Science.gov

Sample records for assay elisa-like fluorescence

  1. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein

    PubMed Central

    Yuan, Han; Tank, Mihir; Alsofyani, Abeer; Shah, Naman; Talati, Nishant; LoBello, Jaclyn C; Kim, Jin Ryoun; Oonuki, Yoji; de la Motte, Carol A; Cowman, Mary K

    2013-01-01

    Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ∼150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20–150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ∼150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases. PMID:23964097

  2. Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity.

    PubMed

    Wang, Shasha; Chen, Zhaopeng; Choo, Jaebum; Chen, Lingxin

    2016-02-01

    A naked-eye sensitive ELISA-like assay was developed based on gold-enhanced peroxidase-like activity of gold nanoparticles (AuNPs). Using human IgG (H-IgG) as an analytical model, goat anti-human IgG antibody (anti-IgG) adsorbed on microtiter plate and AuNPs-labeled anti-IgG acted as capture antibody and detection antibody, respectively. Because the surfaces of AuNPs were blocked by protein molecules, the peroxidase-like activity of AuNPs was almost inhibited, evaluated by the catalytic oxidation of peroxidase enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB), which could produce a bright blue color in the presence of H2O2. Fortunately, the catalytic ability of AuNPs was dramatically increased by the deposition of gold due to the formation of a new gold shell on immunogold. Under optimal reaction conditions, the colorimetric immunoassay presented a good linear relationship in the range of 0.7-100 ng/mL and the limit of detection (LOD) of 0.3 ng/mL calculated by 3σ/S for UV-vis detection, and obtained LOD of 5 ng/mL for naked-eye detection. The obtained results were competitive with conventional sandwich ELISA with the LOD of 1.6 ng/mL. Furthermore, this developed colorimetric immunoassay was successfully applied to diluted human serum and fetal bovine serum samples, and predicted a broad prospect for the use of peroxidase-like activity involving nanomaterials in bioassay and diagnostics. PMID:26677026

  3. LIMITATIONS OF THE FLUORESCENT PROBE VIABILITY ASSAY

    EPA Science Inventory

    Cell viability commonly is determined flow cytometrically by the carboxyfluorescein diacetate (CFDA)/propidium iodide (PI) assay. FDA is taken up by the viable cell and converted via cytoplasmic esterase-catalyzed hydrolysis to carboxyfluorescein (CF). F fluorescence intensity is...

  4. Fluorescence polarization assays in signal transduction discovery.

    PubMed

    Sportsman, J Richard; Daijo, Janet; Gaudet, Elizabeth A

    2003-05-01

    Fluorescence polarization (FP) has become widely employed for high throughput screening used in pharmaceutical drug discovery. Assays of important signal transduction targets are now adapted to FP. In this review we examine assays for cyclic adenosine monophosphate, phosphodiesterases, and protein kinases and phosphatases using FP competitive immunoassays and a direct enzymatic method called IMAP. PMID:12678698

  5. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect

    Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-29

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  6. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-05

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  7. Fluorescence Polarization Assays in Small Molecule Screening

    PubMed Central

    Lea, Wendy A.; Simeonov, Anton

    2011-01-01

    Importance of the field Fluorescence polarization (FP) is a homogeneous method that allows rapid and quantitative analysis of diverse molecular interactions and enzyme activities. This technique has been widely utilized in clinical and biomedical settings, including the diagnosis of certain diseases and monitoring therapeutic drug levels in body fluids. Recent developments in the field has been symbolized by the facile adoption of FP in high-throughput screening (HTS) and small molecule drug discovery of an increasing range of target classes. Areas covered in this review The article provides a brief overview on the theoretical foundation of FP, followed by updates on recent advancements in its application for various drug target classes, including G-protein coupled receptors (GPCRs), enzymes and protein-protein interactions (PPIs). The strengths and weaknesses of this method, practical considerations in assay design, novel applications, and future directions are also discussed. What the reader will gain The reader will be informed of the most recent advancements and future directions of FP application to small molecule screening. Take home message In addition to its continued utilization in high-throughput screening, FP has expanded into new disease and target areas and has been marked by increased use of labeled small molecule ligands for receptor binding studies. PMID:22328899

  8. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  9. A fluorescence polarization based assay for glucose sensing

    NASA Astrophysics Data System (ADS)

    Cummins, Brian M.; Coté, Gerard L.

    2012-03-01

    A fluorescence polarization (FP) assay was developed to determine concentrations of glucose using concanavalin A (ConA) and fluorescently-labeled dextran. Predictive FP responses to glucose were elicited for different assay configurations using mathematical modeling and displayed herein. Using 4 kDa FITC-dextran, we predicted a change of 0.120 P units from 0 mg/dL glucose to 500 mg/dL. This shows the potential that a homogenous, reproducible FP assay can be engineered to measure glucose concentrations using tetrameric ConA and 4k kDa FITC-dextran.

  10. Rapid fluorescence screening assay for tetracyclines in chicken muscle.

    PubMed

    Schneider, Marilyn J; Lehotay, Steven J

    2004-01-01

    A simple, rapid fluorescence assay was developed for screening tetracyclines in chicken muscle at the U.S. tolerance level (2 mg/kg). The method requires only a homogenization of the tissue in acetonitrile-ammonium hydroxide, centrifugation, addition of Mg+2, and another centrifugation before fluorescence of the supernatant is measured at 505 nm (excitation at 385 nm). Comparison of the fluorescence of control chicken muscle extracts with extracts from muscle fortified with either 2 mg/kg tetracycline, oxytetracycline, or chlortetracycline showed no overlap. A threshold level set at the average fluorescence for a series of fortified 2 mg/kg samples minus 3sigma minimized false-negative responses to provide a successful screening method. The method was tested with blinded samples as controls or samples fortified with tetracycline, oxytetracycline, or chlortetracycline in order to demonstrate its utility. This approach can provide an alternative to microbial screening assays. PMID:15287655

  11. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    PubMed Central

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  12. A novel fluorescence-based cellular permeability assay.

    PubMed

    Chandra, Ankur; Barillas, Samuel; Suliman, Ahmed; Angle, Niren

    2007-04-10

    Vascular permeability is a pathologic process in many disease states ranging from metastatic progression of malignancies to ischemia-reperfusion injury. In order to more precisely study tissue, and more specifically cell layer permeability, our goal was to create a fluorescence-based assay which could quantify permeability without radioactivity or electrical impedance measurements. Human aortic endothelial cells were grown in monolayer culture on Costar-Transwell clear polyester membrane 6-well cell culture inserts. After monolayer integrity was confirmed, vascular endothelial growth factor (VEGF(165)) at varying concentrations with a fixed concentration of yellow-green fluorescent 0.04 microm carboxylate-modified FluoSpheres microspheres were placed in the luminal chamber and incubated for 24 h. When stimulated with VEGF(165) at 20, 40, 80, and 100 ng/ml, this assay system was able to detect increases in trans-layer flux of 8.2+/-2.4%, 16.0+/-3.7%, 41.5+/-4.9%, and 58.6+/-10.1% for each concentration, respectively. This represents the first fluorescence-based permeability assay with the sensitivity to detect changes in the permeability of a cell layer to fluid flux independent of protein flux; as well as being simpler and safer than previous radioactive-and impedance-based permeability assays. With the application of this in vitro assay to a variety of pathologic conditions, both the dynamics and physiology relating to cellular permeability can be more fully investigated. PMID:16962665

  13. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential. PMID:18596348

  14. Paper-based microfluidic device with upconversion fluorescence assay.

    PubMed

    He, Mengyuan; Liu, Zhihong

    2013-12-17

    A paper-based microfluidic device with upconversion fluorescence assay (named as UC-μPAD) is proposed. The device is fabricated on a normal office printing sheet with a simple plotting method. Upconversion phosphors (UCPs) tagged with specific probes are spotted to the test zones on the μPAD, followed by the introduction of assay targets. Upconversion fluorescence measurements are directly conducted on the test zones after the completion of the probe-to-target reactions, without any post-treatments. The UC-μPAD features very easy fabrication and operation, simple and fast detection, low cost, and high sensitivity. UC-μPAD is a promising prospect for a clinical point-of-care test. PMID:24308347

  15. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  16. Automated fluorescent analysis for drug-induced cytotoxicity assays.

    PubMed

    Funa, K; Dawson, N; Jewett, P B; Agren, H; Ruckdeschel, J C; Bunn, P A; Gazdar, A F

    1986-10-01

    The human tumor clonogenic assay has been reported to predict for sensitivity of human tumors to a variety of drugs. However, this assay requires large numbers of viable cells, is time-consuming, and takes at least 2 weeks before results are available. To circumvent these problems, Weisenthal developed a microscope-based dye exclusion assay. Because this method is also time-consuming and subject to observer error, we have developed an automated method of quantitating drug cytotoxicity using a flow cytometric cell sorter (FCM). After incubation of drug-exposed tumor cells, acetaldehyde-fixed duck red blood cells (DRBC) are added. Dead tumor cells and the fixed DRBC are stained by the fluorescent dye propidium iodide, which penetrates dead cell membranes. A two-parameter analysis (cell size as measured by narrow angle light scatter vs propidium iodide fluorescence) enables determination of the live tumor cell:DRBC ratio. There was a strong correlation between the FCM method and manual counting (r = 0.958 for cell lines, r = 0.831 for fresh leukemic cells, P less than 0.0001 in both cases). We conclude that the automatized FCM method gives compatible results to the manual dye exclusion assay and increases efficiency. PMID:3019545

  17. A fluorescence polarization assay for cyclic nucleotide phosphodiesterases.

    PubMed

    Huang, Wei; Zhang, Yan; Sportsman, J Richard

    2002-06-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3'-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented. PMID:12097184

  18. Smartphone-enabled filterless fluorescence assay utilizing the pyrene excimer

    NASA Astrophysics Data System (ADS)

    Goertz, John P.; White, Ian M.

    2015-03-01

    Fluorescence microscopy offers a number of advantages for cell- and biomarker-based diagnostics with regards to ease of use and interpretation, sensitivity, and specificity. However, its use in low-resource settings is often hindered by the need for bulky microscopes with expensive excitation and filter setups. While many advances have been made towards utilizing smartphones as microscopes, there remains a reliance on complex attachments to facilitate fluorescence microscopy. Here, we report progress towards a filter-less fluorescent assay utilizing ultraviolet light, an unmodified smartphone, and pyrene-labeled aptamers. The pyrene monomer is excited at a wavelength of 350 nm and emits at approximately 390 nm; when two pyrene molecules are brought into close proximity, however, they form an excimer which emits at approximately 490 nm. We have engineered pyrene-conjugated DNA sequences such that the fluorophores, normally in monomeric configuration, are brought into proximity upon binding of the DNA to its target. The large Stokes shift between excitation and emission of the excimer allows us to detect such biorecognition events with an unfiltered smartphone camera, enabling the use of this assay in low-resource settings where portability and easeof- use are paramount.

  19. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  20. Fluorescence assays for F-pili and their application.

    PubMed

    Daehnel, Katrin; Harris, Robin; Maddera, Lucinda; Silverman, Philip

    2005-11-01

    Conjugative pili are extracellular filaments elaborated by Gram-negative bacteria expressing certain type IV secretion systems. They are required at the earliest stages of conjugal DNA transfer to establish specific and secure cell-cell contacts. Conjugative pili also serve as adsorption organelles for both RNA and DNA bacteriophages. Beyond these facts, the structure, formation and function of these filaments are poorly understood. This paper describes a rapid, quantitative assay for F-pili encoded by the F plasmid type IV secretion system. The assay is based on the specific lateral adsorption of icosahedral RNA bacteriophage R17 by F-pili. Bacteriophage particles conjugated with a fluorescent dye, Alexa 488, and bound to F-pili defined filaments visible by immunofluorescence microscopy. F-pili attached to F+ cells and free F-pili were both visible by this method. For quantification, cell-bound bacteriophage were separated from free bacteriophage particles by sedimentation and released by suspending cell pellets in 0.1 % SDS. Fluorescence in cell-free supernatant fractions was measured by fluorometry. The authors present a characterization of this assay and its application to F-pilus formation by cells carrying mutations in the gene for the F-pilus subunit F-pilin. Each mutation introduced a cysteine, which F-pilin normally lacks, at a different position in its primary structure. Cysteine residues in the N-terminal domain I abolished filament formation as measured by fluorescent R17 binding. This was confirmed by measurements of DNA donor activity and filamentous DNA bacteriophage infection. With one exception (G53C), cysteines elsewhere in the F-pilin primary structure did not abolish filament formation, although some mutations differentially affected F-pilus functions. PMID:16272377

  1. Cell-Based Lipid Flippase Assay Employing Fluorescent Lipid Derivatives.

    PubMed

    Jensen, Maria S; Costa, Sara; Günther-Pomorski, Thomas; López-Marqués, Rosa L

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid flippase activities in the plasma membrane of cells, using yeast as an example. PMID:26695048

  2. A Sensitive and Versatile Fluorescent Activity Assay for ABHD12.

    PubMed

    Savinainen, Juha R; Navia-Paldanius, Dina; Laitinen, Jarmo T

    2016-01-01

    Despite great progress in identifying and deorphanizing members of the human metabolic serine hydrolase (mSH) family, the fundamental role of numerous enzymes in this large protein class has remained unclear. One recently found mSH is α/β-hydrolase domain containing 12 (ABHD12) enzyme, whose natural substrate in vivo appears to be the lysophospholipid lysophosphatidylserine (LPS). In vitro, ABHD12 together with monoacylglycerol lipase (MAGL) and ABHD6 hydrolyzes also monoacylglycerols (MAGs) such as the primary endocannabinoid 2-arachidonoyl glycerol (2-AG). Traditional approaches for determining 2-AG hydrolase activity are rather laborious, and often utilize unnatural substrates. Here, we describe a sensitive fluorescent assay of ABHD12 activity in a 96-well-plate format that allows simultaneous testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD12 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred MAG substrate of this enzyme. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. This methodology has helped to identify the first class of inhibitors showing selectivity for ABHD12 over the other mSHs. PMID:27245904

  3. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

    PubMed Central

    Hardison, D. Ransom; Holland, William C.; McCall, Jennifer R.; Bourdelais, Andrea J.; Baden, Daniel G.; Darius, H. Taiana; Chinain, Mireille; Tester, Patricia A.; Shea, Damian; Flores Quintana, Harold A.; Morris, James A.; Litaker, R. Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  4. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    PubMed

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  5. A New Cytotoxicity Assay for Brevetoxins Using Fluorescence Microscopy

    PubMed Central

    McCall, Jennifer R.; Elliott, Elizabeth A.; Bourdelais, Andrea J.

    2014-01-01

    Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium channels in cell membranes. The traditional cytotoxicity assay for detection of brevetoxins uses the Neuro-2A cell line, which must first be treated with the neurotoxins, ouabain and veratridine, in order to become sensitive to brevetoxins. In this study, we demonstrate several drawbacks of the Neuro-2A assay, which include variability for the EC50 values for brevetoxin and non-linear triphasic dose response curves. Ouabain/veratridine-treated Neuro-2A cells do not show a typical sigmoidal dose response curve in response to brevetoxin, but rather, have a polynomial shaped curve, which makes calculating EC50 values highly variable. We describe a new fluorescence live cell imaging model, which allows for accurate calculation of cytotoxicity via nuclear staining and additional measurement of other viability parameters depending on which aspect of the cell is stained. In addition, the SJCRH30 cell line shows promise as an alternative to Neuro-2A cells for testing brevetoxins without the need for ouabain and veratridine. PMID:25251033

  6. AFBI assay – Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells

    PubMed Central

    Thiel, William H.; Giangrande, Paloma H.

    2016-01-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  7. AFBI assay - Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells.

    PubMed

    Thiel, William H; Giangrande, Paloma H

    2016-07-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  8. Calcofluor fluorescence assay for wort beta-glucan in a microplate format

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widely-used fluorescent (Calcofluor) flow injection analysis method for determining the concentrations of beta-glucans in Congress worts from barley malts is adapted to microplate format. Adaptation of the Calcofluor assay to use widely available fluorescent microplate readers makes the assay m...

  9. Fluorescence-based assays for RGS box function.

    PubMed

    Willard, Francis S; Kimple, Randall J; Kimple, Adam J; Johnston, Christopher A; Siderovski, David P

    2004-01-01

    Ligand-activated, seven transmembrane-spanning receptors interact with inactive G-protein heterotrimers (Galphabetagamma) to catalyze GTP loading and, consequently, activation of Galpha subunits and the liberation of Gbetagamma. Galpha.GTP and Gbetagamma are then competent to regulate independent effector pathways. The duration of heterotrimeric G-protein signaling is determined by the lifetime of the Galpha subunit in the GTP-bound state. Signal termination is facilitated by the intrinsic guanosine triphosphatase (GTPase) activity of Galpha and subsequent reformation of the inactive heterotrimer. Regulators of G-protein signaling (RGS) proteins act enzymatically, via their hallmark "RGS box," as GTPase-accelerating proteins (GAPs) for Galpha subunits and thus function as negative regulators of G-protein signaling in vitro and in vivo. This article describes the use of fluorescence resonance energy transfer (FRET) to monitor the interaction between a Galpha subunit and an RGS box protein. Furthermore, this article describes optimization of this assay for high-throughput screening and the evaluation of mutant RGS box and Galpha proteins. Finally, this article describes the novel application of this FRET technique to measure the activity of RGS protein-derived GoLoco peptides that modulate Galpha activation by aluminum tetrafluoride. PMID:15313559

  10. Novel assay for direct fluorescent imaging of sialidase activity

    NASA Astrophysics Data System (ADS)

    Tomin, A.; Shkandina, T.; Bilyy, R.

    2011-07-01

    Here we describe a novel approach to sialidase activity estimation. Sialidases (EC 3.2.1.18, exo-α-sialidases), also known as neuraminidases, are the group of enzymes, which hydrolyze the glycoside bound between terminal sialic acid and subsequent carbohydrate residue in glycoproteins and glycolipids. Sialic acids are the group of monosaccharides with acidic properties, since they are acetylated or glycolylated derivates of neuraminic acid. Flu and some other viruses use neuraminidase activity to infect host cells. The level of sialylation was shown to be tightly connected with tumor cell invasiveness and metastatic potential, sialylation level also determines the clearance of aged or virus-infected cells. Thus, detection of sialidase activity is of primary importance for clinical diagnostics as well as life science research. The authors developed the assay for both visualization and estimation of sialidase activity in living cells. Previously known methods for sialidase activity detection required destruction of cellular material, or were low-sensitive, or provided no information on the activity localization in certain intracellular compartment. To overcome these problems, a fluorogenic neuraminidase substrate, 4-MUNA was utilized, and the method for detection of neuraminidase activity using fluorescent microscopy was proposed, it provided a high signal level and information on cellular localization of the studied enzyme. By using this approach the increase of sialidase activity on apoptotic cells was demonstrated in comparison to viable and primary necrotic cells.

  11. Development of fluorescence-based high-throughput screening assays: choice of appropriate instrumentation

    NASA Astrophysics Data System (ADS)

    Burns, David J.; Alder, Elisabeth; Fan, Yi-Hong; McKeegan, Evelyn; Warrior, Usha; Beutel, Bruce

    1998-04-01

    Fluorescence-based assays have become increasingly popular in high throughput screening for a variety of reasons (e.g. sensitivity). However, new screening technologies are pushing the limits of conventional fluorescence plate readers. For example, instruments that have optical sensitivities beyond most of the commercially available plate readers are required to reproducibly measure the fluorescence generated by the green fluorescent protein (GFP)--a novel reporter gene. Also, miniaturization of screening formats (with densities higher than the conventional 96-well plate) requires high resolution instrumentation to measure fluorescence. Several assays based on optical fluorescence measurements have been developed and screened in our Biological Screening group. These assays include various fluorescence-based protease assays (standard end-point and kinetic modes) and a functional cell-based screen using the green fluorescent protein as a reporter gene. The choice of instrumentation was the critical factor in the performance and success of each of these arrays. Data will be presented for the cell- based reporter assay including the type of instrumentation (fluorescence plate readers; fluorescence imaging systems) used for detection of GFP fluorescence.

  12. Development of a microplate-based, electrophoretic fluorescent protein kinase a assay: comparison with filter-binding and fluorescence polarization assay formats.

    PubMed

    Miick, Siobhan M; Jalali, Shila; Dwyer, Brian P; Havens, John; Thomas, Donald; Jimenez, Manuel A; Simpson, Mathew T; Zile, Betsy; Huss, Karen L; Campbell, Robert M

    2005-06-01

    A microplate-based electrophoretic assay has been developed for the serine/threonine kinase protein kinase A (PKA). The ElectroCapture PKA assay developed uses a positively charged, lissamine-rhodamine-labeled kemptide peptide substrate for the kinase reaction and Nanogen's ElectroCapture HTS Workstation and 384-well laminated membrane plates to electrophoretically separate the negatively charged phosphorylated peptide product from the kinase reaction mix. After the electrophoretic separation, the amount of rhodamine-labeled phosphopeptide product was quantified using a Tecan Ultra384 fluorescence reader. The ElectroCapture PKA assay was validated with both known PKA inhibitors and library compounds. The pK(iapp) results obtained in the ElectroCapture PKA assay were comparable to those generated with current radioactive filter-binding assay and antibody-based competitive fluorescence polarization PKA assay formats. PMID:15964934

  13. Development of a quantitative fluorescence-based ligand-binding assay.

    PubMed

    Breen, Conor J; Raverdeau, Mathilde; Voorheis, H Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  14. Development of a quantitative fluorescence-based ligand-binding assay

    PubMed Central

    Breen, Conor J.; Raverdeau, Mathilde; Voorheis, H. Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  15. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  16. Overcoming compound fluorescence in the FLiK screening assay with red-shifted fluorophores.

    PubMed

    Schneider, Ralf; Gohla, Anne; Simard, Jeffrey R; Yadav, Dharmendra B; Fang, Zhizhou; van Otterlo, Willem A L; Rauh, Daniel

    2013-06-01

    In the attempt to discover novel chemical scaffolds that can modulate the activity of disease-associated enzymes, such as kinases, biochemical assays are usually deployed in high-throughput screenings. First-line assays, such as activity-based assays, often rely on fluorescent molecules by measuring a change in the total emission intensity, polarization state, or energy transfer to another fluorescent molecule. However, under certain conditions, intrinsic compound fluorescence can lead to difficult data analysis and to false-positive, as well as false-negative, hits. We have reported previously on a powerful direct binding assay called fluorescent labels in kinases ('FLiK'), which enables a sensitive measurement of conformational changes in kinases upon ligand binding. In this assay system, changes in the emission spectrum of the fluorophore acrylodan, induced by the binding of a ligand, are translated into a robust assay readout. However, under the excitation conditions of acrylodan, intrinsic compound fluorescence derived from highly conjugated compounds complicates data analysis. We therefore optimized this method by identifying novel fluorophores that excite in the far red, thereby avoiding compound fluorescence. With this advancement, even rigid compounds with multiple π-conjugated ring systems can now be measured reliably. This study was performed on three different kinase constructs with three different labeling sites, each undergoing distinct conformational changes upon ligand binding. It may therefore serve as a guideline for the establishment of novel fluorescence-based detection assays. PMID:23672540

  17. A triple-color fluorescent probe for multiple nuclease assays.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Zhang, Chun-yang

    2015-06-01

    We develop a triple-color fluorescent probe which may function as a lab-on-a-DNA-molecule for simultaneous detection of multiple exonucleases/restriction endonucleases. This triple-color fluorescent probe can be further applied for the discrimination of seven exonucleases and four cell lines as well as the screening of various nuclease inhibitors. PMID:25940190

  18. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    SciTech Connect

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-02-20

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  19. A Fluorescent Assay for Plant Caffeic Acid O-methyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a facile, sensitive and continuous assay to measure the activities of plant COMTs using s-adenosyl homocysteine hydrolase as a coupling enzyme and and adeonsine a thiol-specific fluor, Thioglo1, as the detecting reagent. This assay was validated using recombinant sorghum COMT (BMR-...

  20. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery.

    PubMed

    Lo, Mei-Chu; Aulabaugh, Ann; Jin, Guixian; Cowling, Rebecca; Bard, Jonathan; Malamas, Michael; Ellestad, George

    2004-09-01

    The fluorescence-based thermal shift assay is a general method for identification of inhibitors of target proteins from compound libraries. Using an environmentally sensitive fluorescent dye to monitor protein thermal unfolding, the ligand-binding affinity can be assessed from the shift of the unfolding temperature (Delta Tm) obtained in the presence of ligands relative to that obtained in the absence of ligands. In this article, we report that the thermal shift assay can be conducted in an inexpensive, commercially available device for temperature control and fluorescence detection. The binding affinities obtained from thermal shift assays are compared with the binding affinities measured by isothermal titration calorimetry and with the IC(50) values from enzymatic assays. The potential pitfalls in the data analysis of thermal shift assays are also discussed. PMID:15301960

  1. Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells

    SciTech Connect

    Olson, R.J.; Chekalyuk, A.M.; Sosik, H.M.

    1996-09-01

    Saturating-flash fluorescence techniques, which can provide information about the physiological state of phytoplankton, at present measure bulk water samples and so provide {open_quotes}averaged{close_quotes} values for all the fluorescent particles present. In analyzing natural samples, however, more detailed information about the distribution of photosynthetic characteristics among different cell types and(or) individual cells is desirable. Therefore we developed two methods for applying a {open_quotes}pump-during-probe{close_quotes} technique on a cell-by-cell basis. We used either an epifluorescence microscope or a flow cytometer to make time-resolved measurements of the increase in chlorophyll fluorescence induced by a rectangular excitation pulse of 100-{mu}s duration. We used a biophysical model of fluorescence induction to obtain information about the quantum yield of photochemistry in photosystem 2 (PS2) and the functional absorption cross-section for PS2. For several species (including the smallest phytoplankton, Prochlorococcus, which are 0.7 {mu}m in diameter), the maximum quantum yield of photochemistry in PS2 obtained by averaging data from many individual cells agreed well with estimates derived from bulk measurements of DCMU enhancement of Chl fluorescence. 40 refs., 9 figs.

  2. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  3. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  4. Development of a competitive fluorescence-based synaptosome binding assay for brevetoxins

    PubMed Central

    McCall, Jennifer R.; Jacocks, Henry M.; Baden, Daniel G.; Bourdelais, Andrea J.

    2012-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in beach goers. Consumption of either shellfish or finfish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of brevetoxin analogs and competitors to site 5 on these channels has historically been measured using a radioligand competition assay that is fraught with difficulty, including slow analysis time, production of radioactive waste, and cumbersome and expensive methods associated with the generation of radioactive labeled ligands. In this study, we describe the development of a novel fluorescent synaptosome binding assay for the brevetoxin receptor. BODIPY®-conjugated to PbTx-2 was used as the labeled ligand. The BODIPY®-PbTx-2 conjugate was found to displace [3H]-PbTx-3 from its binding site on VSSCs on rat brain synaptosomes with an equilibrium inhibition constant of 0.11 nM. We have shown that brevetoxin A and B analogs are all able to compete for binding with the fluorescent ligand. Most importantly, this assay was validated against the current site 5 receptor binding assay standard, the radioligand receptor assay for the brevetoxin receptor using [3H]-PbTx-3 as the labeled ligand. The fluorescence based assay yielded equilibrium inhibition constants comparable to the radioligand assay for all brevetoxin analogs. The fluorescence based assay was quicker, far less expensive, and did not generate radioactive waste or need radioactive facilities. As such, this fluorescence-based assay can be used to replace the current radioligand assay for site 5 on voltage-sensitive sodium channels and will be a vital tool for future experiments examining the binding affinity of various

  5. Quenched near-infrared fluorescent peptide substrate for HIV-1 protease assay

    NASA Astrophysics Data System (ADS)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.

    2006-02-01

    The HIV-1 protease enzyme is an excellent target for drug therapy of HIV infection/AIDS. To measure the protease activity and screen for potent protease inhibitors, homogeneous protease assays based on quenched fluorescent peptide substrates have been widely used as a high-throughput screening methods. The major problem in these assays is the compound interference or assay artifacts from colored or insoluble materials in the assay, e.g. assay components, screening library compounds, etc. We report in this paper a near-infrared fluorescence resonance energy transfer (NIRFRET) based HIV-1 protease assay that can dramatically reduce or completely eliminate these assay artifacts by using a novel near-IR donor-quencher pair and long wavelength excitation (780 nm) and detection (820+/-10 nm). In this assay, a HIV-1 protease peptide substrate is conjugated with a near-IR fluorescent donor (IRDye TM 800CW), and a novel near-IR non-fluorescent quencher (QC1) on opposite sides of the proteolytic cleavage site. The quencher, QC1, has extremely good spectral overlap of its absorption spectrum with the donor emission spectrum to ensure the efficient quenching of the donor's fluorescence. In the HIV-1 protease assay, this NIR-FRET system shows a large dynamic range, high signal to noise ratio, excellent Z'-factors, a wide range of DMSO tolerance, and no compound interference. This system provides a sensitive, robust assay for high-throughput screening (HTS) and can be readily adapted to other therapeutically significant protease targets.

  6. Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.

    PubMed

    Norris, Stephen R; Núñez, Marcos F; Verhey, Kristen J

    2015-03-10

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  7. Assay of Flippase Activity in Proteoliposomes Using Fluorescent Lipid Derivatives.

    PubMed

    Marek, Magdalena; Günther-Pomorski, Thomas

    2016-01-01

    Specific membrane proteins, termed lipid flippases, play a central role in facilitating the movement of lipids across cellular membranes. In this protocol, we describe the reconstitution of ATP-driven lipid flippases in liposomes and the analysis of their in vitro flippase activity based on the use of fluorescent lipid derivatives. Working with purified and reconstituted systems provides a well-defined experimental setup and allows to directly characterize these membrane proteins at the molecular level. PMID:26695033

  8. DNA detection assay based on fluorescence quenching of rhodamine B by gold nanoparticles: The optical mechanisms

    NASA Astrophysics Data System (ADS)

    Pylaev, T. E.; Volkova, E. K.; Kochubey, V. I.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2013-12-01

    The different ability of single- and double-stranded oligonucleotides to stabilize gold nanoparticles (GNPs) in solution has recently been used to design several label-free hybridization assays on the basis of optical changes associated with GNP aggregation. DNA hybridization can be detected through changes in dye fluorescence quenching by GNPs. Here we examine the mechanisms behind a fluorescent DNA assay for model systems containing DNA oligonucleotides, 15-nm GNPs, and Rhodamine B (RB). There was a direct correlation between complete disappearance of fluorescence and complete adsorption of all RB molecules on nonaggregated GNPs, as revealed by an analysis of the colloids' supernatant liquids. We show that both the inner filter effect and the quenching of the dye owing to its adsorption on GNPs contribute to the observed changes in fluorescence intensity. Therefore, both factors should be properly adjusted to optimize the assay sensitivity. In particular, the low detection limit of the fluorescent DNA assay lies in the range 30-100 pM, which is close to the data reported previously for colorimetric and dynamic light scattering DNA assays.

  9. Mutagenicity assays on fluorescent whitening agents using microorganisms.

    PubMed

    Kilbey, B J; Zetterberg, L G

    1975-01-01

    Six fluorescent whitening agents (FWAs) have been re-examined for their activity as inducers of cytoplasmic petite mutants and mitotic gene conversion in diploid yeast Saccharomyces cerebisiae and reversion from auxotrophy to prototrophy in Neurospora crassa, Escherichia coli and Salmonella typhimurium. The results provide no indication that the FWAs examinded produce mutagenic changes or any other alterations in the gene material. In a recent re-examination with Salmonella using the method of Ames et al., the four examined compounds failed to elicit a mutagenic response in the presence of rat liver postmitochondrial supernatant and cofactors. PMID:132347

  10. Homogeneous time resolved fluorescence assay to measure histamine release.

    PubMed

    Claret, Emmanuel J; Ouled-Diaf, Josy; Seguin, Patrick

    2003-12-01

    Histamine is a biogenic amine synthesized by the enzymatic decarboxylation of histidine. Implication of histamine in allergy is well described but histamine is also found in some specific neurones, functions as a neurotransmitter and regulates sleep/wake cycles, hormonal secretion, cardiovascular control and thermo-regulation. We have developed a TR-FRET histamine assay, based on the competition between sample histamine and allophycocyanine (XL665) labelled histamine for binding to a Europium cryptate (EuK) labelled antibody. As histamine is a small monoamine molecule, high affinity antibodies have been raised against carrier protein conjugated histamine. Therefore, sample histamine needs to be derivatized in the same way as the conjugated histamine, so that the antibody will have a similar affinity for both molecules. This acylation step is performed directly in wells and does not need to be done in separate vials, making handling easier for large numbers of samples. The incubation takes place at room temperature for 3 hours. The assay covers a measurement range of 1.56 to 400 nM and shows an analytical sensitivity of 1.3nM. We have shown that miniaturization of sample and reagents volumes down to 20 micro l does not alter these performances. This histamine release assay provides a particularly well adapted procedure for HTS and secondary screening compared to current heterogeneous methods. PMID:14683484

  11. Fluorescence polarization assays in high-throughput screening and drug discovery: a review

    NASA Astrophysics Data System (ADS)

    Hall, Matthew D.; Yasgar, Adam; Peryea, Tyler; Braisted, John C.; Jadhav, Ajit; Simeonov, Anton; Coussens, Nathan P.

    2016-06-01

    The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.

  12. Fluorescence-linked Antigen Quantification (FLAQ) Assay for Fast Quantification of HIV-1 p24Gag

    PubMed Central

    Gesner, Marianne; Maiti, Mekhala; Grant, Robert; Cavrois, Marielle

    2016-01-01

    The fluorescence-linked antigen quantification (FLAQ) assay allows a fast quantification of HIV-1 p24Gag antigen. Viral supernatant are lysed and incubated with polystyrene microspheres coated with polyclonal antibodies against HIV-1 p24Gag and detector antibodies conjugated to fluorochromes (Figure 1). After washes, the fluorescence of microspheres is measured by flow cytometry and reflects the abundance of the antigen in the lysate. The speed, simplicity, and wide dynamic range of the FLAQ assay are optimum for many applications performed in HIV-1 research laboratories.

  13. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids.

    PubMed

    Wang, Yuhong; Nugen, Sam R

    2013-10-01

    The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used. PMID:23525961

  14. Long term response of a Concanavalin-A based fluorescence glucose sensing assay

    NASA Astrophysics Data System (ADS)

    Locke, Andrea K.; Cummins, Brian M.; Abraham, Alexander A.; Coté, Gerard L.

    2015-03-01

    Competitive binding assays comprised of the protein Concanavalin A (ConA) have shown potential for use in continuous glucose monitoring devices. However, its time-dependent, thermal instability can impact the lifetime of these ConA based assays. In an attempt to design sensors with longer in vivo lifetimes, different groups have immobilized the protein to various surfaces. For example, Ballerstadt et al. have shown that immobilizing ConA onto the interior of a micro-dialysis membrane and allowing dextran to be freely suspended within solution allowed for successful in vivo glucose sensing up to 16 days. This work explores the glucose response of an assay comprised of modified ConA and a single fluorescently labeled competing ligand in free solution to increase the in vivo sensing lifetime without immobilization,. The behavior of this assay in the presence of varying glucose concentrations is monitored via fluorescence anisotropy over a 30 day period.

  15. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.

    PubMed

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  16. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    PubMed Central

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G.; Goldys, Ewa M.

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  17. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    SciTech Connect

    Quiter, Brian; Ludewigt, Bernhard; Ambers, Scott

    2011-06-30

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of gamma rays with specific energies that are characteristic of the emitting isotope. NRF promises the unique capability of directly quantifying a specific isotope without the need for unfolding the combined responses of several fissile isotopes as is required in other measurement techniques. We have analyzed the potential of NRF as a non-destructive analysis technique for quantitative measurements of Pu isotopes in spent nuclear fuel (SNF). Given the low concentrations of 239Pu in SNF and its small integrated NRF cross sections, the main challenge in achieving precise and accurate measurements lies in accruing sufficient counting statistics in a reasonable measurement time. Using analytical modeling, and simulations with the radiation transport code MCNPX that has been experimentally tested recently, the backscatter and transmission methods were quantitatively studied for differing photon sources and radiation detector types. Resonant photon count rates and measurement times were estimated for a range of photon source and detection parameters, which were used to determine photon source and gamma-ray detector requirements. The results indicate that systems based on a bremsstrahlung source and present detector technology are not practical for high-precision measurements of 239Pu in SNF. Measurements that achieve the desired uncertainties within hour-long measurements will either require stronger resonances, which may be expressed by other Pu isotopes, or require quasi-monoenergetic photon sources with intensities that are approximately two orders of magnitude higher than those currently being designed or proposed.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of

  18. Protecting Quantum Dot Fluorescence from Quenching to Achieve a Reliable Automated Multiplex Fluorescence In Situ Hybridization Assay.

    PubMed

    Zhang, Wenjun; Hubbard, Antony; Pang, Lizhen; Parkinson, Leslie Baca; Brunhoeber, Patrick; Wang, Yixin; Tang, Lei

    2015-09-01

    Quantum dots (QD) are novel inorganic fluorochromes that are ultra-bright, photo-stable, and available in multiple, highly-resolvable colors. QDs represent an ideal detection material for in situ hybridization (ISH) because they may provide unprecedented resolution and strong signal intensities that are not attainable with traditional fluorophores. Unfortunately, lack of reliability has been an impediment to widespread adoption of QD-based fluorescence in situ hybridization (QD FISH) technology. By optimizing QD-to-target accessibility, we have developed a QD FISH staining procedure that dramatically improves the reliability of an automated ERG/PTEN QD FISH assay (91% 1st pass rate). Here, we report improvements to the assay that protects QD fluorescence from quenching due to trace amounts of heavy metals and minimizes QD background signals. When using this method, highly-consistent staining was observed with the ERG/PTEN QD FISH assay in prostate tissue. Successful staining of several other clinically-relevant genetic markers was also possible. We further demonstrated improved reliability for determining HER2 gene status in breast cancer, identifying anaplastic lymphoma kinase (ALK) gene break-apart in non-small cell lung cancer, and detecting human papillomavirus 16 (HPV16) in cervical intraepithelial neoplasia. The enhanced QD FISH assay allows for examining complicated genetic aberrances without use of enzymatic amplification. Our optimized methods now demonstrate reliability sufficient for QD FISH technology to be a diagnostic tool in a clinical setting. PMID:26485928

  19. Osteoconductivity of Complex Biomaterials Assayed by Fluorescent-Engineered Osteoblast-like Cells.

    PubMed

    Manfrini, Marco; Mazzoni, Elisa; Barbanti-Brodano, Giovanni; Nocini, Pierfrancesco; D'agostino, Antonio; Trombelli, Leonardo; Tognon, Mauro

    2015-04-01

    Biomaterials employed for the bone regeneration can be assayed for specific features such as osteoconductivity and gene expression. In this study, the composite HA/collagen/chondroitin-sulfate biomaterial was investigated using an engineered human cell line, named Saos-eGFP. This cell line, a green fluorescent engineered human osteoblast-like cell, was employed as a cellular model for the in vitro study of biomaterial characteristics. The cytotoxicity was indirectly evaluated by fluorescence detection, osteoconductivity was assayed both by fluorescence and electron microscope analysis as well as cell morphology, whereas the RT-PCR technique was employed to assay gene expression. Saos-eGFP cells viability detection after 24 and 96 h of incubation showed that biomaterial enables the adhesion and proliferation of seeded cells as well as that of the plastic surface, the control. Fluorescence and scanning electron microscopy (SEM) analyses indicated that Saos-eGFP cells were homogeneously distributed on the HA granule surfaces, exhibiting cytoplasmic bridges, and were localized on the collagen-chondroitin sulfate extra-cellular matrix. An expression analysis of specific genes encoding for differentiation markers, showed that biomaterial assayed did not alter the osteogenic pathway of the Saos-eGFP cell line. Our assays confirm the cytocompatibility of this biomaterial, suggesting an osteoconductive capacity mediated by its chemical contents. We showed that the Saos-eGFP cellular model is suitable for in vitro biomaterial assays, and more specifically for assessing osteoconductivity. This result suggests that the cytocompatibility and osteoconductive features of the biomaterial assayed as bone substitute, could have a positive downstream effect on implant osteo-integration. PMID:25388843

  20. Identification of new quinic acid derivatives as histone deacetylase inhibitors by fluorescence-based cellular assay.

    PubMed

    Son, Dohyun; Kim, Chung Sub; Lee, Kang Ro; Park, Hyun-Ju

    2016-05-01

    A fluorescence-based cellular assay system was established to identify potential epigenetic modulator ligands. This assay method is to detect the de-repression of an EGFP reporter in cancer cells by the treatment of HDAC (histone deacetylase) or DNMT (DNA methyltransferase) inhibitor. Using this system, we conducted a preliminary screening of in-house natural product library containing extracts and pure compounds, and identified several active compounds. Among them, novel quinic acid derivatives were recognized as excellent HDAC inhibitors by both enzymatic and cell-based HDAC assays. PMID:26996372

  1. New artificial fluoro-cofactor of hydride transfer with novel fluorescence assay for redox biocatalysis.

    PubMed

    Zhang, Lei; Yuan, Jun; Xu, Yufang; Zhang, Y-H Percival; Qian, Xuhong

    2016-05-11

    A new artificial fluoro-cofactor was developed for the replacement of natural cofactors NAD(P), exhibiting a high hydride transfer ability. More importantly, we established a new and fast screening method for the evaluation of the properties of artificial cofactors based on the fluorescence assay and visible color change. PMID:27100122

  2. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  3. Evaluation of Sustained BMP-2 Release Profiles Using a Novel Fluorescence-Based Retention Assay

    PubMed Central

    Jang, Jun-Hyeog

    2015-01-01

    The purpose of this study was to develop and characterize a novel fluorescence-based retention assay for the evaluation of the release profile of bone morphogenetic protein-2 (BMP-2) released from bone graft carrier. In this study, we evaluated the binding, release kinetics, and delivery efficacies of BMP-2 incorporated into hydroxyapatite (HA) bone grafts. The evaluation of the release profile of BMP-2 from HA bone grafts using a fluorescence-based retention assay revealed initial burst releases from the HA bone grafts followed by long sustained releases up to 14 weeks. The sustained biological activity of the released BMP-2 from HA bone grafts over the full 14-week period supports a long sustained mechanism via fluorescence-based retention assay. Thus, the results from this study show that BMP-2 could be incorporated into HA bone grafts for sustained release over a prolonged period of time with retention of bioactivity and our fluorescence-based retention assay, which is principally detecting the retention profile of BMP-2 in HA bone grafts, is more accurate than conventionally collecting the released BMP-2 for evaluation of BMP-2 release profiles. PMID:25901352

  4. beta-Galactosidase activity assay using far-red-shifted fluorescent substrate DDAOG.

    PubMed

    Gong, Haibiao; Zhang, Bin; Little, Garrick; Kovar, Joy; Chen, Huaxian; Xie, Wen; Schutz-Geschwender, Amy; Olive, D Michael

    2009-03-01

    beta-Galactosidase (beta-gal) is commonly used as a reporter gene in biological research, and a wide variety of substrates have been developed to assay its activity. One substrate, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) beta-d-galactopyranoside (DDAOG), can be cleaved by beta-gal to produce 7-hydroxy-9H(I,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). On excitation, DDAO generates a far-red-shifted fluorescent signal. Using this substrate, we developed a beta-gal activity assay method. The DDAO signal was stable for at least 18h. The signal intensity was linearly related to both the enzyme amount and substrate concentration. An optimized buffer for the beta-gal/DDAOG assay was also formulated. When compared with the colorimetric substrate o-nitrophenyl-beta-d-galactopyranoside (ONPG), the signal-to-background ratio of the DDAOG method was approximately 12-fold higher. The beta-gal/DDAOG assay method was also tested in transiently transfected cells employing both pharmacologically and genetically inducible gene expression systems. The ability to detect signal induction is comparable to a similar assay using luciferase as the signal generating moiety. The beta-gal/DDAOG assay method should provide a fluorescent reporter assay system for the wide variety of beta-gal systems currently in use. PMID:19103143

  5. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.

    PubMed

    Peterson, Eric M; Manhart, Michael W; Harris, Joel M

    2016-06-21

    Single-molecule imaging of fluorescently labeled biomolecules is a powerful technique for measuring association interactions; however, care must be taken to ensure that the fluorescent labels do not influence the system being probed. Label-free techniques are needed to understand biomolecule interactions free from the influence of an attached label, but these techniques often lack sensitivity and specificity. To solve these challenges, we have developed a competitive assay that uses single-molecule detection to track the population of unlabeled target single-stranded DNA (ssDNA) hybridized with probe DNA immobilized at a glass interface by detecting individual duplexes with a fluorescently labeled "tracer" ssDNA. By labeling a small fraction (<0.2%) of target molecules, the "tracer" DNA tracks the available probe DNA sites without significant competition with the unlabeled target population. Single-molecule fluorescence imaging is a good read-out scheme for competitive assays, as it is sufficiently sensitive to detect tracer DNA on substrates with relatively low densities of probe DNA, ∼10(-3) of a monolayer, so that steric interactions do not hinder DNA hybridization. Competitive assays are used to measure the association constant of complementary strand DNA hybridization of 9- and 10-base pair targets, where the tracer assay predicts the same association constant as a traditional displacement competitive assay. This methodology was used to compare the Ka of hybridization for identical DNA strands differing only by the presence of a fluorescent label tethered to the 5' end of the solution-phase target. The addition of the fluorescent label significantly stabilizes the DNA duplex by 3.6 kJmol(-1), adding more stability than an additional adenine-thymine base-pairing interaction, 2.7 kJmol(-1). This competitive tracer assay could be used to screen a number of labeled and unlabeled target DNA strands to measure the impact of fluorescent labeling on duplex stability

  6. Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay

    PubMed Central

    Kim, Jinsu; Adhikari, Meena; Dhamane, Sagar; Hagström, Anna E. V.; Kourentzi, Katerina; Strych, Ulrich; Willson, Richard C.; Conrad, Jacinta C.

    2015-01-01

    We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently-labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses. PMID:25581289

  7. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition.

    PubMed

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu

    2015-01-01

    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates. PMID:25517425

  8. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay.

    PubMed Central

    Chehab, F F; Kan, Y W

    1989-01-01

    We have developed a color complementation assay that allows rapid screening of specific genomic DNA sequences. It is based on the simultaneous amplification of two or more DNA segments with fluorescent oligonucleotide primers such that the generation of a color, or combination of colors, can be visualized and used for diagnosis. Color complementation assay obviates the need for gel electrophoresis and has been applied to the detection of a large and small gene deletion, a chromosomal translocation, an infectious agent, and a single-base substitution. DNA amplification with fluorescent oligonucleotide primers has also been used to multiplex and discriminate five different amplified DNA loci simultaneously. Each primer set is conjugated to a different dye, and the fluorescence of each dye respective to its amplified DNA locus is scored on a fluorometer. This method is valuable for DNA diagnostics of genetic, acquired, and infectious diseases, as well as in DNA forensics. It also lends itself to complete automation. Images PMID:2594760

  9. A fluorescence-based assay for human type II phospholipase A2.

    PubMed

    Blanchard, S G; Harris, C O; Parks, D J

    1994-11-01

    A fluorescence assay for quantitation of human Type II Phospholipase A2 activity is described. Hydrolysis of 1-Acyl-2-(N-4-nitrobenzo-2-oxo-1,3-diazole)aminododecanoyl Phosphatidylethanolamine is accompanied by an increase in fluorescence intensity that is linearly proportional to enzyme activity. Substrate is prepared in the absence of detergents as a sonicated dispersion in aqueous buffer. Hydrolysis of the corresponding phosphatidylcholine derivative is more than an order of magnitude slower under identical assay conditions. A plot of initial rate versus substrate concentration could be fit to a simple Michaelis-Menten relationship with Km = 13 microM. In contrast to commonly used radiochemical assays for this enzyme, the method described here is continuous and allows estimation of enzyme activity without separation of substrate from product. Thus, the method is suitable for both kinetic analysis and large-scale screening using automated readers for 96-well tissue culture plates. The fluorescence-based assay displays advantages over other continuous assays for human Type II Phospholipase A2 based on (a) high sensitivity and (b) the use of a commercially available substrate. PMID:7864369

  10. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (chlorophyta).

    PubMed

    Kvíderová, Jana

    2010-12-01

    Three methods of algal assays--the standard assay, microassay, and the proposed fluorescence assay--are compared from the point of view of reliability of EC50 detection, the minimum required time for the detection, sensitivity of individual measurement, i.e. at which cell density the particular assay can be used for EC50 estimation, and the time stability of the EC50 values. The assays were performed with green alga Chlorella kessleri strain LARG/1 growing in potassium dichromate solution in Z-medium ranging from 0.01 to 100 mg Cr L⁻¹. The inoculation cell density was set according to the standards to 10⁴ cells mL⁻¹ and according to spectrophotometer/plate reader detection limit. The average EC50 ranged from 0.096 to 0.649 mg Cr L⁻¹ and there were no significant differences in EC50 between the assay type and the inoculation methods with the exception of the significant difference between EC(c)50₇₂ (EC50 established from biomass measured as chlorophyll a concentration after 72 h of cultivation) in the standard assay and EC(r)50 (EC50 derived from growth rate) in the microassay in the standard inoculation experiment due to low variability of their values. The EC(f)50 (EC50 derived from variable fluorescence measurement) values correspond to EC50 values derived from the growth rates. Fluorescence measurement revealed the toxic effect of the chromium after 24 h of exposure at cell density of 5 x 10⁴ cells mL⁻¹, less by half than other used assay methods. The positive correlation of EC(f)50 and time was found in the standard inoculation experiment but opposite effect was observed at the spectrophotometric one. PMID:19551890

  11. Miniaturizable homogenous time-resolved fluorescence assay for carboxypeptidase B activity.

    PubMed

    Ferrer, Marc; Zuck, Paul; Kolodin, Garrett; Mao, Shi Shan; Peltier, Richard R; Bailey, Carolyn; Gardell, Stephen J; Strulovici, Berta; Inglese, James

    2003-06-01

    An epitope-unmasking, homogeneous time-resolved fluorescence (HTRF) assay has been developed for measuring carboxypeptidase B (CPB) activity in a miniaturized high-throughput screening format. The enzyme substrate (biotin-RYRGLMVGGVVR-OH) is cleaved by CPB at the C terminus, causing release of the C-terminal Arg residue. The product (biotin-RYRGLMVGGVV-OH) is recognized specifically by a monoclonal antibody (G2-10) which is labeled with Eu(3+)-cryptate ([Eu(3+)]G2-10 mAb), and the complex is detected by fluorescence resonance energy transfer using streptavidin labeled with allophycocyanin ([XL665]SA). The CPB HTRF assay is readily adapted from 96- to 1536-well format as a robust (Z(')>0.5) assay for high-throughput screening. PMID:12729605

  12. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay.

    PubMed

    Sakamoto, Seiichi; Tanizaki, Yusuke; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-01

    A chimera of green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon optimized for mammalian expression, with single-chain variable fragment (scFv) antibody against ginsenoside Re (GRe-scFv), named fluobody, has been successfully expressed in Escherichia coli (E. coli) to develop simple, speedy, and sensitive fluorescence-linked immunosorbent assay (FLISA). Two chimera proteins were constructed to contain GRe-scFv at the C-terminus of AcGFP (C-fluobody) and at the N-terminus of AcGFP (N-fluobody). These fluobodies were then purified by ion metal affinity chromatography and refolded by stepwise dialysis. The characterization of both fluobodies revealed that C-fluobody was found to be appropriate probe for FLISA as compare with N-fluobody. Furthermore, improvement of limit of detection (LOD) was observed in FLISA using C-fluobody (10 ng/mL) due to its strong fluorescence intensity of AcGFP compared with conventional enzyme-linked immunosorbent assay (ELISA) using parental monoclonal antibody against ginsenoside Re (G-Re), MAb-4G10 (100 ng/mL). Since some steps required in ELISA can be avoided in this present FLISA, speedy and sensitive immunoassay also could be performed using fluobody instead of monoclonal antibody and scFv. PMID:21277981

  13. A fluorescence-based assay for Core 1 β3galactosyltransferase (T-synthase) activity.

    PubMed

    Ju, Tongzhong; Cummings, Richard D

    2013-01-01

    Mucin-type O-glycans on glycoproteins in animal cells play important roles in many biological processes. Core 1 β3galactosyltransferase (Core 1 β3GalT, T-synthase) is a key enzyme in the O-glycan biosynthetic pathway. Emerging evidence has shown the importance of O-glycans and the absolute requirement of T-synthase in this pathway. The assessment of the T-synthase activity has historically been conducted using a radioactive method. Here we describe a fluorescence-based assay procedure for T-synthase activity. T-synthase utilizes the acceptor substrate 4-methylumbelliferone-α-GalNAc (GalNAcα-(4-MU)) and the donor substrate UDP-Gal to synthesize the disaccharide product Galβ1,3GalNAcα-(4-MU) structure. This product is specifically hydrolyzed by endo-α-N-acetylgalactosaminidase (O-glycosidase) releasing free 4-MU. Free 4-MU is highly fluorescent at pH 9.6-10 and can be easily measured by a fluorescent detector (Ex: 355 nm; Em: 460 nm). This fluorescence-based T-synthase assay is simple, sensitive, reproducible, not affected by enzyme source, and adaptable for high-throughput assays. PMID:23765650

  14. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    PubMed

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  15. Fluorescent vesicles for signal amplification in reverse phase protein microarray assays.

    PubMed

    Bally, Marta; Syed, Shahida; Binkert, Andreas; Kauffmann, Ekkehard; Ehrat, Markus; Vörös, Janos

    2011-09-15

    Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning. PMID:21669176

  16. Development of a Fluorescence Assay for the Characterization of Brevenal Binding to Rat Brain Synaptosomes

    PubMed Central

    2015-01-01

    The marine dinoflagellate Karenia brevis produces a family of neurotoxins known as brevetoxins. Brevetoxins elicit their effects by binding to and activating voltage-sensitive sodium channels (VSSCs) in cell membranes. K. brevis also produces brevenal, a brevetoxin antagonist, which is able to inhibit and/or negate many of the detrimental effects of brevetoxins. Brevenal binding to VSSCs has yet to be fully characterized, in part due to the difficulty and expense of current techniques. In this study, we have developed a novel fluorescence binding assay for the brevenal binding site. Several fluorescent compounds were conjugated to brevenal to assess their effects on brevenal binding. The assay was validated against the radioligand assay for the brevenal binding site and yielded comparable equilibrium inhibition constants. The fluorescence-based assay was shown to be quicker and far less expensive and did not generate radioactive waste or need facilities for handling radioactive materials. In-depth studies using the brevenal conjugates showed that, while brevenal conjugates do bind to a binding site in the VSSC protein complex, they are not displaced by known VSSC site specific ligands. As such, brevenal elicits its action through a novel mechanism and/or currently unknown receptor site on VSSCs. PMID:25226846

  17. A Vinblastine Fluorescent Probe for Pregnane X Receptor in a Time-Resolved Fluorescence Resonance Energy Transfer Assay

    PubMed Central

    Lin, Wenwei; Chen, Taosheng

    2013-01-01

    The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug-drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and non-radioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand-PXR interactions. Here we report the characterization of BODIPY FL Vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL Vinblastine is a unique chemical entity different from either vinblastine or the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene in its function as a high-affinity human PXR ligand. We describe a BODIPY FL Vinblastine-based human PXR Time-Resolved Fluorescence Resonance Energy Transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL Vinblastine–based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR. PMID:24044991

  18. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    PubMed Central

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  19. Enhanced fluorescence anisotropy assay for human cardiac troponin I and T detection.

    PubMed

    Qiao, Yanling; Tang, Hongmin; Munske, Gerhard R; Dutta, Prashanta; Ivory, Cornelius F; Dong, Wen-Ji

    2011-11-01

    Human cardiac troponin I (hcTnI) and troponin T (hcTnT) are the biomarkers of choice for the diagnosis of cardiac diseases. In an effort to improve assay sensitivity, in this study we developed a novel approach to simultaneously detect hcTnI and hcTnT in homogenous solutions by monitoring enhanced-fluorescence-anisotropy changes. Specifically, our design was based on a competition assay by measuring anisotropy change of fluorophore-labeled peptides bound to primary monoclonal antibodies in the presence of nano-gold-modified secondary antibody in response to the presence of target proteins. Enhanced-fluorescence-anisotropy resulted from interaction between the primary antibody and the nano-gold-labeled secondary antibody, which significantly increased the size and decreased tumbling motion of the complex of peptide-antibodies. The measurements were performed to detect hcTnI and hcTnT either individually or simultaneously in a homogenous buffer solution and in the solutions containing human plasma. Our results showed that when fluorescence emission was monitored at a single wavelength selected by a monochromator the assay at all experimental conditions had excellent linear response to the target proteins within the concentration range of 0.5-40 nM. The detection limit is 0.5 nM for both hcTnI and hcTnT in the presence of human plasma. However, when fluorescence emission was monitored using a cutoff filter, the linear response of the assay to the target proteins is within 15-500 pM. The detection limit is 15 pM which is close to the recommended 99th percentile cutoff point for concentrations of hcTnI and hcTnT tests to discriminate healthy and diseased conditions. Homogenous nature, rapid response time, and easy implementation of our assay design make it a useful tool for disease biomarker and protein sensing. PMID:21647606

  20. Enhanced Fluorescence Anisotropy Assay for Human Cardiac Troponin I and T Detection

    PubMed Central

    Qiao, Yanling; Tang, Hongmin; Munske, Gerhard R.; Dutta, Prashanta; Ivory, Cornelius F.

    2012-01-01

    Human cardiac troponin I (hcTnI) and troponin T (hcTnT) are the biomarkers of choice for the diagnosis of cardiac diseases. In an effort to improve assay sensitivity, in this study we developed a novel approach to simultaneously detect hcTnI and hcTnT in homogenous solutions by monitoring enhanced-fluorescence-anisotropy changes. Specifically, our design was based on a competition assay by measuring anisotropy change of fluorophore-labeled peptides bound to primary monoclonal antibodies in the presence of nano-gold-modified secondary antibody in response to the presence of target proteins. Enhanced-fluorescence-anisotropy resulted from interaction between the primary antibody and the nano-gold-labeled secondary antibody, which significantly increased the size and decreased tumbling motion of the complex of peptide-antibodies. The measurements were performed to detect hcTnI and hcTnT either individually or simultaneously in a homogenous buffer solution and in the solutions containing human plasma. Our results showed that when fluorescence emission was monitored at a single wavelength selected by a monochromator the assay at all experimental conditions had excellent linear response to the target proteins within the concentration range of 0.5–40 nM. The detection limit is 0.5 nM for both hcTnI and hcTnT in the presence of human plasma. However, when fluorescence emission was monitored using a cutoff filter, the linear response of the assay to the target proteins is within 15–500 pM. The detection limit is 15 pM which is close to the recommended 99th percentile cutoff point for concentrations of hcTnI and hcTnT tests to discriminate healthy and diseased conditions. Homogenous nature, rapid response time, and easy implementation of our assay design make it a useful tool for disease biomarker and protein sensing. PMID:21647606

  1. Established and emerging fluorescence-based assays for G-protein function: Ras-superfamily GTPases.

    PubMed

    Rojas, Rafael J; Kimple, Randall J; Rossman, Kent L; Siderovski, David P; Sondek, John

    2003-06-01

    Ras and Rho GTPases are signaling proteins that regulate a variety of physiological events and are intimately linked to the progression of cancer. Recently, a variety of fluorescence-based assays have been refined to monitor activation of these GTPases. This review summarizes current fluorescence-based techniques for studying Ras superfamily GTPases with an emphasis on practical examples and high-throughput applications. These techniques are not only useful for biochemical characterization of Ras superfamily members, but will also facilitate the discovery of small molecule therapeutics designed to inhibit signal transduction mediated by GTPases. PMID:12769685

  2. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection. PMID:27283884

  3. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay

    PubMed Central

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-01-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes. PMID:26939886

  4. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay.

    PubMed

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-06-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop-loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop-loop interactions in hammerhead ribozymes. PMID:26939886

  5. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.

    PubMed

    Ankireddy, S R; Kim, Jongsung

    2016-03-01

    A microfluidic bead-based nucleic acid sensor for the detection of tumor causing N-Ras genes using quantum dots has been developed. Presently, quantum dots-bead-DNA probe based hybridization detection methods are often called as 'bead based assays' and their success is substantially influenced by the dispensing and manipulation capability of the microfluidic technology. This study reports the detection of N-Ras cancer gene by fluorescence quenching of quantum dots immobilized on the surface of polystyrene beads. A microfluidic chip was constructed in which the quantum dots-bead-DNA probes were packed in the channel. The target DNA flowed across the beads and hybridized with immobilized probe sequences. The target DNA can be detected by the fluorescence quenching of the quantum dots due to their transfer of emission energy to intercalation dye after DNA hybridization. The mutated gene also induces fluorescence quenching but with less degree than the perfectly complementary target DNA. PMID:27455729

  6. Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone.

    PubMed

    Thom, Nicole K; Lewis, Gregory G; Yeung, Kimy; Phillips, Scott T

    2014-01-01

    Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-D-galactosidase was measured quantitatively down to 700 pM levels. This Communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique. PMID:24490035

  7. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion.

    PubMed

    Vuojola, Johanna; Riuttamäki, Terhi; Kulta, Essi; Arppe, Riikka; Soukka, Tero

    2012-05-01

    Caspase proteases are key mediators in apoptosis and thus of great interest in pharmaceutical industry. Enzyme-activity assays are commonly employed in the screening of protease inhibitors that are potential drug candidates. Conventional homogeneous fluorescence-based assays are susceptible to autofluorescence originating from biological material. This background autofluorescence can be eliminated by using upconverting phosphors (UCPs) that emit visible light upon excitation at near-infrared. In the assay energy was transferred from a UCP-donor to a conventional fluorophore acceptor that resided at one end of a caspase-3-specific substrate peptide. Attached to the other end was a quencher molecule that was used to attenuate the acceptor emission through intramolecular energy transfer in an intact peptide. In non-inhibitory conditions the enzyme reaction separated the fluorophore from the quencher and the emission of the fluorophore was recovered. The method was applied for the detection and characterization of a known caspase-3 inhibitor Z-DEVD-FMK, and the assay gave IC(50) values of approximately 13 nM for this inhibitor. We have demonstrated the applicability of UCPs on a fluorescence-quenching-based homogeneous enzyme-activity assay for the detection of caspase-3 inhibitors. The use of near-infrared excitable UCPs enables inexpensive instrumentation and total elimination of autofluorescence, while the use of an internally quenched substrate molecule diminishes the background resulting from radiatively excited acceptor molecules. The reduction of autofluorescence and radiative background result in high signal-to-background ratios (ratios of approximately 100 were obtained). By further utilizing assay miniaturization and signal enhancement in a white microtitration plate, a significant reduction in the reagent consumption can be achieved rendering the assay applicable for high-throughput screening. PMID:22502613

  8. Fluorescence assay for the detection of adherent Candida yeasts to target cells in microtest plates.

    PubMed

    Borg-von Zepelin, M; Wagner, T

    1995-01-01

    We describe an assay based on photometric analysis for the measurement of adherence of Candida species to epithelial target cells (Vero cell line). Adherent Candida cells were detected by staining the cells with the fluorescent dye Calcofluor white (CFW), which binds to chitin and glucan in the yeasts. The tests were performed on microtest plates, which were analysed automatically by fluorescence plate readers. The assay is based on the following steps: (i) coating of the microtest plates with target cells (e.g. Vero cells); (ii) infection with Candida: (iii) staining of Candida with CFW; (iv) rinsing to remove non-adherent Candida cells and unbound dye; (v) detection of adherent fluorescent Candida cells. The test was able to detect 4 x 10(4) cells ml-1. The standard deviation was +/- 8%. Day-to-day variation was +/- 10% at most. The adherence of strains of different Candida species was assayed by a standard procedure. The results confirmed the order of adherence, with C. albicans ranking first, followed by C. tropicalis, C. parapsilosis and C. glabrata. PMID:8569807

  9. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  10. Alkaline phosphatase assay using a near-infrared fluorescent substrate merocyanine 700 phosphate.

    PubMed

    Gong, Haibiao; Little, Garrick; Cradduck, Mark; Draney, Daniel R; Padhye, Nisha; Olive, D Michael

    2011-05-15

    Alkaline phosphatase (ALP) is a phosphomonoester hydrolase that is commonly used as a conjugating enzyme in biological research. A wide variety of substrates have been developed to assay its activity. In this study, we developed an ALP assay method utilizing merocyanine 700 (MC700) based substrate MC700 phosphate (MC700p). MC700 is a near-infrared fluorescent merocyanine dye, and has excitation/emission maxima at 686 nm/722 nm in ALP assay buffer. Upon hydrolysis by ALP, MC700p is converted to MC700. The fluorescence of MC700 is dependent on the pH and detergent concentration in the buffer. The fluorescence signal produced by MC700p hydrolysis is linearly related to the ALP amount and substrate concentration. A stop solution containing EDTA could be used to stop the ALP/MC700p reaction. It was also demonstrated that MC700p could substitute pNpp as the ALP substrate in a commercial 17β-Estradiol enzyme immunoassay kit. PMID:21482307

  11. Real-time quantification of fatty acid uptake using a novel fluorescence assay.

    PubMed

    Liao, Jinfang; Sportsman, Richard; Harris, Jeff; Stahl, Andreas

    2005-03-01

    Uptake of nonesterified long-chain fatty acids (LCFAs) into many cell types and organs such as liver, heart, intestine, and skeletal muscle occurs primarily through a saturable, protein-mediated mechanism. Membrane proteins that increase the uptake of LCFAs, such as FAT/CD36 and fatty acid transport proteins, represent significant therapeutic targets for the treatment of metabolic disorders, including type 2 diabetes. However, currently available methods for the quantification of LCFA uptake neither allow for real-time measurements of uptake kinetics nor are ideally suited for the development of LCFA uptake inhibitors in high-throughput screens. To address both problems, we developed a LCFA uptake assay using a fluorescently labeled fatty acid and a nontoxic cell-impermeable quenching agent that allows fatty acid transport to be measured in real time using fluorescence plate readers or standard fluorescence microscopy. With this assay, we faithfully reproduced known differentiation- and hormone-induced changes in LCFA uptake by 3T3-L1 cells and determined LCFA uptake kinetics with previously unobtainable temporal resolution. Applications of this novel assay should facilitate new insights into the biology of fatty acid uptake and provide new means for obesity-related drug discovery. PMID:15547301

  12. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    PubMed

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis. PMID:26807518

  13. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    PubMed

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. PMID:22410281

  14. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents.

    PubMed

    Lee, JaeHo; Lee, SeungJun; Lee, ByungMan; Roh, KyungBaeg; Park, DeokHoon; Jung, EunSun

    2015-01-01

    For screening of skin-whitening ingredients that modulate inhibition of melanogenesis, tyrosinase promoter-based assay using a three-dimensional (3D) spheroid culture technique is a beneficial tool to improve the accuracy of raw material screening in cosmetics through mimicking of the in vivo microenvironment. Although the advantages of high-throughput screening (HTS) are widely known, there has been little focus on specific cell-based promoter assays for HTS in identifying skin-whitening ingredients that inhibit accumulation of melanin. The aim of this study was therefore to develop a large-scale compatible assay through pTyr-EGFP, an enhanced green fluorescent protein (EGFP)-based tyrosinase-specific promoter, to seek potential melanogenesis inhibitors for cosmetic use. Herein, a stably transfected human melanoma cell line expressing EGFP under the control of a 2.2-kb fragment derived from the tyrosinase gene was generated. Spontaneous induction of the tyrosinase promoter by 3D spheroid culture resulted in increased expression of EGFP, providing a significant correlation with the tyrosinase mRNA level, and subsequent inhibition of tyrosinase activity. Importantly, the pTyr-EGFP system provided successful tracking of the changes in the live image and real-time monitoring. Thus tyrosinase promoter-based fluorescent assay using a 3D spheroid culture can be useful as a screening system for exploring the efficiency of anti-melanogenesis ingredients. PMID:26179334

  15. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands.

    PubMed Central

    Eggleston, A K; Rahim, N A; Kowalczykowski, S C

    1996-01-01

    We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids. PMID:8614617

  16. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    PubMed

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  17. A continuous fluorescent enzyme assay for early steps of lipid A biosynthesis

    PubMed Central

    Jenkins, Ronald J.; Dotson, Garry D.

    2012-01-01

    UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(R-3-hydroxyacyl)-glucosamine acyltransferase (LpxD) catalyze the first and third steps of Lipid A biosynthesis, respectively. Both enzymes have been found to be essential for survival among Gram-negative bacteria which synthesize lipopolysaccharide, and are viable targets for antimicrobial development. Catalytically, both acyltransferases catalyze an acyl-acyl carrier protein (ACP) dependent transfer of a fatty acyl moiety to a UDP-glucosamine core ring. Herein, we exploit the single free-thiol unveiled on holo-ACP after transfer of the fatty acyl group to the glucosamine ring using the thiol specific labeling reagent, ThioGlo. The assay is continuously monitored as a change in fluorescence at λex = 379 nm and λem = 513 nm using a microtiter plate reader. This assay marks the first continuous and non-radioactive assay for either acyltransferase. PMID:22381368

  18. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    PubMed

    Farino, Zachary J; Morgenstern, Travis J; Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  19. Application of a High-throughput Fluorescent Acetyltransferase Assay to Identify Inhibitors of Homocitrate Synthase

    PubMed Central

    Bulfer, Stacie L.; McQuade, Thomas J.; Larsen, Martha J.; Trievel, Raymond C.

    2011-01-01

    Homocitrate synthase (HCS) catalyzes the first step of L-lysine biosynthesis in fungi by condensing acetyl-Coenzyme A and 2-oxoglutarate to form 3R-homocitrate and Coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust, fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of ~41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized over 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases and enzymes involved in lipid metabolism. PMID:21073853

  20. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  1. New In Vitro Phenotypic Assay for Epilepsy: Fluorescent Measurement of Synchronized Neuronal Calcium Oscillations

    PubMed Central

    Pacico, Nathalie; Mingorance-Le Meur, Ana

    2014-01-01

    Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology. PMID:24416277

  2. Five-Antigen Fluorescent Bead-Based Assay for Diagnosis of Lyme Disease.

    PubMed

    Embers, Monica E; Hasenkampf, Nicole R; Barnes, Mary B; Didier, Elizabeth S; Philipp, Mario T; Tardo, Amanda C

    2016-04-01

    The systematically difficult task of diagnosing Lyme disease can be simplified by sensitive and specific laboratory tests. The currently recommended two-tier test for serology is highly specific but falls short in sensitivity, especially in the early acute phase. We previously examined serially collected serum samples fromBorrelia burgdorferi-infected rhesus macaques and defined a combination of antigens that could be utilized for detection of infection at all phases of disease in humans. The fiveB. burgdorferiantigens, consisting of OspC, OspA, DbpA, OppA2, and the C6 peptide, were combined into a fluorescent cytometric bead-based assay for the detection ofB. burgdorferiantigen-specific IgG antibodies. Samples from Lyme disease patients and controls were used to determine the diagnostic value of this assay. Using this sample set, we found that our five-antigen multiplex IgG assay exhibited higher sensitivity (79.5%) than the enzyme immunoassay (EIA) (76.1%), the two-tier test (61.4%), and the C6 peptide enzyme-linked immunosorbent assay (ELISA) (77.2%) while maintaining specificity over 90%. When detection of IgM was added to the bead-based assay, the sensitivity improved to 91%, but at a cost of reduced specificity (78%). These results indicate that the rational combination of antigens in our multiplex assay may offer an improved serodiagnostic test for Lyme disease. PMID:26843487

  3. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    PubMed

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  4. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence.

    PubMed

    Yang, Xiaoming; Zhuo, Yan; Zhu, Shanshan; Luo, Yawen; Feng, Yuanjiao; Xu, Yan

    2015-02-15

    Herein, we have successfully built up connections between nanoparticles and nanoclusters, and further constructed a surface-enhanced fluorescence (SEF) strategy based on the two types of nanomaterials for selectively assaying carcinoembryonic antigen (CEA). Specifically, silver nanoclusters provided the original fluorescence signal, while gold nanoparticles modified with DNA served as the fluorescence enhancer simultaneously. On the basis of this proposed nano-system, the two nanomaterials were linked by CEA-aptamer, thus facilitating SEF occurring. Nevertheless, more competitive interactions between CEA and CEA-aptamer emerged once CEA added, leading to SEF failed and their fluorescence decreased. Significantly, this creative method was further applied to detect CEA, and showed the linear relationship between the fluorescence intensity and CEA concentrations in the range of 0.01-1 ng mL(-1) with a detection limit of 3 pg mL(-1) at a signal-to-noise ratio of 3, demonstrating its sensitivity and promising towards multiple applications. On the whole, this approach we established may broaden potential ways of combining nanoparticles and nanoclusters for detecting trace targets in bioanalytical fields. PMID:25259877

  5. Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor.

    PubMed

    Xiao, Sai Jin; Hu, Ping Ping; Li, Yuan Fang; Huang, Cheng Zhi; Huang, Tao; Xiao, Geng Fu

    2009-10-15

    An aptamer-participated haprin structure was designed by employing cellular prion protein (PrP(C)) as a model protein, and thus an aptamer-mediated turn-on fluorescence assay for proteins was developed in this contribution. The designed aptamer-participated haprin structure consists of three segments. Namely, an aptamer sequence located in the loop, three guanine bases at 3'-terminal, and a fluophor modified at 5'-terminal. It was found that the guanine bases at the 3'-terminal could quench the fluorescence of the fluophor such as tetramethyl-6-carboxyrhodamine (TAMRA) at the 5'-terminal about 76.6% via electron transfer if the guanine bases are close enough to the fluophor, and the quenched fluorescence could get restored when the target protein is present since the interaction, which could be confirmed by measuring fluorescence lifetime, between TAMRA-aptamer and the target protein forces the guanines away from TAMRA so that TAMRA-modified aptamer changes into turn-on state. A linear relationship was then constructed between the turn-on fluorescence intensity and the concentration of PrP(C) in the range from 1.1 to 44.7 microg/mL with a limit of detection of 0.3 microg/mL (3sigma). PMID:19635360

  6. Development of a RapidFire mass spectrometry assay and a fluorescence assay for the discovery of kynurenine aminotransferase II inhibitors to treat central nervous system disorders.

    PubMed

    Lu, Hao; Kopcho, Lisa; Ghosh, Kaushik; Witmer, Mark; Parker, Michael; Gupta, Sumit; Paul, Marilyn; Krishnamurthy, Prasad; Laksmaiah, Basanth; Xie, Dianlin; Tredup, Jeffrey; Zhang, Litao; Abell, Lynn M

    2016-05-15

    Kynurenine aminotransferases convert kynurenine to kynurenic acid and play an important role in the tryptophan degradation pathway. Kynurenic acid levels in brain have been hypothesized to be linked to a number of central nervous system (CNS) disorders. Kynurenine aminotransferase II (KATII) has proven to be a key modulator of kynurenic acid levels in brain and, thus, is an attractive target to treat CNS diseases. A sensitive, high-throughput, label-free RapidFire mass spectrometry assay has been developed for human KATII. Unlike other assays, this method is directly applicable to KATII enzymes from different animal species, which allows us to select proper animal model(s) to evaluate human KATII inhibitors. We also established a coupled fluorescence assay for human KATII. The short assay time and kinetic capability of the fluorescence assay provide a useful tool for orthogonal inhibitor validation and mechanistic studies. PMID:26874021

  7. A fluorescence turn on assay for alkaline phosphatase based on the Cu(2+) catalyzed Fenton-like reaction.

    PubMed

    Zhang, Qingfeng; Zhang, Cuiyun; Shahzad, Sohail Anjum; Yu, Cong

    2016-09-01

    A fluorescence turn-on assay was established for ALP (alkaline phosphatase) based on Cu(2+) catalyzed Fenton-like reaction and Graphene Oxide (GO). GO was utilized to quench the fluorescence of fluorescein (FAM) labeled single strand DNA (F-DNA). ALP can remove the phosphate group in sodium ascorbyl phosphate (SAP), and convert it into reducing ascorbate. Highly reactive hydroxyl radicals (·OH) were generated in the presence of ascorbate and Cu(2+) through the Fenton-like reaction. The reactive radicals generated in situ caused the cleavage of F-DNA into small fragments. When GO was added, the fluorescence emission of the sample without ALP was quenched and fluorescence emission recovered in the presence of ALP. The intensity of the recovered fluorescence was directly related to the concentration of ALP in the assay solution, and a sensitive and selective facile ALP assay is therefore established. PMID:27343614

  8. Establishment of a New Cell-Based Assay To Measure the Activity of Sweeteners in Fluorescent Food Extracts

    PubMed Central

    2011-01-01

    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca2+ concentration using Ca2+-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca2+-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca2+ indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level. PMID:21981007

  9. Establishment of a new cell-based assay to measure the activity of sweeteners in fluorescent food extracts.

    PubMed

    Toda, Yasuka; Okada, Shinji; Misaka, Takumi

    2011-11-23

    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca(2+) concentration using Ca(2+)-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca(2+)-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca(2+) indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level. PMID:21981007

  10. A natural substrate-based fluorescence assay for inhibitor screening on diacylglycerol lipase α

    PubMed Central

    van der Wel, Tom; Janssen, Freek J.; Baggelaar, Marc P.; Deng, Hui; den Dulk, Hans; Overkleeft, Herman S.; van der Stelt, Mario

    2015-01-01

    The endocannabinoid 2-arachidonoylglycerol (2-AG) is predominantly biosynthesized by sn-1-diacylglycerol lipase α (DAGL-α) in the CNS. Selective inhibitors of DAGL-α will provide valuable insights in the role of 2-AG in endocannabinoid signaling processes and are potential therapeutics for the treatment of obesity and neurodegenerative diseases. Here, we describe the development of a natural substrate-based fluorescence assay for DAGL-α, using a coupled enzyme approach. The continuous setup of our assay allows monitoring of DAGL-α activity in real-time and in a 96-well plate format. This constitutes a major improvement to the currently available radiometric and LC/MS-based methods, which can be executed only in low-throughput formats. In addition, our assay circumvents the use of radioactive material. We demonstrate that our assay can be used to screen inhibitors of DAGL-α activity, using 1-stearoyl-2-arachidonoyl-sn-glycerol as the physiologically relevant natural substrate of DAGL-α. Furthermore, our method can be employed to measure DAGL activity and inhibition in the mouse brain membrane proteome. Consequently, our assay should serve as a valuable tool for rapid hit validation and lead optimization of DAGL-α inhibitors. PMID:25684760

  11. Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas

    PubMed Central

    Shah, Jyotsna; Mark, Olivia; Weltman, Helena; Barcelo, Nicolas; Lo, Wai; Wronska, Danuta; Kakkilaya, Srinivas; Rao, Aravinda; Bhat, Shalia T.; Sinha, Ruchi; Omar, Sabah; Moro, Manuel; Gilman, Robert H.; Harris, Nick

    2015-01-01

    Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively. PMID:26333092

  12. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    PubMed Central

    2010-01-01

    Comet assay and micronucleus (MN) test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH) techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology. PMID:20840797

  13. An Affinity-Based Fluorescence Polarization Assay for Protein Tyrosine Phosphatases

    PubMed Central

    Zhang, Sheng; Chen, Lan; Kumar, Sanjai; Wu, Li; Lawrence, David S.; Zhang, Zhong-Yin

    2007-01-01

    Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate “false” positives due to modification of the active site Cys that destroy the phosphatase activity. PMID:17532513

  14. Measurement of glycated haemoglobin in whole blood by a novel fluorescence quenching assay.

    PubMed

    Blincko, S; Anzetse, J; Edwards, R

    2000-07-01

    We describe a method for the specific measurement of glycated Hb (GHb) by fluorescence quenching. Whole blood is added to lysing solution, then the lysate is mixed with eosin-boronic acid solution and reacted for at least 5 min at room temperature. The quenching of the fluorescence of the eosin-boronic acid solution is proportional to the concentration of GHb present. Total Hb concentration was measured by absorbance and the GHb expressed as a percentage of the total Hb. Comparison with a commercial high-performance liquid chromatography (HPLC) system for HbA1c showed: %GHb=1.30 (SD 0.04) %HbA1c + 1.36 (SD 0.30), S(y/x) 0.803, n=95, r=0.965 (SD=standard deviation). Intra-assay coefficients of variation were <2.5% (for GHb concentrations in the range 6-20%) and inter-assay coefficients of variation were <4.1% (10 assays on six samples with GHb concentrations in the range 6-20%). Linearity of response was demonstrated by dilution. The effect of adding exogenous glucose, bilirubin and triglycerides was tested on samples with low, medium and high GHb concentrations. No significant interference was found. Variation of haematocrit over the range 0.4-0.6 also had no significant effect on percentage GHb. Preliminary results with samples containing variant Hb (HbAS and HbAC) indicated good agreement with HPLC for these samples also. PMID:10902866

  15. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes

    SciTech Connect

    Yin, Si-Tao; Huang, Hao; Zhang, Yu-Hang; Zhou, Zi-Ren; Song, Ai-Xin; Hong, Fa-Shui; Hu, Hong-Yu

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer A deubiquitinating enzyme has its unique substrate specificity for deubiquitination. Black-Right-Pointing-Pointer We have established an activity assay for ubiquitin C-terminal hydrolases. Black-Right-Pointing-Pointer This assay can be applicable to other deubiquitinating enzymes. -- Abstract: Ubiquitin C-terminal hydrolases (UCHs) are a representative family of deubiquitinating enzymes (DUBs), which specifically cleave ubiquitin (Ub) chains or extensions. Here we present a convenient method for characterizing the substrate specificities of various UCHs by fluorescently mutated Ub-fusion proteins (Ub{sup F45W}-Xaa) and di-ubiquitin chains (Ub{sup F45W}-diUb). After removal of the intact substrate by Ni{sup 2+}-NTA affinity, the enzymatic activities of UCHs were quantitatively determined by recording fluorescence of the Ub{sup F45W} product. The results show that three UCHs, i.e. UCH-L1, UCH-L3 and UCH37/UCH-L5, are distinct in their substrate specificities for the Ub-fusions and diUb chains. This assay method may also be applied to study the enzymatic activities and substrate specificities of other DUBs.

  16. A Rapid Fluorescence Assay for Danofloxacin in Beef Muscle. Effect of Muscle Type on Limit of Quantitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, rapid fluorescence screening assay was applied to the analysis of beef muscle for danofloxacin at the U.S. tolerance level of 200 ng/g. Muscle samples were homogenized in acetic acid/acetonitrile, the resultant mixture centrifuged, and fluorescence of the supernatants was then measured. ...

  17. New applications of fluorescence polarization for enzyme assays and in genomics

    NASA Astrophysics Data System (ADS)

    Nikiforov, Theo; Coffin, Jill; Jeong, Sang; Simeonov, Anton; Bi, Xiahui

    2001-05-01

    We have developed new, fluorescence polarization-based approaches for performing enzyme assays in homogeneous solutions and for detecting the hybridization of peptide nucleic acids to DNA targets. In the first method, fluorescein-labeled peptides serving as protein kinase sustrates are thiophosphorylated in the presence of the ATP analog ATPγS. A sulfer-reactive biotin derivative is then added to the mixture and allowed to react with the thiophosphorylated peptide. The formation of a fluorescein-labeled, biotinylated product can be detected by measuring the fluorescence polarization signal of fluorescein upon addition of streptavidin. In the second method, fluorescein-labeled peptides are subjected to enzymatic phosphorylation, desphosphorlation, or proteollytic cleavage by protein kinases, phosphatases, and proteases. The differential binding of the enzymatic substrates and products to cationic polymers such as polyaraginine can be conveniently measured by fluorescence polarization. Finally, we have discovered that the process of hybridization of peptide nucleic acid probes (PNAs) to their target DNA molecules can be followed by measuring the fluorescence polarization of a fluorophore attached to the PNA probes. These measurements can be done either in the presence or absence of polylysine in solution. Examples of the application of this method for single nucleotide polymorphism (SNP) typing are presented.

  18. Sensitive detection of p53 antibodies in a homogeneous fluorescence assay format

    NASA Astrophysics Data System (ADS)

    Neuweiler, Hannes; Schulz, Andreas; Wolfrum, Juergen M.; Sauer, Markus

    2002-06-01

    Circulating p53 autoantibodies are found to be a universal and highly specific tumor marker for malignant diseases. Hence, sereological screening for p53 autoantibodies at low concentration levels has become increasingly relevant for early-stage and follow-up of tumor diagnostics. We developed a new method for the highly sensitive detection of p53 antibodies in a homogeneous fluorescence assay format. Short, linear peptide derived form antibody recognition sequences so human p53 were labeled with an oxazine dye. Hydrophobic interactions constrain a conformation, where the dye interacts selectively with a tryptophan residue in the peptide sequence. Subsequently, the fluorescence of the dye is quenched efficiently due to electron transfer from the indole derivative to the dye in the excited state. Specific antibody recognition induces a conformational change in the peptide structure, repealing the dye-tryptophan interaction. Consequently, a fluorescence increase upon antibody binding signals the binding event. The long-wavelength absorption and emission characteristics of the probe and the use of a red pulsed diode laser as excitation source in a confocal fluorescence microscopic set-up allows ultra sensitive antibody detection at the single-molecule level. The effectiveness of the probes are highlighted by the detection of individual p53 autoantibodies directly in serum dilutions of cancer patients.

  19. An automated cell-counting algorithm for fluorescently-stained cells in migration assays

    PubMed Central

    2011-01-01

    A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells), images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P < 0.0001 for a total of 47 images), with no difference in the measurements between methods under all conditions. We conclude that our automated method is accurate, more efficient, and void of variability and potential observer bias normally associated with manual counting. PMID:22011343

  20. Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells.

    PubMed

    Blaszczak, Ewa; Prigent, Claude; Rabut, Gwenaël

    2016-01-01

    Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism. PMID:27613039

  1. A Cell-Based Fluorescent Assay to Detect the Activity of Shiga Toxin and Other Toxins That Inhibit Protein Synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7, a major cause of food-borne illness, produces Shiga toxins that block protein synthesis by inactivating the ribosome. In this chapter we describe a simple cell-based fluorescent assay to detect Shiga toxins and inhibitors of toxin activity. The assay can also be used to d...

  2. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  3. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors.

    PubMed

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  4. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors

    PubMed Central

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A.

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer’s and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  5. Quantitative ELISA-Like Immunohistochemistry of Fibroblast Growth Factor 23 in Diagnosis of Tumor-Induced Osteomalacia and Clinical Characteristics of the Disease

    PubMed Central

    Hu, Fangke; Jiang, Chengying; Zhang, Qiang; Shi, Huaiyin; Wei, Lixin

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare acquired paraneoplastic disorder and fibroblast growth factor 23 (FGF23) plays a key role in its pathogenesis. This study was conducted to describe a novel FGF23 detecting procedure and describe clinical features of the disease. Fourteen TIO cases were retrieved and FGF23 expression was measured by quantitative ELISA-like immunohistochemistry using formalin-fixed and paraffin-embedded tissues. As summarized from 14 TIO cases, clinical features of TIO were long-standing history of osteomalacia, hypophosphatemia, and urinary phosphate wasting. The associated tumors were mostly benign phosphaturic mesenchymal tumors mixed connective tissue variant (PMTMCT) which could be located anywhere on the body, and most of them could be localized by conventional examinations and octreotide scanning. By quantitative ELISA-like immunohistochemistry, all the 14 TIO cases had high FGF23 expression (median 0.69, 25%–75% interquartile 0.57–1.10, compared with 26 non-TIO tumors of median 0.07, 25%–75% interquartile 0.05–0.11, p < 0.001). The quantitative ELISA-like immunohistochemistry was a feasible and reproducible procedure to detect the high FGF23 expression in formalin-fixed and paraffin-embedded biopsies or specimens. Since TIO was often delay-diagnosed or misdiagnosed, clinicians and pathologists should be aware of TIO and PMTMCT, respectively. PMID:27034530

  6. Quantitative ELISA-Like Immunohistochemistry of Fibroblast Growth Factor 23 in Diagnosis of Tumor-Induced Osteomalacia and Clinical Characteristics of the Disease.

    PubMed

    Hu, Fangke; Jiang, Chengying; Zhang, Qiang; Shi, Huaiyin; Wei, Lixin; Wang, Yan

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare acquired paraneoplastic disorder and fibroblast growth factor 23 (FGF23) plays a key role in its pathogenesis. This study was conducted to describe a novel FGF23 detecting procedure and describe clinical features of the disease. Fourteen TIO cases were retrieved and FGF23 expression was measured by quantitative ELISA-like immunohistochemistry using formalin-fixed and paraffin-embedded tissues. As summarized from 14 TIO cases, clinical features of TIO were long-standing history of osteomalacia, hypophosphatemia, and urinary phosphate wasting. The associated tumors were mostly benign phosphaturic mesenchymal tumors mixed connective tissue variant (PMTMCT) which could be located anywhere on the body, and most of them could be localized by conventional examinations and octreotide scanning. By quantitative ELISA-like immunohistochemistry, all the 14 TIO cases had high FGF23 expression (median 0.69, 25%-75% interquartile 0.57-1.10, compared with 26 non-TIO tumors of median 0.07, 25%-75% interquartile 0.05-0.11, p < 0.001). The quantitative ELISA-like immunohistochemistry was a feasible and reproducible procedure to detect the high FGF23 expression in formalin-fixed and paraffin-embedded biopsies or specimens. Since TIO was often delay-diagnosed or misdiagnosed, clinicians and pathologists should be aware of TIO and PMTMCT, respectively. PMID:27034530

  7. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  8. A direct fluorescence-based assay for RGS domain GTPase accelerating activity.

    PubMed

    Willard, Francis S; Kimple, Adam J; Johnston, Christopher A; Siderovski, David P

    2005-05-15

    Diverse extracellular signals regulate seven transmembrane-spanning receptors to modulate cellular physiology. These receptors signal primarily through activation of heterotrimeric guanine nucleotide binding proteins (G proteins). A major determinant of heterotrimeric G protein signaling in vivo and in vitro is the intrinsic GTPase activity of the Galpha subunit. RGS (regulator of G protein signaling) domain-containing proteins are GTPase accelerating proteins specific for Galpha subunits. In this article, we describe the use of the ribose-conjugated fluorescent guanine nucleotide analog BODIPYFL-GTP as a spectroscopic probe to measure intrinsic and RGS protein-catalyzed nucleotide hydrolysis by Galphao. BODIPYFL-GTP bound to Galphao exhibits a 200% increase in fluorescence quantum yield. Hydrolysis of BODIPYFL-GTP to BODIPYFL-GDP reduces the quantum yield to 27% above its unbound value. We demonstrate that BODIPYFL-GTP can be used as a rapid real-time probe for measuring RGS domain-catalyzed GTP hydrolysis by Galphao. We demonstrate the effectiveness of this assay in the analysis of loss-of-function point mutants of both Galphao and RGS12. This assay should be useful in screening for and analyzing RGS protein inhibitory compounds. PMID:15840508

  9. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    PubMed Central

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  10. DNA-mediated supercharged fluorescent protein/graphene oxide interaction for label-free fluorescence assay of base excision repair enzyme activity.

    PubMed

    Wang, Zhen; Li, Yong; Li, Lijun; Li, Daiqi; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2015-09-01

    The interaction between supercharged green fluorescent protein (ScGFP) and graphene oxide (GO) as well as the resulting quenching effect of GO on ScGFP were investigated. Based on this unique quenching effect and the DNA-mediated ScGFP/GO interaction, a label-free fluorescence method has been established for homogeneously assaying the activity and inhibition of base excision repair enzyme. PMID:26208330

  11. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease.

    PubMed

    Liu, Xue-Guo; Xing, Xiao-Jing; Li, Bo; Guo, Yong-Ming; Zhang, Ye-Zhen; Yang, Yan; Zhang, Lian-Feng

    2016-07-15

    A novel fluorescence turn-on strategy for the alkaline phosphatase (ALP) assay is developed based on the preferential binding of graphene oxide (GO) to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA) coupled with λ exonuclease (λ exo) cleavage. Specifically, in the absence of ALP, the substrate-dsDNA constructed by one oligonucleotide with a fluorophore at the 3'-end (F-DNA) and its complementary sequence modified with a 5'-phosphoryl termini (p-DNA), is promptly cleaved by λ exo, and the resulting F-DNA is adsorbed on GO surface, allowing fluorescence quenching. Whereas the introduction of ALP leads to the hydrolysis of the P-DNA, and the yielding 5'-hydroxyl end product hampers the λ exo cleavage, inducing significant fluorescence enhancement due to the weak binding of dsDNA with GO. Under the optimized conditions, the approach exhibits high sensitivity and specificity to ALP with a detection limit of 0.19 U/L, and the determination of ALP in spiked human serum samples has also been realized. Notably, this new approach not only provides a novel and sensitive platform for the ALP activity detection but also promotes the exploitation of the GO-based biosensing for the detection of the protein with no specific binding element, and thus extending the GO-based sensing applications into a new field. PMID:27015149

  12. A Fluorescence Polarization Assay To Detect Steroid Hormone Traces in Milk.

    PubMed

    Varriale, Antonio; Pennacchio, Anna; Pinto, Gabriella; Oliviero, Giorgia; D'Errico, Stefano; Majoli, Adelia; Scala, Andrea; Capo, Alessandro; Pennacchio, Angela; Di Giovanni, Stefano; Staiano, Maria; D'Auria, Sabato

    2015-10-21

    Steroids are a class of hormones improperly used in livestock as growth-promoting agents. Due to their high risk for human health, the European Union (EU) has strictly forbidden the administration of all natural and synthetic steroid hormones to food-producing animals, and the development of new rapid detection methods are greatly encouraged. This work reports a novel fluorescence polarization assay, ready to use, capable of detecting 17β-estradiol directly in milk samples with a low limit of detection of <10 pmol. It is based on the coupling of monospecific antibodies against 17β-estradiol and fluorophores, capable of modulating the fluorescence polarization emission on the basis of the specific binding of antibodies to fluorescence-labeled 17β-estradiol derivative. The successful detection of 17β-estradiol has disclosed the development of an efficient method, easily extensible to any food matrix and having the potential to become a milestone in food quality and safety. PMID:26434254

  13. Highly sensitive and selective fluorescence assays for rapid screening of endothelin-converting enzyme inhibitors.

    PubMed Central

    Luciani, N; de Rocquigny, H; Turcaud, S; Romieu, A; Roques, B P

    2001-01-01

    The highly potent vasoconstrictor peptide endothelin (ET) is generated from an inactive precursor, big endothelin (bET), by endothelin-converting enzyme (ECE). ECE is a phosphoramidon-sensitive zinc metallopeptidase, which is closely related to neprilysin (neutral endopeptidase). It is possible that compounds which inhibit the formation of ET may be used as new drugs for the treatment of cardiovascular diseases. Such an approach requires a fast, simple and selective assay to measure ECE activity, allowing rapid screening of inhibitors. We describe here two new ECE substrates based on the concept of 'intramolecularly quenched fluorescence' which may fulfill this aim. One, S(1) [Pya(21)-Nop(22)-bET-1(19--35)], is the (19--35) fragment of the natural peptide big-ET-1(1--38), which is modified by introducing the fluorescent amino acid, pyrenylalanine (Pya), in position 21 and a quencher, p-nitrophenylalanine (Nop), in position 22. The second substrate (S(2)) is a small peptide, Ac-Ser-Gly-Pya-Lys-Ala-Phe-Ala-Nop-Gly-Lys-NH(2), from a biased substrate peptide library. The recombinant, hECE-1c, cleaved both Pya(21)-Nop(22)-bET-1(19--35) and the natural substrate selectively between residues 21 and 22, whereas cleavage occurred between alanine and phenylalanine in the small peptide. In both cases, this generated intense fluorescence emission. The synthesis and kinetic parameters of these substrates are described. These assays, which can be used directly on tissue homogenates, are the most sensitive and selective described to date for ECE, and are easily automated for a high-throughput screening of inhibitors. PMID:11389689

  14. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function

    PubMed Central

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  15. Optimization of a polyglutamine aggregation inhibitor peptide (QBP1) using a thioflavin T fluorescence assay.

    PubMed

    Hamuro, Lora; Zhang, Guangtao; Tucker, Timothy J; Self, Christopher; Strittmatter, Warren J; Burke, James R

    2007-10-01

    Polyglutamine protein aggregates are a hallmark of several neurodegenerative diseases, including Huntington's disease, and increasing evidence suggests that reducing or inhibiting aggregation produces a therapeutic benefit in animal models of disease. Part of the challenge in designing compounds that interfere with protein aggregation is having a sensitive and consistent in vitro assay that allows for efficient screening and lead optimization. Here we describe a simplified polyglutamine assay that uses a soluble, pathological-length polyglutamine construct (62 glutamines [Q62]) fused to glutathione-S-transferase (GST) and measure aggregate formation with fluorescence generated by thioflavin T binding. Controlled release of Q62 from GST using proteolytic cleavage resulted in time-dependent aggregate formation that was not observed for a non-pathological-length GST-Q19 construct. Cleavage of the polyglutamine domain from GST increased the rate of Q62 aggregation from days to hours, significantly decreasing the time for compound analysis. Controlled aggregate formation combined with the fluorescence sensitivity of the dye thioflavin T allowed us to screen a series of peptide analogs for lead optimization of a previously identified peptide aggregation inhibitor, QBP1. QBP1 analogs showed the greatest inhibitory potency when added prior to Q62 aggregate initiation, suggesting that the mechanism of inhibition was interference with early formed aggregates that were not detectable by ultraviolet or dye binding. The assay detected activities that differed by three orders of magnitudes with Z' = 0.56, which is suitable for high-throughput screening and allowed us to do lead optimization of QBP1 analogs for pharmacophore model building. PMID:17939755

  16. EGFR fluorescence in situ hybridisation assay: guidelines for application to non-small-cell lung cancer.

    PubMed

    Varella-Garcia, M; Diebold, J; Eberhard, D A; Geenen, K; Hirschmann, A; Kockx, M; Nagelmeier, I; Rüschoff, J; Schmitt, M; Arbogast, S; Cappuzzo, F

    2009-11-01

    There is a need for predictive biomarkers that identify non-small-cell lung cancer (NSCLC) patients most likely to respond to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment. There are numerous potential candidates, although none has been proven in prospective clinical trials. The EGFR gene copy number evaluated by fluorescence in situ hybridisation (FISH) has been highlighted as one of the most effective markers for sensitivity to EGFR TKIs in large phase III, randomised placebo-controlled trials and has been used in clinical settings to assist physicians in defining the therapeutic regimen. The EGFR FISH assay has technical challenges and it is critical that detailed guidelines are provided to help clinical laboratories in performing and interpreting the test. Excellent assay reproducibility and portability rates among laboratories are crucial to guarantee that accurate clinical decisions can be made for patients with NSCLC. This article discusses the consensus outcomes of a global workshop convened to discuss key technical issues and standardise reading strategies for the EGFR FISH assay of NSCLC tumour tissue. PMID:19861557

  17. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases.

    PubMed

    Gaudet, Elizabeth A; Huang, Kuo-Sen; Zhang, Yan; Huang, Wei; Mark, David; Sportsman, J Richard

    2003-04-01

    Recently, a new technology for high-throughput screening has been developed, called IMAP(patent pending). IMAP technology has previously been implemented in an assay for cyclic nucleotide phosphodiesterases (PDE). The authors describe the development of a homogeneous, non-antibody-based fluorescence polarization (FP) assay for a variety of protein kinases. In this assay, fluorescently labeled peptide substrate phosphorylated by the kinase is captured on modified nanoparticles through interactions with immobilized metal (M(III)) coordination complexes, resulting in a change from low to high polarization values. This assay is applicable to protein kinases that phosphorylate serine, threonine, or tyrosine residues. The IMAP platform is very compatible with high-throughput robotics and can be applied to the 1536-well format. As there are hundreds of different kinases coded for in the human genome, the assay platform described in this report is a valuable new tool in drug discovery. PMID:12844437

  18. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    PubMed

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM. PMID:25233044

  19. Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.

    PubMed

    Qi, Tiancong; Song, Susheng; Xie, Daoxin

    2013-01-01

    The jasmonate (JA) ZIM-domain (JAZ) proteins of Arabidopsis thaliana repress JA signaling and negatively regulate the JA responses. Recently, JAZ proteins have been found to inhibit the transcriptional function of several transcription factors, among which the basic helix-loop-helix (bHLH) (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3], and TRANSPARENT TESTA8 [TT8]) and R2R3-MYB (GL1 and MYB75) that can interact with each other to form bHLH-MYB complexes and further control gene expression. The bimolecular fluorescence complementation (BiFC) assay is a widely used technique to study protein-protein interactions in living cells. Here we describe a modified BiFC experimental procedure to study the inhibition of the formation of the bHLH (GL3)-MYB (GL1) complex by JAZ proteins. PMID:23615997

  20. Comparison of enzyme-linked immunosorbent assay with enzyme-linked fluorescence assay with automated readers for detection of rubella virus antibody and herpes simplex virus.

    PubMed

    Shekarchi, I C; Sever, J L; Nerurkar, L; Fuccillo, D

    1985-01-01

    The enzyme-linked immunosorbent assay (ELISA) was compared with the enzyme-linked fluorescence assay (ELFA) for the detection of rubella antibody and herpes simplex virus antigen. Test parameters, specimens, antigen or antibody, and conjugates for the two types of assays were identical except that p-nitrophenyl phosphate was used as the substrate for the ELISA and 4-methylumbelliferyl phosphate was used as the substrate for ELFA. Automated readers were used for both assays. Antibody titers and sensitivity of antigen detection were quite similar for ELISA and ELFA. ELFA for rubella antibody, however, could be conducted with less antigen or shorter substrate incubation time (5 min for ELFA versus 30 min for ELISA). For herpes simplex virus antigen detection, ELFA could also be read after a shorter substrate incubation time (15 min for ELFA versus 30 min for ELISA). Clear polystyrene microtiter plates routinely used for ELISA could be used for ELFA, but clear polyvinyl chloride plates had high background fluorescence. Black polystyrene and polyvinyl chloride plates gave lower background fluorescence than did clear plates. ELFA is of particular value as a substitute for ELISAs in which long substrate incubations are required or antigens of only low titer are available. PMID:2981902

  1. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay

    PubMed Central

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm2. A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times. PMID:25332741

  2. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay.

    PubMed

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-09-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm(2). A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times. PMID:25332741

  3. A Fluorescence-Based Assay for Proteinuria Screening in Larval Zebrafish (Danio rerio).

    PubMed

    Hanke, Nils; King, Benjamin L; Vaske, Bernhard; Haller, Hermann; Schiffer, Mario

    2015-10-01

    Analysis of genes compromising the glomerular filtration barrier in rodent models using transgenic or knockdown approaches is time- and resource-consuming and often leads to unsatisfactory results. Therefore, it would be beneficial to have a selection tool indicating that your gene of interest is in fact associated with proteinuria. Zebrafish (Danio rerio) is a rapid screening tool to study effects in glomerular filtration barrier integrity after genetic manipulation. We use either injection of high-molecular-weight dextrans or a transgenic fluorescent fish line [Tg(l-fabp:DBP:EGFP)] expressing a vitamin D-binding protein fused with eGFP for indirect detection of proteinuria. A loss of high-molecular-weight proteins from the circulation of the fish into the urine can be identified by monitoring fluorescence intensity in the zebrafish eye. Paired with an optimized analysis method, this assay provides an effective screening solution to detect filtration barrier damage with proteinuria before moving to a mammalian system. PMID:26125680

  4. Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.

    PubMed

    Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko

    2016-01-01

    We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent. PMID:26960620

  5. A fluorescence-based high throughput assay for the determination of small molecule–human serum albumin protein binding

    PubMed Central

    McCallum, Megan M.; Pawlak, Alan J.; Shadrick, William R.; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David J.; Arnold, Leggy A.

    2014-01-01

    Herein, we describe the development of a fluorescence-based high throughput assay to determine the small molecule binding towards human serum albumin (HSA). This innovative competition assay is based on the use of a novel fluorescent small molecule Red Mega 500 with unique spectroscopic and binding properties. The commercially available probe displays a large fluorescence intensity difference between the protein-bound and protein-unbound state. The competition of small molecules for HSA binding in the presence of probe resulted in low fluorescence intensities. The assay was evaluated with the LOPAC small molecule library of 1280 compounds identifying known high protein binders. The small molecule competition of HSA–Red Mega 500 binding was saturable at higher compound concentrations and exhibited IC50 values between 3–24 μM. The compound affinity towards HSA was confirmed by isothermal titration calorimetry indicating that the new protein binding assay is a valid high throughput assay to determine plasma protein binding. PMID:24390461

  6. Multi-residue fluorescent microspheres immunochromatographic assay for simultaneous determination of macrolides in raw milk.

    PubMed

    Li, Xiangmei; Shen, Jianzhong; Wang, Qi; Gao, Shuxia; Pei, Xingyao; Jiang, Haiyang; Wen, Kai

    2015-12-01

    A rapid, reliable, sensitive, and quantitative multi-residue fluorescent microspheres immunochromatographic assay (FMCA) was developed for simultaneous detection of four macrolides in raw milk. The IC50 value of the optimized FMCA was 1.36, 1.22, 1.01, and 1.39 ng/mL for erythromycin (ERY), spiramycin (SPI), tilmicosin (TIM), and tylosin (TYL), respectively. The limits of detection (LODs) for the four macrolides was 0.13 ng/mL. The recoveries of ERY, SPI, TIM, and TYL from spiked raw milk ranged from 91.8-109.2, 89.6-114.4, 84.8-111.6, and 85.8-115.2%, respectively, with coefficients of variation (CVs) of 5.4-11.3, 7.9-15.7, 6.2-13.7, and 3.2-14.9%, respectively. The whole testing process was completed within 20 min. The antibody-mixed labeled method was successfully applied to the FMCA, which greatly simplified the operation steps and saved a lot of time. Compared with the immunogold chromatographic assay (IGCA), the FMCA is more sensitive and stable and has less antibody consumption. A parallel analysis in blind raw milk samples was conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS); the results showed good correlation (r(2) = 0.99) between the two methods. Therefore, the developed multi-residue FMCA is reliable and can be easily applied to other antibiotics or other contaminants. PMID:26497839

  7. Homogeneous duplex polymerase chain reaction assay using switchable lanthanide fluorescence probes.

    PubMed

    Lehmusvuori, Ari; Tapio, Antti-Heikki; Mäki-Teeri, Petra; Rantakokko-Jalava, Kaisu; Wang, Qi; Takalo, Harri; Soukka, Tero

    2013-05-01

    We have developed a duplex polymerase chain reaction (PCR) assay based on switchable lanthanide chelate complementation probes. In the complementation probe technology, two nonfluorescent oligonucleotide probes, one labeled with a lanthanide ion carrier chelate and another with a light absorbing antenna ligand, form a fluorescent complex by self-assembly of the reporter molecules when the two probes are hybridized in adjacent positions to the target DNA. Here we report the synthesis of a new terbium(III) (Tb(III)) ion carrier chelate and a new light-absorbing antenna ligand for Tb(III) and the development of a duplex Chlamydia trachomatis (Ct) PCR assay. For the detection of Ct in urine samples, a specific sequence in Ct cryptic plasmid was amplified and detected using europium(III) (Eu(III)) complementation probes. An internal amplification control was amplified in each reaction and detected using Tb(III) complementation probes to verify the Ct negative results. Ct bacteria were concentrated from urine samples with a rapid and simple centrifugation-based sample preparation method. Good diagnostic accuracy (99-100%) was achieved, and also Ct positive reactions yielded a very high Eu(III) signal-to-background ratio (maximum of 244). High performance of the complementation probes is advantageous when sample may contain impurities after a simple sample preparation. PMID:23353013

  8. Small molecule aptamer assays based on fluorescence anisotropy signal-enhancer oligonucleotides.

    PubMed

    Perrier, Sandrine; Bouilloud, Prisca; De Oliveira Coelho, Gisella; Henry, Mickael; Peyrin, Eric

    2016-08-15

    Herein, we design novel fluorescence anisotropy (FA) aptamer sensing platforms dedicated to small molecule detection. The assay strategy relied on enhanced fluctuations of segmental motion dynamics of the aptamer tracer mediated by an unlabelled, partially complementary oligonucleotide. The signal-enhancer oligonucleotide (SEO) essentially served as a free probe fraction revealer. By targeting specific regions of the signalling functional nucleic acid, the SEO binding to the unbound aptamer triggered perturbations of both the internal DNA flexibility and the localized dye environment upon the free probe to duplex structure transition. This potentiating effect determined increased FA variations between the duplex and target bound states of the aptameric probe. FA assay responses were obtained with both pre-structured (adenosine) and unstructured (tyrosinamide) aptamers and with dyes of different photochemical properties (fluorescein and texas red). The multiplexed analysis ability was further demonstrated through the simultaneous multicolour detection of the two small targets. The FA method appears to be especially simple, sensitive and widely applicable. PMID:27085946

  9. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line.

    PubMed

    Caetano-Pinto, Pedro; Janssen, Manoe J; Gijzen, Linda; Verscheijden, Laurens; Wilmer, Martijn J G; Masereeuw, Rosalinde

    2016-03-01

    Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in

  10. Modeling and Application of a Rapid Fluorescence-Based Assay for Biotoxicity in Anaerobic Digestion.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2015-11-17

    The sensitivity of anaerobic digestion metabolism to a wide range of solutes makes it important to be able to monitor toxicants in the feed to anaerobic digesters to optimize their operation. In this study, a rapid fluorescence measurement technique based on resazurin reduction using a microplate reader was developed and applied for the detection of toxicants and/or inhibitors to digesters. A kinetic model was developed to describe the process of resazurin reduced to resorufin, and eventually to dihydroresorufin under anaerobic conditions. By modeling the assay results of resazurin (0.05, 0.1, 0.2, and 0.4 mM) reduction by a pure facultative anaerobic strain, Enterococcus faecalis, and fresh mixed anaerobic sludge, with or without 10 mg L(-1) spiked pentachlorophenol (PCP), we found it was clear that the pseudo-first-order rate constant for the reduction of resazurin to resorufin, k1, was a good measure of "toxicity". With lower biomass density and the optimal resazurin addition (0.1 mM), the toxicity of 10 mg L(-1) PCP for E. faecalis and fresh anaerobic sludge was detected in 10 min. By using this model, the toxicity differences among seven chlorophenols to E. faecalis and fresh mixed anaerobic sludge were elucidated within 30 min. The toxicity differences determined by this assay were comparable to toxicity sequences of various chlorophenols reported in the literature. These results suggest that the assay developed in this study not only can quickly detect toxicants for anaerobic digestion but also can efficiently detect the toxicity differences among a variety of similar toxicants. PMID:26457928

  11. Comparison of an in-house PCR assay, direct fluorescence assay and the Roche AMPLICOR Chlamydia trachomatis kit for detection of C. trachomatis.

    PubMed

    Sachdeva, Poonam; Patel, Achchhe Lal; Sachdev, Divya; Ali, Mashook; Mittal, Aruna; Saluja, Daman

    2009-07-01

    To improve the control of Chlamydia trachomatis infection in India, a rapid, specific and cost-effective method is much needed. We developed an in-house PCR assay by targeting a unique genomic sequence encoding a protein from the C. trachomatis phospholipase D endonuclease superfamily that produces an amplified fragment of 368 bp. The specificity of the primers was confirmed using genomic DNA from other sexually transmitted disease-causing and related micro-organisms and from humans. The assay was highly sensitive and could detect as low as 10 fg C. trachomatis DNA. Clinical evaluation of the in-house-developed PCR was carried out using 450 endocervical specimens that were divided in two groups. In group I (n=274), in-house PCR was evaluated against the direct fluorescence assay. The resolved sensitivity of the in-house PCR method was 97.22 % compared with 88 % for the direct fluorescent antibody assay. In group II (n=176), the in-house PCR was compared with the commercial Roche AMPLICOR MWP CT detection kit. The resolved sensitivity of the in-house PCR assay reported here was 93.1 % and the specificity was 97.46 %, making it a cost-effective alternative for routine diagnosis of genital infection by C. trachomatis. The method should facilitate early detection leading to better prevention and treatment of genital infection in India. PMID:19502371

  12. Bimolecular Fluorescence Complementation (BiFC) Assay for Protein-Protein Interaction in Onion Cells Using the Helios Gene Gun

    PubMed Central

    Hollender, Courtney A.; Liu, Zhongchi

    2010-01-01

    Investigation of gene function in diverse organisms relies on knowledge of how the gene products interact with each other in their normal cellular environment. The Bimolecular Fluorescence Complementation (BiFC) Assay1 allows researchers to visualize protein-protein interactions in living cells and has become an essential research tool. This assay is based on the facilitated association of two fragments of a fluorescent protein (GFP) that are each fused to a potential interacting protein partner. The interaction of the two protein partners would facilitate the association of the N-terminal and C-terminal fragment of GFP, leading to fluorescence. For plant researchers, onion epidermal cells are an ideal experimental system for conducting the BiFC assay because of the ease in obtaining and preparing onion tissues and the direct visualization of fluorescence with minimal background fluorescence. The Helios Gene Gun (BioRad) is commonly used for bombarding plasmid DNA into onion cells. We demonstrate the use of Helios Gene Gun to introduce plasmid constructs for two interacting Arabidopsis thaliana transcription factors, SEUSS (SEU) and LEUNIG HOMOLOG (LUH)2 and the visualization of their interactions mediated by BiFC in onion epidermal cells. PMID:20567209

  13. Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the helios gene gun.

    PubMed

    Hollender, Courtney A; Liu, Zhongchi

    2010-01-01

    Investigation of gene function in diverse organisms relies on knowledge of how the gene products interact with each other in their normal cellular environment. The Bimolecular Fluorescence Complementation (BiFC) Assay(1) allows researchers to visualize protein-protein interactions in living cells and has become an essential research tool. This assay is based on the facilitated association of two fragments of a fluorescent protein (GFP) that are each fused to a potential interacting protein partner. The interaction of the two protein partners would facilitate the association of the N-terminal and C-terminal fragment of GFP, leading to fluorescence. For plant researchers, onion epidermal cells are an ideal experimental system for conducting the BiFC assay because of the ease in obtaining and preparing onion tissues and the direct visualization of fluorescence with minimal background fluorescence. The Helios Gene Gun (BioRad) is commonly used for bombarding plasmid DNA into onion cells. We demonstrate the use of Helios Gene Gun to introduce plasmid constructs for two interacting Arabidopsis thaliana transcription factors, SEUSS (SEU) and LEUNIG HOMOLOG (LUH)(2) and the visualization of their interactions mediated by BiFC in onion epidermal cells. PMID:20567209

  14. Practical determination of hyaluronan by a new noncompetitive fluorescence-based assay on serum of normal and cirrhotic patients.

    PubMed

    Martins, João R M; Passerotti, Carlo C; Maciel, Rui M B; Sampaio, Lucia O; Dietrich, Carl P; Nader, Helena B

    2003-08-01

    A practical fluorescence-based assay method for determination of hyaluronan (HA) was developed. Plates were coated with hyaluronan-binding proteins (HABP) obtained from bovine cartilage and successively incubated with samples containing standard solutions of hyaluronan or serum from normal and cyrrhotic patients, biotin-conjugated HABP, and europium-labeled streptavidin. After release of europium from streptavidin with enhancement solution the final fluorescence is measured in a fluorometer. The method is specific for HA even in the presence of substantial amounts of other glycosaminoglycans (chondroitin, dermatan sulfate, and heparan sulfate, and heparin) or proteins. It is possible to quantify HA between 0.2 and 500.0 microg/L. Analyses of HA concentration in 545 normal subjects and 40 cirrhotic patients gave average values of 14.5 and 542.0 microg/L, respectively. It was also shown that older subjects (> or =51 years old) have more HA (28.0 microg/L) than younger subjects (12.0 to 14.0 microg/L). This new sandwich technique has shown high precision and sensitivity similar to those of a recently described fluorescence-based assay method, being able to measure HA in amounts as small as 0.2 microg/L. In addition, this noncompetitive assay avoids preincubation, consumes less time (<5 h) than the previous competitive fluorescence-based assay (>72 h), and avoids the use of radioactive materials. PMID:12842108

  15. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  16. Large-scale drug screening against Babesia divergens parasite using a fluorescence-based high-throughput screening assay.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Tuvshintulga, Bumduuren; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-08-30

    The validation of a fluorescence-based high-throughput screening (HTS) assay for determining the efficacies of large chemical libraries against Babesia divergens (bovine strain) in in vitro cultures was evaluated in this study. Hematocrits (HCTs) of 2.5%, 5%, and 10% were used for the in vitro culture at 1% parasitemia without daily replacement of the medium. Linearity and HTS assay results revealed that the best HCTs were 5% and 10%. The obtained IC50 values of diminazene aceturate, either by fluorescence-based HTS assay with and without daily replacement of medium or by fluorescence- and microscopy-based methods, did not differ significantly at 5% HCT. Actinonin and chloroquine diphosphate were the most effective drugs against the in vitro growth of B. divergens, followed by pyronaridine tetraphosphate- and luteolin-treated cultures. On contrary, tetracycline hydrochloride and (-)-epigallocatechin-3-gallate from green tea exhibited poor activity as compared with diminazene aceturate (positive control drug). The data indicated that 5% HCT without daily replacement of the culture medium mixed with bovine serum in vitro using a fluorescence-based HTS assay creates the best conditions for large-scale drug screening against B. divergens that infect cattle. PMID:27523944

  17. A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal.

    PubMed

    Chen, Lu; Wen, Fang; Li, Ming; Guo, Xiaodong; Li, Songli; Zheng, Nan; Wang, Jiaqi

    2017-01-15

    A fluorescent assay for the rapid, sensitive and specific detection of Aflatoxin B1 (AFB1) was developed in this study. Initially, a DNA/DNA duplex was formed between a fluorescein-labeled AFB1 aptamer and its partially complementary DNA strand containing a quencher moiety, resulting in fluorescence quenching due to the close proximity of fluorophore and quencher. Upon the addition of AFB1, an aptamer/AFB1 complex was generated to release the quencher-modified DNA strand, thus recovered the fluorescence of fluorescein and enabled quantitative detection for AFB1 by monitoring fluorescence enhancement. Under optimized conditions, this assay exhibited a linear response to AFB1 in the range of 5-100ng/mL with a detection limit down to 1.6ng/mL. Trials of this assay in infant rice cereal with satisfactory recovery in the range of 93.0%-106.8%, demonstrate that the new assay could be a potential sensing platform for AFB1 determination in food. PMID:27542489

  18. A fast and indirect fluorescent antibody assay for the vibrio in large yellow croaker Pseudosciaena crocea (Richardson)

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Su, Yongquan; Yan, Qingpi

    2003-03-01

    A fast and indirect fluorescent antibody assay for the Vibrio alginolyticus and V. parahaemolyticus infecting the large yellow croaker has been developed. The specific antisera for the two strains of vibrio were prepared with New Zealand rabbit and the antiserum and cross-reactive efficacy was tested by coagulation in tube. It showed that the goat anti-rabbit IgG had been labeled by fluorescence isothiocyanate (FITC). The results showed that positive reactions were 100% for the large yellow croaker Pseudosciaena crocea with typical symptom of vibrio infection, while the positive reaction to the pathogen in healthy yellow croakers reached 40%, but seemed negative for aquaculture water. The results demonstrated that this fast and indirect fluorescent antibody assay can be used not only to test the vibrio pathogen in diseased yellow croaker but also in infected animals with no symptom.

  19. Velocity of movement of actin filaments in in vitro motility assay. Measured by fluorescence correlation spectroscopy.

    PubMed Central

    Borejdo, J; Burlacu, S

    1992-01-01

    We have measured the velocity of actin filaments in in vitro motility assay by fluorescence correlation spectroscopy. In this method, one measures fluctuations in the number of filaments in an open sample volume. The number of filaments was calculated from measurements of fluorescence of rhodamine-phalloidin bound to F-actin. Sample volume was defined by a diaphragm placed in front of the photomultiplier. Fluctuations arise when actin filaments enter and leave the sample volume due to translations driven by mechanochemical interactions with myosin heads which are immobilized on a glass surface. The average velocity of the translation of filaments determined by the correlation method, (Vc), was equal to the diameter of the diaphragm divided by the half-time of the relaxation of fluctuations. The average number of moving filaments determined by correlation method, (Nc), was inversely proportional to the relative fluctuations. By the fluctuation method it was possible to determine the average velocity of over 800 moving filaments in less than 4 min. There was good agreement between (Vc) and (Nc) and the average velocity and the average number of moving filaments determined manually. To be able to apply correlation measurements to an experimental problem, neither (Vc) nor (Nc) must depend on the position of observation of filaments. We first confirmed that this was indeed the case. We then applied the method to investigate the dependence of motility on the ATPase activity of myosin heads. ATPase activity was varied by mixing intact heads with heads which were labeled with different thiol reagents. It was found that the motion was drastically influenced by the reagent used for modification. When the reagent was N-ethyl-maleimide, 1.5% modification was sufficient to completely inhibit the motion. When the reagent was 5-iodoacetamidofluorescein, motion declined hyperbolically with the fraction of modified heads. Images FIGURE 2 FIGURE 4 FIGURE 11 PMID:1534696

  20. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    NASA Astrophysics Data System (ADS)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at <μg/ml levels. Stability studies showed that affinity vesicles could be stored for weeks at 4°C or freeze-dried with no significant loss of binding capacity. Using an in-house fiber optic fluorescence system, Luna characterized the binding of affinity fluorosomes to respective targets and determined the responses of bacterial loads in the fluorescent viability assays. Using this two-tiered approach, Luna demonstrated that water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  1. Beyond radio-displacement techniques for Identification of CB1 Ligands: The First Application of a Fluorescence-quenching Assay

    PubMed Central

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  2. Beyond radio-displacement techniques for identification of CB1 ligands: the first application of a fluorescence-quenching assay.

    PubMed

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1 orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  3. Confocal fluorescence detection expanded to UV excitation: the first continuous fluorimetric assay of human steroid sulfatase in nanoliter volume.

    PubMed

    Billich, Andreas; Bilban, Melitta; Meisner, Nicole-Claudia; Nussbaumer, Peter; Neubauer, Andreas; Jäger, Stefan; Auer, Manfred

    2004-02-01

    Steroid sulfatase is an enzyme that currently enjoys considerable interest as a potential drug target in the treatment of estrogen- and androgen-dependent diseases, in particular breast cancer. We have purified human steroid sulfatase to apparent homogeneity from recombinant Chinese hamster ovary cells, and we established an assay with a new fluorogenic substrate, 3,4-benzocoumarin-7-O-sulfate (1). Substrate 1 features a K(m) value of 22.5 microM, which is close to the value for the natural substrate dehydroepiandrosterone sulfate (26 microM) and much lower than the K(m) values of other synthetic substrates (276-736 microM). Importantly, the cleavage of substrate 1 can be monitored continuously during the enzymatic cleavage, since a change in fluorescence intensity is detectable at the pH where the enzyme is active; in contrast, all other synthetic substrates described so far require alkalization to reveal a measurable absorbance or fluorescence signal. The adaptation of the assay to the 96-well format allows continuous monitoring of multiple wells in a microplate fluorescence reader. Applications of the assay for the determination of IC(50) and K(i) values of novel steroid sulfatase inhibitors are presented. Most importantly the assay was transferred to the nanoscale format (1-microl assay volume) in 2080-well plates with confocal fluorescence detection. This miniaturization will permit screening with a minimum throughput of 20000 compounds per day. The system presented demonstrates that the confocal detection platform used for nanoscreening can be successfully adapted to assays for which conventional ultraviolet dyes like coumarins are necessary. This strongly broadens the application range of confocal readers in drug screening. PMID:15090207

  4. A homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion.

    PubMed

    Smeulders, Liesbet; Bunkens, Lieve; Vereycken, Inge; Van Acker, Koen; Holemans, Pascale; Gustin, Emmanuel; Van Loock, Marnix; Dams, Géry

    2013-01-01

    The human immunodeficiency virus type 1 (HIV-1) initiates infection through sequential interactions with CD4 and chemokine coreceptors unmasking the gp41 subunit of the viral envelope protein. Consequently, the N-terminal heptad repeats of gp41 form a trimeric coiled-coil groove in which the C-terminal heptad repeats collapse, generating a stable six-helix bundle. This brings the viral and cell membrane in close proximity enabling fusion and the release of viral genome in the cytosol of the host cell. In this chapter, we describe a homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion, based on the ability of soluble peptides, derived from the N- and C-terminal domains of gp41, to form a stable six-helix bundle in vitro. Labeling of the peptides with allophycocyanin and the lanthanide europium results in a Föster resonance energy transfer (FRET) signal upon formation of the six-helix bundle. Compounds interfering with the six-helix bundle formation inhibit the HIV-1 fusion process and suppress the FRET signal. PMID:23821256

  5. Quantum Dot-Bead-DNA Probe-Based Hybridization Fluorescence Assays on Microfluidic Chips.

    PubMed

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-10-01

    The development of chip-based, quantum dot (QD)-bead-DNA conjugate probes for hybridization detection is a prime research focus in the field of microfluidics. QD-Bead-DNA probe-based hybridization detection methods are often called "bead-based assays," and their success is substantially influenced by the dispensing and manipulation capabilities of microfluidic technology. Met was identified as a prognostic marker in different cancers including lung, renal, liver, head and neck, stomach, and breast. In this report, the cancer causing Met gene was detected with QDs attached to polystyrene microbeads. We constructed a microfluidic platform using a flexible PDMS polymer. The chip consists of two channels, with two inlets and two outlets. The two channels were integrated with QD-bead-DNA probes for simultaneous detection of wild type target DNA and mutant DNA, containing three nucleotide changes compared to the wild type sequence. The fluorescence quenching ability of QDs within the channels of microfluidic chips were compared for both DNAs. PMID:26726440

  6. Identification of Ancient Silk Using an Enzyme-linked Immunosorbent Assay and Immuno-fluorescence Microscopy.

    PubMed

    Liu, Miaomiao; Xie, Jun; Zheng, Hailing; Zhou, Yang; Wang, Bing; Hu, Zhiwen

    2015-01-01

    The identification of ancient silk is of great importance in both archaeology and academia. In the present work, a specific antibody having the characteristics of low cost, easy operation and extensive applicability was developed directly through immunizing rabbits with complete antigen (silk fibroin, SF). Then, antibody-based immunoassays, i.e. enzyme-linked immunosorbent assay (ELISA) and immuno-fluorescence microscopy (IFM), were established and conducted in tandem to identify the corresponding protein in ancient silks. The anti-SF antibody exhibits high sensitivity and specificity for the identification of modern and ancient silks. The detection limit of the ELISA method is about 0.1 ng/mL, and no cross-reactions with other possible interference antigens have been noted. IFM makes it possible to localize target proteins in archaeological samples, and also ensure the reliability of the ELISA results. Based on these advantages, immunological techniques have the potential to become powerful analytical tools at archaeological sites and conservation science laboratories. PMID:26656824

  7. A fluorescence-based helicase assay: application to the screening of G-quadruplex ligands

    PubMed Central

    Mendoza, Oscar; Gueddouda, Nassima Meriem; Boulé, Jean-Baptiste; Bourdoncle, Anne; Mergny, Jean-Louis

    2015-01-01

    Helicases, enzymes that unwind DNA or RNA structure, are present in the cell nucleus and in the mitochondrion. Although the majority of the helicases unwind DNA or RNA duplexes, some of these proteins are known to resolve unusual structures such as G-quadruplexes (G4) in vitro. G4 may form stable barrier to the progression of molecular motors tracking on DNA. Monitoring G4 unwinding by these enzymes may reveal the mechanisms of the enzymes and provides information about the stability of these structures. In the experiments presented herein, we developed a reliable, inexpensive and rapid fluorescence-based technique to monitor the activity of G4 helicases in real time in a 96-well plate format. This system was used to screen a series of G4 structures and G4 binders for their effect on the Pif1 enzyme, a 5′ to 3′ DNA helicase. This simple assay should be adaptable to analysis of other helicases and G4 structures. PMID:25765657

  8. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning

    PubMed Central

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2016-01-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8x enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62nM from a liquid volume of only ~20 nl. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  9. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  10. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes.

    PubMed

    Tran, H V; Piro, B; Reisberg, S; Huy Nguyen, L; Dung Nguyen, T; Duc, H T; Pham, M C

    2014-12-15

    We design an electrochemical immunosensor for miRNA detection, based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. An original immunological approach is followed, using antibodies directed to DNA.RNA hybrids. An electrochemical ELISA-like amplification strategy was set up using a secondary antibody conjugated to horseradish peroxidase (HRP). Hydroquinone is oxidized into benzoquinone by the HRP/H2O2 catalytic system. In turn, benzoquinone is electroreduced into hydroquinone at the electrode. The catalytic reduction current is related to HRP amount immobilized on the surface, which itself is related to miRNA.DNA surface density on the electrode. This architecture, compared to classical optical detection, lowers the detection limit down to 10 fM. Two miRNAs were studied: miR-141 (a prostate biomarker) and miR-29b-1 (a lung cancer biomarker). PMID:24973539

  11. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites

    PubMed Central

    Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses. PMID:25915529

  12. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses. PMID:25915529

  13. A Fluorescence Resonance Energy Transfer Assay For Monitoring α- Synclein Aggregation in a Caenorhabditis Elegans Model For Parkinson's Disease.

    PubMed

    Nagarajan, Archana; Bodhicharla, Rakesh; Winter, Jody; Anbalagan, Charumathi; Morgan, Kevin; Searle, Mark; Nazir, Aamir; Adenle, Ademola; Fineberg, April; Brady, Declan; Vere, Kelly; Richens, Jo; O'Shea, Paul; Bell, David; de-Pomerai, David

    2015-01-01

    The aggregation of α-synuclein (Syn or S) to form insoluble fibrils is important in the pathogenesis of Parkinson's disease, but key risk factors remain ill-defined. We have developed Fluorescence Resonance Energy Transfer (FRET)-based assays for α-synuclein aggregation, using Green Fluorescent Protein variants Cerulean (C) or Venus (V), fused to each other (CV, VC) or to human synuclein (SC, SV etc). Bacterially expressed proteins were purified to homogeneity, and C-terminal fusions SC and SV largely retained their ability to aggregate in vitro. FRET signals from mixtures of SC and SV were used to monitor aggregation. These fusion genes were linked to the C. elegans unc-54 myosin promoter to generate integrated transgenic strains. Increased FRET signals, indicative of S aggregation, were observed following treatment of unc-54::SC + unc-54::SV double transgenic worms with low concentrations of mercury or chlorpyrifos, or with RNAi against hsp-70 and hip-1. Opposite changes in Yellow Fluorescent Protein (YFP) fluorescence in an unc-54::SV strain (NL5901) are likely to reflect FRET from Yellow Fluorescent Protein to aggregates of Syn fusion protein. This could provide the basis for a high throughput screening assay, which could be used for studying the effects of toxic chemicals and environmental pollutants on the aggregation of proteins such as Syn in vivo. PMID:26295817

  14. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    NASA Astrophysics Data System (ADS)

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  15. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    PubMed Central

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5′-TGG GGG TTG AGG CTA AGC CGA-3′) can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA–TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future. PMID:25634469

  16. A sensitive "turn-on" fluorescent assay for quantification of ceftriaxone based on l-tryptophan-Pd(II) complex fluorophore.

    PubMed

    Qiao, Man; Jiang, Junze; Yang, Jidong; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2016-05-15

    Based on l-tryptophan-Pd(II) system, a sensitive and selective fluorimetric assay for the quantification of ceftriaxone (CTRX) had been developed. The experimental results showed that in pH 4.0 Britton-Robinson (BR) buffer medium, the fluorescence of l-tryptophan (l-Trp) (λex/λem=276nm/352nm) could be efficiently quenched by Pd(II). When CTRX was added to the mixed solution of the l-tryptophan and Pd(II), the fluorescence of l-Trp recovered. The reaction mechanism and the reasons for the fluorescence recovery were also discussed. Pd(II) reacted with l-Trp to form a 1:1 chelate complex, and then, after CTRX was added in l-Try-Pd(II) system, the ligand exchange reaction occurred between l-Trp and CTRX, which resulted in the fluorescence recovery. Under the optimized experimental conditions, the recovered fluorescence intensities at 352nm showed excellent linear relationship with the concentration of CTRX over the range of 6.0×10(-8)-2.4×10(-)(6)molL(-1) (0.040-1.59μgmL(-1)). The correlation coefficient (R) was 0.9997 and the detection limit was 1.8×10(-)(8)molL(-1) (11.9ngmL(-1)). Furthermore, the assay had been applied to determine trace amount of CTRX human urine samples with satisfactory results. PMID:26963730

  17. A sensitive "turn-on" fluorescent assay for quantification of ceftriaxone based on L-tryptophan-Pd(II) complex fluorophore

    NASA Astrophysics Data System (ADS)

    Qiao, Man; Jiang, Junze; Yang, Jidong; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2016-05-01

    Based on L-tryptophan-Pd(II) system, a sensitive and selective fluorimetric assay for the quantification of ceftriaxone (CTRX) had been developed. The experimental results showed that in pH 4.0 Britton-Robinson (BR) buffer medium, the fluorescence of L-tryptophan (L-Trp) (λex/λem = 276 nm/352 nm) could be efficiently quenched by Pd(II). When CTRX was added to the mixed solution of the L-tryptophan and Pd(II), the fluorescence of L-Trp recovered. The reaction mechanism and the reasons for the fluorescence recovery were also discussed. Pd(II) reacted with L-Trp to form a 1:1 chelate complex, and then, after CTRX was added in L-Try-Pd(II) system, the ligand exchange reaction occurred between L-Trp and CTRX, which resulted in the fluorescence recovery. Under the optimized experimental conditions, the recovered fluorescence intensities at 352 nm showed excellent linear relationship with the concentration of CTRX over the range of 6.0 × 10- 8-2.4 × 10-6 mol L- 1 (0.040-1.59 μg mL- 1). The correlation coefficient (R) was 0.9997 and the detection limit was 1.8 × 10-8 mol L- 1 (11.9 ng mL- 1). Furthermore, the assay had been applied to determine trace amount of CTRX human urine samples with satisfactory results.

  18. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. PMID:26954998

  19. Fluorescence turn-on and colorimetric dual readout assay of glutathione over cysteine based on the fluorescence inner-filter effect of oxidized TMB on TMPyP.

    PubMed

    Jiang, Xiangyu; Geng, Fenghua; Wang, Yongxiang; Liu, Jinhua; Qu, Peng; Xu, Maotian

    2016-07-15

    Quantitative fluorescence turn-on and colorimetric detection of glutathione (GSH) with rapid speed, low cost have attained much attention. Herein, we developed a sensitive fluorescence turn-on and colorimetric sensor for GSH based on the inner-filter effect (IFE), which is the first time to select oxTMB and TMPyP as the IFE absorber and fluorophore pair, respectively. The absorption band of oxTMB matches well with the emission band of TMPyP in the IFE-based fluorescent assay. In the absence of GSH, the absorption peak of oxTMB at 652nm significantly overlaps with the emission of TMPyP, resulting in the efficient IFE and inhibition of the fluorescence of TMPyP. In the presence of GSH, the absorption intensity at 652nm decreases, generating the recovery of the fluorescence of TMPyP. Therefore, this approach is demonstrated to be a novel candidate for detection of GSH, with high sensitivity and selectivity. The linear dynamic range for the concentrations of GSH is between 0.1μM to 20μM along with a limit of detection (LOD) of about 30nM (calculated LOD as 3σ/slope). Finally, this novel sensor was successfully applied for GSH detection in fetal calf serum, and satisfactory recovery was achieved. PMID:26971272

  20. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A hemagglutinin antigen.

    PubMed

    Chen, Longyan; Neethirajan, Suresh

    2015-01-01

    Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs). The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs), and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs). When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human) and H5 (avian). The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures. PMID:25884789

  1. A Homogenous Fluorescence Quenching Based Assay for Specific and Sensitive Detection of Influenza Virus A Hemagglutinin Antigen

    PubMed Central

    Chen, Longyan; Neethirajan, Suresh

    2015-01-01

    Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs). The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs), and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs). When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human) and H5 (avian). The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures. PMID:25884789

  2. Development of a highly sensitive, high-throughput assay for glycosyltransferases using enzyme-coupled fluorescence detection.

    PubMed

    Kumagai, Kazuo; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo

    2014-02-15

    Glycosyltransferases catalyze transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Identification of selective modulators of glycosyltransferases is important both to provide new tools for investigating pathophysiological roles of glycosylation reactions in cells and tissues, and as new leads in drug discovery. Here we describe a universal enzyme-coupled fluorescence assay for glycosyltransferases, based on quantification of nucleotides produced in the glycosyl transfer reaction. GDP, UDP, and CMP are phosphorylated with nucleotide kinase in the presence of excess ATP, generating ADP. Via coupled enzyme reactions involving ADP-hexokinase, glucose-6-phosphate dehydrogenase, and diaphorase, the ADP is utilized for conversion of resazurin to resorufin, which is determined by fluorescence measurement. The method was validated by comparison with an HPLC method, and employed to screen the LOPAC1280 library for inhibitors in a 384-well plate format. The assay performed well, with a Z'-factor of 0.80. We identified 12 hits for human galactosyltransferase B4GALT1 after elimination of false positives that inhibited the enzyme-coupled assay system. The assay components are all commercially available and the reagent cost is only 2 to 10 US cents per well. This method is suitable for low-cost, high-throughput assay of various glycosyltransferases and screening of glycosyltransferase modulators. PMID:24299989

  3. Fluorescence assay for glycan expression on living cancer cells based on competitive strategy coupled with dual-functionalized nanobiocomposites.

    PubMed

    Fu, Ying; Lu, Danqin; Lin, Bin; Sun, Qianqian; Liu, Kai; Xu, Lili; Zhang, Shengping; Hu, Chen; Wang, Chuangui; Xu, Zhiai; Zhang, Wen

    2013-11-21

    Cell surface glycans are a class of sophisticated biomolecules related to cancer development and progression, and their analysis is of great significance for early cancer diagnosis and treatment. In this paper, we proposed a fluorescence assay to evaluate glycan expression on living cancer cells based on a competitive strategy coupled with dual-functionalized nanobiocomposites. The competitive assay was conducted between living cancer cells and thiomannosyl derivatives using concanavalin A (Con A)-modified electrode as the interaction platform. To impart fluorescence signaling ability to competitive derivatives, quantum dots (QDs) were anchored on BSA-protected Au nanoparticles, and thiomannosyl derivatives were further immobilized on the nanoparticle surface through Au-S binding. Due to the spacing between QDs and Au nanoparticles by BSA, the {QDs-Au-BSA-mannose} nanobiocomposites maintained the fluorescence of QDs and showed binding ability with the Con A-modified electrode. Au nanorods (AuNRs)-modified electrode was used as an effective substrate to immobilize Con A. This assay was successfully applied to the analysis of two cancer cells lines (A549 and QGY-7701). The method is simple and shows promise for the study of glycan expression on living cancer cells. PMID:24098881

  4. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

    PubMed Central

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T.

    2011-01-01

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer. PMID:22109210

  5. Rapid and quantitative detection of 4(5)-methylimidazole in caramel colours: A novel fluorescent-based immunochromatographic assay.

    PubMed

    Wu, Xinlan; Huang, Minghui; Yu, Shujuan; Kong, Fansheng

    2016-01-01

    A novel fluorescence-based immunochromatographic assay (ICA) for rapid detecting 4(5)-methylimidazole (4-MI) is presented in this study. In our work, the conjugates of fluorescent microspheres (FMs) and 4-MI monoclonal antibody were used as probe for ICA. Under optimal conditions, a standard curve of ICA-based detection of 4-MI was developed, linear detection ranged from 0.50 to 32.0 mg/L. The cross-reactivities were observed less than 3.93% by detecting 6 selected structural analogues of 4-MI. The recoveries of 4-MI in caramels detection were ranged from 82.85% to 102.31%, with the coefficient of variation (n = 3) below 9.06%. Quantitative comparison of the established fluorescence-based ICA with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) analysis of real caramel colour samples indicated a good correlation among the methods. Therefore, our developed fluorescence-based ICA method shows great potential for simple, rapid, sensitive, and cost-effective quantitative detection of 4-MI in food safety control. PMID:26213047

  6. A rapid fluorescence "switch-on" assay for glutathione detection by using carbon dots-MnO2 nanocomposites.

    PubMed

    Cai, Qi-Yong; Li, Jie; Ge, Jia; Zhang, Lin; Hu, Ya-Lei; Li, Zhao-Hui; Qu, Ling-Bo

    2015-10-15

    Glutathione (GSH) serves many cellular functions and plays crucial roles in human pathologies. Simple and sensitive sensors capable of detecting GSH would be useful tools to understand the mechanism of diseases. In this work, a rapid fluorescence "switch-on" assay was developed to detect trace amount of GSH based on carbon dots-MnO2 nanocomposites, which was fabricated through in situ synthesis of MnO2 nanosheets in carbon dots colloid solution. Due to the formation of carbon dots-MnO2 nanocomposites, fluorescence of carbon dots could be quenched efficiently by MnO2 nanosheeets through fluorescence resonance energy transfer (FRET). However, the presence of GSH would reduce MnO2 nanosheets to Mn(2+) ions and subsequently release carbon dots, which resulted in sufficient recovery of fluorescent signal. This proposed assay demonstrated highly selectivity toward GSH with a detection limit of 300nM. Moreover, this method has also shown sensitive responses to GSH in human serum samples, which indicated its great potential to be used in disease diagnosis. As no requirement of any further functionalization of these as-prepared nanomaterials, this sensing system shows remarkable advantages including very fast and simple, cost-effective as well as environmental-friendly, which suggest that this new strategy could serve as an efficient tool for analyzing GSH level in biosamples. PMID:25957074

  7. In vitro assay for drug-induced hepatosteatosis using rat primary hepatocytes, a fluorescent lipid analog and gene expression analysis.

    PubMed

    Fujimura, Hisako; Murakami, Naoko; Kurabe, Michie; Toriumi, Wataru

    2009-05-01

    To evaluate new drugs' potential for hepatosteatosis, we developed a cell-based assay using a fluorescent fatty acid analog: BODIPY558/568 C12. Rat primary hepatocytes were exposed to positive reference compounds [cyclosporine A (CsA), clofibrate (CFR), tetracycline (TC), valproic acid (VPA), carbon tetrachloride (CCl4), tamoxifen (TMX)] in the presence of BODIPY558/568 C12. The formation of fluorscecent particles or lipid droplets in the cytoplasm was confirmed by confocal laser scanning microscopy and electron microscopy respectively. The accumulation of BODIPY558/568 C12 was measured by fluorometry and high content imaging method. All positive reference compounds increased fluorescent particles in number and fluorescence intensity. High content imaging was more sensitive and selective method than fluorometry to detect fluorescent particles. Gene expression analysis of the hepatocytes showed two patterns: genes related to lipid metabolism/synthesis were down-regulated by oxidative stress inducing compounds: CsA, TC and TMX, and up-regulated by peroxisome proliferator-activated receptor-alpha agonists: CFR and VPA. From these findings, we concluded that the cell-based assay developed in this study is an appropriate method to predict drugs' potential for hepatosteatosis, and gene expression analysis is useful to profile the mechanism of the hepatosteatosis. PMID:19224547

  8. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    SciTech Connect

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  9. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    PubMed

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  10. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies

    PubMed Central

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  11. Screening for IgG antinuclear autoantibodies by HEp-2 indirect fluorescent antibody assays and the need for standardization.

    PubMed

    Copple, Susan S; Giles, S Rashelle; Jaskowski, Troy D; Gardiner, Anna E; Wilson, Andrew M; Hill, Harry R

    2012-05-01

    We evaluated 5 commercially available HEp-2 antinuclear antibody (ANA) indirect fluorescent antibody (IFA) assays using patient serum samples from 45 patients with rheumatoid arthritis, 50 with systemic lupus erythematosus (SLE), 35 with scleroderma, 20 with Sjögren syndrome, 10 with polymyositis, and 100 healthy control subjects. In addition, 12 defined serum samples from the Centers for Disease Control and Prevention and 100 patient serum samples sent to ARUP Laboratories (Salt Lake City, UT) for ANA IFA testing were also examined (n = 372). Standardization among the HEp-2 IFA assays occurred when they exhibited the same titer ± 1 doubling dilution. Agreement of the 5 assays was 78%. Within the specific groups of serum samples, agreement ranged from 44% in scleroderma serum samples to 93% in healthy control subjects, with 72% agreement in the SLE group. Variations in slide and substrate quality were also noted (ie, clarity, consistency of fluorescence, cell size, number and quality of mitotic cells). Along with subjectivity of interpretation, HEp-2 IFA assays are also vulnerable to standardization issues similar to other methods for ANA screening. PMID:22523223

  12. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates.

    PubMed

    Bhattacharyya, Sucharita; Renn, Jonathan P; Yu, Houqing; Marko, John F; Matouschek, Andreas

    2016-09-15

    The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein. PMID:27296635

  13. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Antelo, Alvaro; Vieytes, Mercedes R; Botana, Luis M

    2011-08-01

    The spirolides and gymnodimines are marine phycotoxins included in the group of cyclic imines. The toxicity of these compounds to humans is still unknown, although their toxicity by intraperitoneal injection in rodents is very high. A receptor-based method was developed using the competition of the 13-desmethyl spirolide C with biotin-labeled α-bungarotoxin for binding to nicotinic acetylcholine receptors and the immobilization of the α-bungarotoxin-receptor complex on streptavidin-coated surfaces. The quantification of the immobilized receptor can be achieved using a specific antibody. Finally, after the addition of a secondary antibody labeled with horseradish peroxidase, three alternative substrates of this enzyme generate a chemiluminescent, fluorescent, or colorimetric signal. The assay performs well in shellfish extracts and the detection range is 5-150 nM of 13-desmethyl spirolide C in shellfish extracts, which is at least 5 times more sensitive than the existing fluorescence polarization assay. This assay can also detect gymnodimine, although with 10 times lower sensitivity than the spirolide. The detection of cyclic imines with microplate assays would be useful for screening purposes in order to reduce the number of samples to be processed by bioassays or analytical methods. PMID:21692532

  14. High-throughput fluorescence polarization assay to identify small molecule inhibitors of BRCT domains of breast cancer gene 1.

    PubMed

    Lokesh, G L; Rachamallu, Aparna; Kumar, G D Kishore; Natarajan, Amarnath

    2006-05-01

    The C-terminus region of the 1863 residue early onset of breast cancer gene 1 (BRCA1) nuclear protein contains a tandem globular carboxy terminus domain termed BRCT. The BRCT repeats in BRCA1 are phosphoserine- and/or phosphothreonine-specific binding modules. The interaction of the BRCT(BRCA1) domains with phosphorylated BRCA1-associated carboxyl terminal helicase (BACH1) is cell cycle regulated and is essential for DNA damage-induced checkpoint control during the transition from the G(2) phase to the M phase of the cell cycle. Development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule inhibitors of BRCT(BRCA1)-BACH1 interaction is reported here. The FP assay was used for measuring binding affinities and inhibition constants of BACH1 peptides and small molecule inhibitors of BRCT(BRCA1) domains, respectively. A fluorescently labeled wild-type BACH1 decapeptide (BDP1) containing the critical phosphoserine, a phenylalanine at (P+3), and a GST-BRCT fusion protein were used to establish the FP assay. BDP1 has a dissociation constant (K(d)) of 1.58+/-0.01microM and a dynamic range (DeltamP) of 164.9+/-1.9. The assay tolerates 20% dimethyl sulfoxide, which enables screening poorly soluble compounds. Under optimized conditions, a Z' factor of 0.87 was achieved in a 384-well format for high-throughput screening. PMID:16500609

  15. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    SciTech Connect

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  16. A reliable non-separation fluorescence quenching assay for total glycated serum protein: a simple alternative to nitroblue tetrazolium reduction.

    PubMed

    Blincko, S; Colbert, D; John, W G; Edwards, R

    2000-05-01

    A simple non-separation assay for the measurement of total glycated serum protein is described. It was found that the fluorescence intensity of a solution of a fluorescein-boronic acid derivative was quenched in proportion to the amount of serum added. This led to the development of an assay in which 10 microL of serum is added to 4 mL of a solution of the fluorescein-boronic acid derivative and the fluorescence intensity is measured after 15 min. The results, as measured by drop in fluorescence intensity, calibrated by a single standard, were compared with the results for nitroblue tetrazolium (NBT) reduction of fructosamine and showed good correlation (r=0.936, n=114). The intra-assay precision (seven samples each measured 10 times) was less than 2.1% (concentration range 190-660 micromol/L); inter-assay precision for seven samples in 10 assays was less than 2.5% (over the same concentration range). Dilution of serum that had a high concentration of total glycated protein showed the assay to be linear. Serum samples (with low, medium and high total glycated protein concentrations) showed less than 2.1% difference from base results with added glucose (up to 60 mmol/L), less than 9.7% difference with added bilirubin (up to 250 micromol/L) and less than 6.9% with added triglycerides (up to 50 mmol/L). Addition of haemoglobin (up to 0.9 g/dL) with high glycation (11.7% HbA1c) to plasma (298 micromol/L total glycated protein) showed less than 10% difference from the base result. Assays performed over a range of temperatures (12-34 degrees C) showed no significant differences in the results. The assay gives similar results to the currently used NTB method but with significantly less susceptibility to interferences. As such the method should be a useful aid in the management of diabetes. PMID:10817254

  17. Optimization of specimen preparation from formalin-fixed liver tissues for liver micronucleus assays: Hepatocyte staining with fluorescent dyes.

    PubMed

    Shigano, Miyuki; Takashima, Rie; Takasawa, Hironao; Hamada, Shuichi

    2016-04-01

    The liver micronucleus (MN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly those that require metabolic activation. For this assay, hepatocytes (HEPs) can be isolated by collagenase treatment but without requirement for in situ liver perfusion. Consequently, the liver MN assay can be integrated into a general repeated-dose (RD) toxicity study. The method is also applicable to liver MN assays involving partial hepatectomy or the use of juvenile rats. Here, we propose an improved method for staining HEPs prepared from formalin-fixed liver tissues for MN assays, without collagenase treatment. HEP suspensions are prepared by treating the tissues with concentrated KOH and a fluorescent dye, SYBR(®) Gold (SYGO), is used for staining. Visualization of the MN in SYGO-stained HEPs is clearer than with Wright-Giemsa staining. We compared the induction of MN as measured with our new method versus the conventional method using collagenase dispersion. Our method not only enables the integration of the liver MN assay into a general RD toxicity study but also allows it to be conducted retrospectively. PMID:27085473

  18. Development of a fluorescence anisotropy-based assay for Dop, the first enzyme in the pupylation pathway.

    PubMed

    Hecht, Nir; Gur, Eyal

    2015-09-15

    The Pup-proteasome system (PPS) carries out regulated tagging and degradation of proteins in bacterial species belonging to the phyla Actinobacteria and Nitrospira. In the pathogen Mycobacterium tuberculosis, where this proteolytic pathway was initially discovered, PPS enzymes are essential for full virulence and persistence in the mammalian host. As such, PPS enzymes are potential targets for development of antituberculosis therapeutics. Such development often requires sensitive and robust assays for measurements of enzymatic activities and the effect of examined inhibitors. Here, we describe the development of an in vitro activity assay for Dop, the first enzyme in the PPS. Based on fluorescence anisotropy measurements, this assay is simple, sensitive, and compatible with a high-throughput format for screening purposes. We demonstrate how this assay can also be reliably and conveniently used for detailed kinetic measurements of Dop activity. As such, this assay is of value for basic research into Dop and the PPS. Finally, we show that the assay developed here primarily for the mycobacterial Dop can be readily employed with other Dop enzymes, using the same simple protocol. PMID:26095396

  19. How to Illustrate Ligand-Protein Binding in a Class Experiment: An Elementary Fluorescent Assay.

    ERIC Educational Resources Information Center

    Marty, Alain; And Others

    1986-01-01

    Describes an experiment (taking approximately five hours) which illustrates the binding of a small molecule to a protein. By using an appropriate fluorescent ligand and a given protein, the fluorescent probe technique is applied to measure the number of bonding sites, and number of site classes, and their association constants. (JN)

  20. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    PubMed

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings. PMID:22459802

  1. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline.

    PubMed

    Rahier, Renaud; Noiriel, Alexandre; Abousalham, Abdelkarim

    2016-01-01

    Through its production of phosphatidic acid (PA), phospholipase D (PLD) is strongly involved in vesicular trafficking and cell signaling, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released during PLD-catalyzed phosphatidylcholine hydrolysis, making its kinetic characterization difficult. We present here the development of a direct, specific, and continuous PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline (8HQ) following Ca(2+) complexation with PLD-generated PA. The real-time fluorescence intensity from 8HQ/Ca(2+)/PA complexes can be converted to concentrations of product using a calibration curve, with a detection limit of 1.2 μM of PA on a microplate scale, thus allowing measurement of the PLD-catalyzed reaction rate parameters. Hence, this assay is well adapted for studying the substrate specificity of PLD, together with its kinetic parameters, using natural phospholipids with various headgroups. In addition, the assay was found to be effective in monitoring the competitive inhibition of PA formation in the production of phosphatidylalcohols following the addition of primary alcohols, such as ethanol, propan-1-ol, or butan-1-ol. Finally, this assay was validated using the purified recombinant Vigna unguiculata PLD, as well as the PLD from Streptomyces chromofuscus, cabbage, or peanuts, and no PA production could be detected using phospholipase A1, phospholipase A2, or phospholipase C, allowing for a reliable determination of PLD activity in crude protein extract samples. This easy to handle PLD assay constitutes, to our knowledge, the first direct and continuous PA determination method on a microplate scale. PMID:26636829

  2. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    PubMed

    Guo, Jiajia; Li, Ying; Wang, Luokai; Xu, Jingyue; Huang, Yanjun; Luo, Yeli; Shen, Fei; Sun, Chunyan; Meng, Rizeng

    2016-01-01

    This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application

  3. Selective and sensitive determination of cypermethrin in fish via enzyme-linked immunosorbent assay-like method based on molecularly imprinted artificial antibody-quantum dot optosensing materials.

    PubMed

    Xiao, Ting-Ting; Shi, Xi-Zhi; Jiao, Hai-Feng; Sun, Ai-Li; Ding, Hao; Zhang, Rong-Rrong; Pan, Dao-Dong; Li, De-Xiang; Chen, Jiong

    2016-01-15

    Molecularly imprinted silica layers appended to quantum dots (MIP-QDs) with customized selective artificial recognition sites were fabricated in this study by optimizing the ratio of the functional monomer to the template. Scanning electron microscopy, transmission electron microscopy, Brunauer–emmett–teller, Fourier transform infrared spectroscopy, and selectivity assay analyses were also performed. Results demonstrated that the selective fluorescence quenching properties of MIP-QDs toward cypermethrin (CYP) are due to strong interactions between these molecules. An enzyme-linked immunosorbent assay (ELISA)-like method based on the MIP-QDs was established under optimal conditions. The fluorescence quenching observed from this method showed a linear relationship with CYP concentration over the range of 0.05–60.0 mg/kg with a correlation coefficient of 0.9838. Good recovery (82.7–92.4%) and a relative standard deviation of less than 10.1% were obtained from fish samples spiked with three levels of CYP. This method also demonstrated a low detection limit of 1.2 μg/kg. The ELISA-like method based on MIP-QDs can be successfully employed to detect residual of CYP in fish samples. PMID:26283587

  4. A novel cell-based duplex high-throughput screening assay combining fluorescent Ca(2+) measurement with homogeneous time-resolved fluorescence technology.

    PubMed

    Kiss, László; Cselenyák, Attila; Varga, Ágnes; Visegrády, András

    2016-08-15

    Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca(2+)] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm. PMID:27235172

  5. A high throughput fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha interaction.

    PubMed

    Kimple, Adam J; Yasgar, Adam; Hughes, Mark; Jadhav, Ajit; Willard, Francis S; Muller, Robin E; Austin, Christopher P; Inglese, James; Ibeanu, Gordon C; Siderovski, David P; Simeonov, Anton

    2008-06-01

    The GoLoco motif is a short Galpha-binding polypeptide sequence. It is often found in proteins that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that regulate mitotic spindle orientation and force generation during cell division, such as GPSM2/LGN. Here, we describe a high throughput fluorescence polarization (FP) assay using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco motif interaction with the G-protein alpha subunit Galpha (i1). The assay exhibits considerable stability over time and is tolerant to DMSO up to 5%. The Z'-factors for robustness of the GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced a Z'-factor of 0.80. To determine the screening factor window (Z-factor) of the RGS12 GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized to a 4 microL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich LOPAC(1280) collection was screened three times with every library compound being tested over a range of concentrations following the quantitative high throughput screening (qHTS) paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for the green- and red-label assays, respectively. PMID:18537560

  6. Evaluation of a fluorescence-polarization assay for the diagnosis of bovine brucellosis in México.

    PubMed

    Dajer, A; Luna-Martínez, E; Zapata, D; Villegas, S; Gutiérrez, E; Peña, G; Gurría, F; Nielsen, K; Gall, D

    1999-05-14

    A homogeneous fluorescence-polarization assay (FPA) was used for the serological diagnosis of bovine brucellosis in México. The assay uses O-polysaccharide prepared from Brucella abortus lipoplysaccharide (20-30 kDa) conjugated with fluorescein isothiocyanate as a tracer. To measure the fluorescence polarization, a FPM-1 fluorescence-polarization analyzer was used with the procedure described by Nielsen et al. (1996b). A cut-off value of 90 millipolarization (mP) units was used for testing 560 bovine sera from different areas of México. (305 positive sera and 255 negative sera according to the complement fixation test; CFT.) Some were tested with the Rose Bengal plate (RB) test (n = 490) and some with the rivanol-agglutination (RIV) test (n = 190). Sensitivities were 98.3%, 99.3% and 99.0%, and specificities were 68.8%, 55.4% and 96.9%, respectively, for RB, RIV and FPA. The FPA gave a kappa coefficient of agreement with respect to CFT of 0.96, while RB and RIV (relative to the CFT) gave coefficients of 0.70 and 0.61, respectively. Finally, ROC analysis suggested a cut-off value which agreed with the one recommended in the test procedure. We concluded that FPA is a suitable test to be used instead of the CFT in Mexican conditions. PMID:10343334

  7. A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.

    PubMed

    Kruger, Wade; Gilbert, Daniel; Hawthorne, Rebecca; Hryciw, Deanne H; Frings, Stephan; Poronnik, Philip; Lynch, Joseph W

    2005-06-01

    There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an external I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. PMID:15862914

  8. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay

    PubMed Central

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  9. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    PubMed

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  10. A fluorescence photobleaching assay of gap junction-mediated communication between human cells.

    PubMed

    Wade, M H; Trosko, J E; Schindler, M

    1986-04-25

    Gap junction-mediated communication between contiguous cells has been implicated in the regulation of cell proliferation and differentiation. This report describes a new technique to measure cell-cell communication, gap fluorescence redistribution after photobleaching, which is based on the diffusion-dependent return of 6-carboxyfluorescein-mediated fluorescence in a photobleached cell that is in contact with other fluorescently labeled cells. Fluorescence recovery rates are interpreted as dye transport across gap junctions. Results of experiments on normal human fibroblasts and human teratocarcinoma cells show that this technique can measure rapid dye transfer and detect inhibition of communication (between teratocarcinoma cells) by the tumor promoters 12-O-tetradecanoyl-phorbol-13-acetate and the pesticide dieldrin. PMID:3961495

  11. Development of fluorescent substrates and assays for the key autophagy-related cysteine protease enzyme, ATG4B.

    PubMed

    Nguyen, Thanh G; Honson, Nicolette S; Arns, Steven; Davis, Tara L; Dhe-Paganon, Sirano; Kovacic, Suzana; Kumar, Nag S; Pfeifer, Tom A; Young, Robert N

    2014-04-01

    The cysteine protease ATG4B plays a role in key steps of the autophagy process and is of interest as a potential therapeutic target. At an early step, ATG4B cleaves proLC3 isoforms to form LC3-I for subsequent lipidation to form LC3-II and autophagosome membrane insertion. ATG4B also cleaves phosphatidylethanolamine (PE) from LC3-II to regenerate LC3-I, enabling its recycling for further membrane biogenesis. Here, we report several novel assays for monitoring the enzymatic activity of ATG4B. An assay based on mass spectrometric analysis and quantification of cleavage of the substrate protein LC3-B was developed and, while useful for mechanistic studies, was not suitable for high throughput screening (HTS). A doubly fluorescent fluorescence resonance energy transfer (FRET) ligand YFP-LC3B-EmGFP (FRET-LC3) was constructed and shown to be an excellent substrate for ATG4B with rates of cleavage similar to that for LC3B itself. A HTS assay to identify candidate inhibitors of ATG4B utilizing FRET-LC3 as a substrate was developed and validated with a satisfactory Z' factor and high signal-to-noise ratio suitable for screening small molecule libraries. Pilot screens of the 1,280-member library of pharmacologically active compounds (LOPAC(™)) and a 3,481-member library of known drugs (KD2) gave hit rates of 0.6% and 0.5% respectively, and subsequent titrations confirmed ATG4B inhibitory activity for three compounds, both in the FRET and mass spectrometry assays. The FRET- and mass spectrometry-based assays we have developed will allow for both HTS for inhibitors of ATG4B and mechanistic approaches to study inhibition of a major component of the autophagy pathway. PMID:24735444

  12. Bimolecular Fluorescence Complementation (BiFC) Assay for Direct Visualization of Protein-Protein Interaction in vivo

    PubMed Central

    Lai, Hsien-Tsung; Chiang, Cheng-Ming

    2016-01-01

    Bimolecular Fluorescence Complementation (BiFC) assay is a method used to directly visualize protein-protein interaction in vivo using live-cell imaging or fixed cells. This protocol described here is based on our recent paper describing the functional association of human chromatin adaptor and transcription cofactor Brd4 with p53 tumor suppressor protein (Wu et al., 2013). BiFC was first described by Hu et al. (2002) using two non-fluorescent protein fragments of enhanced yellow fluorescent protein (EYFP), which is an Aequorea victoria GFP variant protein, fused respectively to a Rel family protein and a bZIP family transcription factor to investigate interactions between these two family members in living cells. The YFP was later improved by introducing mutations to reduce its sensitivity to pH and chloride ions, thus generating a super-enhanced YFP, named Venus fluorescent protein, without showing diminished fluorescence at 37 °C as typically observed with EYFP (Nagai et al., 2006). The fluorescence signal is regenerated by complementation of two non-fluorescent fragments (e.g., the Venus N-terminal 1–158 amino acid residues, called Venus-N, and its C-terminal 159–239 amino acid residues, named Venus-C; see Figure 1A and Gully et al., 2012; Ding et al., 2006; Kerppola, 2006) that are brought together by interaction between their respective fusion partners (e.g., Venus-N to p53, and Venus-C to the PDID domain of human Brd4; see Figure 1B and 1C). The intensity and cellular location of the regenerated fluorescence signals can be detected by fluorescence microscope. The advantages of the proximity-based BiFC assay are: first, it allows a direct visualization of spatial and temporal interaction between two partner proteins in vivo; second, the fluorescence signal provides a sensitive readout for detecting protein-protein interaction even at a low expression level comparable to that of the endogenous proteins; third, the intensity of the fluorescence signal is

  13. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  14. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors

    PubMed Central

    2016-01-01

    Human macrophage migration inhibitory factor (MIF) is both a keto–enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein–ligand hydrogen bonding, aryl–aryl, and cation−π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  15. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors.

    PubMed

    Cisneros, José A; Robertson, Michael J; Valhondo, Margarita; Jorgensen, William L

    2016-07-13

    Human macrophage migration inhibitory factor (MIF) is both a keto-enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein-ligand hydrogen bonding, aryl-aryl, and cation-π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  16. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species

    PubMed Central

    Sitepu, I.R.; Ignatia, L.; Franz, A. K.; Wong, D. M.; Faulina, S.A.; Tsui, M.; Kanti, A.; Boundy-Mills, K.

    2012-01-01

    A rapid and inexpensive method for estimating lipid content of yeasts is needed for screening large numbers of yeasts samples. Nile red is a fluorescent lipophilic dye used for detection and quantification of intracellular lipid droplets in various biological system including algae, yeasts and filamentous fungi. However, a published assay for yeast is affected by variable diffusion across the cell membrane, and variation in the time required to reach maximal fluorescence emission. In this study, parameters that may influence the emission were varied to determine optimal assay conditions. An improved assay with a high-throughput capability was developed that includes the addition of dimethyl sulfoxide (DMSO) solvent to improve cell permeability, elimination of the washing step, the reduction of Nile red concentration, kinetic readings rather than single time-point reading, and utilization of a black 96-well microplate. The improved method was validated by comparison to gravimetric determination of lipid content of a broad variety of ascomycete and basidiomycete yeast species. PMID:22985718

  17. Fluorescent protein-based cellular assays analyzed by laser-scanning microplate cytometry in 1536-well plate format.

    PubMed

    Auld, Douglas S; Johnson, Ronald L; Zhang, Ya-qin; Veith, Henrike; Jadhav, Ajit; Yasgar, Adam; Simeonov, Anton; Zheng, Wei; Martinez, Elisabeth D; Westwick, John K; Austin, Christopher P; Inglese, James

    2006-01-01

    Microtiter plate readers have evolved from photomultiplier and charged-coupled device-based readers, where a population-averaged signal is detected from each well, to microscope-based imaging systems, where cellular characteristics from individual cells are measured. For these systems, speed and ease of data analysis are inversely proportional to the amount of data collected from each well. Microplate laser cytometry is a technology compatible with a 1536-well plate format and capable of population distribution analysis. Microplate cytometers such as the Acumen Explorer can monitor up to four fluorescent signals from single objects in microtiter plates with densities as high as 1536 wells. These instruments can measure changes in fluorescent protein expression, cell shape, or simple cellular redistribution events such as cytoplasmic to nuclear translocation. To develop high-throughput screening applications using laser-scanning microplate cytometry, we used green fluorescent protein- and yellow fluorescent protein-expressing cell lines designed to measure diverse biological functions such as nuclear translocation, epigenetic signaling, and G protein-coupled receptor activation. This chapter illustrates the application of microplate laser cytometry to these assays in a manner that is suitable for screening large compound collections in high throughput. PMID:17110211

  18. A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition.

    PubMed

    Wang, Lei; Yan, Xu; Su, Xingguang

    2016-09-01

    In this paper, a label-free, highly sensitive and simple assay for one step detection of protein kinase (PKA) activity and inhibition that avoids the fluorescent dye process has been established. The detection was based on the fluorescence (FL) quenching of peptide-Ag nanoclusters (Ag NCs) caused by antibody modified Au nanoparticles (anti-Au NPs) via fluorescence resonance energy transfer (FRET). With PKA and adenosine 5'-triphosphate (ATP) introduced, the substrate peptide of Ag NCs could react with PKA via targeted phosphorylation, and followed by the linking interactions between peptide-Ag NCs and anti-Au NPs. According to the fluorescence quenching of Ag NCs, the activity of protein kinase can be facilely monitored in the range of 0.1-2000 mU/μL with high sensitivity. The detection limit for PKA is 0.039 mU/μL. We further explored the inhibitory effect of H-89 for protein kinase activity. The developed method was also applied to the investigation of drug-induced PKA activation in HeLa cells, which provides a promising means for screening of kinase-related drugs and the clinical diagnosis of disease. PMID:27543031

  19. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB.

    PubMed

    Lai, Xiao-Hong; Liang, Rong-Liang; Liu, Tian-Cai; Dong, Zhi-Ning; Wu, Ying-Song; Li, Lin-Hai

    2016-05-01

    The isoenzyme creatine kinase MB is very important for diagnosis of acute myocardial infarction (AMI). Some CK-MB immunoassays are sensitive, accurate and available for clinical application, but they are expensive and time-consuming procedures. Furthermore, conventional fluorescence immunochromatographic assays (FL-ICAs) have suffered from background fluorescence interference and low analytical sensitivity. A rapid and simple FL-ICA with Eu (III) chelate polystyrene microparticles was developed to determine CK-MB in 50uL serum samples using a portable test strip reader by measuring the fluorescence peak heights of the test line (HT) and the control line (HC) in 12 min. The assay was reliable with a good correlation coefficient between HT/HC ratio and CK-MB concentration in samples. A linear range was 0.85-100.29 ng/mL for CK-MB, and the LOD was 0.029 ng/mL. The intra- and inter-assay coefficients of variation (CV) were both <10 % and the average recoveries were from 90.17 % -112.63 % for CK-MB. The system performed well in interference experiments. Furthermore, a highly significant correlation (r = 0.9794, P < 0.001) between this method and the commercially available bioMérieux mini VIDAS system were attained for measuring 120 CK-MB samples. These results indicated that the Eu (III) chelate microparticles-based FL-ICA is simple, fast, highly sensitive, reliable, and reproducible for point-of-care testing of CK-MB concentrations in serum. Graphical Abstract ᅟ. PMID:27034063

  20. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna.

    PubMed

    Ørsted, Michael; Roslev, Peter

    2015-08-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, the authors investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2 Cr2 O7 or the herbicide formulation Roundup®. Toxicant-induced changes in hydrolytic enzyme activity were compared with changes in mobility (International Organization for Standardization standard 6341). The results showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna and the fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup resulted in loss of whole body enzyme activity and release of cell constituents, including enzymes and DNA. Roundup caused comparable inhibition of mobility and alkaline phosphatase activity with median effective concentration values at 20 °C of 8.7 mg active ingredient (a.i.)/L to 11.7 mg a.i./L. Inhibition of alkaline phosphatase activity by Roundup was lowest at 14 °C and greater at 20 °C and 26 °C. The results suggest that the fluorescence-based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna. PMID:25809520

  1. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    PubMed Central

    Lee, Linda G.; Nordman, Eric S.; Johnson, Martin D.; Oldham, Mark F.

    2013-01-01

    We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting. PMID:25586412

  2. Fluorescent Single-Stranded DNA Binding Protein as a Probe for Sensitive, Real-Time Assays of Helicase Activity

    PubMed Central

    Dillingham, Mark S.; Tibbles, Katherine L.; Hunter, Jackie L.; Bell, Jason C.; Kowalczykowski, Stephen C.; Webb, Martin R.

    2008-01-01

    The formation and maintenance of single-stranded DNA (ssDNA) are essential parts of many processes involving DNA. For example, strand separation of double-stranded DNA (dsDNA) is catalyzed by helicases, and this exposure of the bases on the DNA allows further processing, such as replication, recombination, or repair. Assays of helicase activity and probes for their mechanism are essential for understanding related biological processes. Here we describe the development and use of a fluorescent probe to measure ssDNA formation specifically and in real time, with high sensitivity and time resolution. The reagentless biosensor is based on the ssDNA binding protein (SSB) from Escherichia coli, labeled at a specific site with a coumarin fluorophore. Its use in the study of DNA manipulations involving ssDNA intermediates is demonstrated in assays for DNA unwinding, catalyzed by DNA helicases. PMID:18599625

  3. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    PubMed

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels. PMID:24830141

  4. Determination of ochratoxin A in food: comparison of a stable isotope dilution assay, liquid chromatography-fluorescence detection and an enzyme-linked immunosorbent assay.

    PubMed

    Lindenmeier, Michael; Schieberle, Peter; Rychlik, Michael

    2011-05-01

    Quantitative results for the mycotoxin ochratoxin A (OTA), obtained by a stable isotope dilution assay (SIDA) were compared with two commonly used analytical methods for OTA quantitation. For this, different types of food, such as wheat, coffee, sultanas, and blood sausages, were analyzed. Because results obtained by the SIDA method were closest to the certified contents of an OTA reference material, data obtained by this method were considered as reference data. For liquid chromatography-fluorescence detection, a clean-up by solid phase extraction on silica was found to be necessary, and a correction for recovery had to be performed to match the data from the SIDA experiments. The enzyme-linked immunosorbent assay (ELISA) strongly overestimated the OTA content in coffee and nutmeg therefore an extract clean-up by immunoaffinity chromatography had to be used to match the SIDA results. Following this sample preparation, ELISA gave correct qualitative and semiquantitative results, and proved to be a suitable screening method. SIDA was also established as a valuable tool to quantify OTA in meat products, when using a clean-up procedure developed recently for blood samples. PMID:23605702

  5. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    PubMed

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  6. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay.

    PubMed

    Carmona, Adriana K; Schwager, Sylva L; Juliano, Maria A; Juliano, Luiz; Sturrock, Edward D

    2006-01-01

    Angiotensin I-converting enzyme (ACE) is involved in various physiological and physiopathological conditions; therefore, the measurement of its catalytic activity may provide essential clinical information. This protocol describes a sensitive and rapid procedure for determination of ACE activity using fluorescence resonance energy transfer (FRET) substrates containing o-aminobenzoic acid (Abz) as the fluorescent group and 2,4-dinitrophenyl (Dnp) as the quencher acceptor. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that can be detected continuously, allowing quantitative measurement of the enzyme activity. The FRET substrates provide a useful tool for kinetic studies and for ACE determination in biological fluids and crude tissue extracts. An important benefit of this method is the use of substrates selective for the two active sites of the enzyme, namely Abz-SDK(Dnp)P-OH for N-domain, Abz-LFK(Dnp)-OH for C-domain and Abz-FRK(Dnp)P-OH for somatic ACE. This methodology can be adapted for determinations using a 96-well fluorescence plate reader. PMID:17487185

  7. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples.

    PubMed

    Otero, Paz; Alfonso, Amparo; Alfonso, Carmen; Aráoz, Rómulo; Molgó, Jordi; Vieytes, Mercedes R; Botana, Luis M

    2011-09-01

    In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 μg kg(-1) meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication. PMID:21801889

  8. Fluorescent single-stranded DNA-based assay for detecting unchelated Gadolinium(III) ions in aqueous solution.

    PubMed

    Edogun, Osafanmwen; Nguyen, Nghia Huu; Halim, Marlin

    2016-06-01

    The main concern pertaining to the safety of Gadolinium(III)-based contrast agents (GBCAs) is the toxicity caused by the unchelated ion, which may be inadvertently present in the solution due most commonly to excess unreacted starting material or dissociation of the complexes. Detecting the aqueous free ion during the synthesis and preparation of GBCA solutions is therefore instrumental in ensuring the safety of the agents. This paper reports the development of a sensitive fluorogenic sensor for aqueous unchelated Gadolinium(III) (Gd(III)). Our design utilizes single-stranded oligodeoxynucleotides with a specific sequence of 44 bases as the targeting moiety. The fluorescence-based assay may be run at ambient pH with very small amounts of samples in 384-well plates. The sensor is able to detect nanomolar concentration of Gd(III), and is relatively unresponsive toward a range of biologically relevant ions and the chelated Gd(III). Although some cross-reactivity with other trivalent lanthanide ions, such as Europium(III) and Terbium(III), is observed, these are not commonly found in biological systems and contrast agents. This convenient and rapid method may be useful in ascertaining a high purity of GBCA solutions. Graphical abstract Fluorescent aptamer-based assay for detecting unchelated Ln(III) ions in aqueous solution. PMID:27071762

  9. Detecting Autophagy and Autophagy Flux in Chronic Myeloid Leukemia Cells Using a Cyto-ID Fluorescence Spectrophotometric Assay.

    PubMed

    Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi

    2016-01-01

    Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells. PMID:27581142

  10. A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples.

    PubMed

    Hou, Xianfeng; Zeng, Fang; Wu, Shuizhu

    2016-11-15

    γ-Glutamyl transpeptidase (GGT) plays crucial roles in some physiological processes. Herein a turn-on fluorescent probe for γ-glutamyl transpeptidase (GGT) assay based on aggregation-induced-emission (AIE) effect and the enzyme-induced transformation of hydrophilicity to hydrophobicity has been developed by functionalizing tetraphenylethylene (TPE) derivative with two γ-glutamyl amide groups, which simultaneously work as recognition units and hydrophilic groups. When the γ-glutamyl amide groups are cleaved through GGT enzymatic reaction, the hydrophobic reaction product readily aggregate and correspondingly strong blue fluorescence can be observed, as a result of activated AIE process. By virtue of the probe's good solubility in totally aqueous solution, high sensitivity and excellent photostability, the probe can be employed to detect GGT level in human serum samples. Furthermore, the probe can be used for imaging endogenous GGT in living A2780 cells. Hence, the probe holds great promise for acting as a convenient one-step straightforward assay for GGT detection in diagnostic-related applications, and also it could provide a useful approach for conducting pathological analysis for diseases involving GGT. PMID:27183282

  11. Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots.

    PubMed

    Lin, Feng-E; Gui, Chuang; Wen, Wei; Bao, Ting; Zhang, Xiuhua; Wang, Shengfu

    2016-09-01

    We describe a fluorescent dopamine assay that is based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of graphene quantum dots (GQDs). The green fluorescence of GQDs is remarkably inhibited in the presence of citrate-stabilized AuNPs via IFE. Upon the addition of dopamine (DA), aggregation of the AuNPs occurs which is associated with a color change from red to blue. The IFE can no longer occur and the fluorescence of GQDs is recovered. Under the optimum conditions, a linear correlation exists between fluorescence intensity and the concentration of DA in the range from 20nM to 200nM with a detection limit of 15nM (at 3σ/s). The assay is rapid, inexpensive and highly sensitive. PMID:27343608

  12. Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria.

    PubMed

    Akbar, S Md; Sreeramulu, K; Sharma, Hari C

    2016-06-01

    Intrinsic protein fluorescence is due to aromatic amino acids, mainly tryptophan, which can be selectively measured by exciting at 295 nm. Changes in emission spectra of tryptophan are due to the protein conformational transitions, subunit association, ligand binding or denaturation, which affect the local environment surrounding the indole ring. In this study, tryptophan fluorescence was monitored in intact mitochondria at 333 nm following excitation at 295 nm in presence of insecticides using spectrofluorometer. Methyl-parathion, carbofuran, and endosulfan induced Trp fluorescence quenching and release of cytochrome c when incubated with the mitochondria, except fenvalarate. Mechanism of insecticide-induced mitochondrial toxicity for the tested insecticides has been discussed. Reduction in the intensity of tryptophan emission spectra of mitochondrial membrane proteins in presence of an increasing concentration of a ligand can be used to study the interaction of insecticides/drugs with the intact mitochondria. Furthermore, this assay can be readily adapted for studying protein-ligand interactions in intact mitochondria and in other cell organelles extending its implications for pesticide and pharma industry and in drug discovery. PMID:26905428

  13. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues. PMID:27424898

  14. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    PubMed Central

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2014-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. PMID:25555152

  15. Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules.

    PubMed

    Wang, Shuangshou; Ye, Jin; Li, Xinglin; Liu, Zhen

    2016-05-17

    Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor-acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly(m-aminophenylboronic acid) nanoparticles (poly(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly(mAPBA) NPs and adenosine 5'-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications. PMID:27089186

  16. [Rapid detection of Pseudomonas aeruginosa by the fluorescence quantitative PCR assay targeting 16S rDNA].

    PubMed

    Xue, Li-Jun; Wang, Yong-Zhi; Ren, Hao; Tong, Yi-Min; Zhao, Ping; Zhu, Shi-Ying; Qi, Zhong-Tian

    2006-09-01

    The 16S rDNA specific primers were designed for rapid detection of Pseudomonas aeruginosa (PA) by the fluorescence quantitative PCR (FQ-PCR) assay, based upon multiple sequence alignment and phylogenetic tree analysis of the 16S rDNAs of over 20 bacteria. After extraction of PA genomic DNA, the target 16S rDNA fragment was amplified by PCR with specific primers, and used to construct recombinant pMDT-Pfr plasmid, the dilution gradients of which were subjected to the standard quantitation curve in FQ-PCR assay. Different concentrations of PA genomic DNA were detected by FQ-PCR in a 20microL of reaction system with SYBR Green I. At the same time, various genomic DNAs of Staphylococcus aureus, Salmonella typhi, Shigella flexneri, Proteus vulgaris, Staphylococcus epidermidis, Escherichia coli, and Mycobacterium tuberculosis were used as negative controls to confirm specificity of the FQ-PCR detection assay. Results demonstrated that the predicted amplified product of designed primers was of high homology only with PA 16S rDNA, and that sensitivity of the FQ-PCR assay was of 3.6pg/microL of bacterial DNA or (2.1 x 10(3) +/- 3.1 x 10(2)) copies/microL of 16S rDNA, accompanied with high specificity, and that the whole detection process including DNA extraction could be completed in about two hours. In contrast to traditional culture method, the FQ-PCR assay targeting 16S rDNA gene can be used to detect PA rapidly, which exhibits perfect application prospect in future. PMID:17037203

  17. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis

    PubMed Central

    Peng, Jingfu; Yu, Xiaoli; Cui, Zhenling; Xue, Wenfei; Luo, Ziyi; Wen, Zilu; Liu, Minghua; Jiang, Danqing; Zheng, Heping; Wu, Hai; Zhang, Shulin; Li, Yao

    2016-01-01

    Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF) and isoniazid (INH). Methods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR) assay, 10 probes labeled with four kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC, and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST), DNA sequencing and MF-qRT-PCR assay. Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6 and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9 and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2 and 100% for RIF-resistance and 97.9 and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 M. tuberculosis complexes (MTC) from 34 Non-tuberculous mycobacteria (NTM) isolates with 100% accuracy rate. Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable, and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates. PMID:27199947

  18. Fluorescence assay for monitoring Zn-deficient superoxide dismutase in vitro

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Mirov, S. B.; Zhuang, Y.-X.; Crow, J. P.; Ermilov, V.; Beckman, J. S.

    2003-11-01

    A method has been developed for selective detection of the zinc-deficient form of Cu, Zn superoxide dismutase (SOD1) in vitro. Zinc-deficient SOD1 mutants have been implicated in the death of motor neurons leading in amyotrophic lateral sclerosis (ALS or Lou Gerhig's disease). Thus, this method may have applicability for detecting zinc-deficient SOD1 mutants in human ALS patients samples as well as in a transgenic mouse model of ALS and in cultured motor neurons. We determined previously that structural analogs of 1,10 phenanthroline, which react specifically with Cu(I), react with the active Cu(I) of SOD1 when zinc is absent, but not when zinc is also bound, as evidenced by the fact that the reaction is inhibited by pretreatment of the enzyme with zinc. We report herein that bathocuproine, or its water-soluble derivative bathocuproine disulfonate, react with zinc-deficient SOD1 to form a complex which fluoresces at 734 nm when excited at 482 nm. Fluorescent intensity is concentration dependent, thus we propose to use fluorescent confocal microscopy to measure intracellular levels of zinc-deficient SOD1 in situ.

  19. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization.

    PubMed

    Yue, Qiaoli; Shen, Tongfei; Wang, Lei; Xu, Shuling; Li, Haibo; Xue, Qingwang; Zhang, Yuanfu; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2014-06-15

    A new aptamer biosensor was presented for the detection of thrombin in this work, which was based on fluorescence polarization (FP) using silica nanoparticles as enhancement probe. The silica nanoparticles covered by streptavidin were tagged with a thrombin aptamer (5'-biotin-GGTTGGTGTGGTTGG-3'), which was bound to the surface of silica nanoparticle through the specific interaction between streptavidin and biotin. In the presence of thrombin, it induced the aptamer to form quadruplex structure. When the other thrombin aptamer labeled with fluorescein (5'-FAM-AGTCCGTGGTAGGGCAGGTTGGGGTGACT-3') was added to the above system, a sandwich structure can form at the surface of silica nanoparticles. The fluorescence polarization was therefore enhanced and quantification between fluorescence polarization signal and concentration of thrombin was built. The sensor provided a linear range from 0.6 to 100 nM for thrombin with a detection limit of 0.20 nM (3.29 SB/m, according to the recent recommendation of IUPAC) in a homogeneous media. The same linear range was obtained in spiked human serum samples with a slightly higher detection limit (0.26 nM), demonstrating high anti-interference of the sensor in a complex biological sample matrix. And the sensor can be used to monitor spiked concentration of thrombin level in real human plasma with satisfactory results obtained. PMID:24508546

  20. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  1. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay.

    PubMed

    Jensen, Jesper Langholm; Jacobsen, Jonas; Moss, Marcia L; Rasmussen, Fred; Qvist, Karsten Bruun; Larsen, Sine; van den Brink, Johannes M

    2015-05-01

    Enzymatic coagulation of bovine milk can be divided in 2 steps: an enzymatic step, in which the Phe105-Met106 bond of the milk protein bovine κ-casein is cleaved, and an aggregation step. The aspartic peptidases bovine and camel chymosin (EC 3.4.23.4) are typically used to catalyze the enzymatic step. The most commonly used method to study chymosin activity is the relative milk-clotting activity test that measures the end point of the enzymatic and aggregation step. This method showed that camel chymosin has a 2-fold higher milk-clotting activity toward bovine milk than bovine chymosin. To enable a study of the enzymatic step independent of the aggregation step, a fluorescence resonance energy transfer assay has been developed using a peptide substrate derived from the 98-108 sequence of bovine κ-casein. This assay and Michaelis-Menten kinetics were employed to determine the enzymatic activity of camel and bovine chymosin under milk clotting-like conditions (pH 6.65, ionic strength 80 mM). The results obtained show that the catalytic efficiency of camel chymosin is 3-fold higher than bovine chymosin. The substrate affinity and catalytic activity of bovine and camel chymosin increase at lower pH (6.00 and 5.50). The glycosylation of bovine and camel chymosin did not affect binding of the fluorescence resonance energy transfer substrate, but doubly glycosylated camel chymosin seems to have slightly higher catalytic efficiency. In the characterization of the enzymes, the developed assay is easier and faster to use than the traditionally used relative milk-clotting activity test method. PMID:25726113

  2. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging.

    PubMed

    Pliss, Artem; Peng, Xiao; Liu, Lixin; Kuzmin, Andrey; Wang, Yan; Qu, Junle; Li, Yuee; Prasad, Paras N

    2015-01-01

    Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine. PMID:26155309

  3. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging

    PubMed Central

    Pliss, Artem; Peng, Xiao; Liu, Lixin; Kuzmin, Andrey; Wang, Yan; Qu, Junle; Li, Yuee; Prasad, Paras N

    2015-01-01

    Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine. PMID:26155309

  4. A Dual-Mode Single-Molecule Fluorescence Assay for the Detection of Expanded CGG Repeats in Fragile X Syndrome

    PubMed Central

    Cannon, Brian; Pan, Cynthia; Chen, Liangjing; Hadd, Andrew G.

    2012-01-01

    Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGGN, N = 23) and expanded CGG repeat lengths (CGGN, N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders. PMID:22311273

  5. HPLC with fluorescence detection assay of perampanel, a novel AMPA receptor antagonist, in human plasma for clinical pharmacokinetic studies.

    PubMed

    Mano, Yuji; Takenaka, Osamu; Kusano, Kazutomi

    2015-10-01

    Perampanel (Fycompa®), a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, is registered for the adjunctive treatment of patients (aged ≥12 years) with refractory partial-onset seizures. To support therapeutic drug monitoring, a simple high-performance liquid chromatography (HPLC) assay with fluorescence detection was developed to determine perampanel concentrations in human plasma and validated to support clinical trials. Human plasma samples (1.0 mL) were processed by liquid extraction using diethyl ether, followed by chromatographic separation on a YMC Pack Pro C18 column (150 × 4.6 mm i.d., 5 µm) with isocratic elution of acetonitrile-water-acetic acid-sodium acetate (840:560:3:1.8, v/v/v/w) at a flow rate of 1.0 mL/min. Column eluent was monitored at excitation and emission wavelengths of 290 and 430 nm, respectively. The assay was linear (range 1.0-500 ng/mL) and this could be extended to 25 µg/mL by 50-fold dilution integrity. No endogenous peaks were detected in the elution of analytes in drug-free blank human plasma from six individuals and no interference was observed with co-medications tested. Intra- and inter-batch reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. Validation data demonstrated that our assay is simple, selective, reproducible and suitable for therapeutic drug monitoring of perampanel. PMID:25828925

  6. An Improved Method for Estimating Antibody Titers in Microneutralization Assay Using Green Fluorescent Protein

    PubMed Central

    Yang, Hongmei; Baker, Steven F.; González, Mario E.; Topham, David J.; Martínez-Sobrido, Luis; Zand, Martin; Holden-Wiltse, Jeanne; Wu, Hulin

    2015-01-01

    Viruses that express reporter genes upon infection have been recently used to evaluate neutralizing antibody responses, where a lack of reporter expression indicates specific virus inhibition. The traditional model-based methods using standard outcome of percent neutralization could be applied to the data from the assays to estimate antibody titers. However, the data produced is sometimes irregular, which can yield meaningless outcomes of percent neutralization that do not fit the typical curves for immunoassays, making automated or semi-high throughput antibody titer estimation unreliable. We developed a type of new outcomes model, which is biologically meaningful and fits typical immunoassay curves well. Our simulation study indicates that the new response approach outperforms the traditional response approach regardless of the data variability. The proposed new response approach can be used in similar assays for other disease models. PMID:26010892

  7. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents.

    PubMed

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z' factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening. PMID:22290227

  8. Ribonuclease activity of vaccinia DNA topoisomerase IB: kinetic and high-throughput inhibition studies using a robust continuous fluorescence assay.

    PubMed

    Kwon, Keehwan; Nagarajan, Rajesh; Stivers, James T

    2004-11-30

    Vaccinia type I DNA topoisomerase exhibits a strong site-specific ribonuclease activity when provided a DNA substrate that contains a single uridine ribonucleotide within a duplex DNA containing the sequence 5' CCCTU 3'. The reaction involves two steps: attack of the active site tyrosine nucleophile of topo I at the 3' phosphodiester of the uridine nucleotide to generate a covalent enzyme-DNA adduct, followed by nucleophilic attack of the uridine 2'-hydroxyl to release the covalently tethered enzyme. Here we report the first continuous spectroscopic assay for topoisomerase that allows monitoring of the ribonuclease reaction under multiple-turnover conditions. The assay is especially robust for high-throughput screening applications because sensitive molecular beacon technology is utilized, and the topoisomerase is released during the reaction to allow turnover of multiple substrate molecules by a single molecule of enzyme. Direct computer simulation of the fluorescence time courses was used to obtain the rate constants for substrate binding and release, covalent complex formation, and formation of the 2',3'-cyclic phosphodiester product of the ribonuclease reaction. The assay allowed rapid screening of a 500 member chemical library from which several new inhibitors of topo I were identified with IC(50) values in the range of 2-100 microM. Three of the most potent hits from the high-throughput screening were also found to inhibit plasmid supercoil relaxation by the enzyme, establishing the utility of the assay in identifying inhibitors of the biologically relevant DNA relaxation reaction. One of the most potent inhibitors of the vaccinia enzyme, 3-benzo[1,3]dioxol-5-yl-2-oxoproprionic acid, did not inhibit the closely related human enzyme. The inhibitory mechanism of this compound is unique and involves a step required for recycling the enzyme for steady-state turnover. PMID:15554707

  9. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    PubMed

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated. PMID:26754421

  10. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  11. A Fluorescence Displacement Assay for Antidepressant Drug Discovery Based on Ligand-Conjugated Quantum Dots

    SciTech Connect

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Iwamoto, Hideki

    2011-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.

  12. A 1536-well Fluorescence Polarization Assay to Screen for Modulators of the MUSASHI Family of RNA-Binding Proteins

    PubMed Central

    Minuesa, Gerard; Antczak, Christophe; Shum, David; Radu, Constantin; Bhinder, Bhavneet; Li, Yueming; Djaballah, Hakim; Kharas, Michael G.

    2014-01-01

    RNA-binding proteins (RBPs) can act as stem cell modulators and oncogenic drivers, but have been largely ignored by the pharmaceutical industry as potential therapeutic targets for cancer. The MUSASHI (MSI) family has recently been demonstrated to be an attractive clinical target in the most aggressive cancers. Therefore, the discovery and development of small molecule inhibitors could provide a novel therapeutic strategy. In order to find novel compounds with MSI RNA binding inhibitory activity, we have developed a fluorescence polarization (FP) assay and optimized it for high throughput screening (HTS) in a 1536-well microtiter plate format. Using a chemical library of 6,208 compounds, we performed pilot screens, against both MSI1 and MSI2, leading to the identification of 7 molecules for MSI1, 15 for MSI2 and 5 that inhibited both. A secondary FP dose-response screen validated 3 MSI inhibitors with IC50 below 10μM. Out of the 25 compounds retested in the secondary screen only 8 demonstrated optical interference due to high fluorescence. Utilizing a SYBR-based RNA electrophoresis mobility shift assay (EMSA), we further verified MSI inhibition of the top 3 compounds. Surprisingly, even though several aminoglycosides were present in the library, they failed to demonstrate MSI inhibitor activity challenging the concept that these compounds are pan-active against RBPs. In summary, we have developed an in vitro strategy to identify MSI specific inhibitors using an FP HTS platform, which will facilitate novel drug discovery for this class of RBPs. PMID:24912481

  13. A Fluorescent Microplate Assay Quantifies Bacterial Efflux and Demonstrates Two Distinct Compound Binding Sites in AcrB

    PubMed Central

    Ferrari, Annette; Rijnbrand, R.; Erwin, Alice L.

    2015-01-01

    A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux. PMID:25645845

  14. Substrate Profiling of Tobacco Etch Virus Protease Using a Novel Fluorescence-Assisted Whole-Cell Assay

    PubMed Central

    Kostallas, George; Löfdahl, Per-Åke; Samuelson, Patrik

    2011-01-01

    Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases

  15. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.

    PubMed

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2013-10-15

    DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl₂, and 200 μM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates. PMID:23872003

  16. Metal enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection.

    PubMed

    Ahmed, Syed Rahin; Hossain, Md Ashraf; Park, Jung Youn; Kim, Soo-Hyung; Lee, Dongyun; Suzuki, Tetsuro; Lee, Jaebeom; Park, Enoch Y

    2014-08-15

    In the present study, a rapid, sensitive and quantitative detection of influenza A virus targeting hemagglutinin (HA) was developed using hybrid structure of quantum dots (QDs) and nanoporous gold leaf (NPGL). NPGL film was prepared by dealloying bimetallic film where its surface morphology and roughness were fairly controlled. Anti-influenza A virus HA antibody (ab66189) was bound with NPGL and amine (-NH2) terminated QDs. These biofunctionalized NPGL and QDs formed a complex with the influenza virus A/Beijing/262/95 (H1N1) and the photoluminescence (PL) intensities of QDs were linearly correlated with the concentrations of the virus up to 1ng/mL while no PL was observed in the absence of the virus, or in bovine serum albumin (BSA, 1µg/mL) alone. In addition, it was demonstrated that this assay detected successfully influenza virus A/Yokohama/110/2009 (H3N2) that is isolated from a clinical sample, at a concentration of ca. 50 plaque forming units (PFU)/mL. This detection limit is 2-order more sensitive than a commercially available rapid influenza diagnostic test. From these results, the proposed assay may offer a new strategy to monitor influenza virus for public health. PMID:24607620

  17. Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay

    PubMed Central

    Chinnappan, Raja; Dubé, Audrey; Lemay, Jean-François; Lafontaine, Daniel A.

    2013-01-01

    Riboswitches are mRNA elements that specifically bind cellular metabolites and control gene expression by modifying their structure. As riboswitches often control essential genes in pathogenic bacteria, riboswitches have been proposed as new targets for antibiotics. High-throughput screening provides a powerful approach to identify riboswitch ligand analogs that could act as powerful antibacterial drugs. Biochemical assays have already been used to find riboswitch-binding analogs, but those methods do take into account the transcriptional context for riboswitch regulation. As the importance of co-transcriptional ligand binding has been shown for several riboswitches, it is vital to develop an assay that screens riboswitch-binding analogs during the transcriptional process. Here, we describe the development of a dual molecular beacon system monitoring the transcriptional regulation activity of the Bacillus subtilis pbuE adenine riboswitch. This system relies on two molecular beacons that enable the monitoring of transcription efficiency, as well as the regulatory activity of the riboswitch. Different analogs were tested using our system, and a good correlation was observed between riboswitch activity and reported metabolite affinities. This method is specific, reliable and could be applied at the high-throughput level for the identification of new potential antibiotics targeting any riboswitch-regulating gene expression at the mRNA level. PMID:23525464

  18. A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor-Ligand Complex Dimension with Nanometer Precision.

    PubMed

    Biswas, Kabir H; Groves, Jay T

    2016-07-01

    Receptor-ligand complexes spanning a cell-cell interface inevitably establish a preferred intermembrane spacing based on the molecular dimensions and orientation of the complexes. This couples molecular binding events to membrane mechanics and large-scale spatial organization of receptors on the cell surface. Here, we describe a straightforward, epi-fluorescence-based method to precisely determine intermembrane receptor-ligand dimension at adhesions established by receptor-ligand binding between apposed membranes in vitro. Adhesions were reconstituted between planar and silica microbead supported membranes via specific interaction between cognate receptor/ligand pairs (EphA2/EphrinA1 and E-cadherin/anti-E-cadherin antibody). Epi-fluorescence imaging of the ligand enrichment zone in the supported membrane beneath the adhering microbead, combined with a simple geometrical interpretation, proves sufficient to estimate intermembrane receptor-ligand dimension with better than 1 nm precision. An advantage of this assay is that no specialized equipment or imaging methods are required. PMID:27264296

  19. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species.

    PubMed

    Kodedová, Marie; Sychrová, Hana

    2016-09-10

    New antifungal compounds that circumvent the resistance of the pathogen by directly damaging yeast cell surface structures are promising agents for the treatment of fungal infections, due to their different mechanism of action from current clinically used antifungal drugs. We present here a rapid and cost-effective fluorescence method suitable for identifying new potent drugs that directly target yeast cell surface structures, causing cell permeabilization and thus bypassing the multidrug resistance mechanisms of pathogens. The fluorescence assay enabled us to detect with high sensitivity damage to the Candida plasma membrane (its hyperpolarization and permeabilization) as a result of short-term exposure to the antifungal compounds. Results can be obtained in 1-2h with minimal effort and consumption of the tested compounds, also 96 samples can be analysed simultaneously. We used this method to study antimicrobial peptides isolated from the venom of bees and their synthetic analogs, compare the potency of the peptides and determine their minimal effective concentrations. The antimicrobial peptides were able to kill yeast cells at low concentrations within a 15-min treatment, the LL-III peptide exhibited a broad spectrum of antifungal activity on various Saccharomyces, pathogenic Candida and osmotolerant yeast species. PMID:27369550

  20. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  1. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    PubMed

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms. PMID:22324908

  2. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies.

    PubMed

    Bruno, John G; Richarte, Alicia M; Phillips, Taylor; Savage, Alissa A; Sivils, Jeffrey C; Greis, Alex; Mayo, Michael W

    2014-01-01

    A fluorescent peroxidase-linked DNA aptamer-magnetic bead sandwich assay is described which detects as little as 100 ng of soluble protein extracted from Leishmania major promastigotes with a high molarity chaotropic salt. Lessons learned during development of the assay are described and elucidate the pros and cons of using fluorescent dyes or nanoparticles and quantum dots versus a more consistent peroxidase-linked Amplex Ultra Red (AUR; similar to resazurin) fluorescence version of the assay. While all versions of the assays were highly sensitive, the AUR-based version exhibited lower variability between tests. We hypothesize that the AUR version of this assay is more consistent, especially at low analyte levels, because the fluorescent product of AUR is liberated into bulk solution and readily detectable while fluorophores attached to the reporter aptamer might occasionally be hidden behind magnetic beads near the detection limit. Conversely, fluorophores could be quenched by nearby beads or other proximal fluorophores on the high end of analyte concentration, if packed into a small area after magnetic collection when an enzyme-linked system is not used. A highly portable and rechargeable battery-operated fluorometer with on board computer and color touchscreen is also described which can be used for rapid (<1 h) and sensitive detection of Leishmania promastigote protein extracts (∼ 100 ng per sample) in buffer or sandfly homogenates for mapping of L. major parasite geographic distributions in wild sandfly populations. PMID:24222436

  3. A Competition Assay to Identify Amyloidogenesis Inhibitors by Monitoring the Fluorescence Emitted by the Covalent Attachment of a Stilbene Derivative to Transthyretin

    PubMed Central

    Choi, Sungwook; Kelly, Jeffery W.

    2011-01-01

    Herein we demonstrate that competition between candidate kinetic stabilizer binding to transthyretin (TTR) and stilbene binding to and reaction with the same thyroxine sites within TTR can be utilized to discover potent and highly selective non-covalent TTR amyloidogenesis inhibitors. We report two stilbenes, S1 and S2, for use in distinct competition assays. Each bind selectively to TTR and then chemoselectively react to form an amide bond with the Lys-15 residue of TTR, creating a fluorescent conjugate. We used 28 TTR kinetic stabilizers exhibiting a known spectrum of plasma TTR binding selectivities and TTR amyloid fibril inhibition efficacies to validate the “TTR fluorescence conjugate competition assay”. The kinetic stabilizers competed with S1 for binding to recombinant TTR in buffer and with S2 for binding to endogenous levels of TTR in human blood serum. In both assay scenarios, we demonstrate that the lower the TTR-stilbene conjugate fluorescence after a 3 h competition, the greater the binding selectivity and potency of the candidate TTR kinetic stabilizer. These assays, particularly the assay utilizing S2 in human serum, replace two assays previously utilized to gather the same information. While not the focus of this manuscript, it is clear that the “TTR fluorescence conjugate competition assay” could be adapted for high throughput screening applications. PMID:21273081

  4. A continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe.

    PubMed

    Ferrari, Davide; Peracchi, Alessio

    2002-10-15

    We describe a rapid and inexpensive method to monitor the kinetics of small RNA-cleaving deoxyribozymes, based on the exogenous fluorophore ethidium bromide. Ethidium binds preferentially to double-stranded nucleic acids, and its fluorescence emission increases dramatically upon intercalation. Thus, ethidium can be used in single-turnover experiments to measure both annealing of the deoxyribozyme to its substrate and release of the products. Under conditions in which dissociation of the product is fast compared with cleavage, the apparent rate of product release reflects the cleavage step. The method was developed for characterizing the so-called 8-17 catalytic DNA, but its general applicability in the deoxyribozyme field was verified using the 10-23 RNA-cleaving construct. Catalysis by both deoxyribozymes was not inhibited in the presence of substoichiometric amounts of ethidium, and the rates obtained through the ethidium assay were virtually identical to the rates determined using radiolabeled substrates. In contrast, the assay cannot be applied to the large, structured ribozymes, and its use to study the kinetics of the small hammerhead ribozyme was hampered by the presence on the catalyst of at least one high-affinity ethidium binding site. PMID:12384614

  5. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    PubMed Central

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  6. A High-Throughput Fluorescence-Based Assay System for Appetite-Regulating Gene and Drug Screening

    PubMed Central

    Shimada, Yasuhito; Hirano, Minoru; Nishimura, Yuhei; Tanaka, Toshio

    2012-01-01

    The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish). This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf), knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1), and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant) revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers. PMID:23300705

  7. Improving the Assay of 239Pu in Spent and Melted Fuel Using the Nuclear Resonance Fluorescence Integral Resonance Transmission Method

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Quiter, B. J.; Ludewigt, B. A.; Karwowski, H.; Rich, G.

    2015-10-01

    Non-destructive assay (NDA) of 239Pu in spent nuclear fuel is possible using the isotope-specific nuclear resonance fluorescence (NRF) integral resonance transmission (IRT) method. The IRT method measures the absorption of photons from a quasi-monoenergetic γ-ray beam due to all resonances in the energy width of the beam. According to calculations the IRT method could greatly improve assay times for 239Pu in nuclear fuel. To demonstrate and verify the IRT method, the IRT signature was first measured in 181Ta, whose nuclear resonant properties are similar to those of 239Pu, and then measured in 239Pu. These measurements were done using the quasi-monoenergetic beam at the High Intensity γ-ray Source (HIγS) in Durham, NC, USA. The IRT signature was observed as a decrease in scattering strength when the same isotope material was placed upstream of the scattering target. The results confirm the validity of the IRT method in both 181Ta and 239Pu.

  8. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    PubMed

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. PMID:26879206

  9. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay

    PubMed Central

    2011-01-01

    Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development. PMID:21276241

  10. An improved fluorescent substrate for assaying soluble and membrane-associated ADAM family member activities.

    PubMed

    Moss, Marcia L; Minond, Dmitriy; Yoneyama, Toshie; Hansen, Hinrich P; Vujanovic, Nikola; Rasmussen, Fred H

    2016-08-15

    A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, -10, and -9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 10(4) M(-1) s(-1) and 2.4 (±0.3) × 10(3) M(-1) s(-1) for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, -2, -3, -8, -9, -12, and -14. This substrate provides a unique tool in which to assess ADAM17, -10, and -9 activities. PMID:27177841

  11. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  12. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    PubMed Central

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  13. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  14. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay.

    PubMed

    Zhang, Cunzheng; Wang, Li; Tu, Zhui; Sun, Xing; He, Qinghua; Lei, Zhaojing; Xu, Chongxin; Liu, Yuan; Zhang, Xiao; Yang, Jingyi; Liu, Xianjin; Xu, Yang

    2014-05-15

    An approach is developed to detect the organophosphorus pesticides via competitive binding to a recombinant broad-specificity DNA aptamer with a molecular beacon (MB), the binding of the MB to the aptamer results in the activation of a fluorescent signal, which can be measured for pesticide quantification. Aptamers selected via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) were structurally modified and truncated to narrow down the binding region of the target, which indicated that loops of the aptamer contributed different functions for different chemical recognition. Thereafter, a variant fused by two different minimum functional structures, was clarified with broad specificity and increased affinity. Further molecular docking and molecular dynamics simulations was conducted to understand the molecular interaction between DNA structure and chemicals. 3D modeling revealed a hot spot area formed by 3 binding sites, forces including hydrogen bonds and van der Waals interactions appear to play a significant role in enabling and stabilizing the binding of chemicals. Finally, an engineered aptamer based approach for the detection of organophosphorus pesticides was successfully applied in a test using a real sample, the limit of quantification (LOQ) for phorate, profenofos, isocarbophos, and omethoate reached 19.2, 13.4, 17.2, and 23.4 nM (0.005 mg L(-1)), respectively. PMID:24384262

  15. A Sensitive and Robust HPLC Assay with Fluorescence Detection for the Quantification of Pomalidomide in Human Plasma for Pharmacokinetic Analyses

    PubMed Central

    Shahbazi, Shandiz; Peer, Cody J.; Polizzotto, Mark N.; Uldrick, Thomas S.; Roth, Jeffrey; Wyvill, Kathleen M.; Aleman, Karen; Zeldis, Jerome B.; Yarchoan, Robert; Figg, William D.

    2014-01-01

    Pomalidomide is a second generation IMiD (immunomodulatory agent) that has recently been granted approval by the Food and Drug Administration for treatment of relapsed multiple myeloma after prior treatment with two antimyeloma agents, including lenalidomide and bortezomib. A simple and robust HPLC assay with fluorescence detection for pomalidomide over the range of 1–500 ng/mL has been developed for application to pharmacokinetic studies in ongoing clinical trials in various other malignancies. A liquid-liquid extraction from human plasma alone or pre-stabilized with 0.1% HCl was performed, using propyl paraben as the internal standard. From plasma either pre-stabilized with 0.1% HCl or not, the assay was shown to be selective, sensitive, accurate, precise, and have minimal matrix effects (<20%). Pomalidomide was stable in plasma through 4 freeze-thaw cycles (<12% change), in plasma at room temperature for up to 2 hr for samples not pre-stabilized with 0.1% HCl and up to 8 hr in samples pre-stabilized with 0.1% HCl, 24 hr post-preparation at 4 °C (<2% change), and showed excellent extraction recovery (~90%). This is the first reported description of the freeze/thaw and plasma stability of pomalidomide in plasma either pre-stabilized with 0.1% HCl or not. The information presented in this manuscript is important when performing pharmacokinetic analyses. The method was used to analyze clinical pharmacokinetics samples obtained after a 5 mg oral dose of pomalidomide. This relatively simple HPLC-FL assay allows a broader range of laboratories to measure pomalidomide for application to clinical pharmacokinetics. PMID:24486861

  16. A sensitive and robust HPLC assay with fluorescence detection for the quantification of pomalidomide in human plasma for pharmacokinetic analyses.

    PubMed

    Shahbazi, Shandiz; Peer, Cody J; Polizzotto, Mark N; Uldrick, Thomas S; Roth, Jeffrey; Wyvill, Kathleen M; Aleman, Karen; Zeldis, Jerome B; Yarchoan, Robert; Figg, William D

    2014-04-01

    Pomalidomide is a second generation IMiD (immunomodulatory agent) that has recently been granted approval by the Food and Drug Administration for treatment of relapsed multiple myeloma after prior treatment with two antimyeloma agents, including lenalidomide and bortezomib. A simple and robust HPLC assay with fluorescence detection for pomalidomide over the range of 1-500ng/mL has been developed for application to pharmacokinetic studies in ongoing clinical trials in various other malignancies. A liquid-liquid extraction from human plasma alone or pre-stabilized with 0.1% HCl was performed, using propyl paraben as the internal standard. From plasma either pre-stabilized with 0.1% HCl or not, the assay was shown to be selective, sensitive, accurate, precise, and have minimal matrix effects (<20%). Pomalidomide was stable in plasma through 4 freeze-thaw cycles (<12% change), in plasma at room temperature for up to 2h for samples not pre-stabilized with 0.1% HCl and up to 8h in samples pre-stabilized with 0.1% HCl, 24h post-preparation at 4°C (<2% change), and showed excellent extraction recovery (∼90%). This is the first reported description of the freeze/thaw and plasma stability of pomalidomide in plasma either pre-stabilized with 0.1% HCl or not. The information presented in this manuscript is important when performing pharmacokinetic analyses. The method was used to analyze clinical pharmacokinetics samples obtained after a 5mg oral dose of pomalidomide. This relatively simple HPLC-FL assay allows a broader range of laboratories to measure pomalidomide for application to clinical pharmacokinetics. PMID:24486861

  17. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay

    PubMed Central

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-01-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency. PMID:23536543

  18. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay.

    PubMed

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-09-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency. PMID:23536543

  19. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  20. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    EPA Science Inventory

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  1. Novel Fluorescent Antagonist as a Molecular Probe in A3 Adenosine Receptor Binding Assays Using Flow Cytometry

    PubMed Central

    Kozma, Eszter; Kumar, T. Santhosh; Federico, Stephanie; Phan, Khai; Balasubramanian, Ramachandran; Gao, Zhan-Guo; Paoletta, Silvia; Moro, Stefano; Spalluto, Giampiero; Jacobson, Kenneth A.

    2012-01-01

    The physiological role of the A3 adenosine receptor (AR) was explored in cardiac ischaemia, inflammatory diseases and cancer. We report a new fluorophore-conjugated human (h) A3AR antagonist for application to cell-based assays in ligand discovery and for receptor imaging. Fluorescent pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-ylamine (pyrazolo-triazolo-pyrimidine, PTP) and triazolo[1,5-c]quinazolin-5-yl)amine (triazolo-quinazoline, TQ) AR antagonists were compared. A chain-extended and click-conjugated Alexa Fluor-488 TQ derivative (MRS5449) displayed a radioligand binding Ki value of 6.4 ± 2.5 nM in hA3AR-expressing CHO cell membranes. MRS5449 antagonized hA3AR agonist-induced inhibition of cyclic AMP accumulation in a concentration-dependent manner (KB 4.8 nM). Using flow cytometry (FCM), MRS5449 saturated hA3ARs with very high specific-to-nonspecific binding ratio with an equilibrium binding constant 5.15 nM, comparable to the Kd value of 6.65 nM calculated from kinetic experiments. Ki values of known AR antagonists in inhibition of MRS5449 binding in whole cell FCM were consistent with radioligand binding in membranes, but agonist binding was 5–20 fold weaker than obtained with agonist radioligand [125I]I-AB-MECA. Further binding analysis of MRS5549 suggested multiple agonist binding states of the A3AR. Molecular docking predicted binding modes of these fluorescent antagonists. Thus, MRS5449 is a useful tool for hA3AR characterization. PMID:22402302

  2. Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes.

    PubMed

    Fonfría, Eva S; Vilariño, Natalia; Espiña, Begoña; Louzao, M Carmen; Alvarez, Mercedes; Molgó, Jordi; Aráoz, Rómulo; Botana, Luis M

    2010-01-01

    The detection of toxins in shellfish through reliable methods is essential for human health preservation and prevention of economic losses in the aquaculture industry. Although no human intoxication has been unequivocally linked to gymnodimines or spirolides, these phycotoxins are highly toxic by intraperitoneal injection causing false positives in lipophilic toxin detection by the mouse bioassay. Based on the detection of molecular interactions by fluorescence polarization an inhibition assay was developed using fluorescent alpha-bungarotoxin and nicotinic acetylcholine receptor-enriched membranes of Torpedo marmorata to detect gymnodimine and 13-desmethyl C spirolide. Both toxins, classified into the cyclic imine group, inhibit the interaction of alpha-bungarotoxin with Torpedo nicotinic acetylcholine receptors in the nM range. In this study we analyze the matrix effect of four shellfish species on the fluorescence polarization assay. Mussels, clams, cockles and scallops were extracted with acetone and sequentially partitioned with n-hexane and chloroform. The interference of these shellfish extracts with the alpha-bungarotoxin fluorescence or its binding to the nicotinic acetylcholine receptor was lower than 11%. The average recovery rates of gymnodimine and 13-desmethyl C spirolide using these solvents were 90.6+/-7.8% and 89.6+/-3.2%, respectively with variations among species. The quantification range of this fluorescence polarization assay for gymnodimine and 13-desmethyl C spirolide in all tested species was 80-2000 microg kg(-1) and 85-700 microg kg(-1) of shellfish meat, respectively. This assay format can be used to detect gymnodimine and 13-desmethyl C spirolide in shellfish as a screening assay. PMID:19951760

  3. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  4. Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays.

    PubMed

    Vazdar, Mario; Wernersson, Erik; Khabiri, Morteza; Cwiklik, Lukasz; Jurkiewicz, Piotr; Hof, Martin; Mann, Ella; Kolusheva, Sofiya; Jelinek, Raz; Jungwirth, Pavel

    2013-10-01

    A time-dependent fluorescence shift method, biomimetic colorimetric assays, and molecular dynamics simulations have been performed in search of explanations why arginine rich peptides with intermediate lengths of about 10 amino acids translocate well through cellular membranes, while analogous lysine rich peptides do not. First, we demonstrate that an important factor for efficient peptide adsorption, as the first prerequisite for translocation across the membrane, is the presence of negatively charged phospholipids in the bilayer. Second, we observe a strong tendency of adsorbed arginine (but not lysine) containing peptides to aggregate at the bilayer surface. We suggest that this aggregation of oligoarginines leads to partial disruption of the bilayer integrity due to the accumulated large positive charge at its surface, which increases membrane-surface interactions due to the increased effective charge of the aggregates. As a result, membrane penetration and translocation of medium length oligoarginines becomes facilitated in comparison to single arginine and very long polyarginines, as well as to lysine containing peptides. PMID:24020922

  5. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays.

    PubMed

    Huang, Yong; Liu, Xiaoqian; Zhang, Liangliang; Hu, Kun; Zhao, Shulin; Fang, Baizong; Chen, Zhen-Feng; Liang, Hong

    2015-01-15

    In this work, two different configurations for novel amplified fluorescence polarization (FP) aptasensors based on nicking enzyme signal amplification (NESA) and graphene oxide (GO) enhancement have been developed for ultrasensitive and selective detection of biomolecules in homogeneous solution. One approach involves the aptamer-target binding induced the stable hybridization between an aptamer probe and a fluorophore-labeled DNA probe linked to GO, and forms a nicking site-containing duplex DNA region due to the enhancement of base stacking. The second analytical method involves the target induced the assembly of two aptamer subunits into an aptamer-target complex, and then hybridizes with a fluorophore-labeled DNA probe linked to GO, forming a nicking site-containing duplex DNA region. The formation of the duplex DNA region in both methods triggers the NESA process, resulting in the release of many short DNA fragments carrying the fluorophore from GO, generating a significant decrease of the FP value that provides the readout signal for the amplified sensing process. By using the NESA coupled GO enhancement path, the sensitivity of the developed aptasensors can be significantly improved by four orders of magnitude over traditional aptamer-based homogeneous assays. Moreover, these aptasensors also exhibit high specificity for target molecules, which are capable of detecting target molecule in biological samples. Considering these qualities, the proposed FP aptasensors based NESA and GO enhancement can be expected to provide an ultrasensitive platform for amplified analysis of target molecules. PMID:25087158

  6. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.

    PubMed

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M; Gibson, Christopher C; Carpenter, Anne E

    2016-09-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multiwell plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software identifies individual cells and measures ∼1,500 morphological features (various measures of size, shape, texture, intensity, and so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  7. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    PubMed Central

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  8. A fluorescent HTS assay for phosphohydrolases based on nucleoside 5'-fluorophosphates: its application in screening for inhibitors of mRNA decapping scavenger and PDE-I.

    PubMed

    Baranowski, M R; Nowicka, A; Jemielity, J; Kowalska, J

    2016-05-18

    Several nucleotide-specific phosphohydrolases can cleave P-F bonds in substrate analogues containing a fluorophosphate moiety to release fluoride ions. In this work, by employing a fluoride-sensitive molecular sensor, we harnessed this cleavage reaction to develop a fluorescence assay to screen for phosphohydrolase inhibitors. The assay is rapid, sensitive, and based on simple and synthetically available reagents. The assay was adapted to the high-throughput screening (HTS) format and its utility was demonstrated by screening an 'in-house' library of small nucleotides against two enzymes: DcpS, a metal-independent mRNA decapping pyrophosphatase of the histidine triad (HIT) family; and PDE-I, a divalent cation-dependent nuclease. Our screening results agreed with the known specificities of DcpS and PDE-I, and led to the selection of several inhibitors featuring low-micromolar IC50 values. For DcpS, we also verified the results by using an alternative method with the natural substrate. Notably, the assay presented here is the first fluorescence-based HTS-adaptable assay for DcpS, an established therapeutic target for spinal muscular atrophy. The assay should be useful for phosphohydrolase specificity profiling and inhibitor discovery, particularly in the context of DcpS and other HIT-family enzymes, which play key roles in maintaining cellular functions and have been linked to disease development. PMID:27031609

  9. Tandem Mass Spectrometry Has a Larger Analytical Range than Fluorescence Assays of Lysosomal Enzymes: Application to Newborn Screening and Diagnosis of Mucopolysaccharidoses Types II, IVA, and VI

    PubMed Central

    Kumar, Arun Babu; Masi, Sophia; Ghomashchi, Farideh; Chennamaneni, Naveen Kumar; Ito, Makoto; Scott, C. Ronald; Turecek, Frantisek; Gelb, Michael H.; Spacil, Zdenek

    2016-01-01

    BACKGROUND There is interest in newborn screening and diagnosis of lysosomal storage diseases because of the development of treatment options that improve clinical outcome. Assays of lysosomal enzymes with high analytical range (ratio of assay response from the enzymatic reaction divided by the assay response due to nonenzymatic processes) are desirable because they are predicted to lead to a lower rate of false positives in population screening and to more accurate diagnoses. METHODS We designed new tandem mass spectrometry (MS/MS) assays that give the largest analytical ranges reported to date for the use of dried blood spots (DBS) for detection of mucopolysaccharidoses type II (MPS-II), MPS-IVA, and MPS-VI. For comparison, we carried out fluorometric assays of 6 lysosomal enzymes using 4-methylumbelliferyl (4MU)-substrate conjugates. RESULTS The MS/MS assays for MPS-II, -IVA, and -VI displayed analytical ranges that are 1–2 orders of magnitude higher than those for the corresponding fluorometric assays. The relatively small analytical ranges of the 4MU assays are due to the intrinsic fluorescence of the 4MU substrates, which cause high background in the assay response. CONCLUSIONS These highly reproducible MS/MS assays for MPS-II, -IVA, and -VI can support multiplex newborn screening of these lysosomal storage diseases. MS/MS assays of lysosomal enzymes outperform 4MU fluorometric assays in terms of analytical range. Ongoing pilot studies will allow us to gauge the impact of the increased analytical range on newborn screening performance. PMID:26369786

  10. Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer.

    PubMed

    Kane, Richard A; Stothard, J Russell; Rollinson, David; Leclipteux, Thierry; Evraerts, Jonathan; Standley, Claire J; Allan, Fiona; Betson, Martha; Kaba, Rehana; Mertens, Pascal; Laurent, Thierry

    2013-11-01

    Several DNA probes were designed for use in real-time polymerase chain reaction (PCR) assays to target sequence variation within the ribosomal intergenic spacer (IGS) of schistosomes. A sub-section of the IGS (∼300bp) was amplified, with cross-specific primers, after which group-specific fluorescent, locked nucleic acid probes were assessed for their ability to differentiate and quantify DNA from Schistosoma haematobium and Schistosoma mansoni group parasites. A number of fluorescent probe candidates were screened and validated against genomic DNA from adult schistosome worms and laboratory infected freshwater snails. Two fluorescent, locked nucleic acid probes ShaemLNA5 and SmanLNA2, of 20-26bp in length, were identified and found to be effective in providing evidence of infection in field-collected snails. To adapt these real-time PCR assays for more resource-poor laboratory settings, a PCR-restriction fragment length polymorphism (RFLP) assay was developed and primer/probe combinations were modified for use in oligochromatography, a DNA 'dipstick' technology. An appropriate dipstick was developed, inclusive of internal amplification and amplicon migration controls that could be of particular importance for assessing schistosome transmission dynamics. These assays and tools also have future potential for use in detection of schistosome infections in humans and livestock. PMID:22100540

  11. A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids.

    PubMed Central

    Wilton, D C

    1990-01-01

    1. A new continuous fluorescence assay for phospholipase A2 is described which involves the displacement of the highly fluorescent fatty-acid probe 11-(dansylamino)undecanoic acid from rat liver fatty-acid-binding protein by long-chain fatty acids released as a result of phospholipase A2-catalysed hydrolysis of phospholipids. The initial rate of decrease in fluorescence is linearly related to enzyme activity. 2. The assay will detect enzyme activity down to about 10 pmol/min per ml and gives a linear response up to about 10 nmol/min per ml. 3. The assay will work with all phospholipids that have been tested including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidylglycerol. Substrates carrying a net negative charge showed the highest rates of hydrolysis. 4. The assay will work, in principle, with an enzyme catalysing the release of long-chain fatty acids from a fatty-acylated substrate. This has been confirmed with pancreatic lipase and cholesterol esterase. PMID:2317197

  12. Exploring the dynamics of fluorescence staining of bacteria with cyanine dyes for the development of kinetic assays

    NASA Astrophysics Data System (ADS)

    Thomas, Marlon Sheldon

    Bacterial infections continue to be one of the major health risks in the United States. The common occurrence of such infection is one of the major contributors to the high cost of health care and significant patient mortality. The work presented in this thesis describes spectroscopic studies that will contribute to the development of a fluorescent assay that may allow the rapid identification of bacterial species. Herein, the optical interactions between six bacterial species and a series of thiacyanine dyes are investigated. The interactions between the dyes and the bacterial species are hypothesized to be species-specific. For this thesis, two Gram-negative strains, Escherichia coli (E. coli) TOP10 and Enterobacter aerogenes; two Gram-positive bacterial strains, Bacillus sphaericus and Bacillus subtilis; and two Bacillus endospores, B. globigii and B. thuringiensis, were used to test the proposed hypothesis. A series of three thiacyanine dyes---3,3'-diethylthiacyanine iodide (THIA), 3,3'-diethylthiacarbocyanine iodide (THC) and thiazole orange (THO)---were used as fluorescent probes. The basis of our spectroscopic study was to explore the bacterium-induced interactions of the bacterial cells with the individual thiacyanine dyes or with a mixture of the three dyes. Steady-state absorption spectroscopy revealed that the different bacterial species altered the absorption properties of the dyes. Mixed-dye solutions gave unique absorption patterns for each bacteria tested, with competitive binding observed between the bacteria and spectrophotometric probes (thiacyanine dyes). Emission spectroscopy recorded changes in the emission spectra of THIA following the introduction of bacterial cells. Experimental results revealed that the emission enhancement of the dyes resulted from increases in the emission quantum yield of the thiacyanine dyes upon binding to the bacteria cellular components. The recorded emission enhancement data were fitted to an exponential (mono

  13. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid listeria detection.

    PubMed

    Bruno, John G; Phillips, Taylor; Montez, Tiffany; Garcia, Adrian; Sivils, Jeffrey C; Mayo, Michael W; Greis, Alex

    2015-01-01

    A fluorescent DNA aptamer-magnetic bead sandwich assay was developed to detect listeriolysin O (LLO) protein from pathogenic Listeria bacteria using a peroxidase-linked system, Amplex Ultra Red (AUR; derivatized resazurin) substrate, and a custom-designed handheld fluorometer. The assay is highly sensitive with demonstrated limits of detection (LODs) in the range of 4 to 61 L. monocytogenes cells or the equivalent LLO produced by 4 to 61 cells on average in separate titration trials. Total assay processing and analysis time was approximately 30 mins. The assay has demonstrated the ability to detect 6 species of Listeria as desired by the USDA's Food Safety Inspection Service (FSIS). The portable system was designed to be used primarily with surface swab samples from fomites, but it can also be used to assess enrichment cultures. The minimal time to detect a positive enrichment culture in our hands from an initial 10 cell inoculum in 200 ml of broth has been 8 h post-incubation at 37 °C in shaker flask cultures. An optional automated magnetic bead assay processing and wash device capable of simultaneously processing 6 samples with low and consistent fluorescence background for higher volume central laboratories is also described. PMID:25511112

  14. The Design, Synthesis and Potential Utility of Fluorescence Probes that Target DFG-out Conformation of p38[alpha] for High Throughput Screening Binding Assay

    SciTech Connect

    Tecle, Haile; Feru, Frederic; Liu, Hu; Kuhn, Cyrille; Rennie, Glen; Morris, Mark; Shao, Jiangxing; Cheng, Alan C.; Gikunju, Diana; Miret, Juan; Coli, Rocco; Xi, Simon; Clugston, Susan L.; Low, Simon; Kazmirski, Steven; Ding, Yuan-Hua; Cao, Qing; Johnson, Theresa L.; Deshmukh, Gayatri D.; DiNitto, Jonathan P.; Wu, Joe C.; English, Jessie M.; Pfizer

    2010-10-18

    The design, synthesis and utility of fluorescence probes that bind to the DFG-out conformation of p38{alpha} kinase are described. Probes that demonstrate good affinity for p38{alpha}, have been identified and one of the probes, PF-04438255, has been successfully used in an high throughput screening (HTS) assay to identify two novel non-classical p38{alpha} inhibitors. In addition, a cascade activity assay was utilized to validate the selective binding of these non-classical kinase inhibitors to the unactive form of the enzyme.

  15. Comparative evaluation of the fluorescent antibody test and microtiter immunoperoxidase assay for detection of bovine viral diarrhea virus from bull semen.

    PubMed Central

    Afshar, A; Dulac, G C; Dubuc, C; Howard, T H

    1991-01-01

    An indirect immunoperoxidase staining technique (IP) is described for the detection of bovine viral diarrhea virus (BVDV) in bovine semen. The performance of the IP was compared to the reference immunofluorescent staining test in its ability to detect BVDV in 23 coded field semen samples. The IP assay which can be applied with ease to a large number of samples and does not require expensive fluorescence microscope equipment, appears to be an alternative method for BVDV detection. The IP assay can be strongly recommended for certification of BVDV-free bovine semen for artificial insemination and trading purposes and for laboratories which are not equipped for performing the immunofluorescent test. PMID:1653102

  16. Evaluation and comparison of fluorescence polarization assay with three of the currently used serological tests in diagnosis of human brucellosis.

    PubMed

    Konstantinidis, A; Minas, A; Pournaras, S; Kansouzidou, A; Papastergiou, P; Maniatis, A; Stathakis, N; Hadjichristodoulou, C

    2007-10-01

    Fluorescence polarization assay (FPA) is a method that has been used for the diagnosis of brucellosis in animals for many years. To test its possible usefulness for the diagnosis of human brucellosis, 230 sera from patients with clinical signs of brucellosis and positive serological tests (Rose Bengal, Standard Agglutination Test, iELISA), and 305 sera from a healthy population with no clinical/epidemiological/serological evidence were examined with FPA. By using ROC analysis, the cut-off value was estimated at 99 mP, with 93.5% sensitivity (95% CI 89.5-96.3) and 96.1% specificity (95% CI 93.2-97.9). The pairwise comparison of ROC curves between FPA and iELISA and between FPA and RBT revealed no significant statistic difference (P < 0.05). On the contrary it revealed a significant statistic difference between FPA and SAT (P > 0.05). SAT also had the lowest sensitivity (81.7%) among the three tests used in case definition while iELISA had a sensitivity of 90.8% and RBT a sensitivity of 88.7%. The Kappa analysis showed that FPA has a very good agreement (0.92) with the "status of the disease" and with iELISA (0.837). According to our results, FPA seems to be a valuable method for the diagnosis of brucellosis in humans. Taking into consideration the advantages of the method such as the speed of results obtaining, the objectivity of results interpretation, as well as the cost, FPA could be considered as a replacement for other established methods. However, further studies are needed to assess the reproducibility of FPA. PMID:17665230

  17. A label-free fluorescence assay for trypsin based on the electron transfer between oligonucleotide-stabilized Ag nanoclusters and cytochrome c.

    PubMed

    Hong, Mei-Lan; Li, Li-Juan; Han, Hui-Xia; Chu, Xia

    2014-01-01

    A label-free fluorescent assay for the detection of trypsin by using oligonucleotide-templated silver nanoclusters (Ag NCs) and cytochrome c (Cyt c) has been demonstrated. When negatively charged Ag NCs and positively charged Cyt c are mixed, they tend to form a hybrid complex, and then lead the fluorescence of Ag NCs to be quenched significantly due to electron transfer between Ag NCs and the heme cofactor of Cyt c. In the presence of trypsin, it catalyzes the hydrolytic cleavage of Cyt c to small peptide fragments, and releases the heme moiety from the Ag NCs/Cyt c complex; the quenched fluorescence restores therewith. By virtue of this specific response, the fluorescent biosensor has a linear range of from 0.7 to 4 μg mL(-1) and from 9 to 120 μg mL(-1) with a detection limit of 58.7 ng mL(-1). Aside from the easy manufacture aspect, our method also possesses a high signal-to-background ratio (~11), excellent selectivity and good biocompatibility, which makes it a promising bioanalysis for a trypsin activity assay. PMID:25109643

  18. Interactions between the budding yeast IQGAP homologue Iqg1p and its targets revealed by a split-EGFP bimolecular fluorescence complementation assay.

    PubMed

    Pathmanathan, Sevvel; Barnard, Emma; Timson, David J

    2008-10-01

    A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. PMID:18675924

  19. Establishment of a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the melanogenesis-related genes in human melanoma cells.

    PubMed

    Lin, Chih-Chien; Yang, Chao-Hsun; Lin, Ying-Ju; Chiu, Ya-Wen; Chen, Cheng-Yu

    2015-01-01

    There are two established depigmenting agent assays currently in use. However, these methods are unreliable and time-consuming. Therefore, it will be valuable to establish a better assay system for depigmenting agent analysis. In this study, we established a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the microphthalmia-associated transcription factor (MITF), tyrosinase (Tyr) and dopachrome tautomerase (Dct) genes in MeWo human melanoma cells. We used several melanogenesis regulators, including theophylline, hesperetin, arbutin and rottlerin, to confirm the function of this assay system. The established MeWo/pMITF-EGFP, MeWo/pTyr-EGFP and MeWo/pDct-EGFP stable cells integrated the pMITF-EGFP, pTyr-EGFP and pDct-EGFP plasmids into their genomic DNA. These stably transfected cells were used to examine alterations in the expression of the MITF, Tyr and Dct genes. All of the tested compounds, including theophylline, hesperetin, arbutin and rottlerin, could be analyzed in the stable cells, producing reliable results. Therefore, we believe that this melanogenesis regulation assay system can be used as a rapid and reliable assay system to analyze the regulation of melanogenesis by many known or unknown compounds. PMID:25435499

  20. Fluorescence polarization-based assays for detecting compounds binding to inactive c-Jun N-terminal kinase 3 and p38α mitogen-activated protein kinase.

    PubMed

    Ansideri, Francesco; Lange, Andreas; El-Gokha, Ahmed; Boeckler, Frank M; Koch, Pierre

    2016-06-15

    Two fluorescein-labeled pyridinylimidazoles were synthesized and evaluated as probes for the binding affinity determination of potential kinase inhibitors to the c-Jun N-terminal kinase 3 (JNK3) and p38α mitogen-activated protein kinase (MAPK). Fluorescence polarization (FP)-based competition binding assays were developed for both enzymes using 1-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)thiourea (5) as an FP probe (JNK3: Kd = 3.0 nM; p38α MAPK: Kd = 5.7 nM). The validation of the assays with known inhibitors of JNK3 and p38α MAPK revealed that both FP assays correlate very well with inhibition data received by the activity assays. This, in addition to the viability of both FP-based binding assays for the high-throughput screening procedure, makes the assays suitable as inexpensive prescreening protocols for JNK3 and p38α MAPK inhibitors. PMID:26954235

  1. Uranium in surface soils: an easy-and-quick assay combining X-ray diffraction and fluorescence qualitative data

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Batista, M. J.; Leote, J.; Ferreira, M. L.; Limpo, V.

    2009-04-01

    Portugal has been a uranium-producer since the beginning of the last century. The uranium-rich area of Alto Alentejo, East-central Portugal, was identified more than fifty years ago [1]. Almost all the uranium-bearing mineralization occurs in schistose rocks of the contact metamorphic aureole produced by intrusion of the Hercynian monzonitic granite of Alto Alentejo into the pre-Ordovitian schist-greywacke complex forming deposits of vein and dissemination type. The Nisa uranium-reservoir, situated at the sharp border of a large and arch shaped granite pluton, was identified in 1957 [2] but its exploitation was considered economically impracticable until recently. However, its existence and the accumulated detritus of these prospect efforts are a concern for local populations [3]. A study of the near-surface soils close to the Nisa reservoir was therefore undertaken to assess the uranium retention by adsorption on clay components under the form of uranyl ions, [UO2]2+ [4-6] and its eventual release into the aquifer groundwater. As an attempt to very quickly appraise the presence of uranium in as-collected near-surface sediment samples a combination of laboratory X-ray techniques was designed: X-ray diffraction (XRD) to identify the mineral phases and roughly estimate its relative proportion plus X-ray fluorescence spectrometry in wavelength dispersive mode (XRF-WDS) to ascertain the presence of uranium and tentatively evaluate its content by comparison with selected chemical components of the soil. A description of the experimental methodology adopted for the implemented easy-and-quick uranium assay is presented. Obtained results compare quite well to the data of certified time-consuming analytical tests of uranium in those soil samples. [1] L. Pilar (1966) Conditions of formation of Nisa uranium deposit (in Portuguese). Comunic. Serv. Geol. Portugal, tomo L, 50-85. [2] C. Gonçalves & J.V. Teixeira Lopes (1971) Uranium deposit of Nisa: geological aspects of its

  2. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. PMID:26165232

  3. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  4. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    PubMed

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery. PMID:27240009

  5. Sensitive fluorescence assay of organophosphorus pesticides based on the fluorescence resonance energy transfer between CdTe quantum dots and porphyrin.

    PubMed

    Xue, Gao; Yue, Zhao; Bing, Zhang; Yiwei, Tang; Xiuying, Liu; Jianrong, Li

    2016-08-01

    A sensitive and selective quantum dot (QD)-based fluorescence resonance energy transfer (FRET) biosensor was successfully fabricated for the detection of organophosphorus pesticides (OPs). 5,10,15,20-Tetra(4-pyridyl)porphyrin (TPyP) with meso-pyridyl substituents was bound to the surface of CdTe QDs to produce self-assembled nanosensors, and the process of FRET between QDs and TPyP occurred. However, the process of FRET was switched off with the addition of OPs, due to the combination between TPyP and OPs. The fluorescence intensity of TPyP (donor) would decrease gradually with the increasing concentration of OPs. Under optimal conditions, a linear correlation was established between the fluorescence intensity ratio ITPyP/IQDs and the concentration of paraoxon in the range of 9.09 × 10(-12)-1.09 × 10(-6) mol L(-1) with a detection limit of 3.15 × 10(-12) mol L(-1). The attractive sensitivity was obtained due to the efficient FRET and the superior fluorescence properties of QDs. The proposed method was successfully applied to the determination of the OPs in real fruit samples with satisfactory results. PMID:27305657

  6. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening.

    PubMed

    Li, Yan; Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D; Hiraga, Kaori

    2015-08-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody-drug conjugates. Here we describe a novel activatable fluorescence-quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  7. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O-Alkylguanine-DNA Alkyltransferase Activity.

    PubMed

    Tintoré, Maria; Aviñó, Anna; Ruiz, Federico M; Eritja, Ramón; Fàbrega, Carme

    2010-01-01

    Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O(6) position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA). The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O(6)-methyl-guanine. The sequence also contains a fluorophore (fluorescein) and a quencher (dabsyl) attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O(6)-methyl group. PMID:20936180

  8. Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity.

    PubMed

    Deng, Hao-Hua; Wang, Fei-Fei; Shi, Xiao-Qiong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2016-09-15

    This paper reports a new and facile method for the synthesis of water-soluble thiolate-protected AuNCs via protein-ligand interaction. Using 3-mercaptopropionic acid (MPA) as a model ligand and bovine serum albumin (BSA) as a model protein, water-soluble AuNCs (BSA/MPA-AuNCs) with intense orange-yellow fluorescent emission (quantum yield=16%) are obtained. Results show that AuNCs produced with this method have hydrophobic interactions with BSA. The synthetic strategy is then successfully extended to produce water-soluble AuNCs protected by other thiolates. Moreover, a sensitive and eco-friendly sensing system is established for detection of the activity of inorganic pyrophosphatase (PPase), which relies on the selective coordination of Fe(3+)with BSA/MPA-AuNCs, the higher affinity between pyrophosphate (PPi) and Fe(3+), and the hydrolysis of PPi by PPase. A good linearity between the fluorescence intensity and PPase activity within the range from 0.1 to 3U/L is found, with a detection limit down to 0.07U/L. Additionally, the fluorescent assay developed here is utilized to assay the PPase activity in real biological samples and as well as to evaluate PPase inhibitor, illustrating the great potential for biological analysis. PMID:27093483

  9. Preliminary Study of the Efficacy of Using Nuclear Resonance Fluorescence with Quasi-Monoenergetic Gamma-Ray Sources for Nuclear Safeguards Assay

    SciTech Connect

    Johnson, M S; McNabb, D P; Hall, J M; Gonzalez, J J

    2011-02-17

    We have studied the efficacy of using nuclear resonance fluorescence (NRF)-based techniques to assay spent nuclear fuel for Pu content using quasi-monoenergetic sources. We have developed two techniques to precisely determine the Pu content in a fuel rod/pin. One of our approaches is virtually free of systematic uncertainties. Using analytical models, we have determined the amount of time required to measure the Pu content in spent nuclear fuel rods and spent fuel assemblies to within 1% precision. We note that Pu content can be determined in a fuel assembly about as fast as in a single fuel pin. The performance of NRF-based assay techniques with improved photon sources, which are currently under development, will also estimated. For follow-on research we propose to: (1) Construct research prototype detection systems for both of the NRF-based assay systems proposed in this paper and measure their calibration curves; (2) Determine the systematic errors associated with both assay methods, explore ways to reduce the errors and fold the results into future performance calculations; (3) Develop an algorithm to assay a fuel assembly; (4) Perform validation measurements using a single pin and scaled assemblies; (5) Research and develop current-mode detection and/or threshold detection techniques to improve assay times; (6) Characterize the flux of newly constructed sources and fold the results into the calculations presented here to determine the feasibility of a variety of proposed sources; and (7) Collaborate with others in the safeguards community to build a prototype system and perform an NRF-based assay demonstration on spent fuel.

  10. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75NTR

    PubMed Central

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh; Nyengaard, Jens R

    2015-01-01

    Whereas the proform of the nerve growth factor (proNGF) is crucial for eliminating superfluous cells during neuronal development it also promotes apoptosis following brain trauma and neuronal injury. The apoptotic signal is elicited upon formation of a trimeric receptor complex also containing the vps10p domain receptor sortilin and the neurotrophin receptor p75NTR. However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay to monitor the interaction between fluorescently tagged sortilin and p75NTR in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making use of a pair of FRET standard constructs. As a result, the effect of proNGF on the interaction between sortilin and p75NTR can be evaluated in live cells allowing for screening and selection of therapeutic compounds interfering with proNGF-induced cell death. PMID:26823987

  11. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR).

    PubMed

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh; Nyengaard, Jens R

    2015-01-01

    Whereas the proform of the nerve growth factor (proNGF) is crucial for eliminating superfluous cells during neuronal development it also promotes apoptosis following brain trauma and neuronal injury. The apoptotic signal is elicited upon formation of a trimeric receptor complex also containing the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay to monitor the interaction between fluorescently tagged sortilin and p75(NTR) in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making use of a pair of FRET standard constructs. As a result, the effect of proNGF on the interaction between sortilin and p75(NTR) can be evaluated in live cells allowing for screening and selection of therapeutic compounds interfering with proNGF-induced cell death. PMID:26823987

  12. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  13. Ag@SiO2-entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay.

    PubMed

    Jang, Eunji; Kim, Minsu; Koh, Won-Gun

    2015-05-21

    We developed a novel protein-based bioassay platform utilizing metal-enhanced fluorescence (MEF), which is a hydrogel microarray entrapping silica-coated silver nanoparticles (Ag@SiO2). As a model system, different concentrations of glucose were detected using a fluorescence method by sequential bienzymatic reaction of hydrogel-entrapped glucose oxidase (GOX) and peroxidase (POD) inside a hydrogel microarray. Microarrays based on poly(ethylene glycol)(PEG) hydrogels were prepared by photopatterning a solution containing PEG diacrylate (PEG-DA), photoinitiator, enzymes, and Ag@SiO2. The resulting hydrogel microarrays were able to entrap both enzymes and Ag@SiO2 without leaching and deactivation problems. The presence of Ag@SiO2 within the hydrogel microarray enhanced the fluorescence signal, and the extent of the enhancement was dependent on the thickness of silica shells and the amount of Ag@SiO2. Optimal MEF effects were achieved when the thickness of the silica shell was 17.5 nm, and 0.5 mg mL(-1) of Ag@SiO2 was incorporated into the assay systems. Compared with the standard hydrogel microarray-based assay performed without Ag@SiO2, more than a 4-fold fluorescence enhancement was observed in a glucose concentration range between 10(-3) mM and 10.0 mM using hydrogel microarray entrapping Ag@SiO2, which led to significant improvements in the sensitivity and the limit of detection (LOD). The hydrogel microarray system presented in this study could be successfully combined with a microfluidic device as an initial step to create an MEF-based micro-total-analysis-system (μ-TAS). PMID:25837891

  14. Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes.

    PubMed

    Shamsipur, Mojtaba; Molaabasi, Fatemeh; Hosseinkhani, Saman; Rahmati, Fereshteh

    2016-02-16

    Cytochrome c (Cyt c) is an important biomarker in cell lysates for the early stage of apoptosis or anticancer agents. Here, two novel label-free fluorescence assays based on hemoglobin-stabilized gold nanoclusters (Hb/AuNCs) and aptamer-stabilized silver nanoclusters (DNA/AgNCs) for analysis of Cyt c are presented. The heme group of the protein induces sensitive sensing platforms accompanied by the decreased fluorescence of both metal nanoclusters. The quenching processes observed found to be based on the fluorescence resonance energy transfer mechanism from Hb/AuNCs to Cyt c and photoinduced electron transfer from DNA/AgNCs to the aptamer-Cyt c complex. The linear range for Cyt c was found to be 0-10 μM for Hb/AuNCs and from 0 to 1 μM for DNA/AgNCs, with limits of detection of ∼15 nM. On the basis of strong binding affinity of DNA aptamers for their target proteins, the DNA/AgNCs probe was successfully applied to the quantitative determination of Cyt c in cell lysates, which opens a new avenue to early diagnostics and drug screening with high sensitivity. Compared to the conventional Western blot method, the presented assays are low cost, easy to prepare the fluorescent probes, and sensitive, while overall time for the detection and quantitation of Cyt c from isolated mitochondria is only 20 min. The proposed method for Cyt c detection may also be useful for the study of those materials that cause mitochondrial dysfunction and apoptotic cell death. PMID:26812937

  15. A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry.

    PubMed

    Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili

    2016-03-15

    A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. PMID:26386330

  16. Antibody responses of cows during an outbreak of neosporosis evaluated by indirect fluorescent antibody test and different enzyme-linked immunosorbent assays.

    PubMed

    Dubey, J P; Jenkins, M C; Adams, D S; McAllister, M M; Anderson-Sprecher, R; Baszler, T V; Kwok, O C; Lally, N C; Björkman, C; Uggla, A

    1997-12-01

    Serum samples from 70 (33 aborting and 37 non-aborting) dairy cows from a herd in California were analyzed for Neospora caninum antibodies in different laboratories by various serologic assays including enzyme-linked immunosorbent assay (ELISA) with recombinant antigens (Nc4.1 and Nc14.1), kinetic ELISA, whole tachyzoite lysate ELISA, immunostimulating complex (iscom) ELISA, antigen capture competitive inhibition ELISA, and by the indirect fluorescent antibody test. Eighteen percent of pregnant cows in this herd had aborted within 2 mo of the index case. All 70 cows had antibodies to N. caninum by at least 1 of the tests. Antibody levels to N. caninum in aborting cows as a group were higher than in nonaborting cows. However, it was concluded that no serological test could be used to establish definitively that N. caninum caused the abortion in an individual cow. PMID:9406780

  17. Established and emerging fluorescence-based assays for G-protein function: heterotrimeric G-protein alpha subunits and regulator of G-protein signaling (RGS) proteins.

    PubMed

    Kimple, Randall J; Jones, Miller B; Shutes, Adam; Yerxa, Benjamin R; Siderovski, David P; Willard, Francis S

    2003-06-01

    Heterotrimeric G-proteins are molecular switches that couple serpentine receptors to intracellular effector pathways and the regulation of cell physiology. Ligand-bound receptors cause G-protein alpha subunits to bind guanosine 5'-triphosphate (GTP) and activate effector pathways. Signal termination is facilitated by the intrinsic GTPase activity of G-protein alpha subunits. Regulators of G-protein signaling (RGS) proteins accelerate the GTPase activity of the G-protein alpha subunit, and thus negatively regulate G-protein-mediated signal transduction. In vitro biochemical assays of heterotrimeric G-proteins commonly include measurements of nucleotide binding, GTPase activity, and interaction with RGS proteins. However, the conventional assays for most of these processes involve radiolabeled guanine nucleotide analogues and scintillation counting. In this article, we focus on fluorescence-based methodologies to study heterotrimeric G-protein alpha subunit regulation in vitro. Furthermore, we consider the potential of such techniques in high-throughput screening and drug discovery. PMID:12769684

  18. A Lanthanide-Based Chemosensor for Bioavailable Fe3+ Using a Fluorescent Siderophore: An Assay Displacement Approach

    PubMed Central

    Orcutt, Karen M.; Jones, W. Scott; McDonald, Andrea; Schrock, David; Wallace, Karl J.

    2010-01-01

    The measurement of trace analytes in aqueous systems has become increasingly important for understanding ocean primary productivity. In oceanography, iron (Fe) is a key element in regulating ocean productivity, microplankton assemblages and has been identified as a causative element in the development of some harmful algal blooms. The chemosenor developed in this study is based on an indicator displacement approach that utilizes time-resolved fluorescence and fluorescence resonance energy transfer as the sensing mechanism to achieve detection of Fe3+ ions as low as 5 nM. This novel approach holds promise for the development of photoactive chemosensors for ocean deployment. PMID:22205870

  19. Development of an enzymatic assay system of D-lactate using D-lactate dehydrogenase and a UV-LED fluorescent spectrometer.

    PubMed

    Chen, Chien-Ming; Chen, Shih-Ming; Chien, Po-Jen; Yu, Han-Yin

    2015-12-10

    In this study, we aimed to develop a new enzymatic assay system of d-lactate with good precision, accuracy, and sensitivity for the determination of D-lactate concentrations in rat serum. D-Lactate dehydrogenase (D-LDH) was utilized to catalyze D-lactate and NAD(+) to pyruvate and NADH, respectively. The generated NADH was excited by using a 340-nm UV-light-emitting diode (LED), and the fluorescence at 491 nm was detected to determine the concentration of D-lactate in rat serum. The optics, consisting of the sample cuvette, were set on three-dimensional stages to receive the most intensive fluorescence signal into the spectrometer. The optimal conditions of the D-LDH reaction were pH 8.5 and 25 °C for 90 min. The results showed that the new D-lactate assay system had good linearity (R(2)=0.9964) in the calibration range from 5 to 150 μM. Intra-day and inter-day accuracies were in the range of 103.96-109.09% and 102.84-104.59%, respectively, and the intra-day and inter-day precision was 4.28-6.82% and 4.04-12.40%, respectively. Finally, serum D-lactate concentrations determined by the proposed enzymatic assay system were compared with those obtained by a conventional HPLC method. The newly developed D-lactate assay system could detect 10-15 samples in 90 min, whereas the HPLC method could detect only one sample over the same time period. PMID:26265307

  20. Development of a microsphere-based fluorescence immunochromatographic assay for monitoring lincomycin in milk, honey, beef, and swine urine.

    PubMed

    Zhou, Jie; Zhu, Kui; Xu, Fei; Wang, Wenjun; Jiang, Haiyang; Wang, Zhanhui; Ding, Shuangyang

    2014-12-10

    The residue of lincomycin (LIN) in edible animal foodstuffs caused by the widespread use of veterinary drugs is in need of rapid, simple, and sensitive detection methods. The present work introduces a fluorescent microsphere immunoassay (FMIA) for detecting LIN in different samples based on the competitive immunoreaction on the chromatography test strip. The residues of LIN in different samples compete with bovine serum albumin (BSA) labeled LIN conjugates on the T-line to bind to the anti-LIN monoclonal antibody labeled fluorescent microspheres (FM-mAbs). Captured FM-mAbs on the T-line represent the fluorescent intensity, which is detected under UV light and quantified by a fluorescent reader. Under optimized conditions, the dynamic range is from 1.35 to 3.57 ng/mL, and the 50% inhibition concentration (IC50) is 2.20 ng/mL. This method has 4.4% cross-reactivity with clindamycin and negligible cross-reactivity (<0.1%) with other analogues. To reduce the matrix effects, a dilution method is used to pretreat the samples, and the recoveries range from 73.92 to 120.50% with coefficient of variations <21.76%. In comparison with the results of ELISA and colloidal gold immunoassay, FMIA has obvious advantages such as easy operation, time savings, high sensitivity and specificity, and broader prospect. PMID:25290082

  1. Identification of Small-Molecule Inhibitors of the HuR/RNA Interaction Using a Fluorescence Polarization Screening Assay Followed by NMR Validation

    PubMed Central

    Wang, Zhonghua; Bhattacharya, Akash; Ivanov, Dmitri N.

    2015-01-01

    The human antigen R (HuR) stabilizes many mRNAs of proto-oncogene, transcription factors, cytokines and growth factors by recognizing AU-rich elements (AREs) presented in their 3’ or 5’ untranslated region (UTR). Multiple lines of experimental evidence suggest that this process plays a key role in cancer development. Thus, destabilizing HuR/RNA interaction by small molecules presents an opportunity for cancer treatment/prevention. Here we present an integrated approach to identify inhibitors of HuR/RNA interaction using a combination of fluorescence-based and NMR-based high throughput screening (HTS). The HTS assay with fluorescence polarization readout and Z’-score of 0.8 was used to perform a screen of the NCI diversity set V library in a 384 well plate format. An NMR-based assay with saturation transfer difference (STD) detection was used for hits validation. Protein NMR spectroscopy was used to demonstrate that some hit compounds disrupt formation of HuR oligomer, whereas others block RNA binding. Thus, our integrated high throughput approach provides a new avenue for identification of small molecules targeting HuR/RNA interaction. PMID:26390015

  2. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  3. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  4. Fluorescent intercalator displacement replacement (FIDR) assay: determination of relative thermodynamic and kinetic parameters in triplex formation—a case study using triplex-forming LNAs

    PubMed Central

    Sau, Sujay P.; Kumar, Pawan; Sharma, Pawan K.; Hrdlicka, Patrick J.

    2012-01-01

    Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (Keq) and association/dissociation rate constants (kon and koff). The ‘fluorescent intercalator displacement replacement’ (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson–Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine. PMID:22855561

  5. Research Resource: Real-Time Analysis of Somatostatin and Dopamine Receptor Signaling in Pituitary Cells Using a Fluorescence-Based Membrane Potential Assay.

    PubMed

    Günther, Thomas; Culler, Michael; Schulz, Stefan

    2016-04-01

    Stable somatostatin analogues and dopamine receptor agonists are the mainstay for the pharmacological treatment of functional pituitary adenomas; however, only a few cellular assays have been developed to detect receptor activation of novel compounds without disrupting cells to obtain the second messenger content. Here, we adapted a novel fluorescence-based membrane potential assay to characterize receptor signaling in a time-dependent manner. This minimally invasive technique provides a robust and reliable read-out for ligand-induced receptor activation in permanent and primary pituitary cells. The mouse corticotropic cell line AtT-20 endogenously expresses both the somatostatin receptors 2 (sst2) and 5 (sst5). Exposure of wild-type AtT-20 cells to the sst2- and sst5-selective agonists BIM-23120 and BIM-23268, respectively, promoted a pertussis toxin- and tertiapin-Q-sensitive reduction in fluorescent signal intensity, which is indicative of activation of G protein-coupled inwardly rectifying potassium (GIRK) channels. After heterologous expression, sst1, sst3, and sst4 receptors also coupled to GIRK channels in AtT-20 cells. Similar activation of GIRK channels by dopamine required overexpression of dopamine D2 receptors (D2Rs). Interestingly, the presence of D2Rs in AtT-20 cells strongly facilitated GIRK channel activation elicited by the sst2-D2 chimeric ligand BIM-23A760, suggesting a synergistic action of sst2 and D2Rs. Furthermore, stable somatostatin analogues produced strong responses in primary pituitary cultures from wild-type mice; however, in cultures from sst2 receptor-deficient mice, only pasireotide and somatoprim, but not octreotide, induced a reduction in fluorescent signal intensity, suggesting that octreotide mediates its pharmacological action primarily via the sst2 receptor. PMID:26967369

  6. Fluorescent intercalator displacement replacement (FIDR) assay: determination of relative thermodynamic and kinetic parameters in triplex formation--a case study using triplex-forming LNAs.

    PubMed

    Sau, Sujay P; Kumar, Pawan; Sharma, Pawan K; Hrdlicka, Patrick J

    2012-11-01

    Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson-Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine. PMID:22855561

  7. A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes.

    PubMed

    Miao, Yang-Bao; Ren, Hong-Xia; Gan, Ning; Zhou, You; Cao, Yuting; Li, Tianhua; Chen, Yinji

    2016-07-27

    In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. PMID:27251948

  8. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples. PMID:26686107

  9. Real-time thermal imaging of microwave accelerated metal-enhanced fluorescence (MAMEF) based assays on sapphire plates.

    PubMed

    Previte, Michael J R; Zhang, Yongxia; Aslan, Kadir; Geddes, Chris D

    2007-11-01

    In this paper, we describe an optical geometry that facilitates our further characterization of the temperature changes above silver island films (SiFs) on sapphire plates, when exposed to microwave radiation. Since sapphire transmits IR, we designed an optical scheme to capture real-time temperature images of a thin water film on sapphire plates with and without SiFs during the application of a short microwave pulse. Using this optical scheme, we can accurately determine the temperature profile of solvents in proximity to metal structures when exposed to microwave irradiation. We believe that this optical scheme will provide us with a basis for further studies in designing metal structures to further improve plasmonic-fluorescence clinical sensing applications, such as those used in microwave accelerated metal-enhanced fluorescence (MAMEF). PMID:17902038

  10. Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signaling in a High-Throughput Format

    PubMed Central

    Ayoub, Mohammed Akli; Trebaux, Julien; Vallaghe, Julie; Charrier-Savournin, Fabienne; Al-Hosaini, Khaled; Gonzalez Moya, Arturo; Pin, Jean-Philippe; Pfleger, Kevin D. G.; Trinquet, Eric

    2014-01-01

    The extracellular signal-regulated kinases (ERKs) are key components of multiple important cell signaling pathways regulating diverse biological responses. This signaling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We report the development of a new cell-based Phospho-ERK1/2 assay (designated Phospho-ERK), which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently, or stably expressing the different receptors. The validation was performed for agonists, antagonists, and inhibitors in dose–response as well as kinetic analysis, and the signaling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z′-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signaling. Finally, our study is of great interest in the current context of investigating ERK1/2 signaling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signaling PMID:25002860

  11. Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H2O2-Sensitive Conjugated Polymers.

    PubMed

    Wang, Yunxia; Li, Shengliang; Feng, Liheng; Nie, Chenyao; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-11-01

    A new water-soluble conjugated poly(fluorene-co-phenylene) derivative (PFP-FB) modified with boronate-protected fluorescein (peroxyfluor-1) via PEG linker has been designed and synthesized. In the presence of H2O2, the peroxyfluor-1 group can transform into green fluorescent fluorescein by deprotecting the boronate protecting groups. In this case, upon selective excitation of PFP-FB backbone at 380 nm, efficient fluorescence resonance energy transfer (FRET) from PFP-FB backbone to fluorescein occurs, and accordingly, the fluorescence color of PFP-FB changes from blue to green. Furthermore, the emission color of PFP-FB and the FRET ratio change in a concentration-dependent manner. By taking advantage of PFP-FB, ratiometric detection of choline and acetylcholine (ACh) through cascade enzymatic reactions and further dynamic monitoring of the choline consumption process of cancer cells have been successfully realized. Thus, this new polymer probe promotes the development of enzymatic biosensors and provides a simpler and more effective way for detecting the chemical transmitter of living cells. PMID:26451624

  12. Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness.

    PubMed

    Lada, Aaron T; Davis, Matthew; Kent, Carol; Chapman, James; Tomoda, Hiroshi; Omura, Satoshi; Rudel, Lawrence L

    2004-02-01

    Acyl CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2 are enzymes responsible for the formation of cholesteryl esters in tissues. While both ACAT1 and ACAT2 are present in the liver and intestine, the cells containing either enzyme within these tissues are distinct, suggesting that ACAT1 and ACAT2 have separate functions. In this study, NBD-cholesterol was used to screen for specific inhibitors of ACAT1 and ACAT2. Incubation of AC29 cells, which do not contain ACAT activity, with NBD-cholesterol showed weak fluorescence when the compound was localized in the membrane. When AC29 cells stably transfected with either ACAT1 or ACAT2 were incubated with NBD-cholesterol, the fluorescent signal localized to the nonpolar core of cytoplasmic lipid droplets was strongly fluorescent and was correlated with two independent measures of ACAT activity. Several compounds were found to have greater inhibitory activity toward ACAT1 than ACAT2, and one compound was identified that specifically inhibits ACAT2. The demonstration of selective inhibition of ACAT1 and ACAT2 provides evidence for uniqueness in structure and function of these two enzymes. To the extent that ACAT2 is confined to hepatocytes and enterocytes, the only two cell types that secrete lipoproteins, selective inhibition of ACAT2 may prove to be most beneficial in the reduction of plasma lipoprotein cholesterol concentrations. PMID:14617738

  13. An aqueous platinum nanotube based fluorescent immuno-assay for porcine reproductive and respiratory syndrome virus detection.

    PubMed

    Chen, Lu; Ye, Shiyi; Cai, Kai; Zhang, Cuiling; Zhou, Guohua; He, Zhike; Han, Heyou

    2015-11-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been a significant pathogen towards global swine industry upon its emergence in the late 1980s and since then has exemplified a rapidly evolving, widely spreading pathogen. It is urgently important to develop a simple, rapid and cost effective method to detect this pathogen when virus outbreaks. In the present work, it was found that virus antibody modified platinum nanotubes (Pt-Ab) could act as a superquencher to CdTe:Zn(2+) quantum dots (CdTe:Zn(2+) QDs) fluorescence by Stern-Volmer constants nearly 10(9) M(-1) without any aggregation, the CdTe:Zn(2+) QDs fluorescence will recover as the Pt-Ab goes away by antibody and antigen interaction when virus was added into the probe solution, releasing CdTe:Zn(2+) QDs from the surface of Pt-Ab. By the recovery fluorescence intensity, it can realize qualitative and quantitative detection of PRRSV. This method gives a fast response to PRRSV concentration and provides a sensitive detection limit (2.4 ng/mL). Moreover, it can be applied in infected porcine serum samples and obtain satisfied results. PMID:26452829

  14. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  15. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  16. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay

    PubMed Central

    Hattenrath-Lehmann, Theresa K.; Zhen, Yu; Wallace, Ryan B.

    2015-01-01

    Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm−3) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species. PMID:26637596

  17. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay.

    PubMed

    Hattenrath-Lehmann, Theresa K; Zhen, Yu; Wallace, Ryan B; Tang, Ying-Zhong; Gobler, Christopher J

    2015-01-01

    Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species. PMID:26637596

  18. Optimization of time-resolved fluorescence assay for detection of europium-tetraazacyclododecyltetraacetic acid-labeled ligand-receptor interactions.

    PubMed

    De Silva, Channa R; Vagner, Josef; Lynch, Ronald; Gillies, Robert J; Hruby, Victor J

    2010-03-01

    Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improving sensitivity and affordability in high-throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as diethylenetriaminepentaacetic acid (DTPA) derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIAs) have not yet been successfully used with more stable chelators (e.g., tetraazacyclododecyltetraacetic acid [DOTA] derivatives) due to the incomplete release of lanthanide(III) ions from the complex. Here a modified and optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA-labeled peptides. Complete release of Eu(III) ions from DOTA-labeled ligands was observed using hydrochloric acid (2.0M) prior to the luminescent enhancement step. [Nle(4),d-Phe(7)]-alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) labeled with Eu(III)-DOTA was synthesized, and the binding affinity to cells overexpressing the human melanocortin-4 (hMC4) receptor was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA-linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA-labeled heterobivalent peptide to the cells expressing both hMC4 and cholecystokinin-2 (CCK-2) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924

  19. Automated assay of methylmalonic acid in serum and urine by derivatization with 1-pyrenyldiazomethane, liquid chromatography, and fluorescence detection.

    PubMed

    Schneede, J; Ueland, P M

    1993-03-01

    Determination of methylmalonic acid (MMA) in serum has been established as an accurate test for the diagnosis of cobalamin deficiency. We describe here the development and performance of a liquid-chromatographic assay of MMA in blood and urine. The assay is based on our recent finding that one of the carboxylic acid moieties of some short-chain dicarboxylic acids reacts with the fluorogenic reagent 1-pyrenyldiazomethane in an aqueous medium, whereas the other remains underivatized (Anal Chem 1992; 63:315-9). The pH-dependent ionization of the free carboxylic acid group of 1-pyrenylmethyl monoesters permits retention on anion-exchange columns, which are used for solid-phase extraction. The analysis is done with a cyanopropyl column coupled in series with an octadecyldimethylsilyl column. Solid-phase extraction and sample injection are carried out automatically by a Gilson ASPEC sample processor. The assay response varies linearly with MMA concentration in the range 0.1-1000 mumol/L in serum. The within-day and between-day CVs are 2.8-10.9%, and the detection limit of 5 fmol injected (approximately 20 nmol/L in serum) is sufficiently low to determine MMA in serum (mean 0.187 mumol/L, SD 0.084, range 0.044-0.431, n = 44) and urine from healthy subjects. PMID:8448848

  20. Evaluation of modified Ziehl-Neelsen, direct fluorescent-antibody and PCR assay for detection of Cryptosporidium spp. in children faecal specimens.

    PubMed

    Aghamolaie, S; Rostami, A; Fallahi, Sh; Tahvildar Biderouni, F; Haghighi, A; Salehi, N

    2016-09-01

    To determine the sensitivity and specificity of routine screening methods for cryptosporidiosis, three methods including conventional modified Ziehl-Neelsen (MZN), direct fluorescent-antibody (DFA) and Nested-PCR assay compared together. To this end, their ability to identify the low concentrations of Cryptosporidium spp. oocysts in children fecal samples was evaluated. The sample population of this study was children under 12 years old who had diarrhea and referred to pediatric hospitals in Tehran, Iran. 2,510 stool specimens from patients with diarrhea were screened for Cryptosporidium oocysts by concentration method and MZN. To determine sensitivity and specificity, Nested-PCR and DFA were performed on 30 positive and 114 negative samples which previously had been proved by MZN. By using the microscopic method, DFA assay and PCR analysis, a total of 30 (1.2 %), 28 (1.1 %) and 32 (1.27 %) positive samples were detected respectively. According to the results, the sensitivity, specificity, and positive and negative predictive values of the Nested-PCR assay were 100 %, compared to 94, 100, 100, and 98 %, respectively, for MZN and 87.5, 100, 100, and 96 %, respectively, for DFA. Results of the present study showed that the Nested-PCR assay was more sensitive than the other two methods and laboratories can use the Nested-PCR method for precise diagnosis of Cryptosporidium spp. However, regarding the costs of Nested-PCR and its unavailability in all laboratories and hospitals, MZN staining on smears has also enough accuracy for Cryptosporidium diagnosis. PMID:27605818

  1. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay

    NASA Astrophysics Data System (ADS)

    Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang

    2013-03-01

    A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.

  2. Development and validation of fluorescence-based and automated patch clamp-based functional assays for the inward rectifier potassium channel Kir4.1.

    PubMed

    Raphemot, Rene; Kadakia, Rishin J; Olsen, Michelle L; Banerjee, Sreedatta; Days, Emily; Smith, Stephen S; Weaver, C David; Denton, Jerod S

    2013-01-01

    The inward rectifier potassium (Kir) channel Kir4.1 plays essential roles in modulation of neurotransmission and renal sodium transport and may represent a novel drug target for temporal lobe epilepsy and hypertension. The molecular pharmacology of Kir4.1 is limited to neurological drugs, such as fluoxetine (Prozac(©)), exhibiting weak and nonspecific activity toward the channel. The development of potent and selective small-molecule probes would provide critically needed tools for exploring the integrative physiology and therapeutic potential of Kir4.1. A fluorescence-based thallium (Tl(+)) flux assay that utilizes a tetracycline-inducible T-Rex-HEK293-Kir4.1 cell line to enable high-throughput screening (HTS) of small-molecule libraries was developed. The assay is dimethyl sulfoxide tolerant and exhibits robust screening statistics (Z'=0.75±0.06). A pilot screen of 3,655 small molecules and lipids revealed 16 Kir4.1 inhibitors (0.4% hit rate). 3,3-Diphenyl-N-(1-phenylethyl)propan-1-amine, termed VU717, inhibits Kir4.1-mediated thallium flux with an IC50 of ∼6 μM. An automated patch clamp assay using the IonFlux HT workbench was developed to facilitate compound characterization. Leak-subtracted ensemble "loose patch" recordings revealed robust tetracycline-inducible and Kir4.1 currents that were inhibited by fluoxetine (IC50=10 μM), VU717 (IC50=6 μM), and structurally related calcium channel blocker prenylamine (IC50=6 μM). Finally, we demonstrate that VU717 inhibits Kir4.1 channel activity in cultured rat astrocytes, providing proof-of-concept that the Tl(+) flux and IonFlux HT assays can enable the discovery of antagonists that are active against native Kir4.1 channels. PMID:24266659

  3. Exploration of fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for detection of Isospora suis oocysts.

    PubMed

    Huang, Cuiqin; Wen, Fuli; Yue, Liangping; Chen, Renfeng; Zhou, Wei; Hu, Lingying; Chen, Meizhen; Wang, Shoukun

    2016-06-01

    Isospora suis is an intestinal protozoan parasite in pigs. The 2-3 weeks old piglets are most often infected by I. suis because their immune system is not fully developed. The infection exhibits clinical features such as diarrhea and dehydration and seriously affects the economic interests of farmers. The traditional method of identifying I. suis relies on the detection of fecal oocysts, which depends heavily on the accumulation of experience. Thus, missed detection, and false alarms often occur during detection. With the development of molecular-based detection methods, development of a simple, convenient and more sensitive method for the detection of I. suis is an urgent need. In this study, based on the 18S rRNA gene sequence, a fluorescence -based real-time loop-mediated isothermal amplification (LAMP) assay was established for the detection of I. suis. The results showed that the assay is highly specific and sensitive, with a detection limit of 2.74 × 10(2) copies/μL recombinant plasmid of I. suis, corresponding to 1 fg/μL plasmid when converted to DNA concentration. The sensitivity is about 100 times higher than conventional PCR. Additionally, DNA extracted from a certain number of oocysts was used for detection, and it showed that the LAMP assay had a detection limit of 5 oocysts, lower than that of 13 oocysts of conventional PCR. The established LAMP assay overcomes the shortage of the traditional microscopy-based method, and provides a valuable way for molecular detection of I. suis. PMID:26965400

  4. Development and Validation of Fluorescence-Based and Automated Patch Clamp–Based Functional Assays for the Inward Rectifier Potassium Channel Kir4.1

    PubMed Central

    Raphemot, Rene; Kadakia, Rishin J.; Olsen, Michelle L.; Banerjee, Sreedatta; Days, Emily; Smith, Stephen S.; Weaver, C. David

    2013-01-01

    Abstract The inward rectifier potassium (Kir) channel Kir4.1 plays essential roles in modulation of neurotransmission and renal sodium transport and may represent a novel drug target for temporal lobe epilepsy and hypertension. The molecular pharmacology of Kir4.1 is limited to neurological drugs, such as fluoxetine (Prozac©), exhibiting weak and nonspecific activity toward the channel. The development of potent and selective small-molecule probes would provide critically needed tools for exploring the integrative physiology and therapeutic potential of Kir4.1. A fluorescence-based thallium (Tl+) flux assay that utilizes a tetracycline-inducible T-Rex-HEK293-Kir4.1 cell line to enable high-throughput screening (HTS) of small-molecule libraries was developed. The assay is dimethyl sulfoxide tolerant and exhibits robust screening statistics (Z′=0.75±0.06). A pilot screen of 3,655 small molecules and lipids revealed 16 Kir4.1 inhibitors (0.4% hit rate). 3,3-Diphenyl-N-(1-phenylethyl)propan-1-amine, termed VU717, inhibits Kir4.1-mediated thallium flux with an IC50 of ∼6 μM. An automated patch clamp assay using the IonFlux HT workbench was developed to facilitate compound characterization. Leak-subtracted ensemble “loose patch” recordings revealed robust tetracycline-inducible and Kir4.1 currents that were inhibited by fluoxetine (IC50=10 μM), VU717 (IC50=6 μM), and structurally related calcium channel blocker prenylamine (IC50=6 μM). Finally, we demonstrate that VU717 inhibits Kir4.1 channel activity in cultured rat astrocytes, providing proof-of-concept that the Tl+ flux and IonFlux HT assays can enable the discovery of antagonists that are active against native Kir4.1 channels. PMID:24266659

  5. Development of an Interaction Assay between Single-Stranded Nucleic Acids Trapped with Silica Particles and Fluorescent Compounds

    PubMed Central

    Isoda, T.; Maeda, R.

    2012-01-01

    Biopolymers are easily denatured by heating, a change in pH or chemical substances when they are immobilized on a substrate. To prevent denaturation of biopolymers, we developed a method to trap a polynucleotide on a substrate by hydrogen bonding using silica particles with surfaces modified by aminoalkyl chains ([A-AM silane]/SiO2). [A-AM silane]/SiO2 was synthesized by silane coupling reaction of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (A-AM silane) with SiO2 particles with a diameter of 5 μm at 100 °C for 20 min. The surface chemical structure of [A-AM silane]/SiO2 was characterized by Fourier transform infrared spectroscopy and molecular orbital calculations. The surface of the silica particles was modified with A-AM silane and primary amine groups were formed. [A-AM silane]/SiO2 was trapped with single-stranded nucleic acids [(Poly-X; X = A (adenine), G (guanine) and C (cytosine)] in PBS solution at 37 °C for 1 h. The single-stranded nucleic acids were trapped on the surface of the [A-AM silane]/SiO2 by hydrogen bonding to form conjugated materials. The resulting complexes were further conjugated by derivatives of acridine orange (AO) as fluorescent labels under the same conditions to form [AO:Poly-X:A-AM silane]/SiO2 complexes. Changes in the fluorescence intensity of these complexes originating from interactions between the single-stranded nucleic acid and aromatic compounds were also evaluated. The change in intensity displayed the order [AO: Poly-G: A-AM silane]/SiO2 > [AO:Poly-A:A-AM silane]/SiO2 >> [AO:Poly-C:A-AM silane]/SiO2. This suggests that the single-stranded nucleic acids conjugated with aminoalkyl chains on the surfaces of SiO2 particles and the change in fluorescence intensity reflected the molecular interaction between AO and the nucleic-acid base in a polynucleotide. PMID:24955635

  6. A Dot enzyme linked immunosorbent assay (Dot ELISA): comparison with standard fluorescent antibody test (FAT) for the diagnosis of rabies in animals.

    PubMed

    Jayakumar, R; Nachimuthu, K; Padmanaban, V D

    1995-09-01

    A modified enzyme linked immunosorbent assay (Dot ELISA) is described for visual detection of rabies antigen in animals. The test materials were dotted onto the nitrocellulose paper and allowed to react with rabies antiserum. The bound antigen--anti-body were reacted with a peroxidase conjugated antirabbit immunoglobulin. Positive reactions were easily visualized as brown dots after enzyme degradation of the substrate. A total of 400 specimens from various geographical locations were tested with the dot ELISA technique, and also with the fluorescent antibody test (FAT), which was used as a reference method. The concordance between the two tests was 95.25%. The dot ELISA may have potential applications as a rapid, simple and economical field test in the diagnosis of rabies. PMID:8549116

  7. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    SciTech Connect

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  8. Measurement of X-ray-induced DNA double-strand breaks at various stages of the cell cycle using the total fluorescence as a comet assay parameter

    NASA Astrophysics Data System (ADS)

    Attia, Atef M. M.; Nabil, Ghada M.; Frankenberg, Dieter; Frankenberg-Schwager, M.

    2011-11-01

    The aim of the study was to develop a protocol for both estimating cell cycle position and the level of ionizing radiation-induced DNA dsb using the neutral comet assay. Using DNA histograms, cell cycle positions were determined for human dermal fibroblasts. The tail intensity was used to estimate the level of DNA damage induced by X-rays, at different positions of the cell cycle. The results of tail intensity versus DNA content bivariate analysis of exponentially growing cells showed a remarkable decrease in tail intensity with transition of cells from G1 to S-phase and increases slightly with transition to G2/M phase. This effect is observed at all doses including unirradiated cells, indicating that the effect is not caused by X-rays and the comet assay based on the current tail parameters is not relevant to measure DNA damage at various stages of the cell cycle. The results of dose response curves showed a linear decrease in the comet fluorescence with the X-ray dose. This observation provides a basis for estimating the fraction of damaged DNA, based on the fluorescence decrement induced by ionizing radiation. The results of this new approach showed a linear increase in DNA damage with dose, at various stages of the cell cycle, with rates, which vary in the following order G0>G2/M>S/G1 cells.These results suggest that G0 and G2/M cells are the most sensitive to X-rays among all phases of the cell cycle and suggest synchronization of cells at these phases to increase the cellular radiosensitivity during radiotherapy.

  9. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    NASA Astrophysics Data System (ADS)

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-10-01

    Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care.

  10. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    PubMed Central

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-01-01

    Abstract. Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care. PMID:25321396

  11. A Fluorescence-based Exonuclease Assay to Characterize DmWRNexo, Orthologue of Human Progeroid WRN Exonuclease, and Its Application to Other Nucleases

    PubMed Central

    Mason, Penelope A.; Boubriak, Ivan; Cox, Lynne S.

    2013-01-01

    WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences. PMID:24378758

  12. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics. PMID:23202331

  13. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-01

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined. PMID:17386566

  14. A high-throughput screening-compatible homogeneous time-resolved fluorescence assay measuring the glycohydrolase activity of human poly(ADP-ribose) glycohydrolase.

    PubMed

    Stowell, Alexandra I J; James, Dominic I; Waddell, Ian D; Bennett, Neil; Truman, Caroline; Hardern, Ian M; Ogilvie, Donald J

    2016-06-15

    Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition. PMID:27036617

  15. Cell cycle synchronization of E. coli using the stringent response, with fluorescence labeling assays for DNA content and replication

    PubMed Central

    Ferullo, Daniel J.; Cooper, Deani L.; Moore, Hayley R.; Lovett, Susan T.

    2009-01-01

    We describe a method for synchronization of the cell cycle in the bacterium E. coli. Treatment of asynchronous cultures with the amino acid analog, DL-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by “click” labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  16. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication.

    PubMed

    Ferullo, Daniel J; Cooper, Deani L; Moore, Hayley R; Lovett, Susan T

    2009-05-01

    We describe a method for synchronization of the cell cycle in the bacterium Escherichia coli. Treatment of asynchronous cultures with the amino acid analog, dl-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by "click" labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  17. Detection of Respiratory Syncytial Virus using Direct Fluorescent Antibody Assay in Paediatric Patients with Acute Respiratory Tract Infection

    PubMed Central

    Boloor, Rekha

    2016-01-01

    Introduction Severe Respiratory Syncytial Virus (RSV) pulmonary disease manifesting as bronchiolitis and pneumonia continues to play a major role in the childhood mortality and morbidity. Hence the present study was undertaken to evaluate the prevalence of RSV among hospitalized children presenting with Acute Respiratory Tract Infection (ARTI) and its correlation with risk factors. Aim To determine the occurrence of RSV related respiratory tract infection in paediatric patients and to access the risk factors and clinical features associated. Materials and Methods RSV antigen detection was performed by Direct Fluorescent Antibody (DFA) staining on 100 nasopharyngeal aspirate collected from hospitalized children below 5 years of age with a diagnosis of ARTI. Results Out of the 100 samples tested for RSV with DFA, 22 (22%) were found RSV positive with a mean age of 12 months and a male to female ratio of (1.75:1). Clinical features significantly associated with RSV were wheezing and breathlessness. Congenital heart disease (CHD) and prematurity were the risk factors significantly associated with RSV infection. Conclusion RSV infection is a significant cause of morbidity among children presenting with ARTI. In resource limited countries DFA can be used as an important tool for rapid detection of RSV and can potentially eliminate prolonged hospitalization and unnecessary use of antibiotics.

  18. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates.

    PubMed

    Tropak, Michael B; Bukovac, Scott W; Rigat, Brigitte A; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J

    2010-03-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is an attractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are also inhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Here we demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the beta-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant beta-hexosaminidase A and substrate-hydrolysis as compared to mock-treated cells. PMID:19917668

  19. Development of Five Dual-Color, Double-Fusion Fluorescence in Situ Hybridization Assays for the Detection of Common MLL Translocation Partners

    PubMed Central

    Keefe, Jeannette G.; Sukov, William R.; Knudson, Ryan A.; Nguyen, Lai P.; Williamson, Cynthia; Sinnwell, Jason P.; Ketterling, Rhett P.

    2010-01-01

    Chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene at 11q23 are frequent in adult and childhood acute leukemia and have been associated with an unfavorable prognosis. Recent evidence suggests that MLL gene partners may influence prognosis. Five translocations account for ∼80% of MLL rearrangements: t(4;11)(q21;q23), AFF1/MLL; t(6;11)(q27;q23), MLLT4/MLL; t(9;11)(p22;q23), MLLT3/MLL; t(11;19)(q23;p13.1), MLL/ELL; and t(11;19)(q23;p13.3), MLL/MLLT1. We have designed dual-color, double-fusion fluorescence in situ hybridization (D-FISH) probe sets to identify these translocations. A blinded study was performed for each probe set using 25 normal bone marrow samples, 25 t(4;11), 20 t(6;11), 20 t(9;11), 18 t(11;19p13.1), and 20 t(11;19p13.3) leukemia specimens as defined by chromosome analysis. The findings demonstrated abnormal D-FISH results for 24 of 25 AFF1/MLL, 19 of 20 MLLT4/MLL, all 20 MLLT3/MLL, all 18 MLL/ELL, and all 20 MLL/MLLT1 samples, confirming the efficacy of these D-FISH assays in detecting these common MLL/partner translocations. Our D-FISH assays were more accurate than chromosome analysis at distinguishing disruption of 19p13.1/ELL from that of 19p13.3/MLLT1. We also demonstrated a statistically significant increase in complex/unbalanced MLL/partner translocations occurring in pediatric patients versus adult patients (P = 0.02). A normal cutoff of 0.6% was established, suggesting an application for these assays in minimal residual disease detection and disease monitoring. PMID:20539022

  20. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells

    SciTech Connect

    Moore, L.E.; Warner, M.L.; Smith, A.H.

    1996-12-31

    The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN-) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. The assay was used on 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 {mu}g As/L) and 18 matched controls (average level, 16 {mu}g As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher`s exact test). Frequencies of micronuclei containing acentric fragments (MN-) and those containing whole chromosomes (MN+) both increased, suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P =0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN and MN+ were positively associated with urinary arsenic and its metabolites. The association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can not be determined in epithelial tissues. 35 refs., 4 tabs.

  1. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.

    PubMed

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D

    2015-09-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51. PMID:26394211

  2. Development and implementation of a miniaturized high-throughput time-resolved fluorescence energy transfer assay to identify small molecule inhibitors of polo-like kinase 1.

    PubMed

    Sharlow, Elizabeth R; Leimgruber, Stephanie; Shun, Tong Ying; Lazo, John S

    2007-12-01

    Polo-like kinase (Plk) 1 is a key enzyme involved in regulating the mammalian cell cycle that is also a validated anticancer drug target. Nonetheless, there are relatively few readily available potent and selective small molecule inhibitors of Plk1. To increase the availability of pharmacologically valuable Plk1 inhibitors, we describe herein the development, variability assessment, validation, and implementation of a 384-well automated, miniaturized high-throughput time-resolved fluorescence energy transfer screening assay designed to identify Plk1 kinase inhibitors. Using a small molecule library of pharmaceutically active compounds to gauge high-throughput assay robustness and reproducibility, we found nine general kinase inhibitors, including H-89, which was selected as the minimum control. We then interrogated a 97,101 compound library from the National Institutes of Health repository for small molecule inhibitors of Plk1 kinase activity. The initial primary hit rate in a single 10 microM concentration format was 0.21%. Hit compounds were subjected to concentration-response confirmation and interference assays. Identified in the screen were seven compounds with 50% inhibitory concentration (IC50) values below 1 microM, 20 compounds with IC50 values between 1 microM and 5 microM, and eight compounds with IC50 values between 5 and 10 microM, which could be assigned to seven distinct chemotype classes. Hit compounds were also examined for their ability to inhibit other kinases such as protein kinase D, focal adhesion kinase, rho-associated coiled coil protein kinase 2, c-jun NH2-terminal kinase 3, and protein kinase A via experimentation or data-mining. These compounds should be useful as probes for the biological activity of Plk1 and as leads for the development of new selective inhibitors of Plk1. PMID:18181689

  3. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: A comparative study with three bioanalytical methods

    PubMed Central

    Klukova, Ludmila; Bertok, Tomas; Petrikova, Miroslava; Sediva, Alena; Mislovicova, Danica; Katrlik, Jaroslav; Vikartovska, Alica; Filip, Jaroslav; Kasak, Peter; Andicsová-Eckstein, Anita; Mosnáček, Jaroslav; Lukáč, Jozef; Rovenský, Jozef; Imrich, Richard; Tkac, Jan

    2016-01-01

    Systemic sclerosis (SSc) is an autoimmune disease seriously affecting patient´s quality of life. The heterogeneity of the disease also means that identification and subsequent validation of biomarkers of the disease is quite challenging. A fully validated single biomarker for diagnosis, prognosis, disease activity and assessment of response to therapy is not yet available. The main aim of this study was to apply an alternative assay protocol to the immunoassay-based analysis of this disease by employment of sialic acid recognizing lectin Sambucus nigra agglutinin (SNA) to glycoprofile serum samples. To our best knowledge this is the first study describing direct lectin-based glycoprofiling of serum SSc samples. Three different analytical methods for glycoprofiling of serum samples relying on application of lectins are compared here from a bioanalytical point of view including traditional ELISA-like lectin-based method (ELLA), novel fluorescent lectin microarrays and ultrasensitive impedimetric lectin biosensors. Results obtained by all three bioanalytical methods consistently showed differences in the level of sialic acid present on glycoproteins, when serum from healthy people was compared to the one from patients having SSc. Thus, analysis of sialic acid content in human serum could be of a diagnostic value for future detection of SSc, but further work is needed to enhance selectivity of assays for example by glycoprofiling of a fraction of human serum enriched in antibodies for individual diagnostics. PMID:25467503

  4. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay.

    PubMed

    Muller, Renee; Schreiber, Ulrich; Escher, Beate I; Quayle, Pamela; Bengtson Nash, Susan M; Mueller, Jochen F

    2008-08-15

    Recently a new Maxi-Imaging-PAM (Max-I-PAM) instrument for phytotoxicity assessment via chlorophyll fluorescence imaging was introduced. This new instrument allows rapid detection of the effects of PS II inhibiting herbicides which are high use agricultural chemicals frequently detected in surface waters in Australia and elsewhere. Several studies have applied the new instrument for detection of phytotoxicants in water using microalgae suspensions; however, these use preliminary protocols and to date no validated method is available for high throughput testing of environmental samples in 96-well plates. Here we developed and applied a new protocol allowing dose-response assessment of four samples within 2 h (8 dilutions in duplicate). The technique was found to be sensitive, with a detection limit of 2.3 ng l(-1) for the herbicide diuron when testing solid phase extracts (SPE) of 1000 ml water samples, and reproducible both between experiments (coefficient of variation (CV)=0.30) and within the 96-well plate (CV=0.06). Relative potencies were determined for four reference PS II impacting herbicides (diuron>hexazinone>atrazine>simazine). Extracts from 1000 ml environmental samples and diuron spiked ultrapure water as well as passive sampler extracts were evaluated and good agreement was found between diuron equivalent concentrations calculated from bioassay results (DEQ(IPAM)) and DEQ(CHEM) values calculated from LCMS chemical analysis of the four reference compounds in the same samples. Overall, the technique provides a valuable bioanalytical tool for rapid and inexpensive effects-based assessment of PS II impacting herbicides in environmental mixtures. PMID:18501956

  5. Comparison of Clot-based, Chromogenic, and Fluorescence Assays for Measurement of Factor VIII Inhibitors in the U.S. Hemophilia Inhibitor Research Study

    PubMed Central

    Miller, Connie H.; Rice, Anne S.; Boylan, Brian; Shapiro, Amy D.; Lentz, Steven R.; Wicklund, Brian M.; Kelly, Fiona M.; Soucie, J. Michael

    2015-01-01

    Summary Background Detection and validation of inhibitors (antibodies) to hemophilia treatment products are important for clinical care, evaluation of product safety, and assessment of population trends. Methods Centralized monitoring for factor VIII (FVIII) inhibitors was conducted for patients in the Hemophilia Inhibitor Research Study using a previously reported modified Nijmegen-Bethesda clotting assay (NBA), a chromogenic Bethesda assay (CBA), and a novel fluorescence immunoassay (FLI). Results NBA and CBA were performed on 1005 specimens and FLI on 272 specimens. CBA was negative on 880/883 specimens (99.7%) with Nijmegen-Bethesda units (NBU)<0.5 and positive on 42/42 specimens (100%) with NBU≥2.0 and 43/80 specimens (53.8%) with NBU 0.5–1.9. Among specimens with positive NBA and negative CBA, 58.1% were FLI-negative, 12.9% had evidence of lupus anticoagulant, and 35.5% had non-time-dependent inhibition. CBA and FLI were positive on 72.4% and 100% of 1.0–1.9 NBU specimens and 43.1% and 50.0% of 0.5–0.9 NBU specimens. FLI detected antibodies in 98.0% of CBA-positive and 81.6% of NBA-positive specimens (P=0.004). Among 21 new inhibitors detected by NBA, 5 (23.8%) with 0.7–1.3 NBU did not react in CBA or FLI. Among previously positive patients with 0.5–1.9 NBU, 7/25 (28%) were not CBA or FLI positive. FLI was positive on 36/169 NBU-negative specimens (21.3%). Conclusions FVIII specificity could not be demonstrated by CBA or FLI for 26% of inhibitors of 0.5–1.9 NBU; such results must be interpreted with caution. Low titer inhibitors detected in clot-based assays should always be repeated, with consideration given to evaluating their reactivity with FVIII using more specific assays. PMID:23601690

  6. Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay*

    PubMed Central

    Risse, Emmanuel; Nicoll, Andrew J.; Taylor, William A.; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A.; Collinge, John

    2015-01-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays. PMID:25995455

  7. Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples.

    PubMed

    Stefan, A; Scaramagli, S; Bergami, R; Mazzini, C; Barbanera, M; Perelle, S; Fach, P

    2007-03-01

    This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans. PMID:17538642

  8. Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay.

    PubMed

    Risse, Emmanuel; Nicoll, Andrew J; Taylor, William A; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A; Collinge, John

    2015-07-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrP(C)) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrP(C) may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrP(C), stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrP(C) could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays. PMID:25995455

  9. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    PubMed

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. PMID:25921313

  10. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors.

    PubMed

    Mitachi, Katsuhiko; Siricilla, Shajila; Yang, Dong; Kong, Ying; Skorupinska-Tudek, Karolina; Swiezewska, Ewa; Franzblau, Scott G; Kurosu, Michio

    2016-11-01

    Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors. PMID:27530653

  11. Diagnosis and Clinical Virology of Lassa Fever as Evaluated by Enzyme-Linked Immunosorbent Assay, Indirect Fluorescent-Antibody Test, and Virus Isolation

    PubMed Central

    Bausch, D. G.; Rollin, P. E.; Demby, A. H.; Coulibaly, M.; Kanu, J.; Conteh, A. S.; Wagoner, K. D.; McMullan, L. K.; Bowen, M. D.; Peters, C. J.; Ksiazek, T. G.

    2000-01-01

    The Lassa virus (an arenavirus) is found in West Africa, where it sometimes causes a severe hemorrhagic illness called Lassa fever. Laboratory diagnosis has traditionally been by the indirect fluorescent-antibody (IFA) test. However, enzyme-linked immunosorbent assays (ELISAs) for Lassa virus antigen and immunoglobulin M (IgM) and G (IgG) antibodies have been developed that are thought to be more sensitive and specific. We compared ELISA and IFA testing on sera from 305 suspected cases of Lassa fever by using virus isolation with a positive reverse transcription-PCR (RT-PCR) test as the “gold standard.” Virus isolation and RT-PCR were positive on 50 (16%) of the 305 suspected cases. Taken together, Lassa virus antigen and IgM ELISAs were 88% (95% confidence interval [CI], 77 to 95%) sensitive and 90% (95% CI, 88 to 91%) specific for acute infection. Due to the stringent gold standard used, these likely represent underestimates. Diagnosis could often be made on a single serum specimen. Antigen detection was particularly useful in providing early diagnosis as well as prognostic information. Level of antigenemia varied inversely with survival. Detection by ELISA of IgG antibody early in the course of illness helped rule out acute Lassa virus infection. The presence of IFA during both acute and convalescent stages of infection, as well as significant interobserver variation in reading the slides, made interpretation difficult. However, the assay provided useful prognostic information, the presence of IFA early in the course of illness correlating with death. The high sensitivity and specificity, capability for early diagnosis, and prognostic value of the ELISAs make them the diagnostic tests of choice for the detection of Lassa fever. PMID:10878062

  12. Comparison of the membrane-filtration fluorescent antibody test, the enzyme-linked immunosorbent assay, and the polymerase chain reaction to detect Renibacterium salmoninarum in salmon ovarian fluid

    USGS Publications Warehouse

    Pascho, R.J.; Chase, D.; McKibben, C.L.

    1998-01-01

    Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 3 109 cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 3 104 cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods.

  13. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    PubMed

    Ippolito, Joseph E; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies. PMID:24551133

  14. Comparison of the membrane-filtration fluorescent antibody test, the enzyme-linked immunosorbent assay, and the polymerase chain reaction to detect Renibacterium salmoninarum in salmonid ovarian fluid.

    PubMed

    Pascho, R J; Chase, D; McKibben, C L

    1998-01-01

    Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 x 10(9) cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 x 10(4) cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods. PMID:9526862

  15. Hybridoma as a specific, sensitive, and ready to use sensing element: a rapid fluorescence assay for detection of Vibrio cholerae O1.

    PubMed

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi

    2016-09-01

    Over the last decade, isolation and purification of monoclonal antibodies, for diagnostic analysis, have been carried out using the hybridoma expression system. The present study describes a novel example of a detection system using hybridoma cells containing antibody against O1 antigen directly for V. cholerae diagnosis, which is a major health problem in many parts of the world, especially in developing countries. This method has advantages such as simplicity, ease of process, and it does not require manipulation of hybridoma cell. For this approach, an efficient amount of fluorescence calcium indicator, fura 2-AM, was utilized, which emitted light when the intracellular calcium concentration increased as result of antigen binding to specific antibody. More reliable results are obtained via this method and it is considerably faster than other methods, which has the response time of less than 45 s for detection of V. Cholerae O1. Also, the limit of detection was computed to be 50 CFU/mL (<13 CFU per assay). In addition, no significant responses were observed in the presence of other bacteria with specific hybridoma or other cell lines exposed to V. cholerae O1. Furthermore, this method was successfully applied to V. cholerae O1 detection in spiked environmental samples, including water and stool samples without any pretreatment. All results reveal that hybridoma cells can provide a valuable, simple, and ready to use tool for rapid detection of other pathogenic bacteria, toxins, and analytes. PMID:27438715

  16. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase.

    PubMed

    Pálfi, Melinda; Halász, Attila Sándor; Tábi, Tamás; Magyar, Kálmán; Szöko, Eva

    2004-03-01

    A rapid and sensitive high-performance liquid chromatography method has been developed for the measurement of oxidized pyridine dinucleotides (NAD+, NADP+) in biological samples following fluorescence derivatization. Under strongly alkaline conditions the pyridinium ring of the nicotinamide moiety reacts with carbonyl compounds, resulting in stable fluorescent products. Upon subsequent addition of concentrated formic acid and treatment with heat, this fluorescence is further amplified and is shifted to higher-wavelength regions. From among the ketones assayed (acetone, ethylmethyl ketone, acetophenone) the condensation product with acetophenone possesses the highest molar relative fluorescence, thus allowing the most sensitive detection in our experimental setup (limit of detection: 0.02pmol/50 microliter injected volume). The fluorescent products have been separated on a reverse-phase C-18 column using 0.1M citric acid (pH 3.2)/acetonitrile (92/8, v/v) as mobile phase. Our method is suitable for assaying NADH- and NADPH-dependent enzyme reactions by quantifying oxidized coenzyme products. As an example, the activity of neuronal nitric oxide synthase (nNOS), a NADPH-requiring enzyme, has been assessed by measuring the products NADP+ and l-citrulline at various substrate (l-arginine) concentrations. The rate of the uncoupled NADPH oxidation by nNOS can be estimated from the ratio of NADP+/l-citrulline produced. PMID:14769337

  17. Identification, Expression Profiling and Fluorescence-Based Binding Assays of a Chemosensory Protein Gene from the Western Flower Thrips, Frankliniella occidentalis

    PubMed Central

    Zhang, Zhi-Ke; Lei, Zhong-Ren

    2015-01-01

    Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four—cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating

  18. A modified agglutination test for Neospora caninum: development, optimization, and comparison to the indirect fluorescent-antibody test and enzyme-linked immunosorbent assay.

    PubMed

    Packham, A E; Sverlow, K W; Conrad, P A; Loomis, E F; Rowe, J D; Anderson, M L; Marsh, A E; Cray, C; Barr, B C

    1998-07-01

    Current serologic tests used to detect antibodies to Neospora caninum require species-specific secondary antibodies, limiting the number of species that can be tested. In order to examine a wide variety of animal species that may be infected with N. caninum, a modified direct agglutination test (N-MAT) similar to the Toxoplasma gondii modified direct agglutination test (T-MAT) was developed. This test measures the direct agglutination of parasites by N. caninum-specific antibodies in serum, thus eliminating the need for secondary host-specific anti-isotype sera. The N-MAT was compared to the indirect fluorescent-antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA) with a "gold standard" serum panel from species for which secondary antibodies were available (n = 547). All positive samples tested were from animals with histologically confirmed infections. Up to 16 different species were tested. The N-MAT gave a higher sensitivity (100%) and specificity (97%) than the ELISA (74 and 94%, respectively) and had a higher sensitivity but a lower specificity than the IFAT (98 and 99%, respectively). The reduced specificity of the N-MAT was due to false-positive reactions in testing fetal fluids with particulate matter or severely hemolyzed serum. Overall, the N-MAT proved to be highly sensitive and specific for both naturally and experimentally infected animals, highly reproducible between and within readers, easy to use on large sample sizes without requiring special equipment, and useful in testing serum from any species without modification. PMID:9665950

  19. Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS

    PubMed Central

    Sanchez, Jon A.; Otero, Paz; Alfonso, Amparo; Ramos, Vitor; Vasconcelos, Vitor; Aráoz, Romulo; Molgó, Jordi; Vieytes, Mercedes R.; Botana, Luis M.

    2014-01-01

    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample. PMID:24469431

  20. Detection of anatoxin-a and three analogs in Anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS.

    PubMed

    Sanchez, Jon A; Otero, Paz; Alfonso, Amparo; Ramos, Vitor; Vasconcelos, Vitor; Aráoz, Romulo; Molgó, Jordi; Vieytes, Mercedes R; Botana, Luis M

    2014-02-01

    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample. PMID:24469431

  1. Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3*

    PubMed Central

    Bart, Geneviève; Vico, Nuria Ortega; Hassinen, Antti; Pujol, Francois M.; Deen, Ashik Jawahar; Ruusala, Aino; Tammi, Raija H.; Squire, Anthony; Heldin, Paraskevi; Kellokumpu, Sakari; Tammi, Markku I.

    2015-01-01

    In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1–3 (HAS1–3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647–23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis. PMID:25795779

  2. A Modified Agglutination Test for Neospora caninum: Development, Optimization, and Comparison to the Indirect Fluorescent-Antibody Test and Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Packham, Andrea E.; Sverlow, Karen W.; Conrad, Patricia A.; Loomis, Emily F.; Rowe, Joan D.; Anderson, Mark L.; Marsh, Antoinette E.; Cray, Carolyn; Barr, Bradd C.

    1998-01-01

    Current serologic tests used to detect antibodies to Neospora caninum require species-specific secondary antibodies, limiting the number of species that can be tested. In order to examine a wide variety of animal species that may be infected with N. caninum, a modified direct agglutination test (N-MAT) similar to the Toxoplasma gondii modified direct agglutination test (T-MAT) was developed. This test measures the direct agglutination of parasites by N. caninum-specific antibodies in serum, thus eliminating the need for secondary host-specific anti-isotype sera. The N-MAT was compared to the indirect fluorescent-antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA) with a “gold standard” serum panel from species for which secondary antibodies were available (n = 547). All positive samples tested were from animals with histologically confirmed infections. Up to 16 different species were tested. The N-MAT gave a higher sensitivity (100%) and specificity (97%) than the ELISA (74 and 94%, respectively) and had a higher sensitivity but a lower specificity than the IFAT (98 and 99%, respectively). The reduced specificity of the N-MAT was due to false-positive reactions in testing fetal fluids with particulate matter or severely hemolyzed serum. Overall, the N-MAT proved to be highly sensitive and specific for both naturally and experimentally infected animals, highly reproducible between and within readers, easy to use on large sample sizes without requiring special equipment, and useful in testing serum from any species without modification. PMID:9665950

  3. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    PubMed

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  4. Comparison of Dissociation-Enhanced Lanthanide Fluorescent Immunoassays to Enzyme-Linked Immunosorbent Assays for Detection of Staphylococcal Enterotoxin B, Yersinia pestis-Specific F1 Antigen, and Venezuelan Equine Encephalitis Virus

    PubMed Central

    Smith, Darci R.; Rossi, Cynthia A.; Kijek, Todd M.; Henchal, Erik A.; Ludwig, George V.

    2001-01-01

    The dissociation-enhanced lanthanide fluorescent immunoassays (DELFIA) were developed for the detection of staphylococcal enterotoxin B, Yersinia pestis-specific F1 antigen, and Venezuelan equine encephalitis virus. These assays were compared to previously developed enzyme-linked immunosorbent assays (ELISAs) by determining the sensitivity or limit of detection (LOD), the dynamic range, and the reproducibility of each assay in a number of different sample matrices. The sensitivity and specificity of each assay were then determined by using a small panel of blinded spiked and nonspiked samples. All three DELFIAs demonstrated at least 1 log greater sensitivity than corresponding ELISAs utilizing the same reagents and showed an increase in dynamic range of at least 2 log10 concentrations. This increased LOD resulted in higher sensitivity rates for the DELFIA. The specificity of all of the assays evaluated was 100%, and no sample matrix effects were observed in either format. However, the reproducibility of the DELFIA was poor due to randomly distributed wells exhibiting excessive background signal (hot wells), which occurred throughout the evaluation. As this technology matures, the reproducibility of these assays should improve, as will the ability to identify hot wells. Despite its sensitivity, the logistical burden associated with the DELFIA and the technical expertise required to complete assays and interpret the data limit the application of this technology to reference or large clinical laboratories. PMID:11687442

  5. The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: targeting the interaction of p53 with Mdm2 and Mdm4.

    PubMed

    Yurlova, Larisa; Derks, Maarten; Buchfellner, Andrea; Hickson, Ian; Janssen, Marc; Morrison, Denise; Stansfield, Ian; Brown, Christopher J; Ghadessy, Farid J; Lane, David P; Rothbauer, Ulrich; Zolghadr, Kourosh; Krausz, Eberhard

    2014-04-01

    Protein-protein interactions (PPIs) are attractive but challenging targets for drug discovery. To overcome numerous limitations of the currently available cell-based PPI assays, we have recently established a fully reversible microscopy-assisted fluorescent two-hybrid (F2H) assay. The F2H assay offers a fast and straightforward readout: an interaction-dependent co-localization of two distinguishable fluorescent signals at a defined spot in the nucleus of mammalian cells. We developed two reversible F2H assays for the interactions between the tumor suppressor p53 and its negative regulators, Mdm2 and Mdm4. We then performed a pilot F2H screen with a subset of compounds, including small molecules (such as Nutlin-3) and stapled peptides. We identified five cell-penetrating compounds as potent p53-Mdm2 inhibitors. However, none exhibited intracellular activity on p53-Mdm4. Live cell data generated by the F2H assays enable the characterization of stapled peptides based on their ability to penetrate cells and disrupt p53-Mdm2 interaction as well as p53-Mdm4 interaction. Here, we show that the F2H assays enable side-by-side analysis of substances' dual Mdm2-Mdm4 activity. In addition, they are suitable for testing various types of compounds (e.g., small molecules and peptidic inhibitors) and concurrently provide initial data on cellular toxicity. Furthermore, F2H assays readily allow real-time visualization of PPI dynamics in living cells. PMID:24476585

  6. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    PubMed

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. PMID:25776544

  7. Emerging applications of the single cell gel electrophoresis (Comet) assay. I. Management of invasive transitional cell human bladder carcinoma. II. Fluorescent in situ hybridization Comets for the identification of damaged and repaired DNA sequences in individual cells.

    PubMed

    McKelvey-Martin, V J; Ho, E T; McKeown, S R; Johnston, S R; McCarthy, P J; Rajab, N F; Downes, C S

    1998-01-01

    ABSTRACT I: Management of invasive transitional cell human bladder carcinoma. The two main treatment options for invasive transitional cell bladder carcinoma are radiotherapy or primary cystectomy with urinary diversion or bladder substitution. Approximately 50% of patients fail to respond to radiotherapy and such patients so treated are disadvantaged by the absence of predictive information regarding their radiosensitivity, since the tumour gains additional time for metastatic spread before cystectomy is performed. The SF2 clonogenic assay, which measures the surviving fraction of tumour cells after 2 Gy X-ray irradiation, is regarded as a good measure of radiosensitivity. However, the assay is time consuming and provides results for only approximately 70% of human tumours. In this paper three bladder transitional cell carcinoma cell lines (HT1376, UMUC-3 and RT112) were exposed to X-irradiation (0-10 Gy). We have compared the responses obtained using a clonogenic assay and a more clinically feasible alkaline single cell gel electrophoresis (Comet) assay. A very good inverse correlation was obtained between cell survival (clonogenic assay) and mean tail moment (Comet assay) for the three cell lines, indicating that the Comet assay can be used to predict the radio-responsiveness of individual cell lines. The clinical usefulness of the assay for predicting response to radiotherapy in bladder cancer patients is currently being investigated. ABSTRACT II: Fluorescent in situ hybridization (FISH) Comets for the identification of damaged and repaired DNA sequences in individual cells. In mammalian cells the extent of DNA damage is partly and the rate of DNA repair very considerably dependent on DNA position and transcription. This has been established by biochemical techniques which are labour intensive and require large numbers of cells. The Comet assay for overall DNA damage and repair is relatively simple and allows individual cells to be examined. Here we present a

  8. Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.

    PubMed

    Pal, Kaushik; Mallick, Suman; Koner, Apurba L

    2015-06-28

    Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD. PMID:26028009

  9. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    PubMed

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  10. Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil

    PubMed Central

    Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 103 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  11. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid lateral flow fluorescent microspheres immunochromatography test strip (FMs-ICTS) has been developed for the detection of aflatoxin M1 (AFM1) residues in milk. For this purpose, an ultra-sensitive anti-AFM1 monoclonal antibody (MAb) 1D3 was prepared and identified. The IC50 value of the MA...

  12. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay

    PubMed Central

    Dean, Kimberly M.; Grayhack, Elizabeth J.

    2012-01-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression. PMID:23097427

  13. Development of a microfluidic confocal fluorescence detection system for the hyphenation of nano-LC to on-line biochemical assays

    PubMed Central

    Heus, Ferry; Giera, Martin; de Kloe, Gerdien E.; van Iperen, Dick; Buijs, Joost; Nahar, Tariq T.; Smit, August B.; Lingeman, Henk; de Esch, Iwan J. P.; Niessen, Wilfried M. A.; Irth, Hubertus

    2010-01-01

    One way to profile complex mixtures for receptor affinity is to couple liquid chromatography (LC) on-line to biochemical detection (BCD). A drawback of this hyphenated screening approach is the relatively high consumption of sample, receptor protein and (fluorescently labeled) tracer ligand. Here, we worked toward minimization of sample and reagent consumption, by coupling nano-LC on-line to a light-emitting diode (LED) based capillary confocal fluorescence detection system capable of on-line BCD with low-flow rates. In this fluorescence detection system, a capillary with an extended light path (bubble cell) was used as a detection cell in order to enhance sensitivity. The technology was applied to a fluorescent enhancement bioassay for the acetylcholine binding protein, a structural analog of the extracellular ligand-binding domain of neuronal nicotinic acetylcholine receptors. In the miniaturized setup, the sensitive and low void volume LED-induced confocal fluorescence detection system operated in flow injection analysis mode allowing the measurement of IC50 values, which were comparable with those measured by a conventional plate reader bioassay. The current setup uses 50 nL as injection volume with a carrier flow rate of 400 nL/min. Finally, coupling of the detection system to gradient reversed-phase nano-LC allowed analysis of mixtures in order to identify the bioactive compounds present by injecting 10 nL of each mixture. Electronic supplementary material The online version of this article (doi:10.1007/s00216-010-4210-x) contains supplementary material, which is available to authorized users. PMID:20872136

  14. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  15. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement.

    PubMed

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pK(a) of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time

  16. Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii - Mycobacterium marinum Host-Pathogen System

    PubMed Central

    Kicka, Sébastien; Trofimov, Valentin; Harrison, Christopher; Ouertatani-Sakouhi, Hajer; McKinney, John; Scapozza, Leonardo; Hilbi, Hubert; Cosson, Pierre; Soldati, Thierry

    2014-01-01

    Tuberculosis is considered to be one of the world’s deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches. PMID:24498207

  17. ALA-PpIX variability quantitatively imaged in A431 epidermoid tumors using in vivo ultrasound fluorescence tomography and ex vivo assay

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Flynn, Brendan P.; Gunn, Jason R.; Samkoe, Kimberley S.; Anand, Sanjay; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Treatment monitoring of Aminolevunilic-acid (ALA) - Photodynamic Therapy (PDT) of basal-cell carcinoma (BCC) calls for superficial and subsurface imaging techniques. While superficial imagers exist for this purpose, their ability to assess PpIX levels in thick lesions is poor; additionally few treatment centers have the capability to measure ALA-induced PpIX production. An area of active research is to improve treatments to deeper and nodular BCCs, because treatment is least effective in these. The goal of this work was to understand the logistics and technical capabilities to quantify PpIX at depths over 1mm, using a novel hybrid ultrasound-guided, fiber-based fluorescence molecular spectroscopictomography system. This system utilizes a 633nm excitation laser and detection using filtered spectrometers. Source and detection fibers are collinear so that their imaging plane matches that of ultrasound transducer. Validation with phantoms and tumor-simulating fluorescent inclusions in mice showed sensitivity to fluorophore concentrations as low as 0.025μg/ml at 4mm depth from surface, as presented in previous years. Image-guided quantification of ALA-induced PpIX production was completed in subcutaneous xenograft epidermoid cancer tumor model A431 in nude mice. A total of 32 animals were imaged in-vivo, using several time points, including pre-ALA, 4-hours post-ALA, and 24-hours post-ALA administration. On average, PpIX production in tumors increased by over 10-fold, 4-hours post-ALA. Statistical analysis of PpIX fluorescence showed significant difference among all groups; p<0.05. Results were validated by exvivo imaging of resected tumors. Details of imaging, analysis and results will be presented to illustrate variability and the potential for imaging these values at depth.

  18. Translocation of a hydrocarbon fluorescent probe between Epstein-Barr virus and lymphoid cells: an assay for early events in viral infection.

    PubMed

    Rosenthal, K S; Yanovich, S; Inbar, M; Strominger, J L

    1978-10-01

    Translocation of the hydrocarbon fluorescent probe diphenylhexatriene (DPH) between membranes was studied by fluorescence polarization (P) analysis. First, using a model system, the high P value (0.324) of DPH-labeled cholesterol/phosphatidylcholine liposomes and the low P value (0.157) of DPH-labeled phosphatidylcholine liposomes allowed detection of DPH translocation between interacting liposomes. This was monitored by the change in P in either direction. Early events during cell-virus interactions were similarly studied by monitoring DPH translocation. The P value of DPH-labeled Epstein-Barr Virus (EBV) was significantly higher (0.350-0.392) than the P value of DPH-labeled lymphoid cells (0.238-0.289). Hence, DPH translocation could be detected by changes in P following incubation of DPH-labeled EBV and nonlabeled cells. A marked decrease in P was observed after incubation of DPH-labeled EBV with either nonlabeled lymphoblastoid Raji cells or fresh human B lymphocytes. However, only a slight decrease in P was obtained when DPH-labeled EBV was incubated with either nonlabeled fresh human T lymphocytes or fresh T or B rabbit lymphocytes. Moreover, incubation of fresh human B lymphocytes with the purified C3 component of complement (a putative inhibitor for the EBV receptor) prior to the addition of DPH-labeled EBV abolished the observed decrease in the P value. Most of these experiments were carried out with both the P3HR-1 and the B95-8 strains of EBV. DPH translocation, as determined by fluorescence polarization analysis, is, therefore, measuring some early event during interaction of this enveloped virus and mammalian cells. The potential applicability of this technique to other viruses is illustrated by an experiment with Semliki Forest virus. PMID:217012

  19. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay.

    PubMed

    Bohnert, Jürgen A; Schuster, Sabine; Kern, Winfried V; Karcz, Tadeusz; Olejarz, Agnieszka; Kaczor, Aneta; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna

    2016-04-01

    In this study, we tested five compounds belonging to a novel series of piperazine arylideneimidazolones for the ability to inhibit the AcrAB-TolC efflux pump. The biphenylmethylene derivative (BM-19) and the fluorenylmethylene derivative (BM-38) were found to possess the strongest efflux pump inhibitor (EPI) activities in the AcrAB-TolC-overproducingEscherichia colistrain 3-AG100, whereas BM-9, BM-27, and BM-36 had no activity at concentrations of up to 50 μM in a Nile red efflux assay. MIC microdilution assays demonstrated that BM-19 at 1/4 MIC (intrinsic MIC, 200 μM) was able to reduce the MICs of levofloxacin, oxacillin, linezolid, and clarithromycin 8-fold. BM-38 at 1/4 MIC (intrinsic MIC, 100 μM) was able to reduce only the MICs of oxacillin and linezolid (2-fold). Both compounds markedly reduced the MIC of rifampin (BM-19, 32-fold; and BM-38, 4-fold), which is suggestive of permeabilization of the outer membrane as an additional mechanism of action. Nitrocefin hydrolysis assays demonstrated that in addition to their EPI activity, both compounds were in fact weak permeabilizers of the outer membrane. Moreover, it was found that BM-19, BM-27, BM-36, and BM-38 acted as near-infrared-emitting fluorescent membrane probes, which allowed for their use in a combined influx and efflux assay and thus for tracking of the transport of an EPI across the outer membrane by an efflux pump in real time. The EPIs BM-38 and BM-19 displayed the most rapid influx of all compounds, whereas BM-27, which did not act as an EPI, showed the slowest influx. PMID:26824939

  20. Smartphone fluorescence spectroscopy.

    PubMed

    Yu, Hojeong; Tan, Yafang; Cunningham, Brian T

    2014-09-01

    We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of specific nucleic acid sequences in a liquid test sample and compared performance against a conventional laboratory fluorimeter. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route toward portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins. PMID:25098859

  1. Smartphone fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Hojoeng; Tan, Yafang; Cunningham, Brian T.

    2014-03-01

    We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of a specific nucleic acid sequences in a liquid test sample. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route towards portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins.

  2. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  3. Pressure Dependent OH and HO2 Calibration of the Fluorescence Assay by Gas Expansion (FAGE) Instrument Using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)

    NASA Astrophysics Data System (ADS)

    Winiberg, F.; Smith, S. C.; Seakins, P.

    2012-12-01

    The hydroxyl (OH) and hydroperoxy (HO2) radical are very important tropospheric radical species. The balance between OH and HO2 (the HOx cycle) can give understanding of localised atmospheric composition. OH and HO2 is measured in both ground and aircraft based campaigns using FAGE. Calibration of this non-absolute fluorescence technique is traditionally achieved by H2O photolysis. Operation of FAGE at varying pressure can affect the instrument sensitivity to HOx due to internal fluorescence cell pressure changes. These are traditionally accounted by varying the inlet pinhole size of the instrument, however this may alter the gas expansion and hence the instrument sensitivity to OH and HO2 (COH and CHO2 respectively). Presented here are the initial results from independent OH and HO2 pressure dependent calibration methods using the stainless steel HIRAC chamber, which can operate at various pressures (0.1 - 1 bar). The OH calibration method uses the loss rate of a well characterised hydrocarbon upon reaction with OH to infer the OH concentration measured by FAGE in the HIRAC chamber. A photolytic OH source ((CH3)3COOH) was used and all reactants were measured using calibrated GC-FID and FTIR. For HO2 calibrations, formaldehyde, HCHO, is photolysed (λ < 300 nm) in the presence of O2 to form 2HO2 to steady state, and the post-photolysis HO2 decay is monitored using FAGE. The decay is a function of the second order HO2 self-reaction, for which the rate is well known. As [HO2] = SHO2 x CHO2 (where SHO2 is the FAGE HO2 signal), the second order rate equation can be rearranged and a plot of 1/SHO2 vs. time yields CHO2. Preliminary experiments for the OH calibration method show discrepancies between traditional and hydrocarbon decay techniques. This is thought to be due to as yet unknown OH loss processes and conditioning of the HIRAC chamber. For the HO2 pressure dependent calibrations were in good agreement with traditional methods validating the widely used

  4. Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to amyloid-β revealed by a novel fluorescence resonance energy transfer assay.

    PubMed

    Wu, Hai-Yan; Hudry, Eloise; Hashimoto, Tadafumi; Uemura, Kengo; Fan, Zhan-Yun; Berezovska, Oksana; Grosskreutz, Cynthia L; Bacskai, Brian J; Hyman, Bradley T

    2012-04-11

    Calcineurin (CaN) activation is critically involved in the regulation of spine morphology in response to oligomeric amyloid-β (Aβ) as well as in synaptic plasticity in normal memory, but no existing techniques can monitor the spatiotemporal pattern of CaN activity. Here, we use a spectral fluorescence resonance energy transfer approach to monitor CaN activation dynamics in real time with subcellular resolution. When oligomeric Aβ derived from Tg2576 murine transgenic neurons or human AD brains were applied to wild-type murine primary cortical neurons, we observe a dynamic progression of CaN activation within minutes, first in dendritic spines, and then in the cytoplasm and, in hours, in the nucleus. CaN activation in spines leads to rapid but reversible morphological changes in spines and in postsynaptic proteins; longer exposure leads to NFAT (nuclear factor of activated T-cells) translocation to the nucleus and frank spine loss. These results provide a framework for understanding the role of calcineurin in synaptic alterations associated with AD pathogenesis. PMID:22496575

  5. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  6. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors.

    PubMed

    Jin, Hong Lan; Lee, Sung-Chan; Kwon, Yong Sam; Choung, Se-Young; Jeong, Kwang Won

    2016-01-01

    Age-related macular degeneration (AMD) is a common retinal disease that leads to irreversible central vision loss in the elderly population. Recent studies have identified many factors related to the development of dry AMD, such as aging, cigarette smoking, genetic predispositions, and oxidative stress, eventually inducing the accumulation of lipofuscin, which is one of the most critical risk factors. One of the major lipofuscins in retinal pigment epithelial (RPE) cells is N-retinylidene-N-retinylethanolamine (also known as A2E), a pyridinium bis-retinoid. Currently there is a lack of effective therapy to prevent or restore vision loss caused by dry AMD. Recent studies have shown that 430 nm blue light induces the oxidation of A2E and the activation of caspase-3 to subsequently cause the death of RPE cells, suggesting that removal of A2E from retinal pigment cells might be critical for preventing AMD. Here, we developed a fluorescence-labeled A2E analog (A2E-BDP) that functions similar to A2E in RPE cells, but is more sensitive to detection than A2E. A2E-BDP-based tracing of intracellular A2E will be helpful, not only for studying the accumulation and removal of A2E in human RPE cells but also for identifying possible inhibitors of AMD. PMID:26604166

  7. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs.

    PubMed

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-15

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63×10(7)Lmol(-1)) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (10(3)-10(6)Lmol(-1)), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (10(4)-10(6)Lmol(-1)) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS). PMID:24835726

  8. Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridization (FISH)

    PubMed Central

    Nitta, Hiroaki; Hauss-Wegrzyniak, Beatrice; Lehrkamp, Megan; Murillo, Adrian E; Gaire, Fabien; Farrell, Michael; Walk, Eric; Penault-Llorca, Frederique; Kurosumi, Masafumi; Dietel, Manfred; Wang, Lin; Loftus, Margaret; Pettay, James; Tubbs, Raymond R; Grogan, Thomas M

    2008-01-01

    Background Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. Methods The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark® XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Results Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 – 1.0000) and the ASCO

  9. Prognostic Significance of Mixed-Lineage Leukemia (MLL) Gene Detected by Real-Time Fluorescence Quantitative PCR Assay in Acute Myeloid Leukemia.

    PubMed

    Huang, Sai; Yang, Hua; Li, Yan; Feng, Cong; Gao, Li; Chen, Guo-Feng; Gao, Hong-Hao; Huang, Zhi; Li, Yong-Hui; Yu, Li

    2016-01-01

    BACKGROUND The overall prognosis of acute myeloid leukemia (AML) patients with mixed-lineage leukemia (MLL) gene-positivity is unfavorable. In this study, we evaluated the expression levels of the MLL gene in AML patients. MATERIAL AND METHODS We enrolled 68 MLL gene-positive patients out of 433 newly diagnosed AML patients, and 216 bone marrow samples were collected. Real-time fluorescence quantitative PCR (RQ-PCR) was used to precisely detect the expression levels of the MLL gene. RESULTS We divided 41 patients into 2 groups according to the variation of MRD (minimal residual disease) level of the MLL gene. Group 1 (n=22) had a rapid reduction of MRD level to ≤10^-4 in all samples collected in the first 3 chemotherapy cycles, while group 2 (n=19) had MRD levels constantly >10^-4 in all samples collected in the first 3 chemotherapy cycles. Group 1 had a significantly better overall survival (p=0.001) and event-free survival (p=0.001) compared to group 2. Moreover, the patients with >10^-4 MRD level before the start of HSCT (hematopoietic stem cell transplantation) had worse prognosis and higher risk of relapse compared to patients with ≤10^-4 before the start of HSCT. CONCLUSIONS We found that a rapid reduction of MRD level to ≤10^-4 appears to be a prerequisite for better overall survival and event-free survival during the treatment of AML. The MRD levels detected by RQ-PCR were basically in line with the clinical outcome and may be of great importance in guiding early allogeneic HSCT (allo-HSCT) treatment. PMID:27561414

  10. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    PubMed Central

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  11. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    PubMed

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  12. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    PubMed

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. PMID:24375583

  13. Multiwell Assay for the Analysis of Sugar Gut Permeability Markers: Discrimination of Sugar Alcohols with a Fluorescent Probe Array Based on Boronic Acid Appended Viologens.

    PubMed

    Resendez, Angel; Panescu, Priera; Zuniga, Ruth; Banda, Isaac; Joseph, Jorly; Webb, Dominic-Luc; Singaram, Bakthan

    2016-05-17

    With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 μM, LOQ 72 μM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible. PMID:27116118

  14. Data transformation methods for multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  15. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    PubMed

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. PMID:26196248

  16. A study of cross-reactivity in serum samples from dogs positive for Leishmania sp., Babesia canis and Ehrlichia canis in enzyme-linked immunosorbent assay and indirect fluorescent antibody test.

    PubMed

    Oliveira, Trícia Maria F de Sousa; Furuta, Patrícia I; de Carvalho, Débora; Machado, Rosangela Z

    2008-01-01

    To verify the presence of cross-reaction among leishmaniosis, ehrlichiosis and babesiosis in serological diagnostics used in human visceral leishmaniasis control programs, serum samples from leishmaniasis endemic and non-endemic areas were collected and tested by Indirect Fluorescent Antibody (IFAT) and Enzyme-linked immunosorbent assay (ELISA). All serum samples from endemic areas were positive for Leishmania sp., by ELISA and IFAT, 51% positive for Babesia canis and 43% for Ehrlichia canis by IFAT. None of the serum samples from non-endemic areas were positive for Leishmania sp., by IFAT, but 67% were positive for B. canis and 78% for E. canis using the same test. When tested by ELISA for Leishmania sp., four samples from non-endemic area were positive. These dogs were then located and no clinical signs, parasites or antibody was detected in new tests for a six month period. Only one of these 4 samples was positive for B. canis by IFAT and ELISA and three for E. canis by IFAT. The results of the work suggest a co-infection in the endemic area and no serological cross-reaction among these parasites by IFAT and ELISA. PMID:18554433

  17. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  18. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  19. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Topoisomerase Assays

    PubMed Central

    Nitiss, John L.; Soans, Eroica; Rogojina, Anna; Seth, Aman; Mishina, Margarita

    2012-01-01

    Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I, which makes single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are of assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay for examining topoisomerase covalent complexes in vivo and an assay for measuring DNA cleavage in vitro. PMID:22684721

  1. The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay.

    PubMed

    Maple, P A C; Haedicke, J; Quinlivan, M; Steinberg, S P; Gershon, A A; Brown, K E; Breuer, J

    2016-08-01

    Healthcare workers (HCWs) reporting no history of varicella frequently receive varicella vaccination (vOka) if they test varicella-zoster virus (VZV) immunoglobulin G (IgG) negative. In this study, the utilities of VZV-IgG time-resolved fluorescence immunoassay (VZV-TRFIA) and a commercial VZV-IgG purified glycoprotein enzyme immunoassay (gpEIA) currently used in England for confirming VZV immunity have been compared to the fluorescent-antibody-to-membrane-antigen assay (FAMA). A total of 110 HCWs received two doses of vOka vaccine spaced 6 weeks apart and sera collected pre-vaccination (n = 100), at 6 weeks post-completion of vaccination (n = 86) and at 12-18 months follow-up (n = 73) were analysed. Pre-vaccination, by FAMA, 61·0% sera were VZV IgG negative, and compared to FAMA the sensitivities of VZV-TRFIA and gpEIA were 74·4% [95% confidence interval (CI) 57·9-87·0] and 46·2% (95% CI 30·1-62·8), respectively. Post-completion of vaccination the seroconversion rate by FAMA was 93·7% compared to rates of 95·8% and 70·8% determined by VZV-TRFIA and gpEIA, respectively. At 12-18 months follow-up seropositivity rates by FAMA, VZV-TRFIA and gpEIA were 78·1%, 74·0% and 47·9%, respectively. Compared to FAMA the sensitivities of VZV-TRFIA and gpEIA for measuring VZV IgG following vaccination were 96·4% (95% CI 91·7-98·8) and 74·6% (95% CI 66·5-81·6), respectively. Using both FAMA and VZV-TRFIA to identify healthy adult VZV susceptibles and measure seroconversion showed that vOka vaccination of HCWs is highly immunogenic. PMID:27018820

  2. Development of a new Laser Photofragmentation/Fluorescent Assay by Gas Expansion (LP/FAGE) technique for the quantification of tropospheric nitrous acid (HONO) at low parts-per-trillion mixing ratios

    NASA Astrophysics Data System (ADS)

    Mielke, L. H.; Lew, M.; Bottorff, B.; Berke, A.; Raff, J. D.; Stevens, P. S.; Dusanter, S.

    2013-12-01

    Determining the full oxidative capacity of the atmosphere is vital to understanding the production of secondary pollutants such as ozone and secondary organic aerosols and for regulating the lifetime of pollutants leading to climate change. The hydroxyl radical is the primary oxidant of volatile organic compounds (VOCs) in the troposphere. Nocturnal nitrous acid (HONO) is an important radical reservoir species and releases OH upon photolysis the next morning. In addition, recent studies have indicated higher than expected mixing ratios of HONO in the daytime. As daytime HONO mixing ratios usually maximize at only a couple hundred part-per-trillion, it is important to have a technique that is accurate, sensitive, and precise. Here we outline an instrumental technique called Laser Photofragmention/Fluorescent Assay by Gas Expansion (LP/FAGE). Ambient air is drawn through an inlet composed of a 1' diameter metal disk with a 0.025' cylindrically bored hole where it undergoes expansion into a cell held at ~3 torr. Fiber coupled laser emission (YILF: 355 nm, 2.2 W) induces photofragmentation of HONO to OH and NO whereby the OH is quantified by the FAGE technique using a fiber coupled 308 nm (6 mW) laser emission. The 355 nm and 308 nm emission are single pass, collinear, and separated only by the time delay of the pulses. To differentiate ambient OH from HONO-generated-OH, a shutter is used to block the 355 nm laser emission for a given period of time. Fluorescence from OH vs. fluorescence from interfering species can be differentiated by scanning on and off a specific rovibronic feature in the OH absorbance spectra. In this presentation we outline the instrumental technique, including its calibration in which effluent from an HCl permeation device is humidified and passed over a bed of sodium nitrate coated glass beads. The calibrator output is varied from 1 to several tens of parts-per-billions (ppb) and is detected using a chemiluminescence NOx analyzer. The

  3. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  4. HIV-1 Fusion Assay

    PubMed Central

    Cavrois, Marielle; Neidleman, Jason; Greene, Warner C.

    2016-01-01

    The HIV-1 fusion assay measures all steps in the HIV-1 life cycle up to and including viral fusion. It relies on the incorporation of a β-lactamase Vpr (BlaM-Vpr) protein chimera into the virion and the subsequent transfer of this chimera into the target cell by fusion (Figure 1). The transfer is monitored by the enzymatic cleavage of CCF2, a fluorescent dye substrate of β-lactamase, loaded into the target cells. Cleavage of the β-lactam ring in CCF2 by β-lactamase changes the fluorescence emission spectrum of the dye from green (520 nm) to blue (447 nm). This change reflects virion fusion and can be detected by flow cytometry (Figure 2).

  5. Helicase Assays

    PubMed Central

    Wang, Xin; Li, Jing; Diaz, Jason; You, Jianxin

    2016-01-01

    Helicases are a class of enzymes which are motor proteins using energy derived from ATP hydrolysis to move directionally along a nucliec acid phosphodiester backbone (such as DNA, RNA and DNA-RNA hybrids) and separate two annealed nucleic acid strands. Many cellular processes, such as transcription, DNA replication, recombination and DNA repair involve helicase activity. Here, we provide a protocol to analyze helicase activities in vitro. In this protocol, the DNA helicase protein Merkel cell polyomavirus large T-antigen was expressed in the mammalian cell line HEK293 and immoblized on an IgG resin. The helicase assay is performing while the protein is immoblized on IgG resin.

  6. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.

    PubMed

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-10-01

    In this work, we presented a novel dual fluorescence resonance energy transfer (FRET) system for the simultaneous detection of Pb(2+) and Hg(2+). This system employed two color upconversion nanoparticles (UCNPs) as the donors, and controlled gold nanoparticles (AuNPs) as the acceptors. The two donor-acceptor pairs were fabricated by hybridizing the aptamers and their corresponding complementary DNA. Thus, the green and red upconversion fluorescence could be quenched because of a good overlap between the UCNPs fluorescence emission and the AuNPs absorption spectrum. In the presence of Pb(2+) and Hg(2+), the aptamers preferred to bind to their corresponding analytes and formed a G-quadruplexes structure for Pb(2+) and the hairpin-like structure for Hg(2+). As a result, the dual FRET was disrupted, and the green and red upconversion fluorescence was restored. Under optimized experimental conditions, the relative fluorescence intensity increased as the metal ion concentrations were increased, allowing for the quantification of Pb(2+) and Hg(2+). The relationships between the fluorescence intensity and plotting logarithms of ion concentrations were linear in the range from 0.1 to 100 nM for Pb(2+) and 0.5 to 500 nM for Hg(2+), and the detection limits of Pb(2+) and Hg(2+) were 50 pM and 150 pM, respectively. As a practical application, the aptasensor was used to monitor Pb(2+) and Hg(2+) levels in naturally contaminated samples and human serum samples. Ultimately, this type of dual FRET could be used to detect other metal ions or contaminants in food safety analysis and environment monitoring. PMID:25059168

  7. Fluorescent Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hui William; Kim, Youngmi; Meng, Ling; Mallikaratchy, Prabodhika; Martin, Jennifer; Tang, Zhiwen; Shangguan, Dihua; O'Donoghue, Meghan; Tan, Weihong

    Aptamers are single-stranded nucleic acid probes that can be evolved to have high specificity and affinity for different targets. These targets include biomar-ker proteins, small molecules, and even whole live cells that express a variety of surface proteins of interest. Aptamers offer several advantages over protein-based molecular probes such as low immunogenic activity, flexible modification, and in vitro synthesis. In addition, aptamers used as molecular probes can be made with easy signaling for binding with their corresponding targets. There are a few different fluorescence-based signal transduction mechanisms, such as direct fluorophore labeling, fluorescence resonance energy transfer (FRET), fluorescence quenching, fluorescence anisotropy, and light-switching excimers. These signaling processes in combination with various labeling strategies of nucleic acid aptamers contribute to simple, rapid, sensitive, and selective biological assays. In this chapter, we discuss the optical signaling of aptamers for single proteins such as α-thrombin and platelet-derived growth factor (PDGF). We also present detailed discussion about fluorescent aptamers developed from cell-based systematic evolution of ligands by exponential enrichment (SELEX) for the recognition of different target tumor cells.

  8. Angiogenesis Assays.

    PubMed

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  9. Combination of Novel Green Fluorescent Protein Mutant TSapphire and DsRed Variant mOrange to Set Up a Versatile in Planta FRET-FLIM Assay1[W

    PubMed Central

    Bayle, Vincent; Nussaume, Laurent; Bhat, Riyaz A.

    2008-01-01

    Förster resonance energy transfer (FRET) measurements based on fluorescence lifetime imaging microscopy (FLIM) are increasingly being used to assess molecular conformations and associations in living systems. Reduction in the excited-state lifetime of the donor fluorophore in the presence of an appropriately positioned acceptor is taken as strong evidence of FRET. Traditionally, cyan fluorescent protein has been widely used as a donor fluorophore in FRET experiments. However, given its photolabile nature, low quantum yield, and multiexponential lifetime, cyan fluorescent protein is far from an ideal donor in FRET imaging. Here, we report the application and use of the TSapphire mutant of green fluorescent protein as an efficient donor to mOrange in FLIM-based FRET imaging in intact plant cells. Using time-correlated single photon counting-FLIM, we show that TSapphire expressed in living plant cells decays with lifetime of 2.93 ± 0.09 ns. Chimerically linked TSapphire and mOrange (with 16-amino acid linker in between) exhibit substantial energy transfer based on the reduction in the lifetime of TSapphire in the presence of the acceptor mOrange. Experiments performed with various genetically and/or biochemically known interacting plant proteins demonstrate the versatility of the FRET-FLIM system presented here in different subcellular compartments tested (cytosol, nucleus, and at plasma membrane). The better spectral overlap with red monomers, higher photostability, and monoexponential lifetime of TSapphire makes it an ideal FRET-FLIM donor to study protein-protein interactions in diverse eukaryotic systems overcoming, in particular, many technical challenges encountered (like autofluorescence of cell walls and fluorescence of pigments associated with photosynthetic apparatus) while studying plant protein dynamics and interactions. PMID:18621983

  10. High-performance liquid chromatographic assay of N(G)-monomethyl-L-arginine, N(G),N(G)-dimethyl-L-arginine, and N(G),N(G)'-dimethyl-L-arginine using 4-fluoro-7-nitro-2, 1,3-benzoxadiazole as a fluorescent reagent.

    PubMed

    Nonaka, Satoko; Tsunoda, Makoto; Imai, Kazuhiro; Funatsu, Takashi

    2005-02-25

    N(G)-Monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), and N(G),N(G)'-dimethyl-L-arginine (SDMA) are emerging cardiovascular risk factors. A high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of L-NMMA, ADMA and SDMA is described. The assay employed 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorescent derivatization reagent. After solid phase extraction with cation-exchange column, the methylated arginines were converted to fluorescent derivatives with NBD-F, and the derivatives were separated within 32 min on a reversed-phase column. Nomega-Propyl-L-arginine was Used as an internal standard. Extrapolated detection limits were 12 nM (12 fmol per injection) for L-NMMA and 20 nM (20 fmol per injection) for ADMA and SDMA, respectively, with a signal-to-noise ratio of 3. The calibration curves for L-NMMA, ADMA and SDMA were linear within the range of 50-5000 fmol. The method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in 200 microl of rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.03, 0.80 +/- 0.25 and 0.40 +/- 0.21 microM, respectively (n = 5). PMID:15794553

  11. Bicinchoninic acid (BCA) assay in low volume.

    PubMed

    Bainor, Anthony; Chang, Lyra; McQuade, Thomas J; Webb, Brian; Gestwicki, Jason E

    2011-03-15

    The BCA assay is a colorimetric method for estimating protein concentration. In 96-well plates, the relationship between protein content and absorbance is nearly linear over a wide range; however, performance is reduced in lower volume. To overcome this limitation, we performed the BCA assays in opaque, white 384-well plates. These plates emit fluorescence between 450-600 nm when excited at 430 nm; thus, their fluorescence is quenched by the BCA chromophore (λ(max) 562 nm). This arrangement allowed accurate determination of protein content using only 2 μL of sample. Moreover, soluble flourescein could replace the white plates, creating a homogenous format. PMID:21078286

  12. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  13. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  14. An assay for measurement of protein adsorption to glass vials.

    PubMed

    Varmette, Elizabeth; Strony, Brianne; Haines, Daniel; Redkar, Rajendra

    2010-01-01

    Protein adsorption to primary packaging is one of the problems faced by biopharmaceutical drug companies. An assay was developed to quantify loss of proteins to glass vial surfaces. The assay involves the labeling of protein with a fluorescent dye, incubation of the labeled protein with the vial surface, elution of the adsorbed protein using a stripping buffer, and determination of fluorescence of the adsorbed protein using a fluorometer. The assay is simple to set up, accurate, sensitive, and flexible. The assay can be modified for indirect measurement of protein adsorption and offers an attractive alternative for researchers to quantify protein adsorption to glass vials and syringes. PMID:21502031

  15. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  16. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  17. Assay for Angiotensin-Converting Enzyme.

    ERIC Educational Resources Information Center

    Russo, Salvatore F.

    1983-01-01

    Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…

  18. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  19. Bimolecular fluorescence complementation.

    PubMed

    Wong, Katy A; O'Bryan, John P

    2011-01-01

    Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex. Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1). A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET). For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET

  20. Selective fluorescence and fluorescence-free detection of single biomolecules on nanobiochips.

    PubMed

    Lee, Seungah; Kang, Seong Ho

    2014-10-01

    This topical review provides an overview of selective fluorescence and fluorescence-free detection on nanobiochips fabricated by nanopatterning techniques such as nanolithography and the use of artificial nanostructures (arrays of pillars, holes, and wires). The unique properties of nanostructured surfaces have led to applications in biomedical nanoarrays used for either diagnostic or functional assays on chips. Some targets can be optically detected using not only colorimetry, chemiluminescence or the most developed fluorescence mode, but also more recent non-conventional optical methods. Two main approaches have been used: fluorescence (e.g., epifluorescence and total internal reflection) and fluorescence-free (e.g., surface plasmon resonance, optical resonance, dark-field scattering, atom force microscopy, electrochemical method, etc.) detection. The aim of the present paper is to review the most recent progress in nanobiochips in the development of new selective fluorescence and fluorescence-free detection at the single-molecule level. PMID:25992412

  1. A fluopol-ABPP HTS assay to identify PAD inhibitors.

    PubMed

    Knuckley, Bryan; Jones, Justin E; Bachovchin, Daniel A; Slack, Jessica; Causey, Corey P; Brown, Steven J; Rosen, Hugh; Cravatt, Benjamin F; Thompson, Paul R

    2010-10-14

    Protein Arginine Deiminase (PAD) activity is dysregulated in numerous diseases, e.g., Rheumatoid Arthritis. Herein we describe the development of a fluorescence polarization-Activity Based Protein Profiling (fluopol-ABPP) based high throughput screening assay that can be used to identify PAD-selective inhibitors. Using this assay, streptonigrin was identified as a potent, selective, and irreversible PAD4 inactivator. PMID:20740228

  2. Proteasome Assay in Cell Lysates

    PubMed Central

    Maher, Pamela

    2016-01-01

    The ubiquitin-proteasome system (UPS) mediates the majority of the proteolysis seen in the cytoplasm and nucleus of mammalian cells. As such it plays an important role in the regulation of a variety of physiological and pathophysiological processes including tumorigenesis, inflammation and cell death (Ciechanover, 2005; Kisselev and Goldberg, 2001). A number of recent studies have shown that proteasome activity is decreased in a variety of neurological disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and stroke as well as during normal aging (Chung et al., 2001; Ciechanover and Brundin, 2003; Betarbet et al., 2005). This decrease in proteasome activity is thought to play a critical role in the accumulation of abnormal and oxidized proteins. Protein clearance by the UPS involves two sequential reactions. The first is the tagging of protein lysine residues with ubiquitin (Ub) and the second is the subsequent degradation of the tagged proteins by the proteasome. We herein describe an assay for the second of these two reactions (Valera et al., 2013). This assay uses fluorogenic substrates for each of the three activities of the proteasome: chymotrypsin-like activity, trypsin-like activity and caspase-like activity. Cleavage of the fluorophore from the substrate by the proteasome results in fluorescence that can be detected with a fluorescent plate reader.

  3. Scrape Loading/Dye Transfer Assay.

    PubMed

    Babica, Pavel; Sovadinová, Iva; Upham, Brad L

    2016-01-01

    The scrape loading/dye transfer (SL/DT) technique is a simple functional assay for the simultaneous assessment of gap junctional intercellular communication (GJIC) in a large population of cells. The equipment needs are minimal and are typically met in standard cell biology labs, and SL/DT is the simplest and quickest of all the assays that measure GJIC. This assay has also been adapted for in vivo studies. The SL/DT assay is also conducive to a high-throughput setup with automated fluorescence microscopy imaging and analysis to elucidate more samples in shorter time, and hence can serve a broad range of in vitro pharmacological and toxicological needs. PMID:27207291

  4. From Antenna to Assay

    PubMed Central

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  5. Broad base biological assay using liquid based detection assays

    SciTech Connect

    Milanovich, F; Albala, J; Colston, B; Langlois, R; Venkateswaren, K

    2000-10-31

    organization, and DNA replication and repair. Understanding the complexities of these interactions is a fundamental step towards comprehending key aspects of disease biochemistry. This past year, using the LA technology, we were able to confirm the dynamics of a well characterized three protein, bacterial DNA repair mechanism--UvrABC. Next fiscal year we will begin studying the less characterized mammalian homologous recombinational DNA repair pathway examining the protein/protein and protein/DNA interactions of RAD51B/C. In the second thrust, we are looking at a model human disease state to assess the application of the LA in highly parallel and rapid medical diagnostics. In collaboration with researchers at UCSF and the California Department of Public Health we are developing a multiplex assay for the determination of Herpes-8 exposure (a cancer inducing virus) in aids patients. We have successfully demonstrated a 8-plex assay and will extend to 20-plex in the near future. In a parallel effort we will develop an 18-plex assay for detecting antibodies to all vaccine-preventable childhood viral infections. Finally we are developing a concept that would utilize the bead assay in the simplest possible form. After microbead capture of the biomarker sample and a fluorescent reporter in solution, the beads are trapped on an ordered dipstick array. The color of each bead is used to identify the biomarker, while the fluorescent reporter measures its concentration. This concept, MIDS, would enable widespread use of the technology by reducing the capital investment required while greatly simplifying its operation and maintenance.

  6. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  7. A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection.

    PubMed

    Shi, Cong Ying; Deng, Ning; Liang, Jia Jie; Zhou, Ke Nan; Fu, Qiang Qiang; Tang, Yong

    2015-01-01

    A fluorescent polymer dots positive readout and sensitive lateral flow assay (LFA) based on fluorescent quenching has been developed to detect ractopamine (Rac), a chemical residue in food, harmful to human health. Compared with traditional LFA strips, these fluorescent quenching LFA (FQLFA) strips provide a positive correlation method that allows users to obtain results from a weak fluorescent signal. The immunoassay strip scheme is based on the fact that fluorescent polymer dots (FPDs) in close proximity to gold nanoparticles (AuNPs) represent a strong fluorescent quenching. We show that the FQLFA strips can be used as a source to quantitatively analyze Rac in phosphate buffers (PB), swine urine and muscle tissue samples. The lowest detection limitation of the FQLFA was 0.16 ng mL(-1). Our results indicated that this novel scheme was more suitable for rapid detection of small molecules. PMID:25479885

  8. A novel, sensitive assay for high-throughput molecular detection of plasmodia for active screening of malaria for elimination.

    PubMed

    Cheng, Zhibin; Sun, Xiaodong; Yang, Ye; Wang, Heng; Zheng, Zhi

    2013-01-01

    Although malaria remains one of the leading infectious diseases in the world, the decline in malaria transmission in some area makes it possible to consider elimination of the disease. As countries approach elimination, malaria diagnosis needs to change from diagnosing ill patients to actively detecting infections in all carriers, including asymptomatic and low-parasite-load patients. However, few of the current diagnostic methods have both the throughput and the sensitivity required. We adopted a sandwich RNA hybridization assay to detect genus Plasmodium 18S rRNA directly from whole-blood samples from Plasmodium falciparum and Plasmodium vivax patients without RNA isolation. We tested the assay with 202 febrile patients from areas where malaria is endemic, using 20 μl of each blood sample in a 96-well plate format with a 2-day enzyme-linked immunosorbent assay (ELISA)-like work flow. The results were compared with diagnoses obtained using microscopy, a rapid diagnostic test (RDT), and genus-specific real-time PCR. Our assay identified all 66 positive samples diagnosed by microscopy, including 49 poorly stored samples that underwent multiple freeze-thaw cycles due to resource limitation. The assay uncovered three false-negative samples by microscopy and four false-negative samples by RDT and agreed completely with real-time PCR diagnosis. There was no negative sample by our assay that would show a positive result when tested with other methods. The detection limit of our assay for P. falciparum was 0.04 parasite/μl. The assay's simple work flow, high throughput, and sensitivity make it suitable for active malaria screening. PMID:23100347

  9. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  10. A lateral electrophoretic flow diagnostic assay

    PubMed Central

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.

    2015-01-01

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872

  11. Fluorescent Protein Biosensors Applied to Microphysiological Systems

    PubMed Central

    Senutovitch, Nina; Vernetti, Lawrence; Boltz, Robert; DeBiasio, Richard; Gough, Albert; Taylor, D. Lansing

    2015-01-01

    This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPS). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and microphysiological systems in real-time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high content screening (HCS). FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein (GFP), dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental

  12. Development of fluorometric reactive oxygen species assay for photosafety evaluation.

    PubMed

    Seto, Yoshiki; Ohtake, Hiroto; Kato, Masashi; Onoue, Satomi

    2016-08-01

    The present investigation involved an attempt to develop a new reactive oxygen species (ROS) assay system for the photosafety assessment of chemicals using 1,3-diphenylisobenzofuran (DPBF), a fluorescent probe for monitoring ROS generation. The assay conditions of the fluorometric ROS (fROS) assay were optimized focusing on the solvent system, concentration of DPBF, fluorescent determination, screening run time and reproducibility. The photoreactivity of 21 phototoxic and 11 non-phototoxic compounds was assessed by fROS assay, and the obtained ROS data were compared with the results from a micellar ROS (mROS) assay and in vitro/in vivo phototoxicity information to confirm the predictive capacity of the fROS assay. In the optimized fROS assay, intra-day and inter-day precision levels (coefficient of variation) were found to be below 5%, and the Z'-factor for DPBF fluorescence quenching showed a large separation between positive and negative controls. Of all tested compounds, 3 false positive and 7 false negative predictions were observed in the fROS assay, and the negative predictivity for the fROS assay was found to be lower than that for the mROS assay. Although the fROS assay has some limitations, the procedures for it were highly simplified with a marked reduction in screening run time and one analytical sample for monitoring ROS generation from compounds. The fROS assay has the potential to become a new tool for photosafety assessment at an early stage of product development. PMID:27058001

  13. Indicator displacement assays inside live cells.

    PubMed

    Norouzy, Amir; Azizi, Zahra; Nau, Werner M

    2015-01-12

    The macrocycle p-sulfonatocalix[4]arene (CX4) and the fluorescent dye lucigenin (LCG) form a stable host-guest complex, in which the dye fluorescence is quenched. Incubation of live V79 and CHO cells with the CX4/LCG chemosensing ensemble resulted in its spontaneous uptake. Subsequent addition of choline, acetylcholine, or protamine, which have a high affinity for CX4 and are capable of entering cells, resulted in a fluorescence switch-on response. This can be traced to the displacement of LCG from CX4 by the analytes. The results establish the principal functionality of indicator displacement assays with synthetic receptors for the detection of the uptake of bioorganic analytes by live cells. PMID:25430503

  14. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis. PMID:8455155

  15. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  16. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  17. Non-separation assay for glycohemoglobin.

    PubMed

    Blincko, S; Edwards, R

    1998-06-01

    The determination of glycohemoglobin [HbA1c, HbA1, or total glycohemoglobin (GHb)] has become an established procedure in the management of diabetes mellitus. Here, we describe the development of a simple, fluorescence, non-separation assay for the percentage of GHb (%GHb). The fluorescence of an eosin-boronic acid derivative when it was mixed with hemolysates of unwashed erythrocytes was quenched in proportion to the percentage of glycohemoglobin. Measurement of the fluorescence intensity gave an estimate of GHb in the sample, and measurement of light absorbance gave an estimate of total hemoglobin. A combination of the two measurements gave the assay response. Comparison with HPLC (Menarini-Arkray HA-8140 fully automated analyzer) for the percentage of HbA1 (%HbA1) gave %GHb(NETRIA) = 1.1(SD +/-0.03)%HbA1 +0.6(SD +/-0.3), S(y/x) = 0.821, r = 0.972, n = 80; comparison for HbA1c gave %GHb(NETRIA) = 1.3(SD +/-0.04)%HbA1c + 1.8(SD +/-0.3), S(y/x) = 0.813, r = 0.973, n = 80. Precision, estimated as the percentage of the CV of the %GHb assay results, was <2% (intraassay, range 5-22% GHb) and <4.2% (interassay, range 4-16% GHb). Dilution of a high-percentage GHb sample lysate showed that the assay was linear, and addition of glucose (60 mmol/L), bilirubin (250 micromol/L), and triglycerides (14 mmol/L) to low, medium, and high %GHb samples showed no clinical interference in assay results. PMID:9625057

  18. Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay.

    PubMed

    Shen, Yanming; Zhang, Quanjuan; Qian, Xuhong; Yang, Youjun

    2015-01-20

    Nitrite is a heavily assayed substrate in the fields of food safety, water quality control, disease diagnosis, and forensic investigation and more recently in basic biological studies on nitric oxide physiology and pathology. The colorimetric Griess assay and the fluorimetric 2,3-diaminonaphthalene (DAN) assay are the current gold standards for nitrite quantification. They are not without limitations, yet have amazingly survived 156 and 44 years, respectively, due to the lack of a practical alternative. Both assays exhibit slow detection kinetics due to inactivation of nucleophiles under strongly acidic media, require an extensive incubation time for reaction to go completion, and hence offer a limited detection throughput. By converting an intermolecular reaction of the Griess assay intramolecularly, we designed a novel probe (NT555) for nitrite detection, which displays superior detection kinetics and sensitivity. NT555 was constructed following our "covalent-assembly" probe design principle. Upon detection, it affords a gigantic bathochromic shift of the absorption spectrum and a sensitive turn-on fluorescence signal from a zero background, both of which are typical of an "assembly" type probe. Overall, NT555 has addressed various difficulties associated with the Griess and the DAN assays and represents an attractive alternative for practical applications. PMID:25519711

  19. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  20. Homogeneous assay technology based on upconverting phosphors.

    PubMed

    Kuningas, Katri; Rantanen, Terhi; Ukonaho, Telle; Lövgren, Timo; Soukka, Tero

    2005-11-15

    Upconversion photoluminescence can eliminate problems associated with autofluorescence and scattered excitation light in homogeneous luminescence-based assays without need for temporal resolution. We have demonstrated a luminescence resonance energy-transfer-based assay utilizing inorganic upconverting (UPC) lanthanide phosphor as a donor and fluorescent protein as an acceptor. UPC phosphors are excited at near-infrared and they have narrow-banded anti-Stokes emission at visible wavelengths enabling measurement of the proximity-dependent sensitized emission with minimal background. The acceptor alone does not generate any direct emission at shorter wavelengths under near-infrared excitation. A competitive model assay for biotin was constructed using streptavidin-conjugated Er3+,Yb3+-doped UPC phosphor as a donor and biotinylated phycobiliprotein as an acceptor. UPC phosphor was excited at near-infrared (980 nm) and sensitized acceptor emission was measured at red wavelength (600 nm) by using a microtitration plate fluorometer equipped with an infrared laser diode and suitable excitation and emission filters. Lower limit of detection was in the subnanomolar concentration range. Compared to time-resolved fluorometry, the developed assay technology enabled simplified instrumentation. Excitation at near-infrared and emission at red wavelengths render the technology also suitable to analysis of strongly colored and fluorescent samples, which are often of concern in clinical immunoassays and in high-throughput screening. PMID:16285685

  1. Immunoperoxidase inhibition assay for rabies antibody detection.

    PubMed

    Batista, H B C R; Lima, F E S; Maletich, D; Silva, A C R; Vicentini, F K; Roehe, L R; Spilki, F R; Franco, A C; Roehe, P M

    2011-06-01

    An immunoperoxidase inhibition assay (IIA) for detection of rabies antibodies in human sera is described. Diluted test sera are added to microplates with paraformaldehyde-fixed, CER cells infected with rabies virus. Antibodies in test sera compete with a rabies polyclonal rabbit antiserum which was added subsequently. Next, an anti-rabbit IgG-peroxidase conjugate is added and the reaction developed by the addition of the substrate 3-amino-9-ethylcarbazole (AEC). The performance of the assay was compared to that of the "simplified fluorescence inhibition microtest" (SFIMT), an established virus neutralization assay, by testing 422 human sera. The IIA displayed 97.6% sensitivity, 98% specificity and 97.6% accuracy (Kappa correlation coefficient=0.9). The IIA results can be read by standard light microscopy, where the clearly identifiable specific staining is visible in antibody-negative sera, in contrast to the absence of staining in antibody-positive samples. The assay does not require monoclonal antibodies or production of large amounts of virus; furthermore, protein purification steps or specialized equipment are not necessary for its performance. The IIA was shown to be suitable for detection of rabies antibodies in human sera, with sensitivity, specificity and accuracy comparable to that of a neutralization-based assay. This assay may be advantageous over other similar methods designed to detect rabies-specific binding antibodies, in that it can be easily introduced into laboratories, provided basic cell culture facilities are available. PMID:21458492

  2. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  5. The Development of Fluorescence Intensity Standards

    PubMed Central

    Gaigalas, A. K.; Li, Li; Henderson, O.; Vogt, R.; Barr, J.; Marti, G.; Weaver, J.; Schwartz, A.

    2001-01-01

    The use of fluorescence as an analytical technique has been growing over the last 20 years. A major factor in inhibiting more rapid growth has been the inability to make comparable fluorescence intensity measurements across laboratories. NIST recognizes the need to develop and provide primary fluorescence intensity standard (FIS) reference materials to the scientific and technical communities involved in these assays. The critical component of the effort will be the cooperation between the Federal laboratories, the manufacturers, and the technical personnel who will use the fluorescence intensity standards. We realize that the development and use of FIS will have to overcome many difficulties. However, as we outline in this article, the development of FIS is feasible.

  6. A simple real-time assay for in vitro translation

    PubMed Central

    Capece, Mark C.; Kornberg, Guy L.; Petrov, Alexey

    2015-01-01

    A high-throughput assay for real-time measurement of translation rates in cell-free protein synthesis (SNAP assay) is described. The SNAP assay enables quantitative, real-time measurement of overall translation rates in vitro via the synthesis of O6-alkylguanine DNA O6-alkyltransferase (SNAP). SNAP production is continuously detected by fluorescence produced by the reaction of SNAP with a range of quenched fluorogenic substrates. The capabilities of the assay are exemplified by measurements of the activities of Escherichia coli MRE600 ribosomes and fluorescently labeled E. coli mutant ribosomes in the PURExpress translation system and by determination of the 50% inhibitory concentrations (IC50) of three common macrolide antibiotics. PMID:25525154

  7. A simple real-time assay for in vitro translation.

    PubMed

    Capece, Mark C; Kornberg, Guy L; Petrov, Alexey; Puglisi, Joseph D

    2015-02-01

    A high-throughput assay for real-time measurement of translation rates in cell-free protein synthesis (SNAP assay) is described. The SNAP assay enables quantitative, real-time measurement of overall translation rates in vitro via the synthesis of O(6)-alkylguanine DNA O(6)-alkyltransferase (SNAP). SNAP production is continuously detected by fluorescence produced by the reaction of SNAP with a range of quenched fluorogenic substrates. The capabilities of the assay are exemplified by measurements of the activities of Escherichia coli MRE600 ribosomes and fluorescently labeled E. coli mutant ribosomes in the PURExpress translation system and by determination of the 50% inhibitory concentrations (IC50) of three common macrolide antibiotics. PMID:25525154

  8. FLUORESCENT IN SITU DETECTION OF ENCEPHALITOZOON HELLEM SPORES WITH A 6-CARBOXYFLUORESCEIN-LABELED RNA-TARGETED OLIGONUCLEOTIDE PROBE

    EPA Science Inventory

    A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem, in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligo...

  9. Fundamentals of fluorescence and fluorescence microscopy.

    PubMed

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope. PMID:23931503

  10. Immunochromatographic assay on thread.

    PubMed

    Zhou, Gina; Mao, Xun; Juncker, David

    2012-09-18

    Lateral-flow immunochromatographic assays are low-cost, simple-to-use, rapid tests for point-of-care screening of infectious diseases, drugs of abuse, and pregnancy. However, lateral flow assays are generally not quantitative, give a yes/no answer, and lack multiplexing. Threads have recently been proposed as a support for transporting and mixing liquids in lateral-flow immunochromatographic assays, but their use for quantitative high-sensitivity immunoassays has yet to be demonstrated. Here, we introduce the immunochromatographic assay on thread (ICAT) in a cartridge format that is suitable for multiplexing. The ICAT is a sandwich assay performed on a cotton thread knotted to a nylon fiber bundle, both of which are precoated with recognition antibodies against one target analyte. Upon sample application, the assay results become visible to the eye within a few minutes and are quantified using a flatbed scanner. Assay conditions were optimized, the binding curves for C-reactive protein (CRP) in buffer and diluted serum were established and a limit of detection of 377 pM was obtained. The possibility of multiplexing was demonstrated using three knotted threads coated with antibodies against CRP, osteopontin, and leptin proteins. The performance of the ICAT was compared with that of the paper-based and conventional assays. The results suggest that thread is a suitable support for making low-cost, sensitive, simple-to-use, and multiplexed diagnostic tests. PMID:22889381

  11. Rapid mercury assays

    SciTech Connect

    Szurdoki, S.; Kido, H.; Hammock, B.D.

    1996-10-01

    We have developed rapid assays with the potential of detecting mercury in environmental samples. our methods combine the simple ELISA-format with the selective, high affinity complexation of mercuric ions by sulfur-containing ligands. The first assay is based on a sandwich chelate formed by a protein-bound ligand immobilized on the wells of a microliter plate, mercuric ion of the analyzed sample, and another ligand conjugated to a reporter enzyme. The second assay involves competition between mercuric ions and an organomercury-conjugate to bind to a chelating conjugate. Several sulfur containing chelators (e.g., dithiocarbamates) and organomercurials linked to macromolecular carriers have been investigated in these assay formats. The assays detect mercuric ions in ppb/high ppt concentrations with high selectivity.

  12. Fluorescence enhancement aided by metal ion displacement.

    PubMed

    Susini, Vanessa; Ienco, Andrea; Lucia Rossi, Veronica; Paolicchi, Aldo; Sanesi, Antonio

    2016-06-15

    Immunosensors are one of the most common platform used in clinical laboratories, in particular the class based on Enzyme Linked Fluorescent Assays (ELFA) takes advantage of the amplification step of the enzyme, usually the alkaline phosphatase, that catalyzes the hydrolysis of a fluorescent substrate leading it to fluoresce. Anyway, they suffer in sensitivity if compared to molecular diagnostic or more modern in vitro diagnostic devices. In our work, a simple and effective mechanism to enhance the fluorescent signal, and hence the sensitivity of the system, is presented. It is based on the metal ion displacement principle in which a second fluorophore, in our case Calcein Blue, quenched by a cobalt ion is add to the first one (4-MUP), and, in presence of inorganic phosphate, it will be progressively activated by the inorganic phosphate itself leading to the metal displacement. In this way Calcein Blue, newly free to fluoresce, contributes to global fluorescent signal generated by 4-MU. We have tested our proof of principle on a currently used immunoanalyzer, that is VIDAS® system (bioMérieux, Marcy l'Etoile, France) obtaining a fluorescence enhancement of about 50% for each concentration of hydrolyzed 4-MUP tested. PMID:26851581

  13. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays

    NASA Astrophysics Data System (ADS)

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.

    2009-11-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  14. An improved molecular assay for Tritrichomonas foetus.

    PubMed

    Grahn, R A; BonDurant, R H; van Hoosear, K A; Walker, R L; Lyons, L A

    2005-01-01

    Tritrichomonas foetus (T. foetus) is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to abortion (from 1 to 8 months gestation), infertility, and occasional pyometra. The annual losses to the U.S. beef industry are estimated to be in the hundreds of millions of dollars. Currently, the "gold standard" diagnostic test for trichomonosis in most countries is the cultivation of live organisms from reproductive secretions. The cultured organisms can then be followed by PCR assays with primers that amplify T. foetus to the exclusion of all other trichomonad species. Thus, negative results present as null data, indistinguishable from failed PCR amplification during T. foetus specific amplification. Our newly developed assay improves previously developed PCR based techniques by using diagnostic size variants from within the internal transcribed spacer 1 (ITS1) region that is between the 18S rRNA and 5.8S rRNA subunits. This new PCR assay amplifies trichomonad DNA from a variety of genera and positively identifies the causative agent in the bovine trichomonad infection. This approach eliminates false negatives found in some current assays as well as identifying the causative agent of trichomonad infection. Additionally, our assay incorporates a fluorescently labeled primer enabling high sensitivity and rapid assessment of the specific trichomonad species. Moreover, electrophoretic separation of amplified samples can be outsourced, thus eliminating the need for diagnostic laboratories to purchase expensive analysis equipment. PMID:15619373

  15. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  16. Semiquantitative fluorescence method for bioconjugation analysis.

    PubMed

    Brasil, Aluízio G; Carvalho, Kilmara H G; Leite, Elisa S; Fontes, Adriana; Santos, Beate Saegesser

    2014-01-01

    Quantum dots (QDs) have been used as fluorescent probes in biological and medical fields such as bioimaging, bioanalytical, and immunofluorescence assays. For these applications, it is important to characterize the QD-protein bioconjugates. This chapter provides details on a versatile method to confirm quantum dot-protein conjugation including the required materials and instrumentation in order to perform the step-by-step semiquantitative analysis of the bioconjugation efficiency by using fluorescence plate readings. Although the protocols to confirm the QD-protein attachment shown here were developed for CdTe QDs coated with specific ligands and proteins, the principles are the same for other QDs-protein bioconjugates. PMID:25103803

  17. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  18. Assay of carbon nanoparticles in liquids.

    PubMed

    Nawi, Yehuda; Sasson, Yoel; Dolgin, Bella

    2016-04-01

    The critical assay of carbon black concentration suffers from the lack of available methods, especially in-situ methods suitable for nanoparticles. We propose a useful tool for monitoring carbon nanoparticles concentration in liquids by means of RGB imaging, fluorescence and conductivity measurements. In this study carbon black particles of 25-75nm size were dispersed within two types of "green" liquids (1-butyl-3-methyl imidazolium based ionic liquids and glycerol) and the effect of carbon nanoparticles concentration on the liquids properties was measured. The conductivity of all the liquids increased with carbon concentration, while the slope of the curve was liquid dependent. The fluorescence intensity of ionic liquids decreased dramatically even when a small amount of carbon was added, while water-containing ionic liquids had a more moderate behavior. Glycerol has no native fluorescence, therefore, a known tracer present in soot (dibenzothiophene), having a characteristic fluorescence monitored by synchronous scan mode, was used. The carbon black effect on RGB imaging shows a linear dependence, while the red counts decreases with contamination. The proposed methods are simple and low-cost but nonetheless sensitive. PMID:26780588

  19. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  20. Fluorescence<