlveda, Tania; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto

    2006-09-01

    Solid-state microcosms were used to assess the influence of constant and variable C/N ratios on the biodegradation efficiency by Aspergillus niger at high hexadecane (HXD) concentrations (180-717 mg g-1). With a constant C/N ratio, 100% biodegradation (33-44% mineralization) was achieved after 15 days, at rates increasing as the HXD concentration increased. Biomass yields (YX/S) remained almost independent (approximately 0.77) of the carbon-source amount, while the specific growth rates (mu) decreased with increasing concentrations of HXD. With C/N ratios ranging from 29 to 115, complete degradation was only attained at 180 mg g-1, corresponding to 46% mineralization. YX/S diminished (approximately 0.50 units) as the C/N ratio increased. The highest values of mu (1.08 day-1) were obtained at low C/N values. Our results demonstrate that, under balanced nutritional conditions, high HXD concentrations can be completely degraded in solid-state microcosms, with a negligible (<10%) formation of by-products. PMID:16153825

  5. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase.

    PubMed

    Yan, Junjie; Liu, Weidong; Li, Yujie; Lai, Hui-Lin; Zheng, Yingying; Huang, Jian-Wen; Chen, Chun-Chi; Chen, Yun; Jin, Jian; Li, Huazhong; Guo, Rey-Ting

    2016-06-17

    Eukaryotic 1,4-β-endoglucanases (EC 3.2.1.4) have shown great potentials in many commercial applications because they effectively catalyze hydrolysis of cellulose, the main component of the plant cell wall. Here we expressed a glycoside hydrolase family (GH) 5 1,4-β-endoglucanase from Aspergillus niger (AnCel5A) in Pichia pastoris, which exhibits outstanding pH and heat stability. In order to further investigate the molecular mechanism of AnCel5A, apo-form and cellotetraose (CTT) complex enzyme crystal structures were solved to high resolution. AnCel5A folds into a typical (β/α)8-TIM barrel architecture, resembling other GH5 members. In the substrate binding cavity, CTT is found to bind to -4 - -1 subsites, and several polyethylene glycol molecules are found in positive subsites. In addition, several unique N-glycosylation motifs that may contribute to protein higher stability were observed from crystal structures. These results are of great importance for understanding the molecular mechanism of AnCel5A, and also provide guidance for further applications of the enzyme. PMID:27154222

  6. Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger.

    PubMed

    Faulds, Craig B; Molina, Rafael; Gonzalez, Ramón; Husband, Fiona; Juge, Nathalie; Sanz-Aparicio, Julia; Hermoso, Juan A

    2005-09-01

    Feruloyl esterases hydrolyse phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening the cell wall structure making material more accessible to glycoside hydrolases. Here we describe the crystal structure of inactive S133A mutant of type-A feruloyl esterase from Aspergillus niger (AnFaeA) in complex with a feruloylated trisaccharide substrate. Only the ferulic acid moiety of the substrate is visible in the electron density map, showing interactions through its OH and OCH(3) groups with the hydroxyl groups of Tyr80. The importance of aromatic and polar residues in the activity of AnFaeA was also evaluated using site-directed mutagenesis. Four mutant proteins were heterologously expressed in Pichia pastoris, and their kinetic properties determined against methyl esters of ferulic, sinapic, caffeic and p-coumaric acid. The k(cat) of Y80S, Y80V, W260S and W260V was drastically reduced compared to that of the wild-type enzyme. However, the replacement of Tyr80 and Trp260 with smaller residues broadened the substrate specificity of the enzyme, allowing the hydrolysis of methyl caffeate. The role of Tyr80 and Trp260 in AnFaeA are discussed in light of the three-dimensional structure. PMID:16128806

  7. Secretory Expression and Characterization of an Acidic Endo-Polygalacturonase Gene from Aspergillus niger SC323 in Saccharomyces cerevisiae.

    PubMed

    Zhou, Huoxiang; Li, Xi; Guo, Mingyue; Xu, Qingrui; Cao, Yu; Qiao, Dairong; Cao, Yi; Xu, Hui

    2015-07-01

    The endo-polygalacturonase gene (endo-pgaA) was cloned from DNA of Aspergillus niger SC323 using the cDNA synthesized by overlapping PCR, and successfully expressed in Saccharomyces cerevisiae EBY100 through fusing the α-factor signal peptide of yeast. The full-length cDNA consists of 1,113 bp and encodes a protein of 370 amino acids with a calculated molecular mass of 38.8 kDa. After induction by galactose for 48 h, the activity of recombinant endo-PgaA in the culture supernatant can reach up to 1,448.48 U/mg. The recombinant protein was purified to homogeneity by ammonium sulfate precipitation and gel filtration column chromatography and subsequently characterized. The optimal pH and temperature of the purified recombinant enzyme were 5.0 and 50°C, respectively. The Michaelis-Menten constant (Km) and maximal velocity (Vmax) of the enzyme for pectin were 88.54 μmol/ml and 175.44 μmol/mg/min, respectively. The enzyme activity was enhanced by Ca(2+), Cu(2+), and Na(+), and strongly inhibited by Pb(2+) and Mn(2+). The pectin hydrolysates were mainly galacturonic acid and other oligo-galacturonates. Therefore, these characteristics suggest that the recombinant endo-PgaA may be of potential use in the food and feed industries. PMID:25737122

  8. Characterization of β -Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose.

    PubMed

    Baraldo Junior, Anderson; Borges, Diogo G; Tardioli, Paulo W; Farinas, Cristiane S

    2014-01-01

    β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications. PMID:24940510

  9. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. PMID:22503148

  10. Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation.

    PubMed

    Contesini, Fabiano Jares; da Silva, Vania Castriani Fernades; Maciel, Rafael Ferreira; de Lima, Rosemary Joana; Barros, Francisco Fábio Cavalcante; de Oliveira Carvalho, Patrícia

    2009-10-01

    The lipase produced by the Aspergillus niger strain AC-54 has been widely studied due to its enantioselectivity for racemic mixtures. This study aimed to optimize the production of this enzyme using statistical methodology. Initially a Plackett-Burman (PB) design was used to evaluate the effects of the culture medium components and the culture conditions. Twelve factors were screened: water content, glucose, yeast extract, peptone, olive oil, temperature, NaH(2)P0(4), KH(2)P0(4), MgS0(4)-7H(2)0, CaCl(2), NaCI, and MnS0(4). The screening showed that the significant factors were water content, glucose, yeast extract, peptone, NaH(2)P0(4), and KH(2)P0(4), which were optimized using response surface methodology (RSM) and a mathematical model obtained to explain the behavioral process. The best lipase activity was attained using the following conditions: water content (20%), glucose (4.8%), yeast extract (4.0%), and NaH2P04 (4.0%). The predicted lipase activity was 33.03 U/ml and the experimental data confirmed the validity of the model. The enzymatic activity was expressed as micromoles of oleic acid released per minute of reaction (micromol/min). PMID:19851729

  11. Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Zhang, Houjin; Yan, Yunjun

    2015-09-01

    Yarrowia lipolytica lipase 2 (YLLip2) and Aspergillus niger feruloyl esterase A (AnFaeA) are enzymes of similar structures but with different functions. They are both classified into the same homologous family in Lipase Engineering Database (LED). The major difference between the two enzymes is that YLLip2 exhibits interfacial activity while AnFaeA does not. In order to better understand the interfacial activation mechanisms of YLLip2, structure guided site-directed mutagenesis were performed, mutants were constructed, kinetics parameters and lipase properties were detected. Mutant enzymes showed enhanced catalytic efficiency towards p-nitrophenyl butyrin (pNPB) but their catalytic efficiency decreased towards p-nitrophenyl palmitate (pNPP), their catalysis behavior was more close to feruloyl esterase. Moreover, the mutant enzymes exhibited enhanced thermostability compared with their wild type. These results indicate that I100 and F129 are probably cut-off point of divergent functions between the two enzymes during evolution. PMID:26302844

  12. Condition stabilization for Aspergillus niger FCBP-198 and its hyperactive mutants to yield high titres of alpha-amylase.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-01-01

    A number of substrates were tested for the cultivation of microorganisms to produce a host of enzymes. The effect of different substrates (wheat and rice straw, sugar cane waste, wood waste), incubation temperatures (20-40 degrees C), initial pH levels (3.5-9.0), incubation periods (0-72 hours) and nitrogen sources (ammonium sulfate, urea, peptone, yeast extract, sodium nitrate) on growth and alpha-amylase activity was studied for the native and mutant strains. Maximum enzyme activity was observed at 1.5% wheat straw for Aspergillus niger FCBP-198 and An-Ch-4.7 and at 2% wheat straw for An-UV-5.6, with sodium nitrate as a principle nitrogen source. The optimum temperature for maximum enzyme activity was 30 degrees C for the parental strain, while An-UV-5.6 and An-Ch-4.7 thrived well at 32.5 degrees C. The best conditions of pH and incubation duration were 4.5 and 48 hours, respectively, for all the strains. Mass production under preoptimized growth conditions demonstrated the suitability of wheat straw for swift mycelial colonization and viability. PMID:20734811

  13. Biotransformation of natural compounds: unexpected thio conjugation of Sch-642305 with 3-mercaptolactate catalyzed by Aspergillus niger ATCC 16404 cells.

    PubMed

    Adelin, Emilie; Martin, Marie-Thérèse; Bricot, Marie-Françoise; Cortial, Sylvie; Retailleau, Pascal; Ouazzani, Jamal

    2012-12-01

    Sch-642305 is produced by the endophytic fungi Phomopsis sp. CMU-LMA and exhibits both antimicrobial and cytotoxic activities. The incubation of Sch-642305 with Aspergillus niger ATCC 16404 resting cells leads to two unexpected thio conjugates. Compound (1) is formed by the addition of the cysteine metabolite 3-mercaptolactate to the double bond of Sch-642305. Compound (1) undergoes an intramolecular rearrangement to give compound (2), which contains two rings: a five-membered hydroxylactone ring and a five-membered thiophene ring. The absolute configuration of compound (1) is similar to that of the parent compound, but the configuration of the mercaptolactate side-chain was not determined. The absolute configuration of compound (2) was deduced from the crystal structure and confirmed by the anomal effect of the sulfur atom. To the best of our knowledge, this is the first time such a conjugation rearrangement reactions were observed. The biological significance and the reaction mechanisms are discussed. Compound (1) exhibits a weak antimicrobial activity against Gram-positive bacteria, whereas derivatives (1) and (2) showed an IC₅₀ of 1 and 1.2 μM, respectively, against colonic epithelial cancer cells. PMID:22975164

  14. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat.

    PubMed

    Yamazaki, Takashi; Yoshimoto, Maki; Nishiyama, Yayoi; Okubo, Yoichiro; Makimura, Koichi

    2012-07-01

    The living and working environments of spacecraft become progressively contaminated by a number of microorganisms. A large number of microorganisms, including pathogenic microorganisms, some of which are fungi, have been found in the cabins of space stations. However, it is not known how the characteristics of microorganisms change in the space environment. To predict how a microgravity environment might affect fungi, and thus how their characteristics could change on board spacecraft, strains of the pathogenic fungi Aspergillus niger and Candida albicans were subjected to on-ground tests in a simulated microgravity environment produced by a three-dimensional (3D) clinostat. These fungi were incubated and cultured in a 3D clinostat in a simulated microgravity environment. No positive or negative differences in morphology, asexual reproductive capability, or susceptibility to antifungal agents were observed in cultures grown under simulated microgravity compared to those grown in normal earth gravity (1 G). These results strongly suggest that a microgravity environment, such as that on board spacecraft, allows growth of potentially pathogenic fungi that can contaminate the living environment for astronauts in spacecraft in the same way as they contaminate residential areas on earth. They also suggest that these organisms pose a similar risk of opportunistic infections or allergies in astronauts as they do in people with compromised immunity on the ground and that treatment of fungal infections in space could be the same as on earth. PMID:22537211

  15. The Transcriptomic Signature of RacA Activation and Inactivation Provides New Insights into the Morphogenetic Network of Aspergillus niger

    PubMed Central

    Kwon, Min Jin; Nitsche, Benjamin M.; Arentshorst, Mark; Jørgensen, Thomas R.; Ram, Arthur F. J.; Meyer, Vera

    2013-01-01

    RacA is the main Rho GTPase in Aspergillus niger regulating polarity maintenance via controlling actin dynamics. Both deletion and dominant activation of RacA (RacG18V) provoke an actin localization defect and thereby loss of polarized tip extension, resulting in frequent dichotomous branching in the ΔracA strain and an apolar growing phenotype for RacG18V. In the current study the transcriptomics and physiological consequences of these morphological changes were investigated and compared with the data of the morphogenetic network model for the dichotomous branching mutant ramosa-1. This integrated approach revealed that polar tip growth is most likely orchestrated by the concerted activities of phospholipid signaling, sphingolipid signaling, TORC2 signaling, calcium signaling and CWI signaling pathways. The transcriptomic signatures and the reconstructed network model for all three morphology mutants (ΔracA, RacG18V, ramosa-1) imply that these pathways become integrated to bring about different physiological adaptations including changes in sterol, zinc and amino acid metabolism and changes in ion transport and protein trafficking. Finally, the fate of exocytotic (SncA) and endocytotic (AbpA, SlaB) markers in the dichotomous branching mutant ΔracA was followed, demonstrating that hyperbranching does not per se result in increased protein secretion. PMID:23894378

  16. Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix

    PubMed Central

    Kareem, Safaradeen Olateju; Adio, Olayinka Quadri; Osho, Michael Bamitale

    2014-01-01

    The potential of polysaccharide Irvingia gabonensis matrix as enzyme immobilization support was investigated. Lipase of Aspergillus niger F7-02 was immobilized by entrapment using glutaraldehyde as the cross-linking agent and stabilized in ethanolic-formaldehyde solution. The pH and temperature stability and activity yield of the immobilized enzyme were determined. Such parameters as enzyme load, bead size, number of beads, and bead reusability were also optimized. Adequate gel strength to form stabilized beads was achieved at 15.52% (w/v) Irvingia gabonensis powder, 15% (v/v) partially purified lipase, 2.5% (v/v) glutaraldehyde, and 3 : 1 (v/v) ethanolic-formaldehyde solution. There was 3.93-fold purification when the crude enzyme was partially purified in two-step purification using Imarsil and activated charcoal. Optimum lipase activity 75.3 Ug−1 was achieved in 50 mL test solution containing 15 beads of 7 mm bead size. Relative activity 80% was retained at eight repeated cycles. The immobilization process gave activity yield of 59.1% with specific activity of 12.3 Umg−1 and stabilized at optimum pH 4.5 and temperature 55°C. Thus the effectiveness and cost-efficiency of I. gabonensis as a polymer matrix for lipase immobilization have been established. PMID:25614829

  17. Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding.

    PubMed

    Svensson, B; Clarke, A J; Svendsen, I; Møller, H

    1990-02-22

    Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed. PMID:2108020

  18. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.

    PubMed

    Mata-Gómez, Marco; Mussatto, Solange I; Rodríguez, Raul; Teixeira, Jose A; Martinez, Jose L; Hernandez, Ayerim; Aguilar, Cristóbal N

    2015-06-01

    Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10(-2) mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs. PMID:25920332

  19. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    PubMed Central

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  20. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    DOE PAGESBeta

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens C.; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F. J.

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. nigermore » has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.« less

  1. Lipase production by Aspergillus niger under various growth conditions using solid state fermentation.

    PubMed

    Olama, Z A; el-Sabaeny, A H

    1993-12-01

    Ricinus seed litters were chosen as a cheap carbon source for lipase production by A. niger under solid state fermentation (SSF). Maximum lipase production was achieved upon using an enriched (potassium citrate and casein) waste at pH 7.8 and 30 degrees C for 8 days incubation. Nitrogen sources as NH4Cl, NH4NO3, (NH4)2SO4, urea and amino acids repressed the lipolytic activity. The chloride salts of Ba2+, Co2+, Cu2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Na+ and Sn2+ inhibited, while Zn+2 did not affect lipase production. Compounds containing hydrolyzable ester group, such as Tween(s), were found to inhibit lipase activity. When the effect of different additives such as EDTA, gum acacia, span(s), mineral and vitamins, were studied, it was found that they all exhibit decreased lipase production by the tested fungus. PMID:8172691

  2. Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger.

    PubMed

    Hanif, Atif; Yasmeen, Amber; Rajoka, M I

    2004-09-01

    The influence of carbon and nitrogen sources on the production of cellulases was investigated. The enzyme production was variable according to the carbon source. Levels of beta-cellobiohydrolase (CBH) were minimal in the presence of even low concentrations of glucose. Enzyme production was stimulated by other carbohydrates. The enzyme is subject to carbon source control by easily metabolizable sugars. Wheat bran and cellulose were the most effective promoters of beta-cellobiohydrolase and filter paperase (FPase) activities respectively, followed by rice bran. Exogenously supplied glucose inhibited the synthesis of the enzyme in cultures of A. niger growing on wheat bran. In defined medium with cellobiose, the cellobiohydrolase titres were 2- to 110-fold higher with cells growing on monomeric sugars and 1.5 times higher than cells growing on other disaccharides. It appeared that synthesis of beta-cellobiohydrolase varied under an induction mechanism, and a repression mechanism which changed the rate of synthesis of beta-cellobiohydrolase and FPase in induced over non-induced cultures. In this organism, substantial synthesis of beta-cellobiohydrolase can be induced by cellobiose, cellodextrin, cellulose or cellulose and hemi-cellulose containing substrates which showed low volumetric substrate uptake rate. The organism required limiting concentration of carbon, nitrogen or phosphorous for production of beta-cellobiohydrolase and FPase. During growth of A. niger on wheat bran, maximum volumetric productivities (Qp) of beta-cellobiohydrolase and FPase were 39.6 and 32.5 IU/lh and were significantly higher than the values reported for some other potent fungi and bacteria. The addition of actinomycin D (a repressor of transcription) and cycloheximide, (a repressor of translation) completely repressed CBH/FPase biosynthesis, suggested that the regulation of CBH synthesis in this organism occurs at both transcriptional and translational level. Thermodynamic studies

  3. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    PubMed Central

    Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen

    2013-01-01

    In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield at 2% corn steep liquor (CSL), 36 hours fermentation time, pH 5, 30°C temperature, 0.3% KH2PO4, 0.3% urea and 0.06% CaCO3. The enzyme was then purified and resulted in 57.88 fold purification with 52.12% recovery. On kinetic characterization, the enzyme showed optimum activity at pH 6 and temperature 30°C. The Michaelis-Menton constants (Km, Vmax, Kcat and Kcat/Km) were 20 mM, 45.87 U mL−1, 1118.81 s−1 and 55.94 s−1 mM−1, respectively. The enzyme was found to be thermaly stable and the enthalpy and free energy showed an increase with increase in temperature and ΔS* was highly negative proving the enzyme from A. niger EMS-150-F resistant to temperature and showing a very little disorderliness. PMID:24688499

  4. Improvement of growth and nutritive value in chicks with non-genetically modified phytase product from Aspergillus niger.

    PubMed

    Murai, A; Kobayashi, T; Okada, T; Okumura, J

    2002-12-01

    1. Non-genetically modified (non-GM) phytase product derived from Aspergillus niger possesses various side active enzymes including alpha-amylase, protease, cellulase and hemicellulase. In contrast, the product of genetically modified (GM) phytase product has much less side active enzyme since the capacity of phytase production is reinforced by gene modification. In the present study we have tried to determine whether the difference of side enzyme activity of phytase product affects growth performances and nutritive value in chicks; in addition we tried to characterise the physiological change induced by the difference of side active enzymes. 2. Single Comb White Leghorn male chicks at 7 d of age were fed on experimental barley-based diets for 10 d. The feeding trial was of a factorial design (3 x 2 x 2), having three types of dietary phytase products (control, non-GM or GM phytase products derived from A. niger at 1000 U/kg diet), two levels of dietary available P supplement (0 or 6 g/kg diet) and two levels of dietary protein (CP 180 or 120 g/kg). 3. The non-GM phytase product caused a 6% increase in final body weight and feed efficiency compared with the control and the GM phytase product without interacting with dietary protein and available P level. However, in birds given available P-free diet, both non-GM and GM phytase products induced a 20% increase in plasma P concentration, suggesting no difference in phytase activity between the non-GM and GM phytase products. 4. The balance study showed that the metabolisable energy of the non-GM phytase product (15.6 +/- 0.05 kJ/g diet) was significantly higher among the treatments (control, 15.1 +/- 0.05; GM phytase product 15.3 +/- 0.07). The non-GM phytase product also increased the rate of food passage through the crop, and caused a drastic reduction in intestinal weight, perhaps as a consequence of digestion of non-starch polysaccharides. 5. We conclude that the side active enzymes in non-GM phytase product

  5. Customization of Aspergillus niger morphology through addition of talc micro particles.

    PubMed

    Wucherpfennig, Thomas; Lakowitz, Antonia; Driouch, Habib; Krull, Rainer; Wittmann, Christoph

    2012-01-01

    The filamentous fungus A. niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology. It ranges from dense spherical pellets to viscous mycelia. Various process parameters and ingredients are known to influence fungal morphology. Since optimal productivity correlates strongly with a specific morphological form, the fungal morphology often represents the bottleneck of productivity in industrial production. A straight forward and elegant approach to precisely control morphological shape is the addition of inorganic insoluble micro particles (like hydrous magnesium silicate, aluminum oxide or titanium silicate oxide) to the culture medium contributing to increased enzyme production. Since there is an obvious correlation between micro particle dependent morphology and enzyme production it is desirable to mathematically link productivity and morphological appearance. Therefore a quantitative precise and holistic morphological description is targeted. Thus, we present a method to generate and characterize micro particle dependent morphological structures and to correlate fungal morphology with productivity which possibly contributes to a better understanding of the morphogenesis of filamentous microorganisms. The recombinant strain A. niger SKAn1015 is cultivated for 72 h in a 3 L stirred tank bioreactor. By addition of talc micro particles in concentrations of 1 g/L, 3 g/L and 10 g/L prior to inoculation a variety of morphological structures is reproducibly generated. Sterile samples are taken after 24, 48 and 72 hours for determination of growth progress and activity of the produced enzyme. The formed product is the high-value enzyme β-fructofuranosidase, an important biocatalyst for neo-sugar formation in food or pharmaceutical industry, which catalyzes among others the reaction of sucrose to

  6. Characterization of species of the Aspergillus section Nigri from corn field isolates co-infected with Aspergillus flavus/parasiticus species and the potential for ochratoxin A production.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the Aspergillus section Nigri, known as black-spored aspergilli, can contaminate several substrates including maize. Although some species within the group can produce plant disease symptoms such as black mold in onions and maize ear rot, the main concern with A. niger aggregate contamina...

  7. A high-throughput method for screening of Aspergillus niger mutants with high transglycosylation activity by detecting non-fermentable reducing sugar.

    PubMed

    Chen, Gui-Guang; Li, Wei; Zhang, Yun-Kai; Qin, Yong-Ling; Wu, Kong-Yang; Liang, Zhi-Qun

    2011-06-01

    A novel high-throughput method was established for rapid screening of large numbers of Aspergillus niger mutants with high transglucosylation activity by exploiting that yeast can hardly hydrolyze isomaltooligosaccharides (IMO). Supernatants of A. niger fermentation were incubated with Saccharomyces cerevisiae to remove glucose and maltose, and the remaining non-reducing sugars, which is positively correlated with the amount of IMO, the products of transglucosylation reaction, were used as indicator of transglucosidase activity of A. niger and examined by dinitrosalicylic acid assay. Using this method, 15 stains that could convert liquefied cassava starch to IMO more efficiently were selected from 8721 A. niger mutants. Among them, mutant C-6181 strain had transglycosidase activity of 4.61 U/ml (increased by 122% compared to its parental strain) and IMO yield of 83.7%. Taking together, the method is easy, simple, efficient and cheap, and has great application potential in selection of transglucosidase-producing strains used in industrial IMO fermentation. PMID:25187152

  8. Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose

    PubMed Central

    2014-01-01

    Pectin is a structural heteropolysaccharide of the primary cell walls of plants and as such is a significant fraction of agricultural waste residues that is currently insufficiently used. Its main component, D-galacturonic acid, is an attractive substrate for bioconversion. The complete metabolic pathway is present in the genome of Aspergillus niger, that is used in this study. The objective was to identify the D-galacturonic acid transporter in A. niger and to use this transporter to study D-galacturonic acid metabolism. We have functionally characterized the gene An14g04280 that encodes the D-galacturonic acid transporter in A. niger. In a mixed sugar fermentation it was found that the An14g04280 overexpression strain, in contrast to the parent control strain, has a preference for D-galacturonic acid over D-xylose as substrate. Overexpression of this transporter in A. niger resulted in a strong increase of D-galacturonic acid uptake and induction of the D-galacturonic acid reductase activity, suggesting a metabolite controlled regulation of the endogenous D-galacturonic acid catabolic pathway. PMID:25177540

  9. Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on selected enzymes of some tissues of broiler chicks.

    PubMed

    Muhammad, N O; Oloyede, O B

    2010-05-01

    Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on the activities of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamate transferase (gamma-GT) in the crop, small intestine, gizzard, heart, liver and serum of broiler chicks were investigated. Milled T. catappa seed was inoculated with spores of A.niger (2.21 x 10(4) spores per ml) for 3 weeks. Forty-five day-old broiler chicks weighing between 27.62 and 36.21 g, were divided into three groups. The first group was fed soybean-based (control) diet; the second on raw T. catappa seed meal-based diet; and the third on A. niger-fermented T. catappa seed meal-based diet for 7 weeks. The results revealed a significantly increased (p<0.05) activity of ALP in the tissues. Contrarily, there were significant reductions (p<0.05) in the activities of ALP, ALT, AST and gamma-GT in the liver and heart of the broilers fed the raw T. catappa seed meal-based diet while there were significant increase (p<0.05) in the activities of these enzymes in the serum of the broilers in this group. The data obtained showed that A. niger-fermented T. catappa seed meal reduced the toxic effects of the raw seed meal on the tissues of broiler chicks. PMID:20170700

  10. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    SciTech Connect

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  11. Application of response surface methodology for optimization of polygalacturonase production by Aspergillus niger.

    PubMed

    Yadav, Kaushlesh K; Garg, Neelima; Kumar, Devendra; Kumar, Sanjay; Singh, Achal; Muthukumar, M

    2015-01-01

    Polygalacturonase (PG) degrades pectin into D-galacturonic acid monomers and is used widely in food industry especially for juice clarification. In the present study,. fermentation conditions for polygalacturonase production by Asgergillus niger NAIMCCF-02958, using mango peel as substrate, were optimized using the 2(3) factorial design with central composite rotatable experimental design (CCRD) of response surface methodology (RSM). The maximum PG activity 723.66 U g(-1) was achieved under pH 4.0, temperature 30 degrees C and 2% inoculum by response surface curve. The experimental value of PG activity wkas higher 607.65 U g(-1) than the predicted value 511.75 U g(-1). Under the proposed optimized conditions, the determination coefficient (R2) was equal to 0.66 indicating that the model could explain 66% of the total variation as well as establish the relationship between the variables and the responses. ANOVA analysis and the three dimensional plots also confirmed interactions among the parameters. PMID:26536801

  12. Bioconversion of oil palm frond by Aspergillus niger to enhances it's fermentable sugar production.

    PubMed

    Lim, Sheh-Hong; Ibrahim, Darah

    2013-09-15

    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol. PMID:24502148

  13. Purification and properties of two forms of glucoamylase from Aspergillus niger.

    PubMed

    Amirul, A A; Khoo, S L; Nazalan, M N; Razip, M S; Azizan, M N

    1996-01-01

    A. niger produced alpha-glucosidase, alpha-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5-9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65 degrees C, respectively, and were stable for 1 h at temperatures of up to 60 degrees C. The kinetic parameters Km and V showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1. PMID:9138312

  14. Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512.

    PubMed

    Liu, Guang; Hu, Songqing; Li, Lin; Hou, Yi

    2015-11-01

    An extracellular lipase (EC 3.1.1.3, AN0512Lip) from Aspergillus niger AN0512 was purified and its characteristics were investigated. After the process of ammonium sulfate precipitation followed by ion-exchange chromatography and gel filtration, the purified lipase was achieved with 203.6-fold purification and 22.1 % recovery. AN0512Lip exhibited the highest activity at 50 °C and pH 5.0. It was thermostable and pH-stable, as indicated by that more than 50 % activity retained at 60 °C for 20 h and more than 90 % activity retained at pH 3.0 for 20 h, respectively. AN0512Lip activity was stimulated by some divalent metal ions (especially Cu(2+), Ca(2+)), while greatly suppressed by EDTA, indicating that AN0512Lip was a metal-activated enzyme. Moreover, AN0512Lip exhibited high tolerance for various polar organic solvents with log P < 0.8, and the highest lipase activity (476 % of its original activity) was achieved after addition of 90 % (V/V) isopropanol to the reaction mixture. AN0512Lip also displayed 3-regiospecificity and great affinity for the long-chain fatty ester. The preliminary test showed that AN0512Lip was a candidate for enriching EPA and DHA in fish oil. All the unique properties, such as thermostability, Cu(2+)-dependent, 3-regiospecificity, and polar organic solvent-tolerance, indicated that AN0512Lip could have potential applications in the food industry, even in organic synthesis and the pharmaceutical industry. PMID:26216145

  15. Cloning and expression of a xylanase xynB from Aspergillus niger IA-001 in Pichia pastoris.

    PubMed

    Fang, Wei; Gao, He; Cao, Yunhe; Shan, Anshan

    2014-07-01

    The high-level expression of the xylanase GH11 gene from Aspergillus niger IA-001 called xynB was successfully completed in Pichia pastoris. The xynB gene encoding a mature xylanase of 225 amino acid was subcloned into the pPICZαA vector and was transformed into P. pastoris X-33 under the control of the alcohol oxidase I (AOX1) promoter. The xynB gene was ligated with a sequence encoding modified α-factor signal peptide (pPICZαmA) and the recombinant xylanase activity, which was measured 1280 U ml(-1), was 1.5-fold higher than when it was inserted into pPICZαA and was 19.39-fold greater than the native xylanase in the original strain. In a 10 L fermenter, the recombinant xylanase activity measured 10,035 U ml(-1) after 114 h. The SDS-PAGE analysis revealed that the purified xynB protein migrated as a single band with an apparent molecular weight of 24 kDa. The specific activity, using beechwood xylan as a substrate, was 1916 U mg(-1). The xylanase activity was optimal at pH 5.0 and at 50 °C. In addition, the xynB was active over a pH range of 2.2 to 10.0. The apparent Km and Vmax values were 4.429 mg ml(-1) and 1429 U mg(-1), respectively. PMID:23788000

  16. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  17. Submerged Conidiation and Product Formation by Aspergillus niger at Low Specific Growth Rates Are Affected in Aerial Developmental Mutants ▿

    PubMed Central

    Jørgensen, Thomas R.; Nielsen, Kristian F.; Arentshorst, Mark; Park, JooHae; van den Hondel, Cees A.; Frisvad, Jens C.; Ram, Arthur F.

    2011-01-01

    Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (ΔfwnA, scl-1, and scl-2 mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B2, B4, and B6 were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation. fwnA encodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production are fwnA dependent. The scl-1 and scl-2 strains are two UV mutants generated in the ΔfwnA background that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of the scl-1 and scl-2 strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic fungus

  18. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328.

    PubMed

    Kirimura, Kohtaro; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr_8_2: 2978617-2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni(2+)-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. PMID:27060547

  19. Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications

    PubMed Central

    2013-01-01

    Current problems of filamentous fungi fermentations and their further successful developments as microbial cell factories are dependent on control fungal morphology. In this connection, this work explored new experimental procedures in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity. The capacity of environmental conditions to modify hyphal morphology was evaluated by examining the influence of some culture conditions on the cell wall lytic potential of Aspergillus niger MYA 135. The relative value of the cell wall lytic potential was determined by measuring a cell wall lytic enzyme activity such as the mycelium-bound β-N-acetyl-D-glucosaminidase (Mb-NAGase). On the other hand, the quantitative value of conidia adhesion was considered as an index of its aggregation capacity. Concerning microscopic morphology, a highly negative correlation between the hyphal growth unit length (lHGU) and the specific Mb-NAGase activity was found (r = -0.915, P < 0.001). In fact, the environment was able to induce highly branched mycelia only under those culture conditions compatible with specific Mb-NAGase values equal to or higher than 190 U gdry.wt-1. Concerning macroscopic morphology, a low conidia adhesion capacity was followed by a dispersed mycelial growth. In fact, this study showed that conidia adhesion units per ml equal to or higher than 0.50 were necessary to afford pellets formation. In addition, it was also observed that once the pellet was formed the lHGU had an important influence on its final diameter. Finally, the biotechnological significance of such results was discussed as well. PMID:23688037

  20. Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand.

    PubMed

    Noonim, Paramee; Mahakarnchanakul, Warapa; Nielsen, Kristian F; Frisvad, Jens C; Samson, Robert A

    2008-12-10

    In 2006 and 2007, 32 Thai dried coffee bean samples (Coffea arabica) from two growing sites of Chiang Mai Province, and 32 Thai dried coffee bean samples (Coffea canephora var. robusta) from two growing sites of Chumphon Province, Thailand, were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The overall percentage of fungal contamination in coffee was 98% and reduced to 60% after surface disinfection. There were remarkable ecological differences in the composition of ochratoxigenic species present in these two regions. Arabica coffee bean samples from the North had an average of 78% incidence of colonization with Aspergillus of section Circumdati with Aspergillus westerdijkiae and A. melleus as the predominant species. Aspergillus spp. of section Nigri were found in 75% of the samples whereas A. ochraceus was not detected. Robusta coffee beans from the South were 98-100% contaminated with predominantly A. carbonarius and A. niger. A. westerdijkiae was only found in one sample. The diversity of the fungal population was probably correlated with the geographical origin of the coffee, coffee cultivar, and processing method. Representative isolates of section Circumdati (52) and Nigri (82) were examined for their OTA production using HPLC with fluorescence detection. Aspergillus westerdijkiae (42 isolates out of 42), A. steynii (13/13), and A. carbonarius (35/35) in general produced large amounts of OTA, while one isolate of A. sclerotiorum produced intermediate amounts of OTA. 13% of the A. niger isolates produced OTA in intermediate amounts. OTA levels in coffee bean samples were analyzed using the Ridascreen OTA ELISA kits. Of the 64 coffee bean samples analyzed, 98% were contaminated with OTA in levels of <0.6-5.5 microg/kg (Arabica) and 1-27 microg/kg (Robusta). Presence of OTA in representative coffee samples was also confirmed by LC-MS/MS after ion-exchange purification. PMID:18819720

  1. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  2. Construction of a promoter probe vector autonomously maintained in Aspergillus and characterization of promoter regions derived from A. niger and A. oryzae genomes.

    PubMed

    Ozeki, K; Kanda, A; Hamachi, M; Nunokawa, Y

    1996-03-01

    We used a plasmid carrying a sequence for autonomous maintenance in Aspergillus (AMA1) and the E. coli uidA gene as a reporter gene to search the A. oryzae and A. niger genomes for DNA fragments having strong promoter activity. Beta-glucuronidase (GUS)-producing A. oryzae transformants containing the No. 8AN derived from A. niger, or the No. 9AO derived from A. oryzae, were constitutive for the expression of the uidA gene when cultivated in the presence of a variety of carbon and nitrogen sources. When the GUS-producing transformants were grown in liquid culture, the No. 8AN showed an increase of approximately 3-fold in GUS activity compared to the amyB (alpha-amylase encoding gene) promoter. There was also a corresponding increase in the amount of GUS gene-specific mRNA. When these transformants were grown as rice-koji, the No. 8AN showed an increase of approximately 6-fold compared to the amyB promoter, and the amount of GUS protein produced also increased. These strong promoter regions might be applicable to the production of other heterologous proteins in Aspergillus species. PMID:8901095

  3. Elicitation of Necrosis in Vigna unguiculata Walp. by Homogeneous Aspergillus niger Endo-Polygalacturonase and by α-d-Galacturonate Oligomers 1

    PubMed Central

    Cervone, Felice; De Lorenzo, Giulia; Degrà, Luisa; Salvi, Giovanni

    1987-01-01

    Endo-polygalacturonase (PG) was purified from a commercial preparation of Aspergillus niger pectinase by means of carboxymethylcellulose chromatography, preparative isoelectric focusing, and gel permeation through Sephadex G-50. The enzyme was electrophoretically homogeneous and consisted of a single polypeptide chain with a molecular weight of 33,500. The enzyme exhibited a specific activity significantly higher than those of purified polygalacturonases from phytopathogenic fungi. Galacturonate oligomers with a degree of polymerization higher than four appeared quickly as products of the enzymic hydrolysis of Napolygalacturonate. The oligomers were later degraded to di- and monogalacturonate. The homogeneous enzyme and growing mycelium of Aspergillus niger separately elicited a necrotic response in cowpea (Vigna unguiculata Walp.) pods. Heat-inactivated PG and PG inactivated with specific antibodies did not elicit necrosis, suggesting that the catalytic activity of the enzyme is necessary for its function as an elicitor. The PG-released oligosaccharides from Vigna cell wall and the galacturonides with a degree of polymerization greater than four separately elicited necrosis, whereas di- and monogalacturonate did not. Images Fig. 2 Fig. 5 Fig. 6 PMID:16665750

  4. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity

    PubMed Central

    Segers, Frank J. J.; van Laarhoven, Karel A.; Huinink, Hendrik P.; Adan, Olaf C. G.; Wösten, Han A. B.

    2016-01-01

    ABSTRACT Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw. All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium. Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw. The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). IMPORTANCE Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state

  5. The α-galactosidase type A gene aglA from Aspergillus niger encodes a fully functional α-N-acetylgalactosaminidase.

    PubMed

    Kulik, Natallia; Weignerová, Lenka; Filipi, Tomás; Pompach, Petr; Novák, Petr; Mrázek, Hynek; Slámová, Kristyna; Bezouska, Karel; Kren, Vladimír; Ettrich, Rüdiger

    2010-11-01

    Two genes in the genome of Aspergillus niger, aglA and aglB, have been assigned to encode for α-d-galactosidases variant A and B. However, analyses of primary and 3D structures based on structural models of these two enzymes revealed significant differences in their active centers suggesting important differences in their specificity for the hydrolyzed carbohydrates. To test this unexpected finding, a large screening of libraries from 42 strains of filamentous fungi succeeded in identifying an enzyme from A. niger CCIM K2 that exhibited both α-galactosidase and α-N-acetylgalactosaminidase activities, with the latter activity predominating. The enzyme protein was sequenced, and its amino acid sequence could be unequivocally assigned to the enzyme encoded the aglA gene. Enzyme activity measurements and substrate docking clearly demonstrated the preference of the identified enzyme for α-N-acetyl-d-galactosaminide over α-d-galactoside. Thus, we provide evidence that the α-galactosidase type A gene aglA from A. niger in fact encodes a fully functional α-N-acetylgalactosaminidase using a retaining mechanism. PMID:20601723

  6. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger.

    PubMed

    Kirimura, Kohtaro; Kobayashi, Keiichi; Ueda, Yuka; Hattori, Takasumi

    2016-09-01

    The mitochondrial citrate transport protein (CTP) functions as a malate-citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger. PMID:27088852

  7. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

    PubMed Central

    Chang, Kyung Hoon; Jo, Mi Na; Kim, Kee-Tae; Paik, Hyun-Dong

    2013-01-01

    The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (β-glucosidase) from A. niger KCCM 11239 hydrolyzed the β-(1→6)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing β-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides. PMID:24558310

  8. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    SciTech Connect

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  9. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles.

    PubMed

    Yuan, Xiao-Lian; van der Kaaij, Rachel M; van den Hondel, Cees A M J J; Punt, Peter J; van der Maarel, Marc J E C; Dijkhuizen, Lubbert; Ram, Arthur F J

    2008-06-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to produce a large variety of enzymes for the degradation of plant polysaccharide material. A major carbon and energy source for this soil fungus is starch, which can be degraded by the concerted action of alpha-amylase, glucoamylase and alpha-glucosidase enzymes, members of the glycoside hydrolase (GH) families 13, 15 and 31, respectively. In this study we have combined analysis of the genome sequence of A. niger CBS 513.88 with microarray experiments to identify novel enzymes from these families and to predict their physiological functions. We have identified 17 previously unknown family GH13, 15 and 31 enzymes in the A. niger genome, all of which have orthologues in other aspergilli. Only two of the newly identified enzymes, a putative alpha-glucosidase (AgdB) and an alpha-amylase (AmyC), were predicted to play a role in starch degradation. The expression of the majority of the genes identified was not induced by maltose as carbon source, and not dependent on the presence of AmyR, the transcriptional regulator for starch degrading enzymes. The possible physiological functions of the other predicted family GH13, GH15 and GH31 enzymes, including intracellular enzymes and cell wall associated proteins, in alternative alpha-glucan modifying processes are discussed. PMID:18320228

  10. Isolation and toxigenicity of Aspergillus fumigatus from moldy silage.

    PubMed

    dos Santos, Valentina Melo; Dorner, Joe W; Carreira, Fátima

    2003-01-01

    Thirty-nine silage samples were collected from various silos on Terceira Island in the Azores. Samples were examined for the presence of total fungi, and isolates of Aspergillus fumigatus were analyzed for their ability to produce fumitremorgens B and C, fumigaclavines B and C, and gliotoxin. Thirty-four silage samples (87%) were contaminated with fungi, and A. fumigatus was isolated from 27 samples (69%). Samples that were taken from the surface of silos had significantly higher populations of both total fungi and A. fumigatus than did samples taken from the middle of silos. Analysis of 27 A. fumigatus isolates (one representing each positive sample) showed that 59.3% produced fumitremorgen B; 33.3% produced fumitremorgen C; 29.6% produced fumigaclavine B; 7.4% produced fumigaclavine C; and 11.1% produced gliotoxin. Fifty-two percent of the isolates produced multiple toxins, and 25.9% did not produce any of these toxins. Gliotoxin and fumigaclavine C were always produced in combination with other toxins. Because of the demonstrated potential of these A. fumigatus isolates to produce mycotoxins, it is important to properly construct and manage silos to prevent their contamination with A. fumigatus. PMID:12733634

  11. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality.

    PubMed

    Hattingh, M; Alexander, A; Meijering, I; van Reenen, C A; Dicks, L M T

    2014-03-01

    Good quality malt is characterised by the presence of high levels of fermentable sugars, amino acids and vitamins. To reach the starch-rich endosperm of the kernel, β-glucan- and arabinoxylan-rich cell walls have to be degraded. β-Glucanase is synthesized in vast quantities by the aleurone layer and scutellum during germination. Secretion of hydrolytic enzymes is often stimulated by addition of the plant hormone gibberellic acid (GA3) during germination. We have shown an enhanced β-glucanase and α-amylase activity in malt when germinating barley was inoculated with a combination of Lactobacillus plantarum B.S1.6 and spores of Aspergillus niger MH1, Rhizopus oligosporus MH2 or Trichoderma reesei MH3, and L. plantarum B.S1.6 combined with cell-free culture supernatants from each of these fungi. Highest malt β-glucanase activity (414 Units/kg malt) was recorded with a combination of L. plantarum B.S1.6 and spores of A. niger MH1. Highest α-amylase activities were recorded with a combination of L. plantarum B.S1.6 and spores of R. oligosporus MH2 (373 Ceralpha Units/g malt). Highest FAN levels were recorded when L. plantarum was inoculated in combination with spores of either R. oligosporus MH2 or T. reesei MH3 (259 and 260 ppm, respectively). This is the first study showing that cell-free culture supernatants of Aspergillus, Rhizopus and Trichoderma have a stimulating effect on β-glucanase and α-amylase production during malting. A combination of L. plantarum B.S1.6, and spores of A. niger MH1 and R. oligosporus MH2 may be used as starter cultures to enhance malt quality. PMID:24412956

  12. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  13. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    Sperber, C. v.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-03-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰), which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰) where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ -12‰), again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ɛ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate-dependency of

  14. Heavy-metal-induced Inhibition of Aspergillus niger nitrate reductase: Applications for Rapid Contaminant Detection in Aqueous Samples

    SciTech Connect

    Apel, William Arnold; Aiken, Abigail Marie; Peyton, Brent Michael; Petersen, James N.

    2003-03-01

    Enzyme inhibition assays have the potential to rapidly screen and identify heavy metals in environmental samples. Inhibition of nitrate reductase (NR) was examined as a method for detecting toxic metals. The activity of NR (EC 1.6.6.2) from Aspergillus niger was assayed as a function of metal concentration in the presence of Cd2+, Cr3+, Cr6+, Cu2+, Ni2+, Pb2+, and Zn2+. NR exhibited sensitivity to these metals at concentrations below 10 µM. Various buffers were screened for their ability to protect NR activity from metal inhibition, and 3-(N-morpholino) propanesulfonic acid (MOPS) was selected as the buffering system for the NR assays as it exhibited the least interference with metal inhibition, thus providing increased assay sensitivity. The hypothesis that chelating agents could prevent the inhibition of NR activity by metal ions was also tested. Results indicated that 10 mM ethylenediaminetetraacetic acid (EDTA) could protect NR activity from inhibition by Cr3+, Cu2+, Cd2+, Ni2+, and Zn2+ at concentrations below 100 µM, but that the EDTA had no effect on NR inhibition by Cr6+. An amount of 10 mM nitrilotriacetic acid (NTA) prevented NR inhibition by Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+ at metal concentrations below 100 µM. However, 10 mM NTA was unable to protect the enzyme from inhibition by either Cr3+ or Cr6+. These results indicated that through specific metal chelation, a NR-based method for individually quantifying Cr3+ and Cr6+ species in aqueous solutions could be developed. The ability to restore activity to NR which been previously inhibited by exposure to 100 µM Pb2+, Cd2+, Zn2+, Cu2+, and Cr3+ was explored to determine whether NR activity could be recovered by EDTA additions for use in consecutive metal inhibition assays. The results showed NR activity could not be regained after exposure to Cr3+ or Cu2+, but did partially recover activity after Cd2+, Pb2+, and Zn2+ exposure.

  15. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis.

    PubMed

    Park, Joohae; Hulsman, Mark; Arentshorst, Mark; Breeman, Matthijs; Alazi, Ebru; Lagendijk, Ellen L; Rocha, Marina C; Malavazi, Iran; Nitsche, Benjamin M; van den Hondel, Cees A M J J; Meyer, Vera; Ram, Arthur F J

    2016-09-01

    The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis. PMID:27264789

  16. Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants

    PubMed Central

    van Veluw, G.J.; Teertstra, W.R.; de Bekker, C.; Vinck, A.; van Beek, N.; Muller, W.H.; Arentshorst, M.; van der Mei, H.C.; Ram, A.F.J.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    Black pigmented conidia of Aspergillus niger give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the fwnA, olvA or brnA gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The ΔolvA strain produced larger conidia (3.8 μm) when compared to the other strains (3.2–3.3 μm). Moreover, the conidia of the ΔolvA strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the ΔolvA conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790–858 μm). The size distribution of the micro-colonies of the ΔfwnA strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of gpdA, and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium. PMID:23449476

  17. Inhaled corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis.

    PubMed

    Noni, Maria; Katelari, Anna; Dimopoulos, George; Kourlaba, Georgia; Spoulou, Vana; Alexandrou-Athanassoulis, Helen; Doudounakis, Stavros-Eleftherios; Tzoumaka-Bakoula, Chryssa

    2014-10-01

    Aspergillus fumigatus isolation in cultures from respiratory specimens of patients with cystic fibrosis (CF) is quite common; however, the role of A. fumigatus as a pathogen and whether its presence is associated with progression of pulmonary disease remain unclear. We investigated the association between inhaled corticosteroids and the recovery of A. fumigatus by performing a retrospective cohort study of CF patients born between 1988 and 1996. The patients' medical records from their first visit to the CF Center until December 2010 were reviewed. Outcomes were the occurrence of A. fumigatus first isolation, chronic colonization, or the last visit at the CF Center. A number of possible confounders were included in the multivariate logistic regression analysis in order to identify an independent association between inhaled corticosteroids and colonization status. A total of 121 patients were included in the study. Thirty-nine patients (32.2%) had at least one positive culture and 14 (11.6%) developed chronic colonization. Multivariate logistic regression analysis was used to determine the independent effect of inhaled corticosteroids on the odds of first isolation (odds ratio [OR], 1.165; 95% confidence interval [CI], 1.015-1.337; P = 0.029) and chronic colonization (OR, 1.180; 95% CI, 1.029-1.353; P = 0.018). In conclusion, A. fumigatus first isolation and chronic colonization are associated with the duration of inhaled corticosteroid treatment. PMID:25056962

  18. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus.

    PubMed

    Shen, Li; Zhu, Li; Luo, Qian; Li, Xiao-Wen; Xi, Ju-Qun; Kong, Gui-Mei; Song, Yong-Chun

    2015-12-01

    The present study was designed to isolate and purify chemical constituents from solid culture of endophyte Aspergillus terreus LQ, using silica gel column chromatography, gel filtration with Sephadex LH-20, and HPLC. Fumigaclavine I (1), a new alkaloid, was obtained, along with seven known compounds, including fumigaclavine C (2), rhizoctonic acid (3), monomethylsulochrin (4), chaetominine (5), spirotryprostatin A (6), asperfumoid (7), and lumichrome (8). The structure of compound 1 was elucidated by various spectroscopic analyses (UV, MS, 1D and 2D NMR). The in vitro cytotoxicity of compound 1 was determined by MTT assay in human hepatocarcinoma cell line SMMC-7721, showing weaker cytotoxicity, compared with cisplatin, a clinically used cancer chemotherapeutic agent. PMID:26721713

  19. [Purification and physico-chemical properties of glycosidase of Aspergillus niger 185sh].

    PubMed

    Borzova, N V; Varbanets', L D

    2003-01-01

    A scheme has been developed for isolation and purification of the enzyme with alpha-N-acetylgalactosaminidase and alpha-galactosidase activities which included fractionation by ammonium sulphate and chromatography on TSK-gels Toyopearl HW-60 and Fractogel DEAE-650-s and Sepharose 6B. The enzyme was purified 600 times with the yield of 28%. The enzyme preparation did not contain fucosidase, invertase and proteolytic activities. Molecular mass of the enzyme from the data of gel-filtration on Sepharose 6B was 430 kDa, according to the data of electrophoresis in DS-PAAG--70 kDa. It is shown that acidic and hydrophobic aminoacids prevail in the enzyme molecule, the carbohydrate component containing galactose, mannose, glucosamine and two nonidentified hexosamines is also present there. The enzyme preparation is stable during 48 hours at 20 degrees C; its pH-optimum is at pH 3.5-4.1. Michaelis constants concerning n-nitrophenyl-alpha-N-acetylgalactopyranoside and n-nitrophenyl-alpha-D-galactopyranoside were 1.18 and 1.25 mM, respectively. PMID:15077544

  20. Non-aflatoxigenic Aspergillus flavus isolates reduce aflatoxins, cyclopiazonic acid and fumonisin in corn (maize)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus strains vary widely in their production of aflatoxins and cyclopiazonic acid (CPA). A total of 500 Aspergillus strains isolated from a variety of sources showed 16.4% were negative for both aflatoxin and CPA, 41.3% were positive for both mycotoxins, 13.0% were positive only fo...

  1. Identification of Aspergillus fumigatus and Related Species by Nested PCR Targeting Ribosomal DNA Internal Transcribed Spacer Regions

    PubMed Central

    Zhao, Jun; Kong, Fanrong; Li, Ruoyu; Wang, Xiaohong; Wan, Zhe; Wang, Duanli

    2001-01-01

    Aspergillus fumigatus is the most common species that causes invasive aspergillosis. In order to identify A. fumigatus, partial ribosomal DNA (rDNA) from two to six strains of five different Aspergillus species was sequenced. By comparing sequence data from GenBank, we designed specific primer pairs targeting rDNA internal transcribed spacer (ITS) regions of A. fumigatus. A nested PCR method for identification of other A. fumigatus-related species was established by using the primers. To evaluate the specificities and sensitivities of those primers, 24 isolates of A. fumigatus and variants, 8 isolates of Aspergillus nidulans, 7 isolates of Aspergillus flavus and variants, 8 isolates of Aspergillus terreus, 9 isolates of Aspergillus niger, 1 isolate each of Aspergillus parasiticus, Aspergillus penicilloides, Aspergillus versicolor, Aspergillus wangduanlii, Aspergillus qizutongii, Aspergillus beijingensis, and Exophiala dermatitidis, 4 isolates of Candida, 4 isolates of bacteria, and human DNA were used. The nested PCR method specifically identified the A. fumigatus isolates and closely related species and showed a high degree of sensitivity. Additionally, four A. fumigatus strains that were recently isolated from our clinic were correctly identified by this method. Our results demonstrate that these primers are useful for the identification of A. fumigatus and closely related species in culture and suggest further studies for the identification of Aspergillus fumigatus species in clinical specimens. PMID:11376067

  2. NON-TOXIGENIC ASPERGILLUS FLAVUS ISOLATES FOR REDUCING AFLATOXIN IN MISSISSIPPI DELTA CORN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for two non-toxigenic isolates of Aspergillus flavus CT3 and K49 isolated from the Mississippi Delta to reduce aflatoxin contamination of corn was assessed in a field study. These two isolates exhibited comparable growth and aggressiveness as the toxigenic A. flavus isolate F3W4. The...

  3. Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support.

    PubMed

    Sharma, Amit; Vivekanand, V; Singh, Rajesh P

    2008-06-01

    Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production. PMID:17881224

  4. Enzymatic synthesis of novel oligosaccharides from N-acetylsucrosamine and melibiose using Aspergillus niger α-galactosidase, and properties of the products.

    PubMed

    Sakaki, Yohei; Tashiro, Mitsuru; Katou, Moe; Sakuma, Chiseko; Hirano, Takako; Hakamata, Wataru; Nishio, Toshiyuki

    2016-09-01

    Two kinds of oligosaccharides, N-acetylraffinosamine (RafNAc) and N-acetylplanteosamine (PlaNAc), were synthesized from N-acetylsucrosamine and melibiose using the transgalactosylation activity of Aspergillus niger α-galactosidase. RafNAc and PlaNAc are novel trisaccharides in which d-glucopyranose residues in raffinose (Raf) and planteose are replaced with N-acetyl-d-glucosamine. These trisaccharides were more stable in acidic solution than Raf. RafNAc was hydrolyzed more rapidly than Raf by α-galactosidase of green coffee bean. In contrast, RafNAc was not hydrolyzed by Saccharomyces cerevisiae invertase, although Raf was hydrolyzed well by this enzyme. These results indicate that the physicochemical properties and steric structure of RafNAc differ considerably from those of Raf. PMID:27254139

  5. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin.

    PubMed

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E; Peng, Mao; Aguilar Pontes, Maria Victoria; van Kan, Jan A L; Visser, Jaap; de Vries, Ronald P; Ram, Arthur F J

    2016-06-01

    We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analysis showed that GaaR is required for the expression of genes necessary to release GA from PGA and more complex pectins, to transport GA into the cell, and to induce the GA catabolic pathway. Residual growth of ΔgaaR on complex pectins is likely due to the expression of pectinases acting on rhamnogalacturonan and subsequent metabolism of the monosaccharides other than GA. PMID:27174630

  6. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    PubMed

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain. PMID:26603902

  7. Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials.

    PubMed

    Ali, Sikander; Haq, Ikram-ul

    2005-01-01

    The present investigation deals with the promotry effect of different additives and metallic micro minerals on citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. For this, sugar cane bagasse was fortified with sucrose salt medium. Ethanol and coconut oil at 3.0% (v/w) level increased citric acid productivity. Fluoroacetate at a concentration of 1.0 mg/ml bagasse enhanced the yield of citric acid significantly. However, the addition of ethanol and fluoroacetate after 6 h of growth gave the maximum conversion of available sugar to citric acid. In another study, influence of some metallic micro-minerals viz. copper sulphate, molybdenum sulphate, zinc sulphate and cobalt sulphate on microbial synthesis of citric acid using molasses medium was also carried out. It was found that copper sulphate and molybdenum sulphate remarkably enhanced the production of citric acid while zinc sulphate was not so effective. However, cobalt sulphate was the least effective for microbial biosynthesis of citric acid under the same experimental conditions. In case of CuSO(4), the strain of Aspergillus niger MNNG-115 showed enhanced citric productivity with experimental (9.80%) over the control (7.54%). In addition, the specific productivity of the culture at 30 ppm CuSO(4) (Q(p) = 0.012a g/g cells/h) was several folds higher than other all other concentrations. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper productivity of citric acid by CuSO(4) using blackstrap molasses as the basal carbon source. PMID:15678560

  8. A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light.

    PubMed Central

    Gradisnik-Grapulin, M; Legisa, M

    1997-01-01

    A spontaneous rise in intracellular cyclic AMP (cAMP) levels was observed in the early stages of Aspergillus niger growth under conditions yielding large amounts of citric acid. The amount of cAMP formed was found to depend on the initial concentration of sucrose in the medium. Under higher-sucrose conditions, the cAMP peak appeared earlier and was higher, while in lower-sucrose media a flattened peak was observed later in fermentation. Since in media with higher concentrations of sucrose intracellular citric acid starts to accumulate earlier and more rapidly, cAMP synthesis may be triggered by intracellular acidification, which is caused by the dissociation of citric acid. No spontaneous increase in cAMP concentrations could be detected when the cells were grown in continuously illuminated cultures, suggesting that A. niger phosphodiesterase (PDE) is photoregulated. More evidence for the activation of PDE by light was obtained from morphological studies under light and dark conditions in the presence of cAMP or N6,O2'-dibutyryl cAMP, and this idea was additionally supported by experiments in which PDE inhibitors were tested. PMID:9212431

  9. Aspergillus niger lipase: Heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation.

    PubMed

    Shu, Zhengyu; Duan, Mojie; Yang, Jiangke; Xu, Li; Yan, Yunjun

    2009-01-01

    Aspergillus niger lipase (ANL) is an important biocatalyst in the food processing industry. However, there is no report of its detailed three-dimensional structure because of difficulties in crystallization. In this article, based on experimental data and bioinformational analysis results, the structural features of ANL were simulated. Firstly, two recombinant ANLs expressed in Pichia pastoris were purified to homogeneity and their corresponding secondary structure compositions were determined by circular dichroism spectra. Secondly, the primary structure, the secondary structure and the three-dimensional structure of ANL were modeled by comparison with homologous lipases with known three-dimensional structures using the BioEdit software, lipase engineering database (http://www.led.uni-stuttgart.de/), PSIPRED server and SwissModel server. The predicted molecular structure of ANL presented typical features of the alpha/beta hydrolase fold including positioning of the putative catalytic triad residues and the GXSXG signature motif. Comparison of the predicted three-dimensional structure of ANL with the X-ray three-dimensional structure of A. niger feruloyl esterase showed that the functional difference of interfacial activation between lipase and esterase was concerned with the difference in position of the lid. Our three-dimensional model of ANL helps to modify lipase structure by protein engineering, which will further expand the scope of application of ANL. PMID:19248178

  10. Expression and biochemical characterization of recombinant α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528.

    PubMed

    Li, Lijun; Yu, Yue; Zhang, Xia; Jiang, Zedong; Zhu, Yanbing; Xiao, Anfeng; Ni, Hui; Chen, Feng

    2016-04-01

    A putative cDNA of α-l-rhamnosidase was PCR-cloned from Aspergillus niger JMU-TS528 and further extracellular over-expressed in Pichia pastoris GS115. The activity of the recombinant α-l-rhamnosidase r-Rha1 was 711.9U/mL, eightfold higher than the native α-l-rhamnosidase from A. niger JMU-TS528. r-Rha1 is a N-glycosylated protein of 90kDa and possesses broad substrate specificities by hydrolyzing α-1,2, α-1,3 α-1,4, and α-1,6 linkages to β-d-glucosides. This is the first report presenting that α-l-rhamnosidase showed activity on four kinds of glucosidic linkages. Compared with other previously characterized α-l-rhamnosidases, r-Rha1 showed a good thermostability and wide range of pH-stability with the optimum pH of 5.0 and temperature of 60°C. r-Rha1 activity was not greatly affected by representative metal ions and other detected effectors and showed excellent tolerance abilities against glucose and ethanol. These beneficial characteristics of r-Rha1 suggest that r-Rha1 should be considered a potential new biocatalyst for food and drug industrial applications. PMID:26769090

  11. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.

    PubMed

    Buddhiwant, Priyanka; Bhavsar, Kavita; Kumar, V Ravi; Khire, Jayant M

    2016-08-17

    This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett-Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box-Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5-6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the "generally regarded as safe" (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF). PMID:26176365

  12. Construction of Engineered Bifunctional Enzymes and Their Overproduction in Aspergillus niger for Improved Enzymatic Tools To Degrade Agricultural By-Products

    PubMed Central

    Levasseur, Anthony; Navarro, David; Punt, Peter J.; Belaïch, Jean-Pierre; Asther, Marcel; Record, Eric

    2005-01-01

    Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates. PMID:16332795

  13. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase.

    PubMed

    Juge, Nathalie; Nøhr, Jane; Le Gal-Coëffet, Marie-Françoise; Kramhøft, Birte; Furniss, Caroline S M; Planchot, Véronique; Archer, David B; Williamson, Gary; Svensson, Birte

    2006-02-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface. PMID:16403494

  14. Isolation of Two Apsa Suppressor Strains in Aspergillus Nidulans

    PubMed Central

    Kruger, M.; Fischer, R.

    1996-01-01

    Aspergillus nidulans reproduces asexually with single nucleated conidia. In apsA (anucleate primary sterigmata) strains, nuclear positioning is affected and conidiation is greatly reduced. To get further insights into the cellular functions of apsA, aconidial apsA strains were mutagenized and conidiating suppressor strains were isolated. The suppressors fell into two complementation groups, samA and samB (suppressor of anucleate metulae). samA mapped on linkage group I close to pyrG. The mutant allele was dominant in diploids homozygous for apsA. Viability of conidia of samA suppressor strains (samA(-); apsA(-)) was reduced to 50% in comparison to wild-type conidia. Eighty percent of viable spores produced small size colonies that were temperature- and benomyl-sensitive. samB mapped to chromosome VIII and was recessive. Viability of conidia from samB suppressor strains (apsA(-); samB(-)) was also affected but no small size colonies were observed. Both suppressors produced partial defects in sexual reproduction and both suppressed an apsA deletion mutation. In wild-type background the mutant loci affected hyphal growth rate (samA) or changed the colony morphology (samB) and inhibited sexual spore formation (samA and samB). Only subtle effects on conidiation were found. We conclude that both suppressor genes bypass the apsA function and are involved in microtubule-dependent processes. PMID:8889518

  15. LAMP-PCR detection of ochratoxigenic Aspergillus species collected from peanut kernel.

    PubMed

    Al-Sheikh, H M

    2015-01-01

    Over the last decade, ochratoxin A (OTA) has been widely described and is ubiquitous in several agricultural products. Ochratoxins represent the second-most important mycotoxin group after aflatoxins. A total of 34 samples were surveyed from 3 locations, including Mecca, Madina, and Riyadh, Saudi Arabia, during 2012. Fungal contamination frequency was determined for surface-sterilized peanut seeds, which were seeded onto malt extract agar media. Aspergillus niger (35%), Aspergillus ochraceus (30%), and Aspergillus carbonarius (25%) were the most frequently observed Aspergillius species, while Aspergillus flavus and Aspergillus phoenicis isolates were only infrequently recovered and in small numbers (10%). OTA production was evaluated on yeast extract sucrose medium, which revealed that 57% of the isolates were A. niger and 60% of A. carbonarius isolates were OTA producers; 100% belonged to A. ochraceus. Only one isolate, morphologically identified as A. carbonarius, and 3 A. niger isolates unstably produced OTA. A polymerase chain reaction (PCR)-based identification and detection assay was used to identify A. ochraceus isolates. Using the primer sets OCRA1/OCRA2, 400-base pair PCR fragments were produced only when genomic DNA from A. ochraceus isolates was used. Recently, the loop-mediated isothermal amplification assay using recombinase polymerase amplification chemistry was used for A. carbonarius and A. niger DNA identification. As a non-gel-based technique, the amplification product was directly visualized in the reaction tube after adding calcein for naked-eye examination. PMID:25729999

  16. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  17. Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa.

    PubMed

    Iheanacho, Henry E; Njobeh, Patrick B; Dutton, Francis M; Steenkamp, Paul A; Steenkamp, Lucia; Mthombeni, Julian Q; Daru, Barnabas H; Makun, Anthony H

    2014-12-01

    Isolation of filamentous species of two Aspergillum genera from compound feeds produced in South Africa, and subsequent extraction of their individual DNA in this study, presents a simple but rapid molecular procedure for high through-put analysis of the individual morphological forms. DNA was successfully isolated from the Aspergillus spp. from agar cultures by use of a commercial kit. Agarose gel electrophoresis fractionation of the fungi DNA, showed distinct bands. The DNA extracted by this procedure appears to be relatively pure with a ratio absorbance at 260 and 280 nm. However, the overall morphological and molecular data indicated that 67.5 and 51.1% of feed samples were found to be contaminated with Aspergillus flavus and Aspergillus parasiticus, respectively, with poultry feed having the highest contamination mean level of 5.7 × 105 CFU/g when compared to cattle (mean: 4.0 × 106 CFU/g), pig (mean: 2.7 × 104 CFU/g) and horse (1.0 × 102 CFU) feed. This technique presents a readily achievable, easy to use method in the extraction of filamentous fungal DNA and it's identification. Hence serves as an important tool towards molecular study of these organisms for routine analysis check in monitoring and improving compound feed quality against fungal contamination. PMID:25084661

  18. Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2016-09-01

    Marine macroalgae are gaining more and more importance as a renewable feedstock for durable bioenergy production, but polysaccharides of this macroalgae are structurally complex in its chemical composition. The use of enzymatic hydrolysis may provide new pathways in the conversion of complex polysaccharides to fermentable sugars. In this study, an enzymatic cocktail with high specificity was first isolated from Aspergillus niger using the green macroalgae Ulva rigida as nitrogen source. The cocktail is rich on β-glucosidase, pectinase and carboxy-methyl-cellulase (CMCase). The highest activity was obtained with β-glucosidase (109IUmL(-1)) and pectinase (76IUmL(-1)), while CMCase present the lowest activity 4.6IUmL(-1). The U. rigida pre-treatment with this enzymatic cocktail showed high rate of reduced sugar release, and could bring promising prospects for enzymatic pre-treatment of the biogas production from U. rigida biomass which reached 1175mLgCODint(-1). PMID:27285578

  19. Aspergillus species: An emerging pathogen in onychomycosis among diabetics

    PubMed Central

    Wijesuriya, T. M.; Kottahachchi, J.; Gunasekara, T. D. C. P.; Bulugahapitiya, U.; Ranasinghe, K. N. P.; Neluka Fernando, S. S.; Weerasekara, M. M.

    2015-01-01

    Introduction: Approximately, 33% patients with diabetes are afflicted with onychomycosis. In the past, nondermatophyte molds have been regarded as opportunistic pathogens; recently, Aspergillus species are considered as emerging pathogens of toenail infections. In Sri Lanka, the prevalence of Aspergillus species in onychomycosis among diabetics is not well documented. Objective: To determine the proportion of Aspergillus onychomycosis, risk factors and knowledge among diabetics. Materials and Methods: This was descriptive cross-sectional study. Three hundred diabetic patients were included. Clinical examinations of patients’ toenails were performed by a clinical microbiologist. Laboratory identification was done, and pathogens were identified to the species level by morpho-physiological methods. All inferential statistics were tested at P < 0.05. Results: Among clinically suspected patients, 85% (255/300) were mycologically confirmed to have onychomycosis. Aspergillus species were most commonly isolated n = 180 (71%) followed by dermatophytes, yeasts, and other molds n = 75 (29%). Of the patients having Aspergillus onychomycosis, 149 (83%) were in the > age group. In men, Aspergillus onycomycosis was seen in 82%. Among patients who had Aspergillus nail infection, 114 (63%) had diabetes for a period of > years. Among patients who were engaged in agricultural activities, 77% were confirmed to have infected nails due to Aspergillus species. Conclusion: Aspergillus niger was the most common pathogen isolated from toenail infection. Aspergillus species should be considered as an important pathogen in toenail onychomycosis in diabetic patients. Risk factors associated with Aspergillus onychomycosis were age, gender, duration of diabetes, length of exposure to fungi, and occupation. PMID:26693433

  20. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  1. Draft Genome Sequences of Two Aspergillus fumigatus Strains, Isolated from the International Space Station.

    PubMed

    Singh, Nitin Kumar; Blachowicz, Adriana; Checinska, Aleksandra; Wang, Clay; Venkateswaran, Kasthuri

    2016-01-01

    Draft genome sequences of Aspergillus fumigatus strains (ISSFT-021 and IF1SW-F4), opportunistic pathogens isolated from the International Space Station (ISS), were assembled to facilitate investigations of the nature of the virulence characteristics of the ISS strains to other clinical strains isolated on Earth. PMID:27417828

  2. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid co-culture against A. flav...

  3. Aflaquinolones A-G: Secondary metabolites from marine and fungicolous isolates of Aspergillus spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven new compounds (aflaquinolones A-G; 1-7) containing dihydroquinolin-2-one and terpenoid units have been isolated from two different fungal sources. Two of these metabolites (1 and 2) were obtained from a Hawaiian fungicolous isolate of Aspergillus sp. (section Flavipedes; MYC-2048=NRRL 58570), ...

  4. Draft Genome Sequences of Two Aspergillus fumigatus Strains, Isolated from the International Space Station

    PubMed Central

    Singh, Nitin Kumar; Blachowicz, Adriana; Checinska, Aleksandra; Wang, Clay

    2016-01-01

    Draft genome sequences of Aspergillus fumigatus strains (ISSFT-021 and IF1SW-F4), opportunistic pathogens isolated from the International Space Station (ISS), were assembled to facilitate investigations of the nature of the virulence characteristics of the ISS strains to other clinical strains isolated on Earth. PMID:27417828

  5. Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape: insights into glycoside hydrolase family 3 (GH3) β-glucosidase structure and function.

    PubMed

    Lima, Marisa A; Oliveira-Neto, Mario; Kadowaki, Marco Antonio S; Rosseto, Flavio R; Prates, Erica T; Squina, Fabio M; Leme, Adriana F P; Skaf, Munir S; Polikarpov, Igor

    2013-11-15

    Aspergillus niger is known to secrete large amounts of β-glucosidases, which have a variety of biotechnological and industrial applications. Here, we purified an A. niger β-glucosidase (AnBgl1) and conducted its biochemical and biophysical analyses. Purified enzyme with an apparent molecular mass of 116 kDa forms monomers in solution as judged by native gel electrophoresis and has a pI value of 4.55, as found for most of the fungi of β-glucosidases. Surprisingly, the small angle x-ray experiments reveal that AnBgl1 has a tadpole-like structure, with the N-terminal catalytic domain and C-terminal fibronectin III-like domain (FnIII) connected by the long linker peptide (∼100 amino acid residues) in an extended conformation. This molecular organization resembles the one adopted by other cellulases (such as cellobiohydrolases, for example) that frequently contain a catalytic domain linked to the cellulose-binding module that mediates their binding to insoluble and polymeric cellulose. The reasons why AnBgl1, which acts on the small soluble substrates, has a tadpole molecular shape are not entirely clear. However, our enzyme pulldown assays with different polymeric substrates suggest that AnBgl1 has little or no capacity to bind to and to adsorb cellulose, xylan, and starch, but it has high affinity to lignin. Molecular dynamics simulations suggested that clusters of residues located in the C-terminal FnIII domain interact strongly with lignin fragments. The simulations showed that numerous arginine residues scattered throughout the FnIII surface play an important role in the interaction with lignin by means of cation-π stacking with the lignin aromatic rings. These results indicate that the C-terminal FnIII domain could be operational for immobilization of the enzyme on the cell wall and for the prevention of unproductive binding of cellulase to the biomass lignin. PMID:24064212

  6. Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris.

    PubMed

    Pham, Thi Hoa; Quyen, Dinh Thi; Nghiem, Ngoc Minh; Vu, Thu Doan

    2011-10-01

    A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of beta-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of 55°C and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of 30- 37°C and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants (K(m), V(max), k(cat), and k(cat)/ K(m)) determined for rEglA with beta-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 min-1, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 min-1, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward beta-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme. PMID:22031024

  7. Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization.

    PubMed

    Yedahalli, Shreyas S; Rehmann, Lars; Bassi, Amarjeet

    2016-05-01

    Inulin is a linear carbohydrate polymer of fructose subunits (2-60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo-oligosaccharides, biofuel, and nutraceuticals. Cell-free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo-inulinase was investigated in this study. The eukaroyototic exo-inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta-gami B (DE3)]. The molecular weight of recombinant exo-inulinase was estimated to be ∼81 kDa. The values of Km and Vmax of the recombinant exo-inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min(-1)  mg(-1) protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min(-1)  mg(-1) protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo-inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo-inulinase activity towards inulin was enhanced by Cu(2+) and reduced by Fe(2+) , while its activity towards sucrose was enhanced by Co(2+) and reduced by Zn(2+) . © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629-637, 2016. PMID:26833959

  8. [Determination of the antimicrobial capacity of green tea (Camellia sinensis) against the potentially pathogenic microorganisms Escherichia coli, Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, Candida albicans and Aspergillus niger].

    PubMed

    Mora, Andreína; Pawa, Jonathan; Chaverri, José M; Arias, María Laura

    2013-09-01

    Many studies can be found in scientific literature demonstrating the antimicrobial capacity of different herbs, including green tea. Never-theless, many results are divergent or cannot be compared. Several green tea formulations may be found in market, but there is scarce or non-information about its activity. In this work, the potential antimicrobial effect of 50 samples of dry green tea and in 10% infusion against Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Candida albicans and Aspergillus niger distributed in the metropolitan area of Costa Rica, was determined. This activity was compared with the effect produced by Chinese origin green tea (Camellia sinensis). Different solvents were evaluated for preparing polyphenol enriched extracts from green tea samples. Total phenols were determined using the Folin-Ciocalteu spectrophotometric methodology, using galic acid as reference. Antimicrobial activity of green tea extracts and infusions was evaluated using the microplate methodology described by Breuking (2006). Ethanol was the most efficient solvent used for the polyphenol extractions. There was no antimicrobial effect of the different green tea extracts and infusions against the microorganisms evaluated, except for Listeria monocytogenes, where the extracts of 70% of samples analyzed and the control showed an inhibitory effect in the 10.5 mg/mL and 1.05 mg/L concentrations. None of the infusions tested, including the control, showed any effect against this bacteria. PMID:25362825

  9. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control.

    PubMed

    Kent, Lisa M; Loo, Trevor S; Melton, Laurence D; Mercadante, Davide; Williams, Martin A K; Jameson, Geoffrey B

    2016-01-15

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged. PMID:26567911

  10. Hydrolysis of glycosidically bound volatiles from apple leaves (Cv. Anna) by Aspergillus niger beta-glucosidase affects the behavior of codling moth (Cydia pomonella L.).

    PubMed

    Wei, Shu; Reuveny, Haim; Bravdo, Ben-Ami; Shoseyov, Oded

    2004-10-01

    Glycosidically bound volatiles released from apple leaf extracts (cv. Anna) were analyzed by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and their behavioral effects on codling moth (CM) adults were evaluated in cage bioassays. The levels of 1-octanol, linalool, geraniol, benzyl alcohol, methyl salicylate, (2R,5R)-theaspirane, and (2S,5R)-theaspirane were significantly increased in the leaf extracts containing the Aspergillus niger beta-glucosidase (BGL1) compared to the extracts containing the glucoimidazole. The attractiveness of individual compounds to CM adults was found in the following decreasing order: methyl salicylate and mixture of two theaspirane isomers, followed by linalool and benzyl alcohol. Geraniol was found to be repellent to CM adults. The addition of geraniol (39.4 ng mL(-1)) to any of the individual volatiles or to a mixture of these attractants eliminated their attractiveness. Our data suggest the possible application of geraniol as a repellent and methyl salicylate or theaspiranes as attractants for the integrated control of CM in apple orchards. PMID:15453689

  11. Analysis of metal Bioleaching from thermal power plant fly ash by Aspergillus niger 34770 culture supernatant and reduction of phytotoxicity during the process.

    PubMed

    Jadhav, Umesh U; Hocheng, Hong

    2015-01-01

    Aspergillus niger culture supernatant is used for bioleaching process. Before starting bioleaching process, fly ash was washed with distilled water. This removed 100 % sodium, 47 % (±0.45) boron, 38.07 % (±0.12) calcium, 29.89 % (±0.78) magnesium, and 11.8 % (±0.05) potassium. The pH was reduced from 10.5 to 8.5 after water washing. During bioleaching process, around 100 % metal removal was achieved in 4 h for all metals except chromium 93 % (±1.18), nickel 83 % (±0.32), arsenic 78 % (±0.52), and lead 70 % (±0.20). The process parameters including temperature, shaking speed, and solid/liquid ratio were optimized for bioleaching process. Experiments were conducted to evaluate effect of fly ash on growth of mung bean (Vigna radiata). At 20 g/100 ml fly ash concentration no germination of V. radiata seeds was observed. With an increasing concentration of untreated fly ash, a gradual decrease in root/shoot length was observed. After bioleaching process 78 % (±0.19) germination of V. radiata was observed with 20 g/100 ml fly ash. This study will help to develop an efficient process to remove the toxic metals from fly ash. PMID:25349087

  12. Effects of High Pressure Homogenization on the Activity, Stability, Kinetics and Three-Dimensional Conformation of a Glucose Oxidase Produced by Aspergillus niger

    PubMed Central

    Tribst, Alline Artigiani Lima; Cota, Júnio; Murakami, Mario Tyago; Cristianini, Marcelo

    2014-01-01

    High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5–6.0 and a remarkable activity increase (30–300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO. PMID:25061935

  13. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    PubMed Central

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  14. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens.

    PubMed

    Apata, David Friday

    2011-01-01

    A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM) with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (P > .05) in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40%) of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (P < .05) on 80% FTCM fed broilers. Serum cholesterol, creatinine, and glucose were not significantly (P > .05) altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (P < .05) increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents. PMID:21350670

  15. Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra- and extracellular inulinase and invertase from Aspergillus niger ATCC 20611.

    PubMed

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO₃, Zn⁺², and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R²) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO₃, 1.5 mM (v/v) Zn⁺², and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  16. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger.

    PubMed

    Yuan, Xiao-Lian; Roubos, Johannes A; van den Hondel, Cees A M J J; Ram, Arthur F J

    2008-01-01

    The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides. PMID:17917744

  17. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  18. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2014-08-01

    Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention. PMID:24862324

  19. Effect of Mg²⁺ and Al²⁺ Ions on Thermodynamic and Physiochemical Properties of Aspergillus niger Invertases.

    PubMed

    Nadeem, Habibullah; Rashid, Muhammad H; Siddique, Muhammad H

    2015-01-01

    In the present study, we reported for the first time the effect of various concentrations (0.5- 3.0 mM) of Mg(2+) and Al(3+) ions on the kinetics and thermodynamics of Aspergillus niger invertases for sucrose hydrolysis. We found that both metal ions enhanced the affinity of invertase for sucrose by decreasing the Km. In the presence of 0.5 mM Al(3+) ions invertase have maximum affinity for sucrose (Km = 0.00914 M sucrose). Invertase was activated by Mg(2+) ions at low concentrations (0.5-2.0 mM) and 341% increase in turnover (Kcat) and maximum decrease in ΔG* was observed in the presence of 0.5 mM Mg(2+) ions. The entropy change for activation of substrate hydrolysis (ΔS*) was increased by all concentrations of Mg(2+) ions and was highest (-94 J mol(-1) K(-1)) for invertases bound with 1.5 mM Mg(2+) ions. PMID:26021385

  20. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid.

    PubMed

    Levasseur, Anthony; Saloheimo, Markku; Navarro, David; Andberg, Martina; Monot, Frédéric; Nakari-Setälä, Tiina; Asther, Marcel; Record, Eric

    2006-12-01

    The main goals of this work were to produce the fusion protein of the Trichoderma reesei swollenin I (SWOI) and Aspergillus niger feruloyl esterase A (FAEA) and to study the effect of the physical association of the fusion partners on the efficiency of the enzyme. The fusion protein was produced up to 25 mg l(-1) in the T. reesei strains Rut-C30 and CL847. In parallel, FAEA alone was produced for use as a control protein in application tests. Recombinant FAEA and SWOI-FAEA were purified to homogeneity and characterized. The biochemical and kinetic characteristics of the two recombinant proteins were found to be similar to those of native FAEA, except for the temperature stability and specific activity of the SWOI-FAEA. Finally, the SWOI-FAEA protein was tested for release of ferulic acid from wheat bran. A period of 24 h of enzymatic hydrolysis with the SWOI-FAEA improved the efficiency of ferulic acid release by 50% compared with the results obtained using the free FAEA and SWOI. Ferulic acid is used as an antioxidant and flavor precursor in the food and pharmaceutical industries. This is the first report of a potential application of the SWOI protein fused with an enzyme of industrial interest. PMID:16957894

  1. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn.

    PubMed

    Zhou, Xiaojin; Hui, Elizabeth; Yu, Xiao-Lin; Lin, Zhen; Pu, Ling-Kui; Tu, Zhiguan; Zhang, Jun; Liu, Qi; Zheng, Jian; Zhang, Juan

    2015-05-01

    Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated. PMID:25901899

  2. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin.

    PubMed

    Deng, Weiqin; Lin, Derong; Yao, Kai; Yuan, Huaiyu; Wang, Zhilong; Li, Jianlong; Zou, Likou; Han, Xinfeng; Zhou, Kang; He, Li; Hu, Xinjie; Liu, Shuliang

    2015-10-01

    Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of β-cypermethrin (β-CY; 50 mg L(-1)) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) in 22 h. The half-lives of β-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of β-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of β-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. β-CY degradation products were analyzed. Results indicated that YAT strain transformed β-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food. PMID:26022858

  3. Production of an endoinulinase from Aspergillus niger AUMC 9375, by solid state fermentation of agricultural wastes, with purification and characterization of the free and immobilized enzyme.

    PubMed

    Housseiny, Manal M

    2014-05-01

    Two different substrates, sunflower (Helianthus annuus L.) tubers and lettuce (Lactuca sativa) roots, were tested. Using a mixture of both wastes resulted in higher production of endoinulinase than either waste alone. Also, ten fungal species grown on these substrates as inexpensive, carbon sources were screened for the best production of endoinulinase activities. Of these, Aspergillus niger AUMC 9375 was the most productive, when grown on the mixture using a 6:1 w/w ratio of sun flower: lettuce, and yielded the highest levels of inulinase at 50% moisture, 30°C, pH 5.0, with seven days of incubation, and with yeast extract as the best nitrogen source. Inulinase was purified to homogeneity by ion-exchange chromatography and gel-filtration giving a 51.11 fold purification. The mixture of sunflower tubers and lettuce roots has potential to be an effective and economical substrate for inulinase production. Inulinase was successfully immobilized with an immobilization yield of 71.28%. After incubation for 2 h at 60°C, the free enzyme activity decreased markedly to 10%, whereas that of the immobilized form decreased only to 87%. A reusability test demonstrated the durability of the immobilized inulinase for 10 cycles and in addition, that it could be stored for 32 days at 4°C. These results indicate that this inulinase, in the immobilized form, is a potential candidate for large-scale production of high purity fructose syrups. PMID:24810318

  4. Mycotoxins produced by Aspergillus fumigatus isolated from silage.

    PubMed

    Cole, R J; Kirksey, J W; Dorner, J W; Wilson, D M; Johnson, J; Bedell, D; Springer, J P; Chexal, K K; Clardy, J; Cox, R H

    1977-01-01

    Results are presented which show that Aspergillus fumigatus was one of the predominant fungi contaminating moldy silage. Growth of A. fumigatus on silage appeared to depend on a preliminary aerobic fermentation by other natural microflora in silage. The clavine alkaloid, fumigaclavine A, and a new clavine alkaloid designated fumigaclavine C were produced by A. fumigatus. The LD50 of fumigaclavine C was approximately 150 mg/kg oral dose in day-old cockerels. PMID:350117

  5. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of the fungus Aspergillus candidus was tested for production of nematicidal compounds. Adults of the nematode Ditylenchus destructor were completely inactive after 24 hr exposure to soy medium in which A. candidus was cultured. Column, thin layer and preparative chromatographies, and spec...

  6. Enzymatic Dehairing of Cattlehide with an Alkaline Protease Isolated from Aspergillus tamarii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An enzymatic dehairing protocol based on the alkaline serine protease isolated from Aspergillus tamarii required 16h, and we observed concomitant grain damage. The use of sodium dodecyl sulfate as a pretreatment to remove the lipids from the hide allowed a shortening of the dehairing time to 6 h wi...

  7. Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aspergillus flavus is responsible for producing carcinogenic mycotoxins, the aflatoxins, on corn (maize) and other crops. An additional harmful toxin, cyclopiazonic acid, is produced by some isolates of A. flavus. Several A. flavus strains that do not produce one or both of these mycoto...

  8. Azole Resistance in Aspergillus fumigatus Clinical Isolates from an Italian Culture Collection

    PubMed Central

    Lazzarini, Cristina; Esposto, Maria Carmela; Prigitano, Anna; Cogliati, Massimo; De Lorenzis, Gabriella

    2015-01-01

    The aims of the study were to investigate the prevalence of azole resistance among Aspergillus fumigatus clinical isolates. A total of 533 clinical isolates that had been collected between 1995 and 2006, from 441 patients, were screened. No resistance was detected in isolates collected between 1995 and 1997. Starting in 1998, the resistance rate was 6.9%; a total of 24 patients (6.25%) harbored a resistant isolate. The TR34/L98H substitution was found in 21 of 30 tested isolates. PMID:26552980

  9. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world

    PubMed Central

    Visagie, C.M.; Hirooka, Y.; Tanney, J.B.; Whitfield, E.; Mwange, K.; Meijer, M.; Amend, A.S.; Seifert, K.A.; Samson, R.A.

    2014-01-01

    As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 β-tubulin and 507 calmodulin sequences, which serve as alternative identification markers. PMID:25492981

  10. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.

    PubMed

    Piumi, François; Levasseur, Anthony; Navarro, David; Zhou, Simeng; Mathieu, Yann; Ropartz, David; Ludwig, Roland; Faulds, Craig B; Record, Eric

    2014-12-01

    Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical

  11. Expression of the Aspergillus niger InuA gene in Saccharomyces cerevisiae permits growth on the plant storage carbohydrate inulin at low enzymatic concentrations

    DOE PAGESBeta

    Close, Dan

    2015-01-01

    The plant storage carbohydrate inulin represents an attractive biomass feedstock for fueling industrial scale bioconversion processes due to its low cost, ability for cultivation on arid and semi-arid lands, and amenability to consolidated bioprocessing applications. As a result, increasing efforts are emerging towards engineering industrially relevant microorganisms, such as yeast, to efficiently ferment inulin into high value fuels and chemicals. Although some strains of the industrially relevant yeast model Saccharomyces cerevisiae can naturally ferment inulin, the efficiency of this process is often supplemented through expression of exogenous inulinase enzymes that externally convert inulin into its more easily fermentable component monomericmore » sugars. Here, the effects of overexpressing the Aspergillus niger InuA inulinase enzyme in an S. cerevisiae strain incapable of endogenously fermenting inulin were evaluated to determine their impact on growth. Expression of the A. niger InuA inulinase enzyme permitted growth on otherwise intractable inulin substrates from both Dahlia tubers and Chicory root. Despite being in the top 10 secreted proteins, growth on inulin was not observed until 120 h post-inoculation and required the addition of 0.1 g fructose/l to initiate enzyme production in the absence of endogenous inulinase activity. High temperature/pressure pre-treatment of inulin prior to fermentation decreased this time to 24 h and removed the need for fructose addition. The pre-growth lag time on untreated inulin was attributed primarily to low enzymatic efficiency, with a maximum value of 0.13 0.02 U InuA/ml observed prior to the peak culture density of 2.65 0.03 g/l. Nevertheless, a minimum excreted enzymatic activity level of only 0.03 U InuA/ml was found to be required for sustained growth under laboratory conditions, suggesting that future metabolic engineering strategies can likely redirect carbon flow away from inulinase production and reorient

  12. Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

    PubMed Central

    van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.; Ram, Arthur F. J.

    2015-01-01

    Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall

  13. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    PubMed

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. PMID:24076077

  14. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  15. The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability

    PubMed Central

    Schachtschabel, Doreen; Arentshorst, Mark; Nitsche, Benjamin M.; Morris, Sam; Nielsen, Kristian F.; van den Hondel, Cees A. M. J. J.; Klis, Frans M.; Ram, Arthur F. J.

    2013-01-01

    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the ΔtupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37°C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism. PMID:24205111

  16. Rapid Differentiation of Aspergillus Species from Other Medically Important Opportunistic Molds and Yeasts by PCR-Enzyme Immunoassay

    PubMed Central

    de Aguirre, Liliana; Hurst, Steven F.; Choi, Jong Soo; Shin, Jong Hee; Hinrikson, Hans Peter; Morrison, Christine J.

    2004-01-01

    We developed a PCR-based assay to differentiate medically important species of Aspergillus from one another and from other opportunistic molds and yeasts by employing universal, fungus-specific primers and DNA probes in an enzyme immunoassay format (PCR-EIA). Oligonucleotide probes, directed to the internal transcribed spacer 2 region of ribosomal DNA from Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor, differentiated 41 isolates (3 to 9 each of the respective species; P < 0.001) in a PCR-EIA detection matrix and gave no false-positive reactions with 33 species of Acremonium, Exophiala, Candida, Fusarium, Mucor, Paecilomyces, Penicillium, Rhizopus, Scedosporium, Sporothrix, or other aspergilli tested. A single DNA probe to detect all seven of the most medically important Aspergillus species (A. flavus, A. fumigatus, A. nidulans, A. niger, A. terreus, A. ustus, and A. versicolor) was also designed. Identification of Aspergillus species was accomplished within a single day by the PCR-EIA, and as little as 0.5 pg of fungal DNA could be detected by this system. In addition, fungal DNA extracted from tissues of experimentally infected rabbits was successfully amplified and identified using the PCR-EIA system. This method is simple, rapid, and sensitive for the identification of medically important Aspergillus species and for their differentiation from other opportunistic fungi. PMID:15297489

  17. Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site.

    PubMed

    Maheswari, S; Murugesan, A G

    2009-08-01

    High concentrations of heavy metals, such as arsenic, in soils have potential long-term environmental and health consequences due to their persistence in the environment and their associated toxicity to biological organisms. Aspergillus nidulans isolated from arsenic-contaminated soil has the potential to remove arsenic from soil. The isolated resistant strain showed resistance up to 500 ppm and the mean weight was found to be 1.309 g. The main objective of this research was to study the improvement to the remediation of arsenic-contaminated soil by the addition of nutrient sources such as carbon (0.15-0.85 g L(-1)), nitrogen (0.25-1.05 g L(-1)) and phosphate (0.10-0.30 g L(-1)) to the medium. The effect of ionic strength on Aspergillus nidulans was optimized by NaCl at 0.12-0.30%. The biomass concentration and growth profile of Aspergillus nidulans in arsenic-contaminated soil was found to be 0.709 g after 11 days. The arsenic adsorption potential of Aspergillus nidulans from the contaminated soil was found to be 84.35% after 11 days at pH 4 and a temperature of 35 degrees C. This investigation indicated that the isolated resistant strain had an important role in adsorption of arsenic from the contaminated soil. PMID:19803330

  18. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    PubMed

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10. PMID:26028740

  19. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia

    PubMed Central

    Wang, Xinye Monica; Palencia, Edwin R.

    2016-01-01

    Aspergillus flavus and A. parasiticus fungi produce carcinogenic mycotoxins in peanut seeds, causing considerable impact on both human health and the economy. Here, we report nine genome sequences of Aspergillus spp., isolated from Georgia peanut seeds in 2014. The information obtained will lead to further biodiversity studies that are essential for developing control strategies. PMID:27081142

  20. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated From Peanut Seeds in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus and A. parasiticus fungi, carcinogen-mycotoxins producers, infect peanut seeds, causing considerable impact on both human health and the economy. Here we report 9 genome sequences of Aspergillus spp. isolated from peanut seeds. The information obtained will allow conducting biodiv...

  1. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.

    PubMed

    Skouri-Gargouri, Houda; Gargouri, Ali

    2008-11-01

    A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth. PMID:18687373

  2. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer

    PubMed Central

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-01-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil–plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323

  3. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.

    PubMed

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-11-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323

  4. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive.

    PubMed

    Kim, Taewan; Mullaney, Edward J; Porres, Jesus M; Roneker, Karl R; Crowe, Sarah; Rice, Sarah; Ko, Taegu; Ullah, Abul H J; Daly, Catherine B; Welch, Ross; Lei, Xin Gen

    2006-06-01

    Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering. PMID:16751556

  5. Shifting the pH Profile of Aspergillus niger PhyA Phytase To Match the Stomach pH Enhances Its Effectiveness as an Animal Feed Additive

    PubMed Central

    Kim, Taewan; Mullaney, Edward J.; Porres, Jesus M.; Roneker, Karl R.; Crowe, Sarah; Rice, Sarah; Ko, Taegu; Ullah, Abul H. J.; Daly, Catherine B.; Welch, Ross; Lei, Xin Gen

    2006-01-01

    Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering. PMID:16751556

  6. Expression of Aspergillus niger IA-001 Endo-β-1,4-xylanase in Pichia pastoris and analysis of the enzymic characterization.

    PubMed

    Gao, He; Yan, Ping; Zhang, Boru; Shan, Anshan

    2014-08-01

    The xylanaseB (XynB) (JX560731.1) gene of Aspergillus niger IA-001 was optimized according to the codon usage of Pichia pastoris and expressed in P. pastoris GS115. The optimized XynB expression level was increased 2.8 times relative to that of the wild-type XynB, and the dual-copy XynB (optimized) expression level was increased 1.9 times relative to that of the single-copy XynB (optimized). The activity of the dual-copy XynB ((XynB-opt)2) was maximized at 15,158.23 ± 45.11 U/mL after 120 h of shaking. The optimal temperature and pH of (XynB-opt)2 were 50 °C and 5.0, respectively. (XynB-opt)2 showed a high specific activity of 6,853.00 ± 20.08 U/mg. IC analysis of the standard xylooligosaccharides showed that (XynB-opt)2 was an endo-xylanase with X2 as the main degradation product. (XynB-opt)2 was highly specific towards different natural xylans. After 24 h of hydrolysis, more than 90 % of the total hydrolysis products of xylan were X2 and X1, almost no X4 ~ X6. In addition, the enzyme exhibited resistance to many metal ions and low pH values. The superior catalytic properties of (XynB-opt)2 suggested its great potential as an effective additive in animal feed industry. PMID:24888408

  7. The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger.

    PubMed

    Raulo, Roxane; Kokolski, Matthew; Archer, David B

    2016-03-01

    Genes encoding the key transcription factors (TF) XlnR, ClrA and ClrB were deleted from Aspergillus niger and the resulting strains were assessed for growth on glucose and wheat straw, transcription of genes encoding glycosyl hydrolases and saccharification activity. Growth of all mutant strains, based in straw on measurement of pH and assay of glucosamine, was impaired in relation to the wild-type (WT) strain although deletion of clrA had less effect than deletion of xlnR or clrB. Release of sugars from wheat straw was also lowered when culture filtrates from TF deletion strains were compared with WT culture filtrates. Transcript levels of cbhA, eglC and xynA were measured in all strains in glucose and wheat straw media in batch culture with and without pH control. Transcript levels from cbhA and eglC were lowered in all mutant strains compared to WT although the impact of deleting clrA was not pronounced with expression of eglC and had no effect on xynA. The impact on transcription was not related to changes in pH. In addition to impaired growth on wheat straw, the ΔxlnR strain was sensitive to oxidative stress and displayed cell wall defects in the glucose condition suggesting additional roles for XlnR. The characterisation of TFs, such as ClrB, provides new areas of improvement for industrial processes for production of second generation biofuels. PMID:26780227

  8. Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii.

    PubMed

    Acourene, S; Ammouche, A

    2012-05-01

    The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l. PMID:22193823

  9. Production of a highly potent epoxide through the microbial metabolism of 3β-acetoxyurs-11-en-13β,28-olide by Aspergillus niger culture.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Gulab, Hussain

    2016-09-01

    Context 3β-Acetoxyurs-11-en-13β,28-olide (I), a triterpenoid, is found in most plant species. Pharmacologically triterpenes are very effective compounds with potent anticancer, anti-HIV and antimicrobial activities. Objectives Microbial transformation of 3β-acetoxyurs-11-en-13β,28-olide (I) was performed in order to obtain derivatives with improved pharmacological potential. Materials and methods Compound (I, 100 mg) was incubated with Aspergillus niger culture for 12 d. The metabolite formed was purified through column chromatography. Structure elucidation was performed through extensive spectroscopy (IR, MS and NMR). In vitro α- and β-glucosidase inhibitory, and antiglycation potentials of both substrate and metabolite were evaluated. Results Structure of metabolite II was characterized as 3β-acetoxyurs-11,12-epoxy-13β,28-olide (II). Metabolite II was found to be an oxidized product of compound I. In vitro α- and β-glucosidases revealed that metabolite II was a potent and selective inhibitor of α-glucosidase (IC50 value = 3.56 ± 0.38 μM), showing that the inhibitory effect of metabolite II was far better than compound I (IC50 value = 14.7 ± 1.3 μM) as well as acarbose (IC50 value = 545 ± 7.9 μM). Antiglycation potential of compound II was also high with 82.51 ± 1.2% inhibition. Thus, through oxidation, the biological potential of the substrate molecule can be enhanced. Conclusion Biotransformation can be used as a potential tool for the production of biologically potent molecules. PMID:26736075

  10. Molecular characterisation of Aspergillus flavus isolates from peanut fields in India using AFLP

    PubMed Central

    Singh, Diwakar; Radhakrishnan, T.; Kumar, Vinod; Bagwan, N.B.; Basu, M.S.; Dobaria, J.R.; Mishra, Gyan P.; Chanda, S.V.

    2015-01-01

    Aflatoxin contamination of peanut, due to infection by Aspergillus flavus, is a major problem of rain-fed agriculture in India. In the present study, molecular characterisation of 187 Aspergillus flavus isolates, which were sampled from the peanut fields of Gujarat state in India, was performed using AFLP markers. On a pooled cluster analysis, the markers could successfully discriminate among the ‘A’, ‘B’ and ‘G’ group A. flavus isolates. PCoA analysis also showed equivalent results to the cluster analysis. Most of the isolates from one district could be clustered together, which indicated genetic similarity among the isolates. Further, a lot of genetic variability was observed within a district and within a group. The results of AMOVA test revealed that the variance within a population (84%) was more than that between two populations (16%). The isolates, when tested by indirect competitive ELISA, showed about 68.5% of them to be atoxigenic. Composite analysis between the aflatoxin production and AFLP data was found to be ineffective in separating the isolate types by aflatoxigenicity. Certain unique fragments, with respect to individual isolates, were also identified that may be used for development of SCAR marker to aid in rapid and precise identification of isolates. PMID:26413047

  11. DNA typing of epidemiologically-related isolates of Aspergillus fumigatus.

    PubMed Central

    Birch, M.; Nolard, N.; Shankland, G. S.; Denning, D. W.

    1995-01-01

    Invasive aspergillosis is often nosocomially acquired and carries a high mortality. Molecular typing methods to discriminate isolates have now been developed. Using simple restriction endonuclease (Sal1 and Xho1) digestion of total genomic DNA, we have typed 25 epidemiologically-related isolates of A. fumigatus from six hospital episodes of invasive aspergillosis. Eight DNA types were found and in each case the DNA type matched precisely the epidemiological data. Thus DNA typing of A. fumigatus can provide the means to match isolates from linked sources and distinguish isolates from diverse origins. Images Fig. 1 PMID:7867735

  12. In vitro echinocandin susceptibility of Aspergillus isolates from patients enrolled in the Transplant-Associated Infection Surveillance Network.

    PubMed

    Lockhart, Shawn R; Zimbeck, Alicia J; Baddley, John W; Marr, Kieren A; Andes, David R; Walsh, Thomas J; Kauffman, Carol A; Kontoyiannis, Dimitrios P; Ito, James I; Pappas, Peter G; Chiller, Tom

    2011-08-01

    We determined the echinocandin minimum effective concentration (MEC) values for caspofungin, micafungin, and anidulafungin against 288 Aspergillus isolates prospectively collected from transplant patients with proven or probable invasive aspergillosis between 2001 and 2006 as part of the Transplant-Associated Infection Surveillance Network (TRANSNET). We demonstrated that the vast majority of Aspergillus isolates had MEC values at or below the epidemiological cutoff values for caspofungin, micafungin, and anidulafungin, including those from patients who had received caspofungin. PMID:21670187

  13. Genotypic characterization of sequential Aspergillus fumigatus isolates from patients with cystic fibrosis.

    PubMed Central

    Verweij, P E; Meis, J F; Sarfati, J; Hoogkamp-Korstanje, J A; Latgé, J P; Melchers, W J

    1996-01-01

    Twenty-three sequential Aspergillus fumigatus sputum isolates, which had been collected over a period of 2 years, from two patients with cystic fibrosis were genotyped by random amplified polymorphic DNA PCR and restriction fragment length polymorphism analysis. In patient B, one genotype was predominantly present in the sputum samples, while in the other patient up to nine different genotypes were identified. This study suggests that different patterns of colonization with A.fumigatus exist in patients with cystic fibrosis. PMID:8880528

  14. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion.

    PubMed

    Mellon, Jay E

    2015-08-01

    Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents) and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase) P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates. PMID:26295409

  15. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion

    PubMed Central

    Mellon, Jay E.

    2015-01-01

    Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents) and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase) P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates. PMID:26295409

  16. Molecular characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates collected from corn grains.

    PubMed

    Mahmoud, M A; Ali, H M; El-Aziz, A R M; Al-Othman, M R; Al-Wadai, A S

    2014-01-01

    Twelve species from six fungal genera were found to be associated with corn (Zea mays L.) grain samples collected from three main regions of Saudi Arabia. The average frequencies of the most common genera were Aspergillus (11.4%), Fusarium (9.5%), Penicillium (5.1%), and Alternaria (5.8%). Fifteen isolates of Aspergillus flavus were screened by HPLC for their ability to produce aflatoxins (AF). The percentage of aflatoxigenic A. flavus isolates was 53%. Eight isolates produced AF, at concentrations ranging 0.7-2.9 ppb. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) molecular markers were used to genetically characterize isolates of A. flavus and to discriminate between the aflatoxigenic and non-aflatoxigenic isolates. RAPD and ISSR analysis revealed a high level of genetic diversity in the A. flavus population, which was useful for genetic characterization. The clustering in the RAPD and ISSR dendrograms obtained was unrelated to geographic origin. The RAPD and ISSR markers could not discriminate between aflatoxigenic and non-aflatoxigenic isolates, but the ISSR primers were somewhat better. PMID:25501147

  17. Amylose-like polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture.

    PubMed

    Kirimura, K; Yusa, S; Rugsaseel, S; Nakagawa, H; Osumi, M; Usami, S

    1999-09-01

    When 120 mg glucose/ml was used as a carbon source, in shake culture Aspergillus niger Yang no. 2 maximally produced only 15.4 mg citric acid/ml but accumulated 3.0 mg extracellular polysaccharide/ml. The polysaccharide secreted by mycelia of Yang no. 2 in shake culture was confirmed to be an amylose-like alpha-1,4-glucan by hydrolysis analysis with acid, amylase and glucoamylase. However, in static cultures, such as semisolid and surface cultures free from physical stresses caused by shaking damage, Yang no. 2 produced more citric acid but did not accumulate the polysaccharide. With cultivation time in shake culture, the amount of extracellular polysaccharide and the viscosity of the culture broth increased. The increase of shaking speed caused a remarkable increase in the accumulation of extracellular polysaccharide, e.g. 11.2 mg extracellular polysaccharide/ml was accumulated in the medium at a shaking speed of 200 rpm. The addition of 2.0 mg carboxymethylcellulose (CMC)/ml as a viscous additive to the medium reduced drastically the amount of extracellular polysaccharide accumulated to 1.5 mg/ml, but increased the citric acid produced to 52.0 mg/ml. However, intracellular polysaccharide accumulation kept up a steady rate of 0.26 microgram/mg dried mycelium through the entire period of cultivation. The addition of 3.0 mg polysaccharide/ml purified from the culture broth to the medium at the start of a culture resulted in a decrease of extracellular polysaccharide accumulation but an increase of citric acid accumulation. From electronmicroscopic observation, cell surfaces of hyphae cultivated with CMC were smooth, while hyphae cultivated without CMC had fibrous and granular polysaccharide on the cell surface. These results suggested that Yang no. 2 secreted the polysaccharide on the cell surface as a viscous substance and/or a shock absorber to protect itself from physical stresses caused by shaking damage in shake culture. PMID:10531655

  18. Chemical investigation of metabolites produced by an endophytic Aspergillus sp. isolated from Limonia acidissima.

    PubMed

    Siriwardane, A M D A; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-01-01

    Endophytic fungi are considered as a good source to produce important secondary metabolites with interesting bioactivities. In a continuation of our studies towards the search for environmentally friendly bioactive compounds from Sri Lankan flora, we investigated the secondary metabolites produced by the endophytic fungi Aspergillus sp. isolated from the seeds of the popular edible fruit Limonia acidissima L. of the family Rutaceae. The pure culture of the Aspergillus sp. was grown on potato dextrose broth media. After 4 weeks fermentation, fungal media were extracted with organic solvents. Chromatographic separation of the fungal extracts over silica gel, Sephadex LH-20 and RP-HPLC furnished flavasperone (1), rubrofusarin B (2), aurasperone A (3), fonsecinone D (4) and aurasperone B (5). Compounds 1-4 showed moderate activities in brine shrimp toxicity assay. This is the first report of the (13)C NMR data of compounds 4 and 5. PMID:25809933

  19. Aspergillose pulmonaire chronique nécrosante à Aspergillus niger chez un patient tabagique et ancien tuberculeux

    PubMed Central

    Yahyaoui, Ghita; Tlamçani, Imane; Benjelloun, Salma; Atwani, Mohamed; Errami, Mohamed

    2014-01-01

    Nous rapportons le cas d'une aspergillose pulmonaire chronique nécrosante chez un patient tabagique et ancien tuberculeux. Le diagnostic a été basé sur des critères radiologiques, tomodensitométriques et mycologiques. Le champignon a été isolé des crachats et de la pièce d'exérèse. En plus du traitement chirurgical, un traitement médical à base de voriconazole a été instauré. Une dose de charge de 600mg a été administrée le premier jour sous forme de deux injections intraveineuses espacées de 12 heurs, ensuite 400mg par jour répartie en deux prises matin et soir. Après 45 jours de traitement, une amélioration clinique et radiologique a été déjà observée. Lors d'aspergillose pulmonaire chronique nécrosante, un traitement antifongique de longue durée parait être nécessaire. Le Maroc est un pays bien ensoleillé, notre malade risquerait de développer une photosensibilisation. En plus l'itraconazole pouvant être une bonne alternative thérapeutique n'est pas disponible sur le marché national. PMID:25018830

  20. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate

    PubMed Central

    Celestino, Jessyca dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Érica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335 UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385 IU/g) in solid state fermentation (SSF). PMID:24724017

  1. Isolate-Dependent Growth, Virulence, and Cell Wall Composition in the Human Pathogen Aspergillus fumigatus

    PubMed Central

    Amarsaikhan, Nansalmaa; O’Dea, Evan M.; Tsoggerel, Angar; Owegi, Henry; Gillenwater, Jordan; Templeton, Steven P.

    2014-01-01

    The ubiquitous fungal pathogen Aspergillus fumigatus is a mediator of allergic sensitization and invasive disease in susceptible individuals. The significant genetic and phenotypic variability between and among clinical and environmental isolates are important considerations in host-pathogen studies of A. fumigatus-mediated disease. We observed decreased radial growth, rate of germination, and ability to establish colony growth in a single environmental isolate of A. fumigatus, Af5517, when compared to other clinical and environmental isolates. Af5517 also exhibited increased hyphal diameter and cell wall β-glucan and chitin content, with chitin most significantly increased. Morbidity, mortality, lung fungal burden, and tissue pathology were decreased in neutropenic Af5517-infected mice when compared to the clinical isolate Af293. Our results support previous findings that suggest a correlation between in vitro growth rates and in vivo virulence, and we propose that changes in cell wall composition may contribute to this phenotype. PMID:24945802

  2. Isolation and chemical characterization of naphthoquinone metabolites of Aspergillus parvulus Smith

    SciTech Connect

    Wang, C.C.P.

    1984-01-01

    Although several benzoquinone and anthraquinone compounds have been isolated from Aspergillus species, only two naphthoquinone monomers have been reported thus far. Aspergillus parvulus Smith (ATCC number16911) was first investigated chemically in 1974, and five naphthalenones, along with one naphthoquinone, were isolated and characterized. Based on biosynthetic considerations, it was thought that A. parvulus might be capable of producing additional naphthoquinones under suitable conditions. It was decided to undertake a further investigation of A. parvulus. Thus, three novel naphthoquinones, compounds A, B, and C, were isolated from A. parvulus cultures grown in an acidic medium of glucose and phytone peptone. The structures of these compounds were deduced largely by the comparison of the effects of acetylation on the /sup 1/H-NMR and /sup 13/C-NMR spectra of the parent compounds and their four derivatives. An unusual mass fragmentation pattern which was previously thought to be unfavorable was discovered, and the other fragmentation patterns of the parent compounds, as well as their derivatives, were proposed. This investigation appears to be the third reported isolation of 2,5,7-tri-hydroxy-1,4-naphthoquinone derivatives from nature and the first reported from A. parvulus.

  3. Diversity of Aspergillus oryzae genotypes (RFLP) isolated from traditional soy sauce production within Malaysia and Southeast Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA fingerprinting was performed on 64 strains of Aspergillus oryzae and one strain of A. sojae isolated from soysauce factories within Malaysia and Southeast Asia that use primitive traditional methods in producing 'tamari type' Cantonese soy sauce. PstI digests of total genomic DNA from each isol...

  4. Metabolomics of Aspergillus fumigatus.

    PubMed

    Frisvad, Jens C; Rank, Christian; Nielsen, Kristian F; Larsen, Thomas O

    2009-01-01

    Aspergillus fumigatus is the most important species in Aspergillus causing infective lung diseases. This species has been reported to produce a large number of extrolites, including secondary metabolites, acids, and proteins such as hydrophobins and extracellular enzymes. At least 226 potentially bioactive secondary metabolites have been reported from A. fumigatus that can be ordered into 24 biosynthetic families. Of these families we have detected representatives from the following families of secondary metabolites: fumigatins, fumigaclavines, fumiquinazolines, trypacidin and monomethylsulochrin, fumagillins, gliotoxins, pseurotins, chloroanthraquinones, fumitremorgins, verruculogen, helvolic acids, and pyripyropenes by HPLC with diode array detection and mass spectrometric detection. There is still doubt whether A. fumigatus can produce tryptoquivalins, but all isolates produce the related fumiquinazolines. We also tentatively detected sphingofungins in A. fumigatus Af293 and in an isolate of A. lentulus. The sphingofungins may have a similar role as the toxic fumonisins, found in A. niger. A further number of mycotoxins, including ochratoxin A, and other secondary metabolites have been reported from A. fumigatus, but in those cases either the fungus or its metabolite appear to be misidentified. PMID:18763205

  5. Niger River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Niger River after the Rainy Season     View larger image The third largest river in Africa, the Niger, forms an inland delta in central Mali. This ... is situated near the top of the image, where the Niger River changes direction to flow more directly eastward. Six hundred years ago, ...

  6. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    PubMed Central

    2009-01-01

    Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460

  7. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02.

    PubMed

    Fang, Hao; Zhao, Chen; Song, Xiang-Yang

    2010-06-01

    To optimize enzymatic hydrolysis of steam-exploded corn stover (SECS), two approaches, response surface methodology (RSM) and utilization of the cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02, were introduced in this work. The RSM, the first approach, was consisted of Plackett-Burman Design (PBD) and Central Composite Design (CCD). After the optimization of RSM, a model was proposed to predict the optimum value 79.6% confirmed by the experimental result 80.1%. Mixed culture of T. reesei and A. niger was found to be an effective method to enhance cellulolytic enzymes production. Using the cellulase from mixed culture to optimize enzymatic hydrolysis was the second approach. The yield of 85.6% was obtained by the second approach using 25IU/g glucan cellulase. The two approaches were compared and it was found that the second approach was a better one with higher hydrolysis yield and less enzyme dosage. PMID:20149642

  8. In Vitro Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms.

    PubMed

    Arendrup, Maiken Cavling; Jensen, Rasmus Hare; Cuenca-Estrella, Manuel

    2016-01-01

    ASP2397 is a new compound with a novel and as-yet-unknown target different from that of licensed antifungal agents. It has activity against Aspergillus and Candida glabrata. We compared its in vitro activity against wild-type and azole-resistant A. fumigatus and A. terreus isolates with that of amphotericin B, itraconazole, posaconazole, and voriconazole. Thirty-four isolates, including 4 wild-type A. fumigatus isolates, 24 A. fumigatus isolates with alterations in CYP51A TR/L98H (5 isolates), M220 (9 isolates), G54 (9 isolates), and HapE (1 isolate), and A. terreus isolates (2 wild-type isolates and 1 isolate with an M217I CYP51A alteration), were analyzed. EUCAST E.Def 9.2 and CLSI M38-A2 MIC susceptibility testing was performed. ASP2397 MIC50 values (in milligrams per liter, with MIC ranges in parentheses) determined by EUCAST and CLSI were 0.5 (0.25 to 1) and 0.25 (0.06 to 0.25) against A. fumigatus CYP51A wild-type isolates and were similarly 0.5 (0.125 to >4) and 0.125 (0.06 to >4) against azole-resistant A. fumigatus isolates, respectively. These values were comparable to those for amphotericin B, which were 0.25 (0.125 to 0.5) and 0.25 (0.125 to 0.25) against wild-type isolates and 0.25 (0.125 to 1) and 0.25 (0.125 to 1) against isolates with azole resistance mechanisms, respectively. In contrast, MICs for the azole compounds were elevated and highest for itraconazole: >4 (1 to >4) and 4 (0.5 to >4) against isolates with azole resistance mechanisms compared to 0.125 (0.125 to 0.25) and 0.125 (0.06 to 0.25) against wild-type isolates, respectively. ASP2397 was active against A. terreus CYP51A wild-type isolates (MIC 0.5 to 1), whereas MICs of both azole and ASP2397 were elevated for the mutant isolate. ASP2397 displayed in vitro activity against A. fumigatus and A. terreus isolates which was independent of the presence or absence of azole target gene resistance mutations in A. fumigatus. The findings are promising at a time when azole-resistant A. fumigatus

  9. Rare case of Isolated Aspergillus Osteomyelitis of Toe: Presentation and Management

    PubMed Central

    Pattanashetty, O.B.; B.B., Dayanand; Bhavi, Shushrut B; Bami, Monish

    2013-01-01

    Introduction: Fungal osteomyelitis is an uncommon diseases and generally present in an indolent fashion. Isolated bone affection due to fungi are rare and we present one such case with fungal osteomyelitis of terminal phalanx of second toe. Case Report: We present a rare case of fungal osteomyelitis of right second toe in a 30 year old Indian female who presented with swelling of 8 months duration. Diagnosis was based on the histo-pathological report and culture showing Aspergillus growth. The patient was treated with surgical debridement and amphotericin-B was given for 6 weeks after debridement. There was no recurrence one year post surgery. Conclusion: Isolated Aspergillus osteomyelitis of the bone are very rare and mostly seen in immunocompromised patients and larger bones like spine, femur and tibia. Treatment with wound debridement and subsequently followed up with a course of Amphotericin-B for 6 weeks provided good results. There was no recurrence noted at 1 year follow up. Fungi should be kept in mind for differential diagnosis of osteomyelitis and culture should be appropriately ordered. PMID:27298903

  10. Occurrence of toxigenic Aspergillus spp. and aflatoxins in selected food commodities of Asian origin sourced in the West of Scotland.

    PubMed

    Ruadrew, Sayan; Craft, John; Aidoo, Kofi

    2013-05-01

    The occurrence of Aspergillus moulds and aflatoxins in 12 commercially-available dried foods of Asian origin were examined. All food samples, except green beans and three types of dried fruit, contained multiple genera of moulds of which Aspergillus (55%) was the most frequently detected. Penicillium (15%), Rhizopus (11%), Mucor (3%), Monascus (1%), Eurotium (1%) and unidentified (14%) were also observed. The occurrence of aflatoxigenic moulds, however, did not correspond with the occurrence of aflatoxins in foods. Aflatoxigenic Aspergillus spp. (39 isolates) were recovered from long grain rice, fragrant rice, peanuts, black beans and black pepper. The predominant Aspergillus species was A. parasiticus (61%) while Aspergillus oryzae (3%), Aspergillus utus (5%), Aspergillus niger (5%), Aspergillus ochraceus (3%) and unidentified (23%) were also observed. Long grain rice, fragrant rice, peanuts, black beans and black pepper were positive for Aspergillus but contained undetectable aflatoxins. In contrast, Jasmine brown rice and crushed chilli contained 14.7 and 11.4μg/kg of total aflatoxins, respectively, in the absence of Aspergillus so aflatoxigenic Aspergillus was present at some stage of food production. The results from this study emphasise the need for stricter control measures in reducing occurrence of aflatoxins in foods for export and domestic use. PMID:23416649

  11. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil.

    PubMed

    Mathur, Garima; Prasad, Ramasare

    2012-07-01

    The present study deals with the isolation of fungi from soil with the ability to degrade polyurethane (PU). A pure fungal isolate was analyzed for its ability to utilize PU as a sole carbon source in shaking culture for 30 days. Incubation of PU with Aspergillus flavus resulted in 60.6% reduction in weight of PU. The scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR) results showed certain changes on the surface of PU film and formation of some new intermediate products after polymer breakdown. Thermogravimetric curves showed changes between the thermal behavior of the samples that were inoculated with A. flavus and control. FTIR spectra showed detectable changes in control and incubated samples, suggesting that degradation occurs, with the decreased intensity of band at 1,715 cm(-1), corresponding to ester linkages. We have identified an extracellular esterase activity which might be responsible for the polyurethanolytic activity. PMID:22367637

  12. Nonaflatoxigenic Aspergillus flavus TX9-8 Competitively Prevents Aflatoxin Production by A. flavus Isolates of Large and Small Sclerotial Morphotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxigenic Aspergillus flavus is the main etiological agent for aflatoxin contamination of crops. Using nonaflatoxigenic A. flavus isolates to competitively exclude toxigenic A. flavus isolates in agricultural fields has become an adopted approach to reduce aflatoxin contamination. We determined th...

  13. Identification of Aspergillus flavus isolates as potential biocontrol agents of aflatoxin contamination in crops.

    PubMed

    Rosada, L J; Sant'anna, J R; Franco, C C S; Esquissato, G N M; Santos, P A S R; Yajima, J P R S; Ferreira, F D; Machinski, M; Corrêa, B; Castro-Prado, M A A

    2013-06-01

    Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops. PMID:23726204

  14. [Occurrence of indole alkaloids among secondary metabolites of soil Aspergillus].

    PubMed

    Vinokurova, N G; Khmel'nitskaia, I I; Baskunov, B P; Arinbasarov, M U

    2003-01-01

    The occurrence of indole alkaloids among secondary fungal metabolites was studied in species of the genus Aspergillus, isolated from soils that were sampled in various regions of Russia (a total of 102 isolates of the species A. niger, A. phoenicis, A. fumigatus, A. flavus, A. versicolor, A. ustus, A. clavatus, and A. ochraceus). Clavine alkaloids were represented by fumigaclavine, which was formed by A. fumigatus. alpha-Cyclopiazonic acid was formed by isolates of A. fumigatus, A. flavus, A. versicolor, A. phoenicis, and A. clavatus. The occurrence of indole-containing diketopiperazine alkaloids was documented for isolates of A. flavus, A. fumigatus, A. clavatus, and A. ochraceus. No indole-containing metabolites were found among the metabolites of A. ustus or A. niger. PMID:12722658

  15. A single mutation in the hepta-peptide active site of Aspergillus niger PhyA phytase leads to myriad of biochemical changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The active site motif of proteins belonging to ‘Histidine Acid Phosphatase’ (HAP) contains a hepta-peptide region, RHGXRXP. A close comparison among fungal and yeast HAPs has revealed the fourth residue of the hepta-peptide to be E instead of A, which is the case with A. niger phyA phytase. However,...

  16. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.

    PubMed

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2011-09-01

    A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l(-1)) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium L: -tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l(-1)) and laccase (3.5 U l(-1))activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively. PMID:21350882

  17. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated from Peanut Seeds in Georgia.

    PubMed

    Faustinelli, Paola C; Wang, Xinye Monica; Palencia, Edwin R; Arias, Renée S

    2016-01-01

    Aspergillus flavusandA. parasiticusfungi produce carcinogenic mycotoxins in peanut seeds, causing considerable impact on both human health and the economy. Here, we report nine genome sequences ofAspergillusspp., isolated from Georgia peanut seeds in 2014. The information obtained will lead to further biodiversity studies that are essential for developing control strategies. PMID:27081142

  18. Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus

    PubMed Central

    Fountain, Jake C.; Scully, Brian T.; Chen, Zhi-Yuan; Gold, Scott E.; Glenn, Anthony E.; Abbas, Hamed K.; Lee, R. Dewey; Kemerait, Robert C.; Guo, Baozhu

    2015-01-01

    Drought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, the objectives of this study were to examine the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the growth of different toxigenic (+) and atoxigenic (−) isolates of Aspergillus flavus and to test whether aflatoxin production affects the H2O2 concentrations that the isolates could survive. Ten isolates were tested: NRRL3357 (+), A9 (+), AF13 (+), Tox4 (+), A1 (−), K49 (−), K54A (−), AF36 (−), and Aflaguard (−); and one A. parasiticus isolate, NRRL2999 (+). These isolates were cultured under a H2O2 gradient ranging from 0 to 50 mM in two different media, aflatoxin-conducive yeast extract-sucrose (YES) and non-conducive yeast extract-peptone (YEP). Fungal growth was inhibited at a high H2O2 concentration, but specific isolates grew well at different H2O2 concentrations. Generally the toxigenic isolates tolerated higher concentrations than did atoxigenic isolates. Increasing H2O2 concentrations in the media resulted in elevated aflatoxin production in toxigenic isolates. In YEP media, the higher concentration of peptone (15%) partially inactivated the H2O2 in the media. In the 1% peptone media, YEP did not affect the H2O2 concentrations that the isolates could survive in comparison with YES media, without aflatoxin production. It is interesting to note that the commercial biocontrol isolates, AF36 (−), and Aflaguard (−), survived at higher levels of stress than other atoxigenic isolates, suggesting that this testing method could potentially be of use in the selection of biocontrol isolates. Further studies will be needed to investigate the mechanisms behind the variability among isolates with regard to their degree of oxidative stress

  19. Current Microbial Isolates from Wound Swabs, Their Culture and Sensitivity Pattern at the Niger Delta University Teaching Hospital, Okolobiri, Nigeria

    PubMed Central

    Pondei, Kemebradikumo; Fente, Beleudanyo G.; Oladapo, Oluwatoyosi

    2013-01-01

    Background: Wound infections continue to be problematic in clinical practice where empiric treatment of infections is routine. Objectives: A retrospective cross-sectional study to determine the current causative organisms of wound infections and their antibiotic susceptibility patterns in the Niger Delta University Teaching Hospital (NDUTH), Okolobiri, Bayelsa State of Nigeria. Methods: Records of wound swabs collected from 101 patients with high suspicion of wound infection were analysed. Smears from the wound swabs were inoculated on appropriate media and cultured. Bacterial colonies were Gram stained and microscopically examined. Biochemical tests were done to identify pathogen species. The Kirby-Bauer disk diffusion method was used for antibiotic testing. Results: Prevalence of wound infection was 86.13% (CI: 79.41–92.85). Most bacteria were Gram negative bacilli with Pseudomonas aeruginosa being the most prevalent pathogen isolated. The bacterial isolates exhibited a high degree of resistance to the antibiotics tested (42.8% to 100% resistance). All isolates were resistant to cloxacillin. Age group and sex did not exert any effect on prevalence, aetiological agent or antimicrobial resistance pattern. Conclusion: We suggest a multidisciplinary approach to wound management, routine microbiological surveillance of wounds, rational drug use and the institution of strong infection control policies. PMID:23874138

  20. Antifungal Activities of SCY-078 (MK-3118) and Standard Antifungal Agents against Clinical Non-Aspergillus Mold Isolates

    PubMed Central

    Lamoth, Frédéric

    2015-01-01

    The limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillus molds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were tested in vitro against 135 clinical non-Aspergillus mold isolates. Akin to echinocandins, SCY-078 showed no or poor activity against Mucoromycotina and Fusarium spp. However, SCY-078 was highly active against Paecilomyces variotii and was the only compound displaying some activity against notoriously panresistant Scedosporium prolificans. PMID:25896696

  1. Morphological and toxigenic variability in the Aspergillus flavus isolates from peanut (Arachis hypogaea L.) production system in Gujarat (India).

    PubMed

    Singh, Diwakar; Thankappan, Radhakrishnan; Kumar, Vinod; Bagwan, Naimoddin B; Basu, Mukti S; Dobaria, Jentilal R; Mishra, Gyan P; Chanda, Sumitra

    2015-03-01

    Morphological and toxigenic variability in 187 Aspergillus flavus isolates, collected from a major Indian peanut production system, from 10 districts of Gujarat was studied. On the basis of colony characteristics, the isolates were grouped as group A (83%), B (11%) and G (6%). Of all the isolates, 21%, 47% and 32% were found to be fast-growing, moderately-fast and slow-growing respectively, and nosclerotia and sclerotia production was recorded in 32.1% and 67% isolates respectively. Large, medium and small number of sclerotia production was observed in 55, 38 and 34 isolates respectively. Toxigenic potential based on ammonia vapour test was not found reliable, while ELISA test identified 68.5%, 18.7% and 12.8% isolates as atoxigenic, moderately-toxigenic and highly-toxigenic, respectively. On clustering, the isolates were grouped into 15 distinct clusters, 'A' group of isolates was grouped distinctly in different clusters, while 'B' and 'G' groups of isolates were clustered together. No association was observed between morphological-diversity and toxigenic potential of the isolates. From the present investigation, most virulent isolates were pooled to form a consortium for sick-plot screening of germplasm, against Aspergillus flavus. In future, atoxigenic isolates may be evaluated for their potential to be used as bio-control agent against toxigenicisolates. PMID:25895268

  2. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae.

    PubMed

    Hawas, Usama W; El-Beih, Ahmed Atef; El-Halawany, Ali M

    2012-10-01

    The marine fungus Aspergillus versicolor was isolated from the inner tissue of the Red Sea green alga Halimeda opuntia. The fungus was identified by its morphology and 18s rDNA. Cultivation of this fungal strain led to a new metabolite named isorhodoptilometrin-1-methyl ether (1) along with the known compounds emodin (2), 1-methyl emodin (3), evariquinone (4), 7-hydroxyemodin 6,8-methyl ether (5), siderin (6), arugosin C (7), and variculanol (8). The structures were elucidated on the basis of NMR spectroscopic analysis and mass spectrometry. The biological properties of ethyl acetate extract and compounds 1-3 and 6-8 were explored for antimicrobial activity, anti-cancer activity and inhibition of Hepatitis C virus (HCV) protease. PMID:23139125

  3. Differentiation between Isolates of Aspergillus fumigatus from Breeding Turkeys and Their Environment by Genotyping with Microsatellite Markers

    PubMed Central

    Lair-Fulleringer, Sybille; Guillot, Jacques; Desterke, Christophe; Seguin, Dominique; Warin, Stephan; Bezille, Arnaud; Chermette, René; Bretagne, Stéphane

    2003-01-01

    To elucidate the epidemiology of the different forms of avian aspergillosis, 114 Aspergillus fumigatus isolates from sacrificed turkeys and 134 A. fumigatus isolates from air samples were collected and genotyped by microsatellite polymorphism marker analysis. Air sampling confirmed the huge diversity of A. fumigatus populations. Whereas older animals harbored several combinations of genotypes, 1-day-old chicks carried a unique genotype, suggesting a unique source of contamination. PMID:12682192

  4. Characterization of Expressed Sequence Tag-Derived Simple Sequence Repeat Markers for Aspergillus flavus: Emphasis on Variability of Isolates from the Southern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple Sequence Repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers wer...

  5. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from Aspergillus versicolor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new prenylated indole alkaloid, versicolamide B, was isolated from cultures of Aspergillus versicolor NRRL 35600. The structure was assigned by 2D NMR data, and confirmed by a biomimetic total synthesis. Versicolamide B is the first member of the paraherquamide-stephacidin family of alkaloids fo...

  6. Occurrence of Toxigenic Aspergillus versicolor Isolates and Sterigmatocystin in Carpet Dust from Damp Indoor Environments

    PubMed Central

    Engelhart, Steffen; Loock, Annette; Skutlarek, Dirk; Sagunski, Helmut; Lommel, Annette; Färber, Harald; Exner, Martin

    2002-01-01

    Over the past decade, there has been growing concern regarding the role of toxigenic fungi in damp indoor environments; however, there is still a lack of field investigations on exposure to mycotoxins. The goal of our pilot study was to quantify the proportion of toxigenic Aspergillus versicolor isolates in native carpet dust from damp dwellings with mold problems and to determine whether sterigmatocystin can be detected in this matrix. Carpet dust samples (n = 11) contained from <2.5 × 101 to 3.6 × 105 (median, 3.1 × 104) A. versicolor CFU/g of dust, and the median proportion of A. versicolor from total culturable fungi was 18%. Based on thin-layer chromatography detection of sterigmatocystin, 49 of 50 A. versicolor isolates (98%) were found to be toxigenic in vitro. By using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry, sterigmatocystin could be detected in low concentrations (2 to 4 ng/g of dust) in 2 of 11 native carpet dust samples. From this preliminary study, we conclude that most strains of A. versicolor isolated from carpet dust are able to produce sterigmatocystin in vitro and that sterigmatocystin may occasionally occur in carpet dust from damp indoor environments. Further research and systematic field investigation are needed to confirm our results and to provide an understanding of the health implications of mycotoxins in indoor environments. PMID:12147486

  7. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.

    PubMed

    Medina, A; Roldán, A; Azcón, R

    2010-12-01

    Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply. PMID:20705386

  8. Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.

    PubMed

    Yogendrarajah, Pratheeba; Devlieghere, Frank; Njumbe Ediage, Emmanuel; Jacxsens, Liesbeth; De Meulenaer, Bruno; De Saeger, Sarah

    2015-12-01

    A liquid chromatography triple quadrupole tandem mass spectrometry method was developed and validated to determine mycotoxins, produced by fungal isolates grown on malt extract agar (MEA). All twenty metabolites produced by different fungal species were extracted using acetonitrile/1% formic acid. The developed method was applied to assess the toxigenic potentiality of Aspergillus flavus (n = 11) and Aspergillus parasiticus (n = 6) strains isolated from black peppers (Piper nigrum L.) following their growth at 22, 30 and 37 °C. Highest mean radial colony growth rates were observed at 30 °C for A. flavus (5.21 ± 0.68 mm/day) and A. parasiticus (4.97 ± 0.33 mm/day). All of the A. flavus isolates produced aflatoxin B1 and O-methyl sterigmatocystin (OMST) while 91% produced aflatoxin B2 (AFB2) and 82% of them produced sterigmatocystin (STERIG) at 30 °C. Except one, all the A. parasiticus isolates produced all the four aflatoxins, STERIG and OMST at 30 °C. Remarkably high AFB1 was produced by some A. flavus isolates at 22 °C (max 16-40 mg/kg). Production of mycotoxins followed a different trend than that of growth rate of both species. Notable correlations were found between different secondary metabolites of both species; R(2) 0.87 between AFB1 and AFB2 production. Occurrence of OMST could be used as a predictor for AFB1 production. PMID:26338134

  9. Occurrence and biodiversity of Aspergillus section Nigri on 'Tannat' grapes in Uruguay.

    PubMed

    Garmendia, Gabriela; Vero, Silvana

    2016-01-01

    Ochratoxin A (OTA) is a nephrotoxic mycotoxin which has been found worldwide as a contaminant in wines. It is produced on grapes mainly by molds from Aspergillus section Nigri. This study has demonstrated for the first time the occurrence of black aspergilli on Tannat grapes from Uruguay, in a two year survey. Aspergillus uvarum (uniseriate) and Aspergillus welwitschiae (from Aspergillusniger aggregate) were the prevalent species whereas Aspergillus carbonarius which is considered the main OTA producing species was not detected. OTA production in culture medium was evaluated for native isolates from A. niger aggregate and compared to levels produced by a type strain of A. carbonarius. This work also includes the development of quick and easy molecular methods to identify black aspergilli to species level, avoiding sequencing. PMID:26398282

  10. Isolation of mutants of Aspergillus awamori with enhanced production of extracellular xylanase and β-xylosidase.

    PubMed

    Smith, D C; Wood, T M

    1991-05-01

    Plate screening tests were designed for the selection and isolation of mutant strains of the fungus Aspergillus awamori CMI 142717 showing over-production and constitutive synthesis of xylanase and β-xylosidase. Following mutation by N-methyl-N-nitro-N-nitrosoguanidine, nitrous acid and UV (254 nm), two generations of mutants were isolated and cultured in shake fiasks containing glucose, ball-milled oat straw or oat speit xylan as carbon source. Growth of a number of selected mutants in shake flask culture on medium containing oat spelt xylan produced the highest titres of xylanase and β-xylosidase. Thus, xylanase producton by mutant AANTG43 was 132 U/ml when the Somogyl-Nelson (alkaline copper) method of measuring reducing sugar released was used, or 1160 U/ml using the dinitrosalicylic acid method of reducing sugar analysis. These values were 8-fold higher than those produced by the wild type. A 20-fold improvement in β-xylosidase production was produced by mutant AANO19 (3.51 U/ml). The titres for these two enzyme activities are the highest recorded so far in the literature. Mutant AANTG43 also produced high levels of xylanase (49.8 U/ml) in submerged culture in a fermenter and showed a substantial improvement in the overall productivity of enzyme compared to the wild type strain. PMID:24425022

  11. Induction of Pectinase Hyper Production by Multistep Mutagenesis Using a Fungal Isolate--Aspergillus flavipes.

    PubMed

    Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda

    2014-04-01

    Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis. PMID:26563068

  12. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.

    PubMed

    Rasoulnia, P; Mousavi, S M

    2016-09-01

    Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. PMID:27295250

  13. Trp-262 is a key residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family 3 beta-glucosidase: substitution results in enzymes with mainly transglucosidic activity.

    PubMed

    Seidle, Heather F; McKenzie, Kyle; Marten, Ira; Shoseyov, Oded; Huber, Reuben E

    2005-12-01

    Trp-262 of the Aspergillus niger family 3 beta-glucosidase is shown in this report to be a key residue for determining the ratio of this enzyme's hydrolytic and transglucosidic activities. TLC showed that when cellobiose was both the substrate and the acceptor, beta-glucosidases with substitutions (Phe, Ala, Leu, and Cys) for Trp-262 formed very high amounts of transglucosidic adducts. When pNPGlc was the substrate and the acceptor of the substituted beta-glucosidases, only transglucosidic adducts and pNP were produced. Little or no Glc could be detected, indicating that the reactions occurring were mainly transglucosidic. GLC studies with cellobiose quantitatively showed that one Glc was transferred for each free Glc produced. Since this is the maximum level of transglucosidation possible, this again showed that the reaction is predominantly transglucosidic. Analyses of the K(m) and K(i) values of cello-oligosaccharides of increasing length, of the K(i) values of Glc and of the transglucosidic activity at low acceptor concentration, showed that substitution for Trp-262 causes poor binding at the binding site for the non-reducing Glc of the substrate while the affinity for other Glc units is only minimally affected. The acceptor sites become saturated with substrate (acceptor) at the concentrations needed for glucosidic bond cleavage and thus only transglucosidic reactions occur. In addition, the data indicate that substitution for Trp-262 causes the rate of the hydrolysis step (k(3)) to be small. PMID:16274659

  14. Diversity, molecular phylogeny and fingerprint profiles of airborne Aspergillus species using random amplified polymorphic DNA.

    PubMed

    Kermani, Firoozeh; Shams-Ghahfarokhi, Masoomeh; Gholami-Shabani, Mohammadhassan; Razzaghi-Abyaneh, Mehdi

    2016-06-01

    In the present study, diversity and phylogenetic relationship of Aspergillus species isolated from Tehran air was studied using random amplified polymorphic DNA (RAPD)-polymerase chain reaction (RAPD-PCR). Thirty-eight Aspergillus isolates belonging to 12 species i.e. A. niger (28.94 %, 11 isolates), A. flavus (18.42 %, 7 isolates), A. tubingensis (13.15 %, 5 isolates), A. japonicus (10.52 %, 4 isolates), A. ochraceus (10.52 %, 4 isolates), and 2.63 %, 1 isolate from each A. nidulans, A. amstelodami, A. oryzae, A. terreus, A. versicolor, A. flavipes and A. fumigatus were obtained by settle plate method which they were distributed in 18 out of 22 sampling sites examined. Fungal DNA was extracted from cultured mycelia of all Aspergillus isolates on Sabouraud Dextrose Agar and used for amplification of gene fragments in RAPD-PCR using 11 primers. RAPD-PCR data was analyzed using UPGMA software. Resulting dendrogram of combined selected primers including PM1, OPW-04, OPW-05, P160, P54, P10 and OPA14 indicated the distribution of 12 Aspergillus species in 8 major clusters. The similarity coefficient of all 38 Aspergillus isolates ranged from 0.02 to 0.40 indicating a wide degree of similarities and differences within and between species. Taken together, our results showed that various Aspergillus species including some important human pathogenic ones exist in the outdoor air of Tehran by different extents in distribution and diversity and suggested inter- and intra-species genetic diversity among Aspergillus species by RAPD-PCR as a rapid, sensitive and reproducible method. PMID:27116962

  15. Biological control of AFB1-producing Aspergillus section Flavi strains isolated from brewer's grains, alternative feed intended for swine production in Argentina.

    PubMed

    Asurmendi, Paula; García, María J; Ruíz, Francisco; Dalcero, Ana; Pascual, Liliana; Barberis, Lucila

    2016-07-01

    The aim of the present study was to investigate the inhibitory activity of lactic acid bacteria (LAB) isolated from brewer's grains on Aspergillus section Flavi growth and aflatoxin B1 production. The Aspergillus strains tested were inhibited by all the LAB strains assayed. The isolates Lactobacillus brevis B20, P. pentosaceus B86, Lactococcus lactis subsp. lactis B87, L. brevis B131, and Lactobacillus sp. B144 completely suppressed the fungal growth and reduced aflatoxin B1 production. In conclusion, LAB isolated from brewer's grains show a high inhibitory activity on fungal growth and aflatoxin biosynthesis by Aspergillus flavus and Aspergillus parasiticus. Further studies must be conducted to evaluate the success of in vitro assays under food environment conditions and to elucidate the antifungal mechanism of these strains. PMID:27070819

  16. Polyphasic Identification and Susceptibility to Seven Antifungals of 102 Aspergillus Isolates Recovered from Immunocompromised Hosts in Greece▿

    PubMed Central

    Arabatzis, Michael; Kambouris, Manousos; Kyprianou, Miltiades; Chrysaki, Aikaterini; Foustoukou, Maria; Kanellopoulou, Maria; Kondyli, Lydia; Kouppari, Georgia; Koutsia-Karouzou, Chrysa; Lebessi, Evangelia; Pangalis, Anastasia; Petinaki, Efthimia; Stathi, Ageliki; Trikka-Graphakos, Eleftheria; Vartzioti, Erriketi; Vogiatzi, Aliki; Vyzantiadis, Timoleon-Achilleas; Zerva, Loukia; Velegraki, Aristea

    2011-01-01

    In this study, the first such study in Greece, we used polyphasic identification combined with antifungal susceptibility study to analyze Aspergillus clinical isolates comprising 102 common and rare members of sections Fumigati, Flavi, Terrei, Nidulantes, Nigri, Circumdati, Versicolores, and Usti. High amphotericin B MICs (>2 μg/ml) were found for 17.6% of strains. Itraconazole, posaconazole, and voriconazole MICs of >4 μg/ml were shown in 1%, 5%, and 0% of the isolates, respectively. Anidulafungin, micafungin, and caspofungin minimum effective concentrations (MECs) of ≥2 μg/ml were correspondingly recorded for 4%, 9%, and 33%, respectively, of the strains. PMID:21444701

  17. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties.

    PubMed

    Tomoda, H; Kim, Y K; Nishida, H; Masuma, R; Omura, S

    1994-02-01

    Aspergillus fumigatus FO-1289, a soil isolate, was found to produce a series of novel inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Four active compounds, named pyripyropenes A, B, C and D, were isolated from the fermentation broth of the producing strain by solvent extraction, silica gel column chromatography, ODS column chromatography and preparative HPLC. Pyripyropenes A, B, C and D show very potent ACAT inhibitory activity in an enzyme assay system using rat liver microsomes with IC50 values of 58, 117, 53 and 268 nM, respectively. PMID:8150709

  18. Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of Aspergillus flavus Isolated from Brazil Nuts.

    PubMed

    Baquião, Arianne Costa; Rodriges, Aline Guedes; Lopes, Evandro Luiz; Tralamazza, Sabina Moser; Zorzete, Patricia; Correa, Benedito

    2016-08-01

    The aims of the present study were to monitor the production of aflatoxin B1 (AFB1) and mycelial growth, and to evaluate the expression of genes directly and indirectly involved in the biosynthesis of aflatoxins by Aspergillus flavus isolated from Brazil nuts. Six previously identified A. flavus strains were grown on coconut agar at 25°C for up to 10 days. Mycotoxins were separated by high-performance liquid chromatography and fungal growth was measured daily using the diametric mycelial growth rate. Transcriptional analysis was performed by real-time polymerase chain reaction (PCR) after 2 and 7 d of incubation using specific primers (aflR, aflD, aflP, lipase, metalloprotease, and LaeA). Three (50%) of the six A. flavus isolates produced AFB1 (ICB-1, ICB-12, and ICB-54) and three (50%) were not aflatoxigenic (ICB-141, ICB-161, and ICB-198). Aflatoxin production was observed from d 2 of incubation (1.5 ng/g for ICB-54) and increased gradually with time of incubation until d 10 (15,803.6 ng/g for ICB-54). Almost all A. flavus isolates exhibited a similar gene expression pattern after 2 d of incubation (p > 0.10). After 7 d of incubation, the LaeA (p < 0.05) and metalloprotease (p < 0.05) genes were the most expressed by nonaflatoxigenic strains, whereas aflatoxigenic isolates exhibited higher expression of the aflR (p < 0.05) and aflD genes (p < 0.05). Our results suggest that the expression of aflR and aflD is correlated with aflatoxin production in A. flavus and that overexpression of aflR could affect the transcriptional and aflatoxigenic pattern (ICB-54). Elucidation of the molecular mechanisms that regulate the secondary metabolism of toxigenic fungi may permit the rational silencing of the genes involved and consequently the programmed inhibition of aflatoxin production. Knowledge of the conditions, under which aflatoxin genes are expressed, should contribute to the development of innovative and more cost-effective strategies to

  19. Expression of the Aspergillus niger InuA gene in Saccharomyces cerevisiae permits growth on the plant storage carbohydrate inulin at low enzymatic concentrations

    SciTech Connect

    Close, Dan

    2015-01-01

    The plant storage carbohydrate inulin represents an attractive biomass feedstock for fueling industrial scale bioconversion processes due to its low cost, ability for cultivation on arid and semi-arid lands, and amenability to consolidated bioprocessing applications. As a result, increasing efforts are emerging towards engineering industrially relevant microorganisms, such as yeast, to efficiently ferment inulin into high value fuels and chemicals. Although some strains of the industrially relevant yeast model Saccharomyces cerevisiae can naturally ferment inulin, the efficiency of this process is often supplemented through expression of exogenous inulinase enzymes that externally convert inulin into its more easily fermentable component monomeric sugars. Here, the effects of overexpressing the Aspergillus niger InuA inulinase enzyme in an S. cerevisiae strain incapable of endogenously fermenting inulin were evaluated to determine their impact on growth. Expression of the A. niger InuA inulinase enzyme permitted growth on otherwise intractable inulin substrates from both Dahlia tubers and Chicory root. Despite being in the top 10 secreted proteins, growth on inulin was not observed until 120 h post-inoculation and required the addition of 0.1 g fructose/l to initiate enzyme production in the absence of endogenous inulinase activity. High temperature/pressure pre-treatment of inulin prior to fermentation decreased this time to 24 h and removed the need for fructose addition. The pre-growth lag time on untreated inulin was attributed primarily to low enzymatic efficiency, with a maximum value of 0.13 0.02 U InuA/ml observed prior to the peak culture density of 2.65 0.03 g/l. Nevertheless, a minimum excreted enzymatic activity level of only 0.03 U InuA/ml was found to be required for sustained growth under laboratory conditions, suggesting that future metabolic engineering strategies can likely redirect carbon flow away from inulinase

  20. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease.

    PubMed

    Gautier, Magali; Normand, Anne-Cécile; L'Ollivier, Coralie; Cassagne, Carole; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Brégeon, Fabienne; Hendrickx, Marijke; Gomez, Carine; Ranque, Stéphane; Piarroux, Renaud

    2016-07-01

    The black Aspergillus group comprises A. niger and 18 other species, which are morphologically indistinguishable. Among this species subset, A. tubingensis, described in less than 30 human cases before 2014, is primarily isolated from ear, nose, and throat samples. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has emerged as a powerful technique to identify microbes in diagnostic settings. We applied this method to identify 1,720 filamentous fungi routinely isolated from clinical samples our laboratory over a two-year study period. Accordingly, we found 85 isolates of A. niger, 58 of A. tubingensis, and six other black Aspergillus (4 A. carbonarius and 2 A. japonicus). A. tubingensis was the fifth most frequent mold isolated in our mycology laboratory, primarily isolated from respiratory samples (40/58 isolates). In this study, we mainly aimed to describe the clinical pattern of Aspergillus tubingensisWe analyzed the clinical features of the patients in whom A. tubingensis had been isolated from 40 respiratory samples. Thirty patients suffered from cystic fibrosis, chronic obstructive pulmonary disease or other types of chronic respiratory failure. Strikingly, 20 patients were experiencing respiratory acute exacerbation at the time the sample was collected. Antifungal susceptibility testing of 36 A. tubingensis isolates showed lower amphotericin B MICs (P < 10(-4)) and higher itraconazole and voriconazole MICs (P < 10(-4) and P = .0331, respectively) compared with 36 A. niger isolates. Further studies are required to better establish the role that this fungus plays in human diseases, especially in the context of cystic fibrosis and chronic pulmonary diseases. PMID:26773134