Science.gov

Sample records for aspergillus niger isolated

  1. [Aspergillus niger alpha-N-acetylgalactosaminidase: isolation, purification and properties].

    PubMed

    Borzova, N V; Varbanets, L D

    2006-01-01

    alpha-N-acetylgalactosaminidase has been isolated from liquid culture of micromycete Aspergillus niger and purified 600 times by ammonium sulphate precipitation followed by ion exchange and gel-filtration chromatography on TSK-gels with specific activity 10.5 U/mg of protein. The preparation was homogenic: its molecular mass by the data of gel-filtration on Sepharose 6B was 430 kDa, on PAAGE in the system of DDSNa--70 kDa. That gives every reason to suppose oligomeric structure of the enzyme molecule. The carbohydrate component, including mannose, galactose, glucosamine and two nonidentified hexosamines was observed in alpha-N-acetylgalactosaminidase. Thermo- and pH- optima were 60 degrees C and pH 3.5, respectively. The enzyme was thermo- and pH-stable, resistant in storage. The enzyme was found to exhibit strict specificity in respect ofglycon. It was shown that enzyme was competitively inhibited by substrate and reaction product. Km and Vmax with respect to nitrophenyl substrate were 1.25 mM and 10.5 mkmole/min/mg of protein. The activity of glycosidase tested was independent of the presence of metal ions. The presence of carboxylic group of C-terminal aminoacid and imidazol group of hystidine in active centre of molecule was established. A number of natural and synthetic substrates were able to activate (50-200%) production of A. niger alpha-N-acetylgalactosaminidase. PMID:17290780

  2. Glucoamylase production by a newly isolated strain of Aspergillus niger

    SciTech Connect

    Sinkar, V.P.; Lewis, N.F.

    1982-01-01

    Glucoamylase production by Aspergillus niger 57 was studied in complex and synthetic media under stationary vs. submerged conditions. Stationary cultivation resulted in significantly greater yields than did submerged culture. Crude enzyme activity was optimum at 60 degrees and pH 4.0.

  3. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    PubMed Central

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization. PMID:6784672

  4. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    SciTech Connect

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  5. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger.

    PubMed

    Weenink, Xavier O; Punt, Peter J; van den Hondel, Cees A M J J; Ram, Arthur F J

    2006-02-01

    Although filamentous fungi have a unique property of secreting a large amount of homologous extracellular proteins, the use of filamentous fungi as hosts for the production of heterologous proteins is limited because of the low production levels that are generally reached. Here, we report a general screening method for the isolation of mutants with increased protein production levels. The screening method makes use of an Aspergillus niger strain that lacks the two major amylolytic enzymes, glucoamylase (GlaA) and acid amylase (AamA). The double-mutant strain grows poorly on starch and its growth is restored after reintroducing the catalytic part of the glucoamylase gene (GlaA512). We show that the fusion of a heterologous protein, a laccase from Pleurotus ostreatus (Pox2), to the catalytic part of glucoamylase (GlaA512-Pox2) severely hampers efficient production of the glucoamylase protein, resulting in a slow-growth phenotype on starch. Laccase-hypersecreting mutants were obtained by isolating mutants that displayed improved growth on starch plates. The mutant with the highest growth rate on starch displayed the highest laccase activity, indicating that increased glucoamylase protein levels are correlated with higher laccase production levels. In principle, our method can be applied to any low-produced heterologous protein that is secreted as a fusion with the glucoamylase protein. PMID:16021486

  6. Production and characterization of alpha-amylase from Aspergillus niger JGI 24 isolated in Bangalore.

    PubMed

    Varalakshmi, K N; Kumudini, B S; Nandini, B N; Solomon, J; Suhas, R; Mahesh, B; Kavitha, A P

    2009-01-01

    Five fungal isolates were screened for the production of alpha-amylase using both solid-state and submerged fermentations. The best amylase producer among them, Aspergillus niger JGI 24, was selected for enzyme production by solid-state fermentation (SSF) on wheat bran. Different carbon and nitrogen supplements were used to enhance enzyme production and maximum amount of enzyme was obtained when SSF was carried out with soluble starch and beef extract (1% each) as supplements. Further attempts to enhance enzyme production by UV induced mutagenesis were carried out. Survival rate decreased with increase in duration of UV exposure. Partial purification of the enzyme using ammonium sulphate fractionation resulted in 1.49 fold increase in the enzyme activity. The enzyme showed a molecular weight of 43 kDa by SDS-PAGE. Metal ions Ca2+ and Co2+ increased the enzyme activity. The enzyme was optimally active at 30 degrees C and pH 9.5. PMID:19469283

  7. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both specie...

  8. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance.

    PubMed

    Monteiro, Paulo S; Guimarães, Valéria M; de Melo, Ricardo R; de Rezende, Sebastião T

    2015-03-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  9. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    PubMed Central

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  10. Biotransformation of Stypotriol triacetate by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Areche, Carlos; Vaca, Inmaculada; Labbe, Pamela; Soto-Delgado, Jorge; Astudillo, Luis; Silva, Mario; Rovirosa, Juana; San-Martin, Aurelio

    2011-07-01

    Biological transformation of the meroditerpenoid, stypotriol triacetate ( 1) by the fungi Aspergillus niger, Cunninghamella elegans, Gibberella fujikuroi and Mucor plumbeus was studied. The incubation of 1 with A. niger yielded the new compound 6',14-diacetoxy-stypol-4,5-dione ( 2) whose structure was established by 1H, 13C and 2D NMR and supported by DFT/GIAO.

  11. A tyrosinase inhibitor from Aspergillus niger.

    PubMed

    Vasantha, K Y; Murugesh, C S; Sattur, A P

    2014-10-01

    Tyrosinase, in the presence of oxygen, is the main culprit in post harvest browning of food products, resulting in the drop in its commercial value. In an effort to seek natural tyrosinase inhibitors for food applications, a screening programme was undertaken. Of the 26 fungal cultures isolated from soil samples of Agumbe forest, India, one isolate S16, identified as Aspergillus niger, gave an inhibition of 84 % against the enzyme. The inhibitor was isolated by following an enzyme inhibition assay guided purification protocol. The structure of the inhibitor was elucidated and found to be kojic acid. The IC50 of the Competitive inhibitor was found to be 8.8 μg with a Ki of 0.085 mM. PMID:25328242

  12. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  13. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  14. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    PubMed

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied. PMID:26380164

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  16. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    SciTech Connect

    Woon, J. S. K. Murad, A. M. A. Abu Bakar, F. D.

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  17. Structure elucidation of metabolites of swertiamarin produced by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Jun, Chang; Xue-Ming, Zhao; Chang-Xiao, Liu; Tie-Jun, Zhang

    2008-04-01

    The in vitro metabolism of swertiamarin was carried out in preparative scale using the fungus Aspergillus niger and the metabolites were isolated by semi-preparative HPLC combined with liquid-liquid extraction. Two metabolites, erythrocentaurin and one new compound were obtained and identified by 1H, 13C and 2D NMR and high resolution MS. The anti-inflammatory activity of the novel metabolite was tested and compared with that of swertiamarin in a mice model.

  18. Mutagenesis and genetic characterisation of amylolytic Aspergillus niger.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-07-01

    Aspergillus niger FCBP-198 was genetically modified for its ability to reveal extra cellular alpha-amylase enzyme activity. From 76 efficient mutants isolated after ultraviolet (UV) irradiation, An-UV-5.6 was selected as the most efficient UV mutant, with 76.41 units mL(-1) of alpha-amylase activity compared to wild (34.45 units mL(-1)). In case of ethyl methane sulphonate (EMS), among 242 survivors, 74 were assayed quantitatively and An-Ch-4.7 was found to be the most competent, as it exhibited a three-fold increase in alpha-amylase activity (89.38 units mL(-1)) than the parental strain. Genetic relationships of the mutants of A. niger FCBP-198 were analysed with a randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Results obtained from the comparison between genotypes of A. niger FCBP-198 showed differences in the sizes and numbers of amplified fragments per primer for each isolate. The dendrogram showed that genotypes An-Ch-4.7 and An-Ch-4.2 were distinctly classified into one category, while the isolates An-UV-5.6, An-UV-5.1 and A. niger FCBP-198 have the nearest genetic relationship. The five isolates from A. niger FCBP-198 genotypes shared an average of 65% bands. PMID:19764004

  19. Shedding light on Aspergillus niger volatile exometabolome

    PubMed Central

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M.

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  20. Shedding light on Aspergillus niger volatile exometabolome.

    PubMed

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  1. Fingernail Onychomycosis Due to Aspergillus niger.

    PubMed

    Kim, Dong Min; Suh, Moo Kyu; Ha, Gyoung Yim; Sohng, Seung Hyun

    2012-11-01

    Onychomycosis is usually caused by dermatophytes, but some species of nondermatophytic molds and yeasts are also associated with nail invasion. Aspergillus niger is a nondermatophytic mold which exists as an opportunistic filamentous fungus in all environments. Here, we report a case of onychomycosis caused by A. niger in a 66-year-old female. The patient presented with a black discoloration and a milky white base and onycholysis on the proximal portion of the right thumb nail. Direct microscopic examination of scrapings after potassium hydroxide (KOH) preparation revealed dichotomous septate hyphae. Repeated cultures on Sabouraud's dextrose agar (SDA) without cycloheximide produced the same black velvety colonies. No colony growth occurred on SDA with cycloheximide slants. Biseriate phialides covering the entire vesicle with radiate conidial heads were observed on the slide culture. The DNA sequence of the internal transcribed spacer region of the clinical sample was a 100% match to that of A. niger strain ATCC 16888 (GenBank accession number AY373852). A. niger was confirmed by KOH mount, colony identification, light microscopic morphology, and DNA sequence analysis. The patient was treated orally with 250 mg terbinafine daily and topical amorolfine 5% nail lacquer for 3 months. As a result, the patient was completely cured clinically and mycologically. PMID:23197914

  2. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    PubMed

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-01

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment. PMID:25401962

  3. Microbial transformation of curcumol by Aspergillus niger.

    PubMed

    Chen, Li-Xia; Zhang, Hui; Zhao, Qian; Yin, Shi-Yu; Zhang, Zhong; Li, Tian-Xian; Qiu, Feng

    2013-02-01

    Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling, an antivirus and anticancer drug in China. Microbial transformation of curcumol (1) by Aspergillus niger AS 3.739 yielded two products. Their structures were elucidated as 3alpha-hydroxycurcumol (2) and 3alpha-(4'-methoxy-succinyloxy)-curcumol (3) by extensive spectroscopic methods including 2D-NMR and HRESI-MS. Among them, 3 is a new compound. Esterification of the substrate with succinic acid is a novel reaction in the field of microbial transformation of natural products. Compound 2, the major transformation product of 1, was a high regio- and stereo-specific hydroxylation product and showed significant antiviral effects. PMID:23513713

  4. Draft Genome Sequence of Aspergillus niger Strain An76

    PubMed Central

    Gong, Weili; Cheng, Zhi; Zhang, Huaiqiang; Liu, Lin; Gao, Peiji

    2016-01-01

    The filamentous fungus Aspergillus niger has become one of the most important fungi in industrial biotechnology, and it can efficiently secrete both polysaccharide-degrading enzymes and organic acids. We report here the 6,074,961,332-bp draft sequence of A. niger strain An76, and the findings provide important information related to its lignocellulose-degrading ability. PMID:26893421

  5. Putative Aspergillus niger-induced oxalate nephrosis in sheep.

    PubMed

    Botha, C J; Truter, M; Bredell, T; Lange, L; Mülders, M S G

    2009-03-01

    A sheep farmer provided a maize-based brewer's grain (mieliemaroek) and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC). Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy. PMID:19653520

  6. Heterogeneity of Aspergillus niger Microcolonies in Liquid Shaken Cultures▿ †

    PubMed Central

    de Bekker, Charissa; van Veluw, G. Jerre; Vinck, Arman; Wiebenga, L. Ad; Wösten, Han A. B.

    2011-01-01

    The fungus Aspergillus niger forms (sub)millimeter microcolonies within a liquid shaken culture. Here, we show that such microcolonies are heterogeneous with respect to size and gene expression. Microcolonies of strains expressing green fluorescent protein (GFP) from the promoter of the glucoamlyase gene glaA or the ferulic acid esterase gene faeA were sorted on the basis of diameter and fluorescence using the Complex Object Parametric Analyzer and Sorter (COPAS) technology. Statistical analysis revealed that the liquid shaken culture consisted of two populations of microcolonies that differ by 90 μm in diameter. The population of small microcolonies of strains expressing GFP from the glaA or faeA promoter comprised 39% and 25% of the culture, respectively. Two populations of microcolonies could also be distinguished when the expression of GFP in these strains was analyzed. The population expressing a low level of GFP consisted of 68% and 44% of the culture, respectively. We also show that mRNA accumulation is heterogeneous within microcolonies of A. niger. Central and peripheral parts of the mycelium were isolated with laser microdissection and pressure catapulting (LMPC), and RNA from these samples was used for quantitative PCR analysis. This analysis showed that the RNA content per hypha was about 45 times higher at the periphery than in the center of the microcolony. Our data imply that the protein production of A. niger can be improved in industrial fermentations by reducing the heterogeneity within the culture. PMID:21169437

  7. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations.

    PubMed

    Hodgkins, M; Mead, D; Ballance, D J; Goodey, A; Sudbery, P

    1993-06-01

    The glucose oxidase gene (god) from Aspergillus niger was expressed in Hansenula polymorpha using the methanol oxidase promoter and transcription termination region and the MF-alpha leader sequence from Saccharomyces cerevisiae to direct secretion. The expression cassette was cloned into the S. cerevisiae vector YEp13 and used to transform H. polymorpha strain A16. In the initial transformants plasmid replication was unstable, but was stabilized by a growth regime consisting of alternating cycles of selective and non-selective growth. The stabilized strain was grown to high cell density by fed-batch fermentation. Upon induction of the MOX promoter, glucose oxidase synthesis was initiated. At the end of the fermentation, the culture density was 76 g dry weight/1 and 108 IU/ml (0.5 g/1 or 0.65% dry weight) glucose oxidase was found in the culture medium; a further 86 IU/ml (0.43 g/1 or 0.56% dry weight) was recovered from the cell lysate. A plate assay was used to monitor glucose oxidase levels in individual colonies. This was then used to isolate mutants which showed abnormal regulation of god expression or which showed an altered pattern of secretion. One mutant, which showed increased production of glucose oxidase, was grown to high cell density by fed-batch fermentation (100.6 g/l) and produced 445 IU/ml(2.25 g/l or 2.2% dry weight) extracellularly and 76 IU/ml (0.38 g/l or 0.4% dry weight) intracellularly. The mutant thus not only increased total production but exported 83% of the total enzyme made compared to 55% in the parent strain. PMID:8346679

  8. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  9. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  10. Aspergillus Niger Genomics: Past, Present and into the Future

    SciTech Connect

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently, there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.

  11. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; de Souza Ferranti, Larissa; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-03-16

    Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing

  12. QM/MM investigation of the reaction rates of substrates of 2,3-dimethylmalate lyase: A catabolic protein isolated from Aspergillus niger.

    PubMed

    Chotpatiwetchkul, Warot; Jongkon, Nathjanan; Hannongbua, Supa; Gleeson, M Paul

    2016-07-01

    Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target. PMID:27343740

  13. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    SciTech Connect

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  14. Production of cellulase and xylanase in a bubble gum column using immobilized Aspergillus niger KKS

    SciTech Connect

    Kang, Seong-Woo; Kim, Seung-Woo; Lee, Jin-Suk

    1995-05-01

    Aspergillus niger KKS, isolated from a farmland near Suwon, was immobilized on Celite and polyurethane foams. Enzyme activities produced by the immobilized cell system in a bubble column were higher than that of shake-flask culture. The enzyme productivities were twice as high. {Beta}-Glucosidase, {Beta}-xylosidase, and xylanase activities obtained in a bubble column were significant when the ground rice straw was used as a substrate. 9 refs., 2 figs., 3 tabs.

  15. Purification and immobilization of Aspergillus niger. beta. -xylosidase

    SciTech Connect

    Oguntimein, G.B.; Reilly, P.J.

    1980-01-01

    ..beta..-Xylosidase from a commercial Aspergillus niger preparation was purified by differential ammonium sulfate precipitation and either gel permeation or cation exchange chromatography, giving 16-fold purification in 32% yield for the first technique or 27-fold purification in 19% yield for the second. Enzyme prepared by this method was immobilized to 10 different carriers, but only when it was bound to alumina with TiCl/sub 4/ and to alkylamine porous silica with glutaraldehyde were substantial efficiencies and stabilities achieved.

  16. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.

    PubMed

    Magyarosy, A; Laidlaw, R D; Kilaas, R; Echer, C; Clark, D S; Keasling, J D

    2002-07-01

    A strain of Aspergillus niger isolated from a metal-contaminated soil was able to grow in the presence of cadmium, chromium, cobalt, copper, and unusually high levels of nickel on solid (8.0 mM) and in liquid (6.5 mM) media. This fungus removed >98% of the nickel from liquid medium after 100 h of growth but did not remove the other metals, as determined by inductively coupled plasma spectroscopy. Experiments with non-growing, live fungal biomass showed that nickel removal was not due to biosorption alone, as little nickel was bound to the biomass at the pH values tested. Furthermore, when the protonophore carbonyl cyanide p-(trifluoremetoxy) phenyl hydrazone (FCCP) was added to the actively growing fungus nickel removal was inhibited, supporting the hypothesis that energy metabolism is essential for metal removal. Analytical electron microscopy of thin-sectioned fungal biomass revealed that metal removed from the broth was localized in the form of small rectangular crystals associated with the cell walls and also inside the cell. X-ray and electron diffraction analysis showed that these crystals were nickel oxalate dihydrate. PMID:12111174

  17. Analytical and computational approaches to define the Aspergillus niger secretome

    SciTech Connect

    Tsang, Adrian; Butler, Gregory D.; Powlowski, Justin; Panisko, Ellen A.; Baker, Scott E.

    2009-03-01

    We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome. The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used to guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected.

  18. Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger.

    PubMed Central

    Suykerbuyk, M E; Kester, H C; Schaap, P J; Stam, H; Musters, W; Visser, J

    1997-01-01

    A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed. PMID:9212401

  19. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    PubMed Central

    2011-01-01

    Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol. PMID:22008461

  20. Characterization of novel thermostable polygalacturonases from Penicillium brasilianum and Aspergillus niger.

    PubMed

    Zeni, Jamile; Pili, Jonaina; Cence, Karine; Toniazzo, Geciane; Treichel, Helen; Valduga, Eunice

    2015-12-01

    The aim of this research was the partial characterization of polygalacturonase (PG) extracts produced by a newly isolated Penicillium brasilianum and Aspergillus niger in submerged fermentation. The partial characterization of the crude enzymatic extracts showed optimum activity at pH 5.5 and 37 °C for both extracts. The results of temperature stability showed that PG from both microorganisms were more stable at 55 °C. However, the enzyme obtained by P. brasilianum presents a half-life time (t 1/2 = 693.10 h), about one order of magnitude higher than those observed in for A. niger at 55 °C. In terms of pH stability, the PG produced by P. brasilianum presented higher stability at pH 4.0 and 5.0, while the PG from A. niger showed higher stability at pH 5.0. PMID:26341112

  1. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  2. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used... the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for use as...

  3. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  4. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  5. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended...

  6. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability. PMID:26679485

  7. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Woodling, Kellie A; Sutherland, John B

    2015-09-01

    Many different organic compounds may be converted by microbial biotransformation to high-value products for the chemical and pharmaceutical industries. This review summarizes the use of strains of Aspergillus niger, a well-known filamentous fungus used in numerous biotechnological processes, for biochemical transformations of organic compounds. The substrates transformed include monocyclic, bicyclic, and polycyclic aromatic hydrocarbons; azaarenes, epoxides, chlorinated hydrocarbons, and other aliphatic and aromatic compounds. The types of reactions performed by A. niger, although not unique to this species, are extremely diverse. They include hydroxylation, oxidation of various functional groups, reduction of double bonds, demethylation, sulfation, epoxide hydrolysis, dechlorination, ring cleavage, and conjugation. Some of the products may be useful as new investigational drugs or chemical intermediates. PMID:26162670

  8. Steady-state shear characteristics of Aspergillus niger broths

    SciTech Connect

    Svihla, C.K.; Dronawat, S.N.; Hanley, T.R.

    1995-12-31

    It can be difficult to obtain reliable rheological data for filamentous fermentation broths using conventional instruments. One common approach is to measure the torque drawn by an impeller rotating in the suspension. Many previous workers have assumed that the applicable shear rate in such a device is related to the impeller speed by a fluid-independent constant determined by calibration with Newtonian and non-Newtonian fluids. The rheology of Aspergillus niger broths have been characterized using the impeller viscometer approach. The changes in the broth rheology were measured, and used to interpret the growth of biomass and the evolution of the microorganism morphology.

  9. Cloning and Expression of Gumboro VP2 Antigen in Aspergillus niger

    PubMed Central

    Azizi, Mohammad; Yakhchali, Bagher; Ghamarian, Abdolreza; Enayati, Somayeh; Khodabandeh, Mahvash; Khalaj, Vahid

    2013-01-01

    Background Infectious Bursal Disease Virus (IBDV) causes a highly immunosuppressive disease in chickens and is a pathogen of major economic importance to the poultry industry worldwide. The VP2 protein is the major host-protective immunogen of IBDV and has been considered as a potential subunit vaccine against the disease. VP2 coding sequence was cloned in an inducible fungal vector and the protein was expressed in Aspergillus niger (A. niger). Methods Aiming at a high level of expression, a multicopy AMA1-pyrG-based episomal construct driven by a strong inducible promoter, glaA, was prepared and used in transformation of A. niger pyrG-protoplasts. SDS-PAGE and western blot analysis was carried out to confirm the expression of the protein. Results A number of pyrG + positive transformants were isolated and the presence of expression cassette was confirmed. Western blot analysis of one of these recombinant strains using monospecific anti-VP2 antibodies demonstrated the successful expression of the protein. The recombinant protein was also detected by serum obtained from immunized chicken. Conclusion In the present study, we have generated a recombinant A. niger strain expressing VP2 protein intracellulary. This recombinant strain of A. niger may have potential applications in oral vaccination against IBDV in poultry industry. PMID:23626875

  10. The Aspergillus niger acuA and acuB genes correspond to the facA and facB genes in Aspergillus nidulans.

    PubMed

    Papadopoulou, S; Sealy-Lewis, H M

    1999-09-01

    Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene. PMID:10483720

  11. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R.; et al.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  12. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  13. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  14. Morphology engineering of Aspergillus niger for improved enzyme production.

    PubMed

    Driouch, Habib; Sommer, Becky; Wittmann, Christoph

    2010-04-15

    Supplementation with silicate microparticles was used as novel approach to control the morphological development of Aspergillus niger, important as the major world source of citric acid and higher-value enzymes, in submerged culture. With careful variation of size and concentration of the micromaterial added, a number of distinct morphological forms including pellets of different size, free dispersed mycelium, and short hyphae fragments could be reproducibly created. Aluminum oxide particles similarly affected morphology, showing that this effect is largely independent of the chemical particle composition. Image analysis of morphological development of A. niger during the cultivation process showed that the microparticles influence the morphology by collision-induced disruption of conidia aggregates and probably also the hindrance of new spore-spore interactions in the very early stage of the process. Exemplified for different recombinant A. niger strains enzyme production could be strongly enhanced by the addition of microparticles. Linked to the formation of freely dispersed mycelium, titers for glucoamylase (GA) expressed as intracellular enzyme (88 U/mL) and fructofuranosidase secreted into the supernatant (77 U/mL), were up to fourfold higher in shake flasks. Moreover, accumulation of the undesired by-product oxalate was suppressed by up to 90%. The microparticle strategy could be successfully transferred to fructofuranosidase production in bioreactor, where a final titer of 160 U/mL could be reached. Using co-expression of GA with green fluorescent protein, enzyme production was localized in the cellular aggregates of A. niger. For pelleted growth, protein production was maximal only within a thin layer at the pellet surface and markedly decreased in the pellet interior, whereas the interaction with the microparticles created a highly active biocatalyst with the dominant fraction of cells contributing to production. PMID:19953678

  15. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  16. ADOPTING SELECTED HYDROGEN BONDING AND IONIC INTERACTIONS FROM ASPERGILLUS FUMIGATUS PHYTASE STRUCTURE IMPROVES THE THERMOSTABILITY OF ASPERGILLUS NIGER PHYA PHYTASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatu...

  17. Distribution and conformation of crystalline nigeran in hyphal walls of Aspergillus niger and Aspergillus awamori.

    PubMed Central

    Bobbitt, T F; Nordin, J H; Roux, M; Revol, J F; Marchessault, R H

    1977-01-01

    Hyphal walls of Aspergillus awamori containing increased amount of the alpha-glucan, nigeran, became correspondingly more opaque when viewed in the electron microscope as shadowed preparations. However, increased polymer deposition was not accompanied by any significant change in wall thickness. The nigeran of both A. awamori and Aspergillus niger occurred in situ in a crystalline conformation identical to that of single crystals prepared with pure polysaccharide. Furthermore, this polymer was the dominant crystalline material in the hyphae whether or not they were enriched in nigeran. Enzymic digestion of nigeran in A. niger and A. awamori revealed that the bulk of the polymer was exposed to the cell's exterior. However, a certain fraction was accessible to enzymic attack only after the wall was treated with boiling water. A third portion, detectable only by x-ray diffraction, was associated with other components and could not be extracted, even with prolonged boiling. It was removed by hot, dilute alkali and was associated in the wall with another glucan fraction. Dry heating of A. niger walls altered their susceptibility to enzymic digestion of nigeran in situ. It is proposed that this treatment introduces interstices in the crystal surface that facilitate attack. Images PMID:914782

  18. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Choudhury, Samrat Roy; Nair, Kishore K.; Kumar, Rajesh; Gogoi, Robin; Srivastava, Chitra; Gopal, Madhuban; Subhramanyam, B. S.; devakumar, C.; Goswami, Arunava

    2010-10-01

    Elemental sulfur (S0), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  19. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Sutherland, John B

    2015-06-01

    Steroids are derivatives of the triterpenoid squalene, containing three fused cyclohexane rings and a cyclopentane ring, and flavonoids are derivatives of L-phenylalanine, containing two aromatic rings joined by a three-carbon bridge that may form part of a heterocyclic ring. A great variety of steroids and flavonoids are produced by plants, and many additional steroids are produced by animals or fungi. Because these compounds have many nutritional and pharmaceutical values, and many of them cannot be produced by chemical synthesis, biotechnological processes are being developed that use cultures of Aspergillus niger and other fungi to transform steroids and flavonoids to a variety of metabolites. These biochemical reactions, including hydroxylation, dehydrogenation, O-methylation, demethylation, cleavage of rings, epoxide hydrolysis, double bond reduction, and others, may be used for the production of higher-value compounds. PMID:25951777

  20. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger.

    PubMed

    Esmaeili, Akbar; Moazami, Nasrin; Rustaiyan, Abdolhossein

    2012-01-01

    Terpenes are present in the essential oils obtained from herbs and spices. They are produced by these plant species as a chemical defense mechanism against phytopathogenic microorganisms. Therefore, terpenes have attracted great attention in the food industry, e.g., they have been used in foods such as cheese as natural preservatives to prevent fungal growth. Herein, we describe the microbial transformation of onopordopicrin (1) by Aspergillus niger. Four product 11α H-dihydroonopordopicrin (2), 11β H-dihydroonopordopicrin (3), 3β-hydroxy-11β H-dihydroonopordopicrin (4), and 14-hydroxy-11β H-dihydroonopordopicrin (5) were obtained. Their structures were identified on the basis of chemical and spectroscopic data. All the four compounds were novel. PMID:22186324

  1. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    SciTech Connect

    Choudhury, Samrat Roy; Goswami, Arunava; Nair, Kishore K.; Kumar, Rajesh; Gopal, Madhuban; Devakumar, C.; Gogoi, Robin; Srivastava, Chitra; Subhramanyam, B. S.

    2010-10-04

    Elemental sulfur (S{sup 0}), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  2. Biotransformation of 6-dehydroprogesterone with Aspergillus niger and Gibberella fujikuroi.

    PubMed

    Ahmad, Malik Shoaib; Zafar, Salman; Yousuf, Sammar; Wahab, Atia-Tul-; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2016-08-01

    Microbial transformation of 6-dehydroprogesterone (1) with Aspergillus niger yielded three new metabolites, including 6β-chloro-7α,11α-dihydroxypregna-4-ene-3,20-dione (2), 7α-chloro-6β,11α-dihydroxypregna-4-ene-3,20-dione (3), and 6α,7α-epoxy-11α-hydroxypregna-4-ene-3,20-dione (4), and two known metabolites; 6α,7α-epoxypregna-4-ene-3,20-dione (5), and 11α-hydroxypregna-4,6-diene-3,20-dione (6). Compounds 2, and 3 contain chlorohydrin moiety at C-6, and C-7, respectively. The biotransformation of 1 with Gibberella fujikuroi yielded a known compound, 11α,17β-dihydroxyandrosta-4,6-dien-3-one (7). PMID:27133903

  3. In-silico analysis of Aspergillus niger beta-glucosidases

    NASA Astrophysics Data System (ADS)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  4. Tandem shock waves to enhance genetic transformation of Aspergillus niger.

    PubMed

    Loske, Achim M; Fernández, Francisco; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel A

    2014-08-01

    Filamentous fungi are used in several industries and in academia to produce antibiotics, metabolites, proteins and pharmaceutical compounds. The development of valuable strains usually requires the insertion of recombinant deoxyribonucleic acid; however, the protocols to transfer DNA to fungal cells are highly inefficient. Recently, underwater shock waves were successfully used to genetically transform filamentous fungi. The purpose of this research was to demonstrate that the efficiency of transformation can be improved significantly by enhancing acoustic cavitation using tandem (dual-pulse) shock waves. Results revealed that tandem pressure pulses, generated at a delay of 300 μs, increased the transformation efficiency of Aspergillus niger up to 84% in comparison with conventional (single-pulse) shock waves. This methodology may also be useful to obtain new strains required in basic research and biotechnology. PMID:24680880

  5. New pathway for the biodegradation of indole in Aspergillus niger

    SciTech Connect

    Kamath, A.; Vaidyanathan, C.S. )

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  6. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    PubMed

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  7. Identification of Genes Associated with Morphology in Aspergillus Niger by Using Suppression Subtractive Hybridization

    SciTech Connect

    Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.; Lasure, Linda L.

    2004-04-01

    The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grown in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.

  8. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  9. Induced Autolysis of Aspergillus oryzae (A. niger group)

    PubMed Central

    Emiliani, Ezio; de Davie, I. Ucha

    1962-01-01

    The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623

  10. [Conditions for splitting protodioscine--the main glycoside from Tribulus terrestris L. by the enzymatic preparation from Aspergillus niger BKMt-33].

    PubMed

    Prepelitsa, E D; Razumovsky, P N; Kintya, P K

    1975-01-01

    The conditions for splitting protodioscine--the main steroid saponine isolated from Tribulus terrestris L. by the enzymic preparation of Aspergillus niger str. BKMt-33 were investigated. The optimal conditions were found to be as follows: pH 4-5, temperature 30-37 degrees (the substrate concentration--5 mg%, concentration of the enzymic preparation--1%). Under these conditions the enzymolysis continued 24 hours. Mg+2 and K+ ions accelerated the reaction twice. As a result of the enzymic hydrolysis dioscine and trilline were obtained. This indicates beta-glucosidase and alpha-rhamnosidase activities of the enzymic complex isolated from Aspergillus niger str. BKMt-33. PMID:1743

  11. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    PubMed

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals. PMID:20082377

  12. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    PubMed Central

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  13. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-06-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, "Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae" [1]. PMID:27054181

  14. Aspergillus niger aortitis after aortic valve replacement diagnosed by transesophageal echocardiography.

    PubMed

    Duygu, Hamza; Nalbantgil, Sanem; Ozerkan, Filiz; Kirilmaz, Bahadir; Yagdi, Tahir

    2006-05-01

    Aspergillus aortitis following cardiac surgery has an important role among the cardiac infections as almost all affected cases result in death. Survival of the patient with Aspergillus aortitis is dependent on early initiation of aggressive medical and surgical treatment. Transesophageal echocardiography proved very useful in the diagnosis of this uncommon case of aortitis. In this paper, we present a patient with aortitis caused by Aspergillus niger that hasn't been reported previously diagnosed by transesophageal echocardiography following cardiac surgery. PMID:16686625

  15. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  16. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  17. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    PubMed

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue. PMID:26321727

  18. Localization of growth and secretion of proteins in Aspergillus niger.

    PubMed

    Wösten, H A; Moukha, S M; Sietsma, J H; Wessels, J G

    1991-08-01

    Hyphal growth and secretion of proteins in Aspergillus niger were studied using a new method of culturing the fungus between perforated membranes which allows visualization of both parameters. At the colony level the sites of occurrence of growth and general protein secretion were correlated. In 4-d-old colonies both growth and secretion were localized at the periphery of the colony, whereas in a 5-d-old colony growth and secretion also occurred in a more central zone of the colony where conidiophore differentiation was observed. However, in both cases glucoamylase secretion was mainly detected at the periphery of the colonies. At the hyphal level immunogold labelling showed glucoamylase secretion at the tips of leading hyphae only. Microautoradiography after labelling with N-acetylglucosamine showed that these hyphae were probably all growing. Glucoamylase secretion could not be demonstrated immediately after a temperature shock which stopped growth. These results indicate that glucoamylase secretion is located at the tips of growing hyphae only. PMID:1955876

  19. The composition of the cell wall of Aspergillus niger

    PubMed Central

    Johnston, I. R.

    1965-01-01

    1. The cell-wall composition of Aspergillus niger has been investigated. Analysis shows the presence of six sugars, glucose, galactose, mannose, arabinose, glucosamine and galactosamine, all in the d-configuration, except that a small amount of l-galactose may be present. Sixteen common amino acids are also present. 2. The wall consists chiefly of neutral carbohydrate (73–83%) and hexosamine (9–13%), with smaller amounts of lipid (2–7%), protein (0·5–2·5%) and phosphorus (less than 0·1%). The acetyl content (3·0–3·4%) corresponds to 1·0mole/mole of hexosamine nitrogen. 3. A fractionation of the cell-wall complex was achieved, with or without a preliminary phenol extraction, by using n-sodium hydroxide. Though this caused some degradation, 30–60% of the wall could be solubilized (depending on the preparation). Analyses on several fractions suggest that fractionation procedures bring about some separation of components although not in a clear-cut fashion. 4. Cell-wall preparations were shown to yield a fraction having [α]D approx. +240° (in n-sodium hydroxide) and consisting largely of glucose. This was separated into two subfractions, one of which had [α]D+281° (in n-sodium hydroxide) and had properties resembling the polysaccharide nigeran; the other had [α]D +231° (in n-sodium hydroxide). It is suggested that nigeran is a cell-wall component. PMID:5862404

  20. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  1. Cloning and characterization of three Aspergillus niger promoters.

    PubMed

    Luo, X

    1995-09-22

    An Aspergillus niger (An) genomic library was constructed using the promoter-trap vector, pLX2A, which contains a hygromycin B (Hy) phosphotransferase-encoding gene (hph) for selection of DNA fragments with promoter activity. This library was transformed in Escherichia coli and 80,000 colonies were obtained, 94% of which contained inserts. Transformations of plasmid DNA from the library into An resulted in 53 Hy-resistant (HyR) colonies. Southern blot analysis of 21 transformants confirmed the integration of hph into the An genome. Using the sib selection procedure, three functional promoters, PX6, PX18 and PX21, were identified from this library. Both DNA strands of all three fragments were sequenced and their sequences showed no significant homology to those in the database. Comparison of the sequences of all known promoters from An suggested that C+T-rich stretches are probably important for promoter structures. The promoter activity was analysed further using beta-galactosidase (beta Gal) as a quantitative marker. The results suggest that while PX21 is a much stronger promoter than the known alpha-amylase promoter of A. oryzae, PX6 promotes only weak expression of beta Gal. PMID:7557461

  2. Review of secondary metabolites and mycotoxins from the Aspergillus niger group.

    PubMed

    Nielsen, Kristian Fog; Mogensen, Jesper Mølgaard; Johansen, Maria; Larsen, Thomas O; Frisvad, Jens Christian

    2009-11-01

    Filamentous fungi in the Aspergillus section Nigri (the black aspergilli) represent some of the most widespread food and feed contaminants known but they are also some of the most important workhorses used by the biotechnological industry. The Nigri section consists of six commonly found species (excluding A. aculeatus and its close relatives) from which currently 145 different secondary metabolites have been isolated and/or detected. From a human and animal safety point of view, the mycotoxins ochratoxin A (from A. carbonarius and less frequently A. niger) and fumonisin B(2) (from A. niger) are currently the most problematic compounds. Especially in foods and feeds such as coffee, nuts, dried fruits, and grape-based products where fumonisin-producing fusaria are not a problem, fumonisins pose a risk. Moreover, compounds such as malformins, naptho-gamma-pyrones, and bicoumarins (kotanins) call for monitoring in food, feed, and biotechnology products as well as for a better toxicological evaluation, since they are often produced in large amounts by the black aspergilli. For chemical differentiation/identification of the less toxic species the diketopiperazine asperazine can be used as a positive marker since it is consistently produced by A. tubingensis (177 of 177 strains tested) and A. acidus (47 of 47 strains tested) but never by A. niger (140 strains tested). Naptho-gamma-pyrones are the compounds produced in the highest quantities and are produced by all six common species in the group (A. niger 134 of 140; A. tubingensis 169 of 177; A. acidus 44 of 47; A. carbonarius 40 of 40, A. brasiliensis 18 of 18; and A. ibericus three of three). PMID:19756540

  3. Phosphate solubilization and promotion of maize growth in a calcareous soil by Penicillium oxalicum P4 and Aspergillus niger P85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  4. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  5. Fumonisin B2 production by Aspergillus niger in Thai coffee beans.

    PubMed

    Noonim, P; Mahakarnchanakul, W; Nielsen, K F; Frisvad, J C; Samson, R A

    2009-01-01

    During 2006 and 2007, a total of 64 Thai dried coffee bean samples (Coffea arabica) from two growing sites in Chiangmai Province and 32 Thai dried coffee bean samples (Coffea canephora) from two growing sites in Chumporn Province, Thailand, were collected and assessed for fumonisin contamination by black Aspergilli. No Fusarium species known to produce fumonisin were detected, but black Aspergilli had high incidences on both Arabica and Robusta Thai coffee beans. Liquid chromatography (LC) with high-resolution mass spectrometric (HRMS) detection showed that 67% of Aspergillus niger isolates from coffee beans were capable of producing fumonisins B(2) (FB(2)) and B(4) when grown on Czapek Yeast Agar with 5% NaCl. Small amounts (1-9.7 ng g(-1)) of FB(2) were detected in seven of 12 selected coffee samples after ion-exchange purification and LC-MS/MS detection. Two samples also contained FB(4). This is the first record of freshly isolated A. niger strains producing fumonisins and the first report on the natural occurrence of FB(2) and FB(4) in coffee. PMID:19680876

  6. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend

  7. Aspergillus niger-mediated biotransformation of methenolone enanthate, and immunomodulatory activity of its transformed products.

    PubMed

    Hussain, Zahid; Dastagir, Nida; Hussain, Shabbir; Jabeen, Almas; Zafar, Salman; Malik, Rizwana; Bano, Saira; Wajid, Abdul; Choudhary, M Iqbal

    2016-08-01

    Two fungal cultures Aspergillus niger and Cunninghamella blakesleeana were used for the biotransformation of methenolone enanthate (1). Biotransformation with A. niger led to the synthesis of three new (2-4), and three known (5-7) metabolites, while fermentation with C. blakesleeana yielded metabolite 6. Substrate 1 and the resulting metabolites were evaluated for their immunomodulatory activities. Substrate 1 was found to be inactive, while metabolites 2 and 3 showed a potent inhibition of ROS generation by whole blood (IC50=8.60 and 7.05μg/mL), as well as from isolated polymorphonuclear leukocytes (PMNs) (IC50=14.0 and 4.70μg/mL), respectively. Moreover, compound 3 (34.21%) moderately inhibited the production of TNF-α, whereas 2 (88.63%) showed a potent inhibition of TNF-α produced by the THP-1 cells. These activities indicated immunomodulatory potential of compounds 2 and 3. All products were found to be non-toxic to 3T3 mouse fibroblast cells. PMID:27133901

  8. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  9. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  10. Hydrolytic properties of a beta-mannosidase purified from Aspergillus niger.

    PubMed

    Ademark, P; Lundqvist, J; Hägglund, P; Tenkanen, M; Torto, N; Tjerneld, F; Stålbrand, H

    1999-10-01

    A beta-mannosidase was purified to homogeneity from the culture filtrate of Aspergillus niger. A specific activity of 500 nkat mg-1 and a 53-fold purification was achieved using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The isolated enzyme has an isoelectric point of 5.0 and appears to be a dimer composed of two 135-kDa subunits. It is a glycoprotein and contains 17% N-linked carbohydrate by weight. Maximal activity was observed at pH 2.4 5.0 and at 70 degrees C. The beta-mannosidase hydrolyzed beta-1,4-linked manno-oligosaccharides of degree of polymerization (DP) 2-6 and also released mannose from polymeric ivory nut mannan and galactomannan. The Km and Vmax values for p-nitrophenyl-beta-D-mannopyranoside were 0.30 mM and 500 nkat mg-1, respectively. Hydrolysis of D-galactose substituted manno-oligosaccharides showed that the beta-mannosidase was able to cleave up to, but not beyond, a side group. An internal peptide sequence of 15 amino acids was highly similar to that of an Aspergillus aculeatus beta-mannosidase belonging to family 2 of glycosyl hydrolases. PMID:10553664

  11. Molecular detection of ochratoxigenic Aspergillus species isolated from coffee beans in Saudi Arabia.

    PubMed

    Moslem, M A; Mashraqi, A; Abd-Elsalam, K A; Bahkali, A H; Elnagaer, M A

    2010-01-01

    Ten fungal isolates from coffee beans were morphologically identified as Aspergillus niger, A. ochraceus and A. carbonari-us (N = 5, 3, and 2, respectively). Only one isolate, morphologically identified as A. niger, was unable to produce ochratoxin A (OTA). This may be a new species in the Aspergillus section Nigri. OTA levels in all the other isolates were above the limit of detection (0.15 mg/kg). Based on microsatellite-primed PCR (MP-PCR) profiles, using three microsatellite primers, three main groups were obtained by UPGMA cluster analysis: A. niger, A. ochraceus and A. carbonarius. A clear-cut association was found between the MP-PCR genotype and the ability to produce OTA. Using the primer pairs OCRA1/OCRA2, a single fragment of about 400 bp was amplified only when genomic DNA from the A. ochraceus isolates was used. PMID:21128209

  12. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  13. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  14. Effect of polyols on heat inactivation of Aspergillus niger van Teighem inulinase.

    PubMed

    Viswanathan, P; Kulkarni, P R

    1995-11-01

    The effect of polyols (ethylene glycol, glycerol, erythritol, xylitol and sorbitol) on partially purified inulinase from Aspergillus niger van Teighem mutant grown on Kuth (Saussurea lappa) root as source of inulin was determined. Seventy per cent of inulinase activity was retained in the presence of 4 mol l-1 sorbitol at 75 degrees C. PMID:7576522

  15. SORPTION OF HEAVY METALS BY THE SOIL FUNGI ASPERGILLUS NIGER AND MUCOR ROUXII

    EPA Science Inventory

    Sorption of the nitrate salts of cadmium(II), copper (II), lanthanum(III) and silver (I) by two fungi, Aspergillus niger and Mucor rouxii, was evaluated using Fruendlich adsorption isotherms and energy dispersive X-ray electron microscopy. The linearized Freundlich isotherm descr...

  16. Enzymatic Comparisons of Aspergillus niger PhyA and Escherichia coli AppA2 Phytases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  17. Aspergillus niger PA2: a novel strain for extracellular biotransformation of L-tyrosine into L-DOPA.

    PubMed

    Agarwal, Pragati; Pareek, Nidhi; Dubey, Swati; Singh, Jyoti; Singh, R P

    2016-05-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), an amino acid derivative is the most widely used drug of choice for the treatment of Parkinson's disease and other neurologic injuries. The present study deals with the elevated biochemical transformation of L-tyrosine to L-DOPA by Aspergillus niger PA2, a potent tyrosinase producer, isolated from decomposed food wastes. This appears to be the first report on A. niger as a notable extracellular tyrosinase producer. The extracellular tyrosinase activity produced remarkably higher levels of L-DOPA, i.e. 2.44 mg mL(-1) when the media was supplemented with 5 mg mL(-1) L-tyrosine. The optimum pH for tyrosinase production was 6.0, with the maximal L-DOPA production at the same pH. The product thus produced was analyzed by thin-layer chromatography, UV spectroscopy, high-performance liquid chromatography and Fourier transform infrared spectroscopy, that had denoted this to be L-DOPA. Kinetic parameters viz. Y p/s, Q s and Q p had further indicated the notable levels of production. Thus, Aspergillus niger PA2 could be a promising resource and may be further exploited for large-scale production of L-DOPA. PMID:26781225

  18. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].

    PubMed

    Li, Lianwei; Lu, Hongzhong; Xia, Jianye; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2015-07-01

    Carbon-limited continuous culture was used to study the relationship between the growth of Aspergillus niger and the production of glucoamylase. The result showed that when the specific growth rate was lower than 0.068 h(-1), the production of glucoamylase was growth-associated, when the specific growth rate was higher than 0.068 h(-1), the production of glucoamylase was not growth-associated. Based on the result of continuous culture, the Monod dynamics model of glucose consumption of A. niger was constructed, Combining Herbert-Pirt equation of glucose and oxygen consumption with Luedeking-Piret equation of enzyme production, the black-box model of Aspergillus niger for enzyme production was established. The exponential fed-batch culture was designed to control the specific growth rate at 0.05 h(-1) by using this model and the highest yield for glucoamylase production by A. niger reached 0.127 g glucoamylase/g glucose. The black-box model constructed in this study successfully described the glucoamylase production by A. niger and the result of the model fitted the measured value well. The black-box model could guide the design and optimization of glucoamylase production by A. niger. PMID:26647584

  19. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material. PMID:24664515

  20. Characterization of filamentous fungi isolated from Moroccan olive and olive cake: toxinogenic potential of Aspergillus strains.

    PubMed

    Roussos, Sevastianos; Zaouia, Nabila; Salih, Ghislane; Tantaoui-Elaraki, Abdelrhafour; Lamrani, Khadija; Cheheb, Mostafa; Hassouni, Hicham; Verhé, Fréderic; Perraud-Gaime, Isabelle; Augur, Christopher; Ismaili-Alaoui, Mustapha

    2006-05-01

    During the 2003 and 2004 olive oil production campaigns in Morocco, 136 samples from spoiled olive and olive cake were analyzed and 285 strains were isolated in pure culture. Strains included 167 mesophilic strains belonging to ten genera: Penicillium, Aspergillus, Geotrichum, Mucor, Rhizopus, Trichoderma, Alternaria, Acremonium, Humicola, Ulocladium as well as 118 thermophilic strains isolated in 2003 and 2004, mainly belonging to six species: Aspergillus fumigatus, Paecilomyces variotii, Mucor pusillus, Thermomyces lanuginosus, Humicola grisea, and Thermoascus aurantiacus. Penicillium and Aspergillus, respectively, 32.3 and 26.9% of total isolates represented the majority of mesophilic fungi isolated. When considering total strains (including thermotolerant strains) Aspergillus were the predominant strains isolated; follow-up studies on mycotoxins therefore focused primarily on aflatoxins (AFs) and ochratoxin A (OTA) from the latter strains. All isolated Aspergillus flavus strains (9) and Aspergillus niger strains (36) were studied in order to evaluate their capacity to produce AFs and OTA, respectively, when grown on starch-based culture media. Seven of the nine tested A. flavus strains isolated from olive and olive cake produced AF B1 at concentrations between 48 and 95 microg/kg of dry rice weight. As for the A. niger strains, 27 of the 36 strains produced OTA. PMID:16715545

  1. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry.

    PubMed

    Rajesh, N; Imelda-Joseph; Raj, R Paul

    2010-11-01

    Vegetable waste typically has high moisture content and high levels of protein, vitamins and minerals. Its value as an agricultural feed can be enhanced through solid-state fermentation (SSF). Two experiments were conducted to evaluate the nutritional status of the products derived by SSF of a mixture of dried vegetable waste powder and oil cake mixture (soybean flour, wheat flour, groundnut oil cake and sesame oil cake at 4:3:2:1 ratio) using fungi Aspergillus niger S(1)4, a mangrove isolate, and A. niger NCIM 616. Fermentation was carried out for 9 days at 35% moisture level and neutral pH. Significant (p<0.05) increase in crude protein and amino acids were obtained in both the trials. The crude fat and crude fibre content showed significant reduction at the end of fermentation. Nitrogen free extract (NFE) showed a gradual decrease during the fermentation process. The results of the study suggest that the fermented product obtained on days 6 and 9 in case of A. niger S(1)4 and A. niger NCIM 616 respectively contained the highest levels of crude protein. PMID:20100652

  2. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger

    SciTech Connect

    Dronawat, S.N.; Svihla, C.K.; Hanley, T.R.

    1995-12-31

    The effects of agitation and aeration in the production of gluconic acid by Aspergillus niger from a glucose medium were investigated. Experiments were conducted at aeration rates of 5.0 and 10.0 L/min. Four different agitation speeds were investigated for each aeration rate. Gluconic acid concentration and biomass concentration were analyzed, and the rate of consumption of substrate by A. niger was noted. The main purpose of this work was to find the optimal conditions of agitation and aeration for the growth of A. niger and production of gluconic acid in submerged culture in a batch fermentor at a bench-top scale. The oxygen-transfer rates at different agitation and aeration rates were calculated. The gluconic acid concentration and rate of growth of A. niger increased with increase in the agitation and aeration rates.

  3. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger.

    PubMed

    Kamilla, L; Mansor, S M; Ramanathan, S; Sasidharan, S

    2009-08-01

    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract. PMID:19575837

  4. [Isolation of several species of the genus Aspergillus from soil of intrahospital ornamental plants].

    PubMed

    Thompson, L; Castrillón, M A; Delgado, M; García, M

    1994-12-01

    The earth of ornamental plants is one of the main reservoirs of Aspergillus type of fungi in hospital areas. We studied 174 ornamental interior plants from a hospital at Santiago. Samples were obtained from the soil surface and sowed in Sabouraud-glucose agar, adding streptomycin and G-penicillin. After 72 h of culture, at least one strain of Aspergillus was isolated from 140 samples (80.5%). The most frequently isolated strain was A fumigatus (129 samples), followed by A niger (75 samples). A fumigatus and A niger were the only isolated strains in 65 and 11 samples respectively. These findings confirm that ornamental plants can be important reservoirs of Aspergillus strains, a potential infectious agent for immunocompromised patients, in hospital areas. PMID:7659910

  5. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  6. Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses.

    PubMed

    Singh, O V

    2006-10-01

    Aspergillus niger ORS-4.410, a mutant of A. niger ORS-4, was generated by repeated ultraviolet (UV) irradiation. Analysis of the UV treatment dose on wild-type (WT) A. niger ORS-4, conidial survival, and frequency of mutation showed that the maximum frequency of positive mutants (25.5%) was obtained with a 57% conidial survival rate after the second stage of UV irradiation. The level of glucose oxidase (GOX) production from mutant A. niger ORS-4.410 thus obtained was 149% higher than that for WT strain A. niger ORS-4 under liquid culture conditions using hexacyanoferrate (HCF)-treated sugarcane molasses (TM) as a cheaper carbohydrate source. When subcultured monthly for 24 mo, the mutant strain had consistent levels of GOX production (2.62 +/- 0.51 U/mL). Mutant A. niger ORS-4.410 was markedly different from the parent strain morphologically and was found to grow abundantly on sugarcane molasses. The mutant strain showed 3.43-fold increases in GOX levels (2.62 +/- 0.51 U/mL) using HCF-TM compared with the crude form of cane molasses (0.762 +/- 0.158 U/mL). PMID:17057255

  7. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible. PMID:19709342

  8. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. PMID:26916811

  9. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase.

    PubMed

    Ademark, P; Varga, A; Medve, J; Harjunpää, V; Drakenberg, T; Tjerneld, F; Stålbrand, H

    1998-08-27

    The enzymes needed for galactomannan hydrolysis, i.e., beta-mannanase, alpha-galactosidase and beta-mannosidase, were produced by the filamentous fungus Aspergillus niger. The beta-mannanase was purified to electrophoretic homogeneity in three steps using ammonium sulfate precipitation, anion-exchange chromatography and gel filtration. The purified enzyme had an isoelectric point of 3.7 and a molecular mass of 40 kDa. Ivory nut mannan was degraded mainly to mannobiose and mannotriose when incubated with the beta-mannanase. Analysis by 1H NMR spectroscopy during hydrolysis of mannopentaose showed that the enzyme acts by the retaining mechanism. The N-terminus of the purified A. niger beta-mannanase was sequenced by Edman degradation, and comparison with Aspergillus aculeatus beta-mannanase indicated high identity. The enzyme most probably lacks a cellulose binding domain since it was unable to adsorb on cellulose. PMID:9803534

  10. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-09-01

    The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.), glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis" C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016) [1]. PMID:27419196

  11. Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase.

    PubMed

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira; Jin, Fengxie

    2012-07-01

    A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13. PMID:22544243

  12. [Study of the topology of the active center of glycosidases of Aspergillus niger].

    PubMed

    Borzova, N V; Varbanets', L D

    2004-01-01

    Activity of alpha-N-acetylgalactosaminidase and alpha-galactosidase isolated from the culture medium of micromycete Aspergillus niger v. Tiegh F-16694 has been studied as affected by anions, cations and specific chemical reagents (n-chlormercurybenzoate, L-cysteine, dithiotreitol, beta-mercaptoethanol, EDTA, o-phenanthroline, sodium azide, hydrogen peroxide). It has been established that silver ions noncompetitively inhibit alpha-galactosidase at pH 5.2, the inhibition constant (Ki) being 2.5 x 10(-4) M. Galactose in concentration of 1-5 mM does not protect the enzyme from the negative action of silver ions, but this inhibitory effect is almost completely removed by the corresponding concentrations of L-cysteine. The same noncompetitive character was inherent in the inhibition of alpha-galactosidase reaction by mercury ions and n-chlormercurybenzoat (Ki is 4.5 x 10(-6) and 1.8 x 10(-4), respectively). The importance of sulphydryl groups for the support of active comformation of alpha-galactosidase molecule was established on the basis of inhibition and kinetic analysis. It has been shown that the enzyme molecule does not contain the groups which include metal atoms. PMID:15554293

  13. Characterization And Application Of Tannase Produced By Aspergillus Niger ITCC 6514.07 On Pomegranate Rind

    PubMed Central

    Srivastava, Anita; Kar, Rita

    2009-01-01

    Extracellular tannase and gallic acid were produced optimally under submerged fermentation at 37 0C, 72 h, pH 5.0, 10 %(v/v) inoculum and 4 %(w/v) of the agroresidue pomegranate rind (PR) powder by an Aspergillus niger isolate. Tannic acid (1 %) stimulated the enzyme production by 245.9 % while with 0.5 % glucose, increase was marginal. Tannase production was inhibited by gallic acid and nitrogen sources such as NH4NO3, NH4Cl, KNO3, asparatic acid, urea and EDTA. The partially purified enzyme showed temperature and pH optima of 35 0C and 6.2 respectively which shifted to 40 0C and 5.8 on immobilization in alginate beads. Activity of the enzyme was inhibited by Zn+2, Ca+, Mn+2, Mg+2, Ba+2and Ag+. The immobilized enzyme removed 68.8 % tannin from juice of aonla/myrobalan (Phyllanthus emblica), a tropical fruit, rich in vitamin C and other essential nutrients. The enzymatic treatment of the juice with minimum reduction in vitamin C is encouraging as non enzymatic treatments of myrobalan juice results in vitamin C removal. PMID:24031425

  14. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    PubMed

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

  15. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    SciTech Connect

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  16. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    PubMed Central

    2012-01-01

    Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst. PMID:23270588

  17. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    SciTech Connect

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H.

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  18. Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents.

    PubMed

    Jin, Huo-Xi; Hu, Zhong-Ce; Zheng, Yu-Guo

    2012-09-01

    The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports. PMID:22922194

  19. Infected Baerveldt Glaucoma Drainage Device by Aspergillus niger

    PubMed Central

    Salim, Nurul-Laila; Azhany, Yaakub; Abdul Rahman, Zaidah; Yusof, Roziawati; Liza-Sharmini, Ahmad Tajudin

    2015-01-01

    Fungal endophthalmitis is rare but may complicate glaucoma drainage device surgery. Management is challenging as the symptoms and signs may be subtle at initial presentation and the visual prognosis is usually poor due to its resistant nature to treatment. At present there is lesser experience with intravitreal injection of voriconazole as compared to Amphotericin B. We present a case of successfully treated Aspergillus endophthalmitis following Baerveldt glaucoma drainage device implantation with intravitreal and topical voriconazole. PMID:26064735

  20. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal.

    PubMed

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular

  1. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal

    PubMed Central

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization—time of flight—mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many

  2. Optimization of ellagitannase production by Aspergillus niger GH1 by solid-state fermentation.

    PubMed

    de la Cruz, Reynaldo; Ascacio, Juan A; Buenrostro, Juan; Sepúlveda, Leonardo; Rodríguez, Raúl; Prado-Barragán, Arely; Contreras, Juan C; Aguilera, Antonio; Aguilar, Cristóbal N

    2015-01-01

    Ellagic acid is one of the most bioactive antioxidants with important applications in pharmaceutical, cosmetic, and food industries. However, there are few biotechnological processes developed for its production, because it requires precursors (ellagitannins) and the corresponding biocatalyst (ellagitannase). The aim of this study was to optimize the culture conditions for ellagitannase production by Aspergillus niger in solid-state fermentation (SSF). The bioprocess was carried out into a column bioreactor packed with polyurethane foam impregnated with an ellagitannins solution as carbon source. Four strains of Aspergillus niger (PSH, GH1, HT4, and HC2) were evaluated for ellagitannase production. The study was performed in two experimental steps. A Plackett-Burman design was used to determine the influencing parameters on ellagitannase production. Ellagitannins concentration, KCl, and MgSO4 were determined to be the most significant parameters. Box-Behnken design was used to define the interaction of the selected parameters. The highest enzyme value was obtained by A. niger PSH at concentrations of 7.5 g/L ellagitannins, 3.04 g/L KCl, and 0.76 g/L MgSO4. The methodology followed here allowed increasing the ellagitannase activity 10 times over other researcher results (938.8 U/g ellagitannins). These results are significantly higher than those reported previously and represent an important contribution for the establishment of a new bioprocess for ellagic acid and ellagitannase production. PMID:25085574

  3. Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures.

    PubMed

    Gomaa, Ola M

    2014-06-01

    Silver nanoparticles (SNPs) are extensively used in many industrial and medical applications; however, the impact of their release in the environment is still considered an understudied field. In the present work, SNPs present in aqueous lab waste water (average size of 30 nm) were used to determine their impact on microflora if released in soil rhizosphere and sewage waste water. The results showed that 24 h incubation with different SNP concentrations resulted in a 2.6-fold decrease for soil rhizosphere microflora and 7.45-fold decrease for sewage waste water microflora, both at 24 ppm. Live and heat shock (50 and 70 °C) Aspergillus niger cultures were used to remove SNP waste, the results show 76.6, 81.74 and 90.8 % SNP removal, respectively after 3 h incubation. There was an increase in the log total bacterial count again after SNP removal by A. niger in the following order: live A. niger < 50 °C heat shock A. niger < 70 °C heat shock A. niger. The pH value decreased from 5.8 to 3.8 in the same order suggesting the production of an acid in the culture media. Scanning electron microscopy images showed agglomeration and/or complexation of SNP particles, in a micron size, in between the fungal mycelia, hence settling on and in between the mycelial network. The results suggest that silver was reduced again and agglomerated and/or chelated together in its oxidized form by an acid in A. niger media. More studies are recommended to determine the acid and the heat shock proteins to confirm the exact mode of action. PMID:24415500

  4. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection

    PubMed Central

    Semova, Natalia; Storms, Reginald; John, Tricia; Gaudet, Pascale; Ulycznyj, Peter; Min, Xiang Jia; Sun, Jian; Butler, Greg; Tsang, Adrian

    2006-01-01

    Background Aspergillus niger, a saprophyte commonly found on decaying vegetation, is widely used and studied for industrial purposes. Despite its place as one of the most important organisms for commercial applications, the lack of available information about its genetic makeup limits research with this filamentous fungus. Results We present here the analysis of 12,820 expressed sequence tags (ESTs) generated from A. niger cultured under seven different growth conditions. These ESTs identify about 5,108 genes of which 44.5% code for proteins sharing similarity (E ≤ 1e -5) with GenBank entries of known function, 38% code for proteins that only share similarity with GenBank entries of unknown function and 17.5% encode proteins that do not have a GenBank homolog. Using the Gene Ontology hierarchy, we present a first classification of the A. niger proteins encoded by these genes and compare its protein repertoire with other well-studied fungal species. We have established a searchable web-based database that includes the EST and derived contig sequences and their annotation. Details about this project and access to the annotated A. niger database are available. Conclusion This EST collection and its annotation provide a significant resource for fundamental and applied research with A. niger. The gene set identified in this manuscript will be highly useful in the annotation of the genome sequence of A. niger, the genes described in the manuscript, especially those encoding hydrolytic enzymes will provide a valuable source for researchers interested in enzyme properties and applications. PMID:16457709

  5. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  6. An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.

    PubMed

    Paun, Linda; Nitsche, Benjamin; Homan, Tim; Ram, Arthur F; Kempken, Frank

    2016-07-01

    The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background. PMID:27003267

  7. Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    PubMed Central

    Brandl, Maria T.; Carter, Michelle Q.; Parker, Craig T.; Chapman, Matthew R.; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  8. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Geng, Yong; Li, Xiao-Jun

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils. PMID:19232463

  9. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens

    PubMed Central

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml-1 and 0.0461 FPU ml-1) compared to that produced by P. decumbens (0.1111 IU ml-1 and 0.153 FPU ml-1). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml-1 sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.

  10. Human granulocyte colony stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger.

    PubMed

    Kraševec, Nada; Milunović, Tatjana; Lasnik, Marija Anžur; Lukančič, Irena; Komel, Radovan; Porekar, Vladka Gaberc

    2014-01-01

    For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast. PMID:25551710

  11. Synergistic action of starch and honey against Aspergillus niger in correlation with Diastase Number.

    PubMed

    Boukraâ, Laïd; Benbarek, Hama; Ahmed, Moussa

    2008-11-01

    To evaluate the synergistic action of starch on the antifungal activity of honey, a comparative method of adding honey with and without starch to culture media was used. Aspergillus niger was used to determine the minimum inhibitory concentration (MIC) of five varieties of honey. In the second step, lower concentrations of honey than the MIC were incubated with a set of concentrations of starch and then added to media to determine the minimum synergistic inhibitory concentration (MSIC). The MIC for the five varieties of honey without starch against A. niger ranged between 46% and 50% (v/v). When starch was incubated with honey and then added to media, an MIC drop was noticed with each variety and it ranged between 6% and 19.5%. Negative correlation has been established between the MIC drop and the Diastase Number. PMID:18331445

  12. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products. PMID:26961750

  13. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity. PMID:26490378

  14. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    PubMed

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-01-01

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported. PMID:27447606

  15. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  16. Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.

    PubMed

    Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

    2003-05-01

    Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of alpha-amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell-1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical. PMID:12882014

  17. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  18. Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride.

    PubMed

    Singh, S S; Dikshit, A K

    2010-04-15

    Molasses spentwash from distilleries is characterized by high COD and colour. The fungal decolourization of anaerobically digested molasses spentwash requires significant dilution. In this study, decolourization by Aspergillus niger isolate IITB-V8 was performed on polyaluminium chloride (PAC) treated anaerobically digested spentwash without dilution of wastewater. Optimization of parameters was studied using statistical experimental designs. In the first step, Plackett-Burman design was used for screening the important parameters. Glucose was taken as the carbon source for the growth of A. niger. KH(2)PO(4) and pH were found to be the important factors affecting decolourization. In the second step, Box-Behnken design was used to determine the optimum level of each of the significant parameters. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important factors to achieve maximum decolourization of 68.4% were 5.5 g/L Glucose, 1.2 g/L KH(2)PO(4) and 5 pH. The determination coefficient (R(2)) was 0.9973, which ensures adequate credibility of the model. The total decolourization obtained after fungal treatment was 86.8% which indicates fungal decolourization after pretreatment with PAC is a viable option for the treatment of digested molasses spentwash. PMID:20022424

  19. Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642.

    PubMed Central

    Aoki, H; Yopi; Sakano, Y

    1997-01-01

    Isopullulanase (IPU) from Aspergillus niger A.T.C.C. (American Type Culture Collection) 9642 hydrolyses pullulan to isopanose. IPU is important for the production of isopanose and is used in the structural analysis of oligosaccharides with alpha-1,4 and alpha-1,6 glucosidic linkages. We have isolated the ipuA gene encoding IPU from the filamentous fungi A. niger A.T.C.C. 9642. The ipuA gene encodes an open reading frame of 1695 bp (564 amino acids). IPU contained a signal sequence of 19 amino acids, and the molecular mass of the mature form was calculated to be 59 kDa. IPU has no amino-acid-sequence similarity with the other pullulan-hydrolysing enzymes, which are pullulanase, neopullulanase and glucoamylase. However, IPU showed a high amino-acid-sequence similarity with dextranases from Penicillium minioluteum (61%) and Arthrobacter sp. (56%). When the ipuA gene was expressed in Aspergillus oryzae, the expressed protein (recombinant IPU) had IPU activity and was immunologically reactive with antibodies raised against native IPU. The substrate specificity, thermostability and pH profile of recombinant IPU were identical with those of the native enzyme, but recombinant IPU (90 kDa) was larger than the native enzyme (69-71 kDa). After deglycosylation with peptide-N-glycosidase F, the deglycosylated recombinant IPU had the same molecular mass as deglycosylated native enzyme (59 kDa). This result suggests that the carbohydrate chain of recombinant IPU differed from that of the native enzyme. PMID:9169610

  20. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme.

    PubMed

    Dubey, A K; Suresh, C; Kavitha, R; Karanth, N G; Umesh-Kumar, S

    2000-04-14

    A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger. PMID:10767433

  1. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  2. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  3. Effect of oxygen transfer rate on the composition of the pectolytic enzyme complex of Aspergillus niger

    SciTech Connect

    Zetelaki-Horvath, K.; Vas, K.

    1981-01-01

    Optimal agitation and aeration conditions (assuring O/sub 2/ transfer rates (OTR) of 12-179 mmol/L-h) were determined for pectin lyase (PL) synthesis of an Aspergillus niger strain. Components of the pectolytic enzyme complex were also investigated in order to determine whether their O/sub 2/ demand is identical with or different from that of pectin lyase. Should the latter be the case, a possibility would be given to produce enzyme complexes of different agitation and aeration conditions. The mycelium yield of Aspergillus niger was maximum at an OTR of 100 mmol/L-h. The yields of the various pectolytic enzymes reached maximum at different OTRs. PL production was highest (0.555 mumol/min-mL) at an OTR of 60 mmol/L-h. Endopolygalacturonase (PG) production has a maximum at OTR 49 mmol/L-h, with a 2nd peak at 100-135 mmol O2/L-h. Pectin esterase (PE) synthesis showed a maximum at an OTR of 12-14 mmol/L-h, while both apple juice clarifying and macerating activities gave 2 maximum at 14 and 60 mmol/L-h due to the optima of PE and endo-PG. Macerating activity showed a high value at OTR optimal for PL production as well.

  4. Studies on influence of natural biowastes on cellulase production by Aspergillus niger.

    PubMed

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M; Krishna, P V

    2011-11-01

    The objective of this study was to determine the influence of natural biowaste substrates such as banana peel powder and coir powder at varying environmental parameters of pH (4-9) and temperature (20-50 degrees C) on the cellulase enzyme production by Aspergillus niger. The cellulase enzyme production was analyzed by measuring the amount of glucose liberated in IU ml(-1) by using the dinitrosalicylic acid assay method. The substrates were pretreated with 1% NaOH (alkaline treatment) and autoclaved. The maximum activity of the enzyme was assayed at varying pH with temperatures being constant and varying temperatures with pH being constant. The highest activity of the enzyme at varying pH was recorded at pH 6 for banana peel powder (0.068 +/- 0.002 IU ml) and coir powder (0.049 +/- 0.002 IU ml(-1)) and the maximum activity of the enzyme at varying temperature was recorded at 35 degrees C for both banana peel powder (0.072 +/- 0.001 IU ml(-1)) and coir powder (0.046 +/- 0.003 IU ml(-1)). At varying temperatures and pH the high level of enzyme production was obtained at 35 degrees C and pH 6 by using both the substrates, respectively. However among the two substrates used for the production of cellulases by Aspergillus niger banana peel powder showed maximum enzymatic activity than coir powder as substrate. PMID:22471203

  5. Physiological characterization of xylose metabolism in Aspergillus niger under oxygen-limited conditions.

    PubMed

    Meijer, S; Panagiotou, G; Olsson, L; Nielsen, J

    2007-10-01

    The physiology of Aspergillus niger was studied under different aeration conditions. Five different aeration rates were investigated in batch cultivations of A. niger grown on xylose. Biomass, intra- and extra-cellular metabolites profiles were determined and ten different enzyme activities in the central carbon metabolism were assessed. The focus was on organic acid production with a special interest in succinate production. The fermentations revealed that oxygen limitation significantly changes the physiology of the micro-organism. Changes in extra cellular metabolite profiles were observed, that is, there was a drastic increase in polyol production (erythritol, xylitol, glycerol, arabitol, and mannitol) and to a lesser extent in the production of reduced acids (malate and succinate). The intracellular metabolite profiles indicated changes in fluxes, since several primary metabolites, like the intermediates of the TCA cycle accumulated during oxygen limitation (on average three fold increase). Also the enzyme activities showed changes between the exponential growth phase and the oxygen limitation phase. In general, the oxygen availability has a significant impact on the physiology of this fungus causing dramatic alterations in the central carbon metabolism that should be taken into account in the design of A. niger as a succinate cell factory. PMID:17335061

  6. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  7. Molecular basis of glucoamylase overproduction by a mutagenised industrial strain of Aspergillus niger.

    PubMed

    MacKenzie; Jeenes; Gou; Archer

    2000-02-01

    We have compared a mutagenized strain of Aspergillus niger (S1), used industrially for glucoamylase production, and a related low glucoamylase-producing strain (S2) with a laboratory strain of A. niger (AB4.1). Our aim was to assess the properties of S1 in relation to the laboratory strain and to account at the molecular level for the basis of its glucoamylase overproduction. Both S1 and S2 have similar multiple copies of the glucoamylase-encoding gene (glaA) but only S1 has enhanced glaA transcript and glucoamylase levels compared to AB4.1 that has a single copy of the glaA gene. Glucoamylase production by S1 and AB4.1 was repressed by xylose and induced by starch but, in S2, remained unaffected by carbon source. S1 also secreted elevated levels of alpha-amylase relative to both S2 and AB4.1 but the production of alpha-glucosidase was low in all three strains. The gene encoding aspergillopepsin (pepA), an abundant secreted aspartyl protease, was present as a single copy in all strains but no aspergillopepsin could be detected by Western blotting in either S1 or S2 culture supernatants. We conclude that A. niger strain improvement by mutagenesis and screening for glucoamylase overproduction has led to glaA gene multiplication and an expression defect in the pepA gene. PMID:10689077

  8. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    PubMed

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. PMID:20722697

  9. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    SciTech Connect

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  10. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization

    PubMed Central

    2012-01-01

    Background Aspergillus niger was selected as a host for producing itaconic acid due to its versatile and tolerant character in various growth environments, and its extremely high capacity of accumulating the precursor of itaconic acid: citric acid. Expressing the CAD gene from Aspergillus terreus opened the metabolic pathway towards itaconic acid in A. niger. In order to increase the production level, we continued by modifying its genome and optimizing cultivation media. Results Based on the results of previous transcriptomics studies and research from other groups, two genes : gpdA encoding the glyceraldehyde −3-dehydrogenase (GPD) and hbd1 encoding a flavohemoglobin domain (HBD) were overexpressed in A. niger. Besides, new media were designed based on a reference medium for A. terreus. To analyze large numbers of cultures, we developed an approach for screening both fungal transformants and various media in 96-well micro-titer plates. The hbd1 transformants (HBD 2.2/2.5) did not improve itaconic acid titer while the gpdA transformant (GPD 4.3) decreased the itaconic acid production. Using 20 different media, copper was discovered to have a positive influence on itaconic acid production. Effects observed in the micro-titer plate screening were confirmed in controlled batch fermentation. Conclusions The performance of gpdA and hbd1 transformants was found not to be beneficial for itaconic acid production using the tested cultivation conditions. Medium optimization showed that, copper was positively correlated with improved itaconic acid production. Interestingly, the optimal conditions for itaconic acid clearly differ from conditions optimal for citric- and oxalic acid production. PMID:22925689

  11. First case report of isolated aspergillus dacryoadenitis

    PubMed Central

    Acharya, Ishan; Basa, Divya; Kavitha, M

    2016-01-01

    We report a case of isolated Aspergillus dacryoadenitis. A 23-year-old male presented with dull ache, diffuse swelling in superolateral quadrant of the right orbit and proptosis for 4 months. Ocular examination showed conjunctival congestion, discharge in the fornix and palpable lacrimal gland (LG) mass. Routine hematological investigations followed by computed tomography scan of orbits were done. He did not respond to a course of systemic and topical antibiotics. Lateral orbitotomy with extended lid crease incision was performed with excision biopsy of LG. Abundant blackish material was found in the LG intraoperatively. The specimen was sent for histopathological examination (HPE). HPE report showed Aspergillus. Thorough ENT and systemic evaluation ruled out any other site with the fungus. To the best of our knowledge, this is the first case report of Aspergillus infection in LG. PMID:27488157

  12. Comparison of different inoculating methods to evaluate the pathogenicity and virulence of Aspergillus niger on two maize hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field study was conducted to determine the effects of inoculation techniques on the aggressiveness of Aspergillus niger kernel infection in A. flavus resistant and susceptible maize hybrids. Ears were inoculated with the silk-channel, side-needle, and spray techniques 7 days after midsilk...

  13. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    PubMed Central

    2013-01-01

    In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes. PMID:23369298

  14. Presence of epoxide hydrolase activity in Aspergillus niger: Hydrolysis of 6', 7'-epoxybergamottin to 6', 7'-dihydroxybergamottin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 6', 7'-epoxybergamottin (EB) is one of major furanocoumarins in grapefruit. Previously, we have shown that Aspergillus niger has a capability of metabolizing EB into 6', 7'-dihydroxybergamottin (DHB), which is further metabolized to bergaptol and bergaptol-5-sulfate in vivo. In this study, we at...

  15. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  16. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater.

    PubMed

    He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei

    2015-12-01

    Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl. PMID:26208659

  17. Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity

    PubMed Central

    2011-01-01

    Background The filamentous fungus Aspergillus niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology, ranging from dense spherical pellets to viscous mycelia depending on culture conditions. Optimal productivity correlates strongly with a specific morphological form, thus making high demands on process control. Results In about 50 2L stirred tank cultivations the influence of osmolality on A. niger morphology and productivity was investigated. The specific productivity of fructofuranosidase producing strain A. niger SKAn 1015 could be increased notably from 0.5 to 9 U mg-1 h-1 around eighteen fold, by increasing the culture broth osmolality by addition of sodium chloride. The specific productivity of glucoamylase producing strain A. niger AB1.13, could be elevated using the same procedure. An optimal producing osmolality was shown to exist well over the standard osmolality at about 3.2 osmol kg-1 depending on the strain. Fungal morphology of all cultivations was examined by microscope and characterized by digital image analysis. Particle shape parameters were combined to a dimensionless Morphology number, which enabled a comprehensive characterization of fungal morphology correlating closely with productivity. A novel method for determination of germination time in submerged cultivations by laser diffraction, introduced in this study, revealed a decelerated germination process with increasing osmolality. Conclusions Through the introduction of the versatile Morphology number, this study provides the means for a desirable characterization of fungal morphology and demonstrates its relation to productivity. Furthermore, osmolality as a fairly new parameter in process engineering is introduced and found to affect fungal morphology and productivity. Osmolality might provide an auspicious and

  18. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    PubMed

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB. PMID:27582326

  19. Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae.

    PubMed

    Pabai, F; Kermasha, S; Morin, A

    1995-11-01

    Three extracellular lipases were produced by batch fermentation of Pseudomonas putida ATCC 795, Aspergillus niger CBS 131.52 and Rhizopus oryzae ATCC 34612 during the late phase of growth, at 72, 96 and 96 h, respectively. The lipases were partially purified by (NH4)2SO4 fractionation. The lipase of P. putida was optimal at pH 8.0 whereas those from A. niger and R. oryzae were optimal at pH 7.5. The A. niger lipase had the lowest V max value (0.51×10(-3) U/min) and R. oryzae the highest (1.86×10(-3) U/min). The K m values for P. putida, A. niger and R. oryzae lipases were 1.18, 0.97, and 0.98 mg/ml, respectively. Native PAGE of the partially-purified lipase extracts showed two to four major bands. The interesterification of butter fat by A. niger lipase decreased the water activity as well as the hydrolytic activity. The A. niger lipase had the highest interesterification yield value (26%) and the R. oryzae lipase the lowest (4%). In addition, A. niger lipase exhibited the highest decrease (17%) in long-chain hypercholesterolemic fatty acids (C12:0, C14:0 and C16:0) at the sn-2-position; the P. putida lipase demonstrated the least favourable changes in specificity at the same position. PMID:24415019

  20. Isolation and identification of Aspergillus spp. from brown kiwi (Apteryx mantelli) nocturnal houses in New Zealand.

    PubMed

    Glare, Travis R; Gartrell, Brett D; Brookes, Jenny J; Perrott, John K

    2014-03-01

    Aspergillosis, a disease caused by infection with Aspergillus spp., is a common cause of death in birds globally and is an irregular cause of mortality of captive kiwi (Apteryx spp.). Aspergillus spp. are often present in rotting plant material, including the litter and nesting material used for kiwi in captivity. The aim of this study was to survey nocturnal kiwi houses in New Zealand to assess the levels of Aspergillus currently present in leaf litter. Samples were received from 11 nocturnal kiwi houses from throughout New Zealand, with one site supplying multiple samples over time. Aspergillus was isolated and quantified by colony counts from litter samples using selective media and incubation temperatures. Isolates were identified to the species level by amplification and sequencing of ITS regions of the ribosomal. Aspergillus spp. were recovered from almost every sample; however, the levels in most kiwi houses were below 1000 colony-forming units (CFU)/g of wet material. The predominant species was Aspergillus fumigatus, with rare occurrences of Aspergillus niger, Aspergillus nidulans, and Aspergillus parasiticus. Only one site had no detectable Aspergillus. The limit of detection was around 50 CFU/g wet material. One site was repeatedly sampled as it had a high loading of A. fumigatus at the start of the survey and had two recent clinical cases of aspergillosis diagnosed in resident kiwi. Environmental loading at this site with Aspergillus spp. reduced but was not eliminated despite changes of the litter. The key finding of our study is that the background levels of Aspergillus spores in kiwi nocturnal houses in New Zealand are low, but occasional exceptions occur and are associated with the onset of aspergillosis in otherwise healthy birds. The predominant Aspergillus species present in the leaf litter was A. fumigatus, but other species were also present. Further research is needed to confirm the optimal management of leaf litter to minimize Aspergillus

  1. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger

    PubMed Central

    Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants. PMID:26468641

  2. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  3. Amylolysis of raw corn by Aspergillus niger for simultaneous ethanol fermentation

    SciTech Connect

    Han, I.Y.; Steinberg, M.P.

    1987-01-01

    The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a nonsterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventing fermentation was estimated to be 8.3% by weight. (Refs. 96).

  4. Optimization of glucose oxidase production by Aspergillus niger using genetic- and process-engineering techniques.

    PubMed

    Hellmuth, K; Pluschkell, S; Jung, J K; Ruttkowski, E; Rinas, U

    1995-11-01

    Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpdA promoter of A. nidulans. For more efficient secretion the alpha-amylase signal peptide from A. oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 gl-1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures. PMID:8590664

  5. Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.

    PubMed

    Romero, Cintia M; Baigori, Mario D; Pera, Licia M

    2007-09-01

    A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0-6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4-8 degrees C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37 degrees C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported. PMID:17594086

  6. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger.

    PubMed

    Devarayan, Kesavan; Sathishkumar, Yesupatham; Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants. PMID:26468641

  7. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    PubMed

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. PMID:25382689

  8. Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135.

    PubMed

    Colin, Veronica Leticia; Baigori, Mario Domingo; Pera, Licia Maria

    2010-02-01

    Under the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.0 g l(-1) FeCl(3)to the medium encouraged filamentous growth and increased the specific activity 6.6 fold after 4 days of incubation compared to the control. However, major novelty of this study was the satisfactory production of an acidic lipase at initial pH 3 of the culture medium (1.74 +/- 0.06 mU microg(-1)), since its potencial applications in food and pharmaceutical industry are highly promising. PMID:20082373

  9. Evaluation of oxygen mass transfer in Aspergillus niger fermentation using data reconciliation.

    PubMed

    Patel, Nilesh; Thibault, Jules

    2004-01-01

    Fermentation experiments using Aspergillus niger result in a very viscous broth due to the growth of filamentous microorganism. For viscous fermentation processes, it is difficult to estimate with confidence the volumetric oxygen mass transfer coefficient (K(L)a), which can be used for scale-up or design of bioreactors. In the present study, four methods based on dynamic and stationary approaches were used to measure K(L)a throughout the fermentation. Data reconciliation was used to obtain a more reliable and consistent K(L)a. The K(L)a value obtained by a data reconciliation technique was found to be more reliable since it takes into consideration both the reliability of all measured variables and the accuracy of all mass balance equations. PMID:14763848

  10. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.

    PubMed

    Santhiya, Deenan; Ting, Yen-Peng

    2005-03-16

    A spent refinery processing catalyst was physically and chemically characterized, and subjected to one-step and two-step bioleaching processes using Aspergillus niger. During bioleaching of the spent catalysts of various particle sizes ("as received", 100-150 microm, <37 microm, and x =2.97 (average) microm) and pulp densities, the biomass dry weight and pH were determined. The corresponding leach liquor was analysed for excreted organic acids along with heavy metal values extracted from the catalyst. Chemical characterization of the spent catalyst confirmed the presence of heavy metal including Al (33.3%), Ni (6.09%) and Mo (13.72%). In general, the presence of the spent catalyst caused a decrease in the biomass yield and an increase in oxalic acid secretion by A. niger. The increase in oxalic acid secretion with a decrease in the catalyst particle size (up to <37 microm) led to corresponding increase in the extraction of metal values. The highest extraction of metal values from the spent catalyst (at 1% w/v pulp density and particle size <37 microm) were found to be 54.5% Al, 58.2% Ni and 82.3% Mo in 60 days of bioleaching. Oxalic acid secretion by A. niger in the presence of the spent catalyst was stimulated using 2-[N-Morpholino]ethanesulfonic acid (MES) buffer (pH 6), which resulted in comparable metal extraction (58% Al, 62.8% Ni and 78.9% Mo) in half the time required by the fungus in the absence of the buffer. Spent medium of A. niger grown in the absence and in the presence of MES buffer were found to leach almost similar amounts of Al and Ni, except Mo for which the spent medium of buffered culture was significantly more effective than the non-buffered culture. Overall, this study shows the possible use of bioleaching for the extraction of metal resources from spent catalysts. It also demonstrated the advantages of buffer-stimulated excretion of organic acids by A. niger in bioleaching of the spent catalyst. PMID:15664081

  11. Shotgun Proteomics of Aspergillus niger Microsomes upon d-Xylose Induction▿ †

    PubMed Central

    de Oliveira, José Miguel P. Ferreira; van Passel, Mark W. J.; Schaap, Peter J.; de Graaff, Leo H.

    2010-01-01

    Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which—many of them hypothetical proteins—were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles. PMID:20453123

  12. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.

    PubMed

    Mulligan, Catherine N; Kamali, Mahtab; Gibbs, Bernard F

    2004-07-01

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low-grade ores and mining residues, these are potential viable sources of metals. In addition, they potentially endanger the environment, as the metals they contain may be released to the environment in hazardous form. Hence, mining industries are seeking an efficient, economic technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulfuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition, different auxiliary processes were evaluated in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron co-dissolution was minimized as only 7% removal occurred. PMID:15177728

  13. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate.

    PubMed

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2013-08-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  14. Regulation of the Feruloyl Esterase (faeA) Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    1999-01-01

    Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin. PMID:10584009

  15. Switching from a Unicellular to Multicellular Organization in an Aspergillus niger Hypha

    PubMed Central

    Bleichrodt, Robert-Jan; Hulsman, Marc

    2015-01-01

    ABSTRACT Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. PMID:25736883

  16. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  17. A benzoate-activated promoter from Aspergillus niger and regulation of its activity.

    PubMed

    Antunes, Mauricio S; Hodges, Thomas K; Carpita, Nicholas C

    2016-06-01

    The filamentous fungus Aspergillus niger is able to use benzoic acid as a sole carbon source by conversion to protocatechuic acid and subsequent metabolism. Synthesis of the first enzyme in this metabolic pathway, benzoate p-hydroxylase, is encoded by the bphA gene and positively regulated at the transcriptional level by benzoic acid. Methyl benzoate and para-aminobenzoate also act as inducers of the bphA gene. We show that bphA expression in A. niger in response to benzoate is confined to a 530-bp fragment from the bphA promoter region from -787 to -509 bp from the transcriptional start site. Electrophoretic mobility-shift assays show that a benzoate-response element, consisting of a single 6-bp sequence (5'-TAGTCA-3') within a 51-bp sequence in this region, is most likely to be involved in binding of one or more proteins that modulate the activity of the promoter in response to benzoic acid. We show through fusion of promoter fragments with the green fluorescent protein that the active sequences are located within a 200-bp sequence containing the TAGTCA benzoate-response element. Identification of the benzoate-response element in the bphA promoter region constitutes the first step in the development of a benzoate-inducible promoter system that could be used to control gene expression in fungi, and possibly in other organisms, such as plant and animal cells. PMID:26907094

  18. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism.

    PubMed

    Benoit, Isabelle; van den Esker, Marielle H; Patyshakuliyeva, Aleksandrina; Mattern, Derek J; Blei, Felix; Zhou, Miaomiao; Dijksterhuis, Jan; Brakhage, Axel A; Kuipers, Oscar P; de Vries, Ronald P; Kovács, Ákos T

    2015-06-01

    Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus. PMID:25040940

  19. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  20. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology.

    PubMed

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  1. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    PubMed Central

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Maarten Altelaar, A. F.; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments. PMID:26314379

  2. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology

    PubMed Central

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  3. Heterologous expression and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris.

    PubMed

    Yang, Hailin; Wang, Yitian; Zhang, Ling; Shen, Wei

    2016-01-25

    In this work, the cDNA encoding fructosyltransferase (FTase) from Aspergillus niger YZ59 (CICIM F0901) was obtained and expressed in the methylotrophic yeast Pichia pastoris strain GS115. The yield of recombinant FTase in a 5-L fermentor reached 1020.0 U/mL after 96 h of induction, which was 1160.4 times higher that of native FTase from A. niger YZ59. The specific activity of recombinant FTase was 6.8×10(4) U/mg. The optimum temperature and pH of the recombinant FTase were 55 °C and 5.5, respectively. The recombinant FTase was stable below 40 °C and at pH from 3.0 to 10.0. Using sucrose as the substrate, the Km and Vmax values of recombinant FTase were 159.8 g/L and 0.66 g/(L min), respectively. The turnover number (kcat) and catalytic efficiency (kcat/Km) of recombinant FTase was 1.1×10(4) min(-1) and 68.8 L/(g min), respectively. The recombinant FTase was slightly activated by 5mM Ni(2+), Mg(2+), K(+), Fe(3+), or Mn(2+), but inhibited by all other metal ions (Na(+), Li(+), Ba(2+), Ca(2+), Zn(2+), and Cu(2+)). The highest yield of fructooligosaccharides for purified FTase reached approximately 343.3 g/L (w/v). This is the first study reporting the heterologous expression of FTases from A. niger in P. pastoris. This study plays an important role in the fructooligosaccharide synthesis industry by recombinant FTases. PMID:25976629

  4. Heterologous Expression of Aspergillus Niger --beta--D-Xylosidase (XInD): Characterization on Lignocellulosic Substrates

    SciTech Connect

    Selig, M. J.; Knoshaug, E. P.; Decker, S. R.; Baker, J. O.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T{sub max} was determined using differential scanning microcalorimetry (DSC) to be 78.2 C; the K{sub m} and k{sub cat} were found to be 255 {micro}M and 13.7 s{sup -1}, respectively, using {rho}NP-{Beta}-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K{sub i} for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  5. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    PubMed

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  6. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described, Aspergillus mottae, Aspergillus sergii and Aspergillus transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examining morphology, extrolites and molecular data was...

  7. Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice.

    PubMed

    Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel

    2013-01-01

    Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol. PMID:23160922

  8. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.

    PubMed

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  9. Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis.

    PubMed

    Ottenheim, Christoph; Verdejo, Carl; Zimmermann, Wolfgang; Wu, Jin Chuan

    2014-12-01

    Palm oil empty fruit bunches (EFB) is an abundant and cheap lignocellulose material in Southeast Asia. Its use as the sole medium for producing lignocellulose-hydrolyzing enzymes would increase its commercial value. A newly isolated Aspergillus niger DSM 26641 was investigated for its capability of producing hemicellulases in EFB hydrolysate obtained by treatment with pressurized hot water (1-20%, w/v) at 120-180°C in a 1 L Parr reactor for 10-60 min. The optimal hydrolysate for the fungal growth and endoxylanase production was obtained when 10% (w/v) of empty fruit bunch was treated at 120°C or 150°C for 10 min, giving an endoxylanase activity of 24.5 mU ml(-1) on RBB-Xylan and a saccharification activity of 5 U ml(-1) on xylan (DNS assay). When the hydrolysates were produced at higher temperatures, longer treatment times or higher biomass contents, only less than 20% of the above maximal endoxylanase activity was detected, possibly due to the higher carbohydrate concentrations in the medium. Transcriptome analysis showed that 3 endoxylanases (expression levels 59-100%, the highest level was set as 100%), 2 β-xylosidases (4%), 4 side chain-cleaving arabinofuranosidases (1-95%), 1 acetyl xylan esterase (9%) and 2 ferulic acid esterases (0.3-9%) were produced together. PMID:24958131

  10. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing

    PubMed Central

    Gaddipati, Sanyasi; Kokolski, Matthew; Malla, Sunir; Blythe, Martin J.; Ibbett, Roger; Campbell, Maria; Liddell, Susan; Aboobaker, Aziz; Tucker, Gregory A.; Archer, David B.

    2012-01-01

    A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall–degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions. PMID:22912594

  11. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  12. Mycelium-bound lipase production from Aspergillus niger MYA 135, and its potential applications for the transesterification of ethanol.

    PubMed

    Colin, Verónica Leticia; Baigorí, Mario Domingo; Pera, Licia María

    2011-06-01

    The potential biotechnological applications of both constitutive and inducible lipase sources from Aspergillus niger MYA 135 were evaluated. To this end, the effect of environmental conditions on mycelium-bound lipase production from this strain was studied, when cultured either in the absence or presence of 2% olive oil. It was previously reported that mycelium-bound lipase from Aspergillus niger MYA 135 possess high stability in reaction mixtures containing ethanol; which could be especially important for their use in biodiesel synthesis. In this connection, the performance of the lipase sources produced in the transesterification of ethanol using p-nitrophenyl palmitate as acyl donor was also explored. Under our assay conditions, hydrolytic and synthetic activity of the mycelia produced in the absence or presence of olive oil were not highly correlated. While the hydrolytic activity was strongly increased by the addition of lipid to the culture medium, the best performance in the transesterification reactions of ethanol were associated with mycelia produced in absence of olive oil. Interestingly, the supplementation of the culture medium with Fe(+3) increased the transesterification activity by 71%, as compared to the activity previously reported for this strain. Therefore, the constitutive lipase sources from Aspergillus niger MYA 135 are considered to be promising for industrial biodiesel-fuel production. PMID:21298682

  13. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].

    PubMed

    Yang, Jie; Wang, Qun-Hui; Wang, Qi; Xue, Jun; Tian, Shu-Lei

    2008-03-01

    The bioleaching of municipal solid waste incinerator (MSWI) fly ash for metals extraction by Aspergillus niger was investigated. The influence of fly ash concentrations on the biomass concentration, the pH of suspension, the kinds of bio-produced organic acids and the metals extraction yield during the bioleaching process were studied and the leaching toxicities of fly ash before and after bioleaching were compared. The results showed that the decrease of pH was due to generated organic acids by Aspergillus niger during bioleaching, which resulted in the metals extraction from the fly ash. The alkaline and the heavy metals toxicities of fly ash inhibited the Aspergillus niger growth, which was shown as the "lag phase". When fly ash concentration was 20 g/L, the maximum biomass was 28.61 g/L (after bioleaching 192 h), and the minimum pH was 3.85 (after finished bioleaching). The bioleaching efficiency was the highest (i.e., 93.06% for Cd, around 70% for Mn, Pb and Zn, 22%, 33% and 47% for Fe, Cr and Cu, respectively). The TCLP results of the fly ash after bioleaching indicated that the leaching toxicities of the treated fly ash were far lower than the regulated levels of China. PMID:18649552

  14. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  15. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  16. Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment.

    PubMed

    Debing, Jing; Peijun, Li; Stagnitti, Frank; Xianzhe, Xiong; Li, Ling

    2006-06-01

    The Ordos Plateau in China is covered with up to 300,000 ha of peashrub (Caragana) which is the dominant natural vegetation and ideal for fodder production. To exploit peashrub fodder, it is crucially important to optimize the culture conditions, especially culture substrate to produce pectinase complex. In this study, a new prescription process was developed. The process, based on a uniform experimental design, first optimizes the solid substrate and second, after incubation, applies two different temperature treatments (30 degrees C for the first 30 h and 23 degrees C for the second 42 h) in the fermentation process. A multivariate regression analysis is applied to a number of independent variables (water, wheat bran, rice dextrose, ammonium sulfate, and Tween 80) to develop a predictive model of pectinase activity. A second-degree polynomial model is developed which accounts for an excellent proportion of the explained variation (R(2)=97.7%). Using unconstrained mathematical programming, an optimized substrate prescription for pectinase production is subsequently developed. The mathematical analysis revealed that the optimal formula for pectinase production from Aspergillus niger by solid fermentation under the conditions of natural aeration, natural substrate pH (about 6.5), and environmental humidity of 60% is rice dextrose 8%, wheat bran 24%, ammonium sulfate ((NH(4))(2)SO(4)) 6%, and water 61%. Tween 80 was found to have a negative effect on the production of pectinase in solid substrate. With this substrate prescription, pectinase produced by solid fermentation of A. niger reached 36.3 IU/(gDM). Goats fed on the pectinase complex obtain an incremental increase of 0.47 kg day(-1) during the initial 25 days of feeding, which is a very promising new feeding prospect for the local peashrub. It is concluded that the new formula may be very useful for the sustainable development of arid and semiarid pastures such as those of the Ordos Plateau. PMID:16406599

  17. Systemic analysis of the response of Aspergillus niger to ambient pH

    PubMed Central

    Andersen, Mikael R; Lehmann, Linda; Nielsen, Jens

    2009-01-01

    Background The filamentous fungus Aspergillus niger is an exceptionally efficient producer of organic acids, which is one of the reasons for its relevance to industrial processes and commercial importance. While it is known that the mechanisms regulating this production are tied to the levels of ambient pH, the reasons and mechanisms for this are poorly understood. Methods To cast light on the connection between extracellular pH and acid production, we integrate results from two genome-based strategies: A novel method of genome-scale modeling of the response, and transcriptome analysis across three levels of pH. Results With genome scale modeling with an optimization for extracellular proton-production, it was possible to reproduce the preferred pH levels for citrate and oxalate. Transcriptome analysis and clustering expanded upon these results and allowed the identification of 162 clusters with distinct transcription patterns across the different pH-levels examined. New and previously described pH-dependent cis-acting promoter elements were identified. Combining transcriptome data with genomic coordinates identified four pH-regulated secondary metabolite gene clusters. Integration of regulatory profiles with functional genomics led to the identification of candidate genes for all steps of the pal/pacC pH signalling pathway. Conclusions The combination of genome-scale modeling with comparative genomics and transcriptome analysis has provided systems-wide insights into the evolution of highly efficient acidification as well as production process applicable knowledge on the transcriptional regulation of pH response in the industrially important A. niger. It has also made clear that filamentous fungi have evolved to employ several offensive strategies for out-competing rival organisms. PMID:19409083

  18. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  19. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  20. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  1. Aspergillus niger β-Glucosidase Has a Cellulase-like Tadpole Molecular Shape

    PubMed Central

    Lima, Marisa A.; Oliveira-Neto, Mario; Kadowaki, Marco Antonio S.; Rosseto, Flavio R.; Prates, Erica T.; Squina, Fabio M.; Leme, Adriana F. P.; Skaf, Munir S.; Polikarpov, Igor

    2013-01-01

    Aspergillus niger is known to secrete large amounts of β-glucosidases, which have a variety of biotechnological and industrial applications. Here, we purified an A. niger β-glucosidase (AnBgl1) and conducted its biochemical and biophysical analyses. Purified enzyme with an apparent molecular mass of 116 kDa forms monomers in solution as judged by native gel electrophoresis and has a pI value of 4.55, as found for most of the fungi of β-glucosidases. Surprisingly, the small angle x-ray experiments reveal that AnBgl1 has a tadpole-like structure, with the N-terminal catalytic domain and C-terminal fibronectin III-like domain (FnIII) connected by the long linker peptide (∼100 amino acid residues) in an extended conformation. This molecular organization resembles the one adopted by other cellulases (such as cellobiohydrolases, for example) that frequently contain a catalytic domain linked to the cellulose-binding module that mediates their binding to insoluble and polymeric cellulose. The reasons why AnBgl1, which acts on the small soluble substrates, has a tadpole molecular shape are not entirely clear. However, our enzyme pulldown assays with different polymeric substrates suggest that AnBgl1 has little or no capacity to bind to and to adsorb cellulose, xylan, and starch, but it has high affinity to lignin. Molecular dynamics simulations suggested that clusters of residues located in the C-terminal FnIII domain interact strongly with lignin fragments. The simulations showed that numerous arginine residues scattered throughout the FnIII surface play an important role in the interaction with lignin by means of cation-π stacking with the lignin aromatic rings. These results indicate that the C-terminal FnIII domain could be operational for immobilization of the enzyme on the cell wall and for the prevention of unproductive binding of cellulase to the biomass lignin. PMID:24064212

  2. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  3. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase

    PubMed Central

    Rodríguez, Ángel Pereira; Leiro, Rafael Fernández; Trillo, M Cristina; Cerdán, M Esperanza; Siso, M Isabel González; Becerra, Manuel

    2006-01-01

    Background The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. Results The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature (40°C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence of Ni2+. The affinity for

  4. Characterization of aflatoxigenic Aspergillus flavus and A. parasiticus strain isolates from animal feedstuffs in northeastern Iran

    PubMed Central

    Davari, E; Mohsenzadeh, M; Mohammadi, Gh; Rezaeian-Doloei, R

    2015-01-01

    Aflatoxins are secondary toxic metabolites produced by some Aspergillus spp. particularly, Aspergillus flavus and A. parasiticus that contaminate food and feed. The objective of this study was to evaluate the contamination of feedstuffs with Aspergillus spp. and detect genes involved in the aflatoxin biosynthesis pathway of A. flavus and A. parasiticus isolates. A total of 110 cow feed samples (comprised of silage, concentrate, hay and total mixed ration) from 30 industrial and semi-industrial dairy farms of Khorasan Razavi province, northeastern Iran, were examined using cultural and PCR methods. 68 (61.82%) Aspergillus spp. were isolated from 110 samples of feedstuff. The predominant Aspergillus isolates were A. fumigates (21.81%), followed by A. flavus (17.27%), A. niger (10%), A. parasiticus (8.18%), and A. oryzae (4.54%). Fungal contamination levels of industrial and semi-industrial dairy farm samples were not significantly different (P>0.05). Using four sets of primers, a quadruplex PCR was developed to detect genes (nor1, ver1, omtA and aflR) at different loci coding enzymes in the aflatoxin biosynthesis pathway of A. flavus and A. parasiticus strains. Out of 28 strains of A. flavus and A. parasiticus, 10 isolates (35.71%) showed a quadruplet pattern indicating the important genes involved in the aflatoxin biosynthesis pathway, encoded for functional products. These isolates were confirmed to be aflatoxigenic by Thin Layer Chromatography. 18 isolates (64.29%) had three, two and single molecular patterns. The results obtained by this study show that rapid and specific detection of aflatoxigenic molds is important to ensure the microbiological safety of feedstuffs. PMID:27175167

  5. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    PubMed

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step. PMID:26837219

  6. Expression of an Aspergillus niger xylanase in yeast: Application in breadmaking and in vitro digestion.

    PubMed

    Elgharbi, Fatma; Hmida-Sayari, Aïda; Zaafouri, Youssef; Bejar, Samir

    2015-08-01

    The cDNA of the β-1,4-endoxylanase of Aspergillus niger US368 was cloned and expressed in Pichia pastoris under the constitutive GAP promoter. The maximum activity obtained was 41 U mL(-1), which was about 3-fold higher than that obtained with the native species. The purified enzyme showed a specific activity of 910 U mg(-1) and a molecular mass of 24 kDa. It had an optimal activity at pH 4 and 50 °C, stable in a wide range of pH and in the presence of some detergents and organic solvents. r-XAn11-His6 (recombinant xylanase) was used as an additive in breadmaking. A decrease in water absorption, an increase in dough rising and improvements in volume and specific volume of the bread were recorded. The r-XAn11-His6 was also used in in vitro digestion of barley and wheat bran leading to a decrease of the viscosities and an increase of the reducing sugars and total sugars contents. PMID:25936280

  7. Degradation of phytates in distillers' grains and corn gluten feed by Aspergillus niger phytase.

    PubMed

    Noureddini, H; Dang, J

    2009-10-01

    Distillers' dried grains with solubles (DDGS) and corn gluten feed (CGF) are major coproducts of ethanol production from corn dry grind and wet milling facilities, respectively. These coproducts contain important nutrients and high levels of phytates. The phytates in these products cannot be digested by nonruminant animals; consequently, large quantities of phytate phosphorus (P) are deposited into the soil with the animal wastes which potentially could cause P pollution in soil and underground water resources. To reduce phytates in DDGS and CGF, a phytase from Aspergillus niger, PhyA, was investigated regarding its capability to catalyze the hydrolysis of phytates in light steep water (LSW) and whole stillage (WS). LSW and WS streams are the intermediate streams in the production of CGF and DDGS, respectively, and contribute to most of the P in these streams. Enzyme loadings with activity of 0.1, 1, 2, and 4 FTU/g substrate and temperatures of 35 and 45 degrees C were investigated regarding their influences on the degree of hydrolysis. The analysis of the hydrolyzate suggested to a sequentially degradation of phytates to lower order myo-inositol phosphate isomers. Approximately 90% phytate P of LSW and 66% phytate P of WS were released, suggesting myo-inositol monophosphate as the end product. The maximum amount of released P was 4.52 +/- 0.03 mg/g LSW and 0.86 +/- 0.01 mg/g WS. PMID:18815903

  8. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    PubMed

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. PMID:27378203

  9. Properties of a β-(1→4)-glucan hydrolase from Aspergillus niger

    PubMed Central

    Clarke, A. E.; Stone, B. A.

    1965-01-01

    1. A β-(1→4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4·5–6 and Km 0·25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as β-(1→4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw β-(1→4)-xylan, Lupinus albus β-(1→4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or β-(1→3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1·0mm-Hg2+, 0·7mm-phenylmercuric nitrate and 1·0mm-iodine. PMID:5862418

  10. Properties of a beta-(1-4)-glucan hydrolase from Aspergillus niger.

    PubMed

    Clarke, A E; Stone, B A

    1965-09-01

    1. A beta-(1-->4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4.5-6 and K(m) 0.25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as beta-(1-->4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw beta-(1-->4)-xylan, Lupinus albus beta-(1-->4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or beta-(1-->3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1.0mm-Hg(2+), 0.7mm-phenylmercuric nitrate and 1.0mm-iodine. PMID:5862418

  11. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    PubMed

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase. PMID:22644643

  12. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism.

    PubMed

    Diano, A; Bekker-Jensen, S; Dynesen, J; Nielsen, J

    2006-08-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium viscosity and hereby a decrease in mass transfer, especially oxygen transfer. The consequence was a decrease in DOT and the occurrence of a switch between fully aerobic conditions and oxygen-limited conditions. Metabolite quantification showed that polyols were the main metabolic products formed and represented up to 22% of the carbon consumed in oxygen-limited conditions. The polyol concentration and the polyol pattern depended strongly on the environmental conditions. This is due to a complex regulation of polyol production and to the fact that each polyol can fulfill different functions. In this study, erythritol, xylitol, and arabitol were produced as carbon storage compounds when the flux through the PP pathway exceeded the need in ribulose-5-phosphate for the biomass synthesis. Glycerol, erythritol, and xylitol seem to be involved in osmoregulation. Mannitol was produced when the catabolic reduction of charge was high. Its production involves the enzyme NAD-dependent mannitol-1-phosphate dehydrogenase and seems to be the main cytosolic route for the NADH reoxidation during oxygen limitation. PMID:16718677

  13. Continuous production of cheese by immobilized milk-clotting protease from aspergillus niger MC4

    PubMed

    Channe; Shewale

    1998-11-01

    Milk clotting protease from Aspergillus niger MC4 immobilized on glycidyl methacrylate-pentaerythritol triacrylate copolymer GP4 was used for continuous production of cheese using a packed bed reactor. Factors affecting the hydrolysis of kappa-casein and clot formation were studied. Acidified milk (pH 5.8) preincubated at 37 degreesC when passed through the column at a flow rate of 80 mL/min attained the required degree of hydrolysis of kappa-casein for the coagulation in a single pass. Fortification of the hydrolyzed milk with CaCl2 and FeCl3 to a final concentration of 0.01 and 0.02 M, respectively, and incubation of fortified milk at 60 degreesC for 2 h resulted in a hard cake of cheese. The yield of raw cheese was 28 g/100 mL of milk. The immobilized milk-clotting protease was used for 60 days (8 h/day) without any loss in productivity. PMID:9841651

  14. Purification and characterization of endo-xylanases from Aspergillus Niger. III. An enzyme of PL 365

    SciTech Connect

    Fournier, R.A.; Frederick, M.M.; Frederick, J.R.; Reilly, P.J.

    1985-04-01

    An endo-xylanase (1,4-..beta..-D-xylan xylanohydrolase, EC 3.2.1.8) from Aspergillus niger was purified to homogeneity by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and DEAE-Sephadex A-25 at pH 5.15. The enzyme was active on soluble xylan, on insoluble xylan only after arabinosyl-initiated branch points were removed, and on xylooligosaccharides longer than xylotetraose. There was slight activity on carboxymethyl-cellulose, arabinogalactan, glucomannan, and p-nitrophenyl-..beta..-D- glucopyranoside. The main products of the hydrolysis of soluble and insoluble xylan were oligosaccharides of intermediate length, especially the tri- and pentasaccharides. The isolectric point of the enzyme was 3.65. It had a molecular weight of 2.8 x 10/sup 4/ by SDS-gel electrophoresis, and was high in acidic amino acids but low in those containing sulfur. Highest activity in a 20-min assay at pH 5 was between 40 and 45 degrees C, with an activation energy up to 40 degrees C of 11.1 kJ/mol. The optimum pH for activity was at 5.0. The enzyme was strongly activated by Ca/sup 2 +/. 15 references.

  15. Induction, purification and characterization of alpha-N-acetylgalactosaminidase from Aspergillus Niger.

    PubMed

    Weignerová, L; Filipi, T; Manglová, D; Kren, V

    2008-07-01

    A set of filamentous fungi (42 strains) was screened for alpha-N-acetylgalactosaminidase activity, and a series of inducers and different cultivation conditions were tested. Enzyme production by the best producer Aspergillus niger CCIM K2 was optimized and scaled up. alpha-N-Acetylgalactosaminidase was purified to apparent homogeneity by cation exchange chromatography, gel filtration, and chromatofocusing, and basic biochemical data of the enzyme were determined: The native molecular weight was estimated by gel filtration to be approximately 440 kDa, the molecular weight of the subunit was determined to be 76 kDa and the pI = 4.8. The K (M) was 0.73 mmol/l for o-nitrophenyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (o-NP-alpha-GalNAc), and optimum enzyme activity was achieved at pH 1.8 and 55 degrees C. This alpha-N-acetylgalactosaminidase is a retaining-type glycosidase, and it was N-deglycosylated without any loss of activity. PMID:18443780

  16. Facile production of Aspergillus niger α-N-acetylgalactosaminidase in yeast.

    PubMed

    Mrázek, Hynek; Benada, Oldřich; Man, Petr; Vaněk, Ondřej; Křen, Vladimír; Bezouška, Karel; Weignerová, Lenka

    2012-01-01

    α-N-Acetylgalactosaminidase (α-GalNAc-ase; EC.3.2.1.49) is an exoglycosidase specific for the hydrolysis of terminal α-linked N-acetylgalactosamine in various sugar chains. The cDNA corresponding to the α-GalNAc-ase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Saccharomyces cerevisiae. The α-GalNAc-ase gene contains an open reading frame which encodes a protein of 487 amino acid residues. The molecular mass of the mature protein deduced from the amino acid sequence of this reading frame is 54 kDa. The recombinant protein was purified to apparent homogeneity and biochemically characterized (pI4.4, K(M) 0.56 mmol/l for 2-nitrophenyl 2-acetamido-2-deoxy-α-d-galactopyranoside, and optimum enzyme activity was achieved at pH2.0-2.4 and 50-55°C). Its molecular weight was determined by analytical ultracentrifuge measurement and dynamic light scattering. Our experiments confirmed that the recombinant α-GalNAc-ase exists as two distinct species (70 and 130 kDa) compared to its native form, which is purely monomeric. N-Glycosylation was confirmed at six of the eight potential N-glycosylation sites in both wild type and recombinant α-GalNAc-ase. PMID:21982820

  17. Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris.

    PubMed

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1' residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1' site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  18. Chemical modification of Aspergillus niger β-glucosidase and its catalytic properties

    PubMed Central

    Ahmed, Samia A.; El-Shayeb, Nefisa M.A.; Hashem, Abdel-Gawad M.; Saleh, Shireen A.A.; Abdel-Fattah, Ahmed F.

    2015-01-01

    Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation). The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein). Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy), a higher K m (Michaelis constant) and Vmax (maximal reaction rate), and improved thermal stability. The calculated t 1/2 (half-life) values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t 1/2 of 200.0 and 49.5 min respectively). The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS) and p -Chloro Mercuri Benzoate ( p -CMB), while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively). The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications. PMID:26221085

  19. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.

    PubMed

    Ramos, Aline de Souza; Ribeiro, Joyce Benzaquem; Teixeira, Bruna Gomes; Ferreira, José Luiz Pinto; Silva, Jefferson Rocha de A; Ferreira, Alexandre do Amaral; de Souza, Rodrigo Octavio Mendonça Alves; Amaral, Ana Claudia F

    2015-03-01

    The monoterpenoid 1,8-cineole is obtained from the leaves of Eucalyptus globulus and it has important biological activities. It is a cheap natural substrate because it is a by-product of the Eucalyptus cultivation for wood and pulp production. In this study, it was evaluated the potential of three filamentous fungi in the biotransformation of 1,8-cineole. The study was divided in two steps: first, reactions were carried out with 1,8-cineole at 1 g/L for 24 h; afterwards, reactions were carried out with substrate at 5 g/L for 5 days. The substrate was hydroxylated into 2-exo-hydroxy-1,8-cineole and 3-exo-hydroxy-1,8-cineole by fungi Mucor ramannianus and Aspergillus niger with high stereoselectivity. Trichoderma harzianum was also tested but no transformation was detected. M. ramannianus led to higher than 99% of conversion within 24 h with a starting high substrate concentration (1 g/L). When substrate was added at 5 g/L, only M. ramannianus was able to catalyze the reaction, but the conversion level was 21.7% after 5 days. Both products have defined stereochemistry and could be used as chiral synthons. Furthermore, biological activity has been described for 3-exo-hydroxy-1,8-cineol. To the best of our knowledge, this is the first report on the use of M. ramannianus in this reaction. PMID:26221115

  20. Fluoride-Tolerant Mutants of Aspergillus niger Show Enhanced Phosphate Solubilization Capacity

    PubMed Central

    Silva, Ubiana de Cássia; Mendes, Gilberto de Oliveira; Silva, Nina Morena R. M.; Duarte, Josiane Leal; Silva, Ivo Ribeiro; Tótola, Marcos Rogério; Costa, Maurício Dutra

    2014-01-01

    P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F−). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F−. The mutant FS1-555 showed the highest solubilization in the presence of F−, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F−, indicating that mutagenesis allowed the acquisition of F− tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources. PMID:25310310

  1. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies.

    PubMed

    Daoud, Fatima Boukraa-Oulad; Kaddour, Samia; Sadoun, Tahar

    2010-01-01

    The adsorption kinetics of cellulase Aspergillus niger on a commercial activated carbon has been performed using a batch-adsorption technique. The effect of various experimental parameters such as initial enzyme concentration, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Langmuir model was more suitable for our data. The activation energy of adsorption was also evaluated for the adsorption of enzyme onto activated carbon. It was found 11.37 kJ mol(-1). Thermodynamic parameters Delta G(0), Delta H(0) and DeltaS(0) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found 11.12 kJ mol(-1) and 0.084 kJ mol(-1)K(-1), respectively. At 30 degrees C and at pH 4.8, 1g activated carbon adsorbed about 1565 mg of cellulase, with a retention of 70% of the native enzyme activity up to five cycles of repeated batch enzyme reactions. PMID:19744839

  2. The effect of natamycin on the transcriptome of conidia of Aspergillus niger

    PubMed Central

    van Leeuwen, M.R.; Krijgsheld, P.; Wyatt, T.T.; Golovina, E.A.; Menke, H.; Dekker, A.; Stark, J.; Stam, H.; Bleichrodt, R.; Wösten, H.A.B.; Dijksterhuis, J.

    2013-01-01

    The impact of natamycin on Aspergillus niger was analysed during the first 8 h of germination of conidia. Polarisation, germ tube formation, and mitosis were inhibited in the presence of 3 and 10 μM of the anti-fungal compound, while at 10 μM also isotropic growth was affected. Natamycin did not have an effect on the decrease of microviscosity during germination and the concomitant reduction in mannitol and trehalose levels. However, it did abolish the increase of intracellular levels of glycerol and glucose during the 8 h period of germination. Natamycin hardly affected the changes that occur in the RNA profile during the first 2 h of germination. During this time period, genes related to transcription, protein synthesis, energy and cell cycle and DNA processing were particularly up-regulated. Differential expression of 280 and 2586 genes was observed when 8 h old germlings were compared with conidia that had been exposed to 3 μM and 10 μM natamycin, respectively. For instance, genes involved in ergosterol biosynthesis were down-regulated. On the other hand, genes involved in endocytosis and the metabolism of compatible solutes, and genes encoding protective proteins were up-regulated in natamycin treated conidia. PMID:23449730

  3. Antifungal agents against Aspergillus niger for rearing rice leaffolder larvae (Lepidoptera: Pyralidae) on artificial diet.

    PubMed

    Su, Jianya; Wang, Ye-Cheng; Zhang, Shu-Kun; Ren, Xiu-Bei

    2014-06-01

    Mold contamination is an important issue in insect mass rearing. Frequently used antifungal agents such as sorbic acid and methylparaben have negative impact on many lepidopteran larvae, which might be one of the reasons for the difficulty in rearing rice leaffolder, Cnaphalocrocis medinalis (Güenée). In this study, 19 antifungal agents, including 7 food preservatives, 6 antifungal drugs, and 6 agricultural fungicides, were screened for their inhibitory activities on Aspergillus niger in diets. The results demonstrated that most of the tested chemicals are unsuitable as mold inhibitors in the diets of the rice leaffolder, and the rice leaffolder neonate is sensitive to sorbic acid and methylparaben. These two mold inhibitors at commonly used concentrations were shown to impact the survival of rice leaffolder larvae fed on artificial diets. Among the tested mold inhibitors, natamycin was the safest for the rice leaffolder larvae. Much higher larva survival was observed for the larvae fed on diets containing natamycin as an antifungal agent (59 and 72% at 200 and 400 ppm, respectively). Two agricultural fungicides, tebuconazole and azoxystrobin, are also potent as mold inhibitors when used in insect diets. The mixed use of natamycin and sorbic acid, or methylparaben, and the mixed use of sorbic acid and azoxystrobin resulted in significantly higher larva survival than sorbic acid + methylparaben. Natamycin + azoxystrobin and sorbic acid + tebuconazole resulted in larva survival similar to that of sorbic acid + methylparaben. The ternary combination of natamycin, sorbic acid, and methylparaben was the best combination for the rearing of rice leaffolder. PMID:25026669

  4. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  5. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    PubMed

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase. PMID:11149149

  6. Multiple mycotic aneurysms with a rare fungus, Aspergillus niger: a complex case report.

    PubMed

    Parameswaran, Vatsala

    2008-03-01

    The term "mycotic aneurysm" was first used by William Osler in 1885 to describe a nonsyphilitic bacterial infection of the arterial wall. It is now known that mycotic aneurysm, a rare infectious condition, can arise from a wide variety of clinical causes. The aorta is most often affected; however, such aneurysms may arise in any artery. Mycotic aneurysms are classified as primary (direct extension from surrounding area of infection), secondary (septic embolization that lodges in peripheral arteries), and cryptogenic (unknown cause). A mycotic aneurysm is a threat to life, organs, and limbs. Mycotic aneurysms of the aorta caused by fungi are rare. William Osler used the term "mycotic," referring to all infected aneurysms excluding fungal infections. Yet, the term "mycotic" by definition is a disease caused by a fungus. Only seven cases of aneurysms caused by a fungus were reported from 1966 to 1999. This article will focus on the care of a young female patient with end-stage renal disease receiving peritoneal dialysis who developed a mycotic aneurysm. She was treated with high doses of antifungal medications for the fungus Aspergillus niger. She was switched to hemodialysis from peritoneal dialysis and was later diagnosed with a primary multiple mycotic aneurysms. This article will describe the complex medical, surgical, and nursing care provided to this patient. PMID:18295164

  7. Sorption of heavy metals by the soil fungi 'Aspergillus niger' and Mucor rouxii

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Beveridge, T.J.; Bailey, G.W.

    1992-01-01

    Sorption of the nitrate salts of cadmium(II), copper(II), lanthanum(III) and silver(I) by two fungi, Aspergillus niger and Mucor rouxii, was evaluated using Freundlich adsorption isotherms and energy dispersive X-ray electron microscopy. The linearized Freundlich isotherm described the metal sorption data well for metal concentrations of 5 microM-1 mM metal. Differences in metal binding were observed among metals, as well as between fungal species. Calculated Freundlich K values indicated that metal binding decreased in the order La(3+) > or = Ag(+) > Cu(2+) > Cd(2+). However, sorption of Ag(+) was greater than that of La(3+) from solutions of 0.1 and 1 mM metal and likely due to precipitation at the cell wall surface. At the 1 mM initial concentration, there were no significant differences between the two fungi in metal sorption, except for Ag(+) binding. At the 5 microM concentration, there was no difference between the fungi in their sorption capacities for the four metals. Electron microscopy-energy dispersive X-ray analysis indicated that silver precipitated onto cells as colloidal silver. The results indicate that Freundlich isotherms may be useful for describing short-term metal sorption by fungal biomass and for comparison with other soil constituents in standardized systems. (Copyright (c) 1992 Pergamon Press plc.)

  8. Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori.

    PubMed

    Korman, D R; Bayliss, F T; Barnett, C C; Carmona, C L; Kodama, K H; Royer, T J; Thompson, S A; Ward, M; Wilson, L J; Berka, R M

    1990-03-01

    Using synthetic oligonucleotide probes, we cloned genomic DNA sequences encoding an alpha-amylase gene from Aspergillus niger var. awamori (A. awamori) on a 5.8 kb EcoRI fragment. Hybridization experiments, using a portion of this cloned fragment to probe DNA from A. awamori, suggested the presence of two alpha-amylase gene copies which were subsequently cloned as 7 kb (designated as amyA) and 4 kb (amyB) HindIII fragments. DNA sequence analysis of the amyA and amyB genes revealed the following: (1) Both genes are arranged as nine exons and eight introns; (2) The nucleotide sequences of amyA and amyB are identical throughout all but the last few nucleotides of their respective coding regions; (3) The amyA and amyB genes from A. awamori share extensive homology (greater than or equal to 98% identity) with the genes encoding Taka-amylase from A. oryzae. In order to test whether both amyA and amyB were functional in the genome, we constructed vectors containing gene fusions of either amyA and amyB to bovine prochymosin cDNA and used these vectors to transform A. awamori. Transformants which contained either the amyA- or amyB-prochymosin gene fusions produced extracellular chymosin, suggesting that both genes are functional. PMID:2340591

  9. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis. PMID:26658315

  10. Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger.

    PubMed

    Juge, N; Svensson, B; Williamson, G

    1998-04-01

    Efficient production of recombinant barley alpha-amylase has been achieved in Aspergillus niger. The cDNA encoding alpha-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for alpha-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44,960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley alpha-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol beta-D-maltoheptaoside and amylose (degree of polymerisation = 17). Barley alpha-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. PMID:9615479

  11. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger.

    PubMed

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2012-06-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid hydrolyzed biomass prior to inoculation in one set and after 3 days of inoculation in another set. Organisms used were T. reesei NCIM 992, and Aspergillus niger isolated in our laboratory. Cellulase yield obtained was 0.8 IU/ml on fourth day with T. reesei. Sugars were found to increase from fourth to fifth day, when hydrolysate was supplemented with nutrients and acid hydrolyzed biomass followed by inoculation with T. reesei. Phenolics were also found to decrease by 67%. PMID:23729891

  12. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  13. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    PubMed

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  14. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %. PMID:24052336

  15. Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation.

    PubMed

    Benghazi, Lamiae; Record, Eric; Suárez, Antonio; Gomez-Vidal, José A; Martínez, José; de la Rubia, Teresa

    2014-01-01

    We investigated the expression of Phanerochaete flavido-alba laccase gene in Aspergillus niger and the physical and biochemical properties of the recombinant enzyme (rLac-LPFA) in order to test it for synthetic dye biotransformation. A. niger was able to produce high levels of active recombinant enzyme (30 mgL(-1)), whose identity was further confirmed by immunodetection using Western blot analysis and N-terminal sequencing. Interestingly, rLac-LPFA exhibited an improved stability at pH (2-9) and organic solvents tested. Furthermore, the percentage of decoloration and biotransformation of synthetic textile dyes, Remazol Brilliant Blue R (RBBR) and Acid Red 299 (NY1), was higher than for the native enzyme. Its high production, simple purification, high activity, stability and ability to transform textile dyes make rLac-LPFA a good candidate for industrial applications. PMID:23884844

  16. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121.

    PubMed

    Ushasree, Mrudula Vasudevan; Vidya, Jalaja; Pandey, Ashok

    2015-03-01

    Microbial phytase, a widely used animal feed enzyme, needs to be active and stable in the acidic milieu for better performance in the monogastric gut. Aspergillus niger phytases exhibit an activity dip in the pH range from 3.0 to 3.5. Replacement of amino acids, which changed the pKa of catalytic residues H82 and D362, resulted in alteration of the pH profile of a thermostable phytase from A. niger NII 08121. Substitution P212H in the protein loop at 14 Å distance to the active site amended the pH optimum from 2.5 to pH 3.2 nevertheless with a decrease in thermostability than the wild enzyme. This study described the utility of amino acid replacements based on pKa shifts of catalytic acid/base to modulate the pH profile of phytases. PMID:25595493

  17. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp.

    PubMed

    Ge, Xiang-Yang; Qian, He; Zhang, Wei-Guo

    2009-03-01

    Aspergillus niger SL-09 and Lactobacillus sp. G-02 were used as a mixed culture in a 7-l fermentor to directly form L-lactic acid from Jerusalem artichoke tubers. The synthesis of inulinase and invertase from A. niger SL-09 was enhanced significantly by the inoculation of Lactobacillus sp. G-02 at 12h of culture, which reached 275.6 and 571.8 U/ml in 60 h, over 5-folds higher than that of the culture using single strain. In the following simultaneous saccharification and fermentation procedure, the highest L-lactic acid concentration of 120.5 g/l was obtained in 36 h of the fed-batch fermentation with high conversion efficiency of 94.5%. PMID:18990562

  18. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.

    PubMed

    Menezes-Blackburn, Daniel; Jorquera, Milko; Gianfreda, Liliana; Rao, Maria; Greiner, Ralf; Garrido, Elizabeth; de la Luz Mora, María

    2011-10-01

    The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity. PMID:21856150

  19. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition*

    PubMed Central

    Xu, Yao-xing; Li, Yan-li; Xu, Shao-chun; Liu, Yong; Wang, Xin; Tang, Jiang-wu

    2008-01-01

    Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization. Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each significant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by multiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x 1 (urea)=0.163 (41.63 g/L), x 2 (Na2CO3)=−1.68 (2.64 g/L), x 3 (MgSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization. PMID:18600786

  20. Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identity of nine clinical isolates from Czech patients presumably belonging to Aspergillus section Candidi based on morphology of colonies was revised using sequences of ß-tubulin, calmodulin, and internal transcribed spacer (ITS) rDNA. The set of isolates included six isolates from suspected (n...

  1. Application of kaolin to improve citric acid production by a thermophilic Aspergillus niger.

    PubMed

    Ali, Sikander

    2006-12-01

    Citric acid production by a thermophilic strain of the filamentous fungus Aspergillus niger IIB-6 in a medium containing blackstrap cane molasses was improved by the addition of kaolin to the fermentation medium. The fermentation was run in a 7.5-l stirred bioreactor (60% working volume). The optimal sugar concentration was found to be 150 g/l. Kaolin (1.0 ml) was added to the fermentation medium to enhance volumetric production. The best results in terms of product formation were observed when 15 parts per million (ppm) kaolin was added 24 h after inoculation. With added kaolin, citric acid production was enhanced 2.34-fold, compared to a control fermentation without added kaolin. The length of incubation to attain this product yield was shortened from 168 to 96 h. The comparison of kinetic parameters showed improved citrate synthase activity of the culture (Y (p/x)=7.046 g/g). When the culture grown at various kaolin concentrations was monitored for Q (p), Q (s), and q (p), there was significant improvement in these variables over the control. Specific production by the culture (q (p)=0.073 g/g cells/h) was improved several fold. The addition of kaolin substantially improved the enthalpy (DeltaH (D)=74.5 kJ/mol) and entropy of activation (DeltaS=-174 J/mol/K) for citric acid production, free energies for transition state formation, and substrate binding for sucrose hydrolysis. The performance of fuzzy logic control of the bioreactor was found to be very promising for an improvement ( approximately 4.2-fold) in the production of citric acid (96.88 g/l), which is of value in commercial applications. PMID:16871375

  2. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    SciTech Connect

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to produce 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.

  3. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  4. Purification and characterization of endo-xylanases from aspergillus Niger. II. An enzyme of PL 45

    SciTech Connect

    Shei, J.C.; Fratzke, A.R.; Frederick, M.M.; Frederick, J.R.; Reilly, P.J.

    1985-04-01

    A homogeneous endo-xylanase (1,4-..beta..-D-xylan xylano-hydrolase, EC 3.2.1.8) was obtained from a crude Aspergillus niger pentosanase by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and SP-Sephadex C-25 with a gradient from pH 2.8 to pH 4.6. It was much more active on soluble than on insoluble xylan yielding large amounts of unreacted xylan and a mixture of oligosaccharides with chain lengths from two to six. No xylose or L-arabinose was produced. There was high activity on a xylopentaose through xylononaose mixture, but not on xylobiose, xylotriose, or xylotetraose. The enzyme had slight activity on untreated cellulose, carboxymethylcellulose, and pectin. Molecular weight was ca. 1.4 x 10/sup 4/, with an isoelectric point of 4.5 and an amino acid profile high in acidic but low in sulfur-containing residues. In a 25-min assay at pH 4.7, this endo-xylanase was most active at 45 degrees C, with an activation energy from 5 to 35 degrees C of 33.3 kJ/mol. The optimum pH for activity was 4.9. Decay in buffer was first order, with an activation energy at pH 4.7 from 48 to 53 degrees C of 460 kJ/mol. Optimum pH for stability was about 5.6, where the half-life at 48 degrees C in buffer was ca. 40 h.

  5. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.

    PubMed

    Choengpanya, Khuanjarat; Arthornthurasuk, Siriphan; Wattana-amorn, Pakorn; Huang, Wan-Ting; Plengmuankhae, Wandee; Li, Yaw-Kuen; Kongsaeree, Prachumporn T

    2015-11-01

    β-Xylosidases catalyze the breakdown of β-1,4-xylooligosaccharides, which are produced from degradation of xylan by xylanases, to fermentable xylose. Due to their important role in xylan degradation, there is an interest in using these enzymes in biofuel production from lignocellulosic biomass. In this study, the coding sequence of a glycoside hydrolase family 3 β-xylosidase from Aspergillus niger ASKU28 (AnBX) was cloned and expressed in Pichia pastoris as an N-terminal fusion protein with the α-mating factor signal sequence (α-MF) and a poly-histidine tag. The expression level was increased to 5.7 g/l in a fermenter system as a result of optimization of only five codons near the 5' end of the α-MF sequence. The recombinant AnBX was purified to homogeneity through a single-step Phenyl Sepharose chromatography. The enzyme exhibited an optimal activity at 70°C and at pH 4.0-4.5, and a very high kinetic efficiency toward a xyloside substrate. AnBX demonstrated an exo-type activity with retention of the β-configuration, and a synergistic action with xylanase in hydrolysis of beechwood xylan. This study provides comprehensive data on characterization of a glycoside hydrolase family 3 β-xylosidase that have not been determined in any prior investigations. Our results suggested that AnBX may be useful for degradation of lignocellulosic biomass in bioethanol production, pulp bleaching process and beverage industry. PMID:26166179

  6. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp.

    PubMed

    Auta, Helen Shnada; Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol(-1), 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol(-1), 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol(-1), incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol(-1), and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol(-1). The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  7. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation.

    PubMed

    Ascacio-Valdés, Juan A; Aguilera-Carbó, Antonio F; Buenrostro, José J; Prado-Barragán, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N

    2016-04-01

    Our research group has found preliminary evidences of the fungal biodegradation pathway of ellagitannins, revealing first the existence of an enzyme responsible for ellagitannins degradation, which hydrolyzes pomegranate ellagitannins and it was called ellagitannase or elagitannin acyl hydrolase. However, it is necessary to generate new and clear information in order to understand the ellagitannin degradation mechanisms. This work describes the distinctive and unique features of ellagitannin metabolism in fungi. In this study, hydrolysis of pomegranate ellagitannins by Aspergillus niger GH1 was studied by solid-state culture using polyurethane foam as support and pomegranate ellagitannins as substrate. The experiment was performed during 36 h. Results showed that ellagitannin biodegradation started after 6 h of fermentation, reaching the maximal biodegradation value at 18 h. It was observed that ellagitannase activity appeared after 6 h of culture, then, the enzymatic activity was maintained up to 24 h of culture reaching 390.15 U/L, after this period the enzymatic activity decreased. Electrophoretic band for ellagitannase was observed at 18 h. A band obtained using non-denaturing electrophoresis was identified as ellagitannase, then, a tandem analysis to reveal the ellagitannase activity was performed using Petri plate with pomegranate ellagitannins. The extracts were analyzed by HPLC/MS to evaluate ellagitannins degradation. Punicalin, gallagic acid, and ellagic acid were obtained from punicalagin. HPLC/MS analysis identified the gallagic acid as an intermediate molecule and immediate precursor of ellagic acid. The potential application of catabolic metabolism of ellagitannin hydrolysis for ellagic acid production is outlined. PMID:26915983

  8. Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles

    PubMed Central

    van Leeuwen, M.R.; Krijgsheld, P.; Bleichrodt, R.; Menke, H.; Stam, H.; Stark, J.; Wösten, H.A.B.; Dijksterhuis, J.

    2013-01-01

    The transcriptome of conidia of Aspergillus niger was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76–0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (e.g. heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination. PMID:23449598

  9. Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger

    PubMed Central

    Poulsen, Lars; Andersen, Mikael Rørdam; Lantz, Anna Eliasson; Thykaer, Jette

    2012-01-01

    Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis. PMID:23251373

  10. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    SciTech Connect

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.